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Abstract

Artificial Neural Network (ANN) has gained great interest in industrial applications

due to their supremacy in modelling complex process behaviour. Applications of ANN

include process modelling, optimization and fault diagnosis. However, pure data-

driven approaches that use only observations to approximate the system dynamics

may not be ideal candidates, especially when substantial physics-based knowledge is

available but not utilized. This study refers to such knowledge as Domain Knowledge

(DK).

This M.Sc. research is focused on fault diagnosis, modelling and optimization

of industrial plants using ANN techniques. This thesis is mainly divided into two

parts. First, Chapter 3 outlines an empirical study of the Long Short-Term Memory

(LSTM) network, one of the most well-known Recurrent Neural Network (RNN) algo-

rithms. During this study, we can further understand how the LSTM algorithm works

to capture temporal features.Then,we propose adding an Autoregressive Integrated

Moving Average with eXogenous input (ARIMAX) on top of the LSTM network to

handle faults related to the closed-loop system. The proposed framework is applied

to the Wind Turbine System (WTS) to detect blade and pitch system faults. The

second part mainly focuses on incorporating DK into the neural network structure.

Hence, Chapter 4 describes the Physics-Informed Neural Network (PINN) framework

based on Ensemble Sequential Learning and the Mixture Density Network (ESL-

MDN). The proposed model estimates the components that build the cost function

and constraints of the Differential Evolution (DE) optimizer. Finally, the proposed

method has been validated by data collected from Reverse Osmosis Water Desalina-
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tion (ROWD) plant to demonstrate a reduction in energy consumption, achieved by

the optimization strategy under different scenarios.
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Chapter 1

Introduction

The pattern in data could be automatically recognized by deep learning applications

that far surpass human ability. Deep learning has provided a solution to the limitation

of traditional machine learning algorithms in the past few years. As a result, it has

attracted the attention of businesses and researchers who have all been eager to apply

and take advantage of it. This thesis explores fault diagnosis, modelling and optimal

operation of nonlinear industry process using several deep neural network models. In

this chapter, we provide an overview of the literature, define the research motivations,

and summarize the main contributions.

1.1 Literature Review

It may be difficult for highly trained professionals to analyze and determine where to

begin and effectively implement a deep learning model to deal with their problems.

In this thesis we have divided deep learning applications in industrial processes into

three significant categories: fault diagnosis, process modelling, and optimization.

• Fault Diagnosis

An essential component of health management to prevent system failure is fault

diagnosis. The deep learning architecture makes it possible to automatically

extract a hierarchical representation of the data, which is then used to learn

complex features from simpler ones by utilizing the next stacked layers. Fur-
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thermore, this approach can be applied to produce a system which, based on

raw inputs, automatically identifies features and processes them accordingly.

Autoencoder (AE) is one of the most popular techniques for automatic feature

extraction, and it has been successfully applied for fault diagnosis. A study pub-

lished in [1] used frequency spectrum data as input for automatically extracting

features that were used for bearing fault detection. [2] transformed raw time-

domain data into frequency-domain data using Fast Fourier Transform (FFT).

The authors suggested using AE with Rectified Linear Unit (ReLu) activation

function and dropout layer (to prevent overfitting) for automatic features ex-

traction and using it for hydraulic pump fault diagnosis. Intensified Iterative

Learning (IIL) based on Stacked Autoencoder (SAE) was designed in [3] to

intensify the impact of features with the most favourable information in the

hidden unit and accomplish a better fault detection for industrial processes.

Deep Belief Networks (DBNs) are generative models that learn to reconstruct

their inputs probabilistically. In [4] a gearbox fault diagnosis framework was

introduced based on DBN structure fed by time-domain and frequency-domain

features extracted from load and speed measurements. A Fault Detection Sys-

tem (FDS) for chemical process was designed in [5] with extended DBN to

dynamically classify faults using dynamic characteristic of the process. Experts

can benefit from the design of feature extraction techniques which are often

time and resource consuming, and they produce inconsistent results. In recent

years, Convolutional Neural Networks (CNN) techniques have gained much at-

tention, mainly when processing high-dimensional data types like images and

time-series. The authors in [6] used Cyclic Spectral Coherence (CSCoh) to

map vibration signals into bearing discriminative patterns and used the CNN

to classify bearing failures. To investigate the rotary machine malfunctions,

the researchers in [7] suggested a sensor fusion algorithm utilizing a 2-D CNN.

Recurrent Neural Networks (RNNs) are suited to dealing with sequential data,
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making them an ideal candidate when dealing with health management systems

due to their time-series nature. The authors of [8] proposed a feature engineer-

ing model that incorporates the Continuous Wavelet Transform (CWT), along

with the FFT. It was designed to classify rotary machine faults by using the

Convolutional LSTM (CLSTM) model. In [9] a supervised fault FDS for the

hydraulic system was designed combining LSTM with AE to improve fault clas-

sification accuracy. Complete transient data from the pre and post-fault cycle

of the Phasor Measurement Unit (PMU) was analyzed in [10] by LSTM based

FDS framework that identifies the fault region, classifies the type of fault, and

predicts the location of the fault.

• Process Modelling

For decades researchers have studied first-principle models for industrial pro-

cesses and used them in control, optimization and other decision-making prob-

lems [11]. However, first-principle models are hardly maintainable due to pa-

rameter variations. Also, complex applications with sophisticated physical phe-

nomena makes it almost impossible for engineers to establish an explicit math-

ematical description [12]. Meanwhile, the massive amount of data collected by

SCADA systems have let to increased popularity of data-driven approaches,

e.g. ANN based, in industries. However, compared to data-centric modeling,

physics-based model help reveal inter-relationships among key outputs and in-

termediate process variables that are not measured. By incorporating these

relational information in ANNs, prediction of outputs can be improved in terms

of accuracy.

Lately we have witnessed great advances on DNNs, and their fast adaptation in

various areas of research and applications, among which an important problem is

process modelling via deep learning. Fitting the complex kinetic data was inves-

tigated in [13] using a deep neural network, which was evaluated by applying to
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extensive experimental data and compared with several traditional approaches.

[14] developed a Conditional Generative Adversarial Network (CGAN) to esti-

mate the fluid flow and heat condition in a purely data-driven approach with-

out relying on the knowledge coming from the model. In [15], process modelling

based on DNN was developed to help understand plant-wide processes. The au-

thors suggested a systematic framework containing DK-based data processing

and global sensitivity analysis with Monte-Carlo simulations to predict nitrous

oxide emission characteristics for wastewater treatment plants. An Intelligent

Energy Management System (IEMS) was investigated in [16] for a hybrid grid-

connected Reverse Osmosis (RO) desalination process with Photo-Voltaic (PV)

and energy storage system. Five-hours-ahead power forecasting was conducted

by using CNN and LSTM networks. Combination of Multi-Layer Artificial Neu-

ral Network (MLANN) and Genetic Algorithm (GA) has been studied in [17]

to find a comprehensive model of RO process and to remove chlorophenol from

wastewater.

Although DNN has demonstrated high modelling performance, it is considered

a black box model and the interpretability of the created model is a challenging

task. There are numerous ways to combine a physical model with DNN to

accurately regenerate the behaviour of a complex model at significantly lower

computation cost. [18] infused the physics into the RNN model to leverage

the complementary knowledge to predict the lake temperature profile. In this

work, traditional LSTM was augmented by physical law of thermodynamics to

take energy conservation into account. Down-sampling technique was used in

[19] to replace the dynamic system with DNN as a surrogate model to map

the input-output relationship with higher resolution and speed. However, the

main challenge is to ensure that the surrogate model is consistent with the

first principle model. Specific complex dynamic process in [20] was replaced
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by simpler mathematical equations whose related coefficients were estimated

by a neural network. It was indicated that the suggested model is robust, and

generalization was increased even for unseen scenarios.

In modelling a system/process, considering the uncertainty is of great concern in

many applications, specifically those related to the decision-making problems.

The main effort is to draw a distribution that captures all quantiles which are

necessary for further research. [21, 22] conducted a model reduction and pro-

posed an DNN surrogate model to quantify the uncertainty in a physics-based

model. Also, the Gaussian approach was studied in [23] to consider uncertainty

in the simulated process. However, both techniques are not applicable for large

data set as the computation cost increases massively. Although DNN models

have demonstrated immense successes, some modifications need to be performed

to quantify the uncertainty. [24] employed a probabilistic dropout framework to

deactivate neurons partially and estimate uncertainty. [25] represented Bayesian

Neural Network (BNN) which estimated the distribution of all weights and bi-

ases. The major challenge is that real-world processes do not necessarily follow

any parametric distribution. The Mixture Density Network (MDN) is a con-

ceivable method that can efficiently address uncertainty estimation. MDN is

similar to conventional ANN with only one practical difference: the outcome

of the MDN is the parameters related to the distribution instead of point pre-

diction. [26] developed an ensemble MDN applied to the data collected from a

wind farm in Taiwan to forecast the power and wind speed. uncertainty estima-

tion was investigated in [27] based on MDN to analyze the wind turbine power.

[28] studied the use of MDN to analyze the uncertainty in multi-components

and nonlinear control problems. An ensemble ANN-MDN was designed in [29]

to simulate the prediction uncertainty as a result of variation of the training

data, and it was embedded in the mixed-integer linear optimization problem.
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It should be noted that, in most cases, the uncertainty induced by DK infusion

has not been investigated.

• Optimization

An optimization is a vital tool for industrial process management. However,

in all control and optimization applications, the performance highly depends

on the modelling accuracy. Therefore, DNN techniques have been employed to

model the nonlinear process and integrated with MPC [30], and RTO [31]. Using

process measurements to build an ANN surrogate model for a chemical process

is a common approach. However, accuracy is not guaranteed as the training

data may not contain all scenarios [32]. There is a huge effort to involve physics

in the optimization, too [33]. [34] has developed a predictive model-based ANN

and Response Surface Methodology (RSM) to optimize the RO water desalina-

tion process. An Feed-Forward Neural Network (FFNN) model combined with

the first-principle model in Real-Time Optimization (RTO) is built to predict

the nonlinear reaction rate and determine the optimal set-point for the reac-

tor. Also, a Model Predictive Controller (MPC) is designed in [35] to keep

the process stable while changing the operating condition and minimizing the

energy cost. In order to find the optimal set-points for the ROWD process,

DE is used. DE is a metaheuristic optimization method which uses the same

principle as the genetic algorithm (GA). By combining mutation and crossover,

DE is intended to produce new vectors. Selection determines which vectors will

be retained for the next generation. In [36], a combination of feature extrac-

tion techniques and a multi-objective Binary Differential Evolution (BDE) is

designed to define the health indicator based on the subset of optimal features.

[37] introduced an Intelligent Multi-Objective Optimization Control (IMOOC)

based on an Adaptive Multi-Objective Differential Evolution (AMODE) algo-

rithm to find the optimal set-points of the water treatment facility and balance

6



the performance and operational costs.

1.2 Thesis Organization and Contributions

Due to the importance of fault diagnosis, modelling, and optimization, and the

promising results of DNN in numerous applications, we conduct research that is

mainly concerned with the application of DNN for these purposes. This thesis is

arranged according to the following structure: four chapters with two main research

directions. Chapter two provides an overview of deep learning algorithms and meth-

ods. Then an application of DNN in fault diagnosis of an industrial plant is investi-

gated in Chapter three. We design an LSTM-MDN framework to model the normal

behaviour of a blade and pitch system of a WTS and generate residual to detect

faults. In addition, we introduce a second type of residual constructed by comparing

parameters of the ARIMAX model, which analyzes the predicted signal of the LSTM-

MDN model and actual measurement. The intention of the design of the second type

of residual is to detect faults that impact the behaviour of the closed-loop system.

Chapter four investigates the application of deep learning algorithms for process mod-

elling and optimization. First, we develop a PINN framework to enhance the model

performance by incorporating domain knowledge into the data-driven model. Then,

we formulate a hybrid optimization problem and use the proposed PINN model to

construct the optimizer’s cost function. The validation experiments are conducted

on two datasets collected from Reverse Osmosis Water Desalination Plant (ROWD).

Finally, Chapter five summarizes the thesis and concludes with a few remarks.
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Chapter 2

Deep Neural Network

2.1 Introduction

Machine learning is a general name for a collection of algorithms and tools that assist

machines in learning the pattern within data and performing a specific task. Further-

more, it is essential to mention that deep learning is not a competitive technology to

the domain of machine learning. As shown in Fig. 2.1, provides a clear explanation

of three terms to avoid any misconceptions. First, deep learning is a sub-domain of

machine learning. Then, we can conclude that deep learning, inspired by how the

human brain works, is a set of machine learning algorithms that applies to a large

amount of data to learn a complex pattern using many computational units.

2.2 Artificial Neural Network

As the underlying structure of deep learning is based on the function of the human

brain, we start by introducing some fundamental terminology borrowed from neuro-

science. Perceptron is a computational block that is responsible for modelling the

nonlinear function. Similar to how human brains use neurons to transmit electrical

pulses, perceptron maps the input signals to the output signals. The data mapping

is performed by stacking many layers (collection of computational units), in which

each layer is responsible for learning specific patterns in data. Hence, this network

structure inspired by neurons of human brains is called an Artificial Neural Network

8



Figure 2.1: Artificial intelligence vs machine learning, and deep learning

Figure 2.2: Structure of perceptron

(ANN).

Fig. 2.2 indicates the components in each perception that performs the nonlinear

mapping of the inputs to the outputs.

The basic form of a neural network contains three layers: input layer, hidden layer,

and output layer. A neural network with one hidden layer is called shallow neural

network. The mathematical description of this type of network is obtained by the

following equations:

hj = f1(Σ
n
i=1w

(1)
ji xi + w

(1)
j0 ) j = 1, 2, ..., p

yk = f2(Σ
p
i=1w

(2)
ki hi + w

(2)
k0 ) k = 1, 2, ...,m

(2.1)
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Figure 2.3: A feed-forward neural network n inputs, p neurons in hidden layer and m
outputs

where wj0, wk0, w
(1)
ji ,and w

(2)
ki are the biases and weights for the first and second

layer,respectively. f1 and f2 are nonlinear function which can be Sigmoid S(x) =

1
1+e−x or hyperbolic tangent tanh(x) = 2

1+e−2x −1. Fig.2.3 demonstrates the structure

of feed-forward neural network n inputs, p neurons in hidden layer and m outputs.

Now, we explain the learning process. Given a set of input X and a corresponding

set of label Y , the network is trained by minimizing a loss function. Equation 2.2 use

a sum of squared error as a loss function:

L(w) =
1

2
ΣN

n=1||y(X,w)− Ŷ ||2 (2.2)

Then, the gradient decent optimization is conducted to update the weight and mini-

mize the loss function. This method is calculated as:

wτ+1 = wτ − η∇L(wτ ) (2.3)

Where η is the learning rate, and ∇L(wτ ) (obtained by backpropagation method)

is the derivative of the loss function with respect to w. Therefore, the learning process

is summarized in 4 steps:

• The network tries to minimize the loss function.

10



Figure 2.4: Deep structure of neural network with two hidden layers

• The total error is obtained at the output layer by calculating the difference

between the original and the predicted values.

• The weights of the last layer are updated using the gradient and the learning

rate.

• The exact process is done for the previous layer until it reaches the first layer.

2.3 Deep Neural Network

Depending on the complexity of the problem, we can add more hidden layers to

increase the learning capability of the network. The word deep is referred to the

multiple hidden layers in the network. Fig. 2.4 shows the deep structure of a neural

network with two hidden layers.

In this section, we briefly introduce the most popular deep learning networks and

next, we focus on the LSTM network as the primary structure used through this
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thesis.

2.3.1 Convolutional Neural Network (CNN)

CNN is one of the most popular deep learning algorithms, utilizing a grid-like topology

to process data. It has been widely used in different applications such as Natural

Language Processing (NLP) [38], speech processing [39], and machine vision [40].

Like other deep learning techniques, CNNs are biologically-inspired models based on

the simulation of the visual cortex in a cat’s brain using a complex architecture of

neurons. The main modification of CNNs compared to the traditional fully connected

network is utilizing local connection and shared weights in the network that let the

network fully use the two-dimensional structure of input data, which leads to a faster

and easier training stage.

2.3.2 Deep Generative Networks

In this section, we introduce the three most well-known generative networks: Deep

Belief Network (DBN), Variational Auto-encoder (VAE), and generative Adversarial

Network (GAN). DBN, which was introduced in [41], is a generative model made of

stacked layers of Restricted Boltzman Machines (RBM). DBN is suitable for both su-

pervised and unsupervised learning tasks, especially when dimensionality reduction is

necessary. VAE [42] is a generative algorithm that assumes a probability distribution

for source data. The main application of VAE is to generate fictitious data related to

the source data.

Another popular generative model is GAN [43], which contains two models: gen-

erative model G and discriminative model D. First, the generator learns to generate

fictitious data. Then, the discriminator distinguishes the generator’s fictitious data

from actual data. Over the training process, generators produce more realistic fake

data that can fool the discriminator model.
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Figure 2.5: RNN unfolded in time

2.3.3 Recurrent Neural Network (RNN)

The most popular deep learning algorithm in time-series analysis is RNN [44]. RNN

exploits sequential information, an essential ability to analyze dynamical systems.

Therefore, RNNs are well-suited for applications in which sequential data convey

valuable information. A typical RNN structure is depicted in Fig. 2.5.

To represent the system with RNN, assume that dynamical system is expressed

by:
ht = fh(xt, ht−1)

yt = fo(ht)
(2.4)

where t represents time. fh is hidden transition function, and fo is output function.

parameters of each function is indicated by θh and θo. RNN parameters are estimated

by minimizing the following loss function:

j(θ) =
1

N
ΣN

n=1Σ
Tn
t=1d(y

(n),fo(h
(n)
t )

t ) (2.5)

Given D =
[︁(︁
(xn

1 , y
n
1 ), ..., (x

n
Tn
, ynTn

)
)︁]︁N

n=1
as a set of N training sequences and d(a, b)

indicates the divergence measure between a and b.
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Long Short-term Memory (LSTM)

There are some problems with RNNs, especially when it comes to vanishing and

exploding gradients. This means that the gradient might become exponentially larger

or smaller during training because of the multiplication of many derivatives. This

sensitivity decreases over time and causes the initial inputs to be forgotten as new

ones enter the network. In order to handle this issue, Long Short-term Memory

(LSTM) framework is introduced [45]. First, we introduce the original version of

Figure 2.6: Structure of LSTM. The blue line shows the weighted connection, dot
line is the connection with lags, and rest of the line are unweighted connection, h is
an output activation function, g is input activation function, and σ is gate activation
function (always Sigmoid)

LSTM described by [46]. LSTM blocks are building units for layers of RNN. As it is

shown in Fig 2.6, the LSTM block contains three gates: input gate, output gate, and

forget gate. Also, it includes block input, cell and peepholes connection. In order to

investigate how LSTM parameters update, we separate the mechanism into forward-
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pass and time-based backpropagation. Assume that the input vector is indicated by

xt at time t. The number of LSTM blocks and the number of inputs are shown by N

and M , respectively. Therefore, the forward pass equations are as follows:

The cell is responsible for memorizing values over different time intervals. All

other gates are similar to conventional multi-layer neural networks responsible for

computing an activation of a weighted sum. The following equations describe the

way of updating each LSTM gate.

z̄t = Wzxt +Rzyt−1 + bz

zt = g(z̄t)

īt = Wixt +Riyt−1 + pi ⊙ ct−1 + bi

it = σ(īt)

f̄ t = Wfxt +Rfyt−1 + pf ⊙ ct−1 + bf

ft = σ(f̄ t)

ct = zt ⊙ it + ct−1 ⊙ ft

ōt = Woxt +Royt−1 + po ⊙ ct + bo

ot = σ(ōt)

yt = h(ct)⊙ ot

(2.6)

Where, Wi,Wf ,Wz,Wo ∈ RN×M are input weights, Ri, Rf , Rz, Ro ∈ RN×M are

recurrent weights, pi, pf , po ∈ R are peepholes weights, and bi, bf , bz, bo ∈ R are the

biases. Then, we can calculate the backpropagation over time using Equations (2.7).
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δyt = ∆t +RT
z δzt+1 +RT

i δit+1 +RT
f δft+1 +RT

o δot+1

δōt = δyt ⊙ h(ct)⊙ σ′(ōt)

ct = δyt ⊙ ot ⊙ h′(ct) + po ⊙ δōt + pi ⊙ δīt+1 + pf ⊙ δf̄ t+1 + δct+1 ⊙ ft+1

δf̄ t = δct ⊙ ct−1 ⊙ σ′(f̄ t)

δīt = δct ⊙ zt ⊙ σ′(īt)

δz̄t = δct ⊙ it ⊙ g′(z̄t)

(2.7)

where, deltas from layer above are represented by ∆t and gradients are calculated as

follows:
δWa = ΣT

t=0⟨δat, xt⟩

δRa = ΣT−1
t=0 ⟨δat+1, yt⟩

δba = ΣT
t=0δat

δpi = ΣT−1
t=0 ct ⊙ δīt+1

δpf = ΣT−1
t=0 ct ⊙ δf̄ t+1

δpo = ΣT
t=0ct ⊙ δōt

(2.8)

where, a can be any of ī, f̄ , z̄, ō and ⟨⟩ represents the outer product of two vectors.

In general, a peephole connection allows the cell to control all gates. In other

words, all gates depend on the previous hidden state and previous internal state.

The main reason to augment the LSTM structure with a peephole connection is to

make learning precise timing easier. It means that LSTMs with peephole connections

between their internal cells and their multiplicative gates are capable of learning the

slight differences between sequences of spikes [47].
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Chapter 3

Fault Detection Based on Deep
Neural Network

3.1 Introduction

In this Chapter, we investigate the application of DNN on fault diagnosis in a wind

turbine system (WTS). Wind energy has grown rapidly over the past few decades, and

condition monitoring has contributed to more effective operating and maintenance

procedures. Additionally, the majority of wind turbines are located offshore, and

non-planned visits are costly. Consequently, early detection of faults improves safety

and system reliability.

In WTS, sensor data has been used for control and monitoring purposes, espe-

cially to detect faults. Usually, the system behaves differently in malfunction con-

ditions compared to the Normal Behaviour Model (NBM) [48]. Various data-driven

approaches have been proposed to construct the NBM. However, some of them, do not

adequately model the system when operating conditions change. Moreover, failure

to consider multi-mode effects can substantially increase False Alarm Rates (FAR)

for data-drievn techniques relying on mean-centring and failing to distinguish normal

behaviour of the system in different modes from abnormal behaviour. Furthermore,

considering the system with a controller in the loop, the controller can compensate for

defective actuators’ effect, so the system’s output still tracks the set-point regardless

of actuator faults. Thus, analyzing the observation signal will not detect a significant
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change to indicate the fault [49].

To address this research gap, we propose a novel framework for early fault detection

within the WTS. First, the NBM of the pitch and blade sub-model of the WTS is

represented by an LSTM-MDNmodel. Then, an adaptive threshold has been designed

to detect possible faults based on the MDN parameters. The next step is the real-

time system identification using the ARIMAX model, which analyzes the closed-loop

system to detect faults with more complicated structures. Last but not least, pruning

rules analyze the candidate faults for early detection to reduce FAR. Our work has

made the following contributions:

• Develop an FDI framework for early fault detection of the WTS utilizing LSTM-

MDN structure

• Identify faults that may affect the closed-loop system by implementing a real-

time system identification using the ARIMAX model

• Add pruning rules to reduce the FAR of the proposed framework

3.2 Wind Turbine System

3.2.1 Wind Turbine Model

The WTS considered in this work has a horizontal-axis turbine, and a three-bladed

rotor with an active yaw system [50]. Fig. 3.1 illustrates the structure of the sub-

models in WTS and their interaction. The WTS model is comprised of three sub-

models: pitch and blade, drive train, and power system. Considering that blade and

pitch systems account for about 60 − 80% of the malfunctions, we have focused on

this sub-model. In the following section, we will briefly describe the model and fault

specification of the blade and pitch system.
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Figure 3.1: Wind Turbine Subsystems including Blade and Pitch, Drive Train, Gen-
erator and Converter and Control. The wind speed is the exogenous input, and the
generator power is the outlet variable. The rest of the variables are intermediate
states.

3.2.2 Blade and Pitch System

This subsystem consists of rotor effective wind speed vr, pitch angle reference signal

βr, and rotor speed ωr as inputs, in addition to pitch angle β and aerodynamic

torque Tr as outputs. The Pitch system adjusts the blade by manipulating hydraulic

actuators controlled by the valves and pumping station. The second-order model of

the pitch actuator is as follows:

β (s)

βref (s)
=

e−tdsw2
n

s2 + 2ξωns+ w2
n

(3.1)

β̈ (t) = −2ξωnβ̇ (t)− ω2
nβ (t) + ω2

nβref (t = td) (3.2)

where td, ωn and ξ are communication delay, natural frequency of the pitch model

and damping ratio of the pitch actuator respectively.

3.2.3 Faults Type

This work examines the faults of pitch sensors and pitch actuators. A pitch sensor

fault can result in biased output, which can negatively impact both the pitch control

19



Table 3.1: Description of Wind Turbine Sensors

Sensors Description

Vw Wind speed

βi Pitch angel i

βr Reference for blade angle

ωg Generator speed

ωr Rotor speed

τg Generator torque

τgr Reference for generator torque

τr Rotor torque

pg Generator power

system and the blade angle measurement. Sensor bias is primarily the result of

inadequate maintenance, such as inaccurate calibration. This study examines pump

actuator faults, including high oil air content and pump wear. The high air content

in the oil is causing the closed-loop pitch system to malfunction. There is also a slow

wear of the pump that results in low pump pressure. Description of each fault are

described in Table 3.3.

Sensor Faults

Any internal fault or malfunction in the pitch sensor may lead to biased output which

can affect both the closed loop pitch system and the pitch angle measurement. In

normal condition, pitch actuator model is shown in Equations 3.1 and 3.2. However,

when the bias is introduced, the model of the pitch actuator is modified.

β̈ (t) = −2ξωnβ̇ (t)− ω2
n (β (t) + βbias (t)) + ω2

nβref (t = td) (3.3)

Actuator Faults

Actuator faults include hydraulic leakage and high air content in the oil. Parameters

of pitch actuator in normal and faulty conditions are shown in Table 3.3.
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Table 3.2: Variable values in the benchmark

Fault Parameters

No Fault ωn = 11.11rad/s, ξ = 0.6

High air content in the oil ωn = 5.73rad/s, ξ = 0.45

Hydraulic Leakage ωn = 3.42rad/s, ξ = 0.9

Hydraulic Leakage is an incipient fault which changes parameter for closed loop

pitch system.

β̈ (t) = −2ξ̃ω̃nβ̇ (t)− ω̃2
nβ (t) + ω̃2

nβref (t = td) (3.4)

ξ̃ (t) = (1− αhl (t)) ξ + αhlξhl (3.5)

ω̃n (t) = (1− αhl (t))ωn + αhlωn,hl (3.6)

Where αhl is a hydraulic leakage coefficient. It means that in case of hydraulic leakage

occurs, it equals to 1, otherwise it is zero.

High air content in the oil is similar to hydraulic leakage which affect on closed

loop pitch system.

ξ̃ (t) = (1− αha (t)) ξ + αhaξha (3.7)

ω̃n (t) = (1− αha (t))ωn + αhaωn,ha (3.8)

Where αha is similar to αhl and it is high air content in the oil coefficient.

3.3 Proposed Method

We proposed a novel two-stage fault detection algorithm based on LSTM-MDN model

and ARIMAX real-time system identification. The suggested framework is expressed

in Fig. 3.2. The following is a summary of the general steps:
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Table 3.3: Description of wind turbine faults

Fault No Description

Fault 1 Fixed value on Pitch 1 position sensor 1

Fault 2 Scaling Error on Pitch 2 position sensor 1

Fault 3 Fixed value on Pitch 3 position sensor 1

Fault 4 Changed pitch system response pitch actuator 2 – high air content in oil

Fault 5 Changed pitch system response pitch actuator 3 – low pressure

• Train LSTM-MDN model using NBM data

• Extract pruning rules to identify modes detected in NBM data

• Design real-time system identification based on ARIMAX to extract parameters

of the closed-loop system

The proposed method is divided into two stages: The offline stage constructs NBM

using LSTM-MDN model and data collected under normal operation. Then, extracts

pruning rules to determine the WTS operating conditions. The second phase provides

real-time fault detection using an LSTM-MDN model that has been pre-trained and

an online system identifier associated with ARIMAX.

LSTM-MDN is employed in this framework in order to estimate the outlet variable

of the pitch model. In the offline phase, historical Normal data is used to model the

NBM of the WTS. Additionally, wind turbine operation includes startup, transition

state, and operation. As a result, it may be considered a bi-modal distribution with

two modes and transition states. Assigning a Gaussian distribution to the entire

population is not possible. Nevertheless, two or more normal distributions may be

sufficient to describe the whole population, and MDN can synthesize the underlying

distribution from a mixture of multiple Gaussian distributions. Using DNNs in a

black-box fashion to make point predictions is not sufficient, despite the fact that

DNN algorithms outperform most traditional modelling methods. Greater trans-
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Figure 3.2: Wind turbine fault detection framework

parency is required for critical applications such as fault detection. By considering

the uncertainty and constructing the prediction interval, a more robust framework

can be established in the presence of noise, which enhances the interpretability of

the method. When Normal data is used to train the model, The constructed NBM

behavior will be different in fault scenarios. As a result, prediction interval adds more

flexibility for the fault detection system to ensure that any deviation from the NBM

will not be identified as a fault. In the event that the residual analysis unit shows

any samples that exceed the threshold, a possible fault is initially detected. Finally,

pruning rules are used to make a final decision, and any fault discovered after the

pruning phase is a real fault. Additionally, faults that modify the closed-loop param-

eters but not the measurement are hard to detect. We introduce a second residual

type that investigates any deviation between the ARIMAX parameters obtained from

the output of the LSTM-MDN model and the actual measurements. By using the

ARIMAX structure, we can visualize the approximation of closed-loop parameters.
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Figure 3.3: MDN structure including input,hidden and output layer

3.3.1 LSTM-MDN Framework

LSTM-MDN provides a subset of values based on their probability density function

(PDF), unlike traditional LSTM networks that only provide a point prediction of

the target variable. There are many variations of LSTM architecture that have been

proposed since its introduction. However, the vanilla LSTM continues to be the most

commonly used. An alternative architecture to the LSTM, called gated recurrent

unit (GRU) also known as coupled input forget gate (CIFG), was proposed in [51].

The design made no use of peepholes nor output activation functions, and instead

integrated the input with the forget gate into an update gate. The proposed structure

is illustrated in fig. 3.4. In other words, it would be equivalent to setting ft = 1− it

instead of learning the forget gate weights separately. Generally, uncertainty in the

data-driven approach derives from two sources, modelling error and noisy data. Also,

reliability is the critical factor for any model fitting application that combines with

the decision-making process. Moreover, the neural network model cannot make a

reliable prediction if the sample is out of the training distribution. Here, we quantify
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Figure 3.4: Stacked LSTM-MDN structure

the uncertainty in prediction related to the noisy input and model mismatch. As

indicated in Fig. 4.3, we will consider the conditional distribution for the target

variable to represent the uncertainty in the prediction using mixture density network

[52]. The assumption is that the target does not follow any parametric distribution

and a probability distribution model generated by the sum of simple distributions.

Therefore, the mixture of density distribution can be written as:

p(y|x) =
N∑︂
i=1

(πi(x)ϕi(y|µi(x), σ
2
i (x)) (3.9)

where πi(x) for i = 1, ..., N is the mixture coefficients considered as a prior probabil-

ity of the outlet variable y built by ith component of the mixture. ϕi(y|µi(x),Σi(x))

is the kernel distribution of the mixture model and N is the total number of ker-

nels. Although there are myriad choices for kernel distribution function, Gaussian

distribution has been selected.

ϕ(y|x) = N (y|µi(x), σ
2
i (x)) (3.10)

Where c is the dimensionality of output vector y and µi(x) is the centre of the ith

kernel. The assumption in Eq. (4.4) is that each component of the distribution is

statistically independent within the component of the output vector. A full covari-

ance matrix for each Gaussian kernel can relax this assumption. However, As [52]

has shown that the Gaussian mixture model (GMM) brought in Eq. (4.4) can ap-

proximate any given density function to arbitrary accuracy, provided correct mixing
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coefficients and Gaussian parameters. Mixing coefficients must be positive to ensure

that the p(y|x) is a valid representation of y. Also, the mixing coefficients ϕi(x) should

satisfy
∑︁N

i=1 πi(x) = 1. This is guaranteed by selecting ϕi(x) as output of a network

with a Softmax function [53].For the N-components mixture model and c-dimension

y, Parameters of the GNN model calculate as follow [52]:

πi =
e(a

π
i )∑︁N

j=1 e
(aπj )

(3.11)

Additionally, the variance must be strictly positive, so it can be driven as:

σi = e(a
σ
i ) (3.12)

Finally, µi is not restricted by any constraint and defines as:

µni = aµni (3.13)

Where aπi , a
σ
i , a

µ
ni are the raw outputs of the MDN model derived by the neural net-

work, the parameters w of the MDN model learns using maximum likelihood. The

loss function is as follows:

E(w) = −
C∑︂
c=1

ln

(︄
N∑︂
i=1

πi(xc, w)N (yc|µi(xc, w), σ
2
i (xc, w)

)︄
(3.14)

Mixing coefficients πi(x) can be considered as an x-dependent prior probability.

Therefore, the corresponding posterior probability introduces as:

δi(y|x) =
πiNic∑︁N
l=1 πlNil

(3.15)

where Nic defines as:

Nic = N (yc|µi(xc), σ
2
i xc) (3.16)

Consider the derivative of the loss function with respect to the network outputs, it is

obtained by:

∂Ec

∂aπi
= πi − γi (3.17)
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∂Ec

∂aµic
= γi

(︃
µic − yc

σ2
i

)︃
(3.18)

∂Ec

∂aσi
= −γi

(︃
||y − µi||2

σ3
i

− 1

σi

)︃
(3.19)

p(y|x) provides more detailed information to approximate the interval using the spe-

cific quantile. Interval width (IW) is approximated by mean, variance and confidence

level(α). IW can be written as:

IUpper = µ+ α
√
σ

ILower = µ− α
√
σ

IW = IUpper − ILower

(3.20)

Regression confidence level relates to the IW. It means that if the model is not

confident due to the noisy data or model mismatch, IW will be wider.

3.3.2 Dynamic Identification

In this section, we investigate the effect of faults that change the parameters of the

closed-loop system and do not directly impact the measurement. Detecting faults

that change the closed-loop system is a difficult task because the controller in the

loop can compensate for the impact of faults. The NBM constructed by the LSTM-

MDN model is trained under normal operation. So, further study of the estimated

signal in the presence of faults is conducted by adding a new layer to the framework.

Motivated by that, we propose to employ a fast online system identification using

an auto-regressive moving average with an exogenous input (ARMAX). We aim to

investigate the estimated signal of the LSTM-MDNmodel and identify the parameters

of the closed-loop system to see if there are any changes in the presence of faults.

ARMAX incorporates lags to model the dynamics of the process. The structure of

the ARMAX is as follows:

A(z−1)yk = B(z−1)uk + ϵk (3.21)
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where A,B are nominator and denominator of the transfer function of the input

to the process output. ϵ is a measurement noise and assumed to be a white noise.

However, to consider non-stationary assumption, we use the described method with

a noise filter to define the integrated term and express ARIMAX model. Therefore,

Eq 3.21 can be rearranged as follows:

A(z−1)yk = B(z−1)uk +
1− αz−1

1− z−1
ϵk (3.22)

Then, we have:

A(z−1)yk(1− z−1) = B(z−1)uk(1− z−1) + (1− αz−1)ϵk (3.23)

where α indicates the level of activity of integrator in the system. In the case of

α = 1, the integrator is inactive and ARIMAX turns to be ARMAX model. Then

model polynomial can be identified by:

Ã(z−1) = (1− z−1)A(z−1)

B̃(z−1) = (1− z−1)B(z−1)

C̃(z−1) = 1− αz−1

(3.24)

The structure of the polynomials in Eq. (3.24) is as follows:

Ã(z−1) = 1 + a1z
−1 + ...anz

−n

B̃(z−1) = 1 + b1z
−1 + ...bnz

−n

C̃(z−1) = 1 + c1z
−1 + ...cnz

−n

(3.25)

In the final step, instances are replaced by δ variables to consider the non-stationary.

So, Eq. (3.21) cane be rewritten as:

A(z−1)∆yk = B(z−1)∆uk +
1− αz−1

1− z−1
ϵk (3.26)

where ∆ calculates the difference of the two consecutive instances.
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Figure 3.5: Algorithm 1

3.3.3 Pruning Rules

Pruning rules are intended to reduce the number of false alarms. While the wind

velocity is less than the effective wind, which is the wind that rotates the turbine

blades, the system is at its startup stage. Accordingly, the data collected during

that period does not provide operational information. The fault detection system

is designed to operate in real-time, but since the wind velocity varies over time,

many rising and falling moments can be considered a transition between startup and

operation. Because there are fewer data over this period than the other two modes,

it is not easy to find an accurate model for the transition mode. For this reason, the

fault detection system must be aware of the operating mode in order to minimize

false alarms. Using the Algorithm (1), the pruning rules can determine the operating

mode. Therefore, any possible fault detected by the FDS will be analyzed using

pruning rules to determine the actual fault.
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3.4 Experimental Setup

We evaluate our proposed FDI framework on data collected from the wind turbine

test bench of kk-electronic a/s [54]. The test bench contains five different types of

pitch and blade system faults.

3.4.1 Preprocessing

The test bench incorporates wind turbulence and sensor noise to create a realistic

test scenario. Thus, performing a data preprocessing step is essential to remove in-

valid data and reduce noise prior to modelling. The data must be extracted from

the contaminated signal at a high resolution. It is essential to separate the valuable

information from the noise while retaining the most relevant information. Addition-

ally, the fluctuation of the variable makes it difficult to filter the noise in multi-stage

applications. In order to reduce the noise in the input signal while capturing valuable

information, an exponential weighted moving average (EWMA) is applied. EWMA

can be written, as shown in Eq. (3.27):

x̂i (t) = λxi (t) + (1− λ) x̂i (t− 1) (3.27)

where x̂i (t) is the EWMA of the signal xi (t) and λ is the forgetting factor. As λ

increases, the contribution coming from the current state of the signal will rise. The

initial value x̂i (0) is computed based on the average of historical data.

3.4.2 Performance Metrics

One of the most common measures for evaluating FDS algorithms is the F score.

Before calculating the F score, recall and precision must be calculated. Hence,

they are based on two criteria: 1) a True Positive (TP) when the fault is correctly

detected, and 2) a True Negative (TN) when no fault is detected. TP and TN are

then added together to determine the correct decision. False Positive (FP) occurs

when a fault is incorrectly detected . A False Negative (FN) error occurs when a
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fault is incorrectly identified as normal. Then, precision is defined in 3.28:

Precision =
TP

TP + FP
(3.28)

Where TP and FP are total number of true positive and false positive respectively.

Also, recall is as follows:

Recall =
TP

TP + FN
(3.29)

Finally, F score is calculated using recall and precision. Then, F score is:

F =
2× Precision×Recall

Precision+Recall
(3.30)

F score is the harmonic average of precision and recall and reaches its best value at

one.

3.4.3 Performance Evaluation

Our aim is to demonstrate the effectiveness of the proposed approach by comparing

it with traditional multivariate approaches that are commonly applied,i.e., Dynamic

Principal Component Analysis (DPCA), LSTM, stacked LSTM (SLSTM), LSTM

autoencoder (LSTMAE),and GRU. For fair comparison all LSTM models use same

parameters. Wind turbine pitch and blade variables are used in constructing the pitch

and blade LSTM-MDN network, as well as other variables closely interdependent

with it. Table 3.4 lists the simulator variables used as inputs to the blade and pitch

LSTM-MDN models. A simulator dataset is used to train the pitch and blade LSTM-

MDN models, and then the parameters of the MDN model are used to calculate

prediction error and interval. According to Fig 3.6, the residual pitch and blade

values fluctuate within an adaptive threshold range determined by MDN variance for

fault-free scenario. Also, generated power is estimated using proposed structure to

determine the mode change for pruning rule phase. Fig 3.7 demonstrates the model

performance for generated power using NBM data. For comparison, we generated 100

test data-sets with different wind patterns and fault scenarios. Table 3.5 describes
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Table 3.4: LSTM-MDN inputs and outputs variable

Inputs Outputs

Wind Velocity Blade Angle i

Rotor Speed Rotor Torque

Reference for Blade Angle

Generator Speed

Table 3.5: Hyper Parameter of the Method

Hyper Parameters Value

Number of Features 6

Number of Samples 1,000,000

Number of Stacked Network 1

Number of Neurons 20

Number of Mixture Density 2

Length of Input Sequence 5

Learning Rate 0.001

dropout rate 0.10

Number of Epoch 20

the inputs and outputs parameter using to build LSTM-MDN network for pitch and

blade sub-system. Also, a comprehensive evaluation is shown in Table 3.6.

Analysis of Pitch and Blade Sensor Fault

In the previous section, we discussed two types of sensor faults: Fixed values on

sensors and scaling factors. It is easier to detect the first fault since a malfunctioning

sensor does not show any variation. However, the second type, a scaling factor on the

sensor output, is more difficult to detect. Fig 3.8 shows how residual fluctuates in case

of fault one. As the scaling factor changes the expected output pattern, the model has

a different response when fault two occurs. Fig 3.9 illustrates the generated residual
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(a) left: Angle sensor of blade 1 actual vs estimated value. Right: Prediction error and
interval.

(b) left: Angle sensor of blade 2 actual vs estimated value. Right: Prediction error and
interval.

(c) left: Angle sensor of blade 3 actual vs estimated value. Right: Prediction error and
interval.

Figure 3.6: Left figures, prediction vs actual values of the angle sensor , right figures:
Prediction error and interval
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(a) left: Generated power actual vs estimated value. Right: Prediction error and interval.

Figure 3.7: Left figures, prediction vs actual values of the generated power , right
figures: Prediction error and interval

for fault two scenario. Finally, the last scenario is a fixed value on the angle sensor

of the third blade. Fig 3.10 shows how model detects this fault too. FDI is more

sensitive to scaling factor errors by using a threshold to detect sensor malfunction,

which is one of the main advantages of the proposed method. The proposed method

can detect scaling factor faults despite a small scaling value.

Analysis of Pitch and Blade Actuator Fault

The actuator fault described in the previous section does not directly affect the mea-

surement. However, it can be determined by analyzing the closed-loop system be-

haviour. As a result, we designed an ARIMAX model to analyze the estimated signal

and compare the identified parameters with the parameters obtained from the actual

measurements. It can be seen in Fig. 3.11 that there is an abrupt change in the resid-

ual resulting from the subtraction of the first and second autoregressive parameters

derived from the ARIMAX model applied to actual and estimated data. Presently,

residual shows a change between expected and actual model outputs, which is indi-

cated by red. Thus, we conclude that high-pressure oil is present on the actuator

of the second blade, while the rest of the residuals appear to be normal. As a final

step, fault five is detected in Figure 3.12 by following the same procedure as fault 4.
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Figure 3.8: Violation of prediction interval by generated residual for angle sensor of
blade one in case of fixed value on angle sensor fault one.

Figure 3.9: Violation of prediction interval by generated residual for angle sensor of
blade two in case of scaling factor on angle sensor fault one.

35



Figure 3.10: Violation of prediction interval by generated residual for angle sensor of
blade three in case of fixed value on angle sensor fault 3.

As show in this figure, there is an abrupt change the generated residual of the third

blade angle that indicate the low pressure (hydraulic leakage).

Table 3.6: Evaluation of the Proposed Method Versus Benchmarks

Algorithms Precision Recall F score

DPCA 0.948 0.9125 0.9299

LSTM 0.948 0.925 0.9367

SLSTM 0.9358 0.9125 0.9240

LSTMAE 0.974 0.950 0.9620

GRU 0.974 0.9625 0.9685

Proposed Method 0.987 1 0.9937
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(a) Left: a0, Right: a1

Figure 3.11: Residual generated by subtracting the auto-regressive coefficient ob-
tained from ARIMAX model applied on the estimated data and actual data. high air
content in the oil fault.

(a) Left: a0, Right: a1

Figure 3.12: Residual generated by subtracting the auto-regressive coefficient ob-
tained from ARIMAX model applied on the estimated data and actual data. Low
pressure fault
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Chapter 4

Modelling and Optimal Operation
of A Nonlinear Industry Process
via the Physics-Informed Neural
Network Approach

4.1 Introduction

Modelling and optimization of reverse osmosis systems are investigated in this work.

We propose a framework to combine ESL-MDN with the DK to model the RO process

behaviour and formulate an optimization problem considering variations in feed-water

features and customer demand. However, there is a widespread problem in water

treatment plants. Design engineers spend considerable time optimizing the plant’s

energy, but operators rarely have time to tune the plant to optimize this energy use.

An essential task in a water treatment the plant is to keep the plant running to avoid

water shortages for the public the plant serves. Therefore, a storage tank is consid-

ered to meet the customer’s demand at all times. The hybrid model integrates with

optimizer and feed-water dynamic profile to save energy while ensuring freshwater

availability. The algorithm plans how much water should be produced in a day over

several days to save energy but produce the minimum water. The main contribution

of our work summarizes as follows:

• Propose PINN structure by introducing new features obtained from the math-
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ematical description of the physical model. The intermediate states are non-

measurable process variables that can be calculated using inlet and outlet con-

ditions.

• Develop ESL-MDN- model to enhance the generalization of the framework and

make it feasible for a process with variables that do not follow any parametric

distribution.

• Consider uncertainty caused by training set variations by estimating the distri-

bution’s parameters instead of a single prediction.

• Design an innovative dropout mechanism that adopts the information obtained

from uncertainty estimation to update the masking rule and prevent large errors

caused by DK infusion propagating through the system.

• Design an optimization framework based on differential evolution algorithm

for RO process considering feed-water characteristic variations and customer’s

demand.

4.2 Proposed Approach

Motivated by the challenges mentioned in the above section, a hybrid approach of

combining a mathematical model and DL in the optimization problem has been stud-

ied in this work. In the next part, we first explain the PINN framework that is

designed to replace the nonlinear model of an industrial process by using the ESL-

MDN structure, and at the same time considering the mathematical description of

the process. Also, we introduce a novel deterministic dropout approach to reduce the

induced error caused by combining DK with DL. Finally, we design an optimizer to

employ the obtained ESL-MDN model to manage the process energy consumption.
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Figure 4.1: PINN based on ESL to infuse attributes related to the physical domain
into DL model

4.2.1 Physics-informed Neural Network (PINN) based on
Ensemble Sequential Learning (ESL)

Finding the most influential attributes that lead to the best model performance and

low computation cost is critical for developing a machine learning model. Many

industrial processes, including thermal, hydraulic, chemical, and etc, follow the fun-

damental physical laws. Therefore, extensive knowledge has been developed through

the decades that can be used to generate the most important features. One of the

PINN structures to incorporate knowledge into machine learning is Ensemble Sequen-

tial Learning (ESL). As it is shown in Fig 4.1, unobservable features obtained from

physics are estimated first and used to generate augmented data-set to estimate the

outputs. ESL falls within the concept of the stacking procedure. The main idea is to

connect multiple estimators in a sequential order to conduct an extension of the input.

It means that the previous layer’s output is added to the input of the next layer. ESL

has been used in many applications since its introduction. This study used ESL to

incorporate physics into machine learning and enhance estimation performance. In

this sub-section, the components in ESL are explained, including intermediate states,

uncertainty based on MDN structure and the proposed deterministic dropout.

Let us start with the features that cannot be measured directly, and they reflect

useful information related to the process modelling. Two types of intermediate states

have been investigated through this work. The assumption for the first type is that

the inlet conditions can directly calculate these unmeasurable variables. However,
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the second type is more challenging to formulate as the outlet variables in association

with input data need to infer the intrinsic physical parameters. Consider a non-

linear function f̃ (u) that calculates intermediate variable Y c
1 based on the physical

equations:
Y c
1 = f̃ (u)

y = FNN (Y c
1 , u)

(4.1)

It is difficult to extract the second type of intermediate states while outlet conditions

are unknown during the operation. Therefore, we need to estimate them based on

the inlet data. The suggested framework utilizes training data to generate labels and

deploy a NN to learn the model that maps input variables to intermediate states.

Assume that nonlinear function g̃ (u, y) describes the relationship of intermediate

states with process inputs and outputs, and indicates by Y c
2 . We need to rewrite Eq.

(4.1) as follows:

Y c
1 = f̃ (u)

Y c
2 = g̃ (u, y)

Ŷ
c

2 = GNN (u)

y = FNN

(︂
Ŷ

c

2, Y
c
1 , u
)︂

(4.2)

This step is important as it sheds light on high-value information that is impossible

to measure. In the following section, we will describe the uncertainty quantification

approach using MDN structure.

Uncertainty Estimation

Generally, uncertainty in the data-driven approach derives from two sources, mod-

elling error and noisy data. Also, reliability is the critical factor for any model fitting

application that combines with the decision-making process. Moreover, the neural

network model cannot make a reliable prediction if the sample is out of the training

distribution. Here, we quantify the uncertainty in prediction related to the noisy

input and model mismatch. As indicated in Fig. 4.3, we will consider the conditional

distribution for the target variable to represent the uncertainty in the prediction using
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Figure 4.2: Data allocation process

Figure 4.3: MDN structure is the new layer on top of any NN model to represent the
conditional probability density function of the targets
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mixture density network [52]. The assumption is that the target does not follow any

parametric distribution and a probability distribution model generated by the sum

of simple distributions. Therefore, the mixture of density distribution can be written

as:

p(y|x) =
N∑︂
i=1

(πi(x)ϕi(y|µi(x), σ
2
i (x)) (4.3)

where πi(x) for i = 1, ..., N is the mixture coefficients considered as a prior probability

of the outlet variable y built by ith component of the mixture. ϕi(y|µi(x),Σi(x)) is

the kernel distribution of the mixture model and N is the total number of kernels.

Gaussian distribution is a suitable candidate to select as a kernel for MDN.

ϕ(y|x) = N (y|µi(x), σ
2
i (x)) (4.4)

Where c is the dimensionality of output vector y and µi(x) is the centre of the ith

kernel. p(y|x) provides more detailed information to approximate the interval using

the specific quantile. Interval width (IW) is approximated by mean, variance and

confidence level (α). IW can be written as:

IUpper = µ+ α
√
σ

ILower = µ− α
√
σ

IW = IUpper − ILower

(4.5)

IW can be considered as a confidence level index of the model. In other words, if the

model is not confident enough due to the noisy data or model mismatch, IW will be

wider. Therefore, in the next session, we explain how to use this fact to update the

masking rule for the proposed dropout.

Deterministic Dropout

The ESL-MDN model has been built to inject physics-based knowledge into DL while

preventing errors related to introducing new features. According to Fig. 4.2, training

data are divided into two halves; the first half is responsible for obtaining data for
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Figure 4.4: L1 is the first leaner in PINN sequential structure to estimate unobserv-
able attributes that come from the physical law

Figure 4.5: L2 is the second learner in PINN sequential structure to estimate targets

unobservable states and calculating physics-based features. Then, the second half ag-

gregates with a new feature estimated by L1 and train L2 by mapping the augmented

dataset to the process targets. The details of the two learners L1 and L2 are shown

in Figs. 4.4 and 4.5. In order to consider the impact of the induced error caused

by engineered features, We propose a deterministic dropout mechanism to prevent

the error propagates through the system. Let us start with a brief introduction of

the random dropout technique brought in [55]. Assume that data set U , an input for

neural network, is composed of N number of sensors and i samples associated with

each sensor. Consider each layer of the network created by Zl as input and Yl as

outputs. So, in this network, the relationship between layer l and l + 1 is expressed
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as:

Zl+1 = WlYl + bl (4.6)

where Wl and bl are weight matrix and bias to connect layer l to l + 1. Consider

Φ (l + 1) as an activation function for layer l + 1, then

Yl+1 = Φl+1(Zl+1) (4.7)

Dropout is the mechanism to terminate some connection between layer l and l + 1

randomly by generating a mask rule Dl. So, Eq. (4.6) can be modified as:

Zl+1 = (Wl ⊙Dl)Yl + bl (4.8)

where Dl (i, j) = Bernouli (p) for i, j are nodes in layer l and l + 1. Also, ⊙ is the

Hadamard product that calculates product of two matrices term by term. So, Eq.

(4.9) can be written as:

Yl+1 = Φl+1 ((Wl ⊙Dl)Yl + bl) (4.9)

Dropout applies to any layer, including input, hidden, and output layers. The idea

is to use deterministic dropout placed at the second learner’s input layer. The first

learner provides intermediate variables and their estimation error. We can use this

information to eliminate those connections related to the intermediate state instance

with a high estimated variance. In other words, we drop features affected by noise

and keep the rest of the important variables. Consider two consecutive neural net-

work models in which the first learner’s output is used as an input for the second

learner. The first learner may generate unreliable outputs in noisy samples, dras-

tically reducing the second learner’s performance. Consider Dd (i, j) as a dropout

mask between input of second learner and its layer 1 where the (i, j)th element

(i ∈ [i1, .., ik, ik+1, ...ik+s]).Where k and s are the total numbers of intermediate and

input variables. Dd can be expressed as:

Dd(t) =

{︄
0 IW (t) ≥ δ

1 Otherwise
(4.10)
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Threshold δ is a hyper-parameter obtained by tuning. Therefore, the output of the

second learner is as follows:

Y2 = Φ2

(︁(︁[︁
W 1

2 ,W
2
2

]︁
⊙
[︁
Dd, 1

]︁)︁
X + b2

)︁
(4.11)

Where X is the augmented training data (intermediate states estimated + second

portion of inlet variables),W 1
2 is the weight for intermediate variables, and W 2

2 is the

weight for process inputs. As it is shown in Eq. (4.11), we modify the forward propa-

gation by adding a deterministic dropout which can be updated using the information

obtained from the first learner.

The proposed model has the following advantages compared with black-box neu-

ral network modelling: 1) The hybrid model can work reliably without data as it

is integrated with physical knowledge, while the black-box neural network cannot

be functional. 2) In the case of uncertainty, the model prevents significant error

propagation through the network because if there is a corrupted sample, the error

estimator’s outputs will show high variance. 3) network parameters are increased in

minor ways by doubling the number of output variables in the first learner to estimate

intermediate states and their estimation error.

4.2.2 Optimization with Neural Network Model

A valid, comprehensive mathematical model is a crucial step for process optimization.

However, a representative model is not always accessible. Due to the non-stationary

nature and high level of non-linearity for complex processes, we develop an opti-

mizer whose components are derived by the DNN model. In general, an optimization

problem is formulated as shown in Eq. (4.12):

min
x

f (x)

s.t. Constraints
(4.12)

However, it is not easy to formulate the whole system. We intend to estimate

the process’s nonlinear and most complex components using the DNN technique.
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Therefore, constraints contain some elements estimated by the DNN model. Then,

the optimization problem is developed as Eq. (4.13):

min
x

f (x)

s.t. g (FNN (x) , x)

other constraints

(4.13)

Also, the cost function is the combination of the element predicted by the NN model.

So, Eq. (4.13) is rewritten as:

min
x

f (FNN(x), x)

s.t. g (FNN (x) , x)

other constraints

(4.14)

While FNN is the ESL-MDN model introduced in the previous section and it maps

the inputs and intermediate features to the process outputs.

Designing an optimizer for practical application is very challenging as we can face

one of the following issues [56]:1) multimodality, 2) non-differentiable objective func-

tion or constraints, 3) non-convex problem, 4) mixed variables, 5) application with

large dimension, 6) multi-objectives. Although gradient-based optimization is a pow-

erful tool to find local minima, they cannot deal with multi-modal and non-convex

problems. As a result, gradient-free algorithms are introduced to address this issue.

Differential Evolution

Differential evolution (DE) which is introduced by [57], is a population-based meta-

heuristic search algorithm developed to optimize problems over the continuous do-

main. Making few or no assumptions about the underlying problem, simple structure,

robustness and speed candidates DE as a powerful tool for optimization. Better solu-

tions have been derived by the search over the design space in a stochastic way. The

summary of DE has been shown in Algorithm (2) [58].

DE is in a category of the gradient-free method, which makes it a perfect tool for

the problem formulated in Eq (4.36) as the objective function and some constraints
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are the outcome of a neural network and the differentiability of the problem is not the

requirement. DE generates new solutions by combining the existing ones according

to the mutation process, and it keeps the population of candidate solutions while

searching the design space. In the next iteration, candidates with the best objective

value are considered new solutions. The process iterates until it satisfies the termi-

nation criterion. Therefore, the detailed strategy is as follows:

According to Algorithm. (2), we select a population of D dimensional population

vector with NP population size. Each target vector for iteration j indicates as (xj,i)

for i ∈ 1, 2, ..., NP and xj,i includes all parameters must be optimized. The donor

vector, vj,i is built by picking three random vectors as follows:

vj,i = xj,c + F (xj,a − xj,b) (4.15)

F is a vector called mutation factor, and it is a random number obtained from a

uniform distribution in a range of [0, 2]. The random integer numbers a, b, c must

be different from i. The next step is to define a trial vector using the crossover, a
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random number in the range of [0, 1]. The operation of crossover is as follows:

x′
j,i =

{︄
xj,c + F (xj,a − xj,b), if rand(0,1) ≤ CR or j = jint

xj,i otherwise
(4.16)

Then, the selection process finds a better solution by minimizing the problem. The

loss function for the problem denoted by f . As a result, if f(x′
j,i) ≤ f(xj,i), target

vector will be replaced by trial vector as it improves the solution by minimizing the

loss function.

4.3 Experiment

4.3.1 Reverse Osmosis Water Desalination Plant

Water scarcity, which results from a mismatch between water resources and water de-

mands, is not limited to arid areas. The water quality has decreased in many regions

due to the pollution and exploitation of groundwater and surface water. Furthermore,

the growth of the population leads to an increase in water demand for industry and

agriculture. As a result, exploring an alternative resource for freshwater has gained

many interests. Desalination is the answer to this, such as alternative resources.

Desalination systems are divided into two main groups based on the separation pro-

cess. Thermal desalination exploits evaporation and condensation to separate solid

material from water. The other separation process is the membrane desalination

technique. RO is the most popular technique in which water diffuses through the

membrane, and it retrains solid particles. Fig. 4.6 demonstrates the process of water

desalination using RO, which includes three stages, such as pre-treatment, RO system

and post-treatment.

A mathematical description given by [59] is widely accepted and most used by RO

system designer. the water flux Jω is as follows:

Jω = Aw(∆P −∆π) (4.17)

Aw is the solvent permeability coefficient which depends on the temperature and
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Figure 4.6: Structure of RO plant contains three sections, pre-treatment, RO desali-
nation system and post-treatment.

membrane’s features. ∆P is pressure drop and ∆π is the osmotic pressure difference

across the membrane element. Solute flux can be modeled as:

Js = As(Xm −Xp) (4.18)

Where As is solute permeability coefficient which depends on the temperature too.

As a result, permeate flow and concentration can be derived by:

Xp =
Js
Jω

(4.19)

Qp = SJω (4.20)

Using above equation, we can rewrite the permeate flow as:

Qp = SAw(∆P −∆π) (4.21)

So, water permeability can be derived by:

Aw =
Qp

S (∆P −∆π)
(4.22)
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Also, the volume and mass balance relationship around the membrane layers is

estimated as follows:

Qf = Qp +Qb (4.23)

QfXf = QpXp +QbXb (4.24)

Water recovery is the measure to evaluate the process performance and it can be

written as follow:

R =
Qp

Qf

× 100 (4.25)

Rest of the equations expressed in Table 4.1 are suggested by Filmtec company [60].

4.3.2 Preprocessing

We propose a two-stage DNN model to estimate the process output. Data pre-

processing is a crucial step to achieving a high-quality model. Significant steps include

process shutdown detection, outlier removal, and noise reduction, have been taken into

account to clean the data. Scheduled maintenance and abrupt malfunction in the

system are two primary reasons for the plant’s shutdown. However, data acquisition

systems run continuously and collect the data during this time. Shutdown mode is

detected using feed-water flow profile when it is below a specific number and 10m3/hr

is selected as a threshold.

The primary step of pre-processing for industrial applications is outlier removal.

Data collected from an actual plant contains normal and abnormal samples. However,

the absence of labels for anomalies makes the data cleaning section the most chal-

lenging part. Our mission is to clean data and detect outliers in an unsupervised way.

We designed the Outlier Removal (OR) based on the double rolling aggregate. Com-

paring each sample with its previous value is the core idea of this technique to detect

an abrupt change that is not consistent with the sequence behaviour. In contrast to

sensor surges which may occur abruptly and disappear, sensor malfunction can stay

for a while and transfer wrong information. Three-stages OR has been introduced
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Table 4.2: Nomenclature

Symbol Description

Jω Water flux m/s

Aw Water permeability m/bar.s

Js Solute flux m/s

As Salt permeability m/s

X Concentration ppm

Q Flow Rate m3/hr

C Conductivity S/cm

P Pressure kpa

π Osmotic Pressure Kpa

∆P Pressure drop Kpa

R Recovery

S Area m2

SR Salt Rejection

PF Polarization Factor

FF Fouling Factor

∆Pfb Average concentration-side Pressure Drop

mj Molar Concentration of jth ion
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to address this issue, which compares each instance with the previous one, 24 and

500 moving average samples. OR eliminates those instances if there is a difference

more than 5%, 20% and 40% with the previous, 24 and 500 moving average samples,

respectively. Table. 4.3 shows the percentage of samples eliminated in each stage.

Plant Total Samples Stage One Stage Two Stage Three

A 12859478 4.88% 1.29% 0.08%

B 9856732 2.94% 0.86% 0.015%

Table 4.3: Percentage of samples eliminated in each stage

As a feature engineering step, SCADA data is plugged into the equations in Table

4.1 to calculate intermediate states. However, feature selection is of great importance

to keep the dimensionality of training data as low as possible. Two intermediate

states, average concentration salt conductivity and polarization factor demonstrate

almost constant behaviour. Due to the variable fluctuations, we can remove them

from the augmented training data as they cannot contribute to the necessary infor-

mation for the training session. Therefore, the temperature correlation factor (TCF)

is the intermediate variable calculated using the feedwater temperature profile. Also,

water permeability and feed osmotic pressure can be considered the second type of

intermediate variables estimated by the ESL-MDN framework.

Using Table. 4.1, TCF is calculated by feed water temperature. Also, training

labels for feed osmotic pressure and water permeability are generated using the first

half of the dataset. Fig. 4.7 and 4.8 provide the estimation of the water permeability

and feed osmotic pressure with their variance.

Description of the hybrid model has been brought in Table 4.4. ESL-MDN applies

to the augmented training data at stage two to predict the main target variables of

the RO plant. As it is shown in Table 4.4, six variables (feed-water flow, concentra-

tion valve, feed-water temperature, feed-water conductivity, feed-water pressure and

differential pressure) incorporated with intermediate states (feed-water osmotic pres-
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Figure 4.7: Predicted water permeability and its variance

sure, water permeability, TCF) are considered as inputs and permeate concentration,

permeate pressure, and permeate flow are defined as outputs. Also, as mentioned ear-

lier, two variables, average concentration side conductivity and polarization factor,

are eliminated from the augmented data during the feature selection step.

4.3.3 Cost Function for optimal Operation

The objective of the optimizer is to calculate the optimal set-points profile that min-

imizes the energy consumption in the RO desalination process. Specific energy con-

sumption (SEC), in kWh per m3, is an essential element to evaluate the performance

of the RO process. Many factors from different parts of the plant contribute to the

SEC. For example, 1) facility provides feed-water, 2) Pre-treatment and filtering,

3) the main section of the process such as high-pressure pump, membrane and en-

ergy recovery device, 4) post-treatment and chemical adjustment, 5) disposal facility.
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Figure 4.8: Predicted feed osmotic pressure and its variance

However, studies show that the main section is responsible for 60-80% of the total

SEC of the desalination system. We focus on the pumps and their contribution to

SEC in this work. A general expression for SEC is as follows [61]:

SEC =
1

R

[︃
Pf − Pp

η

]︃
+

(1− β)

[︃
1−R

R

]︃ [︃
Pp + ηERD∆P − ηERDPf

η

]︃ (4.26)

Where η is pump efficiency, ηERD and β are the efficiency and leakage ratio of energy

recovery device, respectively. Equ. (4.27) indicates the value of ideal operation:

η = ηERD = 1 β = 0 (4.27)

Hence, SEC for ideal process can be rewritten as:

SECID =

[︃
1−R

R

]︃
∆P + (Pf − Pp) (4.28)
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Therefor, inefficient pump and ERD can lead to energy loss, which can be calculated

as:

j = |SEC − SECID| (4.29)

4.3.4 Process Constraints

Customer’s Demand

In order to provide the customer with fresh water at all times, we consider the daily

customer demand profile, which is suggested by [62]. Fig. 4.9 indicates the daily

discharge flow rate requested by the customer.

Figure 4.9: Daily fresh water demand

Storage Tank

Product water storage is considered at the last stage of the RO process to reserve

water during the low demand and provide more water when the demand is high.

Also, for safety reasons, tank level H should not be overflowed. As a result, we

define the tank’s high and low constraints (high, low). Therefore, the violation can

be formulated as:

inlet flowt − outlet flowt = A× ht (4.30)
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Where A an h are the area and height of the tank, respectively. So, the total height

of the tank after T hours is calculated as:

hT = h0 +
T∑︂
t=0

hi (4.31)

where h0 is the initial height of the storage tank. so the constraint can be written as:

hlow < hT < hhigh (4.32)

Product Water Quality

In addition to tank level, water quality is another constraint defined by the customer.

In general, permeate water concentration is a measure to evaluate water quality, and

there is an acceptable range for different purposes. These constraints can be written

as:

αl < Xp < αh (4.33)

Furthermore, physical limitations such as the size of valves and pumps add more

constraints. Physical constraints are as follow: Linear bound on Pf ,Qf and Qb.

Finally, safety constraints are considered to protect the devices installed in the plant.

This constraint adds more limitations on sudden change for set points. In other words,

the difference between two consecutive set-points must not exceed the predefined

threshold. The summary of the optimizer structure is demonstrated in Fig. 4.10.

Therefore, the optimization problem can be rewritten as:

min
Qf ,Pf ,Qb

j

Qf low < Qf < Qf high

Pf low < Pf < Pf high

Qblow < Qb < Qbhigh

hlow < hT < hhigh

(4.34)

However, water characteristics such as feed temperature and conductivity profile

must be provided to find the set-point profile for one day ahead. Also, the total
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Figure 4.10: Structure of the optimizer and all constraints related to the process

SEC is equal to the aggregate of the predicted SEC for the next 24 hours. So, the

optimization problem can be rewritten as:

min
Qft

,Pft

i∑︂
t=1

(jt)

Qf low < Qf < Qf high

Pf low < Pf < Pf high

hlow < hT < hhigh

αmin ≤ Xpt ≤ αmax

(4.35)

Additionally, we must add a water demands quality constraint estimated by the ESL-

MDN model to meet the customer requirement. SEC is the function of feed and

permeate pressure. Furthermore, permeate pressure can be substituted by the ESL-

MDN model too. Also, Xp is the outcome of the mentioned neural network model.

As the predicting SEC depends on the forecasting uncertainty, we use the forgetting

factor γt, to give the highest weight for the present data and decrease over time.

Therefore, the optimization problem is formulated as:
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min
Qft

,Pft
,Qbt

T∑︂
t=1

(γtjt)

Qf low < Qf < Qf high

Pf low < Pf < Pf high

Qblow < Qb < Qbhigh

hlow < hT < hhigh

αmin ≤ Xpt ≤ αmax

(4.36)

4.4 Presentation of the Experiment Analysis

Six process variables, including feed-water flow, feed-water temperature, feed-water

conductivity, differential pressure, feed-water pressure, and concentration water valve

position, have been chosen to conduct a feature engineering and obtain non-measurable

parameters such as feed-water osmotic pressure, water permeability, salt rejection,

recovery and average concentration side conductivity. The augmented training data

predicts the outlet variables, including permeate flow, permeate conductivity and per-

meate pressure, directly impacting SEC. The DE-based optimizer has been designed

to find the profile of set-points and minimize the SEC loss over a day.

4.4.1 Performance Evaluation of Neural Network Model

An evaluation has been done on experimental data to demonstrate the model’s effec-

tiveness. Data was collected from two different anonymous sites placed in Asia. The

description of the neural network models is shown in Table 4.9.

PINN Hyper Parameters

In this work, the PINN model represents the output variable of the RO process. k-fold

validation is used to tune the hyperparameters such as the number of neurons in the
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(a) Permeate Conductivity

(b) Permeate Pressure

(c) Permeate Flow

Figure 4.11: Left figures, prediction vs actual values of the outlet variables, right
figures: Distribution plot for Plant A
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(a) Permeate Conductivity

(b) Permeate Pressure

(c) Permeate Flow

Figure 4.12: Left figures, prediction vs actual values of the outlet variables, right
figures: Distribution plot for Plant B
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hidden layer, activation function in the hidden layer and output layer, optimizer type

and learning rate. Table 4.9 describes the best values for the network’s hyperparame-

ters. Although parameter tuning has found similar values for most hyper-parameters,

the number of mixture distributions differs for each parameter. The main reason for

that is the non-stationary nature of the process, and some parameters need more

mixture distribution to have a high estimation accuracy. The number of mixture

distributions has been indicated in Table. 4.6.

We considered different activation functions such as linear, Sigmoid, Relu, LeakyRelu

and tangent hyperbolic. The linear activation function has a constant derivative for

the input. It means that the change caused by backpropagation is independent of

estimation error. If we have DNN with multiple hidden layers and a linear function is

chosen for all layers, the target is just a linear function of the input. As we know that

the Ro is a complex and nonlinear process, the linear activation function is removed

from the potential candidate. The rest of the activation functions, even Relu, are

nonlinear and suitable for nonlinear regression. Relu is a proper activation function

when there are numerous training data available. Sigmoid and tangent hyperbolic

activate almost all neurons in the DNN model. So, for the DNN structure, Relu

can be a suitable candidate by making the activation sparse and efficient. However,

leakyRelu has a wider range of learning because of solving the dying Relu problem

that happens due to the appearance of non-responding neurons to the change in in-

put. However, it has more computation cost compared to Relu. Therefore, we used

K-fold validation to find the proper activation function for each target. Table. 4.7

summarises the final decision for activation function found by K-fold validation.

Impact of uncertainty on modelling

The threshold that is employed by determinsitic dropout is computed as follows:

δ = ν ∗mean(IW ) (4.37)
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Table 4.8 indicates the best value for ν obtained from parameter tuning. multiple

tests reveal that incorporating water permeability and feed osmotic pressure with the

PINN model improves permeate pressure, conductivity, and flow accuracy. Wider

interval means that the model has less confidence regarding the prediction result. If

the IW violates the threshold, that sample will be eliminated from the augmented

training data as the predictor has low confidence. However, choosing a small value

for an acceptable range eliminates a huge part of data, leading to lower accuracy. In

contrast, a large value for ν can cause error propagates through the modelling and

decrease the overall accuracy.

Modelling Results

Fig. 4.11 and 4.12 show the prediction results and distribution plot for both plants

A, and B. PINN model outperforms other conventional DL algorithms as the mean

percentage error (MPE) for all variables lies in an acceptable range.

Comprehensive studies have been done to show the effectiveness of the proposed

method. First, it has shown that the hybrid model enhanced the accuracy compared

to conventional and deep learning techniques. Second The proposed method shows

remarkable improvement. The main reason is that the mathematical model includes

the steady-state of the system and shows a weak performance during the transition

states. The hybrid model can capture both steady and transition states as it incor-

porates the features of both model-based and data-driven techniques. However, as

the mean percentage error gives us general information regarding the performance,

we introduce another measure: the percentage of the samples with an error over 10%.

Adding deterministic dropout reduces the number of samples with significant error.

It is based on the fact that it eliminates estimated samples with significant predicted

errors and does not use them as a feature for second learners.
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4.4.2 Performance Analysis of the Optimizer

Two scenarios are investigated based on the feed-water characteristic prediction in

which the customer demand profile remains fixed. In the first scenario, the optimizer

does not have access to feed-water prediction, and it finds the set-points based on the

present data. However, the optimizer is provided by dynamic water profile results of

the next 24 hours in the second scenario.

Scenario 1: feed-water characteristics prediction NOT available

The optimizer finds the set-points using the present data without future feed-water

variation information. Table. 4.13-f illustrates the SEC loss in the presence of the

optimizer and compares it with the actual loss. In this scenario, the plant has been

given an optimal set-point every 24 hours. It reveals that the SEC loss is reduced

using the optimizer design. In the following scenario, the impact of future knowledge

will be investigated.

Scenario 2: feed-water characteristics prediction provided

by Designing this scenario, we intend to provide the plant with the profile of optimal

set-points, which also meet all requirements and constraints. Feed-water variation

for the next 24 hours is provided, and the optimizer finds the profile of set-points

every 6 hours. The total energy loss reduction is lower than the actual loss without

an optimizer, demonstrating that the optimizer associated with the water variation

predictor has better performance to save energy. Fig. 4.14c shows the comparison of

SEC loss for both plants using the second scenario.

SEC loss comparison is indicated in Table 4.11. It reveals that adding the pro-

posed optimizer improved the energy loss compared to the conventional optimization

technique used in the actual plant. Furthermore, consider future feed water charac-

teristics and manage the water production accordingly, reducing energy loss in the

plant.
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However, the quality of permeate water must be in a predefined range. The thresh-

old of water conductivity’s acceptance is 800ppm. Fig. 4.14a shows that the conduc-

tivity of freshwater provided by the optimizer is lower than the threshold, which is

the indicator of higher quality compared with the case without the optimizer.

Fig. 4.14b depicts the storage tank level over a cycle of 24 hours. The tank store

more water during the first 6 hours of a day due to the lower demand. In contrast,

the tank level is shrinking during peak hours to provide the user with fresh water at

all times. It is assumed that the tank’s level should not reach the bottom 4 and top

18 meters.

The presented work shows the ability of the optimizer to provide the optimal

operation while satisfying operation and physical constraints.

set-points and process output are brought in Fig. 4.13 for the second scenario. Al-

though the optimizer introduces more fluctuations than the scenario with no suggested

optimizer, all variables lie in the normal range, and due to the safety constraints, there

is no abrupt and unacceptable spike.
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Table 4.5: Description of PINN sequential model for outlet variables

Network parameters Values

Number of neurons in the
input layer

9

Number of hidden layers 2

Number of neurons in the
hidden layer

256-128

Number of neurons in the
output layer

1

Loss function MAE

Optimizer type Adam

Maximum number of epoch 1000

Batch size 50

Learning rate 0.001

Dropout 10

Table 4.6: Number of mixture density distribution for each target

Plants Variables Number of Mixture

A

Flow 2

Pressure 2

Conductivity 3

B

Flow 2

Pressure 2

Conductivity 3
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Table 4.7: Activation function for each target

Plants Variables Activation Function

A

Flow Relu

Pressure Relu

Conductivity tangent hyperbolic

B

Flow Relu

Pressure Relu

Conductivity tangent hyperbolic

Table 4.8: Best value for ν obtained during parameters tuning process

Plants Targets Feed Osmotic Pressure Water Permeability

A

Flow 4 5

Pressure 5 5

Conductivity 5 5

B

Flow 4.5 5

Pressure 5 5

Conductivity 4.5 5
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Table 4.9: Mean percentage error comparison of various ML technique and proposed
method

Plants Variables Linear Regression MLP ARIMA AE

A

Flow 5.3621 3.9452 4.2147 3.0249

Pressure 12.3598 8.2219 9.2984 6.9436

Conductivity 13.2641 11.0846 9.2159 10.8436

B

Flow 6.1637 5.9543 5.2374 4.2179

Pressure 11.2158 7.7624 8.08468 7.1683

Conductivity 16.4158 10.9462 11.2895 9.2541

Plants Variables ELM LSTM AELSTM Proposed Method

A

Flow 3.8964 5.2194 4.8206 0.9728

Pressure 7.8546 8.2597 6.9607 5.66748

Conductivity 11.9216 8.1598 8.0913 2.4753

B

Flow 4.1039 3.4698 2.6548 0.8834

Pressure 7.0036 6.5608 6.1975 5.1976

Conductivity 8.2963 8.0984 7.2083 6.0159

Table 4.10: Percentage of large error (over 10%) comparison with and without deter-
ministic dropout

Plants Variables without dropout with dropout

A

Flow 1.27 1.09

Pressure 9.43 2.27

Conductivity 10.84 3.47

B

Flow 1.02 0.98

Pressure 6.28 1.27

Conductivity 7.91 3.22

70



Table 4.11: SEC loss (kWh) comparison of three scenarios (Without proposed opti-
mizer, scenario one and scenario two)

Plants No Optimizer Scenario One Scenario Two

A 7.21 6.46 6.22

B 7.38 6.95 6.78
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(a) set-points with and without optimizer Plant A

(b) Process outlet variables with and without optimizer Plant A

(c) set-points with and without optimizer Plant B

(d) Process outlet variables with and without optimizer Plant B

Figure 4.13: Comparison of the process set-points and output variables with and
without optimizer for plants A and B in second scenario

72



(a) Conductivity comparison for plant A (left) and B (right) with and without optimizer

(b) Tank level in the presence of optimizer for plant A (left) and B (right). The blue line
indicate the upper and lower threshold

(c) SEC loss comparison for plant A (left) and B (right)

Figure 4.14: Optimal result for second scenario in comparison with the scenario
without proposed optimizer
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Chapter 5

Conclusions & Future Work

This thesis mainly focuses on three promising applications of AI for industrial ap-

plications: fault diagnosis, modelling and optimization. We presented an LSTM-

MDN model integrated with ARIMAX system identification for component early

fault detection based on simulated data from wind turbines in Chapter 3. First,

the LSTM-MDN network model was trained using NBM data. Then, the prediction

error, adaptive interval, and residuals were used for fault detection. According to

the actual analysis results, the following conclusions were reached: It has been con-

firmed that the developed framework for early fault detection of wind turbine pitch

and blade components is valid based on analysis results generated by the proposed

model, which agree with the actual fault scenario generated by the simulator. Ad-

ditionally, once the LSTM-MDN model has detected a possible fault, pruning rules

investigate the situation to ensure that the candidate fault is real and keep the FAR

as low as possible. Chapter 4 presented an ESL-MDN with an infused DK framework

that enhanced model performance, which is critical for the plant optimizer. Also,

to avoid the induced error caused by incorporating Dk into DNN, we introduced a

deterministic dropout mechanism based on the uncertainty estimation. Finally, we

designed an optimizer based on the DE algorithm to detect the optimal operating set-

point of the RO process while satisfying all physical and customer constraints. Also,

we investigate the impact of adding the information of feed-water characteristics to
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manage energy loss. The results revealed that integrating the ESL-MDN model with

physics improved the modelling accuracy. Also, a new design optimizer can reduce

the energy loss caused by pumping energy. The results revealed that the suggested

framework could reduce energy loss while meeting customer demand. The primary

step for future work is to design an optimizer that considers uncertainty estimated

by the model. It is important to note that the framework applied to the raw data

collected from real plants and the optimizer has been customized. However, coming

up with a more general approach applicable to the different industrial processes would

be considered another aim for future work.
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