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Abstract

Little work on the electronic excited states of the family of HRgY (where Rg = rare

gas and Y = electronegative group) compounds exist. There are two problems that

are studied. The first is work aimed at extending the HRgY excited state area of

research to include more work done on the electronic excited states of HRgF (where

Rg = Ar, Kr, Xe, Rn) at the time-dependent density functional theory (TDDFT)

level of theory. The effects of the Rg matrix and relativistic effects on the electronic

spectra were investigated with scalar relativistic effects and spin-orbit coupling. The

matrix caused the excitation energies to blue-shift (for all HRgF) and scalar rel-

ativistic effects caused them to red-shift (most significantly for HRnF). Spin-orbit

coupling in HRnF altered its electronic spectrum significantly. A brief investigation

of the computational efficiency of model core potentials (MCPs) in comparison to

all-electron (AE) basis sets was done and it was found that MCP basis sets speed up

excited state calculations while still giving similar results as the AE basis sets. The

second problem addressed is the low-lying excited states (with spin-orbit coupling),

structure, and reactions of HRnY and HXeY (where Y = CN, NC), specifically their

isomerization and dissociation reactions. Isotopic substitution on reaction rates and

the effectiveness of several pseudopotential basis sets was also studied for these sys-

tems. The work was done at the DFT, TDDFT, and Møller-Plesset (MP2) levels of

theory.
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Preface

The research related to the electronic spectra of the HRgF (where Rg = Ar, Kr, Xe,

Rn) compounds has been published as M.D. van Hoeve and M. Klobukowski “Com-

putational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg

= Ar, Kr, Xe, Rn),” J. Phys. B. vol. 51, 055103, 2018 (10pp). M. Klobukowski

was responsible for the spin-orbit coupling calculations. M.D. van Hoeve was respon-

sible for all other data collection and analysis and writing of the manuscript. M.

Klobukowski assisted with data collection and analysis and edited the manuscript.

This work appears in Chapter 3.

The research related to the structure, reactions, and electronic spectra of HRgCN

and HRgNC (Rg = Xe or Rn) is to be published as M.D. van Hoeve and M. Klobukowski

“Structure, reactions, and electronic spectra of HRgCN and HRgNC (Rg = Xe or

Rn)”. Both M.D van Hoeve and M. Klobukowski were responsible for the data col-

lection and analysis. M. Klobukowski was responsible for the spin-orbit coupling

calculations. M.D. van Hoeve was responsible for writing the manuscript and M.

Klobukowski edited the manuscript. This work appears in Chapter 4.
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Chapter 1

Introduction

1.1 Motivation

Rare gases were long believed to be inert, but they do exhibit reactivity and form

compounds. Researching rare gas compounds and their reactivity challenges the

archaic idea of rare gas inertness [1]. Moreover, little work on the excited states of

the HRgY (where Rg = rare gas and Y = electronegative group) family of compounds

exists. Experimental and theoretical work for excited states has been done on HXeY

(Y= Cl, Br, I, CN) but little work on the excited states of the HRgY compounds

exists beyond that [2, 3]. Moreover, doing experimental work on compounds of radon

is difficult as this element is highly radioactive. Radon is hazardous to work with and

decays quite quickly via α decay with a half-life of 3.8 days for its most stable isotope

radon-222 [4]. Therefore, studying radon compounds theoretically is desirable. For

example, work on the thermochemistry of the HXeNC to HXeCN exists while that of

HRnNC to HRnCN does not [5]. Studying the radon case may still be interesting as

radon compounds tend to experience relativistic effects. Because of their relativistic

effects, the radon compounds are expected to have slightly different properties, such

as electronic spectra, than the lighter rare gas compounds of the same family.
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1.2 Thesis objectives

This works aims to extend the work on excited states for the family of rare gas

compounds of the form HRgY. The molecular orbitals involved in the transitions

of the main peaks in their electronic spectra are of interest. For the excited state

calculations in Chapter 3, we want to see how our chosen methods and basis sets

perform in the excited state calculations for these rare gas system [6]. Of interest is

how the model core potential basis sets behave relative to all electron basis sets. The

influence relativistic effects (both scalar relativistic and spin-orbit coupling) have on

the electronic spectra is also investigated, mostly for the radon compounds as radon

is a heavy atom and is expected to have the greatest relativistic effects. For the

geometry optimizations and thermochemistry in Chapter 4, it is of interest to see

how the basis set ims3 performs relative to the cheaper ims2 basis set and the more

expensive zfk3 and zfk4 basis sets [7]. The dissociation and isomerization of HRgCN

and HRgNC (Rg = Xe, Rn) is also of great interest as well as the kinetic isotope

effects of these reactions.
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Chapter 2

Background

2.1 Rare gas history

Compounds containing rare gas atoms were thought to be non-existent due to the

believed inertness of the rare gas elements. In 1933, Linus Pauling suggested the

possible existence of Xenic acid, KrF6 and XeF6 [8]. Xe compounds were the first

to be synthesized as Xe was most likely to form compounds due to its large polar-

izability and lower ionization energy. Unlike Rn, Xe is not radioactive and so less

hazardous to work with. In 1962, Neil Bartlett at the University of British Columbia

synthesized the first rare gas compound, Xe+[PtF6]
− (xenon hexafluoroplatinate),

an orange-yellow solid, from PtF6 (red vapour) and Xe [9]. He came to this con-

clusion by observing that PtF6 reacts with O+
2 to yield O+

2 [PtF6]
−. Since the first

ionization energy of Xe is similar to that of O+
2 , he predicted the possibility of syn-

thesizing Xe+[PtF6]
− in a similar manner. Although there is some work suggesting

that Bartlett’s experiment did not produce the Xe+[PtF6]
− compound (it was more

likely to be [XeF]+[PtF6]
−), Bartlett’s research was pioneering work on the synthesis

of rare gas compounds as within a few months XeF2 and XeF4 were synthesized by

others [10–12].

A common type of rare gas compound is HRgY where Rg = rare gas atom and

Y = electronegative group [13]. The first Ar compound was of this type, HArF, and

was synthesized by Khriachtchev et al. [14]. HRgY tend to be metastable compounds

3



[13]. The HRg bond is covalent while the bond between the fragments HRg+ and Y−

is mostly ionic. These compounds are formed by photolyzing HY with UV light in

a rare gas matrix which then leads to the thermal activation of the H atoms. Work

has been done on the HRgY family, especially focusing on their IR spectra [15, 16],

in which the stiff HRg bond creates an infrared (IR) peak at around 2000 cm−1 and

it is this peak that is used in its identification.

2.2 Methods

2.2.1 HF and MP2

The energy and properties of a system may be obtained by solving the Schrödinger

equation (equation 2.1)

Ĥ(1, 2, ..., N ; {R})Ψ(1, 2, ..., N ; {R}) = E({R})Ψ(1, 2, .., N ; {R}). (2.1)

The wavefunction Ψ (equation 2.2) is antisymmetric for electrons and other fermions

(equation 2.2)

Ψ(1, 2, ..., N) = −Ψ(2, 1, .., N), (2.2)

where Ĥ is the Hamiltonian (energy operator), E is energy, Ψ is the wavefunction that

depends on 4N variables. The 4N variables are (xi, yi, zi, σi) where xi, yi, zi are the

space coordinates and σi is the spin coordinate. The quartet of symbols xi, yi, zi, σi

is abbreviated as i. The positions of the nuclei {R} are assumed to be fixed under

the Born-Oppenheimer approximation.

The restricted Hartree-Fock method (HF) is a simple method for obtaining the

energy and other properties of a many-body system (compound) via approximating

the wavefunction of the system (Ψ) with a single Slater determinant (Φ) built from

spin orbitals (equation 2.3, where ψ denotes a spin orbital) [17–22],

Φ(1, 2, ..., N) = |ψ1(1)ψ2(2)...ψN(N)|. (2.3)
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HF theory contains no correlation effects other than from same spin electrons. The

variational method (equation 2.4) is used to get the equations for the spin orbitals

which are then solved to obtain the wavefunction and energy of the system,

⟨Ĥ⟩ = ⟨Φ|Ĥ|Φ⟩ = E ≥ E . (2.4)

In equation 2.4, E is the variational energy which will always be greater (although

can come close to) the exact energy, E . The spin orbitals used to construct Φ are

optimized so that E is minimized and therefore is close in value to exact value E .

The energy may be evaluated as the integral in equation 2.5,

E =

∫

Φ∗(1, 2, ..., N)Ĥ(1, 2, ..., N)Φ(1, 2, ..., N)dξ1...dξN
∫

Φ∗(1, 2, ..., N)Φ(1, 2, ..., N)dξ1...dξN
. (2.5)

The spin orbitals ψ(x, y, z) are defined as products of orbitals ϕ(x, y, z) and the Pauli

spin functions α(σ) and β(σ) (equation 2.6 and 2.7),

Ψi(x, y, z, σ) = ϕa(x, y, z)α(σ) (2.6)

Ψj(x, y, z, σ) = ϕa(x, y, z)β(σ). (2.7)

The orbitals ϕa are the solutions of the Hartree-Fock equations (equation 2.8)

f̂(x, y, z)ϕa(x, y, z) = ϵaϕa(x, y, z). (2.8)

The Møller-Plesset (MP) perturbation theory is a method that builds on the HF

method by adding electron correlation (HF only accounts for the electron correlations

due to same spin electrons) [23]. The MP perturbation theory can be done at the

second, third, and fourth order (MP2, MP3, MP4, respectively) [24–26]. Equation 2.9

shows the Hamiltonian used in the MP2 method (
ˆ

H
(0)
MP )

V̂ = Ĥ − Ĥ
(0)
MP , (2.9)

where Ĥ is the full Hamiltonian (equation 2.1) and V̂ is the perturbation.
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The correlation energy from the electron correlation is defined as equation 2.10,

Ecorr = E − EHF. (2.10)

Equation 2.10 shows that the MP method adds a perturbational correction (Ecorr)

to the HF energy via using the HF wavefunction. The difference between the exact

energy E and the HF energy is called the electron correlation energy.

2.2.2 DFT and TDDFT

Density functional theory (DFT) is another method for calculating the electronic

structure and energy of a ground state system, but unlike MP it does not involve

improving on the HF method [27]. This method uses functionals of electron density

(equivalent to the wavefunction) which is a function that depends on the function of

the spatial coordinates,

E = F [ρ(x, y, z)]. (2.11)

The energy can be calculated from the electron density (ρ) and an unknown functional

(F) as shown in equation 2.11. x, y, z is a single point for all the electrons in the

system. The first Hohenberg-Kohn theorem states that the properties of a system

can be obtained through the electron density. The second Hohenberg-Kohn theorem

states that the total energy of a system should be minimized through equation 2.11.

In the DFT method, there is the Kohn-Sham equation (equation 2.12) which is

similar to the HF equation or the Schrödinger equation,

F̂ (x, y, z)ϕi(x, y, z) = ϵiϕi(x, y, z). (2.12)

It contains the Kohn-Sham operator (F̂ ), the Kohn-Sham orbital energies (ϵi) and

orbitals (ϕi) which are used to define the electron density. The functional is a func-

tional of the electron density but the exact functional to the Kohn-Sham equation is

not known so approximations are used. The Kohn-Sham operator also contains the

exchange-correlation term. The exchange accounts for electron antisymmetry and the
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correlation accounts for electron correlation. The exchange-correlation term is also

separated.

Many different exchange-correlation functionals exist for the DFT method. A

specific type of functional is the hybrid functional. They are called hybrid because

they contain part of the HF operator: a portion of the HF exact exchange is put

into the exchange-correlation functional. Some examples of hybrid functionals are:

PBE0, B2PLYP, B3LYP, CAMB3LYP, and CAMYB3LYP [28, 31–33] while B2PLYP

is a double hybrid [29, 30]. B3LYP stands for Becke 3-parameter exchange and Lee-

Yang-Parr correlation functional [31]. B3LYP contains three parameters that mix: the

Becke 88 exchange functional, the correlation functional of Lee, Yang and Parr, and

the VWN (Vosko, Wilk, Nusair) local-density approximation (LDA) to the correlation

functional. LDA functionals only depend on the density at a given point. PBE0 is a

hybrid of the Perdew-Burke-Ernzerhof (PBE) exchange energy (full PBE correlation

energy) and Hartree-Fock exchange energy in a 3:1 ratio [28]. The GGA functionals

depends on the local density and the gradient of the density. B2PLYP has an hybrid-

GGA part and a perturbative correlation part [29]. B2PLYP has exact exchange

and GGA corrections with electron-electron and electron-nuclei energy [29, 30]. The

excitation energies and the ground state orbitals are then used in a perturbative

treatment which is then added to energies [29, 30]. CAMB3LYP is a combination

of B3LYP but with long range corrections [32]. CAMB3LYP is an improvement to

B3LYP because it results in better results for the charge transfer excitations [32].

CAMYB3LYP is similar to CAMB3LYP but it has a different switching function,

which is the Yukawa potential switching function [33].

TDDFT (time-dependent density functional theory) is a DFT method; TDDFT

is time-dependent so it can be used to calculate excited electronic states (a time-

dependent problem) and from there generate the electronic spectrum [35, 36].
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2.3 Basis sets

The molecular orbitals are built from a linear combination of basis functions. These

basis functions are termed the basis set. Table 2.1 shows the basis sets and their

abbreviations used in this thesis.

Table 2.1: Basis sets and their references.

name type(a) abbreviation reference

IMCP-SR2 MCP ims2 [37]

IMCP-SR3 MCP ims3 unpublished

MCP-TZP MCP mcpt [38]

ZFK3-DK3 MCP zfk3 [39]

ZFK4-DK3 MCP zfk4 [39]

SPKrTZP AE spkt (sapt) [40, 41]

SPKrQZP AE spkq [40, 41]

PolX AE polx [42–46]

QZ4Pb AE qz4p [47]

(a) MCP = model core potential, AE = all electron. (b) Slater functions.

The basis sets used are ims2, ims3, zfk3, zfk4, spkt (also called sapt in Chapter 3),

spkq, mcpt, polx, and qz4p [37–42, 47]. ims2, ims3, mcpt, zfk3 and zfk4 are basis

sets that contain model core potentials. zfk3 and zfk4 contain both scalar Douglas-

Kroll (DK) and spin orbit coupling (SOC) relativistic effects [39]. zfk3 contains

the diffuse functions from aug-cc-pVTZ and zfk4 contains the diffuse functions from

aug-cc-pVQZ [39]. spkt (triple zeta valence meaning three basis functions per each

valence orbital) and spkq (quadruple zeta valence) are basis sets with relativistic

effects included that belong to the class of Sapporo basis sets [40, 41]. mcpt is a

model core potential basis set [38]. The polx basis set was designed for polarizability

studies [42–46]. The qz4p is a quadruple zeta all electron Slater basis set with four
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polarization functions [47].

It is common to augment basis sets with diffuse functions in order to better describe

the far end of an orbital; these functions have very small exponents.

A specific set of diffuse functions is based on the even-tempered expansion [48–50].

These are often used to describe anions and Rydberg states. In the Rydberg states,

these are very diffuse molecular orbitals that resemble really big atomic orbitals. The

electron is so far out that it sees the molecule as a point, H-like, and therefore resides

in the H-like atomic orbitals.

2.4 Relativistic effects

Relativistic effects occur with atoms when an electron approaches the speed of light

(c). The mass of the electron may increase due to how close it travels to the speed of

light as seen in equation 2.13

mv =
m0

√

1− (v/c)2
, (2.13)

where m0 is the mass of the particle (in this case an electron) at rest and mv is the

mass of the particle moving at a speed of v.

The high speed increases the electron’s mass, making the s and p orbitals contract

(direct effect). The d and f orbitals expand due to increased shielding of the nucleus

due to the contraction of the inner subshells (indirect effect). The heavier the nucleus,

the greater the relativistic effects and so relativistic effects are more prominent in

heavier atoms. The bond lengths tend to contract (relativistic contraction) for atoms

down a group unless lots of d and f atomic orbitals (or molecular orbitals composed

of d and f orbitals) are involved, in which case bond lengths extend. The two types of

relativistic treatments used in this thesis are scalar relativistic and spin-orbit coupling.

Spin-orbit coupling is the interaction of the electron’s spin angular momentum with

its orbital angular momentum. This may cause splitting and shifting in the electronic

spectrum of a system.
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The relativistic version of the Schrödinger equation is the Dirac equation (equa-

tion 2.14) where i is the imaginary unit, me is the rest mass of an electron, and αi

are matrices,

iℏ
∂Ψ

∂t
= [−icℏ(α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3
) +mec

2]Ψ. (2.14)

The Dirac equation is the foundation of various approximate relativistic quantum

chemistry methods (e.g. scalar relativistic zero-order regular approximation (ZORA)

and Douglas-Kroll-Hess (DKH)).

2.5 Thermochemistry and kinetic isotope effects

In order to obtain thermochemical data, geometry optimizations and harmonic vi-

brational analysis are performed for the reactant, product, and transition state. In

geometry optimization, a series of iterations is done until a stationary point is found,

where the gradient is close to zero. Potential energy surfaces contain stationary points

that correspond to products, reactants, and saddle points (which are maxima in one

direction but minima in all other directions) which correspond to transition states.

Information about all energy levels (electronic, vibrational, rotational, and transla-

tional) at the stationary points may be used to compute values of thermodynamic

functions via the formalism of statistical thermodynamics.

In order to obtain G (the free energy of a system), the wavefunction of a molecule

can be written as equation 2.15 so that the Etotal is given in equation 2.16, the

partition function (Q) in equation 2.17, and then Gtotal is defined in equation 2.18

ψtotal = ψtranslationψrotationψvibrationψelectronic (2.15)

Etotal = Etranslation + Erotation + Evibration + Eelectronic (2.16)

Qtotal = QtranslationQrotationQvibrationQelectronic (2.17)

Gtotal = Gtranslation +Grotation +Gvibration +Gelectronic. (2.18)
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The partition functions for the translation, rotation, vibration, and electronic states

can be obtained with equation 2.19 where g is the degeneracy of the state, κB is

the Boltzmann constant, T is temperature, and p = total, translation, rotation, and

electronic

Qp =
∑

states

gp(
−Ep

κBT
). (2.19)

G is also obtained with equation 2.20 where N (the number of indistinguishable

molecules) is usually Avogadro’s number,

Gp = −NκBT ln
Qp

N
. (2.20)

The kinetic isotope effect (KIE) arises when one atom of a reactant is substituted

with a heavier isotope, e.g. by replacing hydrogen with deuterium [51]. Because of the

change in mass, the vibrational energy states change (as well as the zero point energy

(ZPE)) and so the reaction rate constant changes. This change in rate is the kinetic

isotope effect. The KIE is a ratio of the rate constants (taken to be heavy over light

in this thesis) before and after the isotopic substitution as shown in equation 2.21:

kH
kL

=
Q‡

HQ
R
L

Q‡
LQ

R
H

exp
−(δER

0 − δE‡
0)

RT
, (2.21)

where kL is the rate constant, Q‡ is the partition function of the transition state, QR

is the partition function of the reactant, δE‡
0 is the difference between the ZPEs of the

isotopic transition state and the original transition state, δER
0 is the difference between

the ZPEs of the isotopic reactant and the original reactant, R is the gas constant, T

is temperature (in K), the H subscript denotes the (heavier) isotopically substituted

system, and L subscript denotes the original (lighter) system. The magnitude of KIEs

may help reveal which bonds are involved in the reaction. Primary KIE is when the

bond that is broken is attached to the isotopically substituted atom, resulting in a

KIE less than 1 (kH < kL). When the substituted atom is located further away from

the bond being broken, the KIE is close to 1 (kH ≈ kL) and is termed the secondary

isotope effect.
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2.6 Software and hardware

GAMESS-US [52] and ORCA [53, 54] are program packages that use Gaussian basis

functions and that can run calculations for methods such as HF, MP2, DFT, and

TDDFT on chemical systems in order to obtain properties such as optimized ge-

ometries, total energies, molecular orbital (MO) energies, and electronic excitation

energies. Amsterdam Density Functional (ADF) is a program that uses Slater basis

functions and the DFT method (including TDDFT) [55]. This program was used be-

cause it allows for excited state calculations with spin orbit coupling. GAMESS-US

currently lacks the SOC capability for excited states using TDDFT.
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Chapter 3

Computational study of the
electronic spectra of the rare gas
fluorohydrides HRgF (Rg = Ar,
Kr, Xe, Rn)

3.1 Introduction

The first argon-containing compound synthesized was HArF, prepared in 2000 by

Khriachtchev et al. who synthesized it via the photolysis of HF in a solid argon matrix

using a vacuum-UV lamp [14]. IR spectroscopy was used to confirm its existence [14].

In 2001, HKrF was synthesized and characterized in a similar way as HArF [56]. To

our current knowledge, HXeF and HRnF have yet to be synthesized [13].

The photodecomposition of HArF and HKrF was studied experimentally and the-

oretically [14, 56–58]. Some excited states of HArF are repulsive and lead to its

photodissociation [14]. Properties of HArF and HKrF in their respective matrices

were studied computationally and experimentally [56, 59–62]. Two different confor-

mations of HRgF in its cluster exist: double substituted (DS) and single substituted

(SS) [61, 62].

The vibrational spectra of HRgF (Rg = He, Ne, Ar, Kr, Xe, Rn) with anharmonic

corrections were computed by Lundell et al. at the MP2 and CCSD(T) levels of theory

[15]. The stiff HRg bond created a peak at around 2000 cm−1 [63]. This spectrum
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was used by Khriachtchev et al. to identify HKrF [56, 63]. The IR spectrum of HArF

closely matched the experimental spectrum, but small discrepancies existed due to

matrix effects [14, 63].

The vibrational spectra of HRgF (Rg = Ar, Kr), in their respective matrices, were

studied theoretically by Gerber et al [16, 63]. The vibrational peaks of HRgF in its

rare gas cluster are shifted relative to the vibrational peaks of free HRgF [16, 63].

The shifts might be due to the large charges on the atoms in HRgF that interact with

the atoms in the matrix [16]. To a lesser degree, induced dipole moments could also

contribute to these shifts [16, 62].

Fitzsimmons et al. studied the HRgF (Rg = Ar, Kr, Xe, Rn) systems where the

model core potential (MCP) method was compared to an approach using all-electron

(AE) basis sets [64]. Furthermore, Fitzsimmons et al. identified the MCP basis set

that was the most efficient and gave the best results for HXeY and HRnY (Y =

halogen) [65].

The model core potential method replaces the core electrons with a potential, while

still retaining the nodal structure of the valence orbitals [7, 66, 67]. An important

feature of MCPs is that they account for relativistic effects [7, 66, 67]. The model core

potential triple-zeta plus polarization (MCP-tzp) basis set is rarely used in excited

state calculations. We included the MCP-tzp basis set in this project to study its

accuracy and efficiency for excited state calculations on rare gas systems.

Experimental and theoretical studies on the excited states and vacuum-UV (VUV)

spectra of HXeY (Y = Cl, Br, I, CN) have been done [2, 3]; however, experimen-

tal VUV spectra of HRgF (Rg = Ar, Kr, Xe, Rn) have not yet been obtained. The

predicted spectrum could be used to distinguish HRgF from its by-products and envi-

ronment in an experimental electronic spectrum of HRgF. As the experimental spectra

of HArF and HKrF would be recorded in a rare gas matrix, studies of the excited

states of HArF and HKrF in their rare gas matrix (HArF@Ar12 and HKrF@Kr12)

were done, in addition to the gas-phase modelling. The matrix could alter the elec-

14



tronic spectra just as it shifted the vibrational spectra. Both the efficacy of the MCPs

and the role of relativistic effects on the spectra of HRgF were also investigated.

In this chapter, the electronic spectra of HRgF (where Rg = Ar, Kr, Xe, Rn) are

presented. As well as HArF and HKrF in their respective rare gas matrix (HArF@Ar12

and HKrF@Kr12) as the matrix is expected to shift the spectra. The evaluation of

how well the MCP basis set behaved in excited state calculations is also presented. In

the MCP method, the core is replaced with a potential while still retaining the nodal

structure. Pseudopotential methods are much faster than all electron basis sets. The

performance of the MCP was measured relative to all electron basis sets, in these rare

gas excited state calculations. Lastly, the relativistic effects on the electronic spectra

is presented, especially for that of HRnF which contains the heaviest rare gas atom.

3.2 Methods and procedure

The geometry of all systems was calculated by Fitzsimmons et al. using the MP2 and

the MCP-TZP basis set [64]. The bond lengths in these linear molecules were:

re(Ar-H) = 1.304 Å, re(Ar-F) = 1.954 Å for HArF [68], re(Kr-H) = 1.456 Å, re(Kr-

F) = 2.034 Å for HKrF [68], re(Xe-H) = 1.633 Å, re(Xe-F) = 2.100 Å for HXeF [68],

and re(Rn-H) = 1.736 Å, re(Rn-F) = 2.175 Å for HRnF [68]. For the linear HRgF

molecules the C2v subgroup of C∞v was used in computations.

Singlet excited states were computed using the time-dependent density functional

theory (TDDFT) [69, 70], as implemented in GAMESS-US [52]. Both all-electron

and pseudopotential basis sets were used. The all-electron basis sets included Sadlej’s

PolX6Rc and PolXDK6Rc as well as Sapporo SAPt6Rc and SAPtDK6Rc basis sets.

PolX denotes the non-relativistic basis set designed for polarizability studies [42, 43],

PolXDK is the Douglass-Kroll-Hess second-order (DKH2) version of the PolX basis

set, SAPt stands for the non-relativistic Sapporo-TZP-2012 [71], and SAPtDK de-

notes its relativistic counterpart, Sapporo-DKH3-TZP-2012 basis [40, 41]. The MCP

basis set was MCPt6Rc which employs a potential that models the core electrons,

15



where MCPt stands for MCP-TZP [38]. All the relativistic basis sets were used with

the DKH2 approximation [72, 73].

All basis sets contained a set of spherical even-tempered [50] s-, p-, and d-type

diffuse functions that were positioned on the rare gas atom in order to describe the

Rydberg states of HRgF; six primitive Gaussian functions were used in each symme-

try. This set of diffuse functions was denoted by the string 6Rc in the abbreviated

basis set name. Occasionally, the diffuse function exponents were too close to those

in the original basis set; in such cases, some of the s function and p functions were

deleted to avoid linear dependencies. The basis sets used are shown in table 3.1 and

their spatial extent is illustrated in figures 3.1 – 3.6. Adding more diffuse functions

to the rare gas atom did not improve results. Addition of diffuse functions to the

hydrogen and fluorine atoms increased the excitation energies by about 0.1 eV, at

the cost of increasing the CPU time by a factor of five, and these functions were not

used.
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Table 3.1: Even-tempered diffuse functions used in all the calculations.

gaussian type exponents

on Ar

s type 0.0733687, 0.0275474, 0.0103425, 0.0038825, 0.0014576, 0.0005471

p type 0.0527741, 0.0180255, 0.0061568, 0.0021027, 0.0007184, 0.0002441

d type 0.1340495, 0.0438249, 0.0143254, 0.0046822, 0.0015293, 0.0005002

on Kr

s type 0.0600558, 0.0249034, 0.0103271, 0.0042823, 0.0017755, 0.0007356

p type 0.0429426, 0.0156774, 0.0057233, 0.0020889, 0.0007621, 0.0002775

d type 0.1117751, 0.0415609, 0.0154538, 0.0057444, 0.0021342, 0.0007935

on Xe

s type 0.0526728, 0.0277110, 0.0145784, 0.0076691, 0.0040348, 0.0021225

p type 0.0310495, 0.0126782, 0.0051768, 0.0021139, 0.0008630, 0.0003520

d type 0.0945632, 0.0413764, 0.0181056, 0.0079204, 0.0034664, 0.0015149

on Rn

s type 0.0471382, 0.0217740, 0.0100568, 0.0046452, 0.0021450, 0.0009908

p type 0.0259346, 0.0110411, 0.0047003, 0.0020011, 0.0008516, 0.0003624

d type 0.0753842, 0.0332235, 0.0146413, 0.0064534, 0.0028427, 0.0012520
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Figure 3.1: Ar diffuse s-type radial functions. Ar-H = 2.464, Ar-F = 3.692, and
Ar-Ar(c) = 7.023 au.
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Figure 3.2: Kr diffuse s-type radial functions. Kr-H = 2.751, Kr-F = 3.844, and
Kr-Kr(c) = 7.625 au.
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Figure 3.3: Ar diffuse p-type radial functions. Ar-H = 2.464, Ar-F = 3.692, and
Ar-Ar(c) = 7.023 au.
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Figure 3.4: Kr diffuse p-type radial functions. Kr-H = 2.751, Kr-F = 3.844, and
Kr-Kr(c) = 7.625 au.
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Figure 3.5: Ar diffuse d-type radial functions. Ar-H = 2.464, Ar-F = 3.692, and
Ar-Ar(c) = 7.023 au.
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Figure 3.6: Kr diffuse d-type radial functions. Kr-H = 2.751, Kr-F = 3.844, and
Kr-Kr(c) = 7.625 au.
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Most of the TDDFT work was carried out using GAMESS-US in order to employ

the MCP-TZP basis set. The CAMB3LYP functional was used as it was shown to be

one of the best functionals for the excited state calculations [32, 36]. The parameters

used in the GAMESS calculations are shown in table 3.2. Additional work was done

using Amsterdam Density Functional (ADF) program [55].

Table 3.2: Parameters used in all-electron GAMESS-US calculations

$system mwords=200 memddi=0 $end

$contrl qmttol=1.0d-6 itol=40 icut=14 inttyp=rysquad maxit=50

scftyp=rhf runtyp=energy

tddft=excite dfttyp=camb3lyp

pp=NONE ispher=1

$end

$basis

basnam(1) = basH basKr basF

$end

$dft

nrad=115 nleb=590 nrad0=115 nleb0=590

$end

$scf

conv=1.0d-8 diis=.F. soscf=.T.

$end

$tddft cnvtol=1.0d-9 maxvec=100 ntrial=78

nrad=115 nleb=590 nstate=30 iroot=1 mult=1

tdPrp=.false. TPA=.false.

$end

Note: pp=MCP was used the MCP calculations.

The computations done with the PolX and PolXDK basis sets, which were designed

to study electric properties in ground electronic states and were not optimized for

excited state calculations [42], were done solely to study the scalar relativistic (SR)

effects in the electronic absorption spectra of HRgF, and one should not expect them

to give reliable excitation energies.

One of the objectives in this chapter was to evaluate the performance of MCPt6Rc

basis sets in excited state calculations. Excitation energies obtained with SAPtDK6Rc

basis sets were used for comparison with the MCPt6Rc results. The SAPtDK6Rc

basis set was unavailable for Ar and SAPt6Rc was used instead for HArF. As the

relativistic effects are expected to be minute in Ar, we would expect SAPt6Rc to yield
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Spectra were simulated using the Cauchy-Lorentz line shape with a full width at

half maximum (FWHM) of 0.075 eV. All calculations were carried out using Mac Pro

and Linux computers available in our laboratory.

3.3 Results and discussion

3.3.1 Electronic spectra of HRgF

Figure 3.8 presents the VUV spectra of the HRgF systems obtained at the the level

of TDDFT(CAMB3LYP) using the two families of all-electron basis sets and the

MCP basis sets and shows that the Sapporo and MCP basis sets bring about results

that are closer to each other than to those obtained with Sadlej’s basis sets. The

spectra obtained with the Sapporo and MCP basis sets are shown in greater detail in

figures 3.9 – 3.16.
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Figure 3.8: TDDFT(CAMB3LYP) spectra of the HRgF family
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Figure 3.9: HArF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the SAPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.10: HArF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the MCPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.11: HKrF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the SAPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.12: HKrF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the MCPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.13: HXeF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the SAPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.14: HXeF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the MCPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.15: HRnF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the SAPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Figure 3.16: HRnF singlet absorption spectrum simulated with Cauchy-Lorentz func-
tions (full width at half height 0.075 eV) and the MCPt6Rc basis set. Excitation
energies are on the left and oscillator strengths are on the right of state symmetry
symbols.
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Table 3.3: Excitation energies (∆E, in eV) and oscillator strengths (f) for singlet
states at TDDFT(CAMB3LYP)/SAPtDK6Rc level of theory (a,b)

HArF HKrF HXeF HRnF

State ∆E f State ∆E f State ∆E f State ∆E f

1 1Σ+ 6.10 0.299 1 1Σ+ 6.49 0.305 1 1Σ+ 6.95 0.269 1 1Σ+ 6.75 0.289

1 1Π 7.34 0.024 1 1Π 7.53 0.008 1 1Π 7.87 0.010 1 1Π 7.59 0.026

2 1Σ+ 7.51 0.121 2 1Σ+ 7.75 0.177 2 1Σ+ 8.02 0.212 2 1Σ+ 7.82 0.232

3 1Σ+ 8.10 0.004 3 1Σ+ 8.36 0.019 3 1Σ+ 8.54 0.025 2 1Π 8.15 0.070

4 1Σ+ 8.22 0.054 4 1Σ+ 8.40 0.042 2 1Π 8.76 0.092 3 1Σ+ 8.42 0.006

2 1Π 8.33 0.030 2 1Π 8.52 0.036 4 1Σ+ 8.78 0.017 4 1Σ+ 8.60 0.014

5 1Σ+ 8.48 0.009 5 1Σ+ 8.68 0.004 3 1Π 8.89 0.012 3 1Π 8.63 0.038

3 1Π 8.64 0.014 3 1Π 8.82 0.018 4 1Π 8.94 0.020 4 1Π 8.83 0.026

5 1Π 9.03 0.012

6 1Π 9.08 0.010

(a) Only states with oscillator strengths f ≥ 0.004 are shown.
(b) Non-relativistic basis set SAPt6Rc was used for HArF.

The electric dipole transitions from the ground state X 1Σ+ to the 1Σ− and 1∆

states are forbidden. We will only discuss those 1Σ+ and 1Π excited states that have

large contributions (oscillator strengths) to the peaks in the electronic spectrum.

Excitation energies and oscillator strengths of major VUV transitions, calculated

using the Sapporo all-electron basis set, are shown in table 3.3 and in figures 3.9,

3.11, 3.13, and 3.15. Major contributions to the excited states and their amplitudes

are collected in tables 3.4 – 3.7.
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Table 3.4: TDDFT(CAMB3LYP) amplitudes for HArF: basis set SAPt6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.10 0.299 1 14 (H ) --> 15 (L ) 0.958 a1 --> a1 91.9

2 14 (H ) --> 55 (L + 40) -0.135 a1 --> a1 1.8

1-Pi 7.34 0.012 1 13 (H -1) --> 46 (L + 31) 0.616 b1 --> a1 37.9

2 13 (H -1) --> 37 (L + 22) -0.456 b1 --> a1 20.8

2-Sg 7.51 0.121 1 14 (H ) --> 46 (L + 31) 0.578 a1 --> a1 33.4

2 14 (H ) --> 37 (L + 22) -0.452 a1 --> a1 20.4

3-Sg 8.10 0.004 1 13 (H -1) --> 39 (L + 24) 0.393 b1 --> b1 15.4

2 12 (H -2) --> 38 (L + 23) 0.393 b2 --> b2 15.4

4-Sg 8.22 0.054 1 14 (H ) --> 45 (L + 30) 0.498 a1 --> a1 24.8

2 14 (H ) --> 54 (L + 39) 0.403 a1 --> a1 16.3

2-Pi 8.33 0.015 1 13 (H -1) --> 45 (L + 30) 0.555 b1 --> a1 30.8

2 13 (H -1) --> 54 (L + 39) 0.530 b1 --> a1 28.1

5-Sg 8.48 0.009 1 14 (H ) --> 16 (L + 1) 0.449 a1 --> a1 20.1

2 14 (H ) --> 46 (L + 31) -0.395 a1 --> a1 15.6

3-Pi 8.64 0.007 1 14 (H ) --> 44 (L + 29) 0.599 a1 --> b1 35.9

2 14 (H ) --> 53 (L + 38) 0.462 a1 --> b1 21.3

(a) HOMO = H = 14, LUMO = L = 15; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.
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Table 3.5: TDDFT(CAMB3LYP) amplitudes for HKrF: basis set
SAPtDK6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.49 0.305 1 23 (H ) --> 24 (L ) 0.942 a1 --> a1 88.7

2 23 (H ) --> 55 (L + 31) 0.159 a1 --> a1 2.5

1-Pi 7.53 0.004 1 22 (H -1) --> 55 (L + 31) 0.565 b1 --> a1 32.0

2 22 (H -1) --> 46 (L + 22) 0.479 b1 --> a1 22.9

2-Sg 7.75 0.177 1 23 (H ) --> 55 (L + 31) 0.513 a1 --> a1 26.3

2 23 (H ) --> 46 (L + 22) 0.468 a1 --> a1 21.9

3-Sg 8.36 0.019 1 22 (H -1) --> 48 (L + 24) 0.415 b1 --> b1 17.2

2 21 (H -2) --> 47 (L + 23) 0.415 b2 --> b2 17.2

4-Sg 8.40 0.042 1 23 (H ) --> 54 (L + 30) 0.427 a1 --> a1 18.3

2 23 (H ) --> 49 (L + 25) 0.363 a1 --> a1 13.2

2-Pi 8.52 0.018 1 22 (H -1) --> 54 (L + 30) 0.516 b1 --> a1 26.6

2 22 (H -1) --> 63 (L + 39) -0.458 b1 --> a1 20.9

5-Sg 8.68 0.004 1 23 (H ) --> 54 (L + 30) 0.460 a1 --> a1 21.2

2 23 (H ) --> 25 (L + 1) 0.442 a1 --> a1 19.6

3-Pi 8.82 0.009 1 23 (H ) --> 53 (L + 29) 0.651 a1 --> b1 42.3

2 23 (H ) --> 62 (L + 38) 0.516 a1 --> b1 26.6

(a) HOMO = H = 23, LUMO = L = 24; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.
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Table 3.6: TDDFT(CAMB3LYP) amplitudes for HXeF: basis set
SAPtDK6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.95 0.269 1 32 (H ) --> 33 (L ) 0.932 a1 --> a1 86.9

2 32 (H ) --> 67 (L + 34) 0.186 a1 --> a1 3.5

1-Pi 7.87 0.005 1 31 (H -1) --> 58 (L + 25) 0.559 b1 --> a1 31.3

2 31 (H -1) --> 49 (L + 16) -0.454 b1 --> a1 20.6

2-Sg 8.02 0.212 1 32 (H ) --> 58 (L + 25) 0.591 a1 --> a1 34.9

2 32 (H ) --> 49 (L + 16) -0.537 a1 --> a1 28.8

3-Sg 8.54 0.025 1 32 (H ) --> 57 (L + 24) 0.571 a1 --> a1 32.6

2 32 (H ) --> 66 (L + 33) -0.528 a1 --> a1 27.9

2-Pi 8.76 0.046 1 29 (H -3) --> 33 (L ) 0.544 b1 --> a1 29.6

2 31 (H -1) --> 66 (L + 33) -0.470 b1 --> a1 22.1

4-Sg 8.78 0.017 1 31 (H -1) --> 56 (L + 23) 0.439 b1 --> b1 19.3

2 30 (H -2) --> 55 (L + 22) 0.439 b2 --> b2 19.3

3-Pi 8.89 0.006 1 29 (H -3) --> 33 (L ) 0.552 b1 --> a1 30.5

2 31 (H -1) --> 57 (L + 24) -0.284 b1 --> a1 8.1

4-Pi 8.94 0.010 1 32 (H ) --> 62 (L + 29) 0.545 a1 --> b1 29.7

2 32 (H ) --> 71 (L + 38) 0.485 a1 --> b1 23.5

(a) HOMO = H = 32, LUMO = L = 33; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.
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Table 3.7: TDDFT(CAMB3LYP) amplitudes for HRnF: basis set
SAPtDK6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.75 0.289 1 48 (H ) --> 49 (L ) 0.931 a1 --> a1 86.6

2 48 (H ) --> 74 (L + 25) 0.148 a1 --> a1 2.2

1-Pi 7.59 0.013 1 47 (H -1) --> 71 (L + 22) 0.460 b1 --> a1 21.2

2 47 (H -1) --> 70 (L + 21) -0.360 b1 --> a1 13.0

2-Sg 7.82 0.232 1 48 (H ) --> 71 (L + 22) 0.478 a1 --> a1 22.9

2 48 (H ) --> 70 (L + 21) -0.390 a1 --> a1 15.2

2-Pi 8.15 0.035 1 45 (H -3) --> 49 (L ) 0.868 b1 --> a1 75.4

2 45 (H -3) --> 71 (L + 22) 0.247 b1 --> a1 6.1

3-Sg 8.42 0.006 1 48 (H ) --> 74 (L + 25) 0.553 a1 --> a1 30.6

2 48 (H ) --> 83 (L + 34) 0.544 a1 --> a1 29.6

4-Sg 8.60 0.014 1 47 (H -1) --> 73 (L + 24) 0.438 b1 --> b1 19.2

2 46 (H -2) --> 72 (L + 23) 0.438 b2 --> b2 19.2

3-Pi 8.63 0.019 1 47 (H -1) --> 83 (L + 34) 0.510 b1 --> a1 26.1

2 47 (H -1) --> 74 (L + 25) 0.488 b1 --> a1 23.8

4-Pi 8.83 0.013 1 48 (H ) --> 79 (L + 30) 0.613 a1 --> b1 37.6

2 48 (H ) --> 87 (L + 38) 0.603 a1 --> b1 36.4

5-Pi 9.03 0.006 1 47 (H -1) --> 84 (L + 35) 0.436 b1 --> a2 19.0

2 47 (H -1) --> 76 (L + 27) -0.427 b1 --> a2 18.3

6-Pi 9.08 0.005 1 47 (H -1) --> 75 (L + 26) 0.519 b1 --> a1 26.9

2 47 (H -1) --> 62 (L + 13) 0.426 b1 --> a1 18.1

(a) HOMO = H = 48, LUMO = L = 49; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.
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To assist in conversion between irreducible representations in the C∞v point group

of the HRgF molecules and the C2v point group used in calculations, corresponding

correlations are shown in table 3.8.

Table 3.8: Irreducible representation correlation table

C∞v C2v C2v irrep transformation

Σ+ A1 A1 z x2, y2, z2

Σ− A2 A2 xy

Π B1 +B2 B1 x xz

∆ A1 + A2 B2 y yz

The VUV spectrum of each of the four congeners consist of three bands. The lowest

energy peak lies between 6.10 and 6.95 eV, with the oscillator strength of f ≈ 0.3 for

all HRgF molecules, and is due to the excitation X 1Σ+ → 1 1Σ+. This excitation is

predominantly a HOMO-LUMO transition, with both HOMO and LUMO atomic or-

bitals (AOs) possessing σ+ symmetry; figure 3.17 illustrates the corresponding orbital

shapes for HArF. The HOMO consists mostly of s-type AOs on H and pz-type AOs

on F. The LUMO mainly consists of a somewhat diffuse s-type AO on H and some

contributions from pz-type AOs on Rg and F. Figure 3.17 shows that the electron

density around F decreases and the electron density around H increases when going

from HOMO to LUMO.

The middle band between 7.34 and 8.02 eV originates mainly in transitions to two

states: the dominant 2 1Σ+ and a much-less intense 1 1Π state. Most of the transitions

that make up the second 1Σ+ excited state are transitions from the HOMO to MOs

that have very diffuse character positioned on the Rg (i.e. Rydberg orbitals). The

1 1Π state is reached by a transition from an occupied MO composed mainly of a

p-type (px or py) on F to a Rydberg s-type orbital on Rg.
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3.3.2 Effectiveness of the model core potentials

Replacement of core electrons by a pseudopotential results in significantly shorter

computing times, visible even for the small systems studied here (table 3.9).

Table 3.9: CPU times (minutes) for TDDFT with either MCPt6Rc or SAPtDK6Rc.
The calculations were run using one processor on a 3 GHz MacPro.

system MCPt6Rc SAPtDK6Rc

HKrF 77.7 195.6

HXeF 86.1 256.5

HRnF 91.5 344.8

The four HRgF congeners with a progressively heavier central atom allow for a

study of effectiveness of the model core potentials. Excitation energies computed

with the MCP basis sets are collected in table 3.10. As already shown in figure 3.8,

the MCP results have the ability to mimic rather well the all-electron results. A better

qualitative insight may be gained by comparing details in figures 3.9 – 3.16 which

show that the overall appearance of the VUV spectra is rather similar between the

two families of basis sets. A more quantitative insight may be gained by comparing

data in tables 3.4 – 3.7 with the corresponding tables 3.11 – 3.14.

36



Table 3.10: Excitation energies (∆E, in eV) and oscillator strengths (f) for singlet
states at TDDFT(CAMB3LYP)/MCPt6Rc level of theory (a,b)

HArF HKrF HXeF HRnF

State ∆E f State ∆E f State ∆E f State ∆E f

1 1Σ+ 6.09 0.300 1 1Σ+ 6.42 0.314 1 1Σ+ 6.81 0.296 1 1Σ+ 6.72 0.297

1 1Π 7.36 0.024 1 1Π 7.52 0.010 1 1Π 7.84 0.004 1 1Π 7.59 0.024

2 1Σ+ 7.50 0.117 2 1Σ+ 7.69 0.176 2 1Σ+ 7.90 0.207 2 1Σ+ 7.81 0.231

3 1Σ+ 8.13 0.005 3 1Σ+ 8.32 0.063 3 1Σ+ 8.44 0.031 2 1Π 8.13 0.066

4 1Σ+ 8.23 0.050 2 1Π 8.49 0.036 4 1Σ+ 8.72 0.014 3 1Σ+ 8.40 0.010

2 1Π 8.36 0.030 4 1Σ+ 8.62 0.003 2 1Π 8.73 0.086 4 1Σ+ 8.59 0.013

5 1Σ+ 8.50 0.010 3 1Π 8.75 0.018 3 1Π 8.82 0.024 3 1Π 8.63 0.040

3 1Π 8.65 0.014 5 1Σ+ 8.99 0.003 4 1Π 8.85 0.008 4 1Π 8.78 0.028

5 1Π 9.04 0.012

5 1Σ+ 9.06 0.006

(a) Only states with oscillator strengths f ≥ 0.003 are shown.
(b) Non-relativistic MCPs were used used for F and Ar.
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Table 3.11: TDDFT(CAMB3LYP) amplitudes for HArF: basis set MCPt6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.09 0.300 1 8 (H ) --> 9 (L ) 0.959 a1 --> a1 91.9

[-.01] 2 8 (H ) --> 49 (L + 40) -0.129 a1 --> a1 1.7

1-Pi 7.36 0.012 1 7 (H -1) --> 40 (L + 31) 0.620 b1 --> a1 38.5

[+.02] 2 7 (H -1) --> 31 (L + 22) 0.449 b1 --> a1 20.1

2-Sg 7.50 0.117 1 8 (H ) --> 40 (L + 31) 0.588 a1 --> a1 34.5

[-.01] 2 8 (H ) --> 31 (L + 22) 0.447 a1 --> a1 20.0

3-Sg 8.13 0.005 1 7 (H -1) --> 33 (L + 24) 0.393 b1 --> b1 15.5

[+.03] 2 6 (H -2) --> 32 (L + 23) 0.393 b2 --> b2 15.5

4-Sg 8.23 0.050 1 8 (H ) --> 39 (L + 30) 0.494 a1 --> a1 24.4

[+.01] 2 8 (H ) --> 48 (L + 39) -0.402 a1 --> a1 16.2

2-Pi 8.36 0.015 1 7 (H -1) --> 39 (L + 30) 0.558 b1 --> a1 31.1

[+.03] 2 7 (H -1) --> 48 (L + 39) -0.531 b1 --> a1 28.1

5-Sg 8.50 0.010 1 8 (H ) --> 10 (L + 1) 0.443 a1 --> a1 19.6

[+.02] 2 8 (H ) --> 40 (L + 31) 0.395 a1 --> a1 15.6

3-Pi 8.65 0.007 1 8 (H ) --> 38 (L + 29) 0.601 a1 --> b1 36.1

[+.01] 2 8 (H ) --> 47 (L + 38) -0.459 a1 --> b1 21.0

(a) HOMO = H = 8, LUMO = L = 9; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.

The values in square brackets are deviations from the SAPtDK6Rc values: [X] = E(MCPt6Rc) -

E(SAPtDK6Rc).
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Table 3.12: TDDFT(CAMB3LYP) amplitudes for HKrF: basis set MCPt6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.42 0.314 1 13 (H ) --> 14 (L ) 0.942 a1 --> a1 88.8

[-.05] 2 13 (H ) --> 45 (L + 31) -0.157 a1 --> a1 2.5

1-Pi 7.52 0.005 1 12 (H -1) --> 45 (L + 31) 0.565 b1 --> a1 31.9

[-.01] 2 12 (H -1) --> 36 (L + 22) 0.482 b1 --> a1 23.2

2-Sg 7.69 0.176 1 13 (H ) --> 45 (L + 31) 0.513 a1 --> a1 26.3

[-.06] 2 13 (H ) --> 36 (L + 22) 0.472 a1 --> a1 22.3

3-Sg 8.32 0.063 1 13 (H ) --> 44 (L + 30) 0.439 a1 --> a1 19.2

[-.04] 2 13 (H ) --> 39 (L + 25) -0.384 a1 --> a1 14.7

2-Pi 8.49 0.018 1 12 (H -1) --> 44 (L + 30) 0.517 b1 --> a1 26.7

[-.03] 2 12 (H -1) --> 53 (L + 39) -0.450 b1 --> a1 20.2

4-Sg 8.62 0.003 1 13 (H ) --> 44 (L + 30) 0.453 a1 --> a1 20.5

[+.22] 2 13 (H ) --> 15 (L + 1) 0.436 a1 --> a1 19.0

3-Pi 8.75 0.009 1 13 (H ) --> 43 (L + 29) 0.646 a1 --> b1 41.7

[-.07] 2 13 (H ) --> 52 (L + 38) -0.517 a1 --> b1 26.7

5-Sg 8.99 0.003 1 13 (H ) --> 15 (L + 1) 0.514 a1 --> a1 26.4

[+.31] 2 13 (H ) --> 35 (L + 21) -0.368 a1 --> a1 13.5

(a) HOMO = H = 13, LUMO = L = 14; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.

The values in square brackets are deviations from the SAPtDK6Rc values: [X] = E(MCPt6Rc) -

E(SAPtDK6Rc).
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Table 3.13: TDDFT(CAMB3LYP) amplitudes for HXeF: basis set MCPt6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.81 0.296 1 13 (H ) --> 14 (L ) 0.937 a1 --> a1 87.8

[-.14] 2 13 (H ) --> 48 (L + 34) 0.179 a1 --> a1 3.2

1-Pi 7.84 0.002 1 12 (H -1) --> 39 (L + 25) 0.544 b1 --> a1 29.6

[-.03] 2 12 (H -1) --> 30 (L + 16) 0.468 b1 --> a1 21.9

2-Sg 7.90 0.207 1 13 (H ) --> 39 (L + 25) 0.568 a1 --> a1 32.3

[-.12] 2 13 (H ) --> 30 (L + 16) 0.537 a1 --> a1 28.8

3-Sg 8.44 0.031 1 13 (H ) --> 38 (L + 24) 0.553 a1 --> a1 30.6

[-.10] 2 13 (H ) --> 47 (L + 33) -0.519 a1 --> a1 26.9

4-Sg 8.72 0.014 1 11 (H -2) --> 36 (L + 22) 0.429 b2 --> b2 18.4

[-.06] 2 12 (H -1) --> 37 (L + 23) -0.429 b1 --> b1 18.4

2-Pi 8.73 0.043 1 10 (H -3) --> 14 (L ) 0.555 b1 --> a1 30.8

[-.03] 2 12 (H -1) --> 47 (L + 33) -0.462 b1 --> a1 21.3

3-Pi 8.82 0.012 1 13 (H ) --> 43 (L + 29) 0.501 a1 --> b1 25.1

[-.07] 2 13 (H ) --> 52 (L + 38) 0.454 a1 --> b1 20.6

4-Pi 8.85 0.004 1 10 (H -3) --> 14 (L ) 0.535 b1 --> a1 28.6

[-.09] 2 13 (H ) --> 43 (L + 29) -0.358 a1 --> b1 12.8

(a) HOMO = H = 13, LUMO = L = 14; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.

The values in square brackets are deviations from the SAPtDK6Rc values: [X] = E(MCPt6Rc) -

E(SAPtDK6Rc).
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Table 3.14: TDDFT(CAMB3LYP) amplitudes for HRnF: basis set MCPt6Rc (a)

State E/eV f ---- Major Contributions ---- Amplitude Symmetry Weight

----------------------------------------------------------------------------------

1-Sg 6.72 0.297 1 13 (H ) --> 14 (L ) 0.932 a1 --> a1 86.8

[-.03] 2 13 (H ) --> 39 (L + 25) 0.146 a1 --> a1 2.1

1-Pi 7.59 0.012 1 12 (H -1) --> 36 (L + 22) 0.491 b1 --> a1 24.1

[0.00] 2 12 (H -1) --> 42 (L + 28) 0.367 b1 --> a1 13.5

2-Sg 7.81 0.231 1 13 (H ) --> 36 (L + 22) 0.507 a1 --> a1 25.7

[-.01] 2 13 (H ) --> 42 (L + 28) 0.359 a1 --> a1 12.9

2-Pi 8.13 0.033 1 10 (H -3) --> 14 (L ) 0.875 b1 --> a1 76.6

[-.02] 2 10 (H -3) --> 36 (L + 22) 0.253 b1 --> a1 6.4

3-Sg 8.40 0.010 1 13 (H ) --> 39 (L + 25) 0.561 a1 --> a1 31.4

[-.04] 2 13 (H ) --> 48 (L + 34) 0.522 a1 --> a1 27.2

4-Sg 8.59 0.013 1 11 (H -2) --> 37 (L + 23) 0.431 b2 --> b2 18.6

[-.01] 2 12 (H -1) --> 38 (L + 24) -0.431 b1 --> b1 18.6

3-Pi 8.63 0.020 1 12 (H -1) --> 48 (L + 34) 0.505 b1 --> a1 25.5

[0.00] 2 12 (H -1) --> 39 (L + 25) 0.491 b1 --> a1 24.1

4-Pi 8.78 0.014 1 13 (H ) --> 44 (L + 30) 0.628 a1 --> b1 39.4

[-.05] 2 13 (H ) --> 52 (L + 38) 0.606 a1 --> b1 36.8

5-Pi 9.04 0.006 1 12 (H -1) --> 50 (L + 36) 0.437 b1 --> a2 19.1

[-.01] 2 12 (H -1) --> 40 (L + 26) -0.425 b1 --> a2 18.1

5-Sg 9.06 0.006 1 13 (H ) --> 45 (L + 31) 0.489 a1 --> a1 23.9

2 13 (H ) --> 30 (L + 16) -0.408 a1 --> a1 16.6

(a) HOMO = H = 13, LUMO = L = 14; N-Sg and N-Pi stand for the N th singlet states of

Σ+ and Π symmetry, respectively; Symmetry refers to MO symmetry labels in C2v point group.

The values in square brackets are deviations from the SAPtDK6Rc values: [X] = E(MCPt6Rc) -

E(SAPtDK6Rc).

The ability of the MCPs to mimic the results obtained with the all-electron basis

set depends on the Rg atom, as already seen in figure 3.8, with the Ar and Rn

results being the closest. For HArF, where an MCP replaces only the Ne core, the

differences in excitation energies vary between −0.01 eV to +0.03 eV. It is gratifying

to see that the structure of both occupied and virtual orbital spaces is identical, as

shown by identical orbital excitations in the major contributions and with very similar

41



amplitudes (tables 3.4 and 3.11).

Agreement is much worse for HKrF, where the Kr electrons explicitly included in

calculations are 3d10 4s2 4p6 and an MCP replaced the Ar core. The deviations of

excitation energies are in the range −0.01 eV to +0.31 eV, with the largest errors

found for the 1Σ+ states; these deviations change the ordering of the highest four

excited states. The description of excitations in terms of orbital numbering remains

the same only for the four lowest states; for the higher states, only the 1Π states are

described by identical orbital excitations (tables 3.5 and 3.12).

In comparison with HKrF, the results for HXeF shows an improved agreement

between the all-electron and MCP data. The Xe atom has an analogous valence

electron configuration as Kr, 4d10 5s2 5p6, with the 36 electrons of Kr core replaced

by a pseudopotential. The errors in excitation energies are smaller than for HKrF,

and range between −0.003 eV and −0.14 eV, with deviations for the 1Π states again

smaller than for the 1Σ+ states, resulting in the interchange of 2 1Π and 4 1Σ+ states.

Orbital characterization of the major contributions is the same except for the two

highest 1Π states (tables 3.6 and 3.13).

Rather surprisingly, the agreement between the AE and MCP results for the heav-

iest congener is the best, with errors in excitation energies between 0.0 and −0.05 eV

(tables 3.7 and 3.14). The valence space for Rn is analogous to that in Kr and Xe,

5d10 6s2 6p6, with the remaining 68 electrons (Xe core plus 4f 14 subshell) represented

by an MCP. The ordering of the excited states is the same except for the highest,

tenth state, which is predicted to be 6 1Π by AE calculations and 5 1Σ+ by the MCP

method. Notably, orbital excitations involved in the main contributions to the excited

states are identical in both approaches.
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3.3.3 Spectra of HRgF in Rg matrices (Rg = Ar, Kr)

Figure 3.18 shows that the HRgF@Rg12 spectra are shifted to higher energies relative

to the free HRgF. This shift may be due to the interaction between the large charges

on the atoms in HRgF with the atoms in the matrix; this is believed to cause the

matrix shifts in its vibrational spectra [16]. When comparing the orbital energies, the

LUMO of HRgF@Rg12 was destabilized relative to free HRgF.
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Figure 3.18: Electronic spectra of the HRgF@Rg12 (Rg = Ar, Kr) using TDDFT/M-
CPt6Rc.
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The HArF@Ar12 spectrum shows a strong peak near 11 eV while that for HKrF@Kr12

contains a strong peak near 9.5 eV. These high energy, strong intensity peaks belong

to the Rg matrix as found in calculations for Rg@Rg12. The Rg cluster peak does not

overlap with the HRgF spectrum region. In HKrF@Kr12, the HKrF part of the spec-

trum was closer to the krypton cluster peak than HArF was to the argon cluster peak;

therefore, a good spectral resolution would be required when attempting to identify

the VUV spectrum of HKrF experimentally. The HOMO-LUMO peak (6.8 eV for

HArF and 7.0 eV for HKrF) would be most useful for identification purposes in an

experimental VUV spectrum of HRgF.

To study possible spectral contamination, TDDFT/MCPt calculations on HF,

which is a dissociation product of HArF and HKrF, were also performed at the exper-

imental equilibrium distance re = 0.9169 Å. The electronic spectrum of HF occurs

at energies higher than the Rg peak (with the first transition at 10.06 eV, due to

excitation to the 1Π state), thus HF will likely not contaminate the HRgF spectral

region.

Another possible contaminant is the excimer Rg2F. Hakuta et al. experimentally

found that in the spectrum of Ar2F a peak occurs at 248 nm (5.00 eV) which is far

away from the spectrum of HArF [76]. Similarly, Ahokas et al. found, experimentally,

that Xe2Cl had its spectral peaks away from the HXeCl region of the spectrum [2].

Geohegan et al. found that Kr2F’s spectrum is from 248 nm to 570 nm (2.18 eV to

5.00 eV) [77]. The Rg2F spectrum will likely appear next to the HRgF spectrum in

the experimental VUV spectrum for Rg= Ar, Kr.

Other possible contaminants include the caged H atom and RgF. Ahokas et al.

found that caged H (in Xe matrix) has its peaks at 198 nm and 201 nm (6.26 eV and

6.20 eV, respectively) [2]. It is likely that the peaks of caged H in an Ar or Kr matrix

could appear close to the HOMO-LUMO peak of HRgF. Because of all the possible

contaminants, a difference spectrum may be required for the experimental spectrum

of HRgF.
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Bressler et al. discussed the electronic spectra of other argon species and krypton

species; these rare gas species may appear in HArF and HKrF experimental VUV

spectra [78].

3.3.4 Scalar relativistic effects in the HRgF spectra

The scalar relativistic effects in electronic spectra of HArF and HKrF were negligible;

therefore, the PolX6Rc (non-relativistic) and PolXDK6Rc (scalar relativistic) results

are shown for HXeF and HRnF. Figure 3.19 shows that the main result of relativistic

effects is the red shift of the first peak for both HXeF and HRnF; as expected, the

shifts are more prominent for HRnF than for HXeF.
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Figure 3.19: Electronic spectra of HXeF and HRnF at the TDDFT/PolX6Rc (non-
relativistic) and TDDFT/PolXDK6Rc (scalar relativistic) levels of theory, respec-
tively.

45



Detailed results for HRnF are collected in tables 3.15 and 3.16. Since the HOMO-

LUMO peak shows the greatest red shift due to relativistic effects and is the peak

most important for experimental identification, we will focus our analysis on it.

Table 3.15: TDDFT excitation energies (∆E, in eV) and oscillator strengths (f) for
HRnF.

PolX6Rc PolXDK6Rc MCPt6Rc

state ∆E f ∆E ∆∆E(a) f ∆E f

1 1Σ+ 7.09 0.309 6.87 -0.22 0.306 6.72 0.297

2 1Σ+ 7.97 0.183 7.99 0.02 0.275 7.81 0.231

3 1Σ+ 8.54 0.012 8.56 0.02 0.013 8.40 0.010

4 1Σ+ 8.80 0.031 8.67 -0.13 0.016 8.59 0.013

1 1Π 7.94 0.065 7.68 -0.26 0.032 7.59 0.023

2 1Π 8.37 0.000 8.23 -0.14 0.073 8.13 0.066

3 1Π 8.52 0.046 8.42 -0.10 0.004 8.28 0.003

4 1Π 8.79 0.006 8.71 -0.08 0.038 8.63 0.041

5 1Π 8.88 0.045 8.94 0.06 0.022 8.78 0.029

(a) Effect of relativity on excitation energies, ∆∆E = ∆E(PolXDK6Rc)−∆E(PolX6Rc).

The shifts in excitation energy are rather small: the HOMO-LUMO peak 1 1Σ+ is

red shifted by 0.22 eV; excitation to 1 1Π experiences similar shift of 0.26 eV. Most of

the shifts are smaller and range from 0.01 eV to 0.14 eV. Similar minute differences

were found by Rosa et al. for W(CO)6 [79] and Romaniello et al. for [Pt(H2timdt)2]

[80]. They found more blue shifts instead of red shifts, likely because the valence

MOs of these two compounds had more d-character which expand with relativistic

effects.

Orbital energy differences between the occupied and virtual orbitals might be

used to estimate changes in the excitation energies; the relevant relativistic and non-

relativistic valence orbital energies for HRnF are tabulated in table 3.16. The rela-
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tivistic basis set has little effect on the stabilization (orbital energy) of HOMO, but

it stabilizes (decreases the orbital energy) of the LUMO by 0.20 eV. The energy gap

between the HOMO and LUMO is smaller when relativistic effects are included; this

may explain why the excitation energy corresponding to the HOMO-LUMO tran-

sition (1 1Σ+) is lower with the relativistic calculations than for the non-relativistic

calculations. Rosa et al. found that the 3t2g and 6eg orbitals of W(CO)6 are both

destabilized when relativistic effects are included, due to the 5d orbitals on W be-

coming more diffuse [79]. For HRnF, the HOMO and LUMO become more stabilized

because these orbitals are mainly composed of s-type AOs that contract due to rela-

tivistic effects, making the energy gap smaller and thus, making the excitation energy

smaller.

Table 3.16: Non-relativistic (PolX6Rc) and relativistic (PolXDK6Rc) CAMB3LYP
valence orbitals energies for HRnF (a)

Symmetry εPolX6Rc εPolXDK6Rc

σ+ (LUMO) -0.45 -0.65

σ+ (HOMO) -9.91 -9.92

π -10.29 -10.12

π -12.28 -12.30

σ+ -15.18 -15.16

σ+ -22.75 -27.47

σ+ -31.07 -31.00

δ -58.15 -52.40

π -58.52 -52.74

σ+ -58.67 -52.90

(a) All values in eV.
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3.3.5 Spin-orbit effects in the spectra of HXeF and HRnF

The presence of heavy atoms Xe and Rn warrants an investigation of the effects

of spin-orbit coupling (SOC) on the electronic spectra. These effects were evaluated

using the Amsterdam Density Functional (ADF) program [81, 82], because GAMESS-

US lacks the ability to carry out SOC TDDFT calculations. The CAMYB3LYP

functional [83] was used, together with an extensive Slater-type quadruple-zeta basis

set containing four polarization functions (QZ4P or qz4p) [47]. The QZ4P basis set

lacks diffuse functions and thus is not suitable for describing the Rydberg states;

therefore only the lowest excited states were studied.

To check whether the two related functionals, CAMYB3LYP and CAMB3LYP,

implemented in two programs, ADF and GAMESS-US, and using different basis sets

bring about comparable results, the CAMYB3LYP/QZ4P excitation energies and

oscillator strengths were evaluated for HXeF and HRnF using the scalar relativis-

tic zeroth-order regular approximation (ZORA) [84–87]. Table 3.17 shows that the

results compare quite well with the ones obtained using the DKH2 scalar approx-

imation [72, 73, 88] at the CAMB3LYP/SAPt6Rc level of theory. In both sets of

calculations all electrons were explicitly treated.
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Table 3.17: Comparison of excitation energies for singlet states at
CAMYB3LYP/QZ4P and CAMB3LYP/SAPt6Rc levels of theory (a,b)

HXeF HRnF

State ∆E f ∆E f

1 1Σ+ 6.95 (6.95) 0.280 (0.269) 6.75 (6.75) 0.277 (0.289)

1 1Π 7.82 (7.87) 0.022 (0.010) 7.45 (7.59) 0.041 (0.026)

2 1Σ+ 8.12 (8.02) 0.286 (0.212) 7.89 (7.82) 0.296 (0.212)

2 1Π 8.05 (8.15) 0.069 (0.070)

(a) Excitation energies ∆E in eV. Only transitions with oscillator strengths f ≥ 0.003 are shown;

contributions from components of degenerate transitions are included. (b) CAMB3LYP/SAPt6Rc

values (from table 3.3) are shown in parentheses.
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For the lighter system HXeF the SOC effects on the spectra are rather small and

manifested by minor red shifts as shown in figure 3.20 and table 3.18.
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Figure 3.20: Electronic spectra of HXeF with (SOC) and without (SR) spin-orbit
coupling. The symbols Σ and Π stand for excitations to 1Σ+ and 1Π states, respec-
tively, in the scalar relativistic (SR) approximation. The symbols Γ1 and Γ2 represent
non-degenerate and doubly-degenerate levels in the SOC approximation. Excitation
energies are on the left and oscillator strengths are on the right of the state symbols.
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Table 3.18: Main low-lying SOC transitions in HXeF and their contributing SR tran-
sitions (a)

SOC transition Scalar relativistic contribution

State(b) ∆E f Weight(c) State ∆E f

2 Γ1 6.93 0.280 0.93 1 1Σ+ 6.95 0.280

5 Γ2 7.65 0.016 0.69 2 3Π 7.73

0.30 2 1Π 7.82 0.022

6 Γ2 7.88 0.009 0.68 2 1Π 7.82 0.022

0.30 2 3Π 7.73

7 Γ2 8.08 0.008 0.80 3 3Π 8.22

0.17 3 1Π 8.74 0.049

4 Γ1 8.09 0.271 0.89 2 1Σ+ 8.12 0.286

(a) Excitation energies ∆E in eV. Only transitions with oscillator strengths f ≥ 0.008 are shown;

contributions from components of degenerate transitions are included. (b) The symbols Γ1 and Γ2

represent non-degenerate and doubly-degenerate levels, respectively, in the SOC approximation.
(c) Weight denotes the fractional contribution of the scalar relativistic transitions to the SOC

transition.
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However, for HRnF the spectral changes are more pronounced. The effect of the

SOC on excitation energies, as illustrated in figure 3.21, shifts the main SR peaks from

6.75 eV and 7.89 eV by 0.1 eV and 0.15 eV, respectively, towards lower energies. In

addition, several new transitions appear, resulting from the coupling between singlet

and triplet states and changing the appearance of the spectrum.
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Figure 3.21: Electronic spectra of HRnF with (SOC) and without (SR) spin-orbit
coupling. The symbols Σ and Π stand for excitations to 1Σ+ and 1Π states, respec-
tively, in the scalar relativistic (SR) approximation. The symbols Γ1 and Γ2 represent
non-degenerate and doubly-degenerate levels in the SOC approximation. Excitation
energies are on the left and oscillator strengths are on the right of the state symbols.
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Table 3.19: Main low-lying SOC transitions in HRnF and their contributing SR
transitions (a)

SOC transition Scalar relativistic contribution

State(b) ∆E f Weight(c) State ∆E f

2 Γ1 6.65 0.271 0.90 1 1Σ+ 6.75 0.277

4 Γ2 6.89 0.054 0.55 2 3Π 7.32

0.33 2 1Π 7.45 0.041

5 Γ2 7.02 0.010 0.91 2 3Σ+ 7.15

0.07 2 1Π 7.45 0.041

6 Γ2 7.15 0.028 0.54 3 3Π 7.52

0.30 3 1Π 8.05 0.069

3 Γ1 7.55 0.042 0.38 2 3Π 7.32

0.38 2 3Π 7.32

4 Γ1 7.74 0.187 0.68 2 1Σ+ 7.89 0.296

0.05 2 3Π 7.32

8 Γ2 8.22 0.035 0.35 3 1Π 8.05 0.069

0.30 6 3Σ+ 9.72

9 Γ2 8.35 0.009 0.43 4 3Σ+ 8.94

0.34 1 3Σ− 9.05

10 Γ2 8.44 0.040 0.35 5 3Π 8.86

0.20 5 1Π 9.03 0.150

5 Γ1 8.45 0.006 0.24 3 3Π 7.52

0.24 3 3Π 7.52

(a) Excitation energies ∆E in eV. Only transitions with oscillator strengths f ≥ 0.006 are shown;

contributions from components of degenerate transitions are included. (b) The symbols Γ1 and Γ2

represent non-degenerate and doubly-degenerate levels, respectively, in the SOC approximation.
(c) Weight denotes the fractional contribution of the scalar relativistic transitions to the SOC

transition.
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The composition of the main SOC excitation energies in the low-energy range for

HRnF is shown in table 3.19. The two peaks at 6.89 eV and 7.02 eV result from

coupling between the SR singlet Π state (7.45 eV) with different triplet states. The

peak at 7.15 eV results from a mixture of singlet and triplet states; its oscillator

strength (f = 0.028) is about half of that corresponding to the singlet component

(f = 0.069). The peak at 7.55 eV is mainly a triplet state, transition to which was

forbidden in the SR approach. The major contribution to the 7.74 eV peak is the

singlet transition at 7.89 eV (68%); accordingly, its oscillator strength is fairly large

(f=0.187). The main contribution to the 8.22 eV peak is the third 1Π SR transition,

the same that contributed to the SOC peak at 7.15 eV; however, an admixture of a

3Σ+ state at a high energy (9.72 eV) results in a blue shift of the SR transition. Of

the three remaining peaks in the SOC spectrum, the most intense at 8.44 eV contains

a contribution from the fifth 1Π SR transition.

The variation of the electronic spectrum of HRnF upon the inclusion of spin-orbit

coupling indicates the need for simulation of spectra that goes beyond the scalar

relativistic approximation. It remains to be seen whether this conclusion remains

valid for other compounds containing radon.

3.4 Conclusions

The electronic spectra of the HRgF (Rg= Ar, Kr, Xe, Rn) family were generated

at the TDDFT level of theory using all-electron and pseudopotential basis sets and

assignment of features in the spectra were carried out. The lowest energy peak has

the highest intensity and is primarily due to the HOMO-LUMO transition (1 1Σ+).

The other peaks are mostly due to an electronic transition from HOMO to diffuse

MOs. Transitions from an occupied orbital with π character to a Rydberg orbital

were also found.

The computed electronic spectrum of HRgF@Rg12 (Rg = Ar, Kr) showed a large

peak at 11 eV for Ar and 9.5 eV for Kr. This peak corresponds to the Rg matrix
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peak and it might interfere with the HRgF peaks.

Performance of the MCP-TZP basis set was compared with that of the all-electron

basis set. The MCP-TZP basis set yielded excitation energies that were closer to

those obtained with the Sapporo-DKH3-TZP-2012 basis set than to those computed

using the PolXDK basis set; this is not surprising, as MCP-TZP and the Sapporo

basis sets have very similar set of polarization/correlating functions. The MCP-TZP

basis set was also the most efficient of the basis sets used, reducing computing time

by a factor of about 2.5 for HKrF to 3.8 for HRnF.

Relativistic effects affect the spectra of the systems that contain the heaviest rare

gas atoms, HXeF and HRnF. Scalar relativistic effects are manifested in red shifts in

the spectra. The peak that shifts the most due to the scalar relativistic effects is the

one that involves the HOMO-LUMO excitation. The orbital energy of HOMO does

not significantly change but that of the the LUMO decreases, reducing the energy gap

between these MOs. This explains the decrease in excitation energy (red shift) of the

HOMO-LUMO peak. The LUMO is mostly composed of s-type and p-type AOs which

are expected to contract when relativistic effects are incorporated. This contraction

is indeed observed by the indication of the LUMO’s orbital energy decreasing (LUMO

is stabilized by relativistic effects). A significant effect due to the spin-orbit coupling

that combines singlet and triplet excited states is found in HRnF, where a number

of new excitations appear, underlying the important role that the spin-orbit coupling

plays in the simulations of electronic spectra in systems containing atoms of heavy

elements.
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Chapter 4

Structure, reactions, and electronic
spectra of HRgCN and HRgNC
(Rg = Xe or Rn)

4.1 Introduction

In this chapter, the focus will be on the rare gas compounds of the form HRgY where

Rg = Xe or Rn, and Y = CN or NC (instead of Rg = Ar, Kr, Xe, Rn and Y = F as in

the previous chapter). Petterson et al. were the first to synthesize HXeCN and HX-

eNC (as well as HKrCN) [5]. The synthesis was achieved via the photolysis of HCN

within a Xe matrix (Kr for HKrCN) at 7.5 K with a 193 nm laser. The subsequent

production of hydrogen atoms and CN radicals was then activated by annealing the

Xe matrix at 50 K (30 K for Kr). The activated H atoms and CN radicals reacted

with the Xe atoms to produce HXeCN and HXeNC. When irradiated with IR radia-

tion, HXeNC converted to HXeCN, with the barrier to isomerization calculated using

the MP2 method to be only 0.2 eV [5]. The energy difference (dissociation energy)

between HXeCN and HCN+Xe was 4.24 eV [5]. HXeNC photodissociates into HCN

+ Xe at 350 nm as determined by studying the change in intensity of the peaks in

the IR spectrum [5]. Unlike HXeNC, HXeCN is stable and does not photodissociate.

Juarez et al. analyzed the energy barrier for two decomposition pathways: HRnY

→ Rn + HY (two body channel) and HRnY → H + Rn + Y (three body channel),
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where Y = F, Cl, Br, I, CCH, CN, and NC [89]. The systems HRnCN and HRnNC had

the two body dissociation barrier of 31.7 kcal/mol and 27.8 kcal/mol, respectively.

The three body dissociation barriers for HRnCN and HRnNC were 35.2 kcal/mol

and 31.3 kcal/mol, respectively. Khriachtchev et al. studied the H/D kinetic isotope

effects (KIE) on the formation and dissociation of HKrCl and found that the reaction

rates were slower after deuteration [90].

Berski et al. used the electron localization function and found that bonding in

HRgCN (Rg = Kr, Xe) exhibits charge-transfer character [91]. They found that the

isomerization of HRgCN to HRgNC increased the charge separation. The larger sta-

bility of HXeCN, as compared to HXeNC, was attributed to the interaction between

the lone pair on the C atom and the nonbonding electron density on Xe.

Zhang et al. employed natural bond orbital and natural resonance theory and

found that the HRgY systems (with Rg = He, Ne, Kr, Xe, Rn and Y = CN, NC)

contain ω-bonding and long-bonding resonance [92]. Zhang et al. also studied ge-

ometry, dissociation energies, and donor-acceptor interactions (stabilization energies)

of many HRgY compounds including HXeCN, HXeNC, HRnCN, and HRnNC [93].

The dissociation reactions investigated were HRgAB → HRg+ + AB− and HRgAB

→ Rg + HAB. The three main donor-acceptor interactions were the lone pair on A

to the anti-bonding orbital on H-Rg (nA → σ∗
H−Rg), the lone pair on H to the anti-

bonding orbital on Rg-A (nH → σ∗
Rg−A), and the lone pair on Rg to the anti-bonding

orbital on H-A (nRg → σ∗
H−Rg).

Experimental VUV spectra were obtained for HXeY (Y= Cl, Br, I, CN) by Ahokas

et al., who also studied excited states with multireference configuration interaction

[2]. They assigned the broad peak at 250-300 nm to HXeY (Y= Cl, Br, I, CN) because

during the synthesis of HXeY this peak increases in intensity as the H/Xe peak at

200 nm decreases in intensity. Because HXeY photodissociates, one can expect HXeY

to have strong electronic transitions and therefore a pronounced electronic spectrum.

There was a very good correlation between the broad band UV and IR peaks during
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the photolysis and annealing cycles, suggesting that the two peaks belong to the same

molecule.

In the previous chapter, the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn)

using the TDDFT(CAMB3LYP) approach were presented [6, 33]. In this present

chapter, a comprehensive study of HRgCN and HRgNC (Rg = Xe, Rn) where the

structure, VUV, reaction energetics, and KIE are presented. The geometry was opti-

mized for HRgCN and HRgNC (Rg = Xe, Rn) to locate the minima of the potential

energy surface as well as at the first-order saddle points corresponding to transition

state structures. The kinetic isotope effects were also investigated for the two-body

dissociation and isomerization reactions. As was done for HRgF (Rg = Ar, Kr, Xe,

Rn) in Chapter 3, the VUV spectra for HRgY (Rg = Xe, Rn and Y = CN, NC)

were computed, and the nature of the electronic transitions was analyzed in terms of

the molecular orbitals involved in the transitions belonging to the first three excited

states with nonzero oscillator strengths. The effect of relativistic effects (spin-orbit

coupling) on the VUV spectra are also included.

4.2 Methods and procedure

The geometry optimizations were carried out at the MP2 and DFT(PBE0) levels

of theory using four model core potential [67] basis sets: IMCP-SR2 (ims2) [37],

IMCP-SR3 (ims3), ZFK3-DK3 (zfk3) [39], and ZFK4-DK3 (zfk4) [39] (the strings in

parentheses are abbreviations). The new basis set ims3 was created in this work by

adding polarization functions to the basis set ims2 to improve accuracy of the results

while saving on CPU time when compared with the zfk3 and zfk4 basis sets. The zfk4

results were used as reference to calculate the errors in the bond lengths and angles

for the other basis sets. The systems for which the geometry was optimized were

HCN, HNC, HRgY, HRgY-d (the two-channel dissociation transition state, yielding

Rg + HY as products), and HRgY-i (the HRgCN to HRgNC isomerization transition

state) where Rg = Xe, Rn and Y = CN, NC. The ∆G values were evaluated for the
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isomerization and dissociation reactions. The KIEs were computed at the MP2 level

of theory with basis sets ims3, zfk3, and zfk4. Both the dissociation reaction and

isomerization reactions were investigated at 50 K.

Only the first four non-zero intensity transitions in HRgY were investigated with

the TDDFT method [69, 70]: two Σ states and two degenerate components of a Π

state. The origins of the peaks were investigated by studying the molecular orbitals

involved and the atomic orbital contributions that make up those molecular orbitals.

Compatibility of TDDFT implementations as well as basis sets was investigated us-

ing three program packages and four all-electron basis sets. With the program pack-

age ORCA [53, 54], the functionals used were B2PLYP [29] and B3LYP [31, 94–97]

with the basis sets ANO-RCC [98] (only with B2PLYP), Sapporo-QZP-DKH3-2012

(SPKQ) [40], and Sapporo-TZP-DKH3-2012 (SPKT) [41] (abbreviations for basis set

names are shown in parentheses). With the program package GAMESS-US [52], the

functional B3LYP was used with basis sets SPKT and SPKQ. With the program

package ADF [55], the combination of B3LYP functional and QZ4P basis set [47] was

used mainly to study the effect of spin-orbit coupling on the spectrum. Table 4.1

shows the combination of functionals and basis sets used as well as the programs that

were used. The spectra were simulated with Cauchy-Lorentz functions with a full

width at half maximum at 0.3 eV.

Table 4.1: Functionals, basis sets, and programs used in this study (o = ORCA, g =
GAMESS-US, a = ADF).

functional (program) ANO-RCC SPKQ SPKT QZ4P

B2PLYP (o) ✓ ✓ ✓ -

B3LYP (o) - ✓ ✓ -

B3LYP (g) - ✓ ✓ -

B3LYP (a) - - - ✓
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4.3 Results and discussion

4.3.1 Electronic spectra of HRgCN and HRgNC

The order of excited states in HRgCN is 11Π, 1 1Σ+, and 2 1Σ+ while for HRgNC

it is 1 1Σ+, 11Π (which has a negligible oscillator strength), and 2 1Σ+. Figure 4.1

shows electronic transitions and the five molecular orbitals involved in the transitions:

the highest occupied molecular orbital (HOMO, or H), the two degenerate molecular

orbitals with orbital energies slightly lower than that of HOMO (HOMO-1 or H-

1, and HOMO-2 or H-2), the lowest unoccupied molecular orbital (LUMO, or L),

and the next unoccupied molecular orbital (LUMO+1 or L+1). For HRgCN, the

first excitation (denoted 1 in figure 4.1) with the lowest energy, is the transition

X1Σ+→ 11Π that involves one-electron excitations from HOMO-1 or HOMO-2 (H-

1, H-2) to LUMO. The next is the transition (2) to the 1 1Σ+ state, involves the

HOMO-LUMO (H-L) excitation. For HRgCN, this transition corresponds to the

most prominent peak. The last, highest energy, transition (3) is the HOMO (H)

to LUMO+1 (L+1) excitation leading to the 2 1Σ+ state. For HRgNC, the lowest

energy transition (1) is the H-L transition, which leads to the most prominent peak

and it occurs at a much lower energy in the spectrum than that for HRgCN. The

next transition (2) is the H-1 (or H-2) with a very low intensity, leading to the 11Π

state. The last transition (3) for HRgNC is also the H to L+1 transition, same as for

HRgCN, and involving the 2 1Σ+ state.
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Figure 4.2 shows the computed spectra for HRgCN (in red) and the HRgNC

(in blue) using the SPKQ basis set. The top panels show the spectra for HXeY

and the bottom panels show the spectra for HRnY. The first column shows the

spectra computed with B2PLYP in ORCA (B2PLYP(o)), the middle column with

B3LYP in ORCA (B3LYP(o)), and the third column with B3LYP in GAMESS-US

(B3LYP(g)). The spectrum of HRgNC starts at lower energies, and with a smaller

oscillator strength than in the HRgCN case. The most prominent peak for HRgCN

is blue-shifted (∼6 eV) compared to the most prominent peak of HRgNC (∼4.5 eV).

The prominent peaks in the spectra of both HRgCN and HRgNC are due to the

HOMO-LUMO transitions. When using the B2PLYP functional in ORCA, the exci-

tation to the 2 1Σ+ state of HRgCN has a large oscillator strength, creating a second

peak near the 1 1Σ+ peak instead of creating a slight shoulder like it does when us-

ing B3LYP in ORCA or GAMESS-US. The excitation to the 11Π state has such low

oscillator strength that it is not noticeable in the spectra. The positions of the peaks

are very similar whether using B2PLYP(o) or B3LYP(o). The B3LYP(g) spectrum

is red-shifted relative to B2PLYP(o) and B3LYP(o) by about 0.2 eV. The excitation

energies and intensities decrease upon substitution of CN by NC, but the energies do

not change much when Xe is replaced by Rn. The spectra of HXeY are very similar

of those of HRnY provided that only scalar relativistic effects are included.
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Figure 4.2: TDDFT spectra of the HRgCN and HRgNC using either B2PLYP or
B3LYP in ORCA(o) or GAMESS-US(g).

Comparison of results obtained with B2PLYP(o) using the ANO-RCC, SPKQ,

and SPKT basis sets for each HRgY molecule shows (table 4.2) that the results for

HXeCN are very similar (0.01 - 0.10 eV difference) regardless of basis set. The larger

difference (0.10 eV) occurred in all HRgY systems for the 2 1Σ+ state (with the SPKQ

basis set).
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Table 4.2: Excitation state data for HRgY (Rg = Xe, Rn and Y = CN, NC) at the
B2PLYP level of theory using ORCA with three different basis sets. Energies (∆E)
are in eV and wavelengths (λ) are in nm.

HXeCN

ANO-RCC SPKQ SPKT

State ∆E λ f ∆E λ f ∆E λ f

1 1Π 5.69 218 0.008 5.69 218 0.008 5.66 219 0.008

1 1Σ+ 6.03 206 0.745 6.02 206 0.713 6.00 207 0.752

2 1Σ+ 6.63 187 0.168 6.52 190 0.186 6.56 189 0.145

HXeNC

1 1Σ+ 4.55 272 0.268 4.55 273 0.266 4.54 273 0.267

1 1Π 5.51 225 0.001 5.51 225 0.001 5.49 226 0.001

2 1Σ+ 5.96 208 0.016 5.85 212 0.015 5.92 209 0.016

HRnCN

1 1Π 5.74 216 0.006 5.74 216 0.006 5.71 217 0.006

1 1Σ+ 6.15 202 0.700 6.16 201 0.640 6.15 202 0.656

2 1Σ+ 6.59 188 0.264 6.49 191 0.314 6.50 191 0.300

HRnNC

1 1Σ+ 4.59 270 0.272 4.58 271 0.271 4.57 271 0.271

1 1Π 5.51 225 0.001 5.51 225 0.001 5.51 225 0.001

2 1Σ+ 5.93 209 0.015 5.83 213 0.017 5.87 211 0.018
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Table 4.3 compares the B3LYP results obtained with two basis sets and two pro-

grams: SPKX(o) and SPKX(g), where X= T or Q. Comparisons between SPKX(o)

and SPKX(g) show that for all four HRgY systems, the largest difference of 0.17 eV

is found for the excitation to the 1 1Σ+ state (the other states have much smaller

differences, close to 0.01 eV). Compared with results at the B2PLYP level of theory

(table 4.2), the B3LYP excitation energies tend to be larger. In the experimental

VUV spectrum of HCN/Xe, Ahokas et al. assigned the broad band at 5.30 eV to

HXeCN [2]. Our reported 1 1Σ+ excitation energy of ∼6 eV is too high and our re-

ported 1 1Σ+ excitation energy of ∼4.5 eV for HXeNC is too low when compared to

the experimental peak at 5.30 eV.
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Table 4.3: Excitation state data for HRgY (Rg = Xe, Rn and Y = CN, NC) at the
B3LYP level of theory using either ORCA or GAMESS-US and SPKQ or SPKT.
Energies (∆E) are in eV and wavelengths (λ) are in nm.

HXeCN

SPKQ(o) SPKQ(g) SPKT(o) SPKT(g)

State ∆E λ f ∆E λ f ∆E λ f ∆E λ f

1 1Π 5.37 231 0.008 5.36 231 0.007 5.39 230 0.008 5.36 231 0.007

1 1Σ+ 6.02 206 0.512 5.85 212 0.498 6.02 206 0.523 5.86 212 0.503

2 1Σ+ 6.43 193 0.033 6.41 193 0.013 6.48 191 0.024 6.47 192 0.010

HXeNC

1 1Σ+ 4.48 277 0.263 4.39 282 0.217 4.48 277 0.264 4.39 282 0.217

1 1Π 5.15 241 0.002 5.13 242 0.001 5.15 241 0.002 5.13 242 0.001

2 1Σ+ 5.58 222 0.004 5.58 222 0.003 5.69 218 0.004 5.69 218 0.003

HRnCN

1 1Π 5.39 230 0.007 5.37 231 0.006 5.39 230 0.007 5.37 231 0.005

1 1Σ+ 6.08 204 0.503 5.91 210 0.499 6.08 204 0.507 5.91 210 0.501

2 1Σ+ 6.39 194 0.038 6.39 194 0.014 6.42 193 0.036 6.41 193 0.014

HRnNC

1 1Σ+ 4.49 276 0.266 4.39 282 0.219 4.49 276 0.267 4.39 282 0.220

1 1Π 5.12 242 0.001 5.11 243 0.001 5.12 242 0.001 5.11 243 0.001

2 1Σ+ 5.56 223 0.003 5.55 223 0.002 5.61 221 0.003 5.60 221 0.002

Figure 4.3 shows the spectra of HRgY obtained at the B3LYP/QZ4P level of theory

using the program package ADF. The excitation data is shown in table 4.4. Including

SOC had little impact on the spectra of HXeY. However, for HRnCN, the spin-orbit
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coupling red-shifted the most prominent peak while for HRnNC spin-orbit coupling

blue-shifted the most prominent peak, and created a few smaller peaks.
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Figure 4.3: Electronic spectra of HRgY at the B3LYP/QZ4P level of theory using
ADF (SR = scalar relativistic and SOC = spin-orbit coupling).
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Table 4.4: Excitation state data for HRgY (Rg = Xe, Rn and Y = CN, NC) at
the TDDFT/B3LYP/QZ4P level of theory using ADF. Energies (∆E) are in eV and
wavelengths (λ) are in nm. SR = scalar relativistic, SOC = spin-orbit coupling.

HXeCN

SR SOC

State ∆E λ f State ∆E λ f

1 1Π 5.38 231 0.007 1 Π 5.37 231 0.007

1 1Σ+ 5.88 211 0.522 1 Σ+ 5.87 211 0.517

2 1Σ+ 6.49 191 0.007 2 Σ+ 6.48 191 0.006

HXeNC

1 1Σ+ 4.39 283 0.222 1 Σ+ 4.38 283 0.219

- - - - 2 Σ+ 4.90 253 0.002

2 1Σ+ 5.68 218 0.001 3 Σ+ 5.68 218 0.001

1 1Π 6.92 179 0.022 1 Π 6.88 180 0.004

HRnCN

1 1Π 5.42 229 0.005 1 Π 5.36 231 0.005

1 1Σ+ 5.96 208 0.507 1 Σ+ 5.87 211 0.479

2 1Σ+ 6.39 194 0.016 2 Σ+ 6.32 196 0.009

HRnNC

1 1Σ+ 4.28 290 0.166 1 Σ+ 4.34 286 0.189

2 1Σ+ 4.94 251 0.048 2 Σ+ 5.00 248 0.011

3 1Σ+ 5.71 217 0.007 3 Σ+ 5.30 234 0.003

- - - - 4 Σ+ 5.77 215 0.001

1 1Π 6.99 178 0.072 1 Π 5.14 241 0.001

68



4.3.2 Geometry optimization: average absolute errors for
each type of bond angle due to basis set effects

The results of the assessment of the efficacy of the new basis set (table 4.5) show that

the overall accuracy increases in the order ims2, ims3, and zfk3. The ims3 basis set

is significantly better than ims2 in predicting geometrical structure of the molecules

studied here, being almost as good as zfk3 at both the MP2 and PBE0 levels of

theory. The errors in the bond lengths found with the ims2 basis set are 3-4 times

larger than the ones found using the ims3 basis set (the only exceptions are H-Rn,

C-N, and N-C bond). The errors in the ims3 bond lengths are 2-4 times larger than

the ones found for the zfk3 basis set, while the bond angles errors are an order of

magnitude larger than the zfk3 values. The raw data that were used in computing

the average absolute errors (AAE) in table 4.5 are collected in tables 4.6- 4.9 for the

MP2 results and tables 4.10- 4.13 for the DFT(PBE0) results. Tables 4.14 and 4.15

collect the AAE values for individual bonds and angles.

Table 4.5: Average absolute errors (AAE) for structural parameters relative to zfk4
values.

method ims2 ims3 zfk3

bonds MP2 0.0204 0.0054 0.0028

PBE0 0.0167 0.0056 0.0013

angles MP2 2.57 0.78 0.07

PBE0 2.14 0.48 0.05

(a) bond lengths in Å, bond angles in degrees
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Table 4.6: MP2 values of structural parameters of HY systems.(a,b)

HCN

basis H-C C-N

ims2 1.0513 (-.0124) 1.1638 (.0019)

ims3 1.0643 (.0006) 1.1650 (.0031)

zfk3 1.0652 (.0015) 1.1646 (.0027)

zfk4 1.0637 1.1619

HNC

basis H-N N-C

ims2 0.9864 (-.0096) 1.1722 (.0006)

ims3 0.9974 (.0014) 1.1729 (.0013)

zfk3 0.9973 (.0013) 1.1743 (.0027)

zfk4 0.9960 1.1716

(a) bond lengths in Å; (b) The values in parentheses are differences

with respect to the MP2/zfk4 values: P(MP2/basis) - P(MP2/zfk4)
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Table 4.7: MP2 values of structural parameters of HRgY systems.(a,b)

HXeCN

basis H-Xe Xe-C C-N

ims2 1.7032 (-.0046) 2.3857 (-.0122) 1.1781 (.0026)

ims3 1.7111 (.0033) 2.4113 (.0134) 1.1795 (.0040)

zfk3 1.7087 (.0009) 2.4010 (.0031) 1.1782 (.0027)

zfk4 1.7078 2.3979 1.1755

HXeNC

basis H-Xe Xe-N N-C

ims2 1.6503 (-.0106) 2.3463 (.0128) 1.1865 (.0017)

ims3 1.6634 (.0025) 2.3449 (.0114) 1.1869 (.0021)

zfk3 1.6612 (.0003) 2.3363 (.0028) 1.1873 (.0025)

zfk4 1.6609 2.3335 1.1848

HRnCN

basis H-Rn Rn-C C-N

ims2 1.8215 (.0137) 2.4714 (.0100) 1.1782 (.0030)

ims3 1.8231 (.0153) 2.4702 (.0088) 1.1792 (.0040)

zfk3 1.8093 (.0015) 2.4631 (.0017) 1.1778 (.0026)

zfk4 1.8078 2.4614 1.1752

HRnNC

basis H-Rn Rn-N N-C

ims2 1.7688 (.0073) 2.4238 (.0283) 1.1854 (.0012)

ims3 1.7730 (.0115) 2.4024 (.0069) 1.1866 (.0024)

zfk3 1.7624 (.0009) 2.3973 (.0018) 1.1867 (.0025)

zfk4 1.7615 2.3955 1.1842

(a) bond lengths in Å; (b) The values in parentheses are differences

with respect to the MP2/zfk4 values: P(MP2/basis) - P(MP2/zfk4)
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Table 4.8: MP2 values of structural parameters at the transition states for two-channel
dissociation in HRgY systems.(a,b,c)

.

HXeCN-d

basis H-Xe Xe-C C-N H-Xe-C Xe-C-N

ims2 1.5783 (-.0141) 3.0647 (.1074) 1.1865 (.0020) 112.14 (1.89) 77.32 (-1.29)

ims3 1.5892 (-.0032) 2.9500 (-.0073) 1.1867 (.0022) 110.38 (.13) 78.90 (.29)

zfk3 1.5925 (.0001) 2.9646 (.0073) 1.1872 (.0027) 110.14 (-.11) 78.63 (.02)

zfk4 1.5924 2.9573 1.1845 110.25 78.61

HXeNC-d

basis H-Xe Xe-N N-C H-Xe-N Xe-N-C

ims2 1.5779 (-.0138) 2.9212 (.0652) 1.1874 (.0020) 111.27 (.63) 92.13 (3.41)

ims3 1.5884 (-.0033) 2.8600 (.0040) 1.1875 (.0021) 111.25 (.61) 87.76 (-.96)

zfk3 1.5918 (.0001) 2.8651 (.0091) 1.1880 (.0026) 110.64 (.00) 88.56 (-.16)

zfk4 1.5917 2.8560 1.1854 110.64 88.72

HRnCN-d

basis H-Rn Rn-C C-N H-Rn-C Rn-C-N

ims2 1.6806 (-.0006) 3.1382 (.1249) 1.1866 (.0019) 107.25 (2.82) 77.59 (-1.07)

ims3 1.6839 (.0027) 3.0179 (.0046) 1.1868 (.0021) 105.72 (1.29) 78.21 (-.45)

zfk3 1.6820 (.0008) 3.0212 (.0079) 1.1874 (.0027) 104.30 (-.13) 78.58 (-.08)

zfk4 1.6812 3.0133 1.1847 104.43 78.66

HRnNC-d

basis H-Rn Rn-N N-C H-Rn-N Rn-N-C

ims2 1.6799 (-.0006) 3.0020 (.0856) 1.1874 (.0019) 106.40 (1.35) 91.76 (3.33)

ims3 1.6834 (.0029) 2.9124 (-.0040) 1.1877 (.0022) 106.04 (.99) 88.86 (.43)

zfk3 1.6813 (.0008) 2.9245 (.0081) 1.1882 (.0027) 104.98 (-.07) 88.33 (-.10)

zfk4 1.6805 2.9164 1.1855 105.05 88.43

(a) bond lengths in Å, bond angles in degrees; (b) The values in parentheses are differences with respect

to the MP2/zfk4 values: P(MP2/basis) - P(MP2/zfk4); (c) The dihedral angle H-Rg-A-B=0◦
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Table 4.9: MP2 values of structural parameters at the transition states for isomeriza-
tion in HRgY systems.(a,b,c)

HXeCN-i

basis H-Xe Xe-C C-N H-Xe-C Xe-C-N

ims2 1.6386 (-.0157) 2.6819 (.0892) 1.1914 (.0027) 169.96 (-1.27) 78.46 (-3.56)

ims3 1.6548 (.0005) 2.6195 (.0268) 1.1913 (.0026) 170.50 (-.73) 80.63 (-1.39)

zfk3 1.6542 (-.0001) 2.5988 (.0061) 1.1914 (.0027) 171.23 (.00) 82.12 (.10)

zfk4 1.6543 2.5927 1.1887 171.23 82.02

HXeNC-i

basis H-Xe Xe-N N-C H-Xe-N Xe-N-C

ims2 1.6386 (-.0157) 2.7081 (.01) 1.1914 (.0027) 164.50 (1.60) 76.00 (3.89)

ims3 1.6548 (.0005) 2.6954 (-.0027) 1.1913 (.0026) 163.64 (.74) 73.51 (1.40)

zfk3 1.6542 (-.0001) 2.7064 (.0083) 1.1914 (.0027) 162.92 (.02) 72.02 (-.09)

zfk4 1.6543 2.6981 1.1887 162.90 72.11

HRnCN-i

basis H-Rn Rn-C C-N H-Rn-C Rn-C-N

ims2 1.7584 (.0039) 2.7376 (.1080) 1.1914 (.0030) 169.70 (-1.98) 77.74 (-5.24)

ims3 1.7655 (.0110) 2.6447 (.0151) 1.1910 (.0026) 171.06 (-.62) 82.00 (-.98)

zfk3 1.7551 (.0006) 2.6352 (.0056) 1.1911 (.0027) 171.63 (-.05) 82.93 (-.05)

zfk4 1.7545 2.6296 1.1884 171.68 82.98

HRnNC-i

basis H-Rn Rn-N N-C H-Rn-N Rn-N-C

ims2 1.7584 (.0039) 2.7439 (-.0062) 1.1914 (.0030) 165.20 (2.27) 77.15 (5.53)

ims3 1.7655 (.0110) 2.7451 (-.0050) 1.1910 (.0026) 163.50 (.57) 72.56 (.94)

zfk3 1.7551 (.0006) 2.7551 (.0050) 1.1911 (.0027) 162.96 (.03) 71.66 (.04)

zfk4 1.7545 2.7501 1.1884 162.93 71.62

(a) bond lengths in Å, bond angles in degrees; (b) The values in parentheses are differences with respect

to the MP2/zfk4 values: P(MP2/basis) - P(MP2/zfk4); (c) The dihedral angle H-Rg-C-N=180◦
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Table 4.10: PBE0 values of structural parameters of HY systems.(a,b)

HCN

basis H-C C-N

ims2 1.0655 (.0002) 1.1448 (.0042)

ims3 1.0655 (.0002) 1.1437 (.0031)

zfk3 1.0657 (.0004) 1.1414 (.0008)

zfk4 1.0653 1.1406

HNC

basis H-N N-C

ims2 0.9926 (-.0016) 1.1620 (.0026)

ims3 0.9934 (-.0008) 1.1603 (.0009)

zfk3 0.9947 (.0005) 1.1603 (.0009)

zfk4 0.9942 1.1594

(a) bond lengths in Å; (b) The values in parentheses are differences

with respect to the PBE0/zfk4 values: P(PBE0/basis) - P(PBE0/zfk4)
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Table 4.11: PBE0 values of structural parameters of HRgY systems.(a,b)

HXeCN

basis H-Xe Xe-C C-N

ims2 1.7178 (-.0012) 2.3747 (-.0293) 1.1577 (.0046)

ims3 1.7183 (-.0007) 2.4190 (.0150) 1.1562 (.0031)

zfk3 1.7206 (.0016) 2.4038 (-.0002) 1.1538 (.0007)

zfk4 1.7190 2.4040 1.1531

HXeNC

basis H-Xe Xe-N N-C

ims2 1.6759 (-.0036) 2.3123 (-.0124) 1.1730 (.0048)

ims3 1.6777 (-.0018) 2.3441 (.0194) 1.1706 (.0024)

zfk3 1.6806 (.0011) 2.3251 (.0004) 1.1691 (.0009)

zfk4 1.6795 2.3247 1.1682

HRnCN

basis H-Rn Rn-C C-N

ims2 1.8401 (.0237) 2.4527 (-.0116) 1.1576 (.0048)

ims3 1.8284 (.0120) 2.4651 (.0008) 1.1556 (.0028)

zfk3 1.8182 (.0018) 2.4641 (-.0002) 1.1536 (.0008)

zfk4 1.8164 2.4643 1.1528

HRnNC

basis H-Rn Rn-N N-C

ims2 1.8001 (.0226) 2.3872 (.0028) 1.1722 (.0044)

ims3 1.7889 (.0114) 2.3863 (.0019) 1.1702 (.0024)

zfk3 1.7792 (.0017) 2.3849 (.0005) 1.1686 (.0008)

zfk4 1.7775 2.3844 1.1678

(a) bond lengths in Å; (b) The values in parentheses are differences

with respect to the PBE0/zfk4 values: P(PBE0/basis) - P(PBE0/zfk4)
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Table 4.12: PBE0 values of structural parameters at the transition states for two-
channel dissociation in HRgY systems.(a,b,c)

HXeCN-d

basis H-Xe Xe-C C-N H-Xe-C Xe-C-N

ims2 1.6150 (.0027) 2.9774 (.0634) 1.1693 (.0043) 105.74 (.36) 83.57 (.64)

ims3 1.6119 (-.0004) 2.9184 (.0044) 1.1678 (.0028) 106.29 (.91) 83.01 (.08)

zfk3 1.6148 (.0025) 2.9156 (.0016) 1.1658 (.0008) 105.33 (-.05) 82.95 (.02)

zfk4 1.6123 2.9140 1.1650 105.38 82.93

HXeNC-d

basis H-Xe Xe-N N-C H-Xe-N Xe-N-C

ims2 1.6109 (.0034) 2.8272 (.0398) 1.1719 (.0046) 105.10 (-1.03) 104.19 (5.39)

ims3 1.6068 (-.0007) 2.7903 (.0029) 1.1700 (.0027) 106.93 (.80) 99.14 (.34)

zfk3 1.6099 (.0024) 2.7886 (.0012) 1.1681 (.0008) 106.09 (-.04) 98.82 (.02)

zfk4 1.6075 2.7874 1.1673 106.13 98.80

HRnCN-d

basis H-Rn Rn-C C-N H-Rn-C Rn-C-N

ims2 1.7346 (.0355) 3.0404 (.0663) 1.1692 (.0041) 100.74 (.40) 83.71 (1.48)

ims3 1.7089 (.0098) 2.9663 (-.0078) 1.1677 (.0026) 101.53 (1.19) 82.58 (.35)

zfk3 1.7022 (.0031) 2.9761 (.0020) 1.1659 (.0008) 100.23 (-.11) 82.29 (.06)

zfk4 1.6991 2.9741 1.1651 100.34 82.23

HRnNC-d

basis H-Rn Rn-N N-C H-Rn-N Rn-N-C

ims2 1.7320 (.0368) 2.8999 (.0490) 1.1715 (.0044) 100.65 (-.81) 102.93 (5.67)

ims3 1.7050 (.0098) 2.8255 (-.0254) 1.1700 (.0029) 101.83 (.37) 100.02 (2.76)

zfk3 1.6984 (.0032) 2.8535 (.0026) 1.1680 (.0009) 101.47 (.01) 97.22 (-.04)

zfk4 1.6952 2.8509 1.1671 101.46 97.26

(a) bond lengths in Å, bond angles in degrees; (b) The values in parentheses are differences with respect

to the PBE0/zfk4 values: P(PBE0/basis) - P(PBE0/zfk4); (c) The dihedral angle H-Rg-A-B=0◦
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Table 4.13: PBE0 values of structural parameters at the transition states for isomer-
ization in HRgY systems.(a,b,c)

HXeCN-i

basis H-Xe Xe-C C-N H-Xe-C Xe-C-N

ims2 1.6730 (-.0050) 2.6140 (.0458) 1.1748 (.0056) 170.25 (-1.17) 80.71 (-2.88)

ims3 1.6777 (-.0003) 2.5790 (.0108) 1.1719 (.0027) 171.57 (.15) 83.83 (.24)

zfk3 1.6799 (.0019) 2.5701 (.0019) 1.1701 (.0009) 171.38 (-.04) 83.53 (-.06)

zfk4 1.6780 2.5682 1.1692 171.42 83.59

HXeNC-i

basis H-Xe Xe-N N-C H-Xe-N Xe-N-C

ims2 1.6730 (-.0049) 2.6876 (-.0124) 1.1748 (.0055) 164.16 (1.05) 73.71 (2.75)

ims3 1.6778 (-.0001) 2.7160 (.0160) 1.1719 (.0026) 163.00 (-.11) 70.75 (-.21)

zfk3 1.6799 (.0020) 2.7009 (.0009) 1.1701 (.0008) 163.14 (.03) 71.01 (.05)

zfk4 1.6779 2.7000 1.1693 163.11 70.96

HRnCN-i

basis H-Rn Rn-C C-N H-Rn-C Rn-C-N

ims2 1.8000 (.0247) 2.6527 (.0514) 1.1747 (.0062) 170.56 (-1.54) 81.38 (-3.93)

ims3 1.7895 (.0142) 2.5967 (-.0046) 1.1714 (.0029) 172.01 (-.09) 85.33 (.02)

zfk3 1.7774 (.0021) 2.6035 (.0022) 1.1694 (.0009) 172.05 (-.05) 85.22 (-.09)

zfk4 1.7753 2.6013 1.1685 172.10 85.31

HRnNC-i

basis H-Rn Rn-N N-C H-Rn-N Rn-N-C

ims2 1.8000 (.0247) 2.7354 (-.0277) 1.1747 (.0062) 164.32 (1.35) 73.50 (3.73)

ims3 1.7895 (.0142) 2.7602 (-.0029) 1.1714 (.0029) 162.97 (.00) 69.66 (-.11)

zfk3 1.7774 (.0021) 2.7636 (.0005) 1.1694 (.0009) 163.01 (.04) 69.85 (.08)

zfk4 1.7753 2.7631 1.1685 162.97 69.77

(a) bond lengths in Å, bond angles in degrees; (b) The values in parentheses are differences with respect

to the PBE0/zfk4 values: P(PBE0/basis) - P(PBE0/zfk4); (c) The dihedral angle H-Rg-C-N=180◦
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Table 4.14: MP2 average absolute errors in bond lengths (in Å) and angles (in de-
grees).

bonds ims2 ims3 zfk3

H-C 0.0124 0.0006 0.0015

H-N 0.0096 0.0014 0.0013

C-N 0.0024 0.0029 0.0027

N-C 0.0019 0.0022 0.0026

H-Xe 0.0124 0.0022 0.0003

Xe-C 0.0696 0.0158 0.0055

Xe-N 0.0293 0.0060 0.0067

H-Rn 0.0050 0.0091 0.0009

Rn-C 0.0810 0.0095 0.0051

Rn-N 0.0400 0.0053 0.0050

angles ims2 ims3 zfk3

H-Xe-C 1.58 0.43 0.05

H-Xe-N 1.11 0.67 0.01

Xe-C-N 2.42 0.84 0.06

Xe-N-C 3.65 1.18 0.12

H-Rn-C 2.40 0.95 0.09

H-Rn-N 1.81 0.78 0.05

Rn-C-N 3.15 0.71 0.06

Rn-N-C 4.43 0.68 0.07
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Table 4.15: PBE0 average absolute errors in bond lengths (in Å) and angles (in
degrees).

bonds ims2 ims3 zfk3

H-C 0.0002 0.0002 0.0004

H-N 0.0016 0.0008 0.0005

C-N 0.0048 0.0029 0.0008

N-C 0.0046 0.0024 0.0009

H-Xe 0.0035 0.0007 0.0019

Xe-C 0.0462 0.0101 0.0012

Xe-N 0.0215 0.0128 0.0008

H-Rn 0.0280 0.0119 0.0023

Rn-C 0.0431 0.0044 0.0015

Rn-N 0.0265 0.0101 0.0012

angles ims2 ims3 zfk3

H-Xe-C 0.76 0.53 0.04

H-Xe-N 1.04 0.45 0.03

Xe-C-N 1.76 0.16 0.04

Xe-N-C 4.07 0.27 0.03

H-Rn-C 0.97 0.64 0.08

H-Rn-N 1.08 0.18 0.02

Rn-C-N 2.70 0.18 0.07

Rn-N-C 4.70 1.43 0.06
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The CPU timing comparisons (for direct SCF and MP2 on a single core) were done

for the HRgCN systems and are shown in table 4.16. For these systems the zfk3 basis

set gives the closest results to the zfk4 basis set. The SCF, MP2 energy, and MP2

gradient calculations for the zfk3 basis are 3-4 times faster than those using the zfk4

basis set while giving results of satisfactory qualities (table 4.5): the ims3 basis set is

still sufficiently for this work while offering significant savings in CPU time.

Table 4.16: CPU time (in seconds) for HXeCN and HRnCN at the MP2 level of
theory. K is the number of contracted basis functions, SCF is the time per one SCF
iteration, Energy is the time needed to compute the MP2 correction to the total
energy, and Gradient is the time needed to calculate the MP2 gradient. The values
in parentheses show how many times faster is a given computational step compared
to the same step in the zfk4 basis set.

basis set K SCF Energy Gradient

HXeCN

ims2 91 0.9 ( 202) 4.1 ( 196) 14.5 ( 172)

ims3 145 3.2 (56.9) 14.8 (54.4) 61.1 (40.8)

zfk3 239 57.4 (3.17) 236.3 (3.40) 678.6 (3.67)

zfk4 347 182.2 (1.00) 804.8 (1.00) 2494.3 (1.00)

HRnCN

ims2 91 0.5 ( 203) 4.2 ( 197) 15.4 ( 166)

ims3 145 1.8 (56.4) 15.3 (54.0) 62.3 (41.1)

zfk3 234 32.8 (3.10) 249.7 (3.31) 728.9 (3.51)

zfk4 342 101.6 (1.00) 826.3 (1.00) 2559.8 (1.00)
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It was confirmed by following the intrinsic reaction coordinate trajectory that the

dissociation of HRgCN leads to the products Rg and HNC (and not HCN although

further isomerization may lead to this product) (equation 4.1). Similarly, HRgNC

dissociates to HCN (equation 4.2).

HRgCN → [HRgCN]‡ → HNC+ Rg (4.1)

HRgNC → [HRgNC]‡ → HCN+ Rg (4.2)

The values of the free energy change ∆G for the reactions studied at the MP2

and DFT/PBE0 level of theory are shown tables 4.17 and 4.18, respectively. These

results allow for comparison of the ∆G values computed using the ims3 basis with

those obtained using the zfk3 and zfk4 basis sets. The average absolute errors in

∆G, shown in table 4.19 illustrate that ims3 is significantly better than ims2 by a

factor of five (for MP2) and three (for PBE0). The ims3 ∆G results are still not

as accurate as the zfk3 results, in particular at the PBE0 level of theory. Some

exceptions exist at the MP2 level of theory where the ims3 basis occasionally leads

to a larger AAE than that found for ims2 (table 4.17). These exception occur for

reactions of HCN → HNC, HXeNC → HXeNC-d, HRnCN → HRnNC, and HRnCN

→ HRnCN-d (where d stands for the dissociation transition state). At the PBE0

level of theory (table 4.18) the ims3 error is greater than the ims2 one only in two

reactions: HXeNC → HXeNC-d and HRnCN → HRnCN-d.
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Table 4.17: Gibbs free energy change (∆G) and errors in ∆G (∆∆G) with respect to
zfk4 values at the MP2 level of theory.(a) All values are in kJ/mol.

reaction ims2 ims3 zfk3 zfk4

∆G ∆∆G ∆G ∆∆G ∆G ∆∆G ∆G

HCN → HNC 73.58 ( -.21) 67.84 ( -5.95) 73.88 ( 0.09) 73.79

HXeCN → HXeNC 26.66 ( 4.64) 25.11 ( 3.09) 22.98 ( 0.96) 22.02

HXeNC → HXeCN-i 20.82 ( 9.90) 11.27 ( 0.35) 10.68 ( -0.24) 10.92

HXeCN → HXeCN-i 47.48 ( 14.54) 36.38 ( 3.44) 33.66 ( 0.72) 32.94

HXeCN → HXeCN-d 126.00 ( 3.42) 123.75 ( 1.17) 122.59 ( 0.01) 122.58

HXeNC → HXeNC-d 98.12 ( -1.65) 97.94 ( -1.83) 98.80 ( -0.97) 99.77

HRnCN → HRnNC 26.85 ( 3.07) 27.67 ( 3.89) 24.81 ( 1.03) 23.78

HRnNC → HRnCN-i 19.88 ( 12.40) 10.16 ( 2.68) 7.57 ( 0.09) 7.48

HRnCN → HRnCN-i 46.73 ( 15.47) 37.83 ( 6.57) 32.38 ( 1.12) 31.26

HRnCN → HRnCN-d 137.16 ( 1.58) 140.91 ( 5.33) 136.41 ( 0.83) 135.58

HRnNC → HRnNC-d 109.29 ( -2.07) 112.71 ( 1.35) 133.94 ( 22.58) 111.36

HXeCN → Xe + HNC -404.28 (-29.13) -379.36 ( -4.21) -371.25 ( 3.90) -375.15

HXeNC → Xe + HCN -504.52 (-33.56) -472.31 ( -1.35) -468.11 ( 2.85) -470.96

HXeCN-d → Xe + HNC -530.28 (-32.55) -503.12 ( -5.39) -493.84 ( 3.89) -497.73

HXeNC-d → Xe + HCN -602.64 (-31.91) -570.25 ( 0.48) -566.91 ( 3.82) -570.73

HRnCN → Rn + HNC -375.48 (-38.27) -342.40 ( -5.19) -332.87 ( 4.34) -337.21

HRnNC → Rn + HCN -475.91 (-41.13) -437.91 ( -3.13) -431.55 ( 3.23) -434.78

HRnCN-d → Rn + HNC -512.64 (-39.85) -483.31 (-10.52) -469.28 ( 3.51) -472.79

HRnNC-d → Rn + HCN -585.20 (-39.07) -550.62 ( -4.49) -565.49 (-19.36) -546.13

(a) The values in parentheses are differences with respect to the MP2/zfk4 values: P(MP2/basis) - P(MP2/zfk4)
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Table 4.18: Gibbs free energy change (∆G) and errors in ∆G (∆∆G) with respect to
zfk4 values at the PBE0 level of theory.(a) All values are in kJ/mol.

reaction ims2 ims3 zfk3 zfk4

∆G ∆∆G ∆G ∆∆G ∆G ∆∆G ∆G

HCN → HNC 50.74 ( -2.07) 51.13 ( -1.68) 52.94 ( 0.13) 52.81

HXeCN → HXeNC 21.27 ( 5.36) 14.08 ( -1.83) 16.63 ( 0.72) 15.91

HXeNC → HXeCN-i 21.44 ( 6.54) 15.03 ( 0.13) 14.51 (-0.39) 14.90

HXeCN → HXeCN-i 42.71 ( 11.89) 29.11 ( -1.71) 31.14 ( 0.32) 30.82

HXeCN → HXeCN-d 140.75 ( 6.47) 128.68 ( -5.60) 134.62 ( 0.34) 134.28

HXeNC → HXeNC-d 119.47 ( 0.09) 115.57 ( -3.81) 119.02 (-0.36) 119.38

HRnCN → HRnNC 23.34 ( 5.69) 17.59 ( -0.06) 18.05 ( 0.40) 17.65

HRnNC → HRnCN-i 18.37 ( 7.14) 12.97 ( 1.74) 11.10 (-0.13) 11.23

HRnCN → HRnCN-i 41.71 ( 12.83) 30.56 ( 1.68) 29.14 ( 0.26) 28.88

HRnCN → HRnCN-d 153.53 ( 8.57) 147.81 ( 2.85) 145.36 ( 0.40) 144.96

HRnNC → HRnNC-d 130.22 ( 1.82) 130.98 ( 2.58) 128.43 ( 0.03) 128.40

HXeCN → Xe + HNC -393.73 (-16.89) -391.73 (-14.89) -377.58 (-0.74) -376.84

HXeNC → Xe + HCN -465.74 (-20.18) -456.94 (-11.38) -447.15 (-1.59) -445.56

HXeCN-d → Xe + HNC -534.48 (-23.36) -520.41 ( -9.29) -512.19 (-1.07) -511.12

HXeNC-d → Xe + HCN -585.21 (-20.26) -572.51 ( -7.56) -566.16 (-1.21) -564.95

HRnCN → Rn + HNC -373.69 (-32.45) -349.27 ( -8.03) -342.29 (-1.05) -341.24

HRnNC → Rn + HCN -447.77 (-36.08) -417.99 ( -6.30) -413.28 (-1.59) -411.69

HRnCN-d → Rn + HNC -527.22 (-41.03) -497.08 (-10.89) -487.65 (-1.46) -486.19

HRnNC-d → Rn + HCN -577.99 (-37.90) -548.97 ( -8.88) -541.71 (-1.62) -540.09

(a) The values in parentheses are differences with respect to the PBE0/zfk4 values: P(PBE0/basis) - P(PBE0/zfk4)

Table 4.19: Average absolute errors in ∆G with respect to zfk4 values (in kJ/mol).

method ims2 ims3 zfk3

MP2 18.8 3.7 3.9

PBE0 15.6 5.3 0.7
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Reaction rates may be affected by the isotopic substitution which could either

increase or decrease the stability of reactants. Table 4.20 shows results for the KIEs

in the dissociation (d) and the isomerization (i) reactions. Replacing the hydrogen

atom with the heavier deuterium leads to a lower reaction rate in the two-body

dissociation and thus in an increased (kinetic) stability of the reagent HRgCN due to

the primary KIE (similar to what Khriachtchev et al. found for HKrCl [90]). On the

other hand, the isomerization reaction is almost unaffected by deuteration, showing

only a small inverse secondary isotope effect.

Table 4.20: KIEs (kD/kH) for HRgCN at the MP2 level of theory for the HRgCN →
Rg + HNC dissociation (d) and the HRgCN to HRgNC isomerization (i).

basis sets HXeCN-d HRnCN-d HXeCN-i HRnCN-i

ims3 0.78 0.78 1.03 1.00

zfk3 0.77 0.80 1.03 1.03

zfk4 0.76 0.79 1.01 1.02

4.4 Conclusion

Excitation energies to the first three excited states with nonzero oscillator strengths

were computed for the HRgY systems (Rg = Xe, Rn and Y=CN, NC) at the TDDFT

level of theory, using the B2PLYP and B3LYP functionals. Both all-electron (ANO-

RCC, Sapporo-TZP-2012, Sapporo-QZP-2012, and QZ4P) and pseudopotential basis

sets (IMCP-SR2, IMCP-SR3, ZFK3-DK3, and ZFK4-DK3) were used. For both

HRgCN and HRgNC, the most prominent peak in the spectrum is due to the HOMO-

LUMO transition and corresponds to the transition X1Σ+ → 11Σ+. For HRnNC, the

HOMO-LUMO transition is its lowest energy transition, occurring at a much lower

energy (∼4.5 eV) in the spectrum than that for HRgCN which has its HOMO-LUMO

transition occurring at a higher energy (∼6 eV). The splitting relativistic effects (spin-

orbit coupling) essentially do not affect the spectra of the HXeY systems. However,
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significant shifts occur in the spectra of HRnY systems. For HRnCN, the spin-orbit

coupling red-shifted the HOMO-LUMO peak while it blue-shifted the HOMO-LUMO

peak for HRgNC. Geometry optimizations carried out for the HRgY systems and their

transition states allowed to investigate the efficiency of the new ims3 basis set. The

basis set ims3 performed better than ims2, giving results fairly close to the zfk4

reference basis set. The advantage of ims3 is that it is more accurate than ims2

while saving CPU time when compared to zfk3 and zfk4. Lastly, the KIEs were

investigated for the two-body dissociation and isomerization reactions. As expected,

dissociation slows down when H is replaced by D due to the primary effect, while

the isomerization rates remain almost unchanged by the H-D substitution, exhibiting

only a minor inverse secondary effect.
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Chapter 5

Conclusions & future work

5.1 Conclusions

This work has extended and contributed to the research in the excited states of

HRgY type compounds, the effect relativistic effects have on electronic spectra for

these systems, and analyzed the performance in terms of accuracy and efficiency of

the MCPt and ims3 basis sets in calculations with the HRgY systems. The electronic

spectra of HRgF (Rg = Ar-Rn) and HRgY (Rg = Xe, Rn and Y = CN, NC) have been

generated by calculating the excited states. It was found that the most prominent

peak was due to the HOMO-LUMO transition; the orbitals involved in this transition

have σ symmetry. There is a shift of electron density from the F to the H on the

HRgF molecules when an electron is transferred from HOMO to LUMO. There is an

analogous shift of electron density from the Y group (Y = CN, NC) to the H in the

HRgY molecules. The MCP-TZP basis set was found to give similar results for the

HRgF compounds while being faster by a a factor of 2.5-3.8 relative to the SAPt basis

set. For the HRgY (Rg = Xe, Rn and Y = CN, NC) geometry and thermochemical

calculations, it was found that the ims3 basis set performed better than the ims2

basis set, coming much closer to the zfk4 reference basis set while being faster than

the zfk3 and zfk4 basis sets. Relativistic effects affected the electronic spectra of the

Rn compounds; its HOMO-LUMO peak is red-shifted for all the radon compounds

studied except for the HOMO-LUMO peak for HRgNC which is blue-shifted. For
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HRgNC, the HOMO-LUMO transition is its lowest energy transition, occurring at a

much lower energy (∼4.5 eV) in the spectrum than that for HRgCN which has its

HOMO-LUMO transition occurring at a higher energy (∼6 eV).

5.2 Future work

Future work may focus on the higher excited states, triplet states, and the zero

oscillator excitations of the HRgCN and HRgNC compounds. More Rn systems may

be studied and the splitting relativistic effects in their spectra investigated, analyzing

which peaks are red- or blue-shifted and the composition of the orbitals involved.

The ims3 basis set may also be refined to make it even more accurate and efficient,

especially to design it specifically to work well with excited state calculations on

rare gas systems. The spectra of HXeY (where Y = Cl, Br, I) are also of interest

as experimental spectra exist for these compounds and would serve as a means to

evaluate the improved ism3 basis set.
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