

National Library of Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4 Bibliothèque nationale du Canada

Service des thèses canadiennes

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséguents.

UNIVERISTY OF ALBERTA

A Model of a Mid-Block Pedestrian Signal Within a Fixed Time Traffic Signal System

by

Gary Edwin Vlieg

С

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF:

Master of Science

Department of Civil Engineering

Edmonton, Alberta

Fall 1991

National Library of Canada Bibliothèque nationale du Canada

Service des thèses canadiennes

Canadian Theses Service

Ottawa, Canada K1A 0N4

> The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

> The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

. .

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-70189-7

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR:	Gary Edwin Vlieg
TITLE OF THESIS:	A Model of a Mid-Block Pedestrian Signal Within a Fixed Time Traffic Signal System
DEGREE:	Master of Science

YEAR THIS DEGREE GRANTED: 1991

Permission is hereby granted to the UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(SIGNED

۰.

Permanent Address:

Suite 1001

14881 - 103A Avenue

Surrey, B.C.

V3R 0M5

Date: <u>91-08-30</u>

UNIVERSITY OF ALBERT FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for Acceptance, a thesis entitled "A Model of a Mid-Block Pedestrian Signal Within a Fixed Time Traffic Signal System" submitted by Gary Edwin Vlieg in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor: S. Teply J.J. Bakker Dr. S. AbouRizk Dr. W.J. Sproule sl. Dr. J.C. Sprague

Date: June 24, 1991

To:

Laurel

and to

Dad, Mom, Karen and Sid

ABSTRACT

A mid-block pedestrian traffic signal is an important traffic control device to allow pedestrians to safely cross a busy roadway. There are few methods by which the impact. on vehicles and pedestrians, of such a traffic control device can be determined. No traffic operations model allows for the direct simulation of such a traffic signal. This paper presents t' = theoretical background, the PEDXING computer program and the program results used to develop a model of a mid-block pedestrian traffic signal within a fixed-time traffic signal system. The output of the model is the average delay for vehicles and the average delay for pedestrians as a principal measure of effectiveness of the system operation.

EXECUTIVE SUMMARY

The primary concern of any transportation professional is to provide for the efficient movement of persons and goods from point A to point B. To attain that goal it is vital to maintain the public safety within the transportation network regardless of the mode of travel used. A secondary consideration is to minimize the delay to traffic, whether it be pedestrian or vehicle. The difficulty lies in trying to balance safety against delay when resolving conflicts between opposing streams or modes of traffic.

One of the most common problems is the conflict between pedestrians and vehicles attempting to utilize the same space at the same time. Various techniques have been devised to mitigate this conflict ranging from a marked (painted) crosswalk to a full traffic signal. Each type a pedestrian crossing treatment has a significant and measurable impact on both pedestrians and vehicles.

No traffic operations model is currently capable of directly modelling a mid-block pedestrian signal to ascertain both vehicle and pedestrian delay. Typically, traffic operations models accommodate the random activations of a pedestrian signal by adjusting the input data to model the pedestrian as vehicles at a traffic activated signal. This thesis describes the principles and functions used to develop a computer simulation model that determines the delays incurred by both vehicles and pedestrians as a result of a mid-block pedestrian signal located between two fixed-time traffic signals.

The model uses the following assumptions: the vehicle arrival pattern at the first signal is based on the shifted exponential distribution; the pedestrian arrival pattern is based on the negative exponential distribution; pedestrians and vehicles will not violate the signals; there are three consecutive traffic signals with no intervening traffic control devices; and, vehicles travel at a uniform and constant speed with instantaneous acceleration and deceleration. The model also assumes that the network is under-saturated i.e. the volume-to-capacity ratio is below 0.80 in order to discount the effects of constant overflow delay.

The program processes the vehicles through the first intersection calculating the average vehicle delay. The vehicles are then processed through the pedestrian crossing, incurring delay only if pedestrians have activated the signal. The vehicles are finally processed through the second intersection, again calculating the average delay per vehicle. Pedestrians arrive at the pedestrian crossing entering a call to the signal controller. If the minimum vehicle green has been exceeded and the timing is correct for the case when the signals are coordinated, the pedestrians are allowed to proceed through the crosswalk and the average pedestrian delay is calculated. The program includes a module to print the time-space diagram for the vehicles in order to assist the analyst in assessing the impact of the mid-block pedestrian signal on vehicle flow.

Two sets of field data were collected to verify the model. The program was run with input based on field data and the program output was compared to the results of the data collected. The model yielded favourable results. The model can now be used as an instrument to develop guidelines for the inclusion or exclusion of a mid-block pedestrian signal into a coordinated signal system. The program can also be used to evaluate the impact of changes to system parameters such as volumes, saturation flows, geometrics and signal timings

ACKNOWLEDGEMENTS

The Author would like to express his gratitude for the assistance and support throughout this research by numerous individuals from the Civil Engineering Department at the University of Alberta, the Transportation Department at the City of Edmonton, the staff at IMC Consulting Group Inc. and most importantly from his family.

Shortly before graduating from the University of Alberta (1986), Professor John Bakker encouraged the Author to continue his education and obtain a Master of Science degree in Transportation Engineering in order to further his technical expertise in the field.

The continual guidance, advice and technical expertise from Professor Stan Teply is gratefully acknowledged. Without Professor Teply's support this research may never have come to fruition.

To all those people who assisted in the author's research and in his data collection, thankyou. This list includes Mark Perry, Srinivas Mandalapu, Mona Abou-Henaidy, Marcel Huculak, Brian Latte and Donna Meem. A special thank-you is in order for Chuan Kua upon whose research and computer program the author began his own work.

A special thank-you is also in order to the Tony Franceschini and the rest of the staff at IMC Consulting Group Inc. for their support while the author was working and trying to complete his research. In addition the use of company resources (printers, software, paper) is deeply appreciated. Without these resources it would not have been possible to produce this thesis.

The author would also like to acknowledge the help and guidance that God has provided.

The author would also like to thank Tom Oosterhuis for his guidance and support throughout his University career.

And finally the Author would like to thank his family and friends for their support and understanding throughout this research effort. Their understanding, particularly over the last few months, will not be forgotten. My parents and brother and sister deserve special mention for their enduring confidence in me throughout my scholastic career. Most importantly I would like to thank Laurel, my wife, for her patience and her understanding throughout.

TABLE OF CONTENTS

1.0	INTRODUCTION				
	1.1	Motiva	tion for Research	1	
	1.2	Proble	m Statement	1	
	1.3	Thesis	Objective	2	
	1.4	Scope	of the Research	2	
	1.5	Organi	ization of Thesis	4	
2.0	LITE	RATURE	E REVIEW	5	
	2.1	Overvi	ew of Past Research Efforts	5	
	2.2	Pedest	rian Crossings	5	
2.3		Isolated Pedestrian Signal		6	
	2.4	Pedestrian Crossing Facilities and Delay		9	
	2.5 Pedestrian Crossing Facilities within a Linked Signa System			9	
	2.6	Pedest	trian On-line Operation Determination	13	
		2.6.1	Major Road Traffic Volume Index	13	
		2.6.2	Effectiveness of Coordination Index	14	
		2.6.3	Arrival Pattern Index	14	
		2.6.4	Bus/Pedestrian Index	14	
		2.6.5	Route Coordination Index	15	
	2.6.6		Summary	. 15	

			Page
2.7	Isolate	ed Intersection Pedestrian Calculations	15
2.8	Pedest	trian Delay at Signalized Intersections	16
	2.8.1	Australia	16
	2.8.2	Highway Capacity Manual	18
2.9	Trans	portation Models and Pedestrians	18
	2.9.1	NETSIM	18
	2.9.2	TRANSYT	19
	2.9.3	CONTRAM	20
	2.9.4	Summary	20
2.10	Coord	lination	20
2.11	Summ	hary	21
THE	ORETIC	CAL BACKGROUND	23
3.1	Introd	duction	23
3.2	Head	way Distribution	23
	3.2.1	Probabilistic versus Deterministic Arrival Patterns	23
	3.2.2	Types of Distributions	24
		Negative Exponential Distribution	24
		Shifted Negative Exponential Distribution	20
		Erlang Distribution	23
		Hyperlang Distribution	2
		Summary	3

3.0

		Page
3.3	Delay	31.
	3.3.1 Uniform and Overflow Delay	31
	3.3.2 Delay Measurement	32
3.4	Pedestrian Behaviour	35
	3.4.1 Signal Obeyance	35
	3.4.2 Signal Activation	36
	3.4.3 Grouping	36
	3.4.4 Climate/Weather	36
	3.4.5 Delay	37
	3.4.6 Geometrics	38
	3.4.7 Summary	38
SYST	TEM PRINCIPLES	39
4.1	Introduction	39
4.2	Vehicle Trajectories	40
4.3	Signal Timings	40
4.4	Signal Coordination	42
4.5	Arrival Distribution	45
4.6	Summary	48
CON	MPUTER MODEL	
5.1	Introduction	49
5.2	Overall Program Structure	49

			Page
5.3	Previo	us Models	53
5.4	Model Assumptions		
	5.4.1	Introduction	54
	5.4.2	V/C Ratio	54
	5.4.3	On-Turning Traffic	.54
	5.4.4	Legal Requirements	55
	5.4.5	Pedestrian Crosswalk	55
	5.4.6	Vehicle Headways	55
	5.4.7	Pedestrian Headways	56
	5.4.8	Vehicle Operation	56
5.5	Detail	56	
	5.5.1	Introduction	56
	5.5.2	Random Number Generator	56
	5.5.3	Vehicle Headway Distribution	57
	5.5.4	Pedestrian Headway Distribution	58
	5.5.5	On-Turn Vehicle Headways	58
	5.5.6	Operation of Vehicle Signal	59
	5.5.7	Operation of the Pedestrian Signal	60
5.6	Mode	el Input	62
	5.6.1	Through Volume	63
	5.6.2	On-Turning Volume	65
	5.6.3	Stopline Saturation Flow	65

				Page
	- <u></u>	5.6.4	Simulation Duration	65
		5.6.5	Seed Number	65
		5.6.6	Vehicie Red Interval for Intersections 1 and 2	65
		5.6.7	Vehicle Green Interval for Intersections 1 and 2	.66
		5.6.8	Pedestrian Volume	66
		5.6.9	Pedestrian WALK Interval	66
		5.6.10	Pedestrian Clearance Period	66
		5.6.11	Travel Times	67
		5.6.12	Offset	67
		5.6.13	Cycle Time	67
		5.6.14	Minimum Vehicle Green Interval	67
		5.6.15	Time-Space Diagram Output Parameters	68
		5.6.16	Coordination	68
		5.6.17	Output Options	68
6.0	MOD	EL TES	TING	69
	6.1	Model	Development	69
	6.2	Mode	Testing	69
7.0	DATA	A COLLI	ECTION	78
	7.1	Introd	luction	78
	7.2	Data (Collection Program	78
		7.2.1	Locations	78

				Page
	<u></u>	7.2.2	Methodoʻogy	81
			87 Avenue	81
			109 Street	84
		7.2.3	Results and Analysis	· 84
	7.3	Delay	Surveys	85
8.0	COM	PARISO	ON OF FIELD AND MODEL DATA	88
	8.1	Introd	luction	88
	8.2	Model	l Input	88
	8.2.1	87 Ave	enue Location	89
		8.2.2	109 Street Location	89
	8.3	Mode	l Output	90
		8.3.1	87 Avenue Location	90
		8.3.2	109 Street Location	91
	8.4	87 Av	enue Location Comparison	92
		8.4.1	114 Street and 87 Avenue	93
		8.4.2	Mid-block Pedestrian Crossing	95
		8.4.3	112 Street and 87 Avenue	101
	8.5	109 St	treet Location Comparison	101
		8.5.1	82 Avenue and 109 Street	103
		8.5.2	University Avenue and 109 Street	103
		8.5.3	76 Avenue and 109 Street	106
	8.6	Analy	vsis of Differences	111

				Page
	8.7	Summ	агу	114
9.0	CON	CLUSIC	DNS	115
	9.1	Concl	usions	115
	9.2	Addit	ional Research	116
		9.2.1	Pedestrian Characteristics	116
		9.2.2	Program Enhancements	116
		9.2.3	Statistical Analysis	117

LIST OF TABLES

Table		Page
6.1	Model Testing Input Data	70
8.1	Model Verification Input Data	89
8.2	87 Avenue Average Model Results	91
8.3	109 Street Average Model Results	92
8.4	87 Avenue Delay Comparison	92
8.5	109 Street Delay Comparison	101
8.6	Modelled, Observed and Modified Delays	111

LIST OF FIGURES

Figure		Page
1.1	Typical Pedestrian Signal Location	3
3.1	Negative Exponential Function	25
3.2	Shifted Negative Exponential Function	27
3.3	Erlang Distribution	29
3.4	Hyperlang Distribution	30
3.5	Overflow Delay and V/C Ratios	33
4.1	Coordination Time-Space Diagrams	41
4.2	Greenband and Throughband Coordination	44
4.3	Coordination TSDs with Sidestreet Traffic	46
4.4	Vehicle Inflow Distributions	47
5.1	General Program Flow Chart	50
5.2	Schematic Roadway Network	64
6.1	Vehicle Arrival and Departures Intersection #1 Large Scale	71
6.2	Vehicle Arrival and Departures Pedestrian Crossing Large Scale	73
6.3	Vehicle Arrival and Departures Intersection #2 Large Scale	74
6.4	Vehicle Arrival and Departures Intersection #1 Small Scale	75
6.5	Vehicle Arrival and Departures Pedestrian Crossing Small Scale	76
6.6	Vehicle Arrival and Departures Intersection #2 Small Scale	77
7.1	87 Avenue from 112 Street to 114 Street	79

LIST OF FIGURES continued

Figure		
7.2	109 Street from 76 Avenue to 82 Avenue	80
7.3	Signal Phasing Diagrams	82
7.4	Stopped and Overall Delay	87
8.1	Arrival Headway Probaility for 114 St and 87 Ave Eastbound Through Movement (Intersection #1)	94
8.2	Modelled Vehicle Delay Probability Intersection of 114 St and 87 Ave Eastbound Through Movement (Intersection #1)	96
8.3	Modelled Pedestrian Delay Probability 87 Avenue Mid-Block Crossing	97
8.4	Modelled Pedestrian Group Size 87 Avenue Mid-Block Pedestrian Crossing	99
8.5	Modelled Vehicle Delay Probability 87 Ave Mid-Block Pedestrian Crossing Eastbound Through Movement	100
8.6	Modelled Vehicle Delay Probability Intersection of 112 St and 87 Ave Eastbound Trhough Movement	102
8.7	Arrival Headway Probability for 82 Ave and 109 St Southbound Through Movement (Intersection #1)	104
8.8	Modelled Vehicle Delay Probability Intersection of 82 Ave and 109 St Southbound Through Movement (Intersection #1)	105
8.9	Pedestrian Departure Group Size 109 Street Mid-Block Crossing	107
8.10	Modelled Pedestrian Delay Probability 109 Street Mid-Block Crossing	108
8.11	Modelled Vehicle Delay Probability 109 Street Mid-Block Crossing Southbound Through Movement	109

LIST OF FIGURES continued

.

Figure		Page
8.12	Modelled Vehicle Delay Probability Intersection of 76 Ave and 109 St Southbound Through Movement	110
8.13	Average Vehicle Delay 87 Avenue Network Eastbound Through Movement	112
8.14	Average Vehicle Delay 109 Street Network Southbound Through Movement	113

1.0 INTRODUCTION

Section 1.0 provides a brief overview of the thesis including the problem statement, the objective of the thesis, the scope of the research and the organization of the document.

1.1 MOTIVATION FOR RESEARCH

Within the City of Edmonton there are a number of signalized pedestrian crosswalks that are located at a variety of locations. Some of the signalized crosswalks are located within the Central Business District (CBD) and as such are fully integrated into the Area Traffic Control system (ATC). Other signal installations are located in areas that are under ATC but are not integrated into the ATC because of the relatively low pedestrian volumes or vehicle volumes. Still other installations have been integrated into and then removed from the ATC system because of problems caused by the lack of pedestrian signal responsiveness.

The decision to integrate a pedestrian signal into an area wide ATC is left to the discretion of the transportation engineer. Currently there are few guidelines to aid in the decision making process. This research was instituted to provide a basis for further investigation regarding the signalization and coordination of pedestrian activated traffic signals within a fixed-time traffic signal system.

1.2 PROBLEM STATEMENT

At the present time there are few quantitative tools and guidelines available to assist transportation engineers in making decisions regarding the coordination of pedestrian crossing signals with adjacent vehicle traffic signals. Current signal optimization programs do not allow for the inclusion of pedestrian crossing signals in a deterministic way. Those programs that do include pedestrian signals typically model them as fixed-time signals (e.g. TRANSYT) or as traffic actuated signals (e.g. NETSIM). A program is required that allows for random activations of a pedestrian signal that is located between two coordinated signals. The programmed model should quantify both pedestrian and vehicle delay. An example of the type of location at which a pedestrian signal is installed is shown in Figure 1.1.

1.3 THESIS OBJECTIVE

The primary objective of this thesis was to develop a computer simulation that would provide realistic estimates of the delay to both pedestrians and vehicles on a roadway that has a pedestrian activated traffic signal located between two fixedtime vehicle traffic signals.

To achieve this objective three main tasks were undertaken:

- develop a computer simulation model that incorporates random vehicle and pedestrian arrivals and that in turn generates output that measures delay to both pedestrians and vehicles
- collect field data
- verify the model with field data as necessary.

1.4 SCOPE OF THE RESEARCH

Initially the scope of the research was quite broad with the intent of developing guidelines for the coordination of pedestrians signals. As the project progressed it became evident that the scope would have to be narrowed substantially.

To investigate the operation of a pedestrian crossing requires in-depth study. The results of this additional research could then be incorporated into this project to develop a more refined model. This thesis should, therefore, be regarded as the first step towards developing a more detailed practical model of a signalized pedestrian crossing within a coordinated traffic signal system.

The scope of this thesis has been limited to the development of a computer program that models a pedestrian crossing that is located between two fixed-time traffic signals.

.

FIGURE 1.1

TYPICAL PEDESTRIAN SIGNAL LOCATION

3

1.5 ORGANIZATION OF THESIS

This thesis is comprised of a total of nine chapters. Chapter 1 introduces the problem and identifies the thesis objective and the scope. Chapter 2 presents an overview of the results of the literature review while Chapter 3 provides the theoretical background to this research. Chapter 4 outlines the principles behind traffic operations and signal system design. Chapter 5 discusses the computer model in detail and Chapter 6 outlines the procedures used to develop and test the model. Chapter 7 provides information regarding the field data collection and Chapter 8 compares the field data to the model output. The final chapter, Chapter 9, puts forth the conclusions and recommendations of the research and identifies future research requirements. The Appendices contain a copy of the computer program source code and examples of the detailed program output.

2.0 LITERATURE REVIEW

Section 2.0 provides a discussion of the literature review and the various references used in this thesis.

2.1 OVERVIEW OF PAST RESEARCH EFFORTS

There is little literature available on the impact of pedestrian activated traffic signals on vehicle delay within a fixed-time traffic signal system within the North American context. One reason for the lack of research is the fact that pedestrian traffic signals are a relatively recent innovation although various simpler forms of pedestrian signal activation have existed since the 1930's. In Britain for example, the first pedestrian activated traffic signal or as it is known in Britain, a Pelican (**Pedestrian Light Controlled**), was installed in 1969. In Canada the first use of a pedestrian controlled signal occurred in the 1970's.

Simulation programs for isolated and coordinated pedestrian crossings, unsignalized and signalized, have been well researched^{1,2,3} in the U.K. during the 1970's and 1980's.

2.2 PEDESTRIAN CROSSINGS

Before discussing the various research projects on pedestrian signals it is useful to illustrate where a pedestrian signal falls within the hierarchy of pedestrian crossing treatments. The Manual of Uniform Traffic Control Devices for Canada lists four pedestrian crosswalk categories as follows:

- 1) Side Mounted Signs;
 - a) Pedestrian Crosswalk, and
 - b) School Crosswalk
- 2) Special Crosswalk
- 3) Pedestrian Signals; and
- 4) Full Traffic Control Signals.

The unmarked pedestrian crossing that exists at every street corner should also be included as a fifth category.

Of the five types of pedestrian crossing, the pedestrian signal ranks as second from the top, i.e. one of the most sophisticated types of at-grade pedestrian crossing available. While the Manual does not provide regulations for the implementation of the various categories of pedestrian crosswalks, it does infer that traffic control signals are the exception rather than the rule. The Manual also stresses that before implementing a pedestrian crossing treatment, a detailed engineering study should be completed.

2.3 ISOLATED PEDESTRIAN SIGNAL

Griffiths et al.¹ conducted a major study into delays at pedestrian crossings between 1980 to 1984 at various locations throughout Britain. This study included an examination of Zebra, Fixed-Time and Vehicle-Actuated pedestrian crossing facilities. The three main objectives of the study were:

- "determination by direct measurement, of levels of pedestrian and vehicle delay and behaviour, together with details of site characteristics at a sample of free standing (isolated) Zebra, Fixed-Time Pelican and Vehicle Actuated Pelican Crossings;
- the evaluation of assumptions made in existing simulation models and the further development of these models using the survey data collected;
- the application of the simulation models of Zebra and Pelican crossings to provide simplified mathematical models for capacity and delay¹."

The Zebra pedestrian crossing treatment consists of a series of wide parallel white lines that are painted on the roadway to delineate the pedestrian crossing. The fixed-time Pelican crossing is a pedestrian activated traffic signal that presents a red signal to drivers during the WALK phase and a flashing amber signal during the DON'T WALK clearance period. During the amber flash period, vehicles are permitted to move, slowly, through the crosswalk, provided there are no pedestrians in or about to enter the lane. The duration of the signal phases is preset.

The basic operation of the crossing for a vehicle-actuated Pelican crossing is the same as for a fixed-time crossing. The difference between the two types is that the vehicle-actuated has a minimum and maximum duration of the vehicle green phase. When a pedestrian pushes the button to enter a call to the controller, the controller checks for a suitable gap in vehicle traffic (using the vehicle detection system) before changing the vehicle signal indication to red and allowing the pedestrians to cross.

The project resulted in a number of observations and conclusions¹ regarding the various types of pedestrian crossing treatments.

- minimum pedestrian delay occurred at Zebra crossings
- as the pedestrian volume increased the pedestrian delay decreased (at Zebra crossings)
- minimum vehicle delay occurred at Pelican crossings
- pedestrian delay at Pelican crossings increased as vehicle volume increased between 400 - 1400 vph
- pedestrian arrival rate increased during the walk phase of the signal and decreased during the flashing don't walk and don't walk phases
- a significant number of pedestrian first arrivals at a Pelican do not press the signal activation button
- subsequent pedestrian arrivals only press the activation button after they themselves have been delayed.
- if vehicle flow was low or if it was platooned then pedestrians crossed the roadway against the signal during acceptable gaps

- the percentage of people that crossed during the Don't Walk phase of the signal seemed to depend on the following factors:
 - vehicle flow
 - distribution of vehicle headways
 - pedestrian flow
 - signal timing
 - pedestrian characteristics
 - roadway geometrics

During the study it was observed that pedestrian arrival rates exhibit a direct correlation to the pedestrian phase showing on the signal. It was expected that the pedestrian arrival rates would be purely random but pedestrians appeared to observe the signal and move more quickly to the crossing during the pedestrian WALK interval.

An equation was derived for the probability that the first pedestrian arrival would activate the signal. The derivation illustrated that a significant number of pedestrians did not activate the signal upon arrival. This may be attributed to pedestrians crossing during the DON'T WALK phase of the signal. Pedestrians arriving at the crossing will first evaluate the traffic flow to determine whether or not it is possible to cross the roadway without activating the signal. If sufficient gaps are present in the traffic stream the pedestrian will cross, or else activate the signal.

Upon completion of the data collection program and subsequent analysis, a set of computer programs was developed to model the Zebra, Fixed-Time and Vehicle Actuated pedestrian crossings. Incorporated into each of the models were mathematical formulae based on empirical observations. These formulae were designed to account for a number of specific characteristics of pedestrians as follows:

- pedestrian grouping including group size and frequency
- activation of the pedestrian signal
- variance in the pedestrian arrival patterns

pedestrian adherence to traffic signals

The models yielded results that closely corresponded to field observations.

2.4 PEDESTRIAN CROSSING FACILITIES AND DELAY

In addition to the isolated pedestrian signals, research has been conducted into the effects of signalized pedestrian crossings on vehicle and pedestrian delay within a coordinated signal system^{4,5}. In Britain, research was been conducted on Pelican signals which operate in a different manner from pedestrian crossing signals in North America. Nonetheless the conclusions reached when researching these pedestrian crossing facilities are relevant to the pedestrian crossings in North America.

In Britain, it is generally accepted that within an ATC system any Pelican installation must be tied into the ATC such that traffic interference is minimized. This methodology implies that pedestrian delay is not as important as vehicle delay. It has, however, been suggested⁵ that pedestrian delay be weighted up to three times heavier than vehicle delay.

The British researchers conducted a before-and-after study of a single Pelican within an ATC system. Pedestrian and vehicle delay was measured before and after the Pelican was incorporated into the ATC. The survey indicated that more pedestrians crossed during the DONT WALK period when the signal was coordinated than when it was not. The average pedestrian delay increased sharply with coordination but the vehicle delay and queue length decreased.

2.5 PEDESTRIAN CROSSING FACILITIES WITHIN A LINKED SIGNAL SYSTEM

A simulation study was conducted in Britain in an attempt to quantify the effects of a pedestrian crossing within a linked signal system⁵. The two primary tools used in the evaluation were TRANSYT-8 and MULTSIM.

TRANSYT-8 is a traffic operations model that is used to design and evaluate traffic signal settings within a signalized roadway network. It employs average

flow rates in short intervals representing the flow of traffic as cyclic flow profiles. The model was developed in Britain at the Transport Road Research Laboratory.

TRANSYT-8 was utilized to provide an approximate model of Pelican operation within a coordinated signal system. It was estimated that with pedestrian flows in excess of 100 pedestrians per hour, the Pelican would operate as a fixed-time signal. TRANSYT-8 was assumed to over-estimate the pedestrian delay because it treated the pedestrians as though they were vehicles complete with finite discharge rates and queuing. Unlike vehicles, pedestrians do not queue and can discharge simultaneously. This difficulty was partially overcome by specifying a Saturation Flow rate of 20,000 vehicles per hour (maximum allowed by TRANSYT). In addition, TRANSYT could not account for pedestrians crossing during acceptable gaps, regardless of the pedestrian signal phase.

To provide a comparison to the TRANSYT results, the program MULTSIM was used to evaluate the system. MULTSIM can more accurately model the behaviour of pedestrians and the operation of a Pelican crossing.

MULTSIM is a "microscopic model which allows the simulation of the flow of traffic in one direction along a stretch of roadway including up to six signal controlled intersections.⁵" The vehicle-by-vehicle simulation program includes a facility to model Pelican crossings. Pedestrian behaviour was modelled to account for gap acceptance regardless of the pedestrian signal indication but did not account for pedestrian grouping. One limitation of MULTSIM is that it considers one-way roadways only.

After simulating the operation of the Pelican crossing using both MULTSIM and TRANSYT, it was concluded that during peak periods a number of short pedestrian WALK intervals would be the most effective, while longer WALK intervals would be suitable for off-peak periods. The more frequent short pedestrian WALK intervals would help to minimize pedestrian delay as well as minimizing pedestrian disobedience of the signal. During the off-peak periods the WALK interval could be lengthened because there would be fewer pedestrians and fewer vehicles. With fewer vehicles the number of acceptable gaps would increase and pedestrian safety would not be compromised even if pedestrians crossed against the signal.

TRANSYT was used to determine the optimum signal settings for the Pelican for various locations of the Pelican between the two signalized intersections. A component of the research included the determination of the optimum location of the Pelican in terms of minimizing overall system delay. For one-way roadways the optimum Pelican location was as close to the upstream signal as possible but for two-way roadways the optimum location was found to be at the mid-point between the upstream and downstream traffic signals.

When MULTSIM was used to model the Pelican crossings it was found that as the distance between the upstream signal and the Pelican increased, the number of pedestrians crossing on the WALK interval also increased. The researchers concluded that the average accepted gap (i.e. the degree to which pedestrians would disobey the signal) would follow a log-normal distribution with a site specific mean value⁵. This increase in pedestrian adherence to the signal was attributed to the dispersion of the vehicle platoon which resulted in fewer gaps for the pedestrians to utilize when crossing the roadway.

MULTSIM was used to compare the network operation with and without the inclusion of the Pelican in the signal coordination. It was discovered that, as predicted, when the Pelican is coordinated with the vehicle signals, the pedestrian delay increases while the vehicle delay decreases. With coordination of the Pelican, the adherence of pedestrians to the indicated signal was higher than for uncoordinated. This was attributed to the fact that with coordination, the Pelican WALK interval coincided with the largest and maximum number of gaps in the traffic stream.

The MULTSIM model runs also yielded that if the Pelican is located more than 300 - 400 metres downstream from the vehicle signal there is little benefit to including the Pelican in the signal coordination. In Great Britain for distances greater than 300 - 400 metres, traffic is no longer adequately platooned to facilitate signal coordination. In other locales this distance is greater; in

Edmonton traffic signals have been effectively coordinated at distances in excess of 800 metres.

The observations that resulted from conducting a number of MULTSIM and TRANSY? runs included:

- vehicle travel time is linearly proportional to vehicle volume
- vehicle delay was the highest when the Pelican was double cycled with short pedestrian WALK intervals as opposed to single cycle with a double duration WALK interval.
- vehicle delay rises slowly in relation to pedestrian volume
- increasing the length of the pedestrian WALK interval produced only marginal reductions in the pedestrian delay
- for pedestrians, two short WALK intervals results in less delay than one long WALK interval.
- the crossing behaviour of pedestrians is more closely related to safety than to delay.
- the percentage of pedestrians crossing during the WALK interval increases as the vehicle volume increases.
- short Pelican cycle times results in higher pedestrian adherence to the signal
- in the MULTSIM program, pedestrian delays are highly dependent on the gap acceptance function used.
- if a Pelican is included in the signal coordination scheme, the vehicle delay decreases but the pedestrian delay increases.
- for a realistic estimation of the performance of the network, pedestrian delay should have a weighting of 3.0 relative to the vehicle delay.

the increase in vehicle delay caused by the introduction of a pedestrian crossing signal is outweighed by the decrease in the delay to pedestrians.

It should be noted that the above conclusions are based on a number of program runs and not on empirical data.

2.6 PEDESTRIAN ON-LINE OPERATION DETERMINATION

The City of Edmonton Transportation Department has established a set of guidelines to assist the transportation engineer in determining whether or not a pedestrian traffic signal should be included in the ATC^6 . The guidelines are based on empirical and theoretical methods. A total of five parameters are used in the evaluation:

- a) major road traffic volume;
- b) effectiveness of coordination of the pedestrian /bus-pedestrian signal and adjacent system signals;
- c) the arrival pattern of pedestrians or buses at the signal
- d) type of actuation, bus or pedestrian; and,
- e) route coordination: the conformity of the operating mode of the signals along the route.

The parameters are utilized to determine the "online/offline index" (OOI) which is a weighted average of the parameters as follows:

$$OOI = 2a + 3b + 2c + d + 3e$$

For each of the parameters an index is determined for use in the OOI.

2.6.1 Major Road Traffic Volume Index

The major road traffic volume index is determined using a probabilistic model based on the negative exponential headway distribution. Using the negative

exponential headway distribution a threshold volume is determined for the roadway which is in turn compared to the actual roadway volume to calculate the index.

The threshold volume has been defined as being the major street traffic volume that will cause pedestrians (or bus drivers) tolerate the additional delay imposed when waiting for a traffic signal. The determination of the threshold volume is based on the 85th percentile probability of a gap of a given size occurring.

2.6.2 Effectiveness of Coordination Index

This index is determined from the nomograph presented in the Manual of Uniform Traffic Control Devices for Canada. The value of the index is based on the distance between the signals, the signal cycle time and the operational speed of the roadway.

2.6.3 Arrival Pattern Index

The arrival pattern of the pedestrians and/or buses is used to calculate this index. Based on field counts, the actual number of signal activations per hour is determined. The ratio of actual activations to maximum number of activations is the arrival pattern index.

2.6.4 Bus/Pedestrian Index

This index is more subjective in nature and has been set as follows:

= -1 if ≥ 4 bus activations in the peak hour

- = 0 if < 4 bus activations in the peak hour
- = 1 if it is a pedestrian call

The values of the index indicate that the greatest weight is given to pedestrian activations
2.6.5 Route Coordination Index

The value of this index is -1 if the route is non-coordinated (adjacent signals are off-line) and +1 if the route is coordinated (adjacent signals are On-line).

2.6.6 Summary

The online/offline evaluation index as set out by the City of Edmonton is comprised of empirical and theoretical components as well as specific subjective cut-off points for certain indices. The index is an attempt to provide a quantifiable measure that can be used to determine the effectiveness of including the signal in the ATC. If the index is positive, the signal should be coordinated, negative and the signal should not be coordinated.

2.7 ISOLATED INTERSECTION PEDESTRIAN CALCULATIONS

Whenever the signal timing for a signalized intersection is being designed or analyzed, a key component is the pedestrian. It is critical that pedestrians be provided with sufficient time to cross the roadway(s) without compromising their safety. To this end the Canadian Capacity Guide for Signalized Intersections⁷ (CCGSI) and the Manual on Uniform Traffic Control Devices⁸ (MUTCD) provide detailed discussions of pedestrian walk intervals and clearance periods. The Highway Capacity Manual⁹ (HCM) does not provide a detailed discussion of pedestrian requirements for signalized intersections but instead provides methods for calculating pedestrian capacities for corner crosswalks and pedestrian walkways.

The minimum WALK interval is defined as "a minimum duration of a "walk" signal display during which the group of pedestrians who were waiting for this display can reach a reasonable distance in the crosswalk at a comfortable speed⁶." The clearance period is defined as "the time required for the pedestrian who entered the crosswalk at the very end of the walk interval to reach a safe refuge, either at the opposite sidewalk or the central island, at a comfortable speed before a conflicting vehicle green commences⁶."

The minimum walk interval suggested is 7 seconds^{6,7,8} to allow pedestrians to proceed into the crosswalk before the clearance interval begins. The seven second minimum is referred to indirectly in the HCM within the minimum green interval calculation for a specific phase. The MUTCD and CCGSI both refer to the minimum WALK interval directly and suggest that, if necessary, to accommodate the pedestrian demand, the WALK interval should be lengthened.

The pedestrian clearance interval is calculated by dividing the walk distance, i.e. the width of the crosswalk typically taken as face-of-curb to face-of-curb distance, by the average pedestrian walking speed, typically 1.2 metres/second. The clearance interval is indicated via the flashing DON'T WALK pedestrian signal.

Neither the CCGSI cr HCM provides for pedestrian delay calculation in its analysis of a signalized intersection. The HCM does provide an entire chapter that covers the basic principles of pedestrian flow as well as providing procedures for the analysis of pedestrian facilities. When determining the Level of Service (LOS) of a signalized intersection, however, no consideration is given to pedestrian delay.

The lack of consideration regarding pedestrians at signalized intersections is consistent with the philosophy behind the HCM and the CCGSI. The CCGSI is intended as a guide for design and analysis to determine the optimum signal timing plan based on minimizing the impact of the signal on vehicle traffic. The HCM is designed for use in signal analysis rather than design. Both publications offer the perspective of the motor vehicle only rather than that of the motor vehicle and pedestrian.

2.8 PEDESTRIAN DELAY AT SIGNALIZED INTERSECTIONS

2.8.1 Australia

Research in Australia has yielded formulae to calculate pedestrian delays, stops and queues based on the signal cycle and red interval. These formulae have been incorporated into the manual used in determining signal capacity and timing analysis for Australia¹⁰. They were derived based on the assumption that for pedestrian movements there would be no overflow queues and zero flow ratios. These assumptions are rationalized based on the fact that very rarely are pedestrians unable to cross due to high pedestrian volumes, i.e. pedestrians do not queue in the same manner as vehicles nor do they follow the same rules for queue discharge as do vehicles. The flow ratio, y, can be assumed to be zero because the pedestrian saturation flow rate is very high, particularly when compared to vehicle saturation flow rates.

The equation for average pedestrian delay is given as:

 $d = r^{2}/2c$ Eqn. 2.1 where: r = effective red interval (including clearance interval) in seconds c = cycle time in seconds

This is a direct derivation from the equation for average individual delay, as derived from queuing theory given (described for instance in Reference 14) as follows:

$$d = r^2/2c(1-y)$$
 Eqn. 2.2

Letting y approach zero in Eqn. 2.2 yields equation 2.1.

The equation for the number of pedestrians stopped at a traffic signal is given as:

$$H = qr/c$$
 Eqn. 2.3

where: q = pedestrian arrival rate

H = same units as q
 r = effective red interval (including clearance interval) in seconds
 c = cycle time in seconds

As well the equation for the number of queued pedestrians at the start of the WALK interval is given as:

N = qr Eqn. 2.4

where: q = pedestrian arrival rate in pedestrians per second

- r = effective red interval (including clearance interval) in seconds
- N = is the number of pedestrians

Equations 2.3 and 2.4 assumed that no pedestrians are stopped during the WALK interval, i.e. the pedestrian queues dissipate instantly and there is no overflow $queue^{10}$.

The above equations can be used for either design or analysis but it is implied that the primary focus is the motor vehicle and not the pedestrian.

2.8.2 Highway Capacity Manual

The HCM provides a chapter on the analysis of crosswalks at a street corner or for a walkway but not for mid-block crossings. The analysis provides estimates of the available pedestrian space and the pedestrian Level of Service (LOS). The signal timing plan, the pedestrian volumes and the corner geometrics are all used in the analysis. The analysis does not definitively determine pedestrian delay and or vehicle delay at the intersection, simultaneously.

2.9 TRANSPORTATION MODELS AND PEDESTRIANS

There are a number of different transportation progrmas being used to determine the optimum traffic signal settings for roadway networks. There is a hierarchy of models used in the determination and evaluation of signal timing plans. At a low level there are models that simulate the operation of single intersections as though they were isolated from all external influences while at the top level there are models that consider a network of traffic signals, determining the overall level of service of the network.

The network level models include such programs as NETSIM, TRANSYT, and CONTRAM. Each of these programs is discussed in the following sections.

2.9.1 NETSIM

NETSIM (<u>NETwork SI</u>mulation <u>Model</u>) is a model that is based on the microscopic simulation of individual vehicle trajectories as they move through a street network."¹¹ The model was designed to be able to test different traffic

control strategies under heavy traffic flow conditions. The model has been revised and updated since it was first released in 1980 and is now called TRAF-NETSIM. The revised version was unavailable at the time at which the research commenced.

NETSIM does have the capacity to model pedestrian phases for a signalized intersection but is not capable of simulating a mid-block pedestrian signal. The model uses a pedestrian actuation to override a specific vehicle phase. At a midblock signal there is no vehicle phase to override because there is only one vehicle phase which conflicts with the pedestrian phase.

NETSIM was used to analyze the effects of a mid-block pedestrian crossing by modifying the data input¹². Pedestrians were simulated as four foot long trucks travelling at four feet per second. Due to insufficient time and funding it was not possible for the researchers to perform a detailed analysis of the results. Based on initial results it was concluded that this methodology could be feasible. From an analytical standpoint, the modelling of pedestrians as short trucks is undesirable.

Subsequent to the research using pedestrians modelled as four-foot long trucks, the model was modified to accommodate pedestrian activations at a signalized intersection. With this modification an attempt was made to simulate a randomly activated mid-block pedestrian signal using NETSIM. The modification was, however, designed to accommodate pedestrian activations at a multiphase vehicle traffic signal rather than a single phase vehicle traffic signal such as a mid-block pedestrian crossing. Various methods of modifying the input data set were unsuccessfully used in an attempt to simulate a mid-block crossing.

2.9.2 TRANSYT

The TRANSYT (<u>TRA</u>ffic <u>Network StudY</u> <u>Tool</u>) model has two primary functions: to simulate the flow of traffic in a signalized network; and, to develop optimized traffic signal timing plans¹³. The model optimizes the traffic signal timings based on a specified base cycle time with the user specifying the phases and the phase sequence. The model does not make provisions for pedestrian crosswalks except for allowing an exclusive pedestrian phase for a four legged intersection, i.e. a scramble phase.

2.9.3 CONTRAM

The CONTRAM (<u>CON</u>tinuous <u>TR</u>affic <u>Assignment Model</u>) model is a "traffic assignment model for the use in the design of traffic management schemes"¹⁴. The model has been designed to account for the time-varying nature of (vehicle) traffic in a network and the model assigns traffic to the network in "packets" or groups of vehicles. The model focuses on the assessment of vehicle traffic operations and does not have any facility for the input of pedestrian volumes or pedestrian crosswalks.

2.9.4 Summary

The three traffic operations models discussed work from the same paradigm: optimize the operation of the signalized roadway networks to minimize the disutility to vehicles. This inherent bias towards vehicles makes these models unsuitable for the modelling of pedestrian signal operations, even if a methodology could be devised to allow the models to represent pedestrians.

2.10 COORDINATION

The HCM chapter on signalized intersections lists five arrival types for dominant arrival flow at an intersection approach. It also states that "this is a general categorization that attempts to approximately quantify the quality of progression on the approach"⁹. Alternatively stated it is an attempt to quantify the quality of the signal coordination.

The five arrival types are:

- <u>Type 1</u> This condition is defined as a dense platoon arriving at the intersection at the beginning of the red phase. This is the worst platoon condition.
- **Type 2** This condition may be a dense platoon arriving during the middle of the red phase or a dispersed platoon arriving throughout the red phase. Better than Type 1, this is still an unfavourable platoon condition.

- <u>Type 3</u> This condition represents totally random arrivals. This occurs when arrivals are widely dispersed throughout the red and green phases, and/or where the approach is totally uncoordinated with other signals - either because it is at an isolated location or because nearby signals operate on different cycle lengths. This is an average condition.
- <u>Type 4</u> This condition is defined as a dense platoon arriving during the middle of the green phase, or a dispersed platoon arriving throughout the green phase. This is a moderately favourable platoon condition.
- <u>Type 5</u> This condition is defined as a dense platoon arriving at the beginning of the green phase. It is the most favourable platoon condition.

The HCM has an empirical, but inexact, method of determining the arrival type. The manual recommends that the arrival type be determined as accurately as possible because it is used in the determination of level-of-service and delay estimation for an intersection.

Although the HCM chapter on signalized intersections is predominantly concerned with the analysis of the operation of single intersections, the use of the arrival types does acknowledge the impact of other traffic control devices on the intersection. In other words, the use of the five arrival 'types' is a concession to the impact of traffic signal coordination. These arrival types also indicate that traffic signal coordination is a desirable characteristic of a signalized roadway network.

2.11 SUMMARY

The discussions above illustrate the bias of existing traffic modelling programs towards the motor vehicle. Various manuals and guides include discussions regarding the impact of pedestrians on traffic signal timings, the capacity of walkways and the impact of traffic signals on pedestrians. An attempt was made in Utah to assess pedestrian crossing using existing models but the results of this research were not finalized¹². There are, however, no comprehensive methods or models by which to assess the impact of signalized pedestrian crosswalks on both pedestrians and vehicles.

The literature search was conducted using on-line search techniques that utilize computers to access large databases of engineering abstracts. In addition, the University of Alberta and Stanley Associates Engineering libraries were searched for relevant materials. Section 3.0 provides a detailed theoretical background to the work presented in this thesis. Specifically, it addresses the headway distribution that was used for vehicles and pedestrians, the type of delay presented, pedestrian behaviour and where the delay is accumulated

3.1 INTRODUCTION

In order to develop a realistic model, the situations to be modelled were clearly outlined in order to define which variables should be included in the model and which variables could be discounted. The data that was to be input into the model to ensure valid model output was also a key consideration. As part of this process three key theoretical model components were identified: Headway Distribution, Delay and Pedestrian Behaviour. These components are discussed in this section.

3.2 HEADWAY DISTRIBUTION

3.2.1 Probabilistic versus Deterministic Arrival Patterns

When attempting to describe (or model) vehicle behaviour at an intersection, it is useful to do so with a minimal quantity of field data. As a result, considerable research has been conducted into describing vehicle arrival patterns in terms of statistical distributions.

In a pure sense, vehicles arriving at an intersection will arrive in a random pattern (probabilistically) and as such can be described by a statistical distribution. If there is some type of traffic control device, upstream of the measurement location that impacts the vehicle arrival distribution, the arrival pattern can still be described by a statistical means but now has a deterministic component, i.e. cyclic flow profiles.

For the purposes of this exercise, the arrival pattern at the first signalized intersection is assumed to be random and at the pedestrian crossing and the second intersection, deterministic.

3.2.2 Types of Distributions

There are two basic types of statistical distributions used in transportation modelling: counting and interval. Counting distributions are used to describe the occurrence of things that can be counted, such as vehicles in a traffic stream. Interval distributions are used to describe the occurrence of the time intervals between events¹⁵.

To determine the vehicle arrival or headway distribution an interval distribution is used.

There are a number of different types of interval distributions that have been used in the past to represent traffic streams, including the negative exponential, the shifted negative exponential, the Erlang and the Hyperlang. Each of the distributions is briefly described below.

Negative Exponential Distribution

The negative exponential distribution is considered to be an "elementary" interval distribution that is derived directly from the Poisson Counting Distribution. The equation for the negative exponential distribution has the form:

$$P(h \ge t) = e^{-Vt/3600}$$

Where: $P(h \ge t)$ = the probability of a headway being greater than or equal to some time t

t = time in seconds
h = headway in seconds
V = hourly traffic volume

This equation can be simplified by substituting T = 3600/V, yielding:

$$P(h \ge t) = e^{-t/T}$$

The negative exponential function is illustrated in Figure 3.1 for various values of T.

FIGURE 3.1

NEGATIVE EXPONENTIAL FUNCTION

This equation is based on the assumption of conditions of random traffic flow implying that the volume is low. The negative exponential distribution includes very small headways, approaching t=0.

Because this distribution predicts very small headways, it is unsuitable for single lane approaches where finite vehicle length and finite vehicle spacing preclude headways of t=0. In cases of multiple lanes it is, however, possible to observe t=0 headways (i.e. the vehicles arrive simultaneously).

Shifted Negative Exponential Distribution

The shifted exponential distribution is almost identical to the negative exponential distribution except, as the name implies, that it is shifted to the right. The equation for this distribution is as follows:

$$P(h \ge t) = e^{-(t-\tau)/(T-\tau)}$$

Where: τ - minimum allowable headway (seconds) and for t < τ , P(h \ge t) = 1.0

The shifted negative exponential function is illustrated in Figure 3.2 for various values of T.

The advantage of the shifted negative exponential distribution is that it does not allow headways less than the minimum specified using τ . This minimum allowable headway is advantageous when modelling a single lane of traffic flow. In such cases the value of τ can be calculated by dividing 3600 (seconds per hour) by the measured value of the average saturation flow for the surveyed lane. This will yield a value of τ , the minimum headway, in seconds.

FIGURE 3.2

SHIFTED NEGATIVE EXPONENTIAL FUNCTION

Erlang Distribution

The Erlang distribution is also a distribution that is related to the generalized Poisson distribution in the same manner that the negative exponential distribution is related to the Poisson counting distribution. The Erlang distribution allows for small headways with a very low but not zero probability.

The Erlang distribution has the general form:

$$P(h \ge t) = \Sigma (kt/T)^i [(e^{-(kt)/T})/i!]$$

The graph of the Erlang Distribution is illustrated in Figure 3.3.

The Erlang distribution is particularly useful for multi-lane situations where small headways are possible. The difference between the Erlang and shifted negative exponential distribution is that the Erlang does not preclude small headways.

Hyperlang Distribution

The hyperlang (or hyper-Erlang) distribution is one of the family of models known as 'Composite Headway Models'. Composite headway models assume that any traffic stream is composed of two sub-sets of vehicles: one set free-flowing and the other set constrained by surrounding vehicles. This assumption in turn yields a model that is comprised of two components, one describing the portion of the vehicle stream that is unconstrained and the other component describing those vehicles that are constrained.

The two components of the hyperlang model are the shifted negative exponential function and the Erlang function. The shifted negative exponential function is used to describe the behaviour of the unconstrained or free flowing vehicles and the Erlang function is used to describe the headways for the constrained vehicles. The Erlang function is used for the constrained vehicles because the constrained vehicles arrive in a non-random pattern which is easily simulated using the Erlang function.

A numerical example of the hyperlang function worked out by Dawson et al¹⁶, using data from the 1965 Highway Capacity Manual is illustrated in Figure 3.4.

Erlang Distribution Taken from Traffic Flow Theory

-1GURE 3.3

ERLANG DISTRIBUTION

Hyperlang Headway Distributions 1965 Highway Capacity Manual Data

FIGURE 3.4

•

HYPERLANG DISTRIBUTION

The hyperlang function has the form:

$$P(h \ge t) = \alpha_1 e^{-(t-\tau)/(T-\tau)} + \alpha_2 \Sigma (kt/T)^i [(e^{-(kt)/T})/i!]$$

where: α_1 = proportion of free flowing vehicles in the traffic stream

 $\alpha_2 = (1-\alpha_1)$, the proportion of constrained vehicles in the traffic stream

The hyperlang distribution shows a good correspondence to actual headway distributions as measured in the field.

Summary

As illustrated by the discussion, there are a number of statistical distributions that can be used to describe traffic flow headways. Each distribution has advantages and disadvantages. The exponential functions require minimal input data and computation while providing adequate correspondence to observed data, particularly for low volume situations. Conversely, the Erlang and hyperlang distributions require more input data and computational effort but provide a better correspondence to observed data, over a wider range of traffic volumes.

The shifted negative exponential function is suitable for modelling headway distributions when the objective is to determine delay. If the objective of the model is to determine gaps for the purposes of gap acceptance/rejection by pedestrians wishing to cross the traffic stream then a more accurate distribution such as the hyperlang distribution should be used¹⁶.

3.3 DELAY

3.3.1 Uniform and Overflow Delay

According to the Canadian Capacity Guide for Signalized Intersections⁷, delay for individual lanes and for the overall intersection represents the most powerful means of evaluating intersection performance and provides a method of comparing intersection operations. There are two principal types of delay: Uniform Delay and Overflow Delay. Uniform delay is the delay caused by the interruption of traffic flow by a traffic signal and is a function of the Volume to Capacity ratio (V/C) and the signal cycle time. Overflow delay, as its name implies, is the delay caused when all of the queued vehicles are not able to discharge within one signal cycle.

Overflow delay is dependent on the magnitude of the V/C ratio. When the traffic volume is low, overflow delay will occur randomly, but if the volume is high (relative to the capacity) the overflow delay will be continuous, forming a significant component of the total delay. As illustrated in Figure 3.5, for low V/C ratios, (less than 0.80) the overflow delay comprises less than 20 percent of the total delay, but as the V/C ratio increases over 0.80, its percentage of the total delay increases rapidly.

In conditions where the network is saturated or over-saturated it is not possible to have coordination because the vehicle queues are growing. All of the queued vehicles are unable to discharge during a given cycle and therefore coordination is not achieved.

3.3.2 Delay Measurement

There are a number of ways in which it is possible to measure delay including: a Time-Space Diagram and a Queuing Diagram. The Time-Space Diagram method utilizes electronic means to record the arrival and departure times of vehicles at a signal. The Queuing Diagram method utilizes field counts of queues at a signal. For the queue count there are a number of different methods in which different points within the signal cycle are used for counting the queued vehicles.

THESDELAY.WKQ

FIGURE 3.5

OVERFLOW DELAY AND V/C RATIOS

When using delay as an evaluation tool, it is difficult to determine in the field. Teply¹⁷ has shown that the usual delay surveys underestimate delay and that different delay survey methods based on queue counts do not yield identical results because of the different assumptions in the application of queuing theory. In addition, Teply has shown that delay surveys based on stopped queue counts may overestimate stopped delay to the point of exceeding overall delay values. He has concluded that delay is a valid engineering tool provided that it is properly calculated and that the limitations of a particular survey/analytical method are acknowledged.

Teply developed two equations that may be used to relate stopped delay to overall delay. The first equation is based on the duration of the red interval and on deceleration delay.

$$D/D_s = r^2/(r-t_d)^2$$
 Equation 3.1

where: D = overall delay

D_s = stopped delay
r = duration of red interval (seconds)
t_d = deceleration delay (seconds)

The second equation is based on the arrival rate and saturation flow rate as given below in Equation 3.2:

$$D/D_c = 1/(1-y^2)$$
 Equation 3.2

where: D = overall delay

 D_c = calculated delay

y = q/s

As pointed out by Teply, equations 3.1 and 3.2 represent extreme cases and in most cases the ratio of overall delay to stopped delay is dependent on the red interval as well as on the arrival and saturation flows.

3.4 PEDESTRIAN BEHAVIOUR

Pedestrian behaviour is difficult to accurately predict and therefore difficult to model. Pedestrian behaviour can vary according to age group, traffic volume, location and many other factors. General observations can be made regarding specific groups of pedestrians but for specific modelling purposes it is necessary to collect field data.

A number of different pedestrian characteristics are discussed below.

3.4.1 Signal Obeyance

The degree to which pedestrians obey traffic signals is dependant on a number of factors including pedestrian age, roadway traffic volume, climate and roadway width. Very young pedestrians, i.e. under 10 years old or older pedestrians (above 55 years) generally tend to strictly obey traffic signals. Young pedestrians obey the signals because of ingrained concepts regarding traffic and traffic signals as taught by parents. Older pedestrians obey the signals for a number of reasons including not being able to walk as quickly as they once did.

Roadway traffic volume plays a key role in the degree to which pedestrians obey the traffic signal¹. If, for example, traffic volumes are heavy there will be few gap opportunities, outside of those created by the signal, for pedestrians to utilize. Conversely, if traffic volumes are low, the frequency of acceptable gaps will increase, thereby allowing pedestrians to cross, regardless of the signal indication.

A related consideration is the degree of platooning of the traffic. If the traffic volume is high and is well platooned, acceptable gaps may be present between platoons thereby allowing pedestrians to cross. Conversely, traffic volume could be low and the platoons highly dispersed thereby eliminating most of the acceptable gaps. Therefore, when attempting to ascertain in advance the degree to which pedestrians will obey traffic signals, it is important not only to consider traffic volume but also platooning.

3.4.2 Signal Activation

In the case of activated pedestrian signals, it is the responsibility of the pedestrian to activate the signal. Griffiths et al. found that at some locations the percentage of pedestrians activating the signal was as low as 50 percent¹. It was discovered that the percentage of activations correlated to the vehicle volume and the degree to which the vehicles were platooned. If the volume was low or if the vehicles were platooned pedestrians would cross against the signal without activating it.

Upon arrival at the crosswalk, pedestrians would first evaluate the vehicle traffic stream to determine the need for activating the signal. If the pedestrian judged that it was possible to cross without the assistance of the signal then the pedestrian would not activate the signal and proceed to wait for an acceptable gap. Subsequent pedestrian arrivals would only activate the signal if they themselves were delayed⁶. The activation of the pedestrian signal is a subjective decision on the part of the pedestrian.

3.4.3 Grouping

Another important facet of pedestrian behaviour is the grouping of pedestrian arrivals. It was observed that pedestrians travel in groups ranging in size from 1 to 5 people (typically). Since pedestrians arrive in groups there will be only one signal activation per group of pedestrians and all pedestrians in the group will experience the same delay. In addition, pedestrians may arrive singly forming a group or queue at the signal with all pedestrians utilizing the same WALK interval, in which case the magnitude of delay will depend on the arrival time.

3.4.4 Climate/Weather

When considering the behaviour of pedestrians it is important to consider the climate in which pedestrians must wait for a WALK phase. When the weather is inclement, pedestrians are unwilling to wait too long at a crosswalk. Vehicle drivers and passengers are protected from the elements and are therefore not as effected by the climate as are pedestrians. While the relative exposure to the elements is a subjective measurement, it is nonetheless an important consideration when assessing the behaviour of pedestrians, particularly over the

course of a one year period or when observing differences from one location to another.

3.4.5 Delay

Pedestrians appear to be more sensitive to delay than are auto drivers. If an auto driver is frustrated with an imposed delay the drivers only recourse would be to divert to another, less delayed, route. Attempting to advance through a red signal is not usually a viable option for automobiles. Contrary to that, pedestrians, in North America, that experience what is perceived to be unacceptable delay, can and will cross against the traffic signal forcing vehicle traffic to yield the right-ofway.

It may be illegal for the pedestrian to cross the street against the signal, but if an opportunity is presented, the pedestrian may cross, particularly if they have been waiting too long for the signal to change. Pedestrian violations are more prevalent at mid-block pedestrian signals when compared to signalized intersections. At a mid-block location the pedestrian need only contend with two directional traffic flow whereas at a signalized intersection multi-directional traffic flows must be considered.

Research conducted in Britain has examined the impacts of a pedestrian crosswalk with a single cycle with, for example, a 20 second WALK interval, as opposed to two cycles each with a 10 second WALK interval⁷. The results indicated that the pedestrian adherence to the signal would be much higher for the double cycled signal. This is intuitively logical between with the double cycled signal pedestrians are presented with twice as many opportunities to cross with half of the delay of the single cycled crosswalk. For estimations, unlike vehicles, discharge simultaneously and are therefore relatively unaffected by the length of the WALK interval. For this reason, a 20 second WALK interval does not discharge twice as many pedestrians as a 10 second WALK interval, unless the pedestrian volume is very heavy.

3.4.6 Geometrics

Roadway geometrics influence pedestrian behaviour in terms of risk taking when crossing against the signal. When a roadway is wide, (i.e. greater than four lanes) and there is no median, pedestrians will be less likely to cross against the signal because of the greater exposure to vehicle traffic. If, however, there is a median refuge, the effective width of the roadway is reduced. Pedestrians will only have to search for appropriate gaps in a one-way flow of traffic as opposed to a twoway flow.

Similarly if the roadway is narrow, i.e. less than four lanes, then pedestrians will require less time to cross the roadway and hence require smaller gaps in order to cross.

3.4.7 Summary

In summary the behaviour of pedestrians is influenced by a number of distinct yet interrelated factors. For example, the degree to which pedestrians adhere to the traffic signal depends on the traffic volume, the climate and their perceived delay. The assessment of the impact of each of these factors is primarily qualitative with very few quantitative measures. Considerable research could be undertaken on each of the above factors.

4.0 SYSTEM PRINCIPLES

Section 4.0 provides background on the operation and design of a traffic signal system.

4.1 INTRODUCTION

In an urban setting, it is often necessary to install traffic control devices to provide motorists with a clear understanding of the operation of the roadway. The primary emphasis of traffic control devices is to maintain the safety of the public, with the secondary objective of minimizing travel time and delay.

The operating rule at intersections without any traffic control devices is the "righthand rule" which states that if two vehicles approach an intersection (at right angles) simultaneously, the vehicle to the drivers right has the right-of-way. There are, however, many instances when this rule is difficult or impractical to implement.

At a location where a major street intersects with a minor street it is not logical to keep the right-hand rule and therefore a STOP or YIELD sign is installed for the minor street. This allows the traffic on the major street to flow freely and allows the minor street traffic to cross when a sufficient gap in the major street traffic occurs.

In the case where two major streets intersect, it is not sufficient or practical to install a STOP or YIELD sign. If such a traffic control device were to be installed, the "minor" street traffic would experience significant delay and long queues of traffic would form. Consequently, the intersection is signalized.

A traffic signal serves to allocate predetermined quantities of time to the movement of traffic in a particular direction(s). The traffic signal separates vehicles temporally rather than spatially (i.e. a grade separation). Once this temporal separation has been implemented for a single intersection it is often necessary to accomplish this same task for a number of intersections, particularly in an urban situation.

When there are a number of consecutive, relatively closely spaced signalized intersections, it is often necessary to coordinate the signals. In a coordinated system of traffic signals, a vehicle travelling along a particular corridor will be able to pass through a series of signals with little or no delay. This implies then, that the signal indication in the direction of travel will be green when the vehicle arrives at the intersection.

To more fully understand the concept of signal coordination two other concepts must first be developed, as below.

4.2 VEHICLE TRAJECTORIES

One of the key tools used in signal coordination is the Time-Space Diagram (TSD) which is used to plot vehicle trajectories. The trajectory of a vehicle through time and space (distance) can be plotted on a graph to provide a visual representation of the operational parameters of a motor vehicle within the roadway network. Figure 4.1 illustrates three TSDs each showing a different level of coordination.

The speed of vehicles can be determined since both the travel distance and the travel time are known for each vehicle. The degree to which the vehicles are platooned can be determined by observing how closely grouped the plot of the trajectories is. For example, in the vehicles are platooned, the plotted lines will all be grouped together on the TSD, whereas if the vehicles are arriving in a random pattern the plotted lines will also occur randomly.

Conversely, if the free flow travel speed and the distances are known, the TSD can be derived synthetically using either random or deterministic vehicle arrival patterns.

4.3 SIGNAL TIMINGS

An integral component of signalizing an intersection is the determination of the traffic signal timings. The signal design consists of three principal components: Phasing, Cycle Time, and Green Allocation.

COORDINATION TIME-SPACE DIAGRAMS

The first step when designing a signal is to determine the "cycle structure, i.e. the grouping of intersection movements into phases and the sequence of the phases"7. Once the cycle structure has been determined, it is necessary to ascertain the cycle time, i.e. the time from the beginning of one green interval to the beginning of the next green interval for any one specific movement. The cycle time is determined by examining the vehicle and pedestrian requirements. Typically a cycle time that minimizes total intersection delay for the vehicle traffic is determined first. Once this cycle time has been determined the minimum cycle time for pedestrians is determined. The minimum pedestrian cycle time is the sum of the longest walk and clearance periods for each phase. The pedestrian cycle time typically governs in cases where the roadways are quite wide, thereby requiring lengthy pedestrian clearance intervals. The longer of the two cycle times is selected as the base cycle time for the intersection.

Once the cycle structure and the cycle time have been determined, the next task is to allocate the green time to each phase. There are a number of methodologies that can be used to allocate the green time including:

- "proportioning volume/saturation flow rates
- balancing or weighing the probabilities of clearance
- delay minimization
- congestion management¹"

4.4 SIGNAL COORDINATION

There are two basic types of traffic signal coordination: linear (a system with open ends) and network (a system of closed loops). Linear coordination is the simplest form of traffic signal coordination that requires traffic signals along a linear corridor to be coordinated. Network signal coordination involves the coordination of traffic signals in a network that do not necessarily lie along a linear corridor. Linear coordination may form a component of the network coordination. Any one or combination of the following objectives are utilized when designing signal coordination:

- minimize the number of stops;
- minimize the delays;
- minimize the travel time;
- maximize throughput of specific intersection approaches; and,
- control queues at specific locations.

Although some of these objectives conflict, it is important to be aware of all of the objectives when designing the signal coordination.

There are three principal methods by which traffic signals are coordinated: throughbands, greenbands and cyclic flow profiles.

Throughbands are developed using Time-Space Diagrams and they indicate the trajectories of vehicles passing unimpeded through a series of traffic signais. The bounds of the throughband are delineated by straight lines based on a constant operating design speed. Teply and Hunt¹⁸ have shown that the use of throughbands can be misleading and often does not yield the optimal design.

Greenbands are similar to throughbands in that greenbands are maximized between adjacent pairs of signals. The emphasis is on pairs of signals rather than a series of signals. The main difference between throughbands and greenbands is that the greenband technique makes allowances for the discharge of queued vehicles when determining the signal offsets. This difference is illustrated in Figure 4.2.

The cyclic flow profile (CFP) technique is used by the TRANSYT¹³ computer program to optimize traffic signal timings. The CFP indicates the average patterns of arrival and discharge rates that occur at the signal stopline over a complete signal cycle. The CFP method is a numerically intensive and complex technique that is particularly suitable for complex roadway networks.

The objective is, therefore, to align the green intervals with the vehicle arrivals as best as possible. Figures 4.1a - 4.1c illustrate examples of poor, fair and excellent signal coordination, respectively. Each time that a portion of the vehicle trajectory is represented with a vertical line, the vehicle is stopped and hence delayed.

Complications do arise even when attempting to coordinate a linear set of traffic signals. Specifically, when there are vehicles entering into the corridor at intermediate points such as site accesses or parking lots or if there is a significant number of vehicles turning onto the corridor from side streets the coordination is complicated because of the on-turning vehicles queuing at the downstream signal. Figure 4.3 illustrates the problem more clearly.

The on-turning vehicles form queues at the downstream signal which will impede the progress of the mainstream vehicles unless the queues have been dispersed before the first mainstream vehicle arrives at the signal.

The signal coordination illustrated in Figures 4.1 and 4.3 are simplified cases in which the roadway is assumed to have one-way traffic flow. In cases where there is two-way traffic flow it becomes more difficult to coordinate the signals for both directions of travel. For two-directional flow, the signals are usually coordinated in the direction that experiences the highest traffic volumes during the design period.

4.5 ARRIVAL DISTRIBUTION

The arrival pattern of vehicles at an intersection also impacts whether or not the signal is suitable for coordination with an upstream signal. Figure 4.4 illustrates two types of vehicle inflow distributions. In the case where the major flow is significantly larger than the two minor inflows, (Figure 4.4a) it is possible and desirable to coordinate the signal with the upstream signal such that the major flow of traffic will arrive at the intersection during the green interval. Where the inflow and "major" flow volumes are all approximately equal (Figure 4.4b), there is little benefit in coordinating the signal with an upstream signal.

FIGURE 4.3

COORDINATION TSDS WITH SIDESTREET TRAFFIC

(b)

FIGURE 4.4

VEHICLE INFLOW DISTRIBUTIONS

The signal should, however, be coordinated with a downstream signal because the signal can be used to create a cyclic flow profile as illustrated in Figure 4.4a. One of the benefits of a signal is that it can form desirable cyclic flow profiles that will facilitate signal coordination. However, if there are major sources of inflowing traffic downstream of the signal, then the cyclic flow profile will resemble that of Figure 4.4b and no positive results will arise from coordination.

4.6 SUMMARY

As illustrated by the above discussion the design of an effective and efficient traffic signal system is a complex task. There are a number of tools available to the transportation engineer to assist in the design task, but as noted in Chapter 2, none of them adequately address the role of the pedestrian within the system.

5.0 COMPUTER MODEL

Section 5.0 describes the structure, assumptions, input and output of the model.

5.1 INTRODUCTION

The PEDXING computer model was developed on an IBM PC-AT clone running at 10 Mhz with a 40 MB hard drive. The program can be run on slower machines without a hard drive but it is not recommended due to the significant performance penalties caused by the lack of a hard drive.

The software that was used to develop the program was Microsoft FORTRAN 4.1.

The program was designed to maximize flexibility for modelling a variety of geometric and operational conditions. The program models a network that consists of a single "representative" lane that passes through two traffic signals and a signalized pedestrian crosswalk. The model allows for different cycle times for each set of signals and the user specifies the signal offset for the second intersection signal relative to the first intersection signal.

5.2 OVERALL PROGRAM STRUCTURE

The model was developed incrementally in order to minimize the possibility of software bugs propagating through the program and to simplify program debugging. The model consists of a total of eight distinct modules of which one is a sub-routine. Figure 5.1 illustrates the general flow chart for the program. The first module opens up the input and output files, reads in and checks the input data and writes the input data to the output file.

GENERAL PROGRAM FLOW CHART continued

The second module generates the vehicle arrival times and passes them through Intersection #1. This second module calculates the uniform delay caused by the traffic signal and stores the vehicle arrival and departure times and vehicle delay in an array. On-turning traffic is introduced into the network during the red interval. There are no delay calculations for the on-turning traffic at the first intersection. The data for both the through and on-turning traffic is written to the output file.

The third module generates the pedestrian arrival times and stores them in an array.

Module 4 takes the pedestrian arrival times from module 3 and processes them through the pedestrian crossing. In this module, checks are made to see if the pedestrian WALK signal is active and if so, allows pedestrians to cross. All of the pedestrians that are queued at the signal are discharged simultaneously and the delay associated with each pedestrian is calculated and written to the output file. If the user has specified that the pedestrian signal is not coordinated with the upand downstream signals, then the pedestrian WALK interval can occur when the signal is activated and if the minimum vehicle green interval has been exceeded. If the pedestrian signal is coordinated then the pedestrian signal is only activated at specific times when coordination is facilitated. The pedestrians are constantly arriving and queued during the pedestrian DONT WALK period which includes the pedestrian clearance period. This module writes to the output file and stores in an array the time of the beginning of each vehicle red interval for use in the next module.

In module 5, the vehicles discharged from the upstream signal are processed through the pedestrian crossing. The vehicle arrival times are calculated by adding the vehicle travel time (from Intersection #1 to the crosswalk) to the departure time from Intersection #1. The model checks when the vehicle red intervals occur (from module four) and queues the vehicles accordingly. The individual vehicle delays are calculated and the vehicle arrival and departure times are stored in an array with the vehicle data from Intersection #1 as well as written to the output file. The average vehicle delay caused by the crosswalk and the total average delay is calculated and written to the output file. The sixth module is similar to the first module except that the results of the fifth module are used to determine the arrival and discharge times of the vehicles at Intersection #2. As before, the vehicle arrival times are calculated by adding the vehicle travel time (from the pedestrian crosswalk to Intersection #2) to the departure times from the pedestrian crosswalk. The current signal phase is checked and vehicles are processed accordingly. During the red interval the vehicles are queued for discharge during the next green interval. The average vehicle delay is calculated for the signal and for the overall system and is written to the output file. The arrival and discharge times are also stored in an array with the data from the previous modules.

The seventh module takes the vehicle arrival and discharge times determined in the previous modules and prints out a plot of vehicle arrival and discharge times for a time-space diagram (TSD). The size of the plot is determined by the user specifying the first and last vehicle to be plotted. The vehicle number is plotted to facilitate the matching of points when drawing the lines in for the TSD.

The eighth module is a subroutine used to generate random numbers for use in generating vehicle and pedestrian arrival times.

Each of these modules is a distinct element within the program. There is some repetition of source code that may allow for the creation of subroutines at some future point.

5.3 PREVIOUS MODELS

The PEDXING model was developed from a single intersection model originally developed by Chuan Kua. Mr. Kua's model considered a single isolated intersection and was used to determine the average delay incurred as a result of the operation of an oversaturated signalized intersection. The single intersection model most closely resembles modules two and seven of the PEDXING program. Nonetheless, the single intersection model has been modified to accommodate the requirements of the PEDXING model. Specifically, the algorithm's used to check for the green interval, and to determine if the vehicle is allowed to discharge have been changed. In addition, a different pseudo-random number generator was used in the PEDXING program. Mr. Kua's program allowed for over-saturated conditions which are not allowed in the PEDXING model.

A shifted negative exponential distribution was used for the arrivals in both models.

5.4 MODEL ASSUMPTIONS

5.4.1 Introduction

With any computer program that attempts to simulate a real world situation, certain assumptions are intrinsic to the proper functioning of the model. It is crucial that the user clearly understands all of these assumptions before utilizing the model and particularly before applying the results of the model.

5.4.2 V/C Ratio

One of the key assumptions within the model is that the model is designed to work only for main street Volume to Capacity (V/C) ratios of less than 0.80. If the roadway network has volumes that exceed this V/C ratio, the output is not reliable. The model considers each intersection (and the pedestrian crossing) in isolation, thereby ignoring any overflow queues that may form as well as any impact of spillback on the upstream intersection. When the V/C ratio exceeds 0.80, there are periods when overflow queues form and the effects of queue spillback are not negligible.

Before using the PEDXING model it is suggested that the V/C ratio be determined by including both the main street and on-turning traffic in the calculations.

5.4.3 On-Turning Traffic

The model assumes that the on-turning traffic arrives at a uniform rate and that it discharges only during the main street red interval. For this reason it is suggested that the on-turning traffic volume be counted at a point downstream of, but near to, the first intersection. The volume of on-turning traffic may include left and right turning traffic coming from a sidestreet or traffic generated by a parking facility. It is important to select a location for the count such that all of the onturning traffic is included.

5.4.4 Legal Requirements

The operation of the signals within the model assumes that there is no amber overrun by vehicles and that both pedestrians and vehicles strictly obey the traffic laws. Based on field observations of traffic and pedestrian behaviour, either the input or the output from the model may have be adjusted to reflect field conditions. If there is significant amber overrun then it may be necessary to input a green interval of actual green plus one or two seconds, depending on the degree to which amber overrun occurs.

5.4.5 Pedestrian Crosswalk

The pedestrian crossing signal operates based on pedestrians pressing the call button to activate the crosswalk signal. Until such time as a call is entered the signal will remain green for the vehicles. When a pedestrian enters a CALL, the model checks to see if the minimum vehicle green interval has passed. If the minimum vehicle green has been exceeded then when the CALL is entered the signal changes and the pedestrian crosses without any delay. If the minimum vehicle green has not been exceeded then the pedestrian must wait until the minimum vehicle green has passed before crossing. If the user has specified that the pedestrian signal is coordinated with the other signals then when a CALL is entered, the model will check to see if a coordination window is available. Until a window is available, the pedestrian signal will remain at DONT WALK.

5.4.6 Vehicle Headways

The minimum vehicle headway used by the model is 2.0 seconds. The model uses a shifted negative exponential distribution to determine the vehicle headways, with the shift being 2.0 seconds. This minimum headway implicitly assumes a maximum saturation flow rate of 1800 vphg/lane and only one lane for analysis. If a multi-lane scenario is to be modelled then an unshifted negative exponential distribution should be used.

5.4.7 Pedestrian Headways

There is no minimum pedestrian headway because typically pedestrians have a virtually unlimited discharge rate, i.e. when the WALK signal is displayed all of the pedestrians discharge within one or two seconds, unless the queue is very large. Pedestrians can arrive in groups of more than one therefore the headway distribution is determined using a negative exponential distribution.

5.4.8 Vehicle Operation

The operational characteristics of vehicles in the system are a key element of the model. The model assumes that vehicles travel at a constant speed and that they accelerate and decelerate instantaneously. Similar to other traffic models, the PEDXING program does not consider the length of the vehicle queue such that vehicles are stacked rather than queued. Due to this representation, the model calculates overall delay rather than the stopped delay.

5.5 DETAILED MODEL DESCRIPTION

5.5.1 Introduction

To facilitate future modifications to the program source code, a more detailed description of the program is presented. A complete listing of the program is listed in Appendix A.

5.5.2 Random Number Generator

The random number generator is actually a pseudo-random number generator. If the same seed number is used for each run then the same random numbers are generated. The random number generator was obtained from "FORTRAN 77 for Humans" Third Edition written by R. Page et al¹⁹.

The random number generator returns to the calling program a value ranging from 0 to 1. There are three variables within the random number generator that are stored after each call to the subroutine for use during the next call to the subroutine. The seed number is utilized for only the first call to the subroutine. Subsequent calls to the random number generator do not require the seed number since the subroutine uses previously stored values of its internal variables to calculate the next random number.

The random number generator uses large double precision numbers in its calculations. The procedure for calculating a pseudo-random number is relatively standardized, with variations between methods resulting from the magnitude of the number used and the functions used to calculate terms within the algorithm. It has been found that the larger and the more precise that the numbers used in the calculations are in calculating the "random" numbers, the closer the numbers will be to be truly "random". Double precision variables contain more than twice the number of digits allowed in REAL numbers and consequently do not suffer from problems due to numeric truncation and rounding found with very large REAL variables.

5.5.3 Vehicle Headway Distribution

There are a number of headway distributions that can be used to describe the arrival patterns of vehicles. The shifted negative exponential distribution was selected for this model because it is a relatively simple model that produces satisfactory results (Refer to Section 3.2.2 for further details).

In the case of the PEDXING model, the shifted exponential distribution for headways has the form:

Strictly speaking the equation should be of the form:

```
Headway = 2 - ((Avg Headway -2)* LN(1 - Random Number))
```

This equation produces a large number of very small headways. Therefore the equation was modified slightly to produce larger headways. In addition a scale factor was applied to the Random Number such that the average of the headways that are produced equals the requisite 3600/Volume²⁰. The arrival headway graphs in Section 8 illustrate that the modified equation yielded acceptable results.

If the model were to consider multi-lane roadway configurations, it would be possible to observe headways across both lanes equal to zero seconds. To accommodate headways of less than two seconds the above equation would require that the 2 be replaced with the appropriate minimum headway. Similarly if the saturation flow rate exceeds 1,800 vehicles per hour of green, the value of τ would have to be adjusted.

G.F. Newell has shown that "delays are relatively insensitive to the form of the distribution of the arriving traffic. Thus, if the objective is simply the computation of delays, the simplest (i.e., the negative exponential) distribution should be used.^{*21} Therefore the use of the shifted negative exponential distribution is suitable for the determination of delay.

5.5.4 Pedestrian Headway Distribution

The pedestrian headway distribution used in the model is a negative exponential distribution. No shift was required because it is possible for a number of pedestrians to arrive and discharge simultaneously. It was assumed that the pedestrians arrive in a random manner and the function describing the arrival pattern has the form:

It should be noted that the pedestrian arrival headway function does allow for multiple simultaneous arrivals. The difficulty is that the function typically does not have more than two (2) pedestrians arriving simultaneously. At locations where pedestrian grouping is not prevalent, the function will suffice.

At locations where pedestrian grouping is prevalent it may be necessary to either modify the function describing the arrival pattern or to adjust the model input to account for the grouping.

5.5.5 On-Turn Vehicle Headways

To provide a more realistic model, on-turning traffic from side streets was incorporated. The model assumes a fixed arrival pattern and fixed arrival rate.

The user inputs the volume of the on-turning traffic, upstream of the pedestrian crossing. The model calculates the average vehicle headway as follows:

On-Turn Headway = ((3600/Cycle Time) * Vehicle Red Interval) / On-Turn Volume

The On-Turn headway is equal to the number of signal cycles per hour multiplied by the duration of the red interval for the main street traffic (i.e., total quartity of green interval time per hour for the side-street traffic) and divided by the on-turn volume.

The model assumes that there are no side-street vehicles turning on to the main roadway during the side-street red interval.

5.5.6 Operation of Vehicle Signal

The second module of the program, the operation of the vehicle traffic signal, is described in detail below. The detailed program flow chart, listed in Appendix B, and the detailed program source code, listed in Appendix A, may be referred to as needed.

The model calculates the average through traffic headway by: 3600/Through Traffic Hourly Volume; and the average on-turn headway as described in Section 5.5.5. The random number generator is initialized using the seed number so that subsequent calls to the random number generator do not require passing of a seed number (see discussion of the random number generator).

The vehicle counter is incremented and a random number is generated which is in turn used to generate a vehicle headway. The arrival time of the next vehicle is calculated by adding the headway interval to the previous vehicle arrival time. The time clock is incremented by one second. Two separate time checks are calculated: is the vehicle arrival time less than the duration of the simulation, and, is the clock time less than the simulation time. If both conditions are true then the model continues processing, otherwise the program continues to the next modulc Next, the model determines the integer value of the cycle number that is current (i.e. the first, fifth, twentieth cycle, etc.). Then it is necessary to determine how far into the cycle the clock is and subsequently which interval the cycle is at. If cycle is in the red interval (for the main street traffic) then discharge the sidestreet traffic. If the signal is green then check if the clock is greater than the vehicle arrival time. If the clock is less than the vehicle arrival time then the vehicle has not yet arrived at the signal and the program loops back to increment the time clock until the clock time is greater than or equal to the vehicle arrival time.

Once the clock is greater than the vehicle arrival time the program checks if the current vehicle may discharge. A DO loop creates a variable that adds a specific amount of time to the clock time to determine the vehicle discharge time. The variable is added to the clock time and the time at which the previous vehicle discharged is subtracted from the sum. If the remainder is greater than or equal to the Saturation Flow headway then the vehicle is allowed to discharge. If the remainder is less than the saturation flow headway then the vehicle will join the queue and the clock will be incremented.

When it has been determined that the vehicle may discharge the program checks for vehicle delay by subtracting the previous discharge time from the clock time to check if the remainder is greater than the saturation flow headway. If the condition is TRUE then the vehicle is assumed to be undelayed by the intersection.

The model stores the vehicle arrival and discharge times as well as the delay time in an array for use in subsequent modules of the program.

Once a vehicle has been discharged, the program loops back to increment the vehicle counter and begins the checking processes and discharge process again.

5.5.7 Operation of the Pedestrian Signal

The operation of the pedestrian signal is accommodated in modules 4 and 5 of the program. These two modules are described below.

The pedestrian arrival times that were generated in module 3 are used in module 4. The model initializes a number of variables including timers to check the phase durations throughout the operation of the signal. The pedestrian counter is incremented and the appropriate arrival time is obtained from the array. The model then checks to see if the WALK signal is activated and checks if the pedestrian arrival time is less than or equal to the clock time. If the WALK signal is active and the arrival time is less than the clock time the pedestrian is discharged and the program loops back to obtain the next pedestrian.

If the WALK signal is not active and the vehicle signal is green then the model sets up a loop for a signal timer to run the signal through each phase. The model then checks if the pedestrian counter is greater than the pedestrian volume or if the clock time is greater than the duration of the simulation. If either condition is true then the program proceeds to the next module. If the condition is not true and if the pedestrian arrival time is less than the clock time then a CALL is sent to the pedestrian signal.

If the pedestrian signal is not coordinated with the other signals the model checks to see that the minimum vehicle green has been met and that a CALL has been entered. If each condition is met, the WALK indication is provided and the pedestrians may discharge. If the conditions are not met the model loops back to increment the appropriate timers until the conditions are met.

If the signal is coordinated then the model checks to see if a coordination window is available. If a window is available then the WALK indication is provided and pedestrians discharged. If no window is available then the timers and clock are incremented until such time that a window is available.

The program checks at various points in the loop when the WALK phase is to be terminated, when the clearance phase is to be terminated and if the minimum vehicle green interval has been reached.

When all of the pedestrians have been discharged through the pedestrian crossing (for the entire duration of the simulation), the model proceeds to the next module in which the vehicles are processed through the pedestrian traffic signal. The processing of vehicles through the pedestrian signal is similar to that of the full intersections except that instead of having a fixed-time signal, the signal activations are random. The program begins by initializing a number of variables including the vehicle counter. The vehicle counter is incremented and the first vehicle is obtained from the array. The travel time from intersection #1 to the pedestrian crossing is added to the discharge time to obtain the arrival time at the mid-block crossing. The clock is incremented and checked to see if the clock time is greater than the simulation duration.

Then the model checks to determine if the vehicle signal is red or green. If the signal is green then the vehicle is discharged. If the signal is red then the clock is advanced to the beginning of the next green interval and the vehicle is discharged. The checks for vehicle discharging are the same for the mid-block signal as for the intersection signals.

5.6 MODEL INPUT

In order to obtain output from the model a number of parameters must be input into the model:

- through (or main street) traffic volume in pcu/h
- side street (or on-turning) traffic volume in pcu/h
- stopline saturation flow, pcu/h green
- duration of the simulation, in minutes
- seed number
- Intersection #1 vehicle red interval, in seconds
- Intersection #1 vehicle green interval, in seconds
- Intersection #2 vehicle red interval, in seconds
- Intersection #2 vehicle green interval, in seconds

- pedestrian volume at crosswalk in pedestrians/h
- pedestrian WALK interval, in seconds
- pedestrian clearance period, in seconds
- travel time from first intersection to the pedestrian crossing, in seconds
- travel time from the pedestrian crossing to the second intersection, in seconds
- offset of signal #2 from intersection #1, in seconds
- cycle times for each signalized intersection, in seconds
- minimum vehicle green interval at the pedestrian crossing, in seconds

All parameters must be determined before running the model either through field observations or from preliminary signal timing designs. Figure 5.2 illustrates a theoretical network suitable for simulation. Each of the input parameters is discussed below.

5.6.1 Through Volume

The input through traffic volume represents the total number of passenger car units (PCU's) crossing the stopline in the main direction of travel. This volume is the through traffic volume for the one design through lane. Left and right turning traffic is disregarded. The model calculates a V/C ratio based on the combined through and on-turn volume and the green interval for intersection #2. If the V/C ratio exceeds 0.80 the program produces a warning message and stops execution.

5.6.2 On-Turning Volume

The on-turning traffic volume, expressed in PCU's per hour, is the summation of all of the left and right turning traffic from the side streets at intersection #1 that turn onto the main street. On-turning traffic may also include traffic that turns onto the roadway from adjacent land uses. Note that the model will add the travel time, from Intersection #1 to the Pedestrian Crossing, to the departure time of the on-turning traffic to obtain the arrival time at the pedestrian crossing.

5.6.3 Stopline Saturation Flow

The stopline saturation flow is the saturation flow for the design through lane expressed in pcu per hour green. There is no specified maximum or minimum value but the saturation flow must be non-zero.

5.6.4 Simulation Duration

The duration of the simulation must be entered in minutes, typically this would be 60 minutes. The model will convert the input simulation duration into seconds and subsequently express all times in seconds.

5.6.5 Seed Number

The model utilizes a hard coded random number generator which is in actually a pseudo-random number generator. If the same seed rumber is input each time, then the same vehicle and pedestrian headways ______ generated. To overcome this difficulty it is suggested that a number of iterations of the model be run, each with a unique value for the seed number and the results averaged.

5.6.6 Vehicle Red Interval for Intersections 1 and 2

The vehicle red interval is the duration of the red phase for the through movement of Intersections 1 and 2. The vehicle red interval must be specified for each intersection. Individual red intervals have been allowed to permit the modelling of uncoordinated traffic signals. The time is given in integer seconds. The program sums the red and green intervals for each intersection signal and compares the sum to the cycle time, generating an error message if the sum exceeds the cycle time.

5.6.7 Vehicle Green Interval for Intersections 1 and 2

The vehicle green interval is the duration of the green phase for the through movement of Intersections 1 and 2. The vehicle green interval for each intersection must be specified. Individual green intervals have been allowed to permit the modelling of uncoordinated traffic signals. The time is given in integer seconds.

5.6.8 Pedestrian Volume

The pedestrian volume is expressed in pedestrians per hour. Since the model assumes strict adherence to the signal, pedestrians only cross during the pedestrian WALK phase. As well, the pedestrian WALK interval will commence immediately after a pedestrian presses the button if the minimum vehicle green interval has been exceeded.

5.6.9 Pedestrian WALK Interval

The pedestrian WALK interval is the duration of the WALK phase of the pedestrian crossing signal. The minimum acceptable WALK phase duration is 7.0 seconds as per the Canadian Capacity Guide for Signalized Intersections. If field observations reveal a high incidence of pedestrians utilizing the crossing during the clearance period, then for the purposes of modelling, it may be necessary to increase the duration of the pedestrian WALK phase and decreasing the duration of the clearance phase. In this manner the overall length of the pedestrian phases is unchanged yet more pedestrians will be "allowed" to cross.

5.6.10 Pedestrian Clearance Period

The pedestrian clearance period is the summation of the duration of the flashing DONT WALK phase and solid DONT WALK phase, in seconds. The duration of this period is dependent on the width of the roadway and the average walking obtained by dividing the width of the roadway by the walking speed of the pedestrians and rounding the result <u>up</u> to the next integer value, i.e. 18.5 m / 1.2 m/s = 15.4 s which would round up to 16.0 seconds.

5.6.11 Travel Times

The travel time, given in seconds, is the time required to travel from Intersection #1 to the pedestrian crossing, and from the pedestrian crossing to Intersection #2. These values can be obtained either through field observations or by assuming a vehicle operating speed and calculating the travel time.

5.6.12 Offset

The signal offset is the time, in seconds, that the start of the green interval for Intersection #2 is "offset" relative to the start of green interval for Intersection #1. In a coordinated signal system the offset is typically equal to the travel time from Intersection #1 to Intersection #2. The offset may, however, in cases where there is a large volume of on-turning traffic, be less than the travel time to allow queue's formed by the on-turning traffic to dissipate before the arrival of the through traffic.

5.6.13 Cycle Time

The cycle time is the time in seconds from the beginning of green to the beginning of green for any one movement.

The cycle time for each of the two intersection signals must be input. This is to allow for the modelling of off-peak conditions when the cycle time for one signal might be different from that of the other signal.

5.6.14 Minimum Vehicle Green Interval

The minimum vehicle green interval is the minimum duration of the vehicle green interval of the pedestrian signal. This value is typically not less than 20 seconds. If a zero value is entered for the minimum vehicle green then the pedestrian WALK phase may be activated at any time, even if the vehicle green phase was activated only 1 second previously. There is no restriction on this value.

5.6.15 Time-Space Diagram Output Parameters

It is necessary to specify the first and last vehicle numbers to be plotted on the TSD. For example if only a small portion of the TSD is required then the vehicle numbers may be quite close together, e.g. 120 and 130. The numbers must be entered as integers with the lower number first.

5.6.16 Coordination

The user has the option of having the pedestrian crosswalk tied into the coordination of the up and downstream signals. If a 'Y' is entered into this field then the pedestrian crossing will be coordinated, all other input will result in the random operation of the pedestrian signal.

5.6.17 Output Options

The use has two choices for output: to produce a detailed report or a summary report and to produce a plot for a Time-Space Diagram or not.

6.0 MODEL TESTING

Section 6.0 outlines the procedures used in the development and testing of the model.

6.1 MODEL DEVELOPMENT

The PEDXING program was developed on a modular basis in order to ensure that the first module was operating correctly before proceeding to the development of the second module etc. Each module was developed in succession, with the previous modules being fully tested before the next was developed. It should be noted that occasionally input requirements for a module would require the modification of a previous module. The process of program development was iterative, with each subsequent iteration refining the operation of the overall program.

6.2 MODEL TESTING

The PEDXING model was tested by analyzing the output data using a computer spreadsheet to present both numerical and graphical summaries of the program operation. Time-space diagrams (TSDs) and queueing-diagrams were used to analyze the data in a graphical manner.

The input data for the test case was loosely based on the 87 Avenue network between 112 Street and 114 Street. The input data is listed in Table 6.1.

Through traffic volume (pcu/h)	:	500.
Side street on turn traffic volume	:	100.
Stopline saturation flow (pcu/h gr)	: 1	550.
Duration of simulation (minutes)	:	60
Seed Number (odd three digit)	:	815
Vehicle Red Interval #1 (seconds)	:	45.
Vehicle Green Interval #1 (seconds)	:	45.
Vehicle Red Interval #2 (seconds)	:	45.
Vehicle Green Interval #2 (seconds)	:	45.
Pedestrian volume (peds/h)	:	100
Pedestrian green interval (seconds)	:	8
Pedestrian clearance period (seconds)	:	17
Travel time (Int.1 to ped crossing, seconds)	:	10
Travel time (Ped crossing to Int.2, seconds)	:	10
Signal Offset (seconds)	:	37
Intersection #1 cycle time (seconds)	:	90
Intersection #2 cycle time (seconds)	:	90
Minimum vehicle green interval at ped X-ing (sec)	:	40
PEDXING coordinated with signals (Y/N)	:	N
Print the Time Space Diagram (Y/N)	:	N
Produce detailed report	:	Y

TABLE 6.1MODEL TESTING INPUT DATA

The queuing diagram in Figure 6.1 illustrates the operation of Intersection #1, showing the arrival times and rates and the departure times and rates. As indicated by the plot of the arrival times, the arrival rate is constant but random. The randomness is denoted by the fluctuations in the plot of the arrival times. If the arrival rate was uniform, the plot of the arrival times would be perfectly linear, with no fluctuations to denote the varying headways. Plots of a smaller time interval, 100 seconds rather than 900 seconds, in Figures 6.4 to Figure 5.6, illustrate the fluctuations more clearly.

VEHICLE ARRIVAL AND DEPARTURES INTERSECTION #1 LARGE SCALE

The queuing diagram in Figure 6.2 plots the vehicle arrival and departure times at the pedestrian crosswalk. For the majority of the time interval shown, the vehicles were unimpeded by the pedestrian crosswalk. Vehicles 103 to 115, 133 to 136, and 166 to 195 were, however, impeded by the pedestrian crosswalk. The magnitude of the delay incurred by any single vehicle can be obtained by measuring the difference between the arrival time and the departure time (a horizontal line between the two plotted lines) on the graph. The area enclosed by the two plots is equivalent to the total delay incurred by the vehicles at the crosswalk.

The queuing diagram plotted in Figure 6.3 for Intersection #2 is similar to the queuing diagram in Figure 6.2. A few vehicles in the total vehicle stream are impeded by the second intersection.

Overall, the example shown in Figures 6.1 - 6.3, illustrates good signal coordination. This is evidenced by the relatively few occurrences where the plot of the arrival and departure times diverge.

The model output was further verified by examining the clock times when the pedestrian signal was activated (i.e. the vehicle signal indication was RED) and comparing them to the vehicle arrival times. Those vehicles that arrived during the crosswalk RED interval should and did incur delay. The clock times at which the pedestrian WALK interval began were compared to the pedestrian arrival times. Again, similar to the vehicles, if pedestrians arrive during the DON'T WALK phase they should incur delay. These checks were accomplished via both numerical and graphical means. A plot of the TSD served to illustrate the behaviour of the vehicles at each signal and also provided an estimate of the magnitude of the delay incurred by the vehicle at the signal.

An example of an INPUT file and the output, including a portion of the Time-Space Diagram, can be found in Appendix C.

VEHICLE ARRIVAL AND DEPARTURES PEDESTRIAN CROSSING LARGE SCALE

VEHICLE ARRIVAL AND DEPARTURES INTERSECTION #2 LARGE SCALE

VEHICLE ARRIVAL AND DEPARTURES INTERSECTION #1 SMALL SCALE

VEHICLE ARRIVAL AND DEPARTURES PEDESTRIAN CROSSING SMALL SCALE

VEHICLE ARRIVAL AND DEPARTURES INTERSECTION #2 SMALL SCALE

7.0 DATA COLLECTION

Section 7.0 discusses the data collection program that was undertaken in order to verify the model output.

7.1 INTRODUCTION

To provide the initial verification of the model, a limited quantity of data was collected. The objective of the data collection program was to provide actual field data for input into the model and for comparison of the program output with the actual network operation. The field data were manually analyzed to determine the average delay per vehicle at each traffic signal for comparison to the model output.

7.2 DATA COLLECTION PROGRAM

7.2.1 Locations

In consultation with the City of Edmonton Transportation Department, two locations were chosen for the data collection program: 87 Avenue from 112 Street to 114 Street, illustrated in Figure 7.1; and, 109 Street from 82 Avenue to 76 Avenue, illustrated in Figure 7.2, in Edmonton, Alberta, Canada.

87 Avenue bisects the University of Alberta in an east-west direction, with the majority of the University of Alberta campus on the north side and the University of Alberta Hospitals on the south side. The traffic signals were not coordinated and did not have the same base cycle time, due to nearby road closures because of LRT construction.

109 Street is a six lane divided arterial roadway that runs in a north-south direction, between two residential areas. Traffic and pedestrian volumes on 109 Street are sufficient to warrant the installation of pedestrian crosswalk signals. The 109 Street location is one in which the vehicle signals were coordinated and had the same cycle time with the pedestrian signal randomly activated and using a base cycle time different than that of the up and down stream signals.

FIGURE 7.1

87 AVENUE FROM 112 STREET TO 114 STREET

79

The traffic signals at both survey locations are under the control of central traffic control computer. The signals operate under a fixed-time, coordinated plan. The phasing diagrams and associated timings for both locations are illustrated in Figure 7.3.

At the 87 Avenue survey location there is a four phase traffic signal plan for the signals located at the intersection of 114 Street and 87 Avenue. Phase 1 allows all eastbound and westbound movements, phase 2 allows only the northbound movements, phase 3 allows the northbound and southbound movements and phase 4 allows only the westbound movements. The mid-block pedestrian crossing traffic signal is a two phase signal. Phase 1 allows the vehicle traffic to move freely and phase 2 allows the pedestrians to cross the roadway. The traffic signals at the intersection of 112 Street and 87 Avenue have a two phase signal plan with phase 1 allowing the northbound and southbound movements and phase 2 the eastbound and westbound movements.

At the 109 Street location there is a two phase signal plan for the traffic signal at the intersection of 109 Street and 82 Avenue. Phase 1 allows the north-south movements and phase two allows the east-west movements. The pedestrian crosswalk is also has a two phase signal plan with Phase 1 allowing the north-south vehicle movements and Phase 2 allowing the east-west pedestrian movements. The intersection of 76 Avenue and 109 Street also has a two phase signal plan with Phase 1 for the east-west movements and phase 2 for the north-south movements.

7.2.2 Methodology

87 Avenue

The data collection program occurred over three separate days. The original plan was to collect the data on two dates, on the first date the vehicle delay information would be collected and on the second date the pedestrian delay data would be collected.

FIGURE 7.3

SIGNAL PHASING DIAGRAMS

Three individuals, including the author, were used in the data collection program. One person was stationed at each intersection and the pedestrian crossing to record the data. Each person recorded the number of vehicles stopped at the intersection approach at successive 15 second intervals. Vehicles could be counted more than once for as long as the vehicle remained queued at the intersection. A separate tabulation of the approach volume was made for each time period with the vehicles being further classified as being either stopped or not stopped. The data collection methodology and forms were obtained from the "Manual of Traffic Engineering Studies"²².

The vehicle data collection program took place on April 15, 1991 between 13:15 and 13:45 (off-peak period).

After examining the collected data, it was discovered that the observer at 114 Street collected data for the westbound traffic stream at rather than the eastbound traffic stream. Therefore the author resurveyed the 114 Street intersection on April 17, 1991. The pedestrian data collection occurred on April 22, 1991.

At the intersection of 114 Street and 87 Avenue the inside eastbound traffic lane was surveyed. The curb lane was not selected because of the large number of right turning vehicles in this lane. A number of vehicles in the curb lane did, however, proceed straight through the intersection.

At the pedestrian crosswalk and the intersection of 112 Street and 87 Avenue both of the eastbound travel lanes were surveyed. Both lanes were surveyed to account for on-turning vehicles at the upstream location as well as to account for those vehicles that changed lanes once they discharged from the stopline at 114 Street.

All of the surveys occurred after the completion of the academic term at the University of Alberta. Students were still on campus preparing for and writing final examinations such that there was a sufficient volume of pedestrian and vehicle traffic.

109 Street

The data collection program occurred over two days with the vehicle traffic data being collected between 15:45 and 16:15 on Tuesday May 21, 1991 and the pedestrian data on Thursday May 23, 1991. The time period coincided with the beginning of the PM peak period. The southbound centre lane was surveyed at each intersection and the pedestrian crossing. The inside lane was not selected because of the large number of left turning vehicles and the curb lane was not selected because of the large number of buses and right turning vehicles which would impede the flow of through traffic.

The traffic signal timing plans were provided by the City of Edmonton Transportation Department.

7.2.3 Results and Analysis

The delay surveys for 87 Avenue yielded the following results:

- Average delay per approach vehicle at 114 Street and 87 Avenue: 13 seconds
- Average delay per approach vehicle at pedestrian crosswalk: 7 seconds
- Average delay per approach vehicle at 112 Street and 87 Avenue: 13 seconds
- Average delay per approach pedestrian: 15 seconds

The pedestrians exhibited a number of interesting characteristics during the delay survey. Of the total of 74 pedestrians, 9 pedestrians or 12 percent of the pedestrians violated the signal. In one instance when pedestrians were queued at the crosswalk, two other pedestrians approached the crossing, evaluated the traffic conditions and crossed against the signal. The persons who were originally queued at the crosswalk remained, even though two pedestrians crossed.

The delay surveys for the 109 Street location yielded the following results:

- Average delay per approach vehicle at 109 Street and 82 Avenue: 15 seconds
- Average delay per approach vehicle at pedestrian crosswalk: 5 seconds
- Average delay per approach vehicle at 109 Street and 76 Avenue: 6 seconds
- Average delay per approach pedestrian: 15 seconds

The relative percentages of vehicles stopped at each signal varied: 62 percent at 82 Avenue, 17 percent at the pedestrian crosswalk and 35 percent at 76 Avenue. The percentage of stopped vehicles was significantly lower at 76 Avenue and the average delay per vehicle was also much lower than that at 82 Avenue. For the pedestrians, the percentage stopped was 70 percent.

7.3 DELAY SURVEYS

The delay survey can be a useful tool when evaluating the operation of a traffic signal. Delay, as indicated in the Canadian Capacity Guide for Signalized Intersections and the Highway Capacity Manual, provides an estimate of the overall Level of Service being provided by the intersection. The difficulty with the determination of delay is that there are a number of different methods by which data may be collected.

Recently, Teply¹⁷ discussed the accuracy of delay surveys at signalized intersections. In this paper, he assessed the merits of delay determination using a reconstructed time-space diagram, and using a queuing diagram. As well, he examined two different queue counts surveys, one counting the queues at regular intervals out of step with the signal and the other counting queues at the end of the red and green intervals. Teply concluded that delay cannot be precisely measured and that as a consequence a perfect match between an analytical delay formula and measured delay values is rarely attained.

Some of the more important findings of Teply include:

- "delay surveys based on stopped queue counts produce stopped delay values.
- the ratio between overall delay and stopped delay is not constant and depends mostly on the duration of the red interval and on the volume-to-saturation ratio.
- the true ratio lies between the values obtained from using each formula."¹⁷

As illustrated by Teply, the use of delay as a measure of the quality of the operation of an intersection is useful and appropriate providing the analysis is performed in a consistent manner.

The delay surveys yielded values for the stopped delay while the PEDXING program yields overall delay due to the straight line approximation of the vehicle trajectories. The difference between stopped delay and overall delay is illustrated in Figure 7.4. The PEDXING program has no consideration for the impact of acceleration (denoted A on the figure) and deceleration (denoted B on the figure) and therefore the results are not directly comparable to delay values obtained from field queue counts.

The equations developed by Teply, as described in section 3.3.2, can be used to compare the results of model and the field data.

A = acceleration delayB = deceleration delay

FIGURE 7.4

STOPPED AND OVERALL DELAY

8.0 COMPARISON OF FIELD AND MODEL DATA

Section 8.0 provides a discussion of the similarities and differences between the field data and the model output.

8.1 INTRODUCTION

In order to validate the results of any model, the model output must be compared to "real world" data. The data collected, as described in Section 7.0, has been compared to the model output, the results of which are presented below.

8.2 MODEL INPUT

The model was run using two data sets: one for the 87 Avenue location and one for the 109 Street location. Modelling each of these locations provides a comparison of field data to modelled data for both a coordinated and uncoordinated set of traffic signals. The input data are listed in Table 8.1.

		87 Avenue	109 Street
Through traffic volume (pcu/h)	:	185.	650.
Side street on turn traffic volume	:	130.	120.
Stopline saturation flow (pcu/h gr)	:	1550.	1750.
Duration of simulation (minutes)	:	60	60
Seed Number (odd three digit)	:	815	815
Vehicle Red Interval #1 (seconds)	:	51.	40.
Vehicle Green Interval #1 (seconds)	:	24.	50.
Vehicle Red Interval #2 (seconds)	:	32.	36.
Vehicle Green Interval #2 (seconds)	:	28.	54.
Pedestrian volume (peds/h)	:	150	50
Pedestrian WALK interval (seconds)	:	8	8
Pedestrian clearance period (seconds)	:	17	26
Travel time (Int.1 to ped crossing, seconds)	:	10	32
Travel time (Ped crossing to Int.2, seconds)	:	10	15
Signal Offset (seconds)	:	37	43
Intersection #1 cycle time (seconds)	:	75	90
Intersection #2 cycle time (seconds)	:	60	90
Minimum vehicle green interval at ped X-ing (sec)	:	40	45
PEDXING coordinated with signals (Y/N)	:	N	N
Print the Time Space Diagram (Y/N)	:	N	N
Produce detailed report	:	Y	Y

TABLE 8.1MODEL VERIFICATION INPUT DATA

8.2.1 87 AVENUE LOCATION

For this location the program was run with the mid-block pedestrian crossing uncoordinated with the upstream traffic signal. The cycle time at the 114 Street intersection was 75 seconds, at the mid-block pedestrian crossing, 65 seconds, and at the 112 Street intersection 60 seconds, during the off-peak period. The 6 second vehicle intergreen period for the mid-block crossing was accommodated in the pedestrian clearance interval.

8.2.2 109 Street Location

The program was run with the mid-block pedestrian crossing uncoordinated with the upstream traffic signal. The cycle time at both the 82 Avenue and 76 Avenue intersections was 90 seconds, and at the mid-block pedestrian crossing 79 seconds during the PM peak period. The six second vehicle intergreen period for the midblock crossing was accommodated in the pedestrian clearance interval. A slightly reduced through volume and a saturation flow rate of 1750 pcu/h gr was used in order to allow the model to run. The model checks to ensure that the V/C ratio is below 0.80. The actual volume with the order of 800 vph but that volume, in conjunction with the sidestreet volume would exceed the maximum allowable V/C ratio. Therefore the through volume was reduced from 800 vph to 650 vph.

8.3 MODEL OUTPUT

The average vehicle delay for intersection #1 is calculated using only the through vehicles, i.e. the on-turning vehicles have not been included. It is assumed that the on-turning vehicles were not delayed by the traffic signal. Using only the through vehicles allows for a comparison between the measured delay and modelled delay since only the through vehicles are surveyed in the field. It is for this reason that the individual average intersection delays do not sum to the final average total vehicle delay.

8.3.1 87 Avenue Location

This location was completely uncoordinated with all three signals having different cycle times. The PEDXING program was run eight times, each with a different random seed number. The results illustrated in Table 8.2, are the average values of the runs:

TABLE 8.2				
87 Avenue Average Model Results				
114 Street and 87 Avenue (Int. #1) Average Intersection Vehicle Delay	=	20.0 sec		
Average Ped. Delay	=	23.4 sec		
Mid-block Pedestrian Crossing Average Intersection Vehicle Delay	*	5.0 sec		
112 Street and 87 Avenue (Int. #2) Average Intersection Vehicle Delay	=	10.5 sec		

As expected, the vehicle delays are highest at the intersections and lowest at the pedestrian crossing, with a vehicle red interval of only 25 seconds at the pedestrian crossing.

8.3.2 109 Street Location

At this location the 82 Avenue and 76 Avenue signals were coordinated, each having a 90 second cycle time. The mid-block crossing was not coordinated with either of the other signals. The PEDXING program was run eight times, each with a different random seed number. The results illustrated in Table 8.3 are the average values of the runs.

TABLE 8.3109 Street Average Model Results

82 Avenue and 109 Street (Int. #1) Average Intersection Vehicle Delay	= 13.0 sec
Average Ped. Delay	= 20.0 sec
Mid-block Pedestrian Crossing Average Intersection Vehicle Delay	= 9.0 sec
76 Avenue and 109 Street (Int. #2) Average Intersection Vehicle Delay	= 10.0 sec

As expected, the vehicle delays are highest at the intersection and lowest at the pedestrian crossing, with a vehicle red interval of only 25 seconds at the pedestrian crossing.

8.4 87 AVENUE LOCATION COMPARISON

Table 8.4 illustrates the differences between the modelled and the observed delays.

TABLE 8.4 87 Avenue Delay Comparison Modeled Observed 114 Street and 87 Avenue (Int. #1) Average Intersection Vehicle Delay 20.0 sec 13.0 sec 15.0 sec Average Pedestrian Delay 23.4 sec Mid-block Pedestrian Crossing Average Intersection Vehicle Delay 5.0 sec 7.0 sec 112 Street and 87 Avenue (Int. #2) Average Intersection Vehicle Delay 11.0 sec 13.0 sec -22

8.4.1 114 Street and 87 Avenue

The model output yielded an average vehicle delay of 20 seconds as compared to a measured delay of 13 seconds. The models overestimation of the delay is due to a number of factors including the arrival distribution used. The model uses a shifted negative exponential distribution for the arrival headways, implying a random arrival pattern. Located upstream of the 114 Street intersection is a randomly activated, uncoordinated mid-block pedestrian signal, an amber-flash pedestrian crossing and full traffic signal. These three traffic control devices tend to cause the vehicle arrivals to be non-random for some signal cycles.

Figure 8.1 illustrates the observed, theoretical and modelled arrival headway probabilities.

This arrival non-randomness can cause the measured delay to be either less than or greater than the modelled delay depending on when the discharged vehicles arrive at the signal. For example if the signal(s) upstream of the 114 Street signal are directly out of step with the 114 Street signal, most of the vehicles will arrive during the red interval. If the upstream signals are only partially out of step with the 114 Street signal then a portion of the vehicle platoon will arrive during the red interval and a portion will arrive during the green interval (similar to random arrival).

The influence of the upstream signals also extends to the impact of platooning. The arrival pattern used in the model assumes that there is no vehicle platooning such that the vehicle arrival headways are random. The presence of upstream traffic signals will cause the vehicles to platoon and thereby have a regular arrival rate, possibly at the saturation flow values.

ARRIVAL HEADWAY PROBABILITY FOR 114 ST AND 87 AVE EASTBOUND THROUGH MOVEMENT (INTERSECTION #1)

According to the model, (illustrated in Figure 8.2) approximately 55 percent of the vehicles travelling through the 114 Street intersection were delayed to some degree. This compares to an observed value of 51 percent. If the arrival pattern is truly random, it would be expected that approximately 50 percent of the vehicles would be delayed by the intersection. In addition, the green interval comprises approximately 32 percent of the total cycle time such that if the arrival pattern was truly random with an equal number of vehicles arriving during any given time interval, it would be expected that 68 percent of the vehicles would experience some degree of delay. The percentage of delayed vehicles observed in the field (51 percent) illustrates that the arrival pattern is not truly random.

The difference between the modelled vehicle delay and the observed delay is not considered to reflect below average operation of the model. The difference in the arrival distributions was one of the primary reasons for the difference between the observed and the modelled delay values.

8.4.2 Mid-block Fedestrian Crossing

There are two delay values calculated for the pedestrian crossing: average pedestrian delay and average vehicle delay. The modelled average pedestrian delay was 23.4 seconds as compared to an observed average pedestrian delay of 15 seconds. The modelled average vehicle delay was 5 seconds as compared to an observed average vehicle delay of 7 seconds.

The difference between the modelled average pedestrian delay and the observed average pedestrian delay was 9 seconds. One reason for the overestimation of the pedestrian delay was that the model predicted that 85 percent of the pedestrians would be delayed (illustrated in Figure 8.3) as opposed to an observed value of 64 percent. Since the model overestimated the number of delayed pedestrians, the average delay per pedestrian also is overestimated.

MODELLED VEHICLE DELAY PROBABILITY INTERSECTION OF 114 ST AND 87 AVE EASTBOUND THROUGH MOVEMENT (INTERSECTION #1)

MODELLED PEDESTRIAN DELAY PROBABILITY 87 AVENUE MID-BLOCK CROSSING

The model also tended to overestimate the size of the pedestrian departure groups at the crosswalk, as illustrated in Figure 8.4. The model predicted 18 individual pedestrians arriving and discharging through the crosswalk as compared to the 8 observed. The model was reasonably accurate projecting the number of discharge group sizes between quantities of 2 through 5. Interestingly the model projected that there would be discharge groups having 6 and 7 persons yet no groups of this size were observed.

To illustrate the impact of the over-estimation of the number of delayed pedestrians the following is presented. The model passed 135 pedestrians through the crosswalk during the simulated one hour period. Fifteen percent of 135 is 20 pedestrians, and 36 percent of 135 is 49 pedestrians. The total pedestrian delay is 3,159 seconds (135 x 23.4). If 679 seconds are removed from the total, ([49 - 20] * 23.4), the remainder is 2,480 seconds. Dividing this revised total delay by 135, yields an average delay of 18.4 seconds. This average delay is much closer to the observed 15 seconds. Given that the observation interval for the field study was 15 seconds, the model results - raw or modified, yield a reasonable estimation of the pedestrian delay.

The modelled average vehicle delay was close to the observed value. Given that there was amber overrun by vehicles, the difference could be reduced by lengthening the green interval to phase green plus one or two seconds. The increase in the duration of the green interval could result in additional vehicles passing through the pedestrian signal rather than being stopped by the signal, thereby reducing the overall average vehicle delay. Figure 8.5 illustrates the modelled vehicle delay probability. As indicated, approximately 40 percent of the vehicles experienced delays of at least one second. The results of the field survey yielded that 38 percent of the vehicles were delayed. The similarity between the two percentages is reflected in the small difference between the modelled and the observed vehicle delay for this intersection.

Departure Group Size Number of Pedestrians Queued at WALK

FIGURE 8.4

MODELLED PEDESTRIAN GROUP SIZE 87 AVENUE MID-BLOCK PEDESTRIAN CROSSING

MODELLED VEHICLE DELAY PROBABILITY 87 AVE MID-BLOCK PEDESTRIAN CROSSING EASTBOUND THROUGH MOVEMENT

8.4.3 112 Street and 87 Avenue

The modelled average vehicle delay for this intersection was 11 seconds which compares favourably to the observed value of 13 seconds. According to the model 63 percent of the vehicles experienced delay at this intersection as compared to an observed value of 47 percent. It would be expected that with the higher probability of delay, the model would overestimate the average delay, but as illustrated in Figure 8.6, 50 percent of the modelled vehicles experienced delays of less than 10 seconds. This leads to the conclusion that although less vehicles are delayed in the field than in the model, the field vehicles are delayed for much longer periods of time, i.e. they arrive at the beginning of the red interval.

8.5 109 STREET LOCATION COMPARISON

Table 8.5 illustrates the differences between the modelled and the observed values of delay.

TABLE 8.5 109 Street Delay Comparison					
22 August and 100 Street (Int. #1)	Modelled	Observed			
82 Avenue and 109 Street (Int. #1) Average Intersection Vehicle Delay	13.0 sec	15.0 sec			
Average Pedestrian Delay	20.0 sec	15.0 sec			
Mid-block Pedestrian Crossing Average Intersection Vehicle Delay	9.0 sec	5.0 sec			
76 Avenue and 109 Street (Int. #2) Average Intersection Vehicle Delay	10.0 sec	6.0 sec			

As illustrated by the table, the modelled delay values are close to the values observed in the field.

MODELLED VEHICLE DELAY PROBABILITY INTERSECTION OF 112 ST AND 87 AVE EASTBOUND TRHOUGH MOVEMENT

8.5.1 82 Avenue and 109 Street

The modelled average vehicle delay is within 2 seconds of the observed value, a closer match than that of the 87 Avenue location. This match can be attributed to the modelled versus the observed arrival patterns. As illustrated in Figure 8.7, the observed, theoretical and modelled arrival headway probabilities are similar. The modelled arrival headway probability is shifted to the right slightly, nonetheless the modelled delays match the observed closely.

The model predicted that 63 percent of the vehicles would be delayed (as illustrated in Figure 8.8) as compared to the observed 62 percent. This similarity between the two values aids in the explanation of the similarity between the modelled and observed average vehicle delays. If the percentages were significantly different then it would be expected that the delays would also be quite different.

Unlike the 114 Street intersection in the 87 Avenue study, the majority of the cycle time is devoted to the study movement (southbound) through the intersection, i.e. the green interval accounts for 56 percent of the cycle time. The number of delayed vehicles is relatively high due to the significantly higher volume passing through the intersection. With the majority of the green interval, it would be expected that most of the vehicles arriving at the intersection would be undelayed, but because of the large volume, the queues require a significant portion of the green interval to discharge.

8.5.2 University Avenue and 109 Street

The model predicted an average vehicle delay of 9.0 seconds versus the observed 5.0 seconds and an average pedestrian delay of 20 seconds versus the observed 15.0 seconds. The difference between the actual and the modelled delay in both cases can be explained by the operation of the pedestrian signal.

ARRIVAL HEADWAY PROBABILITY FOR 82 AVE AND 109 ST SOUTHBOUND THROUGH MOVEMENT (INTERSECTION #1)

MODELLED VEHICLE DELAY PROBABILITY INTERSECTION OF 82 AVE AND 109 ST SOUTHBOUND THROUGH MOVEMENT (INTERSECTION #1)

As illustrated in Figure 8.9, the model over-estimated the number of single pedestrian departure groups and did not predict any departure groups with more than three pedestrians. The pedestrian volume at the crosswalk was light, only 50 pedestrian per hour as compared to the volume of 150 pedestrians per hour at the 87 Avenue crosswalk.

The model also predicted that 60 percent of the pedestrians would be delayed by the crosswalk (illustrated in Figure 8.10) as compared to the observed 70 percent. The probability of being delayed was lower for the model but the average delay was higher. The model over predicts the number of pedestrians arriving just after the completion of the WALK phase. When pedestrians arrive during the clearance period, the model does not allow them to cross and therefore they must wait for the remainder of the clearance phase plus the duration of the minimum vehicle green interval.

The model predicted that 50 percent of the vehicles at the mid-block crossing would be delayed (illustrated in Figure 8.11) as compared to the observed 17 percent. The primary reason for the overestimation of the percentage delayed is that the model predicted 30 signal activations as opposed to the observed 20 activations. If it is assumed that there is a linear relationship between the number of signal activations and the average vehicle delay, reducing the number of activations by one third would yield a reduction of the average vehicle delay of 3 seconds from 9 seconds to 6 seconds, close to the observed 5 seconds.

8.5.3 76 Avenue and 109 Street

The observed average vehicle delay was 6 seconds versus the modelled average vehicle delay of 10 seconds. As at the upstream traffic signals, the model predicted higher average vehicle delays, due in part to the percentage of vehicles that are delayed. In the field only 35 percent of the vehicles were delayed but the model predicted that 63 percent of the vehicles would be delayed, as illustrated in Figure 8.12. Despite the difference in the percentage of the traffic stream that is delayed, the modelled versus the observed delays are similar.

Departure Group Size Number of Peds Queued at WALK (109 Str)

FIGURE 8.9

PEDESTRIAN DEPARTURE GROUP SIZE 109 STREET MID-BLOCK CROSSING

FIGURE 8.10

MODELLED PEDESTRIAN DELAY PROBABILITY 109 STREET MID-BLOCK CROSSING

MODELLED VEHICLE DELAY PROBABILITY 109 STREET MID-BLOCK CROSSING SOUTHBOUND THROUGH MOVEMENT

MODELLED VEHICLE DELAY PROBABILITY INTERSECTION OF 76 AVE AND 109 ST SOUTHBOUND THROUGH MOVEMENT

8.6 ANALYSIS OF DIFFERENCES

As noted in section 7.3, the model yields values for the overall delay while the survey data yields the stopped delay. The approximate value of the overall delay at each intersection can be determined using the two equations developed by Teply¹⁷ to relate the stopped delay to the overall delay. The results of the equations are presented in Table 8.6, following:

TABLE 8.6 MODELLED, OBSERVED AND MODIFIED DELAYS					
	Actual	Eqn. 3.1	Eqn. 3.2	Modelled	
	(Stopped)	(Overall)	(Overall)	(Overall)	
114 Street and 87 Avenue	13.0	15.7	13.2	20.0	
Mid-Block Pedestrian Crossing	7.0	9.6	7.1	5.0	
112 Street and 87 Avenue	13.0	19.5	13.3	11.0	
82 Avenue and 109 Street	15.0	19.2	17.4	13.0	
University Avenue and 109 Street	5.0	6.6	6.2	9.0	
76 Avenue and 109 Street	6.0	8.0	7.4	10.0	

Figures 8.13 and 8.14 graphically illustrate the data listed in Table 8.6. The histogram for 87 Avenue uses a maximum Y-axis value of 50 seconds, equivalent to the duration of the red interval at the intersection of 114 Street and 87 Avenue. Similarly, the histogram for 109 Street has a maximum Y-axis value of 40 seconds, equivalent to the duration of the red interval at the intersection of 82 Avenue and 109 Street. The duration of the red interval was selected because it represents the maximum time that a vehicle can be delayed at a signal during under-saturated conditions. Using this value for the maximum presents the data in a format that indicates the differences at a scale relative to the maximum possible delay.

Intersection Average Vehicle Delay 87 Avenue, April 1991

FIGURE 8.13

AVERAGE VEHICLE DELAY 87 AVENUE NETWORK EASTBOUND THROUGH MOVEMENT

Intersection Average Vehicle Delay 109 Street, May 1997

FIGURE 8.14

AVERAGE VEHICLE DELAY 109 STREET NETWORK SOUTHBOUND THROUGH MOVEMENT

As illustrated by these Figures, the model yields results that are of the correct order of magnitude for the average vehicle delay at each intersection. The overor underestimation of the average delay by the model is caused by a number of factors including the distances between the stoplines, the input volumes and the coordination of the system.

8.7 SUMMARY

The model was run using two test cases: an uncoordinated and a coordinated signal system. The model output closely resembled the observed values. Both the vehicle and the pedestrian delays determined by the model were of the correct order of magnitude.

9.0 CONCLUSIONS

Section 9.0 presents the summary and conclusions of this project as well as recommendations for further research.

9.1 CONCLUSIONS

The objective of this research was to develop a computer model to simulate a mid-block pedestrian signal within a fixed-time traffic signal system. This objective was met. The developed model, PEDXING, provides realistic estimates of the impact of a mid-block pedestrian traffic signal on both pedestrians and vehicles in terms of delay incurred by each. It is suitable for both coordinated and uncoordinated traffic signal systems and has the capability of modelling a variety of geometric and operational features.

The program was written in Microsoft FORTRAN 4.1 and was designed to operate in batch mode. The user prepares a small input data file and runs the program. Typically the program requires approximately 4 minutes to perform one complete run, using a 10 Mhz 80286 based PC. The program was written in a modular format to provide maximum flexibility for input, output and to allow future researchers to easily change the program source code.

The model was tested to ensure that the program processed information correctly. The model was verified by comparing the model output to the results of two survey locations. The output was in the correct order of magnitude for the average vehicle delay and pedestrian delay for each of the modelled intersections.

The program provides the transportation engineer with a tool that can be used to assess the impact of implementing a pedestrian traffic signal, in terms of delay. The model can also be used to assess the impact of including the pedestrian crossing traffic signal into the signal coordination. The program is intended for use in evaluating signalization and coordination policies within a Civic Transportation Department.

9.2 ADDITIONAL RESEARCH

As a direct result of the research conducted, a number of addition research needs have been identified:

9.2.1 Pedestrian Characteristics

Several pedestrian characteristics have been observed which will have a bearing on the operation of a pedestrian traffic signal and hence on the operation of the model. These characteristics include: the grouping/queuing of pedestrians at the signal as well as the arrival of groups of pedestrians at the signal; gap acceptance and signal obeyance of pedestrians; pedestrian risk exposure.

Each of these characteristics requires further study in order to establish quantifiable measures for each as well as to determine locational variations. The risk exposure behaviour of pedestrians encompasses gap acceptance and signal obeyance. In addition, more research is required to determine the variation of pedestrian behaviour according to age.

9.2.2 Program Enhancements

The PEDXING model could be modified to accept data from electronic recorders such as the University of Alberta Data Logger in order to more accurately represent the arrival pattern(s) of vehicles at the first traffic signal.

The model may also be enhanced to allow for the use of different headway distributions to be selected by the user. For example, for some locations it may be prudent to utilize a Hyperlang headway distribution model for the vehicle arrival pattern. Similarly, to account for pedestrians crossing during acceptable gaps the Erlang distribution could be used.

The model could also be enhanced to account for conditions when the V/C ratio exceeds 0.80 when the overflow delay becomes a key component of the total delay. Along with this enhancement, methodologies would have to be utilized to account for vehicle queue length and platoon dispersion for locations with long distances between signalized intersections.

9.2.3 Statistical Analysis

As the model is further refined to allow for pedestrian gap acceptance or vehicle disobeyance of the signals, a detailed statistical analysis of the variation of the field data collection in conjunction with a statistical analysis of the model output should be completed.

REFERENCES

- 1 Griffiths, J.D., Hunt, J.G., and Marlow, M., "Delays at Pedestrian Crossings," <u>Traffic Engineering and Control</u>, July 1984, pp. 365 - 371
- 2 Feng-Bor, Lin, "Optimizing Settings for Pedestrian Actuated Signal Control Systems," <u>Transportation Research Record 644</u>, National Academy of Sciences, 1977, pp. 102 - 107.
- 3 King, G.F., "Pedestrian Delay and Pedestrian Signal Warrants," <u>Transportation</u> <u>Research Record 629</u>, National Academy of Sciences, 1977 pp. 7 - 13
- 4 Taylor, I.G., "The Effects of Pedestrian Crossing Facilities on Delays in Linked Systems", <u>T.O.R.G. Research Report # 53</u>, 1984, University of Newcastle Upon Tyne, Department of Civil Engineering
- 5 Taylor, I.G., "The Effect of Pelican Crossing Facilities in a Linked Signal System: A Simulation Study," <u>T.O.R.G. Research Report # 55</u>, 1984, University of Newcastle Upon Tyne
- 6 City of Edmonton Transportation Operations Department, Internal Memorandum, <u>Pedestrian/Bus Pedestrian Signal Online/Offline Operation</u> <u>Study</u>, August 1990.
- 7 Richardson, D., Schnablegger, J., Stephenson, B., Teply, S. "<u>Canadian Capacity</u> <u>Guide for Signalized Intersections</u>", (S. Teply, ed.), Institute of Transportation Engineers, District 7, Canada, 1984
- 8 U.S. Department of Transportation, <u>Manual on Uniform Traffic Control Devices:</u> <u>For Streets and Highways</u>," 1988 Edition, Federal Highway Administration, Washington, D.C.
- 9 <u>Highway Capacity Manual: Special Report #209</u>, National Research Council (U.S.), Transportation Research Board, Washington, D.C.
- 10 Akcelik, R., "Traffic Signals: Capacity and Timing Analysis", <u>Australian Road</u> <u>Research Board, Research Report ARR No. 123</u>, Victoria, Australia.
- 11 U.S. Department of Transportation, <u>NETSIM User Guide</u>, Federal Highway Administration, Washington, D.C.
- 12 Labrum, Willard D., Farr, Ralph M., "<u>Network Flow Simulation (NETSIM) to</u> <u>Analyze Signal Control Problems in a Small Urban Grid</u>", U.S. Department of Transportation, Federal Highway Administration, Washington, D.C. 1980
- 13 Robertson, D.I., "<u>User Guide to TRANSYT Version 6</u>", Department of the Environment, TRRL Supplementary Report SR 255, Crawthorne, Great Britain, 1976.

- 14 Leonard, D.R., and Gower, P., <u>User Guide to CONTRAM Version 4:</u> <u>Supplementary Report 735</u>, Transport and Road Research Laboratory, Department of Transport, U.K., 1982
- 15 Gerlough, Daniel L. and Huber, Matthew J., "Traffic Flow Theory: A Monograph", National Research Council, <u>Transportation Research Board, Special</u> <u>Report #165</u>, Washington D.C., 1975
- 16 Dawson, R.F., Chimini, L.A., "The Hyperlang Probability Distribution A Generalized Traffic Headway Model", <u>Highway Research Record 230</u>, Highway Research Board, National Research Council, Washington, D.C. 1968
- 17 Teply, S., "Accuracy of Delay Surveys at Signalized Intersections", <u>Transportation</u> <u>Research Record 1225</u>, TRB National Research Council, Washington, D.C., 1984
- 18 Teply, S., and Hunt, J.D., "Reviewing the Basics of Signal Coordination: Throughbands, Greenbands and Cyclic Flow Profiles", <u>Management and Control</u> of <u>Urban Traffic Systems</u>, Proceedings of the Engineering Foundation Conference, Yagar, S., editor, New York, NY, 1987
- 19 Page, R., Didday, R., Alpert, E., <u>FORTRAN 77 for Humans</u>. Third Edition, West Publishing Co. St. Paul, Minnesota, 1986
- 20 Kua, Chuan, personal correspondence regarding his M.Sc. Thesis.
- 21 Newell, G.F., "Statistical Analysis of the Flow of Highway Traffic through a Signalised Intersection", Q.Appl. Math. 13(4):353 - 369, 1956 as quoted in "Traffic Flow Theory"
- 22 Box, Paul C., Oppenlander, Joseph C., <u>Manual of Traffic Engineering Studies</u>, Fourth Edition, Institute of Transportation Engineers, Washington, D.C., 1976

APPENDIX A

```
SNOTRUNCATE
SDEBUG
С
С
      PROGRAM PED-XING
С
      NOTE: Do NOT remove the $NOTRUNCATE metacommand on line one of
С
            this program. This metacommand allows the program to use
С
            variable names longer than six (6) characters.
С
С
      This program is designed to generate random vehicle and pedestrian
С
      arrivals into a one-way street system. There are three signals on
С
      the network: the first and third signals are either coordinated
С
      or uncoordinated fixed time traffic signals. The second signal is
С
      a pedestrian activated or a fixed time signal (user discretion).
£
      The program is designed such that the vehicles are randomly
С
      generated and processed through the first intersection. The
С
      departure time and the delay incurred is stored in an array.
С
С
      Then the pedestrian activations are randomly generated and
С
      processed through the second intersection (signalized pedestrian
С
С
      crossing). Based on a background cycle for this intersection (ie.
      minimum vehicle green, length of walk phase and pedestrian
С
      clearance interval) the delay is calculated for each pedestrian
С
      and again stored in an array. The pedestrian activations in turn
С
      cause the vehicle signal to change from green to red. The time of
С
      this change is stored in an array to be used when the vehicles are
С
      processed through the second intersection.
С
C
      Once the pedestrian activations and hence the red signals have
С
C
      been determined the program processes the vehicles through the
      second intersection. The program determines the delay incurred by
С
      each vehicle and adds the second intersection delay to the first
C
      intersection delay as well as calculating the average vehicle
C
      delay for this intersection.
С
С
      The program then continues on to the third and final intersection
С
      and determines the average vehicle delay at this intersection and
С
      calculates the overall average vehicle delay.
÷.
'n.
      The program adjusts the headway according to flow conditions:
С
       heavy flow = small headways, light flow = large headways. The
С
       program also utilises uniform departures, random arrivals and does
C
       not account for delay due to acceleration or deceleration.
С
C
       Alphabetical list of memory variables (all variables in seconds
 С
       unless otherwise noted)
С
 С
 Сс
                 = variable used to store result of re-run question at
      ANS1
                   end of program
 C
 Cr
      AVGDELAY = calculated average delay
```

Cr AVGPEDHDWY= calculated average ped headway Cr AVGVHDWY = average vehicle headway С сι BPUSH = logical variable for Button Pushed y/n С Ci CHKTM = time check to determine if in red or green phase Ci CLOCK = time clock C c COORD = is the x-walk coordinated with the signals C c COORDF = input variable for x-walk coordination Cr CYCLE = variable used to store real value of the current cycle CYCLETM1 = user input cycle time for intersection #1 Ci C i CYCLETM2 = user input cycle time for intersection #2 С C i DELAY = delay time incurred by vehicle Ci DELAYSUM = sum of all vehicle delays at current intersection Ci DSCHTM = time that vehicle is discharged С Ci ENDTIME = time at which the TSD must stop plotting С Ci THDMA = rounded integer value of the calculated headway Ci INTRED = array to store time of intersection RED interval сi = counter for intersection red intervals 18 С Ci MAX = maximum number of vehicles to plot for TSD Ci MAXVHRED = maximum vehicle red time at pedestrian x-ing С = PEDGREEN + PEDCLR Ci MINVHGR = minimum vehicle phase green time С Ci NCYCLE = truncated value of cycle Ci NRED = counter for which red interval the signal is at Ci NTHRU = number of through vehicles С OFFSET1 = offset between signal one and signal two Ci Ci OFFSET2 = offset between signal two and signal three ONPRVDIS = previous discharge time of side street vehicle Ci Сг ONTRNHDWY = on-turning traffic headway (seconds) Сг ONTRNVLM = on-turning traffic volume (vph) С Ci PEDARVL = pedestrian arrival time Ci PEDCLR = pedestrian clearance time for X-walk Ci PEDCNT = pedestrian counter used in a loop Ci PEDDATA = array to store pedestrian arrival time max. 1000 peds Ci PEDGREEN = length of pedestrian green phase Ci PEDHDWY = pedestrian arrival headway Ci PEDTIMER = timer to determine length of ped walk phase Ci PEDVOL = pedestrian volume, input by user Cr PHDWY = calculated pedestrian headway (real) Ci PREVDIS = previous time of discharge Сс PRNDETL = if set to YES then print out a detailed report С = if set to NO then print only a summary
```
С
               = logical variable to see if vehicle signal is red
сι
     RED
     RI
               = red index
Ci
               = random number storage variable
     RNDM
Cr
     RNDMFNC = random number generator function
Сг
С
     SATFL
               = user input saturation flow rate
Cr
     SCALE
               = scaling factor used to obtain realistic headways
Cr
               = seed number for random number generator
Ci
     SEED
               = saturation flow headway
Ci
     SEHDWY
     SIMTIME = duration of simulation in seconds
Ci
     STARTTIME = time at which the TSD must start plotting
Ci
     SUMPEDHDWY= sum of calculated ped headways
Сг
     SUMPEDDLY = sum of the pedestrian delays
Сг
     SUMVHDWY = sum of calculated vehicle headways
Сi
С
               = vehicle green phase at ped x-ing (calculated)
     THISGR
Ci
     THRUHDWY = through movement traffic headway (seconds)
Cr
     THRUVLM = through movement traffic volume (vph)
Cr
               = point within the cycle, varies between 1 to CYCLETM
Cí
     TIME
      TMVHARV = time that vehicle arrives in the system (seconds)
Ci
Ci
     TRAVEL1 = travel time between signal one and signal two
     TRAVEL2 = travel time between signal two and signal three
Ci
               = input variable (Y/N) to print out a TSD
Сc
     TSD
               = last vehicle number to plot on the TSD
Ci
      TSDEND
      TSDSTART = first vehicle number to plot on the TSD
Cí
Ci
               = input simulation time in hours
     TSIMH
С
C i VEHDELAY = vehicle delay (seconds)
              = array to store clock time for begin vehicle red phase
Ci
      VEHRED
      VEHTIMER = timer to determine length of vehicle green phase
Ci
     VHGREEN = logical variable to determine begin of vehicle green
CL
      VHGRTM1 = phase vehicle green interval Int #1 (seconds)
Cr
      VHGRTM2 = phase vehicle green interval Int #2 (seconds)
Сг
      VEHHDWY = calculated vehicle headway (seconds)
Ci
      VEHICLE = a 5000 x 8 array used to store information regarding
Ci
                  each vehicle
С
C
                  1 - arrival time at Int #1
                  2 - departure time from Int #1
 С
                  3 - arrival time at ped crossing
 Ĉ
                  4 - departime time from ped crossing
 C
                  5 - arrival time at Int #2
 С
                  6 - departure time from Int #2
 С
 С
                  7 - running total of delay to vehicle
 С
                  8 - either T for Through Vehicle or
                             S for Side Street Vehicle
 С
 C
       VHREDIM1 = phase vehicle red interval Int #1 (seconds)
 Сг
       VHREDIM2 = phase vehicle red interval Int #2 (seconds)
 Cr
                 = vehicle counter
 Ci
       VHCNTR
```

```
C
сι
                 = logical variable if ped phase still on walk
      WALK
С
С
С
      Type Declaration of ALL variables
С
      CHARACTER*1 ANS1, PRNDETL, COORDF, COORD, TSD
      INTEGER CHKTM, CLOCK, CYCLETM1, DELAY, DELAYSUM, DSCHTM
      INTEGER IHDWY, MINVHGR, NCYCLE, OFFSET1, OFFSET2
      INTEGER PEDARVL, PEDCLR, PEDCNT, PEDDATA(2000, 2), PEDGREEN, PEDHDWY
      INTEGER PEDTIMER, PEDVOL, PREVDIS, RI, SEED, SIMTIME, THISGR
      INTEGER TIME, TMVHARV, TRAVEL1, TRAVEL2, TSINH, VEHDELAY
      INTEGER VEHRED(500), VEHICLE(5000,8), VEHTIMER, VHCNTR
      INTEGER SFHDWY, MAXVHRED, TOTLDELAY, TSDEND, TSDSTART
      INTEGER ENDTIME, STARTTIME, INTRED (500), CYCLETM2
      LOGICAL BPUSH, FLAG, RED, VHGREEN, WALK, FIRST, COORD
      LOGICAL FLAG1, FLAG2, FLAG3, FLAG4, FLAG5, FLAG6
      REAL AVGDELAY, AVGPEDHDWY, AVGVHDWY, CYCLE, ONTRNHDWY, RNDM
      REAL RNDMFNC, SATFL, SCALE, RSFHDWY, VHGRTM, VHREDTM, THRUHDWY
      REAL PHOWY, THRUVLM, ONTRNVLM, SUMVHOWY, VEHHOWY, SUMPEDHOWY
      REAL AVGTOTDELAY, VHGRTM2, VHREDTM2
С
С
      Initialise the scale factor
С
      SCALE = 0.90
С
С
      Set the FLAG equal to TRUE for the first iteration ONLY
C
       FLAG = .TRUE.
С
С
       Open up the file named "INPUT.DAT" from which to read in the
С
       input data
С
1001 OPEN (7, FILE='INPUT.DAT', STATUS='OLD')
С
C
       Open up a file, OUTPUT.DAT, to which to write the output data
С
       OPEN (6, FILE="OUT", STATUS="UNKNOWN")
 С
С
       Read in the data values to be used in the evaluation
 С
       READ(7,1002) THRUVLH, ONTRNVLM, SATFL, TSIMH, SEED, VHREDTM1, VHGRTM1,
      +
               VHREDTM2, VHGRTM2, PEDVOL, PEDGREEN, PEDCLR, TRAVEL1, TRAVEL2,
              OFFSET2, CYCLETM1, CYCLETM2, MINVHGR, TSDEND, TSDSTART,
      +
               PRNDETL, COORDF, TSD
 1002 FORMAT(3F5.0,215,4F5.0,1115,3A1)
 С
```

```
С
С
      Check values of input data
С
      Initialise the CO-ORDINATION flag to FALSE, i.e. the pedxing is
C
      not coordinated with the other two intersections
      COORD = .FALSE.
С
      If the user requests coordination then Net the CO-ORDINATION flag
С
С
      to TRUE
С
      IF (COORDF.EQ. 'Y'.OR.COORDF.EQ. 'Y') COORD = .TRUE.
С
      Set the index counter for the intersection red interval start time
C
      to 1.
С
С
      IR = 1
С
      Set the first intersection red interval start time = 0. Due to
С
      the manner in which the program was designed, the first
С
      intersection will always commence operations on a red signal.
C
C
      INTRED(IR) = 0
С
С
      Check what the overall network V/C ratio is. If the V/C ration
      exceeds 0.80 then display an error message and STOP the program
С
С
      operation.
С
      IF (((THRUVLM+ONTRNVLM)/(SATFL*VHGRTM/CYCLETM1)).GT.0.80) THEN
         WRITE(*,7601)
7601
         FORMAT(2X, 'ERROR: V/C ratio exceeds 0.80, program halted')
         GOTO 9999
      ENDIF
С
      Check if the vehicle red interval plus the vehicle green interval
С
      exceeds the cycle time. If it does, display an error message and
С
      halt the program operation. FIRST intersection
С
С
      IF ((VHREDTM1+VHGRTH1)_GT_CYCLETM1) THEN
         WRITE (*,7602)
7602
         FORMAT(2X, 'ERROR: Red Interval + Green Interval exceeds Cycle
                Time', /,10X, 'PROGRAM HALTED.',//)
         GOTO 9999
      ENDIF
С
      Check if the vehicle red interval plus the vehicle green interval
С
С
      exceeds the cycle time. If it does, display an error message and
С
      halt the program operation. SECOND intersection
С
       IF ((VHREDTH2+VHGRTM2).GT.CYCLETH2) THEN
```

```
WRITE (*,7602)
         GOTO 9999
      ENDIF
С
С
      Check the length of the vehicle green interval, if it is less than
С
     7.0 seconds, display an errorr message and halt the program
С
      operation.
С
      IF(VHGRTM.LT.7.0) THEN
         WRITE (*,7603)
7603
         FORMAT(2X, 'ERROR: Vehicle Green time must be greater than 7 s',
               /,10X,'program halted.',//)
         GOTO 9999
      ENDIF
С
С
      Check the length of the pedestrian green interval, if it is less
      than 7.0 seconds, display an error message and halt the program
С
С
      operation.
С
      IF(PEDGREEN.LT.7.0) THEN
         WRITE (*,7604)
7604
         FORMAT(2X, 'ERROR: Pedestrian Green must be greater than 7 s',
     +
                /,10X,'program haited.',//)
         GOTO 9999
      ENDIF
С
      Check the length of the vehicle green interval at the crosswalk if
С
С
      it is less than 7.0 seconds, display an warning message asking the
      user if he wishes to continue or to halt the program operation.
C
C
      IF(MINVHGR.LT.7.0) THEN
         WRITE (*,7605)
7605
         FORMAT(2X, 'WARNING: The minimum vehicle green interval at the',
               ' crosswalk is less than 7 seconds.',/,
               2X, 'Do you wish to continue (Y/N) ? :',/)
         READ(*,7606)ANS1
7606
         FORMAT(A1)
         IF (ANS1.EQ.'N'.OR.ANS1.EQ.'n') GOTO 9999
      END1F
С
С
      If the user put a lower case "Y" into the input file then convert
C
      it to upper case
С
      IF (PRNDETL.EQ. 'y') PRNDETL = 'Y'
С
Ç
      If the user requests a detailed output then open up a unit for the
С
      printer to print out the TSD plot. Note: the plot CANNOT be
С
      redirected to a file for printing later due to the nature of the
С
      print commands used.
С
```

```
IF (PRNDETL.EQ. 'Y') THEN
        WRITE(*,7690)
        FORMAT(2X, 'PLEASE ensure that the printer is on and is set up
                  for compressed printing (80 column printer) or
    +
                  standard printing with wide (132 column) paper",//)
    +
        PAUSE
        OPEN(8, FILE='PRN')
     ENDIF
С
С
     Write all of the user specified data to the output file
С
     WRITE(6, 1009) THRUVLM, ONTRHVLM, SATFL, TSIMH, SEED, VHREDTM1, VHGRTM1,
            VHREDTM2, VHGRTM2, PEDVOL, PEDGREEN, PEDCLR, TRAVEL1, TRAVEL2,
            OFFSET2, CYCLETM1, CYCLETM2, MINVHGR, COORDF, TSD, PRNDETL
1009 FORMAT(//,10X,'PEDESTRIAN CROSSING EVALUATION',///,
                                                   : ',F5.0,/,
    +5X, 'Through traffic volume (pcu/h)
    +5X,'Side street on turn traffic volume
                                                  : ', 45.0,/,
    +5X, Stopline saturation flow (pcu/h*gr)
                                                  : ',F5.0,/,
    +5X, Duration of simulation (minutes)
                                                   : ',15,/,
    +5X, 'Seed Number (odd three digit)
                                                    : ',15,/,
    +5X, 'Vehicle Red Interval #1 (seconds)
                                                   : ',F5.0,/,
    +5X, 'Vehicle Green Interval #1 (seconds)
                                                   : ',f5.0,/,
    +5X, Vehicle Red Interval #2 (seconds)
                                                   : ',F5.0,/,
                                                   : ',F5.0,/,
    +5X, 'Vehicle Green Interval #2 (seconds)
                                                    : ',15,/,
    +5X, 'Pedestrian volume (peds/h)
    +5X, 'Pedestrian green time (seconds)
                                                    : ',15,/,
    +5X, Pedestrian clearance time (seconds)
                                                   : ',15,/,
    +5X, 'Travel time (Int.1 to ped crossing, seconds) : ', 15,/,
    +5X, 'Travel time (Ped crossing to Int.2, seconds) : ', I5, /,
    +5X, 'Signal Offset (seconds)
                                                    : ',15,/,
                                                   : ',15,/,
     +5X, 'Intersection #1 cycle time (seconds)
     +5X, 'Intersection #2 cycle time (seconds)
                                                   : ',15,/,
     +5X, 'Minimum vehicle green time at ped X-ing (sec): ', 15,/,
     +5X, 'PEDXING coordinated with signals (Y/N)
                                                   :
                                                          ',A1,/,
     +5X, Print the Time Space Diagram (Y/N)
                                                    :
                                                          ',A1,/,
     +5X, 'Produce detailed report
                                                    :
                                                          ',A1,///)
С
С
      *****
С
С
С
      Intersection #1 calculations
С
c
      ***
С
      If the FLAG is set TRUE and the V/C ratio is greater than 0.70
c
С
      then start with a lower value of scale. The flag is set TRUE fo
      the first iteration of the program only, otherwise SCALE would
С
С
      allways be set to 0.70
С
```

```
IF (FLAG.AND.(THRUVLM/(SATFL*VHGRT%/CYCLETM)).GT.0.70) THEN
         SCALE = 0.70
     ENDIF
С
С
      Initialise all of the variables to be used in this module of the
С
      program.
С
      PREVDIS = 0
      SUMVHDWY = 0
      AVGVHDWY = 0
      SUM = 0
      TMVHARV = 0
      N = 0
      NTHRU = 0
      CLOCK = 0
С
С
      Calculate the through traffic average headway
С
      THRUHDWY = 3600/THRUVLM
С
C
      Calculate the on-turn traffic headway. This value assumes that
      vehicles will arrive only during the mainstreet red phase and
      assumes a uniform (non-random) arrival rate and pattern
С
      ONTRNHDWY = NINT(((3600/CYCLETM1)*VHREDTM1)/ONTRNVLM)
С
С
      Set the time of discharge for the previous sidestreet vehicle to a
С
      value equal to the negative of the average headway. This is done
С
      so that for the first interval a vehicle will discharge as soon as
С
      the signal is green for the sidestreet traffic
С
      ONPRVDIS = -ONTRNHDWY
С
С
      Calculate the real value of the saturation flow headway
С
       RSFHDWY = 3600/SATFL
С
С
      Calculate the integer value of the saturation flow headway
С
       SFHDWY = NINT(RSFHDWY)
С
С
       Convert the input simulation time from minutes to seconds
С
       SIMTIME = TSIMH * 60
С
С
       Initialize the random number generator by calling the function and
С
       passing the seed number to it.
С
       RNDM = RNDMFNC(SEED)
С
```

```
Increment the vehicle counter
C
С
1004 N = H + 1
С
     Check to see if the program has looped so far that the scale = 1.0
С
С
     IF (SCALE.GE.1.0) SCALE = 0.99
С
     Random number is factor by SCALE
С
С
      RNDM = RNDMFNC(0)*SCALE
С
      Using the random number calculate the next vehicle headway using a
C
      shifted negative exponential function. The function is shifted by
С
      2.0 in order to maintain a minimum vehicle headway of 2.0 seconds
С
С
      VEHHDWY = 2 - (THRUHDWY*LOG(1-RNDM))
С
      Roundoff the value of the headway to an integer value
С
С
      IHDWY = NINT(VEHHDWY)
С
С
      Calculate the sum of the real value headways to be used as a check
      at the end of the module
С
С
      SUMVHDWY = SUMVHDWY + VEHHDWY
С
      Calculate the arrival time of the next vehicle
С
С
      TMVHARV = TMVHARV + IHDWY
C
С
      Increment the time clock
C
1005 CLOCK = CLOCK + 1
С
      If the vehicle arrival time is greater than the clock time then
C
      jump to the end of the module otherwise keep processing
C
      Conditional IF #1
С
С
      IF (TMVHARV.LE.SIMTIME) THEN
С
      Check if the clock is less than or equal to the duration of the
С
       simulation, if it is then continue processing.
С
      This is conditional IF #2
C
С
          IF (CLOCK.LE.SIMTIME) THEN
С
С
       Determine what cycle number the signal is at by dividing the clock
       time by the cycle time.
С
С
```

```
CYCLE = CLOCK/CYCLETM1
С
      Convert the cycle number to an integer by truncating the value of
С
С
      cycle. For example INT(3.7) = 3
С
            NCYCLE = INT(CYCLE)
C
С
      Calculate how far into the green phase the signal is at
C
            TIME = CLOCK - (NCYCLE * CYCLETM1)
С
С
      Now calculate a check variable to determine whether or not the
С
      phase has changed to red
С
            CHKTM = TIME - VHREDTM1
C
С
      This is the check to see if the signal is red or green. If it is
      green then CHKTM will be greater than or equal to zero and the
С
С
      program will continue to process. If the signal is red then the
С
      program will begin discharging the sidestreet traffic
      This is conditional IF #3.
С
С
            IF (CHKTM.GE.O) THEN
C
С
      If the clock is greater than or equal to the Vehicle Arrival Time
С
      then keep processing otherwise loop back to increment the time
С
      clock
      Conditional IF #4
С
С
                IF (CLOCK.GEVHARV) THEN
С
С
      This DO loop is the main processing portion of the module. The
С
       counter, J, can go from 1 to Vehicle Green Time.
C
                   DO 1006 J = 1, VHGRTM1
С
C
      Set the variable DSCHTM equal to J
С
                      DSCHTM = J
С
С
       If the CHKTM + DSCHTM is greater than the Vehicle Green Time then
       loop back to line labeled 1005. In other words the vehicle would
С
С
       be crossing the stopline during RED if the condition evaluates to
С
       TRUE. If it does evaluate to TRUE then loop back to increment the
       clock to get to the next green interval.
 С
С
                      IF ((CHKTM+DSCHTM).GT.VHGRTM1) GOTO 1005
С
 С
       If the CLOCK time plus the DISCHARGE time minus the time at which
 С
       the previous vehicle discharged is greater than the Saturation
```

```
Flow headway then continue processing, otherwise jump down to
С
      increment the DO loop. This is conditional IF #5
С
С
                  IF ((CLOCK+DSCHTM - PREVDIS).GE.SFHDWY) THEN
С
      Check if the cLOCK minus the time at which the previous vehicle
С
      discharged is greater than the Saturation Flow headway. If the
С
      condition evaluates to TRUE then the vehicle does not slow down or
С
С
      stop at the intersection.
С
                     IF ((CLOCK - PREVDIS).GE.SFHDWY) DSCHTM = 0
С
      Calculate the vehicle delay by adding the CLOCK time plus the
С
      Discharge Time and subtracting the Vehicle Arrival time.
С
С
                        DELAY = (CLOCK + DECHTH) - THVHARV
С
      Check to see if somehow the calculated delay evaluates to less
С
С
      than zero then set the delay equal to 0.
С
                        IF (DELAY.LT.0) DELAY = 0
С
      Store the vehicle discharge time in the variable PREVDIS to be
С
С
      used in the next iteration of the loop.
С
                        PREVDIS = CLOCK + DSCHTM
С
С
      Store the vehicle arrival time in the array
С
                        VEHICLE(N,1) = THVHARV
С
      Store the vehicle discharge time in the array
С
С
                         VEHICLE(N,2) = CLOCK + DSCHTM
С
       Store the vehicle delay in the array
С
С
                         VEHICLE(N,7) = DELAY
С
       Store a variable in the array to indicate on the TSD if the
С
       vehicle is a through or on-turn vehicle.
С
С
                         VEHICLE(N,8) = 'T'
С
       Sum up the delay to each vehicle so that an average delay can be
 С
 С
       calculated for the intersection.
 С
                         DELAYSUM = DELAYSUM + DELAY
 С
```

```
C
      To correctly calculate the intersection delay and headways for the
С
      mainstreet traffic, a separate vehicle counter must be established
С
                        NTHRU = NTHRU + 1
С
С
      Loop back to line label 1004 so that the vehicle counter can be
С
      incremented.
                        GOTO 1004
С
С
      This is the ENDIF statement for Conditional IF #5
С
                     ENDIF
С
      This is the CONTINUE statement for the end of the DO loop.
С
С
1006
                  CONTINUE
С
С
      Endif statement for Conditional IF #4
С
               ENDIF
С
С
      If the mainstreet signal is RED then discharge the sidestreet
C
      traffic
С
      Else for Conditional IF #3
С
            ELSE
С
С
      If the clock minus the discharge time of the previous sidestreet
С
      vehicle is greater than or equal to the sidestreet traffic headway
      then discharge another vehicle from the sidestreet
С
      Conditional IF #6
С
С
               IF (CLOCK=ONPRVDIS.GE.ONTRNHDWY) THEN
С
      Store the arrival and discharge time into the Vehicle data array
С
С
      Store the vehicle type in the array i.e. Side Street Vehicle
С
                  VEHICLE(N,1) = C'.OCK
                  VEHICLE(N,2) = CLOCK
                  VEHICLE(N,8) = 'S'
С
С
      Store the discharge time in the previous discharge time variable
C
                  ONPRVDIS = CLOCK
С
С
      Increment the overall vehicle counter
С
                  N = N + 1
С
```

```
indif statement for Conditional IF #6
С
С
               ENDIF
С
С
      If the variable CHKIM is equal to the negative of the red interval
      time then the signul must be red for the through vehicles. This
С
С
      condition will occur only once per cycle.
      Conditional IF #7
С
С
               IF(CHKTH.EQ.-VHREDTM) THEN
С
      Increment the index for the INTRED array
С
С
                  IR = IR + 1
С
С
      Store the clock time into the INTRED array. This is the time at
      which the signal changed from GREEN to RED. This value is
С
С
      required for later modules of the program.
С
                  INTRED(IR) = CLOCK
С
С
      Endif statement for Conditional IF #7
С
               ENDIF
С
      Endif statement for Conditional IF #3
С
С
            ENDIF
С
С
      Loop back to increment the clock without incrementing the vehicle
      counter. This statement is reached only if the signal phase is
С
      red when a vehicle wishes to discharge.
С
C
            GOTO 1005
С
      This is the EKDIF statement for Conditional IF #2
С
C
         END15
С
С
      This is the ENDIF statement for Conditional IF #1
С
      ENDIF
С
С
      This point is reached only when the CLOCK reaches the Simulation
       Time. Calculate the average delay by taking the total delay and
С
       dividing by the number of discharged vehicles. The denominator is
С
С
       N - 1 because the vehicle counter increments before the clock is
С
       checked to see if it exceeds the Simulation Time.
 С
```

```
1111 AVGDELAY = DELAYSUM/(NTHRU - 1)
С
С
      Calcualte the average headway by dividing the total of all
С
      headways by the number of vehicles.
С
      AVGVHDWY = SUMVHDWY/(NTHRU - 1)
С
С
      Check to see if the scale factor was sufficient to generate the
С
      correct number of vehicles as specified by the user. Do this by
С
      comparing the average headway to the through volume headway. If
      different is too large then the SCALE factor must be adjusted and
С
      entire module rerun. Conditional IF #4
С
С
      IF ((AVGVHDWY+0.02).LE.THRUHDWY) THEN
С
С
      Increment the scale factor by 0.01
С
         SCALE = SCALE + 0.01
С
С
      Close the input data file
С
         CLOSE(7)
С
С
      Close and delete the output data file - the results are not valid
C
         CLOSE(6, STATUS='DELETE')
С
      Set the flag to FALSE so that the SCALE factor is not reset to
С
С
      0.70 at the beginning of this module
С
          FLAG = .FALSE.
C
С
       Loop back to line labeled 1001 to restart this module.
С
          GOTO 1001
С
С
       This is the ENDIF statement for Conditional 1F #4
С
       ENDIF
С
С
       If the user requested a detailed output from the program then
 С
       print out the vehicle number, time of arrival, the delay and the
С
       time of discharge. (Mainstreet volume only)
 С
       IF (PRNDETL.EQ.'Y') THEN
          DO 1112 JJ = 1, N - 1
             IF (VEHICLE(JJ,8).EG.'T') THEN
                WRITE(6,7771)JJ, VEHICLE(JJ, 1), VEHICLE(JJ, 2),
      +
                             DELAY, VEHICLE(JJ,7)
```

```
ENDIF
1112
        CONTINUE
С
     If the user specified a detailed output then print to the file the
С
     vehicle number and the discharge time (SIDESTREET traffic)
С
С
        DO 1113 JJ = 1, N - 1
           IF (VEHICLE(JJ,8).EQ.'S') THEN
             WRITE (6,7776)JJ, VEHICLE(JJ,1)
           END IF
1113
        CONTINUE
     ENDIF
С
     Write to the file the average vehicle delay and the total average
С
     delay. For the first intersection the average delay and the total
С.
С
     average delay are identical.
С
     WRITE(6,7772)AVGDELAY, AVGDELAY
С
     Set a variable, VHCNTR equal to the number of vehicles. The
C
     counter will be used in later modules to prevent the program from
С
     trying to evaluate too many vehicles.
С
С
     VHCNTR = N - 1
С
      ****
С
C
      Pedestrian Arrivals Calculations
С
C
      This section calculates the arrival times of all of the pedestrians
С
      using the random sub-function listed at the end of this program.
С
      The program will continue to iterate until there are less pedestrian
С
      arrivals per hour than are specified by the user.
С
С
      ******
С
c
С
      If the user has specified pedestrians crossing the roadway then
      utilise this module otherwise skip over it. Conditional IF #8
С
С
      IF (PEDVOL.GT.1.) THEN
С
      Initialise the Pedestrian headway to O
С
С
         PEDHDWY = 0
С
С
      For the first run approximate the scale factor using a
      theorectically derived formula
С
С
         SCALE = -0.00011*PEDVOL+1.11
```

```
С
С
      Increment the scale factor by 0.01. The program module loops up
      to this point, incrementing the scale factor each time until the
С
С
      module yields suitable results for pedestrian generation.
С
2000
         SCALE = SCALE + 0.01
С
С
      Set the pedestrian counter equal to 1
С
         PEDCNT = 1
С
С
      Set the pedestrian arrival time equal to 0
С
         PEDARVL = 0
С
С
      This DO loop generates the pedestrian arrival headways. The loop
      continues from Pedestrian Counter from 1 to total pedestrian
С
С
      volume.
С
         DO 2001 PEDCNT = 1, PEDVOL
С
С
      Generate a random number by calling the random number generator
С
            RNDM = RNDMFNC(0)
С
C
      Generate a real number value for the pedestrian headway. The
С
      headways are generated using a Negative Exponential function.
С
      Unlike the vehicle headways, pedestrian headways may be 0, i.e.
С
      pedestrians arrive simultaneously.
C
            PHDWY = SCALE*ABS((3600/PEDVOL)*(LOG(1-RNDH)))
С
 С
      Round off the ped headway to an integer value
 С
             PEDHDWY = NINT(PHDWY)
 С
 С
       Sum up all of the pedestrian headways to be used at the end of the
 С
       as a check
 C
             SUMPEDHOWY = SUMPEDHOWY + PHOWY
 С
 С
       The pedestrian arrival time is equal to the previous pedestrian
 С
       arrival time plus the just calculated pedestrian headway
 С
             PEDARVL = PEDARVL + PEDHDWY
 С
 С
       Store the pedestrian arrival time into the pedestrian data array
 С
             PEDDATA(PEDCNT,1) = PEDARVL
```

```
С
     Now for some conditional checks of the data.
С
С
     If the pedestrian arrival time is greater than the simulation time
С
     AND if the pedestrian counter is greater than the pedestrian
С
     volume then break out of the DO loop and go to Line 2222
С
С
           IF (PEDARVL.GE.SIMTIME.AND.PEDCNT.LE.PEDVOL) GOTO 2222
С
      If the pedestrian arrival time is greater than the simulation time
С
      then loop back up to line 2000. The scale factor will be
С
С
      increased and all of the pedestrian arrival times regenerated.
С
           IF (PEDARVL.GT.SIMTIME) GOTO 2000
      If the pedestrian counter is greater than the pedestrian volume
С
      then loop back up to line 2000. The scale factor will be
С
      increased and all of the pedestrian arrival times regenerated.
С
С
            IF (PEDCNT.GT.PEDVOL) GOTO 2000
С
С
      End of the DO loop
С
2001
         CONTINUE
С
      Calculate the average pedestrian headway based on the randomly
С
      generated individual pedestrian headways.
С
С
2222
         AVGPEDHDWY = SUMPEDHDWY/(PEDCNT - 1)
С
C
      Check if the average pedestrian headway is within 0.02 of the
      overall average pedestrian headway. If it is not then loop back
С
      to the beginning of the module to regenerate all of the pedestrian
С
      arrival times.
C
С
         IF ((AVGPEDHDWY + 0.02).LE.(3600/PEDVOL)) GOTO 2000
С
С
      Continue running through the module
С
         CONTINUE
С
С
      This is the ENDIF for conditional IF #8
С
      ENDIF
С
С
 С
       ******
 С
 С
      Pedestrian Signal Operations
```

```
С
С
      ****
С
С
С
      If the user has specified a pedestrian volume then use this module
С
      Conditional IF #9
С
      IF (PEDVOL.GT.1) THEN
С
С
      Initialise a number of variables
С
         CLOCK = 0
         VENTIMER = 0
         IR = 1
         RI = 1
         PEDCNT = 0
         PEDARVL = 0
         WALK = .FALSE.
         BPUSH = .FALSE.
         VHGREEN = .TRUE.
         FIRST = .TRUE.
         PEDTIMER = 0
С
С
      Increment the pedestrian counter
С
3000
         PEDCNT = PEDCNT + 1
С
      The pedestrian arrival time is obtained from the pedestrian data
С
С
      array
С
         PEDARVL = PEDDATA(PEDCNT, 1)
С
С
      If the WALK phase is TRUE and the pedestrian arrival time is less
С
      than the CLOCK time then the pedestrian is allowed to cross
      Conditional IF #10
С
 С
3002
         IF (WALK.AND.PEDARVL.LE.CLOCK) THEN
 С
 С
      The pedestrian delay is equal to the clock time minus the arrival
 С
      time and is stored in the pedestrian data array
 C
            PEDDATA(PEDCNT,2) = CLOCK - PEDARVL
 C
 С
       If the user requests a detailed output from the program then print
      out the Pedestrian Count, Pedestrian Arrival Time, Clock Time and
 С
 С
      the Pedestrian Delay.
 С
            IF (PRNDETL.EQ. 'Y') THEN
               WRITE(6,7773)PEDCNT, PEDDATA(PEDCNT, 1), CLOCK,
```

```
PEDDATA (PEDCHT, 2)
     +
С
      Sum up the pedestrian delay to later calculate an average delay
С
С
      per pedestrian
С
            SUMPEDDLY = SUMPEDDLY + PEDDATA(PEDCNT,2)
            ENDIF
С
      Loop back to line 3000 to obtain the next pedestrian
С
С
            GOTO 3000
С
С
      If the pedestrian arrival time is greater than the clock time or
      if the WALK phase was not activated
С
С
         ELSE
С
      If the WALK phase is not activated and the Vehicle Green phase is
С
      activated then proceed into the DO loop
С
      Conditional IF #11
С
С
            IF (.NOT.WALK.AND.VHGREEN) THEN
C
C
      Set up a clock timer that increments from 1 to the Simulation Time
С
               DO 3001 CLKTM = 1,SIMTIME
С
      Increment the time CLOCK
С
С
                  CLOCK = CLOCK + 1
С
C
      Increment the vehicle green phase timer
С
                  VEHTIMER = VEHTIMER + 1
С
С
      If the pedestrian counter is greater than the pedestrian volume or
С
       if the clock is greater than the simulation time then break out of
С
       this module to continue on with the next module
С
                   IF(PEDCNT.GT.PEDVOL.OR.CLOCK.GE.SIMTIME) GOTO 3333
С
С
       If the pedestrian arrival time is less than the clock time then
c
       set the Button Push to TRUE
С
                   IF (PEDDATA(PEDCNT, 1).LE.CLOCK) BPUSH = .TRUE.
C
       If the PEDXING signal is coordinated with the intersection signals
С
С
       then execute the commands following
С
       Conditional IF #12
```

IF (COORD) THEN С C Set the Red clock time equal to the upstream intersection clock red time plus the travel time from Int. #1 to the Ped Xing С NRED = INTRED(IR) + TRAVEL1 C If the clock has been incremented past the next allowable pedking C С red clock time then increment the red time. This condition is С true only if no pedestrian has pushed the button for an activation for the next coordinated pedxing red interval С С IF (CLOCK.GT.NRED) IR = IR + 1 c С If the clock is equal to the time of the beginning of the red interval from Intersection #1 plus the travel time (for C С coordination) AND a pedestrian has activated the signal. С Conditional IF #13 C IF (CLOCK.EQ.(INTRED(IR)+TRAVEL1).ANDUSH) THEN С С Set the WALK indication to TRUE С WALK = .TRUE. C С The time that the vehicle red interval begins at the PEDXING is С equal to the CLOCK time. С VEHRED(RI) = CLOCK С С Increment the index for the vehicle red interval array С RI = RI + 1С С Set the button push and first iteration flags to FALSE С BPUSH = .FALSE. FIRST = .FALSE. С С Loop up to line 3002 to discharge the pedestrian С GOTO 3002 С С Endif for Conditional IF #13 С ENDIF С C If the PEDXING signal is not coordinated with the intersection

С

```
signals then execute the commands following.
      Else for Conditional IF #12
С
С
                  ELSE
Ç
      If the vehicle green phase timer is greater than the minimum
С
      vehicle green AND a pedestrian has arrived and pushed the button
С
      to call the pedestrian walk phase OR if this is the first run
С
      through this portion of the module and the button has been pushed.
С
      This module assumes that the vehicle green phase remains activated
С
С
      until a pedestrian call to the signal
С
      Conditional IF #14
С
                     IF ((VEHTIMER.GE.MINVHGR.ANDUSH).OR.
                        (FIRST.ANDUSH))THEN
     +
С
      Set the WALK indicator to TRUE
С
С
                        WALK = .TRUE.
С
С
      Reset the vehicle green timer to O
С
                        VEHTIMER = 0
С
      Store the time at which the vehicle phase changes to red in the
С
      VEHICLE RED data array for use in the next module
С
С
                        VEHRED(RI) = CLOCK
С
С
      Increment the counter for the red intervals
C
                        RI = RI + 1
С
      Set the button push and first iteration flags to FALSE
С
С
                         BPUSH = .FALSE.
                         FIRST = .FALSE.
С
С
      Loop up to line 3002 to discharge the pedestrian
С
                         GOTO 3002
 С
       Endif for Conditional IF #14
 С
 С
                      ENDIF
 С
       Endif for Conditional IF #12
 С
 С
                   ENDIF
```

```
С
С
      Continue statement to end the DO loop
С
3001
               CONTINUE
С
С
      Endif for Conditional IF #11
С
            ENDIF
С
С
      Endif for Conditional IF #10
С
         ENDIF
С
С
      If the pedestrian walk phase timer is greater than the specified
С
      pedestrian green time then set the WALK signal to FALSE and keep
С
      the Vehicle Green Phase at FALSE to allow for the pedestrian
С
      clearance time.
С
         IF (PEDTIMER.GE.PEDGREEN) THEN
            WALK = .FALSE.
            VHGREEN = .FALSE.
         ENDIF
С
С
      If the pedestrian timer is greater than the pedestrian green time
C
      plus the pedestrian clearance time then set the WALK phase to
C
      FALSE, the vehicle green phase to TRUE, reset the pedestrian timer
      to 0, and substract 1 second from the clock to keep the clock set
С
С
      correctly.
С
         IF(PEDTIMER.GE.(PEDGREEN + PEDCLR)) THEN
            WALK = .FALSE.
            VHGREEN = .TRUE.
            PEDTIMER = 0
            CLOCK = CLOCK - 1
         ENDIF
С
С
      Increment the clock
С
         CLOCK = CLOCK + 1
С
C
      If the pedestrian counter exceeds the pedestrian volume or if the
С
      clock is greater than or equal to the simulation time then jump to
      the end of this module, line 3333
С
С
         IF(PEDCNT.GT.PEDVOL.OR.CLOCK.GE.SIMTIME) GOTO 3333
С
C
      If the WALK signal is on OR if the walk signal is not on and the
С
      vehicle green is not on (i.e. pedestrian clearance time) then
С
      increment the pedestrian phase timer
```

```
С
        IF (WALK.OR.(.NOT.WALK.AND..NOT.VHGREEN))PEDTIMER=PEDTIMER+1
С
     Jump to line 3002 to discharge the pedestrian
С
С
        GOTO 3002
С
С
     Continue statement to maintain program flow
C
3333
        CONTINUE
С
     One last increment for the vehicle red counter
С
С
        RI = RI + 1
С
C.
      Endif for Conditional IF #9
С
      ENDIF
С
      If the detailed print out is requested print out the times at
С
      which the pedxing was red for the vehicles
С
С
      IF (PRNDETL.EQ. 'Y') THEN
        DO 3335 JJ = 1, RI
            WRITE(6,7774)VEHRED(JJ),JJ
3335
         CONTINUE
      ENDIF
С
С
      Calculate and print out the average pedestrian delay
С
      AMGPEDDLY = SUMPEDDLY/PEDCNT
      WRITE(6,7775)AVGPEDDLY
С
С
      Set the last vehicle red interest to Degin at the end of the
      simulation. This is required whethe next module to function
С
С
      properly to calculate green times. If there are no pedestrians
      then the only vehicle red time will be at the simulation time.
С
С
      VEHRED(RI) = SIMTIME
С
С
      *****
С
С
С
      Intersection #2 Delay Calculations
 С
С
      Now perform the delay calculations for the pedestrian crossing by
С
      taking the results from the first intersection (stored in the VEH
 С
      array) and the results from the pedestrian crossing and utilizing
 С
      them in the second intersection
```

```
*********************
С
С
С
     Initialize variables
     PREVDIS = 0
     DELAYSUM = 0
     AVGDELAY = 0
     TMVHARV = 0
     RI = 1
     N = 0
     CLOCK = 0
     RED = .FALSE.
С
С
     The maximum length of the vehicle red time is the sum of the
С
     pedestrian green time plus the pedestrian clearance time
С
     MAXVHRED = PEDGREEN + PEDCLR
С
С
     Increment the vehicle counter
С
4001 N = N + 1
С
С
      If the counter is greater than the number of vehicles generated in
     module #1 then skip over the calculations
С
С
     Conditional IF #15
С
      IF (N.LE.VHCNTR) THEN
С
С
     Obtain the vehicle arrival time by taking the departure time from
С
      intersection #1 and adding the travel time from intersection #1 to
C
      intersection #2
C
        TMVHARV = VEHICLE(N,2) + TRAVEL1
С
C
      Increment the time clock
С
4002
        CLOCK = CLOCK * 1
С
С
      If the CLOCK is greater than the Simulation time then skip to the
     end of this module.
С
С
     Conditional 1F #16
С
         IF (CLOCK.LE.SIMTIME) THEN
С
С
     If the value stored in the vehicle red time array is equal to the
     clock time then set the Vehicle Red phase to TRUE
C
С
           IF (VEHRED(R1).EQ.CLOCK) RED = .TRUE.
```

С

```
С
      If the vehicle phase is red
С
      Conditional IF #17
С
С
            IF (RED) THEN
С
      Set up a DO loop to quickly increment the clock such that the
С
С
      vehicle green phase reappears
C
               DO 4007 KK = 1, MAXVHRED
                  CLOCK = CLOCK + 1
4007
               CONTINUE
С
      Reset the vehicle red phase flag to FALSE
С
C
               RED = .FALSE.
С
      Increment the vehicle red phase counter for the array
С
С
               RI = RI + 1
С
С
      Endif for Conditional IF #17
С
            ENDIF
С
      If the time at which the vehicle arrives is less than or equal to
С
      CLOCK then determine how far into the Green phase the signal is at
С
С
      Conditional IF #18
С
            IF (THVHARV.LE.CLOCK) THEN
С
      There is a special condition for the first iteration of this
С
      portion of the module. Since the RI counter begins at 1 and
С
      stores the first red phase, in order to determine the TIME and the
C
С
      length of the first vehicle green we must have a special
      consideration.
С
С
      Conditional IF #19
С
                IF (RI.EQ.1) THEN
С
       The variable TIME is set to the value of CLOCK
С
С
                   TIME = CLOCK
 С
 С
       The length of the green interval is equal to the time at which the
       vehicle signal first turned to RED
 С
 С
                   THISGR = VEHRED(RI)
 С
```

С Otherwise if this is not the first red interval С ELSE С С The variable TIME is equal to the value of CLOCK minus the time at which the previous RED signal began С С TIME = CLOCK - VEHRED(RI - 1) С The length of this green interval is equal to the time of the С С current RED phase minus the time at which the previous red phase С occurred minus the pedestrian green time minus the pedestrian С clearance time r THISGR=(VEHRED(RI)-(VEHRED(RI-1)+PEDGREEN+PEDCLR)) С С Endif for Conditional IF #19 С ENDIF C The variable CHKTM stores the length of vehicle Green time C С remaining by subtracting the amount of Green time used from the C total amount of Green time available С CHKTM = THISGR - TIME С Set up the DO loop which will run for the duration of the current С vehicle Green interval. Within this DO loop the vehicles are С С discharged and the vehicle delays are calculated С DO 4003 J = 1, THISGR С С Set the variable DSCHTM equal to J С DSCHTM = JС If the CHKTM + DSCHTM is greater than the Length of this green С C interval then loop back to line labeled 4002. In other words the vehicle would be crossing the stopline during RED if the condition С evaluates to TRUE. If it does evaluate to TRUE then loop back to С С increment the clock to get to the next green interval. С IF ((CHKTM+DSCHTM).G7.THISGR) GOTO 4002 С If the CLOCK time plus the DISCHARGE time minus the time at which С C the previous vehicle discharged is greater than the Saturation Flow headway then continue processing, otherwise jump down to С increment the DO loop. This is conditional IF #20 С С

```
IF ((CLOCK+DSCHTM - PREVDIS).GE.SFHDWY) THEN
C
      Check if the CLOCK minus the time at which the previous vehicle
С
      discharged is greater than the Saturation Flow headway. If the
С
      condition evaluates to TRUE then the vehicle does not slow down or
С
      stop at the intersection.
С
r
                  IF ((CLOCK - PREVDIS).GE.SFHDWY) DSCHTM = 0
c
      Calculate the vehicle delay by adding the CLOCK time plus the
C
      Discharge Time and subtracting the Vehicle Arrival time.
С
С
                     DELAY = (CLOCK + DSCHTM) - THVHARV
С
      Check to see if somehow the calculated delay evaluates to less
C
       than zero then set the delay equal to 0.
٢.
 1
                      IF (DELAY.LT.0) DELAY = 0
 С
       Store the vehicle discharge time in the variable PREVDIS to be
 C
       used in the next iteration of the loop.
 С
 С
                      PREVDIS = CLOCK + DSCHTM
 С
       Store the vehicle discharge time in the array
 С
 С
                      VEHICLE(N,3) = TMVHARV
 С
       Store the vehicle discharge time in the array
 С
 С
                       VEHICLE(N,4) = CLOCK + DSCHTM
 С
        Add the intersection delay to the vehicle delay in the array
  С
  C
                       VEHICLE(N,7) = VEHICLE(N,7) + DELAY
  С
        Sum up the total vehicle delay
  С
  С
                        TOTLDELAY = TOTLDELAY + VEHICLE(N,7)
  С
        If the user requested a detailed output from the program then
  С
         print out the vehicle number, time of arrival, the delay and the
  С
         time of discharge.
  С
  С
                        IF (PRNDETL.EQ. 'Y') THEN
                           WRITE(6,7771)N, THVHARV, VEHICLE(N,4), DELAY,
                                        VEHICLE(N,7)
                        ENDIF
   С
         Sum up the intersection delay
   С
   С
                        DELAYSUM = DELAYSUM + DELAY
   С
         Jump up to line 4001 to increment the vehicle counter
   С
```

С GOTO 4001 С С Endif for Conditional IF #20 С ENDIF С С End of the DO loop С 4003 CONTINUE С С Endif for Conditional IF #18 С ENDIF С С Jump to Line 4002 to increment the time clock С GOTO 4002 С С Endif for Conditional IF #16 С ENDIF С C Endif for Conditional IF #15 С ENDIF С Calculate the average delay at this intersection. The denominator С С is (N - 1) because this intersection may not process all of the С vehicles generated by the first intersection. С 4444 AVGDELAY = DELAYSUM/(N - 1) С С Calculate the average of the total delay experienced by all of the С vehicles. The total delay includes the delay experienced at С intersections 1 and 2. С AVGTOTDELAY = TOTLDELAY/(N - 1) С С Print out the two delays to the file and to the screen С WRITE(*,7772) AVGDELAY, AVGTOTDELAY WRITE(6,7772) AVGDELAY, AVGTOTDELAY C Reset the Vehicle Counter to match the maximum number of vehicles С C that proceeded through the PEDXING. This is done because not all C of the vehicles discharged from Intersection #1 proceeded through С the pedestrian crossing within the Simulation Time specified С

```
VHCNTR = N - 1
С
С
     *******
С
С
     Intersection #3 Delay Calculations
С
С
     Now perform the same delay calculations for the next intersection by
С
     taking the results from the first intersection (stored in the VEH
С
     array) and utilizing them in the second intersection
С
С
     ******
С
С
     Initialize variables
С
     PREVDIS = 0
     DELAYSUM = 0
     TOTLDELAY = 0
     SUM2 = 0
     AVGDELAY = 0
     TMVHARV = 0
     N = 0
С
     Increment the vehicle counter
С
С
5000 N = N + 1
С
      If N is less than or equal to the number of vehicles generated at
С
      the first intersection then continue processing otherwise jump
С
     down to the end of this module
С
     Conditional IF #21
С
С
      IF (N.LE.VHCNTR) THEN
С
С
      The time that the vehicle arrives is equal to the time of
С
      discharge from Intersection #2 plus the travel time from
С
      intersection 2 to intersection 3
С
        TMVHARV = VEHICLE(N,4) + TRAVEL2
С
С
      Increment the time clock
С
5001
         CLOCK = CLOCK + 1
С
      If the CLOCK is less than the Simulation Time then continue
С
 С
      processing, otherwise skip down to near the end of the module
 С
      Conditional IF #22
 С
         IF (CLOCK.LE.SIMTIME) THEN
 С
```

```
С
      IF the Vehicle Time of arrival is greater than the clock time then
С
      loop back to increment the clock
С
            IF (TMVHARV.GT.CLOCK) GOTO 5001
С
      If the clock is less than the vehicle red time the set the clock
С
С
      equal to the vehicle arrival time
С
            IF (CLOCK.LT.VHREDTH2) CLOCK = TMVHARV
С
С
      Determine which cycle the signal is at, remembering to include the
С
      signal offset time
С
            CYCLE = (CLOCK-OFFSET2)/CYCLETM2
С
С
      Determine the integer value of the cycle by truncating the value
С
      of CYCLE
С
            NCYCLE = INT(CYCLE)
С
С
      The time into the phase is equal to the CLOCK minus the OFFSET
С
      minus the number of cycles multiplied by the cycle time
С
            TIME = (CLOCK-OFFSET2) - (NCYCLE * CYCLETM2)
С
С
      The amount of time remaining in the Green phase is equal to TIME
С
      minus the Vehicle Red Time
С
             CHKTM = TIME - VHREDTM2
С
С
       If the value of CHKTM is greater than or equal to 0 then the
C
      signal is green and the rest of the calculations may proceed
С
      Conditional IF #23
С
             IF (CHKTM.GE.O) THEN
С
       This DO loop is the main processing portion of the module. The
С
C
       counter, J, can go from 1 to Vehicle Green Time.
С
                DO 5002 J = 1, WHGRTM2
С
С
       Set the variable DSCKTM equal to J
С
                   DSCHTM = J
 С
       If the CHKTM + DSCHTM is greater than the Vehicle Green Time then
 С
 C
       loop back to line labeled 5001. In other words the vehicle would
 С
       be crossing the stopline during RED if the condition evaluated to
 С
       TRUE. If it does evaluate to TRUE then loop back to increment the
```

```
clock to get to the next green interval.
С
С
                  IF ((CHKTH+DSCHTM).GT.VHGRTM2) GOTO 5001
C
      If the CLOCK time plus the DISCHARGE time minus the time at which
С
      the previous vehicle discharged is greater than the Saturation
С
      Flow headway then continue processing, otherwise jump down to
С
      increment the DO loop. This is conditional IF #24
C
C
               IF ((CLOCK+DSCHTM - PREVDIS).GE.SFHDWY) THEM
С
      Check if the CLOCK minus the time at which the previous Wehicle
C
      discharged is greater than the Saturation Flow headhary. If the
С
      condition evaluates to TRUE then the vehicle does not slow four or
С
      stop at the intersection.
С
С
                  IF ((CLOCK - PREVDIS).GE.SFHDWY) DSCHTM = (
С
      Calculate the vehicle delay by adding the CLOCK time \operatorname{pros} the
С
      Discharge Time and subtracting the Vehicle Arrival time.
С
С
                     DELAY = (CLOCK + DSCHTM) - THVHARV
С
      Check to see if somehow the calculated delay evaluates to less
С
С
      than zero then set the delay equal to 0.
C
                     IF (DELAY.LT.0) DELAY = 0
С
      Store the vehicle discharge time in the variable PREVDIS to be
С
С
      used in the next iteration of the loop.
С
                      PREVDIS = CLOCK + DSCHTM
C
С
      Store the vehicle ARRIVAL time in the array
С
                      VEHICLE(H,5) = TMVHARV
С
      Store the vehicle discharge time in the array
C
С
                      VEHICLE(N,6) = CLOCK + DSCHTM
С
       Store the vehicle delay in the array
С
 С
                      VEHICLE(N,7) = VEHICLE(N,2) + DELAY
 С
       Sum up the total vehicle delay
 С
 С
                      TOTLDELAY = TOTLDELAY + VEHICLE(N,7)
 С
```

```
С
      If the user requested a detailed output from the program then
С
      print out the vehicle number, time of arrival, the delay and the
С
      time of discharge.
С
                     IF (PRNDETL.EQ. 'Y') THEN
                        WRITE(6,7771)N, THVHARV, VEHICLE(N,6), DELAY,
     +
                                     VEHICLE(N,7)
                     ENDIF
С
С
      Sum up the intersection delay
С
                     DELAYSUN = DELAYSUM + DELAY
С
С
      Jump to line 5000 to increment the vehicle counter
С
                     GOTO 5000
С
C
      Endif for Conditional IF #24
С
                  ENDIF
С
С
      End of the DO loop
С
5002
               CONTINUE
С
      Endif for Conditional IF #23
С
С
            ENDIF
С
С
       Jump to line 5001 to increment the time clock
С
             GOTO 5001
С
С
      Endif for Conditional IF #22
С
         ENDIF
С
 С
      Endif for conditional IF #21
 С
       ENDIF
 С
 С
       Calculate the average intersection delay
 С
 5555 AVGDELAY = DELAYSUM/(N-1)
 С
 С
       Calculate the average total delay
 С
       AVGTOTDELAY = TOTLDELAY/(N-1)
 С
```

```
Write the two delays to the file and to the screen
С
С
      WRITE(*,7772) AVGDELAY, AVGTOTDELAY
      WRITE(6,7772) AVGDELAY, AVGTOTDELAY
С
С
      ****** TIME SPACE DIAGRAM PLOTTING ********
С
С
С
      If the user wants the Time Space diagram then print out the TSD
С
      plot Conditional IF #25
С
C
      IF (TSD.EQ. 'Y'.OR.TSD.EQ. 'Y') THEN
С
С
      The maximum number of vehicles that can be displayed on the TSD is
С
      equal to the number of vehicles that passed through Intersection
      #3.
С
С
         MAX = N - 1
С
      Check to see if the user specified a vehicle number greater than
С
      the number of vehicles that passed through Intersection #3. If
Ĉ
      the number is greater then reset it to MAX.
С
С
         IF(TSDEND.GT, MAX)TSDEND = MAX
С
      The maximum time to plot on the TSD is equal to the discharge time
С
С
      of the TSDEND vehicle at intersection #2 plus two seconds
С
         ENDTIME = VEHICLE(TSDEND,6) + 2
С
С
      The beginning or start time of the TSD plot is equal to the
С
      arrival time of the TSDSTART vehicle at intersection #1 minus 2
С
      seconds
С
         STARTTIME = VEHICLE(TSDSTART,1) - 2
С
С
      Print out the header information for the TSD plot
С
         WRITE(8,8031)
8031
         FORMAT(//,25x,'PEDXING PROGRAM - TIME SPACE DIAGRAM PLOT',//)
         WRITE(8,8030)
8030
         FORMAT(14X, 'INTERSECTION #1', 36X, 'CROSSWALK', 37X,
                'INTERSECTION #2',/, 6X, 'TIME', 3X, 'ARRIVE', 5X, 'DEPART',
                30X, 'ARRIVE', 7X, 'DEPART', 30X, 'ARRIVE', 7X, 'DEPART')
С
С
      Set up the DO loop to process all of the vehicles to plot them on
С
      the TSD. All of the loops have negative increments in order to
С
      obtain a TSD that has time increasing on the vertical axis and
```

```
С
      distance increasing on the horizontal axis. The plot will begin
С
      at the top and work its way down
С
         DO 8001 NTIME = ENDTIME, STARTTIME, -1
С
С
      Initialise all of the flags for each iteration of the loop
С
            FLAG1 = .FALSE.
            FLAG2 = .FALSE.
            FLAG3 = .FALSE.
            FLAG4 = .FALSE.
            FLAG5 = .FALSE.
            FLAG6 = .FALSE.
С
С
      *********** ARRIVALS ************
С
С
С
      Using a DO loop check through all of the vehicle ARRIVAL times at
С
      intersection #1
С
      DO Loop #2
С
            DO 8002 NN=TSDEND, TSDSTART, -1
С
С
      If a vehicle arrival time is equal to the DO loop time then set
С
      the FLAG to TRUE
С
               IF (VEHICLE(NN, 1).EQ.NTIME)FLAG1=.TRUE.
C
С
      As soon as the FLAG is set to true jump to line 8003 to print out
С
      information on the TSD plot
С
               IF (FLAG1) GOTO 8003
С
С
      The continue statement for DO Loop #2
С
8002
            CONTINUE
C
С
      If the FLAG has been set to true then print out the TIME, the
С
      vehicle number and the flag for Through or On-turn vehicle. If
С
      the FLAG is FALSE then an asterisk will be printed in the
С
      intersection #1 arrival column
С
8003
             IF (FLAG1) THEN
                WRITE(8,8004)NTIME,NN,VEHICLE(NN,8)
8004
                FORMAT(5X,15,1X,15,A1,\)
             ELSE
                WRITE(8,8005)NTIME
8005
                FORMAT(5X,15,6X, **', \)
             ENDIF
```

```
С
С
      ********** DEPARTURES *********
С
С
      Using a DO loop check through all of the vehicle DEPARTURE times
С
С
      for intersection #1
С
      DO Loop #3
С
            DO 8006 NN=TSDEND, TSDSTART, -1
С
      If a vehicle departure time is equal to the DO loop time then set
C
С
      the FLAG to TRUE
С
               IF (VEHICLE(NN,2).EQ.NTINE)FLAG2=.TRUE.
С
      As soon as the FLAG is set to true jump to line 8007 to print out
С
      information on the TSD plot
С
С
               IF (FLAG2) GOTO 8007
                                                                  ~ ..
С
С
      The continue statement for DO loop #3
С
8006
            CONTINUE
С
      If the FLAG is set to TRUE then print out the vehicle number and
С
С
      either the 'T' or 'G' as required. If the FLAG is FALSE then
      print out an asterisk.
С
С
8007
            IF (FLAG2) THEN
               WRITE(8,8008)NN, VEHICLE(NN,8)
8008
               FORMAT(TR7, 15, A1, \)
            ELSE
               WRITE(8,8009)
8009
               FORMAT(TR12, '*', \)
            ENDIF
С
С
       ********** ARRIVALS ************
С
С
С
            DO 8010 NN=TSDEND, TSDSTART, -1
С
       If a vehicle arrival time is equal to the DO loop time then set
С
С
       the FLAG to TRUE
С
                IF (VEHICLE(NN,3).EQ.NTIME)FLAG3=.TRUE.
С
       As soon as the FLAG is set to true jump to line 8011 to print out
С
С
       information on the TSD plot
```

```
C
               IF (FLAG3) GOTO 8011
C
С
      The continue statement for DO loop #4
С
8010
            CONTINUE
C
С
      If the FLAG is set to TRUE then print out the vehicle number and
      either the 'T' or 'Q' as required. If the FLAG is FALSE then
С
С
      print out an asterisk.
С
8011
            IF (FLAG3) THEN
               WRITE(8,8012)NN, VEHICLE(NN,8)
8012
               FORMAT(TR30, 15, A1, \)
            ELSE
               WRITE(8,8013)
8013
               FORMAT(TR35, '*', \)
            ENDIF
С
С
С
      ********** DEPARTURES ***********
С
            DO 8014 NN=TSDEND, TSDSTART, -1
С
С
      If a vehicle departure time is equal to the DO loop time then set
С
      the FLAG to TRUE
С
               IF (VEHICLE(NN,4).EQ.NTIME)FLAG4=.TRUE.
С
С
      As soon as the FLAG is set to true jump to line 8015 to print out
С
      information on the TSD plot
С
               IF (FLAG4) GOTO 8015
С
С
      The continue statement for DO loop #5
С
8014
            CONTINUE
С
С
      If the FLAG is set to TRUE then print out the vehicle number and
      either the 'T' or 'O' as required. If the FLAG is FALSE then
С
С
      print out an asterisk.
С
8015
            IF (FLAG4) THEN
               WRITE(8,8016)NN, VEHICLE(NN,8)
8016
                FCCMAT(TR7, 15, A1, \)
            ELSE
               WRITE(8,8017)
```

```
FORMAT(TR12, 1*1, \)
8017
            ENDIF
С
С
С
      ********** APRIVALS ***********
С
            DO 8018 NN=TSDEND, TSDSTART, -1
C
      If a vehicle arrival time is equal to the DO loop time then set
С
С
      the FLAG to TRUE
С
               IF (VEHICLE(NN,5).EQ.NTIME)FLAG5=.TRUE.
С
      As soon as the FLAG is set to true jump to line 8019 to print out
С
      information on the TSD plot
С
C
               IF (FLAG5) GOTO 8019
С
      The continue statement for DO loop #6
С
С
            CONTINUE
8018
С
      If the FLAG is set to TRUE then print out the vehicle number and
C
С
      either the 'T' or 'O' as required. If the FLAG is FALSE then
      print out an asterisk.
С
C
8019
            IF (FLAG5) THEN
               WRITE(8,8020)NN, VEHICLE(NN,8)
8020
                FORMAT(TR30, I5, A1, \)
            ELSE
                WRITE(8,8021)
8021
                FORMAT(TR35, 1*1, \)
            ENDIF
С
С
       ********* DEPARTURES *************
С
С
             DO 8022 NN=TSDEND, TSDSTART, -1
С
С
       If a vehicle departure time is equal to the DO loop time then set
       the FLAG to TRUE
С
С
                IF (VEHICLE(NN,6).EQ.NTIME)FLAG6=.TRUE.
С
       As soon as the FLAG is set to true jump to line 8023 to print out
C
С
       information on the TSD plot
С
                1F (FLAG6) GOTO 8023
 C
```

```
С
      The continue statement for DO loop #7
С
8022
            CONTINUE
С
      If the FLAG is set to TRUE then print cut the vehicle number and
С
      either the 'T' or 'O' as required. If the FLAG is FALSE then
С
С
      print out an asterisk.
C
8023
            IF (FLAG6) THEN
               WRITE(8,8024)NN, VEHICLE(NN,8)
8024
               FORMAT (TR7, 15, A1)
            ELSE
               WRITE(8,8025)
8025
               FORMAT(TR12, ***)
            ENDIF
С
С
      The continue statement for DO loop #1
С
8001
         CONTINUE
С
С
      Endif for Conditional IF #25
C
      ENDIF
С
С
      Ask if the user wishes to rerun the program and wait for a
С
      response.
С
      WRITE(*,5006)
5006 FORMAT(2X, 'Rerun the Program (y/n) ?')
      READ(*,5007)ANS1
5007 FORMAT(A1)
      IF (ANS1.EQ.'y'.OR.ANS1.EQ.'Y')GOTO 1001
С
С
      Format statements that are used by a number of WRITE calls spread
С
      throughout the program
С
7771 FORMAT(1X, 'Vehicle=', 15, 2X, 'Arrive=', 15, 2X, 'Depart=', 15,
     +
              2X, 'Int.Delay=', 15, 2X, 'Tot.Delay=', 15)
7772 FORMAT(2X, 'Average Intersection Vehicle Delay = ', F6.2,/,
              2X, 'Average Total Vehicle Delay
                                                     = ',F6.2)
7773 FORMAT(2X, 'Ped=', I5, 2X, 'Arrive=', I5, 2X, 'Depart=', I5,
     +
              2X, 'Delay=', 15)
7774 FORMAT(2X,'Veh Red at Time = ',16,)
7775 FORMAT(2X,'Side Street Traffic',5X,'Vehicle=',15,2X,'Disch=',15)
7776 FORMAT(2X,'Side Street Traffic',5X,'Vehicle=',15,
     +
              2X, 'Disch=', 15)
       STOP
       END
```
```
С
      Inis random number generator was obtained from:
С
С
      FORTRAN 77 FOR HUMANS, 3rd Edition
С
С
      West Publishing Co., St. Paul, MM, USA
      pp. 418-419
С
С
      Random Number Generator: 0.0 < RANF < 1.0
С
      Value Delivered = Sample from uniform variate on (0,1) interval
С
      Instructions: Call first with a non-zero seed to start "Random"
С
                    sequence. Subsequent calls use SEED = 0
С
С
С
      REAL FUNCTION RNDMFNC
      REAL FUNCTION RNDMFNC(SEED)
      INTEGER SEED
      DOUBLE PRECISION RNGHUL, RNGHOD, RNGNUM
      SAVE RNGHUL, RNGMOD, RNGNUM
      DOUBLE PRECISION DHOD
      IF (SEED.NE.Q) THEN
         RNGMOD = 2.000
         N = 1
         IF ((1.000+RNGHOD).EQ.RNGHOD) GO TO 200
100
            N = N + 1
            RNGMOD = RNGMOD*2.000
            GO TO 100
200
         M = N/2
         RNGMOD = 2.000**M
         RNGHUL = DBLE(AINT((SQRT(5.0)-1.0)*(REAL(RNGMOD)/8.0)+0.5))
         RNGHUL # RNGHUL - MOD(RNGHUL, 8.000) + 3.000
         RNGNUM = 2 * ABS(SEED/2) + 1
      END1F
      RNGHUM = DHOD (RNGHUL*RNGHUM, RNGHOD)
      RNDMFNC = REAL(RNGNUM/RNGMOD)
      RETURN
      END
```

APPENDIX B

APPENDIX C

PEDESTRIAN CROSSING EVALUATION

Through traffic volume (pcu/h)	:	185.
Side street on turn traffic volume	:	130.
Stopline saturation flow (pcu/h*gr)	:	1550.
Duration of simulation (minutes)	:	60
Seed Number (odd three digit)	:	815
Vehicle Red Interval #1 (seconds)	:	51.
Vehicle Green Interval #1 (seconds)	:	24.
Vehicle Red Interval #2 (seconds)	:	32.
Vehicle Green Interval #2 (seconds)	:	28.
Pedestrian volume (peds/h)	:	150
Pedestrian green time (seconds)	:	8
Pedestrian clearance time (seconds)	:	17
Travel time (Int.1 to ped crossing, seconds)	:	10
Travel time (Ped crossing to Int.2, seconds)	:	10
Signal Offset (seconds)	:	37
Intersection #1 cycle time (seconds)	:	75
Intersection #2 cycle time (seconds)	:	60
Minimum vehicle green time at ped X-ing (sec):	40
PEDXING coordinated with signals (Y/N)	:	N
Print the Time Space Diagram (Y/N)	:	Y
Produce detailed report	:	Y

Vehicle=	4	Arrive=	12	Depart=	51	Int.Delay=	0	Tot.Delay=	39	
Vehicl e =	5	Arrive=	35	Depart=	53	Int.Delay=	0	Tot.Delay=	18	
Vehicle=	6	Arrive=	39	Depart=	55	Int.Delay=	0	Tot.Delay=	16	
Vehicle=	7	Arrive=	69	Depart=	69	Int.Delay=	0	Tot_Delay=	0	
Vehicle=	11	Arrive=	95	Depart=	126	Int.Delay=	0	Tot.Delay=	31	
Vehicle=	12	Arrive=	99	Depart=	128	Int.Delay=	0	Tot.Delay=	29	
Vehicl e =	13	Arrive=	132	Depart=	132	Int.Delay=	0	Tot.Delay=	0	
Vehicle=	17	Arrive=	151	Depart=	201	Int.D//lay=	0	Tot.Delay=	50	
Vehicl <i>e</i> =	18	Arrive=	174	Depart=	203	Int.Delay=	0	Tot.Delay=	29	
Vehicle=	19	Arrive=	180	Depart=	205	Int.Delay=	0	Tot.Delay=	25	
Vehicle=	20	Arrive=	192	Depart=	207	Int.Delay=	0	Tot.Delay=	15	
Vehicle=	21	Arrive=	199	Depart=	209	Int.Delay=	0	Tot.Delay=	10	
Vehicle=	22	Arrive=	221	Depart=	221	Int.Delay=	0	Tot.Delay=	0	
Vehicle=	26	Arrive=	262	Depart=	276	Int.Delay=	0	Tot.Delay=	14	
Vehicle=	27	Arrive=	274	Depart=	278	Int.Delay=	0	Tot.Delay=	4	
Vehicle=	28	Arrive=	293	Depart=	293	Int.Delay=	0	Tot.Delay=	0	
Vehicle=	32	Arrive=	306	Depart=	351	Int.Delay=	0	Tot,Delay=	45	
Vehicle=	33	Arrive=	309	Depart=	353	Int.Dolay=	0	Tot.Delay=	44	
Vehicle=	34	Arrive=	330	Depart=	355	Int.Delay=	0	Tot.Delay=	25	
Vehicle=	35	Arrive=	332	Depart=	357	Int.Delay=	0	Tot.Delay=	25	
Vehicle=	36	Arrive=	342	Depart=	359	Int.Delay=	0	Tot.Delay=	17	
Vehicle=	37	Arrive=	347	Depart=	361	Int.Delay=	0	Tot.Delay=	14	

Vehicle=	38	Arrive=	356	Depart=	363	Int.Delay=	0	Tot.Delay=	7
Vehicle=	42	Arrive=	388	Depart=	426	Int.Delay=	0	Tot.Delsy=	38
Vehicle=	43	Arrive=	395	Depart=	428	Int.Delay=	0	Tot.Delay=	33
Vehicle=	44	Arrive=	427	Depart=	430	Int.Delay=	0	Tot.Deløy=	3
Vehicle=	45	Arrive=	448	Depart=	448	Int.Delay≖	0	Tot.Delay=	0
Vehicle=	49	Arrive=	482	Depart=	501	Int.Delay=	0	Tot.Delay=	19
Vehicle=	53	Arrive=	528 -	Depart=	576	Int.Delay=	0	Tot.Deløy=	48
Vehicle=	54	Arrive=	554	Depart=	578	Int.Delay=	0	Tot.Delsy=	24
Vehicle=	55	Arrive=	558	Depart=	580	Int.Delay=	0	Tot.Deløy=	52
Vehicle=	56	Arrive=	582	Depart=	582	Int.Delay=	0	Tot.Delsy=	0
Vehicle=	60	Arrive=	622	Depart=	651	Int.Delay=	0	™nt.Deløy=	58
Vehicle=	61	Arrive=	630	Depart=	653	Int.Delay=	0	Tot.DelBy=	23
Vehicle=	62	Arrive=	632	Depart=	655	Int.Delay=	0	Tot.Del By=	23
Vehicle=	63	Arrive=	642	Depart=	657	Int.Delay=	0	Tot.Del By=	15
Vehicle=	64	Arrive=	647	Depart=	659	Int.Delay=	0	Tot.Delay=	12
Vehicle=	65	Arrive=	663	Depart=	663	Int.Delay=	0	Tot.Delay=	0
Vehicle=	66	Arrive=	672	Depart=	672	Int.Delay=	0	Tot.Delay=	0
Vehicle=	70	Arrive=	707	Depart=	726	Int.Delay=	0	Tot.Delay=	19
Vehicle=	71	Arrive=	711	Depart=	728	Int.Delay=	0	Tot.Delay=	17
Vehicle=	72	Arrive=	729	Depart=	730	Int.Delay=	0	Tot.Delay=	1
Vehicle=	73	Arrive=	732	Depart=	732	Int.Delay=	0	Tot.DelBy=	0
Vehicle=	74	Arrive=	743	iu⊲part=	743	Int.Delay=	0	Tot.Delay=	0
Vehicle=	78	Arrive=	799	Depart=	801	Int.Delay=	0	Tot.Delay=	2
Vehicle=	79	Arrive=	808	Depart=	808	Int.Delay=	0	Tot.Delay=	0
Vehicle=	80	Arrive=	814	Depart=	814	Int.Delay=	0	Tot_Delay=	0
Vehicle=	84	Arrive=	834	Depart=	876	Int.Delay=	0	Tot.Delay=	42
Vehicle=	88	Arrive=	907	Depart=	9 51	Int.Delay=	0	Tot.Delay=	44
Vehicle=	89	Arrive=	918	Depart=	953	Int.Delay=	0	Tot.Delay=	35
Vehicle=	90	Arrive=	927	Depart=	955	Int.Delay=	0	Tot_Delay=	28
Vehicle=	91	Arrive=	930	Depart=	9 57	Int.Delay=	0	Tot_Delay=	27
Vehicle=	92	Arrive=	965	Depart=	965	Int.Delay=	0	Tot.Delay=	0
V. States and	96	Arrive=	979	Depart=	1026	Int.Delay=	0	Tot_Delay=	47
÷ *	97	Arrive=	988	Depart=	1028	Int.Delay=	0	Tot.Delay=	40
Ve	98	Arrive=	997	Depart=	1030	Int.Delay=	0	Tot_Delay=	33
Vehicle=	99	Arrive=	1005	Depart=	1032	Int.Delay=	C	Tot_Delay=	27
Vehicle=	100	Arrive=	1022	Depart=	1034	Int.Delay=	0	Tot.Delay=	12
Vehicle=	104	Arrive=	1064	Depart=	1101	Int_Delay=	0	Tot.Delay=	37
Vehicle=	105	Arrive=	î085	Depart=	1103	Int.Delay=	0	Tot.Delay=	18
Vehicle=	106	Arrive=	1111	Depart=	1111	Int.Delay=	0	Tot.Delay=	0
Vehicle=	107	Arrive=	1122	Depart=	1122	int.Delay=	0	Tot.Delay=	0
Vehicle=	111	Arrive=	1136	Depart=	1176	int.Delay=	0	Tot.Delay=	40
Vehicle=	112	Arrive=	1142	Depart=	1178	Int.Delay=	0	Tot.Delay=	36
Vehicle=	113	Arrive=	1199	Depart=	1199	Int.Delay=	0	Tot.Delay=	0
Vehicle=	117	Arrive=	1241	Depart=	1251	Int.Delay=	Ð	Tot .Delay=	10
Vehicle=	118	Arrive=	1260	•		Int_Delay=	0	Tot_Delay=	0
Vehicle=	119		1268	•		-	0	Tot.Delay=	0
Vehicle=	123		1312	•		•	0	Tot . Delay=	14
Vehicle=	124			•		Int.Delay=	0	Tot.Delay=	Ō
Vehicle=	125	Arrive=	1338	Depart=	1338	-	0	Tot.Delay=	0
Vehicle=	126	Arrive=	1344	•		Int.Delay=	0	Tot.Delay=	0
						·			

Vehicle= 131 Arrive= 130 Obepart= 1403 Int.Delay= 0 Tot.Delay= 43 Vehicle= 132 Arrive= 1393 Depart= 1405 Int.Delay= 0 Tot.Delay= 12 Vehicle= 134 Arrive= 1393 Depart= 1405 Int.Delay= 0 Tot.Delay= 12 Vehicle= 134 Arrive= 1393 Depart= 1405 Int.Delay= 0 Tot.Delay= 0 Vehicle= 134 Arrive= 1413 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 139 Arrive= 1433 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 140 Arrive= 1448 Depart= 1416 Int.Delay= 0 Tot.Delay= 32 Vehicle= 140 Arrive= 1448 Depart= 1478 Int.Delay= 0 Tot.Delay= 32 Vehicle= 141 Arrive= 1475 Depart= 1482 Int.Delay= 0 Tot.Delay= 32 Vehicle= 142 Arrive= 1475 Depart= 1482 Int.Delay= 0 Tot.Delay= 32 Vehicle= 143 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 42 Vehicle= 148 Arrive= 1541 Depart= 1555 Int.Delay= 0 Tot.Delay= 42 Vehicle= 153 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1647 Depart= 1626 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1626 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1626 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1626 Int.Delay= 0 Tot.Delay= 12 Vehicle= 160 Arrive= 1646 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1772 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1772 Depart= 1776 Int.Delay= 0 Tot.Delay= 44 Vehicle= 164 Arrive= 1775 Depart= 1778 Int.Delay= 0 Tot.Delay= 44 Vehicle= 169 Arrive= 1767 Depart= 1780 Int.Delay= 0 Tot.Delay= 44 Vehicle= 170 Arrive= 1767 Depart= 1780 Int.Delay= 0 Tot.Delay= 44 Vehicle= 170 Arrive= 1829 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 176 Arrive= 1829 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 176 Arrive= 1829 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 176 Arrive= 1829 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 176 Arrive= 1829 Depart= 1855 Int.Delay= 0 Tot.Delay= 44 Vehicle= 183 Arrive= 1890 Depart= 1855 Int.Delay= 0 Tot.Delay= 44 Vehicle= 184 Arrive= 1890 Depart= 1928 Int.Delay= 0 Tot.Delay= 24 Vehicle= 184 Arrive= 1939 Depart= 1928 Int.Delay= 0 Tot.Delay= 44 Veh										
Vehicle= 132 Arrive= 1303 Depart= 1405 Int.Delay= 0 Tot.Delay= 12 Vehicle= 132 Arrive= 1413 Depart= 1407 Int.Delay= 0 Tot.Delay= 0 Vehicle= 134 Arrive= 1413 Depart= 1415 Int.Delay= 0 Tot.Delay= 0 Vehicle= 135 Arrive= 1416 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 139 Arrive= 1418 Depart= 1476 Int.Delay= 0 Tot.Delay= 32 Vehicle= 140 Arrive= 1448 Depart= 1476 Int.Delay= 0 Tot.Delay= 32 Vehicle= 141 Arrive= 1452 Depart= 1480 Int.Delay= 0 Tot.Delay= 32 Vehicle= 142 Arrive= 1473 Depart= 1480 Int.Delay= 0 Tot.Delay= 32 Vehicle= 143 Arrive= 1476 Depart= 1480 Int.Delay= 0 Tot.Delay= 32 Vehicle= 143 Arrive= 1476 Depart= 1480 Int.Delay= 0 Tot.Delay= 32 Vehicle= 147 Arrive= 1541 Depart= 1551 Int.Delay= 0 Tot.Delay= 32 Vehicle= 148 Arrive= 1541 Depart= 1551 Int.Delay= 0 Tot.Delay= 32 Vehicle= 153 Arrive= 1540 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 153 Arrive= 1540 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1540 Depart= 1660 Int.Delay= 0 Tot.Delay= 12 Vehicle= 155 Arrive= 1660 Depart= 1660 Int.Delay= 0 Tot.Delay= 12 Vehicle= 156 Arrive= 1657 Depart= 1660 Int.Delay= 0 Tot.Delay= 12 Vehicle= 160 Arrive= 1705 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 44 Vehicle= 167 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 44 Vehicle= 168 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 44 Vehicle= 169 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 170 Arrive= 1785 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 170 Arrive= 1786 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 171 Arrive= 1789 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 176 Arrive= 1825 Depart= 1786 Int.Delay= 0 Tot.Delay= 44 Vehicle= 181 Arrive= 1896 Depart= 1855 Int.Delay= 0 Tot.Delay= 24 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 24 Vehicle= 182 Arrive= 1904 Depart= 1926 Int.Delay= 0 Tot.Delay= 24 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 24 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 44 Veh	Vehicle=	130	Arrive= 1	1354			-			47
Vehicle= 133 Arrive= 1973 Depart= 1407 Int.Delay= 0 Tot.Delay= 9 Vehicle= 134 Arrive= 1413 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 139 Arrive= 1416 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 139 Arrive= 1433 Depart= 1476 Int.Delay= 0 Tot.Delay= 33 Vehicle= 140 Arrive= 1438 Depart= 1476 Int.Delay= 0 Tot.Delay= 33 Vehicle= 140 Arrive= 1483 Depart= 1478 Int.Delay= 0 Tot.Delay= 33 Vehicle= 140 Arrive= 1473 Depart= 1478 Int.Delay= 0 Tot.Delay= 33 Vehicle= 142 Arrive= 1473 Depart= 1480 Int.Delay= 0 Tot.Delay= 34 Vehicle= 142 Arrive= 1473 Depart= 1482 Int.Delay= 0 Tot.Delay= 34 Vehicle= 143 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 34 Vehicle= 148 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 34 Vehicle= 149 Arrive= 1541 Depart= 1555 Int.Delay= 0 Tot.Delay= 34 Vehicle= 153 Arrive= 1540 Depart= 1555 Int.Delay= 0 Tot.Delay= 17 Vehicle= 154 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 17 Vehicle= 156 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 161 Arrive= 1702 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 162 Arrive= 1772 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1775 Depart= 1786 Int.Delay= 0 Tot.Delay= 4 Vehicle= 170 Arrive= 1780 Depart= 1786 Int.Delay= 0 Tot.Delay= 4 Vehicle= 170 Arrive= 1829 Depart= 1786 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1849 Depart= 1786 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1899 Depart= 1853 Int.Delay= 0 Tot.Delay= 3 Vehicle= 181 Arrive= 1899 Depart= 1853 Int.Delay= 0 Tot.Delay= 3 Vehicle= 181 Arrive= 1899 Depart= 1926 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive	Vehicle=	131	Arrive= 1	1360	-		•	-	•	
Vehicle= 134 Arrive= 1413 Depart= 1413 Int.Delay= 0 Tot.Delay= 0 Vehicle= 135 Arrive= 1413 Depart= 1416 Int.Delay= 0 Tot.Delay= 2 Vehicle= 139 Arrive= 1433 Depart= 1476 Int.Delay= 0 Tot.Delay= 3 Vehicle= 140 Arrive= 1448 Depart= 1478 Int.Delay= 0 Tot.Delay= 3 Vehicle= 141 Arrive= 1452 Depart= 1480 Int.Delay= 0 Tot.Delay= 3 Vehicle= 142 Arrive= 1473 Depart= 1480 Int.Delay= 0 Tot.Delay= 2 Vehicle= 143 Arrive= 1476 Depart= 1484 Int.Delay= 0 Tot.Delay= 3 Vehicle= 147 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 4 Vehicle= 148 Arrive= 1541 Depart= 1553 Int.Delay= 0 Tot.Delay= 12 Vehicle= 149 Arrive= 1549 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1549 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1549 Depart= 1628 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1628 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 12 Vehicle= 156 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1677 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1712 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 162 Arrive= 1712 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 164 Arrive= 1712 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1768 Depart= 1788 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1758 Depart= 1788 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1758 Depart= 1788 Int.Delay= 0 Tot.Delay= 4 Vehicle= 170 Arrive= 1780 Depart= 1780 Int.Delay= 0 Tot.Delay= 4 Vehicle= 170 Arrive= 1878 Depart= 1786 Int.Delay= 0 Tot.Delay= 2 Vehicle= 170 Arrive= 1878 Depart= 1786 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1879 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1879 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1899 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 182 Arrive= 1949 Depart= 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1949 Depart= 1949 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 19	Vehicle=	132	Arrive= '	1393	•		•	-	•	-
Vehicle= 135 Arrive= 1416 Depart= 1416 Int.Delay= 0 Tot.Delay= 0 Vehicle= 139 Arrive= 1433 Depart= 1476 Int.Delay= 0 Tot.Delay= 33 Vehicle= 140 Arrive= 1448 Depart= 1478 Int.Delay= 0 Tot.Delay= 33 Vehicle= 141 Arrive= 1452 Depart= 1480 Int.Delay= 0 Tot.Delay= 35 Vehicle= 142 Arrive= 1476 Depart= 1480 Int.Delay= 0 Tot.Delay= 35 Vehicle= 143 Arrive= 1476 Depart= 1482 Int.Delay= 0 Tot.Delay= 35 Vehicle= 143 Arrive= 1476 Depart= 1484 Int.Delay= 0 Tot.Delay= 44 Vehicle= 143 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 44 Vehicle= 148 Arrive= 1541 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 149 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 153 Arrive= 1540 Depart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 Depart= 1628 Int.Delay= 0 Tot.Delay= 12 Vehicle= 156 Arrive= 1640 Depart= 1628 Int.Delay= 0 Tot.Delay= 12 Vehicle= 156 Arrive= 1640 Depart= 1646 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= Vehicle= 164 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= Vehicle= 168 Arrive= 1727 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1767 Depart= 1780 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1768 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1780 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1789 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1849 Depart= 1851 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1849 Depart= 1851 Int.Delay= 0 Tot.Delay= 3 Vehicle= 177 Arrive= 1849 Depart= 1851 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1849 Depart= 1851 Int.Delay= 0 Tot.Delay= 3 Vehicle= 181 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1948 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1940 Int.Delay= 0 Tot.Delay= 3 Vehicle= 185 Arrive= 1940 Depart= 1940 Int.Delay= 0 Tot.Delay= 3 Vehicle= 185 Arrive=	Vehicle≖	133	Arrive= '	1398	•			-		
Vehicle= 139 Arrive= 1433 Depart= 1476 Int.Delay= 0 Tot.Delay= 43 Vehicle= 140 Arrive= 1448 Depart= 1478 Int.Delay= 0 Tot.Delay= 30 Vehicle= 141 Arrive= 1473 Depart= 1480 Int.Delay= 0 Tot.Delay= 30 Vehicle= 142 Arrive= 1473 Depart= 1482 Int.Delay= 0 Tot.Delay= 30 Vehicle= 143 Arrive= 1476 Depart= 1482 Int.Delay= 0 Tot.Delay= 30 Vehicle= 144 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 30 Vehicle= 148 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 30 Vehicle= 153 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 10 Vehicle= 154 Arrive= 1544 Depart= 1626 Int.Delay= 0 Tot.Delay= 11 Vehicle= 155 Arrive= 1617 Depart= 1626 Int.Delay= 0 Tot.Delay= 11 Vehicle= 156 Arrive= 1657 Depart= 1668 Int.Delay= 0 Tot.Delay= 11 Vehicle= 156 Arrive= 1657 Depart= 1664 Int.Delay= 0 Tot.Delay= 12 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 162 Arrive= 1712 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 163 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1775 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 167 Arrive= 1751 Depart= 1788 Int.Delay= 0 Tot.Delay= 14 Vehicle= 168 Arrive= 1779 Depart= 1788 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1825 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1825 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1829 Depart= 1853 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1829 Depart= 1853 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1904 Depart= 1823 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1933 Depart= 1939 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1939 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1947 Depart= 1944 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1945 Depart= 1944 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1945 Depart= 1944 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184	Vehicle=	134	Arrive= '	1413	•		•	-		0
Vehicle= 140 Arrive= 1450 bepart= 1478 Int.Delay= 0 Tot.Delay= 30 Vehicle= 141 Arrive= 1452 bepart= 1478 Int.Delay= 0 Tot.Delay= 25 Vehicle= 141 Arrive= 1452 bepart= 1480 Int.Delay= 0 Tot.Delay= 25 Vehicle= 142 Arrive= 1473 bepart= 1482 Int.Delay= 0 Tot.Delay= 46 Vehicle= 143 Arrive= 1511 bepart= 1551 Int.Delay= 0 Tot.Delay= 46 Vehicle= 148 Arrive= 1541 bepart= 1553 Int.Delay= 0 Tot.Delay= 12 Vehicle= 148 Arrive= 1544 bepart= 1555 Int.Delay= 0 Tot.Delay= 12 Vehicle= 153 Arrive= 1590 bepart= 1568 Int.Delay= 0 Tot.Delay= 12 Vehicle= 154 Arrive= 1640 bepart= 1628 Int.Delay= 0 Tot.Delay= 12 Vehicle= 156 Arrive= 1640 bepart= 1668 Int.Delay= 0 Tot.Delay= 12 Vehicle= 160 Arrive= 1646 bepart= 1646 Int.Delay= 0 Tot.Delay= 12 Vehicle= 160 Arrive= 1657 bepart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1706 bepart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1727 bepart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1733 bepart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1735 bepart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1777 bepart= 1778 Int.Delay= 0 Tot.Delay= 14 Vehicle= 168 Arrive= 1777 bepart= 1778 Int.Delay= 0 Tot.Delay= 14 Vehicle= 169 Arrive= 1779 bepart= 1784 Int.Delay= 0 Tot.Delay= 14 Vehicle= 170 Arrive= 1789 bepart= 1786 Int.Delay= 0 Tot.Delay= 14 Vehicle= 171 Arrive= 1729 bepart= 1785 Int.Delay= 0 Tot.Delay= 14 Vehicle= 174 Arrive= 1825 bepart= 1853 Int.Delay= 0 Tot.Delay= 14 Vehicle= 175 Arrive= 1829 bepart= 1853 Int.Delay= 0 Tot.Delay= 14 Vehicle= 176 Arrive= 1829 bepart= 1853 Int.Delay= 0 Tot.Delay= 14 Vehicle= 181 Arrive= 1890 bepart= 1853 Int.Delay= 0 Tot.Delay= 14 Vehicle= 184 Arrive= 1930 bepart= 1926 Int.Delay= 0 Tot.Delay= 14 Vehicle= 184 Arrive= 1930 bepart= 1928 Int.Delay= 0 Tot.Delay= 14 Vehicle= 184 Arrive= 1949 bepart= 1949 Int.Delay= 0 Tot.Delay= 14 Vehicle= 184 Arrive= 1949 bepart= 1949 Int.Delay= 0 Tot.Delay= 14 Vehicle= 184 Arrive= 1949 bepart= 1949 Int.Delay= 0 Tot.Delay= 144 Vehicle= 184 Arrive= 1940 bepart= 1940 Int.Delay= 0 Tot.Delay= 14	Vehicl e =	135	Arrive= '	1416	•		•	-	-	0
Vehicle= 141 Arrive= 1473 Depart= 1480 Int.Delay= 0 Tot.Delay= 25 Vehicle= 141 Arrive= 1473 Depart= 1482 Int.Delay= 0 Tot.Delay= 25 Vehicle= 142 Arrive= 1473 Depart= 1482 Int.Delay= 0 Tot.Delay= 4 Vehicle= 143 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 4 Vehicle= 148 Arrive= 1511 Depart= 1553 Int.Delay= 0 Tot.Delay= 4 Vehicle= 149 Arrive= 1541 Depart= 1553 Int.Delay= 0 Tot.Delay= 1 Vehicle= 149 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 1 Vehicle= 153 Arrive= 1640 Depart= 1626 Int.Delay= 0 Tot.Delay= 1 Vehicle= 154 Arrive= 1640 Depart= 1626 Int.Delay= 0 Tot.Delay= 1 Vehicle= 155 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 1 Vehicle= 156 Arrive= 1646 Depart= 1706 Int.Delay= 0 Tot.Delay= 1 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 162 Arrive= 1712 Depart= 1712 Int.Delay= 0 Tot.Delay= Vehicle= 164 Arrive= 1727 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 164 Arrive= 1747 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1747 Depart= 1780 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1779 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= 4 Vehicle= 170 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= 3 Vehicle= 171 Arrive= 179 Depart= 1786 Int.Delay= 0 Tot.Delay= 3 Vehicle= 177 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1904 Depart= 1926 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1930 Depart= 1939 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1930 Depart= 1939 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1930 Depart= 1939 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1940 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1940 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1940 Depart= 1940 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1940 Depart	Vehicle=	139	Arrive=	1433	•		•	-	-	-
Vehicle= 142 Arrive= 1473 Depart= 1482 Int.Delay= 0 Tot.Delay= 44 Vehicle= 143 Arrive= 1476 Depart= 1484 Int.Delay= 0 Tot.Delay= 44 Vehicle= 143 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 44 Vehicle= 148 Arrive= 1541 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 148 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 153 Arrive= 1549 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 154 Arrive= 1617 Depart= 1626 Int.Delay= 0 Tot.Delay= 14 Vehicle= 154 Arrive= 1617 Depart= 1628 Int.Delay= 0 Tot.Delay= 14 Vehicle= 154 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 14 Vehicle= 156 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1657 Depart= 1707 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 162 Arrive= 1712 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 163 Arrive= 1712 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 164 Arrive= 1777 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1771 Depart= 1782 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1779 Depart= 1782 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1779 Depart= 1784 Int.Delay= 0 Tot.Delay= 14 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 14 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 14 Vehicle= 176 Arrive= 1829 Depart= 1855 Int.Delay= 0 Tot.Delay= 24 Vehicle= 176 Arrive= 1829 Depart= 1855 Int.Delay= 0 Tot.Delay= 24 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 34 Vehicle= 183 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 34 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 34 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 34 Vehicle= 185 Arrive= 1947 Depart= 1939 Int.Delay= 0 Tot.Delay= 34 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 34 Vehicle= 186 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 34 Vehicle= 186 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 44 Vehi	Vehicl <i>e</i> =	140	Arrive=	1448			-	-	-	
Vehicle= 143 Arrive= 1476 Depart= 1484 Int.Delay= 0 Tot.Delay= 44 Vehicle= 147 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 44 Vehicle= 148 Arrive= 1541 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 148 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 149 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 153 Arrive= 1599 Depart= 1626 Int.Delay= 0 Tot.Delay= 14 Vehicle= 154 Arrive= 1617 Depart= 1628 Int.Delay= 0 Tot.Delay= 14 Vehicle= 155 Arrive= 1640 Depart= 1646 Int.Delay= 0 Tot.Delay= 14 Vehicle= 156 Arrive= 1646 Depart= 1646 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1676 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 162 Arrive= 1712 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 163 Arrive= 1777 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 164 Arrive= 1777 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 169 Arrive= 1771 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1779 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 176 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1904 Depart= 1926 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1929 Depart= 1930 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 185 Arrive= 1947 Depart= 1939 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1939 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1939 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 190 Arrive= 1940 Depart= 2001 Int.Delay= 0 Tot.Delay= 4 Vehicle= 190 Arrive= 1940 Depart= 2001 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive	Vehicle=	141	Arrive=	1452	•		Int.Delay=	-	-	28
Vehicle= 147 Arrive= 1511 Depart= 1551 Int.Delay= 0 Tot.Delay= 44 Vehicle= 148 Arrive= 1541 Depart= 1553 Int.Delay= 0 Tot.Delay= 14 Vehicle= 148 Arrive= 1544 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 149 Arrive= 1549 Depart= 1555 Int.Delay= 0 Tot.Delay= 14 Vehicle= 153 Arrive= 1599 Depart= 1626 Int.Delay= 0 Tot.Delay= 14 Vehicle= 154 Arrive= 1640 Depart= 1628 Int.Delay= 0 Tot.Delay= 14 Vehicle= 155 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 14 Vehicle= 156 Arrive= 1646 Depart= 1646 Int.Delay= 0 Tot.Delay= 14 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 14 Vehicle= 162 Arrive= 1712 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 164 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 14 Vehicle= 166 Arrive= 1727 Depart= 1778 Int.Delay= 0 Tot.Delay= 14 Vehicle= 168 Arrive= 1751 Depart= 1778 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1786 Int.Delay= 0 Tot.Delay= 14 Vehicle= 177 Arrive= 1829 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 2 Vehicle= 183 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1933 Depart= 1935 Int.Delay= 0 Tot.Delay= 2 Vehicle= 185 Arrive= 1947 Depart= 1946 Int.Delay= 0 Tot.Delay= 2 Vehicle= 185 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle= 186 Arrive= 1939 Depart= 1939 Int.Delay= 0 Tot.Delay= 2 Vehicle= 186 Arrive= 1939 Depart= 1930 Int.Delay= 0 Tot.Delay= 2 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 194 Arrive= 1940 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 194 Arrive= 1940 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 194 Arri	Vehicle=	142	Arrive=	1473	•		•			9
Vehicle=148Arrive=1541Depart=1553Int.Delay=0Tot.Delay=12Vehicle=149Arrive=1544Depart=1555Int.Delay=0Tot.Delay=14Vehicle=153Arrive=1599Depart=1626Int.Delay=0Tot.Delay=14Vehicle=154Arrive=1617Depart=1628Int.Delay=0Tot.Delay=14Vehicle=155Arrive=1640Depart=1640Int.Delay=0Tot.Delay=14Vehicle=166Arrive=1657Depart=1707Int.Delay=0Tot.Delay=14Vehicle=161Arrive=1657Depart=1706Int.Delay=0Tot.Delay=44Vehicle=163Arrive=1712Depart=1706Int.Delay=0Tot.Delay=44Vehicle=164Arrive=1712Depart=1776Int.Delay=0Tot.Delay=44Vehicle=164Arrive=1727Depart=1776Int.Delay=0Tot.Delay=44Vehicle=166Arrive=1727Depart=1778Int.Delay=0Tot.Delay=44Vehicle=166Arrive=1737Depart=1780Int.Delay=0Tot.Delay=33Vehicle=168Arrive=1777Depart=1780Int.Delay=0Tot.Delay=34Vehicle= <t< td=""><td>Vehicle=</td><td>143</td><td>Arrive=</td><td>1476</td><td>-</td><td></td><td>•</td><td></td><td>-</td><td>8</td></t<>	Vehicle=	143	Arrive=	1476	-		•		-	8
Vehicle140Arrive1540Depart1555Int.Delay0Tot.Delay1Vehicle153Arrive1599Depart1626Int.Delay0Tot.Delay2Vehicle154Arrive1617Depart1626Int.Delay0Tot.Delay1Vehicle155Arrive1640Depart1640Int.Delay0Tot.Delay1Vehicle156Arrive1640Depart1640Int.Delay0Tot.Delay1Vehicle160Arrive1657Depart1701Int.Delay0Tot.Delay4Vehicle161Arrive1706Depart1701Int.Delay0Tot.Delay4Vehicle162Arrive1712Depart1701Int.Delay0Tot.Delay4Vehicle162Arrive1712Depart1701Int.Delay0Tot.Delay4Vehicle163Arrive1727Depart1776Int.Delay0Tot.Delay4Vehicle163Arrive1733Depart1778Int.Delay0Tot.Delay4Vehicle163Arrive1747Depart1780Int.Delay0Tot.Delay3Vehicle163Arrive1751Depart1780Int.Delay0Tot.Delay3Vehicle170Arrive1780Depart1780Int.Delay	Vehicle=	147	Arrive=	1511	Depart=	1551	Int.Delay=		-	40
Vehicle= 153 Arrive= 1599 Depart= 1626 Int.Delay= 0 Tot.Delay= 2 Vehicle= 154 Arrive= 1617 Depart= 1628 Int.Delay= 0 Tot.Delay= 1 Vehicle= 155 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= 1 Vehicle= 156 Arrive= 1646 Depart= 1646 Int.Delay= 0 Tot.Delay= 4 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 162 Arrive= 1712 Depart= 1712 Int.Delay= 0 Tot.Delay= Vehicle= 166 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 167 Arrive= 1733 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1747 Depart= 1778 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle= 171 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle= 176 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1929 Depart= 1930 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle= 185 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 194 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart=	Vehicle=	148	Arrive=	1541	Depart=	1553	Int.Delay=	0	-	12
Vehicle= 153 Arrive= 1617 Depart= 1628 Int.Delay= 0 Tot.Delay= 1 Vehicle= 154 Arrive= 1617 Depart= 1628 Int.Delay= 0 Tot.Delay= 1 Vehicle= 155 Arrive= 1640 Depart= 1640 Int.Delay= 0 Tot.Delay= Vehicle= 156 Arrive= 1646 Depart= 1646 Int.Delay= 0 Tot.Delay= 4 Vehicle= 160 Arrive= 1657 Depart= 1706 Int.Delay= 0 Tot.Delay= 4 Vehicle= 161 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= Vehicle= 162 Arrive= 1712 Depart= 1712 Int.Delay= 0 Tot.Delay= Vehicle= 164 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 167 Arrive= 1733 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1747 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 1 Vehicle= 171 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle= 175 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1853 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 4 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= Vehicle= 184 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= Vehicle= 190 Arrive= 1940 Depart= 2001 Int.Delay= 0 Tot.Delay=	Vehicle=	149	Arrive=	1544	Depart=	1555	Int.Delay=	0	•	11
Vehicle 154 Arrive 1640 Depart 1640 Int.Delay= 0 Tot.Delay= Vehicle 156 Arrive 1640 Depart 1640 Int.Delay= 0 Tot.Delay= Vehicle 156 Arrive 1657 Depart 170% Int.Delay= 0 Tot.Delay= Vehicle 161 Arrive 1706 Depart 170% Int.Delay= 0 Tot.Delay= Vehicle 162 Arrive 1712 Depart 1712 Int.Delay= 0 Tot.Delay= Vehicle 164 Arrive 1727 Depart 1776 Int.Delay= 0 Tot.Delay= Vehicle 166 Arrive 1727 Depart 1776 Int.Delay= 0 Tot.Delay= Vehicle 167 Arrive 1733 Depart 1778 Int.Delay= 0 Tot.Delay= Vehicle 168 Arrive 1751 Depart 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle 169 Arrive 1751 Depart 1782 Int.Delay= 0 Tot.Delay= 3 Vehicle 170 Arrive 1768 Depart 1784 Int.Delay= 0 Tot.Delay= 1 Vehicle 171 Arrive 1779 Depart 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle 175 Arrive 1825 Depart 1786 Int.Delay= 0 Tot.Delay= 2 Vehicle 176 Arrive 1829 Depart 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle 176 Arrive 1829 Depart 1853 Int.Delay= 0 Tot.Delay= 2 Vehicle 177 Arrive 1849 Depart 1926 Int.Delay= 0 Tot.Delay= 2 Vehicle 181 Arrive 1896 Depart 1926 Int.Delay= 0 Tot.Delay= 2 Vehicle 183 Arrive 1904 Depart 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1933 Depart 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle 185 Arrive 1947 Depart 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1939 Depart 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1930 Depart 1933 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 186 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 190 Arrive 1960 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arri	Vehicle=	153	Arrive=	1599	•		Int.Delay=	0	•	27
Vehicle 155 Arrive 1646 Depart 1646 Int.Delay= 0 Tot.Delay= Vehicle 166 Arrive 1657 Depart 1707 Int.Delay= 0 Tot.Delay= Vehicle 161 Arrive 1706 Depart 1706 Int.Delay= 0 Tot.Delay= Vehicle 162 Arrive 1712 Depart 1712 Int.Delay= 0 Tot.Delay= Vehicle 166 Arrive 1727 Depart 1776 Int.Delay= 0 Tot.Delay= Vehicle 167 Arrive 1733 Depart 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle 168 Arrive 1747 Depart 1778 Int.Delay= 0 Tot.Delay= 3 Vehicle 169 Arrive 1751 Depart 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle 170 Arrive 1751 Depart 1782 Int.Delay= 0 Tot.Delay= 1 Vehicle 170 Arrive 1768 Depart 1784 Int.Delay= 0 Tot.Delay= 1 Vehicle 171 Arrive 1779 Depart 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle 175 Arrive 1825 Depart 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle 176 Arrive 1829 Depart 1853 Int.Delay= 0 Tot.Delay= 2 Vehicle 177 Arrive 1849 Depart 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle 181 Arrive 1904 Depart 1926 Int.Delay= 0 Tot.Delay= 2 Vehicle 183 Arrive 1929 Depart 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1935 Depart 1926 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1946 Depart 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle 185 Arrive 1947 Depart 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1946 Depart 1928 Int.Delay= 0 Tot.Delay= 2 Vehicle 185 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1947 Depart 1945 Int.Delay= 0 Tot.Delay= 2 Vehicle 185 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 184 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 185 Arrive 1947 Depart 1947 Int.Delay= 0 Tot.Delay= 2 Vehicle 190 Arrive 1960 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle 191 Arrive 2003 Depart 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	154	Arrive=	1617	•		Int.Delay=	0	-	11
Vehicle= 160 Arrive= 1600 Depart= 170% Int.Delay= 0 Tot.Delay= 4 Vehicle= 161 Arrive= 1706 Depart= 170% Int.Delay= 0 Tot.Delay= Vehicle= 162 Arrive= 1712 Depart= 1712 Int.Delay= 0 Tot.Delay= Vehicle= 166 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= Vehicle= 167 Arrive= 1733 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1747 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 1 Vehicle= 171 Arrive= 1768 Depart= 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle= 175 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= 2 Vehicle= 176 Arrive= 1829 Depart= 1853 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1939 Int.Delay= 0 Tot.Delay= 4 Vehicle= 185 Arrive= 1947 Depart= 1939 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 180 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 180 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 180 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 190 Arrive= 1960 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 1960 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 1960 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	155	Arrive=	1640	Depart=	1640	Int.Delay=	0	-	0
Vehicle= 160 Arrive= 1706 Depart= 1706 Int.Delay= 0 Tot.Delay= Vehicle= 161 Arrive= 1712 Depart= 1712 Int.Delay= 0 Tot.Delay= Vehicle= 166 Arrive= 1727 Depart= 1776 Int.Delay= 0 Tot.Delay= 4 Vehicle= 167 Arrive= 1733 Depart= 1778 Int.Delay= 0 Tot.Delay= 4 Vehicle= 168 Arrive= 1747 Depart= 1780 Int.Delay= 0 Tot.Delay= 3 Vehicle= 169 Arrive= 1751 Depart= 1782 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1784 Int.Delay= 0 Tot.Delay= 3 Vehicle= 170 Arrive= 1768 Depart= 1786 Int.Delay= 0 Tot.Delay= 1 Vehicle= 171 Arrive= 1779 Depart= 1786 Int.Delay= 0 Tot.Delay= Vehicle= 175 Arrive= 1825 Depart= 1851 Int.Delay= 0 Tot.Delay= Vehicle= 176 Arrive= 1829 Depart= 1853 Int.Delay= 0 Tot.Delay= 2 Vehicle= 177 Arrive= 1849 Depart= 1855 Int.Delay= 0 Tot.Delay= 2 Vehicle= 181 Arrive= 1896 Depart= 1926 Int.Delay= 0 Tot.Delay= 3 Vehicle= 182 Arrive= 1904 Depart= 1928 Int.Delay= 0 Tot.Delay= 3 Vehicle= 183 Arrive= 1929 Depart= 1930 Int.Delay= 0 Tot.Delay= 3 Vehicle= 184 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 185 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 3 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1939 Depart= 1933 Int.Delay= 0 Tot.Delay= 4 Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= 4 Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	156	Arrive=	1646	Depart=	1646	Int.Delay=	0	•	0
Venicle161Arrive1760Depart1712Int.Delay0Tot.DelayVehicle162Arrive1712Depart1712Int.Delay0Tot.DelayVehicle166Arrive1727Depart1776Int.Delay0Tot.Delay4Vehicle167Arrive1733Depart1776Int.Delay0Tot.Delay4Vehicle167Arrive1733Depart1778Int.Delay0Tot.Delay4Vehicle168Arrive1747Depart1780Int.Delay0Tot.Delay4Vehicle169Arrive1771Depart1780Int.Delay0Tot.Delay3Vehicle170Arrive1751Depart1782Int.Delay0Tot.Delay3Vehicle170Arrive1779Depart1784Int.Delay0Tot.Delay3Vehicle171Arrive1825Depart1851Int.Delay0Tot.Delay3Vehicle176Arrive1829Depart1853Int.Delay0Tot.Delay2Vehicle177Arrive1829Depart1853Int.Delay0Tot.Delay2Vehicle181Arrive1896Depart1926Int.Delay0Tot.Delay2Vehicle183Arrive1929Depart1920Int.Delay0T	Vehicle=	160	Arrive=	1657			Int.Delay=	0	· · ·	44
Vehicle162Arrive1727Depart=1776Int.Delay=0Tot.Delay=4Vehicle=167Arrive=1733Depart=1778Int.Delay=0Tot.Delay=4Vehicle=168Arrive=1747Depart=1780Int.Delay=0Tot.Delay=3Vehicle=169Arrive=1751Depart=1782Int.Delay=0Tot.Delay=3Vehicle=170Arrive=1751Depart=1782Int.Delay=0Tot.Delay=3Vehicle=170Arrive=1768Depart=1782Int.Delay=0Tot.Delay=3Vehicle=170Arrive=1768Depart=1782Int.Delay=0Tot.Delay=3Vehicle=171Arrive=1779Depart=1786Int.Delay=0Tot.Delay=1Vehicle=175Arrive=1825Depart=1851Int.Delay=0Tot.Delay=2Vehicle=176Arrive=1829Depart=1853Int.Delay=0Tot.Delay=2Vehicle=177Arrive=1849Depart=1926Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1904Depart=1928Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1933Depart=1933Int.Delay=0Tot.Delay=2Vehicle=184A	Vehicle=	161	Arrive=	1706	Depart=	1706	Int.Delay=	0		0
Vehicle160Arrive1721Depart1778Int.Delay0Tot.Delay4Vehicle168Arrive1733Depart1778Int.Delay0Tot.Delay4Vehicle169Arrive1777Depart1780Int.Delay0Tot.Delay3Vehicle169Arrive1751Depart1782Int.Delay0Tot.Delay3Vehicle170Arrive1779Depart1782Int.Delay0Tot.Delay3Vehicle171Arrive1779Depart1786Int.Delay0Tot.Delay3Vehicle171Arrive1825Depart1851Int.Delay0Tot.Delay2Vehicle176Arrive1829Depart1853Int.Delay0Tot.Delay2Vehicle177Arrive1849Depart1855Int.Delay0Tot.Delay2Vehicle181Arrive1896Depart1926Int.Delay0Tot.Delay2Vehicle181Arrive1994Depart1928Int.Delay0Tot.Delay2Vehicle183Arrive1999Depart1930Int.Delay0Tot.Delay2Vehicle183Arrive1933Depart1933Int.Delay0Tot.Delay2Vehicle186Arrive1939Depart1939Int.Delay	Vehicle=	162	Arrive=	1712	Depart=	1712	Int.Delay=	0	Tot.Delay=	0
Vehicle161Arrive1735Depart1780Int.Delay0Tot.Delay3Vehicle169Arrive1751Depart1780Int.Delay0Tot.Delay3Vehicle169Arrive1751Depart1782Int.Delay0Tot.Delay3Vehicle170Arrive1768Depart1782Int.Delay0Tot.Delay3Vehicle170Arrive1779Depart1784Int.Delay0Tot.Delay3Vehicle171Arrive1879Depart1786Int.Delay0Tot.Delay3Vehicle175Arrive1825Depart1851Int.Delay0Tot.Delay2Vehicle176Arrive1829Depart1853Int.Delay0Tot.Delay2Vehicle177Arrive1849Depart1926Int.Delay0Tot.Delay2Vehicle181Arrive1896Depart1926Int.Delay0Tot.Delay2Vehicle182Arrive1904Depart1928Int.Delay0Tot.Delay2Vehicle183Arrive1929Depart1930Int.Delay0Tot.Delay2Vehicle184Arrive1933Depart1933Int.Delay0Tot.DelayVehicle186Arrive1939Depart1939Int.Delay0	Vehicle=	166	Arrive=	1727	Depart=	1776	Int.Delay=	0	Tot.Delay=	49
Vehicle=160Arrive=1747Depart=1782Int.Delay=0Tot.Delay=3Vehicle=170Arrive=1751Depart=1782Int.Delay=0Tot.Delay=3Vehicle=170Arrive=1768Depart=1784Int.Delay=0Tot.Delay=1Vehicle=171Arrive=1779Depart=1786Int.Delay=0Tot.Delay=1Vehicle=175Arrive=1825Depart=1851Int.Delay=0Tot.Delay=2Vehicle=176Arrive=1829Depart=1853Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1849Depart=1855Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1904Depart=1926Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1904Depart=1928Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=2Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=186Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1939Depart=1947Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947	Vehicle=	167	Arrive=	1733	Depart=	1778	Int.Delay=	0	Tot.Delay=	45
Vehicle=103Arrive=1131Depart=1102Int.Delay=0Tot.Delay=1Vehicle=170Arrive=1768Depart=1784Int.Delay=0Tot.Delay=1Vehicle=171Arrive=1779Depart=1786Int.Delay=0Tot.Delay=1Vehicle=175Arrive=1825Depart=1851Int.Delay=0Tot.Delay=2Vehicle=176Arrive=1829Depart=1853Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1849Depart=1855Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1896Depart=1926Int.Delay=0Tot.Delay=2Vehicle=182Arrive=1904Depart=1928Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=2Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=186Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1939Depart=1947Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart= <td>Vehicle=</td> <td>168</td> <td>Arrive=</td> <td>1747</td> <td>Depart=</td> <td>1780</td> <td>Int.Delay=</td> <td>0</td> <td>Tot-Delay=</td> <td>33</td>	Vehicle=	168	Arrive=	1747	Depart=	1780	Int.Delay=	0	Tot-Delay=	33
Vehicle110Arrive1100Depart1100Int.Delay0Tot.DelayVehicle171Arrive1825Depart1851Int.Delay0Tot.Delay2Vehicle176Arrive1829Depart1851Int.Delay0Tot.Delay2Vehicle176Arrive1829Depart1853Int.Delay0Tot.Delay2Vehicle177Arrive1849Depart1855Int.Delay0Tot.Delay2Vehicle181Arrive1896Depart1926Int.Delay0Tot.Delay3Vehicle182Arrive1904Depart1928Int.Delay0Tot.Delay3Vehicle183Arrive1929Depart1930Int.Delay0Tot.Delay4Vehicle184Arrive1933Depart1933Int.Delay0Tot.DelayVehicle185Arrive1939Depart1939Int.Delay0Tot.DelayVehicle186Arrive1947Depart1947Int.Delay0Tot.DelayVehicle190Arrive1960Depart2001Int.Delay0Tot.DelayVehicle191Arrive2003Depart2003Int.Delay0Tot.Delay	Vehicle=	169	Arrive=	1751	Depart=	1782	Int.Delay=	0	Tot-Delay=	31
Vehicle=171Arrive=177Depart=1851Int.Delay=0Tot.Delay=2Vehicle=176Arrive=1829Depart=1851Int.Delay=0Tot.Delay=2Vehicle=176Arrive=1829Depart=1853Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1849Depart=1855Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1896Depart=1926Int.Delay=0Tot.Delay=3Vehicle=182Arrive=1904Depart=1928Int.Delay=0Tot.Delay=3Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=3Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=Vehicle=191Arrive=2033Depart=2033Int.Delay=0Tot.Delay=	Vehicle=	170	Arrive=	1768	Depart=	1784	Int.Delay=	0	Tot.Delay=	16
Vehicle=176Arrive=1829Depart=1853Int.Delay=0Tot.Delay=2Vehicle=177Arrive=1849Depart=1855Int.Delay=0Tot.Delay=2Vehicle=181Arrive=1896Depart=1926Int.Delay=0Tot.Delay=3Vehicle=182Arrive=1904Depart=1928Int.Delay=0Tot.Delay=3Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=3Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=Vehicle=191Arrive=2003Depart=2003Int.Delay=0Tot.Delay=	Vehicle=	171	Arrive=	1779	Depart=	= 1 786	Int.Delay=	0	Tot.Delay=	7
Vehicle170Arrive1829Depart1855Int.Delay=0Tot.Delay=Vehicle181Arrive1896Depart=1926Int.Delay=0Tot.Delay=3Vehicle=182Arrive=1904Depart=1928Int.Delay=0Tot.Delay=3Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=2Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=Vehicle=191Arrive=2003Depart=2003Int.Delay=0Tot.Delay=	Vehicle=	175	Arrive=	1825	Depart=	- 1851	Int.Delay=	0	Tot.Delay=	26
Vehicle=181Arrive=1896Depart=1926Int.Delay=0Tot.Delay=3Vehicle=182Arrive=1904Depart=1928Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=2Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=4Vehicle=191Arrive=2003Depart=2003Int.Delay=0Tot.Delay=	Vehicle=	176	Arrive=	1829	Depart=	= 1853	Int.Delay=	0	Tot.Delay=	24
Vehicle=181Arrive=1904Depart=1928Int.Delay=0Tot.Delay=2Vehicle=183Arrive=1929Depart=1930Int.Delay=0Tot.Delay=Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=Vehicle=191Arrive=2003Depart=2003Int.Delay=0Tot.Delay=	Vehicle=	177	Arrive=	1849	Depart=	= 1855	Int.Delay=	0	Tot.Delay=	6
Vehicle=182Arrive=1929Depart=1930Int.Delay=0Tot.Delay=Vehicle=184Arrive=1933Depart=1933Int.Delay=0Tot.Delay=Vehicle=185Arrive=1939Depart=1939Int.Delay=0Tot.Delay=Vehicle=186Arrive=1947Depart=1947Int.Delay=0Tot.Delay=Vehicle=190Arrive=1960Depart=2001Int.Delay=0Tot.Delay=Vehicle=191Arrive=2003Depart=2003Int.Delay=0Tot.Delay=	Vehicle=	181	Arrive=	1896	Departs	= 1926	Int.Delay=	0	Tot.Delay=	30
Vehicle= 184 Arrive= 1933 Depart= 1933 Int.Delay= 0 Tot.Delay= Vehicle= 185 Arrive= 1939 Depart= 1939 Int.Delay= 0 Tot.Delay= Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	182	Arrive=	1904	Depart	= 1928	Int.Delay=	0	Tot.Delay=	24
Vehicle= 185 Arrive= 1939 Depart= 1939 Int.Delay= 0 Tot.Delay= Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	183	Arrive=	1929	Depart	= 1930	Int.Delay=	Ū	Tot.Delay=	1
Vehicle= 186 Arrive= 1947 Depart= 1947 Int.Delay= 0 Tot.Delay= Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	184	Arrive=	1933	Depart	= 1933	Int.Delay=	Ũ	lot.Delay=	0
Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	185	Arrive=	1939	Depart	= 1939	Int.Delay=	0		0
Vehicle= 190 Arrive= 1960 Depart= 2001 Int.Delay= 0 Tot.Delay= 4 Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicie=	186	Arrive=	1947	Depart	= 1947	Int.Delay=	0	Tot.Delay=	0
Vehicle= 191 Arrive= 2003 Depart= 2003 Int.Delay= 0 Tot.Delay=	Vehicle=	190	Arrive=	1960	-		Int.Delay=	0	Tot.Delay=	41
		191				= 2003	Int.Delay=	0	Tot.Delay=	0
Vehicle= 192 Arrive= 2016 Depart= 2016 Int.Delay= 0 Tot.Delay=	Vehicle=	192					Int.Delay=	0	Tot.Delay=	0
					-	= 2076	Int.Delay=	0	Tot.Delay=	22
					-			0	Tot.Delay=	12
Vohicle= 198 Arrive= 2075 Depart= 2080 Int.Delay= 0 Tot.Delay=					•	= 2080		0	Tot.Delay=	5
•					•			0	Tot.Delay=	33
Vehicle= 203 Arrive= 2157 Depart= 2157 Int.Delay= 0 Tot.Delay=					•		-		· -	0
tentore, non mining and solution and and and					•		-		•	10
					•		•			
					•		-		-	
Vehicle= 213 Arrive= 2320 Depart= 2320 Int.Delay= 0 Tot.Delay=					•		-		· · ·	
Vehicle= 214 Arrive= 2323 Depart= 2323 Int.Delay= 0 Tot.Delay=					•		-		•	
Vehicle= 218 Arrive= 2329 Depart= 2376 Int.belay= 0 Tot.Detay=					•		•		•	
terre a me terre meter estre terre										

Vehicle=	219	Arrive= 2333	Depart= 2378	Int.Delay=	0	Tot.Delay=	45
Vehicle=	220	Arrive= 2349	Depart= 2380	Int.Delay=	0	Tot.Delay=	31
Vehicle=	221	Arrive= 2354	Depart= 2382	Int.Delay=	0	Tot.Delay=	28
Vehicle=	222	Arrive= 2395	Depart= 2395	Int.Delay=	0	Tot.Delay≂	0
Vehicle=	223	Arrive= 2399	Depart= 2399	Int.Delay=	0	Tot.Delay=	0
Vehicle=	227	Arrive= 2432	Depart= 2451	Int.Delay=	0	Tot.Delay=	19
Vehicle=	228	Arrive= 2439	Depart= 2453	Int.Delay=	0	Tot.Delay=	14
Vehicle=	229	Arrive= 2444	Depart= 2455	Int_Delay=	0	Tot,Delay=	11
Vehicle=	233	Arrive= 2484	Depart= 2026	Int.Delay=	0	Tot.Delay=	42
Vehicle=	234	Arrive= 2535	Depart= 2535	Int_Delay=	0	Tot.Delay≈	0
Vehicle=	235	Arrive= 2542	Depat 2542	Int.Delay=	0	Tot.Delay≍	0
Vehicle=	239	Arrive= 2552	Depay 14 2501	Int.Delay=	0	Tot.Delay=	49
Vehicle=	240	Arrive= 2566	Depart = 2603	Int.Delay=	0	Tot.Delay=	37
Vehicle=	244	Arrive= 2627	0#8155-1 - C-G-76	Int.Delay=	0	Tot.Delay=	49
Vehicle=	245	Arrive= 2684	Der 66 1 3684	Int.Delay=	0	Tot.Delay=	0
Vehicle=	246	Arrive= 2688	0 m 2688	Int.Delay=	0	Tot.Delay=	0
Vehicle=	250	Arrive= 2705	₩uppears= 2751	Int.Delay=	0	Tot.Delay=	42
Vehicle=	251	Arrive= 2738	Depart= 2753	Int.Delay=	0	Tot.Delay=	15
Vehicle=	252	Arrive= 2751	Depent= 2755	1c.Delay=	0	Tot.Delay=	4
Vehicle=	253	Arrive= 2767	0epart= 2767	Int.Delay=	0	Tot.Delay=	0
Vehicle=	257	Arrive= 2736	9epart= 2826	Int.Delay=	0	Tot,Delay=	30
Vehicle=	258	Arrive= 2821	Depart= 2828	Int.Delay=	0	Tot.Delay≃	7
Vehicle=	259	Arrive= 2824	Depart= 2830	Int.Delay=	0	Tot.Delay=	6
Vehicle=	260	Arrive= 2847	Depart= 2847	Int.Delay=	0	Tot.Delay=	0
Vehicle=	264	Arrive= 2877	Depart= 2901	Int.Delay=	0	Tot.Delay=	24
Vehicle=	265	Arrive= 2879	Depart= 2903	Int.Delay=	0	Tot.Delay=	24
Vehicle=	266	Arrive= 2899	Depart= 2905	Int.Delay=	0	Tot.Delsy=	6
Vehicle=	267	Arrive= 2902	Depart= 2907	Int.Delay=	0	Tot.Delsy=	5
Vehicle=	268	Arrive= 2906	Depart= 2909	Int.Delay=	0	Tot,Delay=	3
Vehicle=	272	Arrive= 2926	Depart= 2976	Int.Delay=	0	Tot.Delay=	50
Vehicle=	273	Arrive= 2937	Depart= 2978	Int.Delay=	0	Tot.Delay=	41
Vehicle=	274	Arrive= 2965	Depart≈ 2980	Int.Delay=	0	Tot.Delay≈	15
Vehicle=	275	Arrive= 2968	Depart= 2982	Int.Delay=	0	Tot.Delay=	14
Vehicle=	276	Arrive= 2987	Depart= 2987	Int.Delay=	0	Tot.Delay=	0
Vehicle=	277	Arrive= 2990	Depart= 2990	Int.Delay=	0	Tot.Delay=	0
Vehicle=	278	Arrive= 2992	Depart= 2992	Int.Delay=	0	Tot.Delay=	0
Vehicle=	279	Arrive= 2997	Depart= 2997	Int.Delay=	0	Tot.Delay=	0
Vehicle=	283	Arrive= 3035	Depart= 3051	Int.Delay=	0	Tot.Delay=	16
Vehicle=	284	Arrive= 3057	Depart= 3057	Int.Delay=	0	Tot.Delay=	0
Vehicle=	285	Arrive= 3070	Depart= 3070	Int.Delay=	0	Tot.Delay=	0
Vehicle=	289	Arrive= 3085	Depart= 3126	Int.Delay=	0	Tot.Delay=	41
Vehicle=	290	Arrive= 3095	Depart= 3128	Int.Delay=	0	Tot.Delay≈	33
Vehicle=	291	Arrive= 3101	0epart= 3130	Int.Delay=	0	Tot.Delay=	29
Vehicle=	292	Arrive= 3117	Depart= 3132	Int.Delay=	0	Tot.Delay=	15
Vehicle=	293	Arrive= 3127	Depart= 3134	Int.Delay=	0	Tot.Delay=	7
Vehicle=	294	Arrive= 3142	Depart= 3142	Int.Delay=	0	Tot.Delay=	0
Vehicle=	298	Arrive= 3150	0epart= 3201	Int.Delay=	0	Tot.Delay=	51
Vehicle=	299	Arrive= 3192	Depart= 3203	Int.Delay=	0	Tot.Delay≂	11
Vehicle=	300	Arrive= 3212	Depart= 3212	Int.Delay≃	0	Tot.Delay=	0
Vehicle=	304	Arrive= 3259	Depart= 3276	Int.Delay=	0	Tot.Delay=	17

•

Vehicle= 305 Arrive=		= 3278	Int.C	elay=	0	Tot.Delay=	4
Vehicle= 306 Arrive=		= 328 5	Int.C	elay=	0	Tot.Delay=	0
Vehicle= 307 Arrive=	3296 Depart	= 3296	Int_[)el a y=	0	Tot.Delay=	Û
Vehicle= 311 Arrive=	····	= 3351	Int_[)elay=	0	Tot.Delay=	46
Vehicle= 312 Arrive=		= 3353	Int_[)elay=	0	Tot.Delay=	30
Vehicle= 313 Arrive=	3359 Depart	= 3359	Int-I	Delay≃	0	Tot.Delzy=	0
Vehicle= 317 Arrive=		= 3426	Int_l	Delay=	0	Tot.Delay=	47
Vehicle= 318 Arrive=	3390 Depart	= 3428	Int_l	Delay=	0	Tot.Delay=	38
Vehicle= 319 Arrive=	3402 Depart	= 3430	Int.	Delay=	0	Tot.Delay=	28
Vehicle= 320 Arrive=	3446 Depart	:= 3446	Int_l	Delay=	0	Tot.Delay=	0
Vehicle= 324 Arrive=	3475 Depart	:= 3501	Int_l	Delay=	0	Tot.Delay=	26
Vehicle= 325 Arrive=	··· ···	:= 3512	Int-I	Delay=	0	Tot.Delay=	0
Vehicle= 329 Arrive=	3583 Depart	:= 3583	Int.	Delay=	0	Tot.Delay=	0
Side Street Traffic	Vehicle=	1 Di	sch=	1			
Side Street Traffic	Vehicle=	2 Di	sch=	20			
Side Street Traffic	Vehicle=	3 Di	sch=	39			
Side Street Traffic	Vehicle=	8 Di	sch=	75			
Side Street Traffic	Vehicle=	9 Di	sch=	94			
Side Street Traffic	Vehicle=	10 Di	i sch=	113			
Side Street Traffic	Vehicle=	14 Di	i sch=	150			
Side Street Traffic	Vehicle=	15 Di	isch=	169			
Side Street Traffic	Vehicle=	16 Di	i sch=	188			
Side Street Traffic	Vehicle=	23 Di	i sch=	225			
Side Street Traffic	Vehicle=	24 Di	i sch=	244			
Side Street Traffic	Vehicle=	25 Di	i sch=	263			
Side Street Traffic	Vehicle=	29 Di	isch=	300			
Side Street Traffic	Vehicle=	30 Di	isch=	319			
Side Street Traffic	Vehicle=	31 D	i sch=	338			
Side Street Traffic	Vehicle=	39 D	isch=	375			
Side Street Traffic	Vehicle=	40 Di	isch=	394			
Side Street Traffic	Vehicle=	41 Di	i sch=	413			
Side Street Traffic	Vehicle=	46 D	i sch=	450			
Side Street Traffic	Vehicle=	47 D	īsch=	469			
Side Street Traffic	Vehicle=	48 D	isch=	488			
Side Street Traffic	Vehicle=	50 D	i sch=	525			
Side Street Traffic	Vehicle=	51 D	i sch=	544			
Side Street Traffic	Vehicle=	52 D	i sch≠	563			
Side Street Traffic	Vehicle=	57 D	i sch=	600			
Side Street Traffic	Vehicle=	58 D	isch=	619			
Side Street Traffic	Vehicle=	59 D	isch=	638			
Side Street Traffic	Vehicle=	67 D	isch=	675			
Side Street Traffic	Vehicle=	68 D	isch=	694			
Side Street Traffic	Vehicle=	69 D	isch=	713			
Side Street Traffic	Vehicle=	75 D	isch=	750			
Side Street Traffic	Vehicle=		isch=	769			
Side Street Traffic	Vehicle=	77 D	isch=	788			
Side Street Traffic	Vehicle=	81 D	isch=	825			
Side Street Traffic	Vehicle=	82 D	isch=	844			
Side Street Traffic	Vehicle=	83 D	isch=	863			
Side Street Traffic	Vehicle=		isch=	900			

Side Street	Traffic	Vehicle=	86	Disch=	919
Side Street	Traffic	Vehicle=	87	Disch=	938
Side Street	Traffic	Vehicle=	93	Disch=	975
Side Street	Traffic	Vehicle=	94	Disch=	994
Side Street	Traffic	Vehicle=	95	Disch=	1013
Side Street	Traffic	Vehicle=	101	Disch=	1050
Side Street	Traffic	Vehicle=	102	Disch=	1069
Side Street	Traffic	Vehicle=	103	Disch=	1088
Side Street	Traffic	Vehicle=	108	Disch=	1125
Side Street	Traffic	Vehicle=	109	Disch=	1144
Side Street	Traffic	Vehicle=	110	Disch=	1163
Side Street	Traffic	Vehicle=	114	Disch=	1200
Side Street	Traffic	Vehicle=	115	Disch=	1219
Side Street	Traffic	Vehicle=	116	Disch=	1238
Side Street	Traffic	Vehicle=	120	Disch=	
Side Street	Traffic	Vehicle=	121	Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=			
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=		Disch=	
Side Street	Traffic	Vehicle=		Disch=	
Side Street	Traffic	Vehicle=			
Side Street		Vehicle=		-	
Side Street	Traffic	Vehicle=			_
Side Street		Vehicle =		Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=	_	Disch=	
Side Street		Vehicle=		Disch=	_
Side Street		Vehicle=	_	Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=			
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=		Disch=	
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street		Vehicle=			
Side Street	IFATTIC	Vehicle=	201	Disch=	2138

Side Street Traffic	Vehicle=	204	Disch= 2175
Side Street Traffic	Vehicle=	205	Disch= 2194
Side Street Traffic	Vehicle=	206	Disch= 2213
Side Street Traffic	Vehicle=	208	Disch= 2250
Side Street Traffic	Vehicle=	209	Discn= 2269
Side Street Traffic	Vehicle=	210	Disch= 2288
Side Street Traffic	Vehicle=	215	Disch= 2325
Side Street Traffic	Vehicle=	216	Disch= 2344
Side Street Traffic	Vehicle=	217	Disch= 2363
Side Street Traffic	Vehicle=	224	Disch= 2400
Side Street Traffic	Vehicle=	225	Disch= 2419
Side Street Traffic	Vehicle=	226	Disch= 2438
Side Street Traffic	Vehicle=	230	Disch= 2475
Side Street Traffic	Vehicle=	231	Disch= 2494
Side Street Traffic	Vehicle=	232	Disch= 2513
Side Street Traffic	Vehicle=	236	Disch= 2550
Side Street Traffic	Vehicle=	237	Disch= 2569
Side Street Traffic	Vehicle=	238	Disch= 2588
Side Street Traffic	Vehicle=	241	Disch= 2625
Side Street Traffic	Vehicle=	242	Disch= 2644
Side Street Traffic	Vehicle=	243	Disch= 2663
Side Street Traffic	Vehicle=	247	Disch= 2700
Side Street Traffic	Vehicle=	248	Disch= 2719
Side Street Traffic	Vehicle=	249	Disch= 2738
Side Street Traffic	Vehicle=	254	Disch= 2775
Side Street Traffic	Vehicle=	255	Disch= 2794
Side Street Traffic	Vehicle=	256	Disch= 2813
Side Street Traffic	Vehicle=	261	Disch= 2850
Side Street Traffic	Vehicle=	262	Disch= 2869
Side Street Traffic	Vehicle=	263	Disch= 2888
Side Street Traffic	Vehicle=	269	Disch= 2925
Side Street Traffic	Vehicle=	270	Disch= 2944
Side Street Traffic	Vehicle=	271	Disch= 2963
Side Street Traffic	Vehicle=	280	Disch= 3000
Side Street Traffic	Vehicle=	281	Disch= 3019
Side Street Traffic	Vehicle=	282	Disch= 3038
Side Street Traffic	Vehicle=	286	Disch= 3075
Side Street Traffic	Vehicle=	287	Disch= 3094
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=		
Side Street Traffic	Vehicle=	315	Disch= 3394

Side S	tree	t Traffic		Vehicle=	316	Disch= 3	3413
Side S	tree	t Traffic		Vehicle=	321	Disch= 3	3450
Side S	tree	t Traffic		Vehicle=	322	Disch= 3	3469
Side S	tree	t Traffic	,	Vehicl e =	323	Disch= 3	3488
Side S	tree	t Traffic	,	Vehicle=	326	Disch= 3	3525
Side S	tree	t Traffic		Vehicle=	327	Disch= 3	3544
side s	tree	t Traffic		Vehicle=	328	Disch= 3	3563
Averag	je In	tersectio	n Veh	icle Dela	y = '	17.00	
Averag	e To	tal Venic	le De	lay	= '	17.00	
Ped=	1	Arrive=	55	Depart=	55	Delay=	0
Ped=	2	Arrive=	74	Depart=	120	Delay=	46
Fed=	3	Arrive=	84	Depart=	120	Delay=	36
Ped=	4	Arrive=	112	Depart=	120	Delay=	8
Ped=	5	Ann{ve=	117	Depart=	120	Delay=	3
Peo=	6	Arrive=	143	Depart=	185	Delay=	42
Ped=	7	Arrive=	152	Depart=	185	Delay=	33
Ped=	8	Arrive=	185	Depart=	185	Delay=	0
Ped=	9	Arrive=	225	Depart=	250	Delay=	25
Ped≃	10	Arrive=	285	Depart=	315	Delay=	30
Ped=	11	Arrive=	325	Depart=	380	Delay≍	55
Ped=	12	Arrive=	335	Depart=	380	Delay=	45
Ped=	13	Arrive=	353	Depart=	380	Delay=	27
Ped=	14	Arrive=	364	Depart=	380	Delay=	16
Ped=	15	Arrive=	369	Depart=	380	Delay=	11
Ped=	16	Årrive=	371	Depart=	380	Delsy=	9
Ped≈	17	Arrive=	405	Depart=	445	Delay=	40
Ped=	18	Arrive=	420	Depart=	445	Delay=	25
Ped≃	19	Arrive=	438	Depart=	445	Delay=	7
Ped≈	20	Arrive=	447	Depart=	447	Delay=	0
Ped=	21	Arrive=	462	Depart=	510	Delay=	48
Ped=	22	Arrive=	583	Depart=	583	Delay=	0
Ped=	23	Arrive=	633	Depart=	648	Delay=	15
Ped=	24	Arrive=	641	Depart=	648	Delay=	7
Ped≃	25	Arrive=	646	Depart=	648	Delay=	2
Ped=	26	Arrive=	685	Depart=	713	Delay=	28
Ped=	27	Arrive=	725	Depart=	778	Delay=	53
Ped=	28	Arrive=	895	Depart=	895	Delay=	0
Ped=	29	Arrive=	931	Depart=	960	Delay=	29
Ped=	30	Arrive=	935	Depart=	960	Delay=	25
Ped=	31	Arrive=	950	Depart=	960	Delay=	10
Ped=	32	Arrive=		Depart=		Delay=	0
Ped=	33	Arrive=	1047	Depart=	1091	Delay=	44
Ped=	34	Arrive=	1057	Depart=	1091	Delay=	34
Ped=	35	Arrive=	1066	Depart=		Delay=	25
Ped=	36	Arrive=	1150	Depart=	1156	Delay=	6
Ped=	37	Arrive=	1155	Depart=		Delay=	1
Ped=	38	Arrive=	1166	•		Delay=	55
Ped=	30 39	Arrive=		•		•	55 45
Ped=	59 40	Arrive=		• -		Delay=	45 37
Ped= Ped=	40	Arrive=		•		Delay= Delay=	
r cu-		ALLINGE	1195	Depart=	1221	Delay=	26

-

.

Ped=	42	Arrive= 1240	Depart= 1286	Deloy=	46
Ped=	43	Arrive= 1250	Depart= 1286	Delay=	36
Ped=	44	Arrive= 1264	Depart= 1286	Delay=	22
Ped=	45	Arrive= 1288	Depart= 1288	Delay=	0
Ped=	46	Arrive= 1292	Depart= 1292	Delay=	0
Ped=	47	Arrives 1384	Depart= 1351	Delay=	47
Ped=	48	Arrive= 1309	Depart= 1351	Delay=	42
Ped=	49	Arrive= 1311	Depart= 1351	Delay=	40
Ped=	50	Arrive= 1317	Depart= 1351	Delay=	34
Ped=	51	Arrive= 1386	Depart= 1416	Delay=	30
Ped=	52	Arrive= 1392	Depart= 1416	Delay=	24
Ped=	53	Arrive= 1424	Depart= 1424	Delay=	0
Ped=	54	Arrive= 1453	Depart= 1481	Delay≃	28
Ped=	55	Arrive= 1512	Depart= 1546	Delay=	34
Ped=	56	Arrive= 1556	Depart= 1611	Delay=	55
Ped≍ Ped=	57	Arrive= 1627	Depart= 1676	Delay=	49
	58	Arrive= 1647	Depart= 1676	Delay=	29
Ped=	59	Arrive= 1688	Depart= 1741	Delay=	53
Ped=	60	Arrive= 1764	Depart= 1806	Delay=	42
Ped= Ped=	61 62	Arrive= 1790	Depart= 1806	Delay=	16
Ped=	62 63	Arrive= 1795	Depart= 1806	Delay=	11
Ped=	63 64	Arrive= 1811	Depart= 1811	Delay=	0
Ped=	65	Arrive= 1824	Depart= 1871	Delay=	47
Ped=		Arrive= 1829	Depart= 1871	Delay=	42
Ped=	66	Arrive= 1844	Depart= 1871	Delay=	27
	67	Arrive= 1885	Depart= 1936	Delay=	51
Ped=	68 ()	Arrive= 1893	Depart= 1936	Delay=	43
Ped=	69 70	Arrive= 1899	Depart= 1936	Delay=	37
Ped= Ped=	70	Arrive= 1903	Depart= 1936	Delay=	33
Ped=	71	Arrive= 1911	Depart= 1936	Delay=	25
Ped=	72	Arrive= 1913	Depart= 1936	Delay=	23
	73 77	Arrive= 1924	Depart= 1936	Delæy=	12
Ped= Ped=	74	Arrive= 1947	Depart= 2001	Delay=	54
Ped=	75	Arrive= 1960	Depart= 2001	Delay=	41
	76	Arrive= 1980	Depart= 2001	Delay=	21
Ped=	77	Arrive= 1980	Depart= 2001	Delay=	21
Ped=	78	Arrive= 1988	Depart= 2001	Delay=	13
Ped=	79	Arrive= 2003	Depart= 2003	Delay=	0
Ped=	80	Arrive= 2012	Depart= 2066	Delay=	54
Ped=	81	Arrive= 2015	Depart= 2066	Delay=	51
Ped=	82	Arrive= 2032	Depart= 2066	Delay=	34
Ped=	83	Arrive= 2065	Depart= 2066	Delay=	1
Ped=	84	Arrive= 2095	pepart= 2131	Delay=	36
Ped=	85	Arrive= 2099	Depart= 2131	Delay=	32
Ped=	86	Arrive= 2280	Depart= 2280	Delay=	0
Ped=	87	Arrive= 2343	Depart= 2345	Delay=	2
Pert=	88	Arrive= 2347	Depart= 2347	Delay=	0
Ped=	89	Arrive= 2467	Depart= 2467	Delay=	0
Ped=	90	Arrive= 2489	Depart= 2532	Delay=	43
Ped=	91	Arrive= 2502	Depart= 2532	Delay=	30

Ped=	92	Arrive=	2513	Depart=	2532	Delay=	19
Ped=	93	Arrive=	2552	Depart=	2597	Delay=	45
Ped=	94	Arrive=	2559	Depart=	2597	Delay=	38
Ped=	95	Arrive=	2568	Depart=	2597	Delay=	29
Ped≈	96	Arrive=	2574	Depart=	2597	Delay=	23
Ped=	97	Arrive=	2614	Depart=		Delay=	48
Ped=	98	Arrive=	2632	Depart=	2662	Delay=	30
Ped≕	99	Arrive=	2638	Depart=	2662	Delay=	24
Ped=	100	Arrive=	2644	Depart=	2662	Delay=	18
Ped=	101	Arrive=	2658	Depart=	2662	Delay=	4
Ped=	102	A rrive=	2663	Depart=	2663	Delay=	0
Ped=	103	Arrive=	2670	Depart=	2670	Delay=	0
Ped=	104	Arrive=	2691	Depart=	2727	Delay=	36
Ped=	105	Arrive=	2717	Departu	2727	Delay=	10
Ped=	106	Arrive=	2752	Depart=	2792	Delay=	40
Ped=	107	Arrive=	2764	Depart=	2792	Delay=	28
Ped=	108	Arrive=	2789	Depart=	2792	Delay=	3
Ped=	109	Arrive=	2789	Depart=	2792	Delay=	3
Ped=	110	Arrive=	2810	Depart=	2857	Delay=	47
Ped=	111	Arrive=	2843	Depart=	2857	Delay=	14
Ped=	112	Arrive=	2914	Depart=	2922	Delay=	8
Ped=	113	Arrive=	2915	Depart=	2922	Delay=	7
Ped=	114	Arrive=	2924	Depart=	29 24	Delay=	0
Ped=	115	Arrive=	2956	Depart=	2987	Delay=	31
Ped=	116	Arrive=	2972	Depart=	2987	Delay=	15
Ped=	117	Arrive=	2999	Depart=	3052	Delay=	53
Ped=	118	Arrive=	3001	Depart=	3052	Delay=	51
Ped=	119	Arrive=	3078	Depart=	3117	Delay=	39
Ped=	120	Arrive=	3087	Depart=		Delay=	30
Ped=	121	Arrive=	3104	Depart=		Delay=	13
Ped=	122	Arrive=	3149	Depart=	3182	Delay=	33
Ped=	123	Arrive=	3165	Depart=	3182	Delay=	17
Ped=	124	Arrive=	3175	Depart=		Delay=	7
Ped=	125	Arrive=		Depart=		Delay=	2
Ped=	126	Arrive=		Depart=		Delay=	1
Ped=	127	Arrive=		Depart=		Delay=	0
Ped=	128	Arrive=		Depart=		Delay=	43
Ped=	129	Arrive=		Depart=		Delay=	0
Ped=	130	Arrive=		Depart=		Delay=	0
Ped=	131	Arrive=		Depart=		Delay=	14
Ped=	132	Arrive=		Depart=		•	45
Ped=	133	Arrive=		Depart=		•	31
Ped=	134	Arrive=		Depart=		-	18
Ped=	135	Arrive=		Depart=		Delay=	11
Ped=	136	Arrive=		Depart=		Delay= Delay=	0
Ped=	137	Arrive=		Depart=		•	
Ped=	138	Arrive=		Depart=		Delay=	42 13
Ped=	139	Arrive=		Depart=		Delay=	55
		Time =	55	vepart=	3310	Delay=	22
		Time ≕	120	2			
VCI K	eu et	/ TOPE	120	۲.			

Veh Red	at Ti		105	7
Veh Red		me = me =	185 ****0	3 4
Veh Red		me =	250 315	5
Veh Red		me =	380	
Veh Red		inte =	445	6 7
Veh Red		ime =	445 510	8
Veh Red		ime =	583	° 9
Veh Red		ime =	565 648	10
Ven Red		ime =	713	11
Veh Red		ime =	778	
Veh Red		ime ≃	895	12 13
Veh Red		ime =	960	14
Veh Red		ime =	1026	14
Veh Red		ime -	1028	
Veh Red		ime =	1156	16 17
Veh Red		ілне —	1221	
Veh Red		inne =	1286	18 19
Veh Red		ime =	1351	20
Veh Red		ime =	1416	21
Veh Red		ime =	1418	22
Veh Red		ime =	1546	23
Veh Red		ime =	1611	24
Veh Red		ime =	1676	25
Veh Red		ime =	1741	26
Veh Red		ime =	1806	27
Veh Red		ime =	1871	28
Veh Red		ime =	1936	29
Veh Red		ime =	2001	30
Veh Red		ime =	2066	31
Veh Red		ime =	2131	32
Veh Red		ime =	2280	33
Veh Red		ime =	2345	34
Veh Red		ime =	2467	35
Veh Red		ime =	2532	36
Veh Red		ime =	2597	37
Veh Red		іле =	2662	38
Veh Red		ime =	2727	39
Veh Red		ime =	2792	40
Veh Red		ime =	2857	41
Veh Red		ime =	2922	42
		ime =	2987	43
		ime =	3052	44
		ime =	3117	45
		ime =	3182	45
		ime =	3247	47
		ime =	3316	48
		ime =	3381	49
Veh Red		ime =	3446	50
		ime =	3511	51
		ime =	3576	52
			*	

•

Veh Red at Time = 0 53 Veh Red at Time = 0 54 Average Ped. Delay = 24.26

Vehicle=	1	Arrive=	11	Depart=	11	Int.Delay=	0	Tot.Delay=	0
Vehicle=	2	Arrive=	30	Depart=	30	Int_Delay=	0	Tot.Delay=	0
Vehicle=	3	Arrive=	49	Depart=	49	Int_Delay=	Ö	Tot.Delay=	0
Vehicle=	4	Arrive=	61	Depart=	80	Int.Delay=	19	Tot.Delay=	58
Vehicle=	5	Arrive=	63	D ep art=	82	Int.Delay=	19	Tot.Delay=	37
Vehicle=	6	Arrive=	65	Depart=	84	Int.Delay=	19	Tot.Delay=	35
Vehicle=	7	Arrive=	79	Depart=	86	Int.Delay=	7	Tot.Delay=	7
Vehicle=	8	Arrive=	85	Depart=	88	Int.Delay=	3	Tot.Delay=	3
Vehicle=	9	Arrive=	104	Depart=	104	Int.Delay=	0	Tot.Delay=	0
Vehicle≖	10	Arrive=	123	Depart=	145	Int.Delay=	22	Tot_Delay=	22
Vehicle=	11	Arrive=	136	D ep art≃	147	Int.Delay=	11	Tot.Delay=	42
Vehicle =	12	Arrive=	138	Depart=	149	Int_Delay=	11	Tot.Delay=	40
Vehicle=	13	Arrive=	142	Depart=	151	Int.Delay=	9	Tot.Delay=	9
Vehicle=	14	Arrive=	160	Depart=	160	Int.Delay=	0	Tot.Delay=	0
Vehicle=	15	Arrive=	179	Depart=	179	Int.Delay=	0	Tot_Delay=	0
Vehicle=	16	Arrive=	198	Depart=	210	Int.Delay=	12	Tot.Delay=	12
Vehicle=	17	Arrive=	211	Depart=	212	Int.Delay=	1	Tot.Delay=	51
Vehicle=	18	Arrive=	213	Depart=	214	Int.Delay=	1	Tot.Delay=	30
Vehicle=	19	Arrive=	215	Depart=	216	Int.Delay=	1	Tot.Delay=	26
Vehicle=	20	Arrive=	217	Depart=	218	Int.Delay=	1	Tot.Delay=	16
Vehicle=	21	Arrive=	219	Depart=	220	Int.Delay=	1	Tot.Delay=	11
Vehicle=	22	Arrive*	231	Depart=	231	Int.Delay=	0	Tot.Delay=	0
Vehicle=	23	Arrive=	235	Depart=	235	Int.Delay=	0	Tot.Delay=	0
Vehicle=	24	Arrive=	254	Depart=	275	Int.Delay=	21	Tot.Delay=	21
Vehicle=	25	Arrive=	273	Depart=	277	Int_Delay=	4	Tot.Delay=	4
Vehicle=	26	Arrive=	286	Depart=	286	Int.Delay=	0	Tot.Delay=	14
Vehicle=	27	Arrive=	288	Depart=	288	Int.Delay=	0	Tot.Delay=	4
Vehicle=	28	Arrive≃	303	Depart=	303	Int.Delay=	0	Tot.Delay=	0
Vehicle=	29	Arrive=	310	Depart=	310	Int.Delay=	0	Tot.Delay=	0
Vehicle=	30	Arri: e=	329	Depart=	340	Int.Delay=	11	Tot.Delay=	11
Vehicle=	31	Arrive=	348	D ep art=	348	Int.Delay=	0	Tot.Delay=	0
Vehicle=	32	Arrive=	361	Depart=	361	Int.Delay=	0	Tot.Delay=	45
Vehicle=	33	Arrive=	363	Depart=	363	Int.Delay=	0	fot.Delay=	44
Vehicle=	34	Arrive=	365	Depart=	365	Int.Delay=	0	Tot.Delay=	25
Vehicle=	35	Arrive=	367	Depart≖	367	Int.Delay=	0	Tot.Delay=	25
Vehicle=	36	Arrive=	369	Depart=	369	Int.Delay=	0	Tot.Delay=	17
Vehicle=	37	Arrive=	371	Depart=	371	Int.Delay=	0	Tot.Delay=	14
Vehicle=	38	Arrive=	373	Depart=	373	Int.Delay=	0	Tot.Delay=	7
Vehicle=	39	Arrive≈	385	Depart=	405	Int.Delay=	20	Tot.Delay=	20
Vehicle=	40	Arrive=	404	Depart=	407	Int.Delay=	3	Tot.Delay=	3
Vehicle=	41	Arrive=	423	Depart=	423	Int.Delay=	0	Tot.Delay=	0
Vehicle=	42	Arrive=	436	Depart=	436	Int.Delay=	0	Tot.Delay=	38
Vehicle=	43	Arrive=	438	Depart=	438	Int.Delay=	0	Tot.Delay=	33
Vehicle=	44	Arrive=	440	Depart≂	440	Int.Delay=	0	Tot.Delay=	3
Vehicle=	45	Arrive=	458	Depart=	470	Int_Delay=	12	Tot.Delay=	12
Vehicle=	46	Arrive=	460	Depart=	472	Int.Delay=	12	Tot.Delay=	12

Vehicle=	47	Arrive=	479	Depart=	479	Int.Delay=	0	Tot.Delay=	0
Vehicle=	48	Arrive=	498	Depart=	498	Int.Delay=	0	Tot.Delay=	0
Vehicle=	49	Arrive=	511	Depart=	535	Int.Delay=	24	Tot.Delay=	43
Vehicle=	50	Arrive=	535	Depart=	537	Int.Delay≖	2	Tot.Delay=	2
Vehicle=	51	Arrive=	554	Depart=	554	Int.Delay=	0	Tot.Delay=	0
Vehicle=	52	Arrive=	573	Depart=	573	Int.Delay=	0	Tot.Delay=	0
Vehicle=	53	Arrive=	586	Depart=	608	Int.Delay≖	22	Tot.Delay=	70
Vehicle=	54	Arrive=	588	Depart=	610	Int.Delay=	22	Tot.Delay=	46
Vehicle=	55	Arrive=	590	Depart=	612	Int.Delay=	22	Tot.Delay=	44
Vehicle=	56	Arrive=	592	Depart=	614	Int.Delay=	22	Tot.Delay=	22
Vehicle=	57	Arrive=	610	Depart=	616	Int.Delay≖	6	Tot.Delay=	6
Vehicle=	58	Arrive=	629	Depart=	629	Int.Delay=	0	Tot.Delay≖	0
Vehicle=	59	Arrive=	648	Depart=	673	Int.Delay=	25	Tot.Delay=	25
Vehicle=	60	Arrive=	661	Depart=	675	Int.Delay=	14	Tot.Delay=	43
Vehicle=	61	Arrive=	663	Depart=	677	Int.Delay=	14	Tot.Delay=	37
Vehicle=	62	Arrive=	665	Depart=	679	Int.Delay=	14	Tot.Delay=	37
Vehicle=	63	Arrive=	667	Depart=	681	Int.Delay=	14	Tot.Delay=	29
Vehicle=	64	Arrive=	669	Depart=	683	Int.Delay=	14	Tot.Delay=	26
Vehicle=	65	Arrive=	673	Depart=	685	Int.Delay=	12	Tot.Delay=	12
Vehicle=	66	Arrive=	682	Depart=	687	Int.Delay≃	5	Tot.Delay=	5
Vehicles	67	Mpp ive=	685	Depart=	689	Int.Delay=	4	Tot.Delay=	4
Vehicl3=		₩71ve=	704	Depart=	704	Int.Delay=	ວ	Tot.Delay=	0
Vehicle⋍	- 6	≸∘ríve=	723	Depart #	7.9	Int Delay=	15	Tot.Delay=	15
Vehicle=	70	Arrive=	736	Departa	J. S.	Lit A Charge	4	Tot.Delay=	23
Vehicle=	71	Arrive=	738	Depart=	74,8	Tox . pelay=	4	Tot.Delay=	21
Vehicle=	72	Arrive=	740	Depart=	744	Int.Delay=	4	Tot.Delay=	5
Vehicle=	73	Arrive=	742	Depart=	746	Int.Delay=	4	Tot.Delay=	4
Vehicle=	74	Arrive=	753	/Depart=	753	Int.Delay=	0	Tot.Delay=	0
Vehicle=	75	Arrive=	760	Depart=	760	Int.Delay=	0	Tot.Delay=	0
Vehicle=	76	Arrive=	779	Depart=	803	Int.Delay=	24	Tot.Delay=	24
Vehicle=	77	Arrive=	798	Depart=	805	Int.Delay=	7	Tot.Delay=	7
Vehicle=	78	Arrive=	811	Depart=	811	Int.Delay=	0	Tot.Delay=	2
Vehicle=	79	Arrive=	818	Depart=	818	Int.Delay=	0	Tot.Delay=	0
Vehicle=	80	Arrive=	824	Depart=	824	Int.Delay=	0	Tot.Delay=	0
Vehicle≃	81	Arrive=	835	Depart=	835	Int.Delay=	0	Tot.Delay=	0
Vehicle=	82	Arrive=	854	Depart=	854	Int_Delay=	0	Tot.Delay=	0
Vehicle=	83	Arrive=	873	Depart=	873	Int.Delay≂	0	Tot.Delay=	0
Vehicle=	84	Arrive=	886	Depart=	886	Int.Delay=	0	Tot.Delay=	42
Vehicle=	85	Arrive=	910	Depart=	920	Int.Delay=	10	Tot_Delay=	10
Vehicle=	86	Arrive=	929	Depart=	929	Int.Delay=	0	Tot.Delay=	0
Vehicle≈	87	Arrive=	948	Depart=	948	Int.Delay=	0	Tot.Delay=	õ
Vehicle≈	88	Arrive=	961	Depart=	985	Int.Delay=	24	Tot.Delay=	68
Vehicle=	89	Arrive=	963	Depart=	987	Int.Delay=	24	Tot.Delay=	59
Vehicle=	90	Arrive=	965	Depart=	989	Int.Delay=	24	Tot.Delay=	52
Vehicle=	91	Arrive=	967	Depart=	991	Int.Delay=	24	Tot.Delay=	51
Vehicle=	92	Arrive=	975	Depart=	993	Int.Delay=	18	Tot.Delay=	18
Vehicle=	93	Arrive=	985	Depart=	995	Int.Delay=	10	Tot.Delay=	12
Vehicle=	94	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	95	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	96	Arrive=		Depart=		Int.Delay=	15	Tot.Delay=	62
				· - F = · · ·				. ocrociay=	55

Vehicle=	97	Arrive= 10	38 Depart=	1053	Int.Delay=	15	Tot.Delay=	55
Vehicle≖	98	Arrive= 10	40 Depart=	1055	Int.Delay=	15	Tot.Delay=	48
Vehicle≖	99	Arrive= '04	42 Depart=	1057	Int.Delay=	15	Tot.Delay=	42
Vehicle =	100	Arrive= 10	44 Depart=	1059	Int.Delay=	15	Tot.Delay=	27
Vehicle=	101	Arrive= 10	60 Depart=	1061	Int.Delay=	1	Tot.Delay=	1
Vehicle≖	102	Arrive= 10	79 Depart=	1079	Int.Delay=	0	Tot.Delay=	0
Vehicle=	103	Arrive= 10	78 Depart=	1116	Int.Delay=	18	Tot.Delay≐	18
Vehicle =	104	Arrive= 11	11 Depart=	1118	Int_Delay=	7	Tot.Delay=	44
Vehicle=	105	Arrive= 11	13 Depart=	1120	Int.Delay=	7	Tot.Delay≖	25
Vehicle=	106	Arrive= 11	21 Depart=	1122	Int_Delay=	1	Tot.Delay=	1
Vehicle=	107	Arrive= 11	32 Depart=	1132	Int.Delay=	0	Tot.Delay=	0
Vehicle=	108	Aprive= 11	55 Depart=	1135	Int.Delay=	0	Tot.Delay=	0
Vehicle=	109	Arrive= 11	54 Depart≍	1154	Int.Delay=	0	Tot.Delay=	0
Vehicle=	110	Arrive= 11	73 Depart=	1181	Int.Delay=	8	Tot.Delay≖	8
Vehicle=	111	Arrive= 11	36 Depart=	1186	Int.Delay=	0	Tot.Delay=	40
Vehicle=	112	Arrive= 11	38 Depart=	1188	Int.Delay=	0	Tot.Delay=	36
Vehicle=	113	Arrive= 12	09 Depart=	1209	Int.Delay=	0	Tot.Delay=	0
Vehicle=	114	Arrive= 12	10 Depart=	1211	Int_Delay=	1	Tot.Delay=	1
Vehicle=	115	Arrive= 12	29 Depart=	1246	Int_Delay=	17	Tot.Delay=	17
Vehicle=	116	Arrive= 12	48 Depart=	1248	Int.Delay=	0	Tot.Delay=	4
Vehicle=	117	Arrive= 12	51 Depart=	1261	Int.Delay=	0	Tot.Delay=	10
Vehicle=	118	Arriwe= 12	•		Int.Delay=	0	Tot_Delay=	0
Vehicle=	119	Arrive= 12			Int.Delay=	0	Tot.Delay=	0
Vehicle=	120	Arrive= 12			Int.Delay=	0	Tot.Delay=	6
Vehicle=		Arrive= 13	•	_	Int.Delay=	7	Tot.Delay=	7
Vehicle=	122	Arrive= 13			Int.Delay=	0	Tot.Delay=	0
Vehicle=	123	Arrive= 13			Int.Delay=	Ō	Tot.Delay=	14
Vehicle=	124	Arrive= 13			Int.Delay=	0	Tot.Delay=	0
Vehicle=	125	Arrive= 13			Int.Delay=	Ō	Tot.Delay=	0
Vehicle=	126	Arrive= 13			Int.Delay=	22	Tot.Delay=	22
Vehicle=	127	Arrive= 13			Int.Delay=	18	Tot.Delay=	32
Vehicle=	128	Arrive= 13	•		Int.Delay=	1	Tot.Delay=	11
Vehicle=	129	Arrive= 13			Int.Delay=	0	Tot.Delay=	7
Vehicle=	130	Arrive= 14			Int.Delay=	0		47
Vehicle=		Arrive= 14			Int.Delay=	0	Tot.Delay=	47
Vehicle=		Arrive= 14	•		•		Tot.Delay=	
Vehicle=		Arrive= 14	. r ·		Int.Delay=	0	Tot.Delay=	12
Vehicle=	133	Arrive= 14			Int.Delay=	24	Tot.Delay=	33
Venicle=					Int.Delay=	20	Tot.Delay=	20
	135	Arrive= 14			Int_Delay=	19	Tot_Delay=	19
Vehicle=	136	Arrive= 14			Int_Delay=	12	Tot.Delay=	23
Vehicle=		Arrive= 14	· · ·		Int.Delay=	0	Tot.Delay=	0
Vehicle=		Arrive= 14			Int.Delay=	0	Tot.Delay=	0
Vehicle=		Arrive= 14			Int.Delay=	20	Tot.Delay=	63
Vehicle=		Arrive= 14			Int.Delay=	20	Tot.Delay=	50
Vehicle=		Arrive= 14	r -		Int.Delay=	20	Tot.Delay=	48
Vehicle=	-	Arrive= 14	•		Int.Delay=	20	Tot.Delay=	29
Vehicle=		Arrive= 14	•		Int.Delay=	20	Tot.Delay=	28
Vehicle=		Arrive= 15	- •		Int.Delay=	6	Tot.Delay=	11
Vehicle=		Arrive= 15	•		Int_Delay=	0	Tot.Delay=	9
Vehicle=	146	Arrive= 15	48 Depart=	: 1571	Int.Delay=	23	Tot.Delay=	31

Vehicle=	147	Arrive= 1561	Depart= 1573	Int.Delay=	12	Tot.Delay=	52
Vehicle≖	148	Arrive= 1563	Depart= 1575	Int.Delay=	12	Tot.Delay=	24
Vehicle=	149	Arrive= 1565	Depart= 1577	Int.Delay=	12	Tot.Delay=	23
Vehicle=	150	Arrive= 1585	Depart= 1585	Int.Delay=	0	Tot.Delay=	0
Vehicle=	151	Arrive= 1604	Depart= 1604	Int.Delay=	0	Tot.Delay=	14
Vehicle=	152	Arrive= 1623	Depart= 1636	Int.Delay=	13	Tot.Delay=	13
Vehicle=	153	Arrive= 1636	Depart= 1638	Int.Delay=	2	Tot.Delay=	29
Vehicle=	154	Arrive= 1638	Depart= 1640	Int.Delay=	2	Tot.Delay=	13
Vehicle=	155	Arrive= 1650	Depart= 1650	Int.Delay=	0	Tot.Delay=	0
Vehicle=	156	Arrive= 1656	Depart= 1656	Int.Delay=	0	Tot.Delay=	0
Vehicle=	157	Arrive= 1660	Depart= 1660	Int.Delay=	0	Tot.Delay=	14
Vehicle=	158	Arrive= 1679	Depart= 1701	Int.Delay=	22	Toc.Delay=	26
Vehicle=	159	Arrive= 1698	Depart= 1703	Int.Delay=	5	Tot.Delay=	6
Vehicle=	160	Arrive= 1711	Depart= 1711	Int.Delay=	0	Tot.Delay=	44
Vehicle=	161	Arrive= 1716	Depart= 1716	Int.Delay=	0	Tot.Delay=	0
Vehicle=	162	Arrive= 1722	Depart= 1722	Int.Delay=	0	Tot.Delay=	0
Vehicle=	163	Arrive= 1735	Depart= 1735	Int.Delay=	0	Tot.Delay=	19
Vehicle=	164	Arrive= 1754	Depart= 1766	Int.Delay=	12	Tot.Delay=	27
Vehicle=	165	Arrive= 1773	Depart= 1773	Int.Delay=	0	Tot.Delay=	3
Vehicle=	166	Arrive= 1786	Depart= 1786	Int.Delay=	0	Tot.Delay=	49
Vehicle=	167	Arrive= 1788	Depart= 1788	Int.Delay=	0	Tot.Delay=	45
Vehicle=	168	Arrive= 1790	Depart= 1790	Int.Delay=	0	Tot.Delay=	33
Vehicle=	169	Arrive= 1792	Depart= 1792	Int.Delay=	0	Tot.Delay=	31
Vehicle=	170	Arrive= 1794	Depart= 1794	Int.Delay=	0	Tot.Delay=	16
Vehicle=	171	Arrive= 1796	Depart= 1796	Int.Delay=	0	Tot.Delay=	7
Vehicle=	172	Arrive= 1810	Depart= 1831	Int.Delay=	21	Tot.Delay=	21
Vehicle= Vehicle=	173	Arrive= 1829	Depart= 1833	Int.Delay=	4	Tot.Delay=	4
Vehicle=	174	Arrive= 1848	Depart= 1848	Int.Delay=	0	Tot.pelay=	17
Vehicle=	175 176	Arrive= 1861	Depart= 1861	Int.Delay=	0	Tot.Delay=	26
Vehicle=	177	Arrive= 1863 Arrive= 1865	Depart= 1863	Int.Delay=	0	Tot.Delay=	24
Vehicle=	178		Depart= 1865	Int.Delay=	0	Tot.Delay=	6
Vehicle=	179	Arrive= 1885 Arrive= 1904	Depart= 1896	Int.Delay=	11	Tot.Delay=	12
Vehicle=		Arrive= 1904 Arrive= 1923	Depart= 1904	Int.Delay=	0	Tot.Delay=	0
Vehicle=	-		Depart= 1923	Int.Delay=	0	Tot_Delay=	16
Vehicle=		Arrive= 1936	Depart= 1961	Int.Delay=	25	Tot.Delay=	55
Vehicle=	183	Arrive= 1938 Arrive= 1940	Depart= 1963	Int.Delay=	25	Tot.Delay=	49
Vehicle=	184	Arrive= 1940 Arrive= 1943	Depart= 1965	Int.Delay=	25	Tot.Delay=	26
Vehicle=	185		Depart= 1967	Int.Delay=	24	Tot.Delay=	24
Vehicle=		Arrive= 1949	Depart= 1969	Int.Delay=	20	Tot.Delay=	20
Vehicle=	187	Arrive= 1957	Depart= 1971	Int.Delay=	14	Tot.Delay=	14
Vehicle=		Arrive= 1960 Arrive= 1979	Depart= 1973	Int.Delay=	13	Tot.Delay=	32
Vehicle=			Depart= 1979	Int.Delay=	0	Tot.Delay=	16
Vehicle=	189 190	Arrive= 1998 Arrive= 2011	Depart= 1998	Int.Delay=	0	Tot.Delay=	5
Vehicle=	190	Arrive= 2011 Arrive= 2013	Depart= 2026	Int.Delay=	15	Tot.Delay=	56
Vehicle=			Depart= 2028	Int.Delay=	15	Tot.Delay=	15
Vehicle=	192 193	Arrive= 2026 Arrive= 2035	Depart= 2030	Int.Delay=	4	Tot.Delay=	4
Vehicle=	194	Arrive= 2035	Depart= 2035	Int.Delay=	0	Tot.Delay=	0
Vehicle=	195	Arrive= 2034 Arrive= 2073	Depart= 2054 Depart= 2091	Int.Delay=	19	Tot.Delay=	0
Vehicle=	195	Arrive= 2073	Depart= 2091 Depart= 2093	Int.Delay=	18	Tot.Delay=	43
ven i 018-	170	2000	vepar (= 2093	Int.Delay=	7	Tot.Delay=	29

Vehicle	= 197	Arrive= 2088	Depart= 2095	Int.Delay=	7	Tot.Delay=	19
Vehicle	= 198	Arrive= 2090	Depart= 2097	Int.Delay=	7	Tot.Delay=	12
Vehicle	= 199	Arrive= 2110	Depart= 2110	Int.Delay=	0	Tot.Delay=	9
Vehicle	= 200	Arrive= 2129	Depart= 2129	Int.Delay=	0	Tot.Delay=	19
Vehicle	= 201	Arrive= 2148	Depart= 2156	Int.Delay=	8	Tot.Delay=	27
Vehicle	= 202	Arrive= 2161	Depart= 2161	Int.Delay=	0	Tot.Delay=	33
Vehicle	= 203	Arrive= 2167	Depart= 2167	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 204	Arrive= 2185	Depart= 2185	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 205	Arrive= 2204	Depart= 2204	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 206	Arrive= 2223	Depart= 2223	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 207	Arrive= 2236	Depart= 2236	Int.Delay=	0	Tot.Delay=	10
Vehicle	= 208	Arrive= 2260	Depart= 2260	Int.Delay=	0	Tot.Delay=	1
Vehicle	= 209	Arrive≂ 2279	Depart= 2279	Int.Delay=	0	Tot.Delay=	1
Vehicle	= 210	Arrive= 2298	Depart= 2305	Int.Delay=	7	Tot.Delay=	30
Vehicle	= 211	Arrive= 2311	Depart= 2311	Int.Delay=	0	Tot.Delay=	17
Vehicle	= 212	Arrive= 2313	Depart= 2313	Int.Delay=	0	Tot.Delay=	17
Vehicle	= 213	Arrive= 2330	Depart= 2330	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 214	Arrive= 2333	Depart= 2333	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 215	Arrive= 2335	Depart= 2335	Int.Delay=	0	Tot.Delay=	36
Vehicle	= 216	Arrive= 2354	Depart= 2370	Int.Delay=	16	Tot.Delay=	50
Vehicle	= 217	Arrive= 2373	Depart= 2373	Int.Delay=	0	Tot.Delay=	20
Vehicle	= 218	Arrive= 2386	Depart= 2386	Int.Delay=	0	Tot.Delay=	47
Vehicle	= 219	Arrive= 2388	Depart= 2388	Int.Delay=	0	Tot.Delay=	45
Vehicle	= 220	Arrive= 2390	Depart= 2390	Int.Delay=	0	Tot.Delay=	31
Vehicle	= 221	Arrive= 2392	Depart= 2392	Int.Delay=	0	Tot.Delay=	28
Vehicle	= 222	Arrive= 2405	Depart= 2405	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 223	Arrive= 2409	Depart= 2409	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 224	Arrive= 2410	Depart= 2411	Int.Delay=	1	Tot.Delay=	12
Vehicle	= 225	Arrive= 2429	Depart= 2429	Int.Delay=	e	Tot.Delay=	6
Vehicle	= 226	Arrive= 2448	Depart= 2448	Int.Delay=	0	Tot.Delay=	3
Vehicle	= 227	Arrive= 2461	Depart= 2461	Int.Delay=	0	Tot.Delay=	19
Vehicle	= 2.28	Arrive= 2463	Depart= 2463	Int.Delay=	0	Tot.Delay=	14
Vehicle	= 229	Arrive= 2465	Depart= 2465	Int.Delay=	0	Tot.Delay=	11
Vehicle	= 230	Arrive= 2485	Depart= 2492	Int.Delay=	7	Tot.Delay=	38
Vehicle	= 231	Arrive= 2504	Depart= 2504	Int.Delay=	0	Tot.Delay=	0
Vehicle	= 232	Arrive= 2523	Depart= 2523	Int.Delay=	0	Tot.Delay=	40
Vehicle	= 233	Arrive= 2536	•	Int.Delay=	21	Tot.Delay=	63
Vehicle	= 234	Arrive= 2545	Depart= 2559	Int.Delay=	14	Tot.Delay=	14
Vehicle	= 235	Arrive≈ 2552	Depart= 2561	Int.Delay=	9	Tot.Delay=	9
Vehicle	= 236		•	Int.Delay=	3	Tot.Delay=	47
Vehicle	= 237			Int.Delay=	0	Tot.Delay=	32
Vehicle			•	Int.Delay=	24	Tot.Delay=	59
Vehicle				Int.Delay=	13	Tot.Delay=	62
Vehicle			•	Int.Delay=	13	Tot.Delay=	50
Vehicle				Int.Delay=	0	Tot.Delay=	45
Vehicle				Int.Delay=	0	Tot.Delay=	0
Vehicle			•	Int.Delay=	14	Tot.Delay=	14
Vehicle			•	Int.Delay=	3	Tot.Delay=	52
Vehicle			•	Int.Delay=	0	Tot.Delay=	0
Vehicle			•	Int.Delay=	0	Tot.Delay=	0
	240		50pdi (- 6070		0	,ot.Detay-	Ū

Vehicle=	247	Arrive= 2710	Depart= 2710	Int.Delay=	0	Tot.Delay=	41
Vehicle=	248	Arrive= 2729	Depart= 2752	Int.Delay=	23	Tot.Delay≖	38
Vehicle=	249	Arrive= 2748	Depart= 2754	Int.Delay=	6	Tot.Delay=	10
Vehicle =	250	Arrive= 2761	Depart= 2761	Int.Delay=	0	Tot.Delay=	42
Vehicle=	251	Arrive= 2763	Depart= 2763	Int.Delay=	0	Tot.Delay=	15
Vehicle=	252	Arrive= 2765	Depart= 2765	Int.Delay=	0	Tot.Delay=	4
Vehicle=	253	Arrive= 2777	Depart= 2777	Int.Delay=	0	Tot.Delay≖	0
Vehicle=	254	Arrive= 2785	Depart= 2785	Int.Delay=	0	Tot.Delay≃	31
Vehicle=	255	Arrive= 2804	Depart= 2817	Int.Delay=	13	Tot.Delay=	22
Vehicle=	256	Arrive= 2823	Depart= 2823	Int.Delay=	0	Tot.Delay=	8
Vehicle=	257	Arrive= 2836	Depart= 2836	Int.Delay=	0	Tot.Delay=	30
Vehicle=	258	Arrive= 2838	Depart= 2838	Int.Delay=	0	Tot.Delay=	7
Vehicle=	259	Arrive= 2840	Depart= 2840	Int.Delay=	0	Tot.Delay=	6
Vehicle=	260	Arrive= 2857	Depart= 2882	Int.Delay=	25	Tot.Delay=	25
Vehicle=	261	Arrive= 2860	Depart= 2884	Int.Delay=	24	Tot.Delay=	51
Vehicle=	262	Arrive= 2879	Depart= 2886	Int.Delay=	7	Tot.Delay≃	34
Vehicle=	263	Arrive= 2898	Depart= 2898	Int.Delay=	0	Tot.Delay=	9
Vehicle=	264	Arrive= 2911	Depart= 2911	Int.Delay=	0	Tot.Delay=	24
Vehicle=	265	Arrive= 2913	Depart= 2913	Int.Delay=	0	Tot.Delay=	24
Vehicle=	266	Arrive= 2915	Depart= 2915	Int.Delay=	0	Tot.Delay≃	6
Vehicle=	267	Arrive= 2917	Depart= 2917	Int.Delay=	0	Tot.Delay=	5
Vehicle=	268	Arrive= 2919	Depart= 2919	Int.Delay=	0	Tot.Delay=	3
Vehicle=	269	Arrive= 2935	Depart= 2947	Int.Delay=	12	Tot.Delay=	26
Vehicle=	270	Arrive= 2954	Depart= 2954	Int.Delay=	0	Tot.Delay=	43
Vehicle=	271	Arrive= 2973	Depart= 2973	Int.Delay=	0	Tot.Delay=	17
Vehicle=	272	Arrive= 2986	Depart= 2986	Int.Delay=	0	Tot.Delay=	50
Vehicle=	273	Arrive= 2988	Depart= 3012	Int.Delay=	24	Tot.Delsy=	65
Vehicle=	274	Arrive= 2990	Depart= 3014	Int.Delay=	24	Tot.Delay=	39
Vehicle=	275	Arrive= 2992	Depart= 3016	Int.Delay=	24	Tot.Delay=	38
Vehicle=	276	Arrive= 2997	Depart= 3018	Int.Delay=	21	Tot.Delay=	21
Vehicle=	277	Arrive= 3000	Depart= 3020	Int.Delay=	20	Tot.Delay=	20
Vehicle=	278	Arrive= 3002	Depart= 3022	Int.Delay=	20	Tot.Delay=	20
Vehicle=	279	Arrive= 3007	Depart= 3024	Int.Delay=	17	Tot.Delay=	17
Vehicle=	280	Arrive= 3010	Depart= 3026	Int.Delay=	16	Tot.Delay=	37
Vehicle=	281	Arrive= 3029	Depart= 3029	Int.Delay=	0	Tot.Delay=	1
Vehicle=	282	Arrive= 3048	Depart= 3048	Int.Delay=	0	To%.Delay=	0
Vehicle=	283	Arrive= 3061	Depart= 3077	Int.Delay=	16	Tot.Delay=	32
Vehicle=	284	Arrive= 3067	Depart= 3079	Int.Delay=	12	Tot.Delay=	12
Vehicle=	285	Arrive= 3080	Depart= 3081	Int.Delay=	1	Tot.Delay=	1
Vehicle=	286		Depart= 3085	Int.Delay=	0		47
Vehicle=	287		Depart= 3104	Int.Delay=	0		39
Vehicle=	288		Depart= 3142	Int.Delay=	19	· · · · ·	54
Vehicle=	289			Int.Delay=	8		49
Vehicle=				Int.Delay=	8	•	41
Vehicle=	291		•	Int.Delay=	8	•	37
Vehicle=			•	Int.Delay=	8	•	23
Vehicle=	293		•	Int.Delay=	8		15
Vehicle=			· · ·	Int.Delay=	2	-	2
Vehicle=			•	Int.Delay=	0	•	31
Vehicle=	296	Arrive= 3179	Depart= 3179	Int.Delay=	0	Tot.Delay=	17

Vehicle=	297	Arrive= 3	5198	Depart= 3	3207	Int.Delay=	9	Tot.Delay=	9
Vehicle=	298	Arrive= 3	3211	Depart= 3	3211	Int.Delay=	0	Tot.Delay=	51
Vehicle=	299	Arrive= 3	3213	Depart=	3213	Int.Delay=	0	Tot.Delay=	11
Vehicie=	300	Arrive= 3	3222	Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	301	Arrive= 3	3235	Depart=		Int.Delay=	0	Tot.Delay=	27
Vehicle=	302	Arrive= 3		Depart= :		Int.Delay=	18	Tot.Delay=	32
Vehicle=	303	Arrive= 3		Depart=		Int.Delay=	1	Tot.Delay=	6
Vehicle=	304	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	17
Vehicle=	305	Arrive= 3		Depart=		Int_Delay=	0	Tot_Delay=	4
Vehicle=	306	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	307	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	308	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	309	Arrive= 3		Depart=		Int.Delay=	12	Tot.Delay=	51
Vehicle=	310	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	6
Vehicle=	311	Arrive= 1		Depart=		Int_Delay=	O)	Tot.Delay=	46
Vehicle=	312	Arrive= 3		Depart=		Int.Delay=	0	Tot.Delay=	30
Vehicle=	313	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	314	Arrive= 1		Depart=		Int.Delay=	21	Tot.Delay=	23
Vehicle=	315	Arrive=		Depart=		Int.Delay=	4	Tot.Delay=	52
Vehicle=	316	Arrives		Depart=		Int.Delay=	0	Tot.Delay=	38
Vehicle=	317	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	47
Vehicle=	318	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	38
Vehicle=	319	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	28
Vehicle=	320	Arrive=		Depart=		Int.Delay=	15	Tot.Delay=	15
Vehicle=	321	Arrive=		Departs		Int.Delay=	13	Tot.Delay=	54
Vehicle=	322	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	7
Vehicle=	323	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	24
Vehicle=	324	Arrive=		Depart=		Int.Delay=	25	Tot.Delay=	51
Vehicle=	325	Arrive=		Depart=		Int.Delay=	16	Tot.Delay=	16
Vehicle=	326	Arrive=		Depart=		Int.Delay=	5	Tot.Delay=	20
Vehicle=	327	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	42 41
Vehicle=	328	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	41
-		section V		-					
-		Vehicle	-		= 20.		/0	Tet Deleur	48
Vehicle=	1	Arrive=	21	Depart=	69	Int.Delay=	48	Tot.Delay=	40 31
Vehicle=	2	Arrive=	40	Depart=		Int.Delay= Int.Delay=	31	Tot.Delay= Tot.Delay=	14
Vehicle=	3	Arrive= Arrive=	59	Depart=	73 90	Int.Delay=	14 0	•	58
Vehicle=	4	Arrive=	90	Depart=		•••••••	-	Tot.Delay= Tot.Delay=	37
Vehicle=	5		92	Depart=	92 94	Int.Delay=	0	Tot.Delay=	35
Vehicle=	6	Arrive=	94	Depart=		Int.Delay=	0	Tot.Delay=	35 7
Vehicle=		Arrive=	96	Depart=		Int.Delay=	0		
Vehicle=		Arrive=	98	Depart=		Int.Delay=	31	Tot.Delay=	34
Vehicle=		Arrive=	114	Depart=		Int.Delay=	17	Tot.Delay=	17 22
Vehicle=		Arrive=	155	Depart=		Int.Delay=	0	Tot.Delay=	22 7/
Vehicle=		Arrive=	157	Depart=		Int.Delay=	32	Tot.Delay=	74 72
Vehicle= Vehicle=		Arrive=	159	Depart=		Int.Delay=	32	Tot.Delay= Tot.Delay=	
		Arrive=	161	Depart=		Int.Delay=	32	•	41 25
Vehicle=		Arrive=	170	Depart=		Int.Delay=	25 8	Tot.Delay= Tot.Delay=	25 8
Vehicle=		Arrive= Arrive=	189 220	Depart=		Int.Delay=	0 29	Tot.Delay=	41
Vehicle=	10	ALLIAGE	220	Depart=	249	Int.Delay=	29	TOL Delay=	

Vehicle=	17	Arrive=	222	Depart=	251	Int.Delay=	29	Tot.Delay=	80
Vehicle=	18	Arrive=	224	Depart=	253	Int.Delay=	29	Tot.Delay=	59
Vehicle=	19	Arrive=	226	Depart=	255	Int.Delay=	29	Tot.Delay=	55
Vehicle=	20	Arrive=	228	Depart=	257	Int.Delay=	29	ist.Celay=	45
Vehicle=	21	Arrive=	230	Depart=	259	Int.Delay=	2%	Bach 得他 18 94	40
Vehicle=	22	Arrive=	241	Depart=	261	Int.Delay=	20	13.4el 201	20
Vehicle=	23	Arrive=	245	Depart=	263	Int.Delay=	18	Tot.Delay*	18
Vehicle=	24	Arrive=	285	Depart=	309	Int.Delay=	24	Tot.Delay=	45
Vehicle=	25	Arrive=	287	Depart=	311	Int.Delay=	24	Tot.Delay=	28
Vehicle=	26	Arrive=	296	Depart=	313	Int.Delay=	17	Tot.Delay=	31
Vehicle=	27	Arrive=	298	Depart=	315	Int.Delay=	17	Tot.Delay=	21
Vehicle=	28	Arrive=	313	Depart=	317	Int.Delay=	4	Tot.Delay=	4
Vehicle= Vehicle=	29 30	Arrive=	320	Depart=	320	Int.Delay=	0	Tot.Delay=	0
Vehicle=	30 31	Arrive=	350	Depart=	369	Int.Delay=	19	Tot.Delay=	30
Vehicle=	32	Arrive=	358	Depart=	371	Int.Delay=	13	Tot.Delay=	13
Vehicle=	33	Arrive=	371	Depart=	373	Int.Delay=	2	Tot.Delay=	47
Vehicle=	33 34	Arrive=	373	Depart=	375	Int.Delay=	2	Tot.Delay=	46
Vehicle=	35	Arrive=	375	Depart=	377	Int.Delay=	2	Tot.Delay=	27
Vehicle=	36	Arrive= Arrive=	377	Depart=	379	Int.Delay=	2	Tot.Delay=	27
Vehicle=	37	Arrive=	379 381	Depart=	381	Int.Delay=	2	Tot.Delay=	19
Vehicle=	38	Arrive=	383	Depart=	383	Int.Delay=	2	Tot.Delay=	16
Vehicle=	39	Arrive=	415	Depart=	385	Int.Delay=	2	Tot.Delay=	9
Vehicle=	40	Arrive=	415	Depart=	429	Int.Delay=	14	Tot.Delay=	34
Vehicle=	41	Arrive=	417	Depart=	431 433	Int.Delay=	14	Tot.Delay=	17
Vehicle=	42	Arrive=	446	Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	43	Arrive=	448	Depart=	446 448	Int.Delay=	0	Tot.Delay=	38
Vehicle=	44	Arrive=	450	Depart=	440	Int.Delay=	0	Tot.Delay=	33
Vehicle=	45	Arrive=	480	Depart=	489	Int.Delay=	0	Tot.Delay=	3
Vehicle=	46	Arrive=	482	Depart=	491	Int.Delay=	9	Tot.Delay=	21
Vehicle=	47	Arrive=	489	Depart= Depart=	471	Int.Delay= Int.Delay=	9	Tot.Delay=	21
Vehicle=	48	Arrive=	508	Depart=	508	-	4	Tot.Delay=	4
Vehicle=	49	Arrive=	545		549	Int.Delay=	0	Tot.Delay=	0
Vehicle=	50	Arrive=	547	Depart= Depart=	551	Int.Delay=	4	Tot.Delay=	47
Vehicle=	51	Arrive=	564		564	Int.Delay= Int.Delay=	4	Tot.Delay=	6
Vehicle=	52	Arrive=	583	Depart=		-	0	Tot.Delay=	0
Vehicle=	53	Arrive=	618	Depart=	609 618	Int.Delay=	26	Tot.Delay=	26
Vehicle=	54	Arrive=	620	Depart=	620	Int.Delay=	0	Tot.Delay=	70
Vehicle=	55	Arrive=	622	Depart=		Int.Delay=	0	Tot.Delay=	46
Vehicle=	56	==vinA	624	Depart=	622 624	Int.Delay=	0	Tot.Delay=	44
Vehicle=	57	Arrive=	626	Depart= Depart=		Int.Delay=	0	Tot.Delay= Tot.Delay=	22
Vehicle=	58	Arrive=	639	Depart=	669	Int.Delay=	0	-	6
Vehicle=	59	Arrive=	683	•		Int.Delay=	30	Tot.Delay=	30
Vehicle=	60			Depart=	683	Int.Delay=	0	Tot.Delay=	25
Vehicle=	61	Arrive= Arrive=	685 687	Depart= Depart=	685	Int.Delay=	0	Tot.Delay=	43
Vehicle=	62			•	687	Int.Delay=	0	Tot.Delay=	37
Venicle=	63	Arrive= Arrive=	689 691	Depart=	689 691	Int.Delay=	0	Tot.Delay=	37
Vehicle=	64	Arrive=	693	Depart=		Int.Delay=	0	Tot.Delay=	29
Vehicle=	- 2 4 - 65	Arrive=	695	Depart= Depart=	693	Int.Delay=	0	Tot.Delay=	26
Vehicle=	- 66	Arrive=	697	•	695 720	Int.Delay=	0 72	Tot.Delay=	12
1011616-	~	ALL 17C-	971	Depart=	729	Int.Delay=	32	Tot.Delay≖	37

Vehicle=	67	Arrive=	699	Depart=	731	Int.Delay=	32	Tot.Delay=	36
Venicle=	68	Arrive=	714	Depart=	733	Int.Delay=	19	Tot.Delay=	19
Vehicle=		Arrive=	748	Depart=	748	Int.Delay=	0	Tot.Delay=	15
Vehicle=		Arriv e =	750	Depart=	750	Int.Delay=	0	Tot_Delay=	23
Vehicle=		Arrive=	752	Depart=	752	Int.Delay=	0	Tot.Delay=	21
Vehicle=	72	Arrive=	754	Depart=	754	Int.Delay=	0	Tot.Delay=	5
Vehicle=	73	Arrive=	756	Depart=	756	Int.Delay=	0	Tot.Delay=	4
Vehicle=	74	Arrive=	763	Depart=	789	Int.Delay=	26	Tot.Delay=	26
Vehicle=	75	Arrive=	770	Depart=	791	Int.Delay=	21	Tot.Delay=	21
Vehicle=	76	Arrive=	813	Depart=	813	Int.Delay=	0	Tot.Delay=	24
Vehicle=	77	Arrive=	815	Depart=	815	Int.Delay=	0	Tot.Delay∞	7
Vehicle=	78	Arrive=	821	Depart=	849	Int.Delay=	28	Tot.Delay≃	30
Vehicle=	79	Arrive=	828	Depart=	851	Int.Delay=	23	Tot.Delay=	23
Vehicle=	80	Arrive=	834	Depert=	853	Int.Delay=	19	Tot.Delay=	19
Vehicle=	81	Arrive=	845	Depart=	855	Int.Delay=	10	Tot.Delay=	10
Vehicle=	82	Arrive=	864	Depart=	864	Int.Delay=	0	Tot_Delay=	0
Vehicle=	83	Arrive=	883	Depart=	909	Int.Delay=	26	Tot.Delay=	26
Vehicle=	84	Arrive=	896	Depart=	911	Int.Delay=	15	Tot.Delay=	57
Vehicle=	85	Arrive=	930	Depart=	930	Int.Delay=	0	Tot.Delay=	10
Vehicle=	86	Arrive=	939	Depart=		Int.Delay=	30	Tot.Delay=	30
Vehicle=	87	Arrive=	958	Depart≖	971	Int.Delay=	13	Tot.Delay=	13
Vehicle=	88	Arrive=	995	Depart=	995	Int.Delay=	0	Tot.Delay=	68
Vehicle=	89	Arrive=	997	Depart=		Int.Delay=	32	Tot.Delay=	91
Vehicle=	90	Arrive=	999	Depart=		Int_Delay=	32	Tot.Delay=	84
Vehicle=	91	Arrive=		Depart=		Int.Delay=	32	Tot_Delay=	83
Vehicle=	92	Arrive=		Depart=		Int.Delay=	32	Tot.Delay=	50
Vehicle=	93	Arrive=		Depart=		Int.Delay=	32	Tot.Delay=	44
Vehicle=	94	Arrive=		Depart=		Int.Delay=	25	Tot.Delay=	25
Vehicle=	95	Arrive=		Depart=		Int.Delay=	8	Tot.Delay=	8
Vehicle=	96	Arrive=		Depart=		Int.Delay=	28	Tot.Delage	90
Vehicle=	97	Arrive*		Depart=		Int.Delay=	28	Tot.Delay=	83
Vehicle=	98	Arrive=		Depart=		Int.Delay=	28	Tot.Delay=	76
Vehicle=	99	Arrive= '		Depart=		Int.Delay=	28	Tot.Delay=	70
Vehicle=	100	Arrive= '		Depart=		Int.Delay=	28	Tot.Delay=	55
Vehicle=	101	Arrive= '		Depart=		Int.Delay=	28	Tot.Delpy=	29
Vehicle=	102	Arrive=		Depart=		Int.Delay=	12	Tot.Delay=	12
Vehicle=	103	Arrive= '	-	Depart=		Int.Delay=	23	Tot.Delay=	41
Vehicle=	104	Arrive=		Depart=		Int.Delay=	23	Tot.Delay=	67
Vehicle=	105	Arrive= '		Depart= '		Int.Delay=	23	Tot.Delay=	48
Vehicle=	106	Arrive=		Depart=		Int.Delay=	23	Tot.Delay=	24
Vehicle=	107	Arrive= 1		Depart=		Int.Delay=	15	Tot.Delay=	15
Vehicle=	108	Arrive=		Depart= '		Int.Delay=	14	Tot.Delay=	14
Vehicle=	109	Arrive= 1		Depart= '		Int.Delay=	0	Tot.Delay=	0
Vehicle=	110	Arrive= 1		Depart=		Int.Delay=	18	Tot.Delay=	26
Vehicle=	111	Arrive= 1		Depart= '		Int.Delay=	15	Tot.Delay=	55
Vehicle=	112	Arrive= 1		Depart≖ '		Int.Delay=	15	Tot.Delay=	51
Vehicle=	113	Arrive= 1		Depart=		Int.Delay=	0	Tot.Delay=	0
Vehicle=	114	Arrive= 1		Depart=		Int.Delay=	0	Tot.Delay=	1
Vehicle=	115	Arrive= 1		Depart= '		Int.Delay=	13	Tot.Delay≃	30
Vehicle=	116	Arrive= 1	1258	Depart= '	1271	Int.Delay=	13	Tot.Delay=	17

.

Vehicle=	117	Arrive= 1271	Depart= 1273	Int.Delay=	2	Tot.Dellay=	12
Vehicle=	118	Arrive= 1280	Depart= 1280	Int.Delay=	0	Tot.Delay=	0
Vehicle=	119	Arrive= 1288	Depart= 1288	Int.Delay=	0	Tot.Delay=	Û
Vehicle=	120	Arrive= 1295	Depart= 1295	Int.Delay≖	0	Tot.Delay=	6
Vehicle=	121	Arrive= 1321	Depart= 1329	Int.Delay=	8	Tot.Delay=	15
Vehicle=	122	Arrive= 1333	Depart= 1333	Int.Delay=	0	Tot.Delay=	0
Vehicle=	123	Arrive= 1346	Depart= 1346	Int.Delay=	0	Tot.Delay=	14
Vehicle=	124	Arrive= 1354	Depart= 1354	Int.Delay=	0	Tot.Delay=	0
Vehicle=	125	Arrive= 1358	Depart= 1389	Int.Delay -	31	Tot.Delay=	31
Vehicle=	126	Arrive= 1386	Depart= 1391	Int.Delay=	5	Tot.Delay=	27
Vehicle=	127	Arrive= 1388	Depart= 1393	Int.Delay=	5	Tot.Delay=	37
Vehicle=	128	Arrive= 1390	Depart= 1395	Int.Delay=	5	Tot.Delay=	16
Vehicle=	129	Arrive= 1408	Depart= 1408	Int.Delay=	0	Tot.Delay=	7
Vehicle=	130	Arrive= 1421	Depart= 1449	Int.Delay=	28	Tot.Delay=	75
Vehicle=		Arrive= 1423	Depart= 1451	Int.Delay=	28	Tot.Delay=	71
Vehicle=		Arrive= 1425	Depart= 1453	Int.Delay=	28	Tot.Delay=	40
Vehicle=		Arrive= 1451	Depart= 1455	Int.Delay=	4	Tot.Delay=	37
Vehicle=		Arrive= 1453	Depart= 1457	Int.Delay=	4	Tot.Delay=	24
Vehicle=		Arrive= 1455	Depart= 1459	Int.Delay=	4	Tot.Delay=	23
Vehicle=	-	Arrive= 1457	Depart= 1461	Int.Delay=	4	Tot.Delay=	27
Vehicle=		Arrive= 1464	Depart= 1464	Int.Delay=	0	Tot.Delay=	0
Vehicle=		Arrive= 1483	Depart= 1509	Int.Delay=	26	Tot.Delay=	26
Vehicle=		Arrive= 1516	Depart= 1516	Int.Delay=	0	Tot.Delay=	63
Vehicle=		Arrive= 1518	Depart= 1518	Int.Delay=	0	Tot.Delay=	50
Vehicle=		Arrive= 1520	Depart= 1520	Int.Delay=	0	Tot.Delay=	48
Vehicle=		Arrive= 1522	Depart= 1522	Int.Delay=	0	Tot.Delay=	29
Vehicle=		Arrive= 1524	Depairt= 1524	Int.Delay=	0	Tot.Delay=	28
Vehicle=		Arrive= 1526	Depart= 1526	Int.Delay=	0	Tot.Delay=	11
Vehicle=		Arrive= 1539	Depart= 1569	Int.Delay=	30	Tot.Delay=	39
Vehicle=		Arrive= 1581	Depart= 1581	Int.Delay=	0	Tot.Delay=	31
Vehicle=		Arrive= 1583	Depart= 1583	Int.Delay=	0	Tot.Delay=	52
Vehicle=	-	Arrive= 1585	Depart= 1585	Int.Delay=	0	Tot.Delay=	24
Vehicle=		Arrive= 1587	Depart= 1587	Int.Delay=	0	Tot.Delay=	23
Vehicle=		Arrive= 1595	Depart= 1595	Int.Delay=	0	Tot.Delay=	0
Vehicle=		Arrive= 1614	Depart= 1629	Int.Delay=	15	Tot.Delay=	29
Vehicle=		Arrive= 1646	• • • • •	Int_Delay=	0	Tot.Delay=	13
Vehicle=		Arrive= 1648		Int_Delay=	0	Tot.Delay=	29
Vehicle=		Arrive= 1650	Depart= 1650	Int.Delay=	0	Tot.Delay=	13
Vehicle=		Arriva= 1660	Depart= 1689	Int.Delay=	29	Tot.Delay=	29
Vehicle=				Int.Delay=	25	Tot.Delay=	25
Vehicle=			•	Int.Delay=	23	Tot.Delay=	37
Vehicle=			•	Int.Delay=	0	Tot.Delay=	26
Vehicle=			•	Int.Delay=	0	Tot.Delay=	6
Vehicle=			•	Int.Delay=	28	Tot.Delay=	72
Vehicle= Vehicle=		Arrive= 1726		Int.Delay=	25	Tot.Delay=	25
-			• • • • • • • • • • • • • • • • • • • •	Int.Delay=	21	Tot.Delay=	21
Vehicle=			··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	Int.Delay=	10	Tot.Delay=	29
Vehicle=			•	Int.Delay=	0	Tot.Delay=	27
Vehicle=			• • • • • • • •	•	26	•	29
Vehicle=	166	Arrive= 1794	Depart= 1811	Int.Delay=	15	Tot.Delay=	64

.

Ve	hicl e =	167	Arrive=	1798	Depart=	1813	Int.Delay=	15	Tot.Delay=	60
Ve	hicle=	168	Arrive=	1800	Depart=	1815	Int.Delay=	15	Tot.Delay=	48
Ve	hicl e =	169	Arrive=	1802	Depart=	1817	Int.Delay=	15	Tot.Delay=	46
٧e	hicle=	170	Arrive=	1804	Deport-	1819	Int.Delay=	15	Tot.Delay=	31
Ve	hicl e =	171	Arrive=	1806	Depart=	1821	Int.Delay=	15	Tot.Delay=	22
Ve	hicle=	172	Arrive=	1841	Depart=	1869	Int.Delay=	28	Tot.Delay=	49
Ve	hicl e =	173	Arrive=	1843	Depart=	1871	Int.Delay=	28	Tot.Delay=	32
Ve	hicle=	174	Arrive=	1858	Depart=	1873	Int.Delay=	15	Tot.Delay=	32
Ve	hicle=	175	Arrive≖	1871	Depart=	1875	Int.Delay=	4	Tot.Delay=	30
Ve	hicle≖	176	Arrive=	1873	Depart=	1877	Int.Delay=	4	Tot.Delay=	28
Ve	hicl e =	177	Arrive=	1875	Depart=	1879	Int.Delay=	4	Tot.Delay=	10
Ve	hicle=	178	Arrive=	1906	Depart=	1929	Int.Delay=	23	Tot.Delay=	35
Ve	hicle=	179	Arrive=	1914	Depart=	1931	Int.Delay=	17	Tot.Delay=	17
Ve	hicle=	180	Arrive=	1933	Depart=	1933	Int.Delay=	0	Tot.Delay=	16
Ve	hicle=	181	Arrive=	1971	Depart=	1989	Int.Delay=	18	Tot.Delay=	73
Ve	hicl e =	182	Arrive=	1973	Depart=	1991	Int.Delay=	18	Tot.Delay=	67
Ve	hicle=	183	Arrive=	1975	Depart=	1993	Int.Delay=	18	Tot.Delay=	44
Ve	hicle=	184	Arrive=	1977	Depart=	1995	Int.Delay=	18	Tot.Delay=	42
٧e	hicl e =	185	Arrive=	1979	Depart=	1997	Int.Delay=	18	Tot.Delay=	38
۷۵	hicle=	186	Arrive=	1981	Depart=	1999	Int.Delay=	18	Tot.Delay=	32
Ve	hicle=	187	Arrive=	1983	Depart=		Int.Delay=	18	Tot.Delay=	50
٧e	hicle=	188	Arrive=	1989	Depart=	2003	Int.Delay=	14	Tot.Delay=	30
Ve	hicle=	189	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	5
Ve	hicle=	190	Arrive=		Depart=	2049	Int.Delay=	13	Tot.Delay=	69
Ve	hicle=	191	Arrive≠	2038	Depart=		Int.Delay=	13	Tot.Delay=	28
Ve	hicl e =	192	Arrive=		Depart=		Int.Delay=	13	Tot.Delay=	17
Ve	hicle=	193	Arrive=	2045	Depart=	2055	Int.Delay=	10	Tot.Delay=	10
Ve	hicle=	194	Arrive=	2064	Depart=	2064	Int.Delay=	0	Tot.Delay=	0
Ve	hicle=	195	Arrive≠	2101	Depart=		Int.Delay=	8	Tot.Delay=	51
Ve	hicle=	196	Arrive=	2103	Depart=		Int.Delay=	8	Tot.Delay=	37
	hicle=	197	Arrive=		Depart=		Int.Delay=	8	Tot.Delay=	27
	hicle=	198	Arrive=		Depart=		Int.Delay=	8	Tot.Delay=	20
	ehicle=	199	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	9
	ehicle=	200	Arrive=		Depart=		Int.Delay=	30	Tot.Delay=	49
	hicle=	201	Arrive=		Depart=		Int.Delay=	5	Tot.Delay=	32
	hicle=	202	Arrive=		Depart=		Int.Delay=	2	Tot.Delay=	35
	hicle=	203	Arrive=		Depart=		Int.Delay=	G	Tot.Delay=	0
	ehicle=	204	Arrive=		Depart=		Int.Delay=	0	Tot.Delay=	0
Ve	ehicle=	205	Arrive≠		Depart=		Int.Delay=	15	Tot.Delay=	15
	ehicle=	206		: 2233	Depart=		Int.Delay=	0	Tot.Delay=	0
Ve	ehicle=	207			•	. –	Int.Delay=	0	Tot.Delay=	10
	ehicl e =	208					Int.Delay=	19	Tot.Delay=	20
Ve	ehicle=	209			-		Int.Delay=	2	Tot.Delay=	3
	ehicle=	210					Int.Delay=	0	Tot.Delay=	30
	ehicl e =				•		Int.Delay=	28	Tot.Delay=	45
	ehicle=	212			•		Int.Delay=	28	Tot.Delay=	45
	ehicle=	213			•		Int.Delay=	13	-	13
	ehicle=	214			•		Int.Delay=	12	-	12
	ehicle=	215			•		-	12	-	48
V	ehicle=	216	Arrive	= 2380	Departs	= 2409	Int.Delay=	29	Tot.Delay=	79

Vehicle=	217	Arrive= 2383	Depart= 2411	Int.Delay=	28	Tot.Delay=	48
Vehicle=	218	Arrive= 2396	Depart= 2413	Int.Delay=	17	Tot.Delay=	64
Vehicle=	219	Arrive= 2398	Depart= 2415	Int.Delay=	17	Tot.Delay=	62
Vehicle=	220	Arrive= 2400	Depart= 2417	Int.Delay=	17	Tot.Delay=	48
Vehicle=	221	Arrive= 2402	Depart= 2419	Int.Delay=	17	Tot.Delay=	45
Vehicle=	222	Arrive= 2415	Depart= 2421	Int.Delay=	6	Tot.Delay=	6
Vehicle=	223	Arrive= 2419	Depart= 2423	Int.Delay=	4	Tot.Delay=	4
Vehicle=	224	Arrive= 2421	Depart= 2425	Int.Delay=	4	Tot.Delay≖	16
Vehicle=	225	Arrive= 2439	Depart= 2469	Int.Delay=	30	Tot.Delay=	36
Vehicle=	226	Arrive= 2458	Depart= 2471	Int.Delay=	13	Tot.Delay≃	16
Vehicle=	227	Arrive= 2471	Depart= 2473	Int.Delay=	2	Tot.Delay=	21
Vehicle=	228	Arrive= 2473	Depart= 2475	Int.Delay=	2	Tot.Delay=	16
Vehicle=	229	Arrive= 2475	Depart= 2477	Int.Delay=	2	Tot.Delay=	13
Vehicle=	230	Arrive= 2502	Depart= 2529	Int.Delay=	27	Tot.Delay=	65
Vehicle=	231	Arrive= 2514	Depart= 2531	Int.Delay=	17	Tot.Delay=	17
Vehicle=	232	Arrive= 2533	Depart= 2533	Int.Del%y=	0	fot.Delay=	40
Vehicle=	233	Arrive= 2567	Depart= 2589	Int.Delay=	22	Tot.Delay=	85
Vehicle=	234	Arrive= 2569	Depart= 2591	Int.Delay=	22	Tot.Delay=	36
Vehicle=	235	Arrive= 2571	Depart= 2593	Int.Delay=	22	Tot.Delay=	31
Vehicle=	236	Arrive= 2573	Depart= 2595	Int.Delay=	22	Tot.Delay=	69
Vehicle=	237	Arrive= 2589	Depart= 2597	Int.Delay=	8	Tot.Delay=	40
Vehicle=	238	Arrive= 2632	Depart= 2649	Int.Delay=	17	1.t.Delay=	76
Vehicle=	239	Arrive= 2634	Depart= 2651	Int.Delay=	17	Tot.Delay=	79
Vehicle=	240	Arrive= 2636	Depart= 2653	Int.Delay=	17	Tot.Delay=	67
Vehicle=	241	Arrive= 2645	Depart= 2655	Int.Delay=	10	Tot.Delr	55
Vehicle=	242	Arrive= 2664	Depart= 2664	Int.Delay=	0	Tot.Delay=	0
Vehicle=	243	Arrive= 2697	Depart= 2709	Int.Delay=	12	Tot.Delay=	26
Vehicle=	244	Arrive= 2699	Depart= 2711	Int.Delay=	12	Tot.Delay=	64
Vehicle=	245	Arrive= 2704	Depart= 2713	Int.Delay=	9	Tot.Delay=	9
Vehicle=	246	Arrive= 2708	Depart= 2715	Int.Delay=	7	Tot.Delay=	7
Vehicle=	247	Arrive= 2720	Depart= 2720	Int.Delay=	0	Tot.Delay=	41
Vehicle=	248	Arrive= 2762	Depart= 2769	Int.Delay=	7	Tot.Delay=	45
Vehicle=	249	Arrive= 2764	Depart= 2771	Int.Delay=	7	Tot.Delay=	17
Vehicle=	250	Arrive= 2771	Depart= 2773	Int.Delay=	2	Tot.Delay=	44
Vehicle=		Arrive= 2773	Depart= 2775	Int.Delay=	2	Tot.Delay=	17
Vehicle=		Arrive= 2775	Depart= 2777	Int.Delay=	2	Tot.Delay=	6
Vehicle=		Arrive= 2787	Depart= 2787	Int.Delay=	0	Tot.Delay=	Û
Vehicle=	254	Arrive= 2795	Depart= 2795	Int.Delay=	0	Tot.Delay=	31
Vehicle=			Depart= 2829	Int.Delay=	2	Tot.Delay=	24
Vehicle=			Depart= 2833	Int.Delay=	0	Tot.Delay=	8
Vehicle=				Int.Delay=	0	Tot.Delay=	30
Vehicle=			•	Int.Delay=	0	Tot.Delay=	7
Vehicle=			•	Int.Delay=	0	Tot.Delay=	6
Vehicle=				Int.Delay=	0	Tot.Delay=	25
Vehicle=			• • • •	Int.Delay=	0	Tot.Delay=	51
Vehicle=			•	Int.Delay=	0	Tot.Delay=	34
Vehicle=				Int.Delay=	0	Tot.Delay=	9
Vehicle=			Depart= 2949	Int.Delay=	28	Tot.Delay=	52
Vehicle=			•	Int.Delay=	28	-	52
Vehicle=	266	Arrive= 2925	Depart= 2953	Int.Delay=	28	Tot.Delay=	34

Vehicle=	267	Arrive= 2927	Depart= 2955	Int.Delay=	28	Tot.Delay=	33
Vehicle=	268	Arrive= 2929	Depart= 2957	Int.Delay=	28	Tot.Delay=	31
Vehicle=	269	Arrive= 2957	Depart= 2959	Int.Delay=	2	Tot.Delay=	28
Vehicle =	270	Arrive= 2964	Depart= 2964	Int.Delay=	0	Tot.Delay=	43
Vehicl e =	271	Arrive= 2983	Depart= 3009	Int.Delay=	26	Tot.Delay=	43
Vehicle=	272	Arrive= 2996	Depart= 3011	Int.Delay=	15	Tot.Delay=	65
Vehicle=	273	Arrive= 3022	Depart= 3022	Int.Delay=	0	Tot.Delay=	65
Vehicle=	274	Arrive= 3024	Depart= 3024	Int.Delay=	0	Tot.Delay=	39
Vehicle=	275	Arrive= 3026	Depart= 3026	Int.Delay=	0	Tot.Delay=	38
Vehicle=	276	Arrive= 3028	Depart= 3028	Int.Delay=	0	Tot.Delay=	21
Vehicle=	277	Arrive= 3030	Depart= 3030	Int.Delay=	0	Tot.Delay=	20
Vehicle=	278	Arrive= 3032	Depart= 3032	Int.Delay=	0	Tot.Delay=	20
Vehicle=	279	Arrive= 3034	Depart= 3034	Int.Delay=	0	Tot.Delay=	17
Vehicle=	280	Arrive= 3036	Depart= 3036	Int.Delay=	0	Tot.Delay=	37
Vehicle=	281	Arrive= 3039	Depart= 3069	Int.Delay=	30	Tot.Delay=	31
Vehicle=	282	Arrive= 3058	Depart= 3071	Int.Delay=	13	Tot.Delay=	13
Vehicle=	283	Arrive= 3087	Depart= 3087	Int.Delay=	0	Tot.Delay=	32
Vehicle=	284	Arrive= 3089	Depart= 3089	Int.Delay=	0	Tot.Delay=	12
Vehicle=	285	Arrive= 3091	Depart= 3091	Int.Delay=	0	Tot.Delay=	1
Vehicle=	286	Arrive= 3095	Depart= 3095	Int.Delay=	0	Tot.Delay=	47
Vehicle=	287	Arrive= 3114	Depart= 3129	Int.Delay=	15	Tot.Delay=	54
Vehicle=	288	Arrive= 3152	Depart= 3152	Int.Delay=	0	Tot.Delay=	54
Vehicle=	289	Arrive= 3154	Depart= 3154	Int.Delay=	0	Tot.Delay=	49
Vehicle=	290	Arrive= 3156	Depart= 3156	Int.Delay=	0	Tot.Delay=	41
Vehicle=	291	Arrive= 3158	Depart= 3189	Int.Delay=	31	Tot.Delay=	68
Vehicle=	292	Arrive= 3160	Depart= 3191	Int.Delay=	31	Tot.Delay=	54
Vehicle=	293	Arrive= 3162	Depart= 3193	Int.Delay=	31	Tot.Delay=	46
Vehicle=	294	Arrive= 3164	Depart= 3195	Int.Delay=	31	Tot.Delay=	33
Vehicle=	295	Arrive= 3170	Depart= 3197	Int.Delay=	27	Tot.Delay=	58
Vehicle <i>≖</i>	296	Arrive= 3189	Depart= 3199	Int_)^'ay=	10	Tot.Delay=	27
Vehicle=	297	Arrive= 3217	Depart= 3249	Int.Delay=	32	Tot.Delay=	41
Vehicle=	298	Arrive= 3221	Depart= 3251	Int.Delay=	30	Tot.Delay=	81
Vehicle=	299	Arrive= 3223	Depart= 3253	Int.Delay=	30	Tot.Delay=	41
Vehicle=	300	Arrive= 3232	Depart= 3255	Int.Delay=	23	Tot.Delay=	23
Vehicles	301	Arrive= 3245	Depart= 3257	Int.Delay=	12	Tot.Delay=	39
Vehicle=	302	Arrive= 3282	Depart= 3309	Int.Delay=	27	Tot.Delay=	59
Venicle=	303	Arrive= 3284	Depart= 3311	Int.Delay=	27	Tot.Delay=	33
Vehicle=	304	Arrive= 3296	Depart= 3313	Int.Delay=	17	Tot.Delay=	34
Vehicle=	305	Arrive= 3298	Depart= 3315	Int.Delay=	17	Tot.Delay=	21
Vehicle=	366	Arrive= 3305	Depart= 3317	Int.Delay=	12	Tot.Delay=	12
Vehicle=	307	Arrive= 3316	•	Int.Delay=	3	Tot.Delay=	3
Vehicle=	308	Arrive= 3320		Int.Delay=	1	Tot.Delay=	1
Vehicle=	309	Arrive= 3351	Depart= 3369	Int.Delay=	18	Tot.Delay=	69
Vehicle=	310	Arrive= 3358	•	Int.Delay=	13	Tot.Belay=	19
Vehicle=	311	Arrive= 3371	Depart= 3373	Int_Delay=	2	Tof.Delay=	49
Vehicle=	312	Arrive= 3373	•	Int.Delay=	2	Tof.Delay=	32
Vehicle=	313	Arrive= 3379	•	Int.Delay=	0	Tot.Belay=	0
Vehicle=	314	Arrive= 3416	•	Int.Delay=	13	Tot.Delay=	36
Vehicle=	315	Arrive= 3418	•	Int.Delay=	13	Tot.Delay=	65
Vehicle=	316	Arrive= 3433	Depart= 3433	Int.Delay=	0	Tot.Gelay=	38

Vehicle=	317	Arrive= 3446	Depart= 3446	Int.Delay=	0	Tot.Delay=	47
Vehicle=	318	Arrive= 3448	Depart= 3448	Int.Delay=	0	Tot.Delay=	38
Vehicle=	319	Arrive= 3450	Depart= 3450	Int.Delay=	0	Tot.Delays	28
Vehicle=	320	Arrive= 3481	Depart= 3489	Int.Delay=	8	Tot.Delay=	23
Vehicle=	321	Arrive= 3483	Depart= 3491	Int.Delay=	8	Tot.Delay=	62
Vehicle=	322	Arrive≃ 3489	Depart= 3493	Int.Delay=	4	Tot.Delay=	11
Vehicle=	323	Arrive= 3508	Depart= 3508	Int.Delay=	0	Tot.Delay=	24
Vehicle=	324	Arrive= 3546	Depart= 3549	Int.Delay=	3	Tot.Delay=	54
Vehicle=	325	Arrive= 3548	Depart= 3551	Int.Delay=	3	Tot.Delay=	19
Vehicle=	326	Arrive= 3550	Depart= 3553	Int.Delay=	3	Tot.Delay=	23
Vehicle=	327	Arrive= 3564	Depart= 3564	Int.Delay=	0	Tot.Delay=	42
Average Intersection Vehicle Delay = 11.00							
Average	Total	l Vehicle Delay	· = 31.	00			

PEDIING PROGRAM - TIME SPACE DIAGRAM PLOT

	INTERSECTION 01		01 CROSSWALK		INTERS	INTERSECTION #2	
TIME	ARRIVE	DEPART	ARRIVE	DEPART	ARRIVE	DEPART	
1043	+	•		*		921 MAI	
1042		•	•	+	-		
1041	ŧ	+	+		-	955	
1040	ŧ	+	+	+	-	,55 #	
1039	•	•	•	+	•	945	
1038	•	+	ŧ		+	•	
1037	+	•	•	ŧ	+		
1036	٠	-	•	÷	•	+	
1035	•	•	+	+	•	٠	
1034	+	•	•	ŧ	+	+	
1033	•	•	+		955	5	
1032	*	•	•	4	ŧ	÷	
1031	•	•	ŧ		•	Ŧ	
1030 1029	•	÷ ÷	•	*	•	*	
1029	+		•	ŧ	+	ŧ	
1027	*		5 -	+	•	•	
1027	*	*	*	1 1	Ŧ	•	
1025	•		*	*	•	±	
1024			*	*	÷	•	
1023			955	955	+	4 +	
1022		-	*	4 4	÷		
1021				+		1 4	
1020			*			*	
1019				+	-		
1018	+	+	•	-	· •	*	
1017		+	-			4	
1016		ŧ		+			
1015	ŧ	ŧ	•	+	-		
1014	+		•	•	94S	5	
1013	955	955	•	+	+	+	
1012	÷	+	+	+	+	•	
1011	ŧ	+	ŧ	÷	ŧ	ŧ	
1010		+	•		+	+	
1009	÷	ŧ	ŧ		+	+	
1008		+	*	. 🔹	f	4	
1007	8	Đ	+	+	+	÷	
1005	+	+	+	÷	÷	÷	
1005	•	•	+	*	+	\$	
1004	+	•	945	945	ŧ	+	
1003	+	•	\$	+	•	3	
1002	+	•	+	+	•	ŧ	
1001		+	*	•	+	+	
1000	•	+	•	•	f	•	
999	5		•	+	ŧ	•	
998 997	*	+ 5	•	+	6	•	
996	*	*	÷	+	+	ł	
995	•	•	*	*	÷	+	
535 994	945	945	*	*	*	*	
993	345	773 #	*	+	•	*	
992	5	•	*	*	•	•	
226	.*	Ŧ	•	•	*	1	

.

-