
MINT 709
Capstone Project Report

Based on

Email to REST (E2R)
system

Instructor: Prof. Paul Lu
Presented by :Sachin Kaushik

Dated:11 th Apr 2018

1

--:INDEX:--

 Page No.

Acknowledgements………………………………..3

Abstract…………………………………………….4

1. Introduction………………………………………...5
2. Architecture of E2R system……………………......8
3. Main Working components…………………….…10
4. Implementation……………………………………12

a. Execution overview………………………….12
b. Working with components with result……..13

5. How this capstone project is unique……………...28
6. Conclusion……………………………………….....29

Appendix A: References………………………...….30

2

Acknowledgement
I would like to take this time to thank Prof Paul Lu for special guidance, patience and support
provided throughout to complete this project. It has been such a privilege working with him. This
project would not have been possible without his help and insight.

The journey in doing this project and completing my degree has been a great experience and one
I take pride in accomplishing.

I would also like to thank my classmate Wenting Zhang for her project proposal which helped
me at the time of initial stage of my project.

3

Abstract
A variety of online systems such as e-commerce sites Shopify, mailing list like Google News
Alerts are designed to interface to the world by sending an email.

In this project, I worked on Email-to-REST (E2R) model. The basic idea of Email-to-REST
(E2R) is to form a programming model and associated implementation of its components for
processing and generating online orders through an email from clients. Thereby, it can be called
a Client and Server model. Client-Server model is a distributed application structure that
partitions task or workloads between the providers of a resource or service called server and
service requesters called clients. A Client does not share any of its resources, but requests a
Server’s content or service function.

The email from Client should be well-formed. If email is non well-formed, there would be
problem in finalize the request. However, during specific conversation email could also be non
well-formed e.g. asking for further unique information to finalize the invocation. In last, the
request email will result in an invocation or call to a server using a representational state transfer
(REST) interface. Therefore, the E2R system is a REST-based direct message-passing system.

This project focuses on the well-formed components of the E2R system which involve mainly
Mail Praser, Q&A (Questions and Answer) , State Storage and REST Invocation.

4

1. Introduction
A variety of online systems such as e-commerce sites Shopify, mailing list like Google News
Alerts are designed to interface to the world by sending an email. Great motivation behind the
designing such a system is to fully automate a response using the email parsing and entering the
ordered data into a storage system via REST Invoker.

The implemented E2R system automates processing of order emails from Shopify and enters it
into the computerized order system. More generally, sending an email to invoke an action on a
server is a useful interface since it is sometimes easier to send an email from a variety of
different devices (e.g., smartphone, desktop, laptop, Chromebook, public access machine (when
appropriate)) than to invoke a script or run a program to invoke the REST interface directly.

Representational state transfer (REST) or RESTful web services is a way of providing
interoperability between computer systems on the Internet. REST-compliant Web services allow
requesting systems to access and manipulate textual representations of Web resources using a
uniform and predefined set of stateless operations.

The basic idea of an E2R system is similar to mailparser.io and docparser.com, which
automatically parses emails with pre-designed algorithms, a semi-structured layout and then
invokes an appropriate action (e.g., extracting user-specified data) on a back-end server.

The goal of this project is to implement a fully functional E2R system having main focus on
Mail Q&A and State Storage system other than Mail Parser and REST Invoker (Figure 1:
Architecture of E2R system). Mail Q&A is a special part of E2R system which provides quality
and automatic features to the web service of e-commerce companies.

We take Shopify as an e-commerce site for example. It is important to note that Shopify is a
virtual platform for many different types of shops such as for Garments, fashion, sports, books
etc. Let us take a scenario. Let us assume, one client say, I want to order a shirt using Shopify. I
went to Shopify website, selected the designer shirt say, from Eureka shop (fictional shop),
entered my desired selection for shirt and tried to place an order (Figure 1).

5

https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Stateless_protocol

Figure 1: Email request (Client)

In that process, Shopify platform passed to Mail Watchdog (Figure 4). Mail Watchdog will
monitor the email box and respond when a new email is received. The Mail Watchdog reads the
email contents of email sent by Shopify.com that are in human language which has information
of item requested by me. Mail Parsing operates through a specific algorithm. It takes all
important information from the email received from Shopify email such as size, color, type,
quantity, design etc. and passes control to Mail Q&A (Figure 4). The useful information of this
email is parsed by Mail Parser (Figure 4) .

Whenever there is any missing information to finalize REST Invocation, Mail Q&A generates
that specific query for clients through e-commerce website. After this, client can answer that
query which will again pass to E2R system to complete REST Invocation and to confirm the
order. For instance, if I entered parameters like type for shirt does not found or matched in the
system then Mail Q&A will generate query for client asking about type for shirt (Figure 2).

Figure 2: Incomplete or wrong request

6

http://shopify.com/

Figure 3: Query from Shopify and reply of client

When confirmed type for shirt is received to E2R system, Mail Q&A can complete REST
Invocation and finalize the order. To implement REST Invocation, we chose a different
environment called Flask which is micro web framework written in Python.

Obviously, there could have multiple interactions between client and Q&A system which need to
be organized in specific way so that e-commerce site and shop owner can refer them as per their
requirement. Therefore, State storage is responsible to tag each conversation (Query and
Response) with reference number to track all interactions and store them i.e. with order number.
Consider, many asynchronous interaction between Mail Q&A and Clients may occur at similar
time. One person has received query for the right address and other received query for missed
parameter such as design (if ordering garments). State Storage will provide specific number to
sort them out, e.g. same order number could be utilized.

It is important to note that all E2R model is inspired from client-server model. The principle
behind the client-server constraints is the separation of several concerns. Separating the user
interface concerns from the data storage concerns improves the portability of the user interface
across multiple platforms.

It also improves scalability by simplifying the server components as we can increase the capacity
of clients and servers separately (by adding new nodes to the network). Perhaps most significant
to the Web, is that the separation allows the components to evolve independently, thus
supporting the Internet-scale requirement of multiple organizational domains. For example,
client-server model allows the server and client to be implemented in different programming
languages. Design of a client-server application enables that application to be fault-tolerant.

In a fault-tolerant system, failures may occur without causing a shutdown of the entire
application. In a fault-tolerant client-server application, one or more servers may fail without

7

https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Python_(programming_language)

stopping the whole system as long as the services offered on the failed servers are available on
servers that are still active. Another advantage of modularity is that a client/server application
can respond automatically to increasing or decreasing system loads by adding or shutting down
one or more services or servers.

2. Architecture of E2R system
To understand the working structural components, we should know the insights of the
architecture of the proposed E2R system (Figure 4).

Figure 4: Architecture of E2R System

E2R system is implemented separately from e-commerce server. The E2R architecture has
several structural components. Every component has their predefined work which are described
below in brief;

1. Mail Watchdog: A simple system to monitor an email box and respond when a new
email is received. Depending on the contents of the email, the Watchdog invokes an appropriate
Mail Parser. It comes under getEmail.py (Figure 4).

2. Mail Parser: A program to read a specific email, parse the contents for the most relevant
information and passes control to the REST Invoker. It also comes under getEmail.py.

8

3. Mail Q&A (Question and Answer) system: If the Mail Parser is unclear or has questions
about the specific REST invocation (i.e., the email is not as well-formed as required), the Q&A
system can respond with an email with the proposed REST invocation, ask questions to clarify
any unclear portions, and then finalize the REST invocation. Here, Mail Q&A comes under
get_Q&A_Storage.py (Figure 4).

In this E2R system, I had implemented three cases for Mail Q&A (for non-well-formed
requests), which is as follows;

i. If item’s details is missing or out of range then Mail Q&A will express the problem to
finalize the order and it will ask client to send information

ii. If Information is unclear/missing then Mail Q&A will ask for specific missing
Information from client directly.

iii. If Information is correct and item is available then Mail Q&A will pars the Information
and store it permanently in the storage system. Further, Mail Q&A would finalize the
REST Invocation.

3. State Storage: Simple storage system to remember the relationship between requests and

responses, since there may be multiple interactions (e.g., Mail Q&A system). State
Storage System will also store the client information such as Name, Address, delivery
address, email ID and phone number etc. Each client would have an assigned unique
order ID. It also comes under get_Q&A_Storage.py.

4. REST Invoker: Once the REST invocation is complete, the Invoker actually makes the

REST calls, waits/monitors the response, and sends the response email. REST Invoker is
implemented separately under getREST.py (Figure 4).

9

3. Main Working components
There are several working components of E2R system (Figure 5). Yellow color block denotes
Client or Shopify (e-commerce site) platform, purple blocks are for E2R system and orange
blocks show feedback blocks. Also, green comments are positive comments, red comments and
black comments are neutral comments.

However, in this Capstone project, I worked mainly working on Mail Q&A and State Storage
system, which are giving more advance feature to E2R system to operate automatically without
interventions. The implementation of this E2R system will require the development of a
client-server system that incorporates the Simple Mail Transfer Protocol (SMTP), parsing
algorithm.

The Mail Parser will extract the email and translate human language to useful data (text). Mail
Q&A will generate specific query to client in text format to finalize REST Invocation. Client will
reply to E2R with solicited information which will follow the same path like through Mail
Watchdog then Mail Parser (text to JSON). State Storage will maintain reference number to track
all the asynchronous conversation between Mail Q&A and client.

An invoker will use these data to format and make a REST call to a server which will actually
respond to client’s requests. After processing requests, the third-party server responds to the E2R
System in computer language. At this time, the E2R system will do translation again (JSON to
MIME) and send confirmation back to clients via email in natural language.

Technically, the E2R system comes under RESTful Web Architecture. The main programming
Language of the E2R system is Python 3. Based on SMTP the E2R system sends and retrieves
emails. During this process, DNS and mail header helps to choose right functions to parse
emails. Query and Response session is maintained between for Mail Q&A. This interaction is
tracked using reference counter in storage system. When reacting with third-party servers,
requests, response and session establishment are based on HTTP and REST.

10

Figure 5: Working components of E2R system

11

4. Implementation
We have seen that E2R system has several components and these components are necessary for
implementation of a fully functional E2R system. However, many different implementations for
E2R system is possible depending upon the uses such as with or without of State storage,
Security and Mail Q&A along with Watchdog, Mail Parser and REST Invoker. During the
implementation of my main working components, it is better to have understanding of each
component of the E2R system separately as per execution point of view.

a. Implementation Overview

To execute this project, I worked on tools such as Python3 and made a github student account for
coding purposes. Python is an interpreted high-level programming language for general-purpose
programming. Python has a design philosophy that emphasizes code readability, and
a syntax that allows programmers to express concepts in fewer lines of code, notably
using significant whitespace. It provides constructs that enable clear programming on both small
and large scales.

Python features a dynamic type system and automatic memory management. It supports
multiple programming paradigms, including object oriented, imperative, functional and
procedural, and has a large and comprehensive standard library.

GitHub is mostly used for computer code. It offers all of the distributed version
control and source code management (SCM) functionality of Git as well as adding its own
features. It provides access control and several collaboration features such as bug
tracking, feature requests, task management, and wikis for every project.

GitHub offers plans for both private repositories and free accounts which are commonly used to
host open-source software projects.

During initial execution of the E2R system, first major challenge was to implement basic back
bone of operational E2R system which comprises Mail Watchdog, Mail Parser and REST Invoke
system.

All idea for implementation was to make a client server model using E2R server and Eureka
Shop server. To implement REST Invocation, we chose a different environment called Flask.

Flask is a micro web framework written in Python and based on the Werkzeug toolkit
and Jinja2 template engine. It is BSD licensed. Flask is called a micro framework because it does
not require particular tools or libraries. It has no database abstraction layer, form validation, or
any other components where pre-existing third-party libraries provide common functions.
However, Flask supports extensions that can add application features as if they were

12

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/Significant_whitespace
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Distributed_version_control
https://en.wikipedia.org/wiki/Distributed_version_control
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Software_feature
https://en.wikipedia.org/wiki/Task_management
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Jinja_(template_engine)
https://en.wikipedia.org/wiki/BSD_licenses

implemented in Flask itself. Extensions exist for object-relational mappers, form validation,
upload handling, various open authentication technologies and several common framework
related tools. Extensions are updated far more regularly than the core Flask program.

Whenever E2R server (acting like a client) gets order from client, he just invokes an action
called REST to place the order to REST Server (Shop from getting order) with final notification
of order placement. Representational State Transfer (REST) or RESTful, allows the requesting
systems to access and manipulate textual representations of resources by using a uniform and
predefined services of stateless operations. In RESTful web service, requests made to a resources
will elicit a response that may be in XML, HTML, JSON or some other format. The operations
can be done with GET, PUT, POST & DELETE.

The REST architecture was originally designed to fit the HTTP protocol that the world wide
web uses. The HTTP request methods are typically designed to affect a given resource in the
standard ways.

GET- Obtains information about a resource

POST-Create a new resource

PUT-Update a resource

DELETE-Delete a resource

Flask server script (get_Q&A_Storage.py and getREST.py) has two methods Get and Post. Get
is to serve the request for get information and post to post the information on the REST server.

b. Working of each components with results

Working of each component of E2R system is unique and interdependent. We have already
discussed about the each component in Figure 1. “Simple architecture of E2R system”. Please
see section 2 Architecture of E2R system. Taking about the code of the email Watchdog three
things are important to mention. First of all, we need a mail server, a username and password. In
this project, since we are using to login with Gmail, our mail server would be either
imap.gmail.com or smtp.gmail.com., if one is trying to read the incoming mail server would be
imap.gmail.com with port number 993 and if we are trying to send mail then outgoing mail
server would be smtp.gmail.com having port number 587. I have created a Shopify ID on Gmail
i.e. Shopify.server@gmail.com and a client ID as sachin.kaushik2020@gmail.com.

13

mailto:shopify.server@gmail.com
mailto:sachin.kaushik2020@gmail.com

Figure 6: Login to Shopify Server (getEmail.py)

In Figure 6: Login to Shopify Server, we have defined our required variables for reading email
from Gmail server. I have defined the username and password as From and Pass (line 11 and 12)
using which E2R watchdog shall be reading email from established connection and the IMAP
server address and port number (line 14). If credentials are correct, login will be successful
otherwise there would be a message that “Login is failed” (line 20).

Now we are into the Gmail server. We select inbox. If everything is ok, “Processing mailbox…”
(Figure 7) message will print.

Figure 7: Output of login into Shopify server (getEmail.py)

Further, our motive to read mails from the Shopify server therefore we start to read the mails
from the inbox. Here, we shall search inbox for all mail with search function. We use the built in
keyword “ALL” to get all results (documented in RFC3501) (Figure 8: Select Inbox, line 30).
We are now going to extract the data we need from the response, then fetch the mail via the ID
we just received. It is important to note that imap search function returns a sequential id,
meaning id 5 is the 5th email in your inbox.

Here, it indicates that if a E2R server accidentally, deletes emails above email 10 are now
pointing to the wrong email. Obviously, this is unacceptable. To resolve this issue, we can ask
the imap server to return UID instead. Therefore we use the UID function, and pass in the string
of the command in as first argument. The rest behaves exactly the same.

14

Figure 8: Select Inbox (getEmail.py)

Next step is to parsing the raw emails from the E2R server. As we all know the emails in general
pretty much look like gibberish and it is a daunting task to extract the meaningful data or
message from an email. But, Python has library called email. It can convert raw emails into the
familiar email message object. As indicated in the Figure 9: Reading emails from inbox, Fetch is
special command function that include the entire email body, or any combination of results such
as email flags or Gmail specific IDs such as thread ids (line 39).

We used UTF-8 (Unicode) decoding method to decode emails (line 41). UTF-8 is an encoding
schema, like ASCII which is represented with bytes. The difference is that the UTF-8 encoding
can be represented every Unicode character, while the ASCII encoding can not. But they are
both still bytes. By contrast, an object of type<Unicode> is just that-a Unicode object. After that,
we parsed the emails into the relatively useful contents such as details email from, to, subject and
body.

15

Figure 9: Reading emails from Inbox (getEmail.py)

From Figure 10, for loop is defined to check if body is again a byte for all emails in the inbox. If
body is not byte than further (line 69), if part checks content types. It will ignore attachments and
html. If it is plain text, content of email will be saved into the file using UTF-8 decode format
(line 75).

Figure 10: Storing emails into file (getEmail.py)

Afterwards, file is opened and we print the contents of saved emails as shown in the Figure 11.

Figure 11: Email output at getEmail.py

Content of email is sent to Flask get Q&A and Storage server Figure 12. Here, we used post
request with HTTP connection over 127.0.0.1 and port 2000 (line 93).

16

Figure 12: Posting order to Q&A and Storage Server

During the implementation of the Q&A portion of E2R, we created three most possible scenarios
as discussed in the Section 2: Architecture of E2R System. In the very first step, we created lists
which will be used as database Figure 13.

Figure 13: List as database (get_Q&A_Storage.py)

Being Flask server, getEmail.py has sent the parsed contents to Q&A and Storage. This server is
running on 127.0.0.1 and port 2000. All contents are first converted to JSON to string then string
to lists. Further, strip function is additionally used to rectify the possibility of unintended ‘\n’
into the result (Figure 14 line 51,52,53,54 & 55). Split function will now convert string into lists
(line 57, 59, 61, 63 & 65).

Figure 14: Converting to lists (get_Q&A_Storage.py)

Case 1: During first case, all the list contents will be tried to print. In case of any error, when
strings are empty command takes to our first case of Q&A. In that case, some clarification is
received.

17

Figure 15: Case 1: Q&A (get_Q&A_Storage.py)

During the same step, we are also updating database in form of list. If there is any extra or less
information is provided by the client then error will be handled and a query will be placed to
client. Please see code in Figure 15 and Figure 16.

Figure 16: Case 1: Exception handling (get_Q&A_Storage.py)

During error handling, if there is any missing or out of range detail found then a message will be
printed as shown in Figure 17 and Figure 18. Output on get_Q&A_Storage.py idle is shown in
Figure 17 and getEmail.py in Figure 18. The response email for customer is indicated in Figure
19.

18

Figure 17: Case 1- get_Q&A_Storage.py output

Figure 18: Case 1-getEmail.py output

Figure 19: Case 1-Email of customer

In Figure 16, an email is created by passing client email, message (requesting about details) with
similar subject. Here, we used SMTP server to send email of Gmail (line 744). We logged into
the SMTP server of Google with smtp.gmail.com with port number 587. Message format is into
MIME multipart. (line 739). Email parts are taken from the parsed information such as email
from, email to and email subject. Message is created as “Query has been placed successfully to
the current client”. There will be also message posted into shell “Query has been placed
successfully to the current client” (Figure 19).

Case 2: If some details are correct, Q&A will check deep into information and find out the
specific details to be asked for. Each detail will be checked from the database list and if anything
found unsatisfactory an email will be sent asking about specific detail. Please see Figure 20 and
Figure 21 portion of code for creating this case. Partial information is stored into list using
append function. For example see line 791.

19

Figure 20: Case 2-Checking about specific details (get_Q&A_Storage.py)

Figure 21: Case 2-Checking about specific details (get_Q&A_Storage.py)

In Figure 22, it is pertinent to note that further if statement is implemented to set the values of
variables such as a1,b1 etc. Once required string is passed e.g. if parameter is fine it will be
‘OK’ otherwise 'Quantity is missing or out of range. Right Quantity is needed for order' will be
passed (line 892,893,894, 895 etc). Once all the required information see passed into variables
then one combined string is made (line 907). Further, this string passed a message during asking
about the clarifications from the client (line 918).

20

Figure 22: Case 2: Asking about Specific details (get_Q&A_Storage.py)

Before sending queries all the information is stored into the list as a running memory and we will
wait clarification from client (Figure 23).

Figure 23: Case 2: Order details stored (get_Q&A_Storage.py)

Output on get_Q&A_Storage.py idle is shown in Figure 24 and getEmail.py in Figure 25. The
response email for customer is indicated in Figure 26.

Figure 24: Case 2- get_Q&A_Storage.py output

21

Figure 25: Case 2-getEmail.py output

Figure 26: Case 2-Customer’s received query

Sending reply: Client now replying with specific information that has been requested. In current
case client provide item and size of item (Figure 27).

Figure 27: Client’s reply

This information is again parsed from getEmail.py and sent to get_Q&A_Storage.py.
Information is checked and generated error which is handled by exception handling statement
(Figure 28).

Typically, information has to be checked for every possible category therefore we have created
nested try and except loop to check field of every category (Figure 29, 30, 31, 32, 33,34). When,
we found the desired information that is added into the stored information. Once all the required
parameters are received, Q&A and Storage invokes the REST to finalize the order (Figure 35).

22

Figure 28: Checking specific detail from reply (get_Q&A_Storage.py)

Figure 29: Checking specific detail from reply (get_Q&A_Storage.py)

Figure 30: Checking specific detail from client’s reply (get_Q&A_Storage.py)

23

Figure 31: Checking specific detail from client’s reply (get_Q&A_Storage.py)

Figure 32: Checking specific detail from client’s reply (get_Q&A_Storage.py)

Figure 33: Checking specific detail from client’s reply (get_Q&A_Storage.py)

Figure 34: Checking specific detail from client’s reply (get_Q&A_Storage.py)

24

Case 3: If every details are correct and matched with the list created into the Q&A, else
statement will indicate the message that every details is correct and confirmed client details of
order will be shown once again as shown in the Figure 35.

Figure 35: If every detail is correct. Place order. (get_Q&A_Storage.py)

At getEmail.py final details will be posted to REST server Figure 36. Server is connected
through HTTP connection via IP 127.0.0.1 and port 5000. Content is sent in JSON format (line
99).

Figure 36: Final REST Invocation (getEmail.py)

Output on get_Q&A_Storage.py idle is shown in Figure 37 and getEmail.py idle in Figure 38.

Figure 37: Case 3- get Q&A_Storage.py output

25

Figure 38: Case 3-getEmail.py output

In the last part of Q&A, if there is occurrence of any Index error there must be some problem
with data client has entered. Therefore, E2R server will have to place query asking for correct
details as shown in the Figure 39. Similarly, this part has to place query by sending emails to
current client as we used above part of Q&A.

Figure 39: For any type of error (get_Q&A_Storage.py)

Now, we will establish an HTTP connection with the Eureka shop server Figure 40. Here, we are
using just post function of RESTful services. Connection of the Eureka shop server are
maintained as a local host server which runs on 127.0.0.2 IP address and 5000 port.

Figure 40: Running REST server (getREST.py)

A separate script of REST call to accept the order will be running which just accept the order
details and paste into their result as shown in the Figure 41 and Figure 42. In the REST, we are
operating through GET and POST methods. We defined if and else statement to check format of
received data from getEmail.py. If data is received then confirmed ordered content will be posted
(line 11) otherwise no order will be printed (line 13).

Figure 41: REST Server code (getREST.py)

26

Figure 42: Final Order confirmation (getREST.py)

27

4. How this capstone project is unique

I declare that I have not used any portion of code from Wenting any other student who worked
on the other E2R system. I have cited all the URL reference, I used in my code at Appendix A.
Further, I have acknowledged the used online resources in all .py files in form of comments.
(getEmail.py, get_Q&A_Storage.py and getREST.py)

28

5. Conclusion
RESTful services using API are very popular on web based application now-a-days. E2R model
is one of the best suitable server model can be opt to design an online order system. We support
for E2R model for several reasons. First, it is easy to implement by using well-formed emails
from client. It can handle various types of requests depending on the type of service we want to
provide for example whether it is Q&A service, state storage service.

We have learned several things from this project. First is the use of RESTful API service and its
uses. RESTful services are one of the key of this project. After that, we can say parsing is also
very important phenomenon to extract desired data from any raw supply of information. We
learned how to extract the useful data.

Designing a desired algorithm is way to tackle parsing problems. In last but not least, state
storage, this is one of the main components of the implemented E2R system because as we
discussed all the information have to be stored and processed by E2R which was a challenging
part in itself. However, we took simplest way to implement state storage. We formed an REST
server to invoke decisions and create data into lists. This is one of the ways to implement. We
can also implement it using Python SQL libraries. But this will make things more complex so we
tried to make it simple.

29

Appendix:B- REFERENCES

[1] https://mailparser.io/i/email-to-rest-api-webhook
[2] https://www.juliedesk.com
[3] https://docparser.com/
[4] http://shop.oreilly.com/product/0636920021575.do
[5] https://en.wikipedia.org/wiki/Representational_state_transfer
[6] http://www.oracle.com/technetwork/articles/java/json-1973242.html
[7] https://docs.python.org/2/library/httplib.html
[8] https://stackoverflow.com/questions/12806386/standard-json-api-response-format
[9] https://www.copterlabs.com/json-what-it-is-how-it-works-how-to-use-it/
[10] https://stackoverflow.com/questions/17301938/making-a-request-to-a-restful-api-using-python
[11] https://en.wikipedia.org/wiki/Python_(programming_language)
[12] https://en.wikipedia.org/wiki/Flask_(web_framework)
[13] https://en.wikipedia.org/wiki/GitHub
[14] https://en.wikipedia.org/wiki/GitHub
[15] https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
[16] https://auth0.com/blog/developing-restful-apis-with-python-and-flask/
[17]
http://www.vineetdhanawat.com/blog/2012/06/how-to-extract-email-gmail-contents-as-text-using-imaplib
-via-imap-in-python-3/
[18] https://gist.github.com/robulouski/7441883
[19] https://pythonprogramminglanguage.com/read-gmail-using-python/
[20] https://stackoverflow.com/questions/12453580/concatenate-item-in-list-to-strings
[21] https://www.youtube.com/watch?v=efpFDaXOG6Y&t=466s
[22]https://www.youtube.com/watch?v=CjYKrbq8BCw&t=21s&list=PLiaVlvtF4yDucFTMgrGRHWhA
kL9QLG1vd&index=14
[23]
https://codereview.stackexchange.com/questions/44168/streamlined-for-loop-for-comparing-two-lists
[24] https://www.tutorialspoint.com/python/list_append.html
[25] https://docs.python.org/2/library/email-examples.html
[26]
https://stackoverflow.com/questions/13628791/how-do-i-check-whether-an-int-is-between-the-two-numb
ers
[27] https://docs.python.org/2/library/email-examples.html
[28] https://www.tutorialspoint.com/restful/index.htm
[29]https://en.wikipedia.org/wiki/Client%E2%80%93server_model
[30https://docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/intbas3.htm

30

https://mailparser.io/i/email-to-rest-api-webhook
https://www.juliedesk.com/
https://docparser.com/
http://shop.oreilly.com/product/0636920021575.do
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.oracle.com/technetwork/articles/java/json-1973242.html
https://docs.python.org/2/library/httplib.html
https://stackoverflow.com/questions/12806386/standard-json-api-response-format
https://www.copterlabs.com/json-what-it-is-how-it-works-how-to-use-it/
https://stackoverflow.com/questions/17301938/making-a-request-to-a-restful-api-using-python
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://www.vineetdhanawat.com/blog/2012/06/how-to-extract-email-gmail-contents-as-text-using-imaplib-via-imap-in-python-3/
http://www.vineetdhanawat.com/blog/2012/06/how-to-extract-email-gmail-contents-as-text-using-imaplib-via-imap-in-python-3/
https://gist.github.com/robulouski/7441883
https://pythonprogramminglanguage.com/read-gmail-using-python/
https://stackoverflow.com/questions/12453580/concatenate-item-in-list-to-strings
https://www.youtube.com/watch?v=efpFDaXOG6Y&t=466s
https://www.youtube.com/watch?v=CjYKrbq8BCw&t=21s&list=PLiaVlvtF4yDucFTMgrGRHWhAkL9QLG1vd&index=14
https://www.youtube.com/watch?v=CjYKrbq8BCw&t=21s&list=PLiaVlvtF4yDucFTMgrGRHWhAkL9QLG1vd&index=14
https://codereview.stackexchange.com/questions/44168/streamlined-for-loop-for-comparing-two-lists
https://www.tutorialspoint.com/python/list_append.html
https://docs.python.org/2/library/email-examples.html
https://stackoverflow.com/questions/13628791/how-do-i-check-whether-an-int-is-between-the-two-numbers
https://stackoverflow.com/questions/13628791/how-do-i-check-whether-an-int-is-between-the-two-numbers
https://docs.python.org/2/library/email-examples.html
https://www.tutorialspoint.com/restful/index.htm
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

31

