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A bstract

The degree of long-range dependence is measured by the Hurst param eter. In 

this thesis, we dem onstrate the drawbacks of several commonly used estimators 

of the Hurst param eter in the presence of non-stationarities, and discuss how 

some recently developed tools can be used for working around some of these 

drawbacks.

Next, we present a technique for generating traffic traces from a given trace. 

This technique is based on the use of the stationary bootstrap  algorithm in 

the wavelet domain. We dem onstrate the superiority of our technique over 

existing algorithms

Finally, we propose a  m ethod for detecting a change in the Hurst param eter 

of a d a ta  set. This is based on detecting a change in the variance of the wavelet 

coefficients of the given da ta  set. If a change in the variance of the wavelet 

coefficients is detected on more than  one level, then  a change in the Hurst 

value is signalled.
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Chapter 1 

Introduction

M easurement based studies in the 1990’s have revealed th a t traffic behavior 
in IP  networks is self-similar and th a t aggregate traffic displays long-range 
dependence (LRD). This LRD behavior has been shown to be present in Lo­
cal Area Network (LAN) traffic [49], Wide Area Network (WAN) traffic [63], 
World W ide Web (W W W ) traffic [15] and Variable Bit Rate (VBR) Video 
traffic [9]. Recently, it has been dem onstrated th a t traffic in a broadband 
network w ith a high percentage of peer-to-peer traffic is also self-similar [25]. 
Thus, it has been shown quite conclusively, th a t presence of LRD in network 
traffic is ubiquitous.

The presence of LRD in a  time series indicates th a t the autocorrelation 
function decays hyperbolically. Consequently, while long-term correlations are 
individually small, their cumulative effect is non-negligible. This behavior is 
quite different from th a t observed in traditional short range dependent (SRD) 
models like the Markovian models in which the autocorrelation function has 
an exponential decay. Due to  the distinct differences between LRD and SRD 
models, their implications on performance estim ation may be significantly dif­
ferent. The presence of LRD in network traffic and its differences from SRD 
have prom pted many researchers to  focus on the impact of LRD traffic on 
network behavior. Simulation-based studies for evaluating the effects on a 
network system have dem onstrated th a t LRD can affect network performance 
levels in term s of the network link bandwidth and buffer responses [19, 24]. In 
[5, 61], it was dem onstrated th a t LRD has a profound effect on queue length 
and packet loss. In contrast to  the negative impacts of the existence of LRD, 
there are also some positive aspects. For example, in [91], the authors demon­
strated  th a t LRD traffic can be forecasted quite accurately. This predictable 
nature of LRD traffic has been used to  propose congestion control algorithms 
in [33] and [96].

The results above are obtained using simulation based studies. Simula­
tions are also used extensively in the planning process of telecommunication 
networks. In order to  obtain valid conclusions from the simulations it is nec­
essary to  use accurate traffic models. There are a number of traffic models 
proposed in the  literature th a t capture the LRD behavior of aggregate net-

1
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work traffic. The Fractional Gaussian Noise (FGN) and Fractionally Inte­
grated Autoregressive Moving Average (FARIMA) models are currently the 
most popular models. However, most of the proposed traffic models are ta r­
geted towards generating Gaussian traffic, but it has been established tha t 
aggregate traffic does not always follow a Gaussian distribution [43, 53], and it 
is im portant to  account for the Probability D istribution Function (PDF) of the 
traffic [29, 69, 32]. There have been some models proposed like alpha-stable 
models [26, 42, 30] or M ultifractal models [70] th a t are capable of generating 
LRD traffic w ith the desired PDF. However, most of the techniques are para­
metric and involve a complicated param eter fitting step. Thus, it is necessary 
to  develop a  technique th a t is autom ated w ithout the need for any complex 
param eter fitting procedure.

All the models proposed for capturing LRD have a corresponding long- 
range dependence param eter called the Hurst param eter, which measures the 
degree of LRD. There are a  number of m ethods proposed for estim ating this 
param eter, like the R /S  estim ator [49, 83], the aggregated variance [49, 83], the 
variance of residuals [49, 83], the absolute moments [49, 83], the periodogram 
m ethod [49, 83], the W hittle’s estim ator [83], the detrended fluctuation anal­
ysis [64] and the wavelet m ethod [4, 86].

A number of algorithms have been proposed in the literature th a t make 
use of the estim ates of the Hurst param eter. For example, in [46], the authors 
have proposed a  congestion control mechanism called as Measurement Based 
Congestion Control (MBCC) by monitoring the traffic in real tim e and reacting 
to any changes in the characteristics seen. As previously discussed, one of the 
im portant characteristics of LRD traffic is the Hurst param eter. In [57] a rate 
based control algorithm  has been proposed th a t uses the real tim e estim ate 
of the Hurst param eter. In [58], the authors propose the use of the Hurst 
param eter for computing the bandwidth requirements of the traffic flow by 
applying the Norros formula [56] and then use this computed bandw idth for 
the Random Early Detection (RED) algorithm. In [98], the authors have 
proposed a m ethod for estim ating the effective bandw idth for LRD traffic, 
which is used to  bound the overflow probability. In [99], the authors propose 
making a real-time estim ate of the autocorrelation structure of the network 
traffic for designing network control schemes. They dem onstrate th a t the 
precision for the above estim ate is linked to the sample length used, which in 
tu rn  is related to  the Hurst param eter. In [77], the authors have proposed 
an admission control algorithm based on prediction of the traffic by fitting a 
FARIMA model to  traffic a t real time.

The estim ates of the Hurst param eter required by these algorithms can 
be obtained by using any of the previously mentioned estimators. However, 
all these estim ators are based on the assumption of stationarity  of the Hurst 
param eter. B ut real traffic changes its behavior w ith time; for example, it is 
well known th a t there are diurnal variations in the traffic load and preliminary 
investigations in [49] suggest th a t there is a correlation between the network 
load and the Hurst param eter. Thus the Hurst param eter is expected to  vary

2
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over time. In [74], the authors speculate th a t the Hurst param eter depends 
on the type of applications dominating the traffic, which also changes with 
time, and thus the Hurst param eter again varies. In [52], the authors use a 
recurrence plot scheme to dem onstrate th a t the self-similarity seen in measured 
traffic fluctuates w ith time. In [59], the authors have shown th a t the LRD 
changes w ith tim e and also varies with tim e of day.

Even though the above studies are not able to  unambiguously establish 
the relationship of the Hurst param eter w ith the underlying traffic, they prove 
beyond doubt th a t the Hurst param eter changes w ith time.

Given the num ber of algorithms th a t have been proposed to  make use of the 
Hurst estim ate and the dem onstrated non-stationarity of the Hurst param eter, 
it is necessary to  develop techniques th a t are able to  detect changes in the 
Hurst param eter. Once the change point is detected, the Hurst estim ate can 
then be obtained by any of the commonly used techniques.

1.1 C ontribution and Outline
The body of this thesis is composed of four chapters. Chapter 2 covers the 
background required for the rest of the thesis. We discuss self-similarity and 
long-range dependence. We then cover the background of Wavelet transforms 
and their use in the analysis of LRD traffic (Section 2.3). In Chapter 3, we 
discuss in detail the various estimators th a t are most commonly used for esti­
m ating the Hurst param eter, along with a dem onstration of some drawbacks 
of these estim ators. We also propose the use of some recently developed tools 
for working around these drawbacks. In Chapter 4, we propose a novel tech­
nique for generating traffic traces which captures the LRD and PD F of traffic. 
This modeling technique uses the power of bootstrapping coupled with the 
efficiency of wavelet transforms. The proposed algorithm has been demon­
strated  to  significantly outperform  existing algorithms in capturing various 
characteristics of real traffic traces. In Chapter 5, we propose an algorithm for 
detecting changes in the Hurst param eter. This algorithm is then  compared 
with another algorithm  recently proposed for change detection. Our algorithm 
is shown to  be significantly better in terms of the false positive ra te  and is also 
more accurate in detecting the change point. Finally, in Chapter 6 , we present 
our conclusions and further research directions.

3
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Chapter 2 

Background

2.1 Self-sim ilarity and Long-Range D ependence

2.1 .1  W h at is Self-sim ilarity?

An object is said to  be self-similar if it is similar to  a part of itself; i.e parts of 
the whole can be made to fit to  the whole by scaling. Self-similarity, or scale 
invariance is an a ttribu te  of many laws of nature and is the underlying concept 
of fractals. The concept of self-similarity is related to  the occurrence of similar 
patterns a t different tim e scales. Some examples of self-similar objects are the 
Koch snowflake, Mandelbrot set and the Julia set.

2.1 .2  D efin ition s and P rop erties o f  Self-sim ilar P rocesses

The standard  definition for self-similarity states th a t a  process X t is self-similar 
if

X { a t ) =  aHX( t ) ,  a > 0,

where the equality is in the sense of finite-dimensional distributions, a is a 
scaling factor, and the self-similarity param eter H  is called the Hurst exponent.

A process X (t) is called second-order self-similar with param eter H  =
1 -  (3/2, 0 <  (3 < 1, if

r{k) = \ [{k  +  I )2” '3 -  2k2~P + ( k -  l ) 2- %  k €  (1,2,...), (2.1)

where r(k) is the autocorrelation function of X (t). Second order self similarity 
describes the property th a t an aggregated series will have the same correlation 
structure (ACF) as the original series. Simply put, a second order self similar 
tim e series ACF is the same for either coarse or fine tim e scales. In cases tha t 
we study, we deal only w ith second order self similarity. Second-order self­
similarity manifests itself in a number of ways such as long-range dependence 
and slowly decaying variances.

4
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2.1.2.1 Long-Range D ependence (LRD)

A stationary process is long-range dependent if its autocovariance function 
decays to  zero so slowly th a t its sum doesn’t  converge, i.e. It W I =  00>
where 7 (k) is the autocovariance at lag k. In other words, the autocovariance 
function has a slow, power-law like decrease a t large lags which can be given 
as:

7 (k) ~  c7 |A:|_ 2̂_2H\  k  —> 00 , (2-2)

where c7 is a positive constant, 0 <  H  < 1.
Equivalently in the frequency domain, it can also be defined as the power- 

law divergence of its spectrum  i j i y ) )  a t the origin,

/ ( v) ~  c /|i/ |1-2flr, \v\ -+ 0, (2.3)

where Cf =  7t~1c1T(2H  -  l).sm (7r -  irH), and T is the Gamma function. Thus 
in term s of frequency domain analysis, long-range dependence implies / ( 0) =  
Sfc p(ty — 00> or in  other words the series has a spectral density which tends 
to  00 as the frequency u approaches 0 .

Intuitively, memory is built into the process because the dependence among 
an L R D  process’s widely separated values is significant, even across large time 
shifts. It has been shown th a t H  > 0.5 characterizes a  series with long range 
dependence, H  < 0.5 indicates a series with anti-persistence, while H  — 0.5 
characterizes a  series with short range dependence [49]. For our work, we will 
be concentrating on the LRD property of second-order self-similar processes.

2.1.2.2 Slow ly D ecaying Variances

Asymptotically second-order self-similar processes have the property of slowly 
decaying variances, since lim (r(k)/k~P)  =  c. This property states th a t the

k —»oc
variance of the sample mean decreases slower than  the reciprocal of the sample 
size m  and so

uarpfTO ] ^  cm "^ as m  —> 00 for 0 <  /3 < 1. (2-4)

2.2 M odeling Techniques for LRD
In this section, we discuss various techniques th a t have been proposed for 
generating self-similar traffic. Such techniques can be broadly classified into 
two categories; viz. User-oriented models and Black-box models, as described 
below.

2.2 .1  U ser-orien ted  M odels
In this modeling technique, the behavior of each user is explicitly modeled. 
This modeling technique is also referred as source level modeling. The different 
user-oriented models commonly used in the literature are discussed below.

5
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2.2.1.1 O n /O ff M odels

In this technique, traffic is generated by the superposition of a large num ber of 
independent ON/ OFF sources. Each source transm its d a ta  a t a  constant rate 
if it is ON and remains silent during the OFF phase. The O N /O FF  periods 
are independent and alternate. The lengths of the ON periods are identically 
distributed as are the lengths of the OFF periods. This m otivation for this 
technique are the findings in [44, 53, 82, 93, 94], which show th a t the aggregate 
flows of many O N /O FF  sources with strictly alternating ON and OFF periods, 
and whose ON and O FF periods exhibit the Noah effect (high variability or 
infinite variance) can produce aggregate network traffic th a t exhibits long- 
range dependence. The observation in [94] th a t LAN traffic is consistent with 
an O N /O FF  modeling assum ption for individual source-destination pairs lends 
further credibility to  this modeling approach. The lengths of the ON and OFF 
periods have been shown to have finite means and infinite variances. These 
periods have also been shown to  be heavy tailed and Pareto-like with a tail 
param eter between 1 and 2 .

The biggest advantage of this modeling approach is th a t it is physically 
meaningful and also offers parsimonious modeling (only one param eter a  is 
used to  describe the model). Another benefit of this approach is th a t since the 
modeling is a t the individual source level, it is possible to  use m ultiple pro­
cessors for generating the traffic according to  the O N /O FF model, w ith each 
processor generating the traffic for individual sources with some param eter a  
and then adding the outputs of all the processors to  get the aggregate traffic. 
This leads to  a very fast m ethod for generating long traffic traces.

However, the drawback to  this approach is th a t the number of sources 
needed for the aggregate traffic to  be statistically self-similar is not defined. 
In addition, the ra te  of transmission in the ON periods and the lower cut-off 
of the tim e scale a t which this technique can be applied are not defined.

2.2.1.2 Fractal Point Processes

Another technique of generating source-level traffic is by using Fractal Point 
Processes (FPPs). These were introduced for traffic modeling in [75], and 
they incorporate a param eterization m ethod for controlling the tim e scales 
over which fractal behavior occurs and thus offer a very attractive approach 
to  modeling packet traffic.

F P P s cover a broad range of stochastic processes which manifest self­
similarity and includes the O N /O FF processes discussed in Section 2.2.1.1 
[94]. In [76], the authors discuss 8 FPP s and establish the m athem atical re­
lationship for the param eters of each model with, what is referred to  as the 
Three Fundam ental Param eters (TFPs) quantifying the fractal properties of 
packet traffic, viz. average arrival rate, Hurst param eter and Fractal Onset 
Time Scale (FOTS). The different FPP s can be used for modeling different 
phenomena; for example, one of the models can be used for scenarios where
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session or flow arrivals follow a Poisson model and session or flow duration 
and /o r volume are heavy-tailed. Another model represents the case where the 
session arrivals have a  fractal nature irrespective of whether session/flow du­
ration/volum e is fractal or not. Thus, in a simulation environment, the right 
kind of model can be picked, depending on the process to  be modeled, and 
a combination of the different models can also be used. F P P s also provide 
parsimonious and flexible models for generating fractal traffic. Thus, FPPs 
seem to possess the required characteristics of a  good approach for modeling 
user-level traffic.

2 .2 .2  B lack -b ox  M odels

In these models, the aggregate traffic generated by users is modeled and no 
attem pt is m ade to  distinguish individual users w ithin the population. This 
modeling technique is also known as aggregate traffic modeling.

The most widely used family of models used for modeling the aggregate 
traffic are Gaussian processes with tim e-stationary increments. The validity of 
Gaussian processes is justified by the fact th a t aggregate traffic in the network 
is obtained by superimposing the contributions of many connections. Thus, by 
virtue of Central Limit theorem (CLT), it can be argued th a t the superposition 
resembles a Gaussian process. Two of the most commonly employed Gaus­
sian processes are Fractional Gaussian Noise (FGN) and Fractional Brownian 
Motion (FBM). However, as pointed out by the authors in [43], for CLT to 
be applicable, the individual traffic sources should be independent and th a t is 
not always the case. This is especially true when the individual sources are 
competing for a fixed capacity. Even if the traffic rate  is less than  the capacity 
of the network (thus assuming th a t the sources are not influenced, leading to 
independence), it has been pointed out in [43], th a t the use of Gaussian mod­
els is justified only if the aggregation (both in tim e and num ber of individual 
sources) is sufficiently large. In [53], it has been pointed out th a t some traffic 
measurements do not show an agreement w ith the Gaussian marginal distri­
bution assumption. The authors show th a t if connection rates are modest 
relative to  heavy tailed connection length distribution tails, then stable Levy 
m otion is a good approach to  modeling of aggregate traffic [53]. In the follow­
ing sections, different approaches leading to  either Gaussian or non-Gaussian 
aggregate traffic are described.

2.2.2.1 Fractional Brownian M otion and Fractional Gaussian N oise

FBM is a widely used self-similar process for the purpose of traffic modeling. It 
is a zero mean, non-stationary, Gaussian process, and is commonly represented 
as B h  = (B h ( s ) , s  > 0) and has Hurst param eter H, 0 <  H  < 1. The 
correlation function for FBM is given as:

corr(s, t ) =  - -̂(s2H +  t2H — |s — t\2H) (2.5)
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The increment process of FBM is stationary as well as self-similar and is called 
FGN. It is denoted by X h  =  (X n ( k ) =  B n ( k  +  1) — B n ( k ) , k  > 0). Its 
autocorrelation function is given as:

r(jfe) =  ifljfc +  l \2H -  2\k\2H +  |k -  1\2H), k >  0 (2 .6)
z

which can asymptotically be w ritten as

r(k) ~  H ( 2 H  -  l ) \k\2H~2

In other words, X h is self-similar. There are a number of m ethods for gener­
ating either FBM or FGN for the purposes of traffic modeling. Some of the 
most common referred techniques are explained below.

1. Random  M idpoint Displacement (RMD) Algorithm
This m ethod proposed by Lau et. al. [47] is one of the original methods 
proposed for generating FBM with a known Hurst value. The process of 
RMD can be briefly explained as follows. Assume th a t the FBM process 
is to  be generated in the interval [0,T]. Denoting by X (t), the value 
computed at t ime instant t, the algorithm first sets X(0) =  0, and by 
sampling X(T) from a Gaussian distribution with mean 0 and variance 
T 2H. Then X (T /2) is computed as the average of X(0) and X(T) plus an 
offset D\.  Then, the 2 intervals from 0 to  T /2  and T /2  to  T  are further
subdivided, and so on. At each stage a different offset is added. The
whole process can be expressed in term s of equations as follows:

x(i/2) = i(x(0) + x(r)) + i>1

X ( l/4 )  =  i ( X ( 0 )  +  X -(l/2  )) + D 2

X (3 /4 ) =  i ( X ( l / 2  ) + X ( T ) )  + D 2

and so on. D n is m idpoint displacement th a t has a variance given by:

<4 =  ̂ 2M. ’ (2-7)

Dn = (Gn) K ) ,  where Gn is a Gaussian random  number with mean 0 
and variance s2. After computing the FBM process, the corresponding 
FGN is computed which indicates the number of packets arriving per 
tim e instant. Since, the number of arriving packets cannot be negative, 
the m ethod is truncated so th a t if the increment process has a negative 
value a t any tim e instant, it is set equal to 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Paxson’s Algorithm
In [62], a m ethod based on the Fast Fourier Transform (FFT) is proposed 
for generating paths corresponding to  FGN. This m ethod is based on the 
generation of a  FGN sequence having the same power spectrum  as the 
original series.

The spectrum  of an FGN process is given by:

/(A ; H)  =  A(X; H)  [| Al" 2* - 1 +  B (A; H)] (2 .8)

for 0 <  H  < 1 and —7r <  A <  n, where:

.4(A; H)  =  2sin(irH)'y(2H +  1)(1 — cosA)

OO

B{A; H )  =  +  A)“ 2H_1 +  -  A)“ 2H_1]
i =i

The steps followed in this m ethod are as follows:

(a) A signal is generated in the frequency domain th a t has a power 
spectrum  equivalent to  FGN.

(b) The signal is made random by assigning random  phases to  each of 
the samples.

(c) After randomization, the signal is then made symmetric (even mag­
nitude, odd phase).

(d) The inverse Fourier transform  of this signal yields a real signal.

The m ethod is shown to be very efficient and accurate in producing 
samples of FGN with the desired value of H. One of the findings in this 
paper is th a t the packet arrival processes in real traffic traces do not 
have a normal marginal distribution on tim e scales less than  10 seconds. 
A logarithmic transform ation is suggested to get approxim ate normal 
distributions, and then use FGN for modeling the log-transformed pro­
cesses. The paper also discusses two techniques (uniformly distributing 
the points in the interval or using the algorithm proposed in [47]) for 
converting the packet arrival process to  inter-arrival times for it to be 
useful in network simulations. In this paper, the authors point out tha t 
their model does not incorporate Short Range Dependence (SRD) th a t 
is seen in network traffic and caution about neglecting SRD, specially on 
small tim e scales (0.01 seconds). It also highlights the need to  develop 
models incorporating SRD.

3. Wavelet-based M ethod
In [37], the authors use Daubechies wavelets for the synthesis of frac­
tional Gaussian noise. The algorithm for the generation is quite similar 
to  the one proposed by Paxson (described above) and has been shown
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to  be a fast generator of self-similar traffic, with a reasonable level of 
accuracy for Hurst values up to 0.7. In [20], a wavelet-transform based 
m ethod is proposed for fast and accurate synthesis of sample paths cor­
responding to  a self-similar FBM processes with known Hurst param e­
ters. The wavelet basis used in this paper is the Haar basis, due to  its 
simplicity. The authors dem onstrate th a t the traffic generated by this 
technique is more accurate than  the RMD algorithm with respect to  the 
Hurst param eter. The drawback of this m ethod is the difficulty in the 
appropriate selection of the wavelet basis w ith the appropriate number 
of vanishing moments. The problem of choosing the right number of 
vanishing moments is exacerbated by the contradictory benefits from 
choosing wavelets with more vanishing moments (faster decay of the co­
efficients’ correlation) and th a t with fewer moments (shorter synthesis 
filters).

2.2.2.2 Fractional A utoregressive M oving A verage M odel (FARIM A)

As suggested in [62], network traffic modeling needs approaches which can cap­
ture both  SRD and LRD. The FARIMA family of models are able to model 
both  the SRD and LRD. In [16], the authors propose a FARIMA model for 
VBR M PEG video traffic a t frame level. The model is used to  generate arti­
ficial traces of traffic which have been tested using the variances test to  verify 
th a t they possess the required Hurst value. The autocorrelation function of 
the artificial traffic is also compared with th a t of the real traffic to verify the 
goodness-of-fit.

In [79], the authors propose a FFT  based approach for simulating a FARIMA 
tim e series for use in modeling the traffic of telecommunication networks.

The m arginal distribution of the FARIMA model can be controlled by using 
the appropriate innovations while generating the model.

2.2.2.3 A lpha-Stable Processes

Another technique for capturing the non-Gaussianity of network traffic is to 
use models based on alpha-stable distributions.

The characteristic function <j>(t) of the alpha-stable distribution has the 
form:

(f)(t) =  exp[itn — |ct|“ ( l — ij3sign(t)0(t, a))] (2.9)

where

6(t a ) - I  tao ^  if a  ^  1[ , ) ~ \ - l l n \ t \ if a  =  1

In the distribution, g  is called the shift param eter and gives the location of 
the peak of the distribution. (3 is a  measure of asymmetry and is called the 
skew param eter. This param eter must lie in the range [-1,1] and when it is 
zero, the distribution is symmetric about x  = fi. c is a scale factor which
is a  measure of the w idth of the distribution and a  is the exponent of the
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distribution. This param eter must lie in the range (0,2], For a  = 2, the 
distribution reduces to  a Gaussian distribution w ith variance a 2 =  2c2 and 
mean  = fa. Thus, the Gaussian distribution is a special case of the o-stable 
distribution. O ther values of a  provide different levels of burstiness to  m atch 
th a t of real data. A random  variable X which follows an a-stable distribution 
is denoted by X  ~

In [42], Karasaridis, et. al. proposed a  technique for using a-stable pro­
cesses to  model network traffic. Queueing simulations were used to  demon­
stra te  th a t their model gave more accurate results than  those produced by 
Gaussian models. Alpha-stable models have also been proposed to  be used for 
modeling heavy network traffic in [26, 30].

2.2 .3  M u ltifracta l M odels

The models discussed in Sections 2.2.1 and 2.2.2 are able to  capture the self­
similarity of the traffic. Self-similarity can be thought of as monofractal scal­
ing; being characterized by a single scaling law th a t holds globally in time 
and essentially involves only one param eter, the Hurst param eter. For large 
time-scales, self-similar models are able to  capture the burstiness of traffic. 
However, a t finer tim e scales; viz. below milliseconds, traffic possess a more 
complex structure.

Recently [71], m ultifractal scaling has been proposed as a more suitable 
technique for modeling network traffic by capturing both the small tim e scale 
as well as the large tim e scale scaling behavior. M ultifractal scaling is an ex­
tension of monofractal scaling obtained by considering properties higher than  
second order characteristics. M ultifractals allow for tim e-dependent scaling 
laws and hence offer greater flexibility in describing irregular phenomenon 
th a t are localized in tim e (caused by network specific mechanisms operating 
at small tim e scales).

M ultifractality in network traffic was first investigated by Riedi et. al. [71] 
by performing a  statistical analysis of the high frequency part of TCP-traffic. 
Using this approach they show th a t TC P traffic is not monofractal, bu t rather 
it is m ultifractal and hence models incorporating monofractality are correct 
only up to  second order statistics. The m ultifractal nature of network traffic 
has also been dem onstrated in [21]. In addition the m ultifractal approach offers 
a parsimonious model th a t provides a more complete and accurate description 
of actual d a ta  traffic over a wide range of tim e scales.

In [70], Riedi et. al. propose a wavelet based approach for the multiscale 
modeling of traffic. They use the Haar wavelet transform  for their purpose, and 
propose a scheme for fitting such models to  traffic data. To ensure positive 
values for the resultant data, the authors suggest a scaling of the wavelet 
coefficients.

In [21] Feldman et al. model the m ultifractal behavior of traffic by using 
cascades, which is a  multiplicative process th a t assigns mass to  successively 
smaller tim e intervals according to  some distribution. The basis behind the use
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of this model is th a t transm itted  traffic is constructed through fragm entation 
at successive network layers, and th a t the to ta l number of bytes is roughly 
preserved during this fragm entation process. Use of cascades for generating 
aggregate traffic with m ultifractal properties in also discussed in [38].

In [68], the authors propose the construction of a m ultifractal cascade 
model for non-Gaussian traffic by using a multiplicative cascade model and 
the Haar wavelet transform. The key feature of this model is th a t it avoids 
the generation of negative values for the synthetic traffic, thereby avoiding 
artifacts caused by rounding off negative values to  zero.

It has been shown in [18], th a t the fine tim e scale behavior of m ultifractal 
traffic can have a significant effect on queuing behavior at low and intermediate 
utilization levels, whereas self-similarity is im portant for high utilization levels. 
This result strengthens the need to develop traffic models th a t m atch the 
m ultifractal characteristics of traffic.

2.3 W avelet Transforms and LRD  

2.3 .1  B ackground on  W avelets

Fourier analysis is a  classical signal processing tool which breaks down the 
signal into a  possibly infinite series of sines and cosines (which are known 
as the basis functions). One drawback of Fourier analysis is th a t it does 
not work very well for signals with sharp discontinuities, and in such cases a 
different basis function may be more appropriate. Another drawback is th a t 
it has only frequency resolution and no tim e resolution. As a  result, it is 
possible to  determine the different frequencies present in the signal, bu t there 
is no way to  determine when they are present. This presents a problem in 
analyzing non-stationary signals. Both these drawbacks can be overcome by 
using the Wavelet transform. Wavelet transform  (W T) does not have any fixed 
basis function, and the appropriate basis function can be chosen based upon 
the application. In addition, W T presents a time-scale representation of the 
signal. In other words, it can tell the user when certain features occurred in 
the signal, and about the scale characteristics of the signal. The term  scale 
is related to  frequency and is a measure of the amount of detail in the signal. 
Large scale means fine details or the big picture, while small scale generally 
means coarse details. Thus going from large scale to  small scale is equal to 
zooming in. By examining a signal over a range of scales, W T offers a m ethod 
for m ulti-resolution analysis.

The Wavelet transform  is based on the principle of expanding the input 
signal in term s of oscillating functions, called wavelets, which are localized in 
tim e and frequency. The wavelets are obtained by scaling and translating a 
single, m other wavelet function. Wavelet transforms can be broadly classified 
into the continuous wavelet transforms (CW T) and discrete wavelet transforms 
(DW T).

12
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2 .3 .2  C on tin uou s W avelet Transform  (C W T )

To further understand the  working of the wavelet transform, consider X  (t ) to
be a  square-integrable function (the integral of the square of its absolute value 
is finite). Its continuous wavelet transform  is given by the inner product

are the basis functions of the transform ation, called wavelets. St indicates the 
space of real numbers. The variables a and r  are the scaling and translating 
param eters respectively. The wavelets ^ ^ ( t )  are generated from the m other 
wavelet ip(t) is obtained by scaling and translation.

In the above equations, there is no specific basis function specified for the 
mother wavelet, which as mentioned before is one of the differences w ith the 
Fourier analysis. Instead, there is freedom of choice of the m other wavelet 
w ithin certain constraints th a t define the behavior of the wavelets. Some of 
these constraints are discussed below.

In order for the transform ation to be invertible, the m other wavelet must 
satisfy the  admissibility condition, i.e., the mean value of the m other wavelet 
m ust be zero:

addition, the m other wavelet has a bandpass frequency spectrum  with a zero 
a t the origin.

holds. Every m other wavelet has a t least one vanishing moment. This can be 
seen by using k = 0 in Eqn. 2.13 which then gives Eqn. 2.12. The number 
of vanishing moments of the m other wavelet indicates the smoothness of the 
wavelet function and the flatness of its frequency response. A higher number 
of vanishing moments leads to a faster decay rate of the wavelet coefficients, 
and therefore wavelets with higher number of vanishing moments lead to  a 
more compact signal representation. However, the length of filters used to 
compute the DW T increases with the number of vanishing moments and the 
complexity of computing the DW T coefficients increases w ith the size of the 
wavelet filters. Thus, there is always a tradeoff on the number of vanishing 
moments to  be selected.

(2 .10)

where * indicates complex conjugation and

(2 .11)

(2 .12)

This implies th a t the m other wavelet m ust be an oscillating function. In

Another property of the mother wavelet is th a t it m ust have a  number of 
vanishing moments N ,  defined as the largest N  for which
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2 .3 .3  D iscre te  W avelet Transform  (D W T )

The CW T discussed above is highly redundant. To overcome this problem, the 
discrete wavelet transform  has been introduced which is obtained by sampling 
the time-scale plane on a  dyadic grid: a =  2J , r  =  2 j  €  Z + , k €  Z. j  is 
called octave or scale and k  is translation.

The characterizing function for the DW T is a low-pass filter known as the 
scaling function, It is obtained by solving the recursive equation

W )  =  “  k), (2.14)
k

where {c*,} is called the scaling sequence. The scaling function is used to  create 
the m other wavelet function ip(t) as follows

=  ^ ( - l ) fcc i_ ^ ( 2 t  -  k). (2.15)
k

For special choices of the wavelet and scaling functions, the shifted and trans­
lated version of (2.14) and (2.15) are given by

^ ,* ( 0  =  2 t y ( 2 j t  -  k )

^ k(t) = 2 i ^ (2 j t  -  k) (2.16)

and form an orthonorm al basis.
The orthonorm al basis in 2.16 can be used to  create a multi-resolution

representation of any signal X( t ) ,  by taking the inner product of x(t)  w ith the
wavelet and scaling functions as follows:

d j , k  =  { X ( t ) , ^ j M ( t ) )

aJ-,fc =  < m < M * ) >  (2-17)

where djtk are the detail or wavelet coefficients, and ajtk are the scaling or
approxim ation coefficients.

The signal X  ( t ) can now be represented as

oo oo

*(*) = E E d j M * ) -  (2-18)
j = 0 fc=—oo

If the sum over j  is split in two regions, j  > J  and 0 <  j  < J ,  the above 
equation takes the form

OO OO J  OO

djfi'ipjfiit) +  E
j = J + 1 k= —oo j = 0 k = ~  oo

oo J  oo

=  ^  1 aJ,k4‘J,k(t') +  ^  ^  ] dj,k^j,k (t) ■ (2-19)
fc=—oo j = 0 k = —oo
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The first term  in the above equation represents an approximation of the signal 
a t the scale J  and the second term  is a sum of details. Thus the signal X(t) 
is now represented by a  collection of details a t different resolutions and a low 
level approximation.

For our study we have used the Wavelet toolbox in M atlab [1] to  compute 
the wavelet coefficients. The m other wavelet th a t we have used belongs to 
the family of Daubechies wavelets. The mother wavelets are referred to  as 
dbN,  where db indicates th a t the wavelet belongs to the Daubechies family 
and N  is a positive integer indicating the number of vanishing moments for 
the m other wavelet. Thus, dbS indicates th a t the m other wavelet belongs to 
the Daubechies family and has 3 vanishing moments.

2 .3 .4  D W T  o f  L R D  processes

Network traffic d a ta  has been shown to possess LRD in LAN [49], WAN [63], 
VBR [9], and other kinds of d a ta  traffic. In the case of LRD data, traditional 
statistical techniques cannot be used as shown in [8]. The DW T is very useful 
for studying this kind of da ta  set. This is due to  the fact th a t DW T de­
correlates the long memory data. It has been shown in [23, 84] th a t the 
covariance function of the wavelet coefficients behave as

f e d , ' fc'> -  O (|2ik  -  2*V|2<*"*>) , (2 .20)

where H  is the Hurst exponent of the da ta  set. Eqn. 2.20 indicates th a t the 
correlation structure of the wavelet coefficients is not LRD, even though the 
original d a ta  x(t )  has LRD. This de-correlation of LRD d a ta  is illustrated in

FGN series with H = 0.92 Level 1 wavelet coefficients of the FGN series

Lag

j
: 1 1 4 ■

' 0 2 4 6

Figure 2 .1: Decorrelation of LRD data  in wavelet domain.

Fig. 2.1 which shows the correlation structure of a FGN da ta  w ith H  = 0.92 
and the correlation plot for the wavelet coefficients a t scale 1 obtained by us­
ing the db6 wavelet. As can be seen, the wavelet coefficients a t scale 1 have 
significant correlation only up to  a lag of 2 , whereas the original d a ta  set has 
significant correlations even up to lag of 200. Similar results are observed 
for wavelet coefficients a t other scales as well. In addition, we tested with
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FARIMA d a ta  sets, which possess SRD as well as LRD, and the wavelet co­
efficients are seen to  only possess SRD. This dem onstrates th a t the LRD is 
broken down in the wavelet domain. In addition, it is also shown th a t the 
wavelet coefficients are wide-sense stationary [23]. Once the d a ta  is decorre­
lated, traditional statistical techniques can be used.

From (2.20), it is also seen th a t the correlation structure is controlled by 
the number of vanishing moments of the wavelet. For a  FGN da ta  set, the 
wavelet coefficients a t the same scale are normally distributed w ith zero mean, 
and when the number of vanishing moments are sufficiently high, the wavelet 
coefficients a t the same scale are independent, while those a t different levels are 
de-correlated. It has been shown th a t for N  > H  +  0.5, the wavelet coefficients 
across scales and w ithin the same scale are approximately de-correlated [86]. 
Abry and Veitch propose using a mother wavelet with a t least 3 vanishing 
moments, i.e. N  = 3 to  obtain sufficient decorrelation between the wavelet 
coefficients w ithin the same level and across levels.

In [4], it has been shown:

lo& E  = (2H -  Vi + &f - (2-21)

where c / is an estim ate of Cf of Eqn 2.3. This indicates th a t the variance of 
the wavelet coefficients a t each level is related to the Hurst value of the parent 
series. This result is useful for the change detection algorithm discussed in 
Chapter 5.

We finally conclude this chapter by drawing attention to  how the LRD in 
the tim e domain is broken down in the wavelet domain by using DW T. This is 
a  useful property th a t we use repeatedly through this thesis. In addition, the 
FGN technique of modeling LRD traffic, discussed in Section 2.2.2.1 is also 
used repeatedly through our thesis.
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Chapter 3 

Estim ation of the Hurst 
parameter

3.1 H urst Estim ators
In this section, we discuss the most commonly used techniques for estimating 
the Hurst param eter. For all the techniques discussed below X t is the original 
tim e series for which we are trying to  estim ate the Hurst param eter.

3.1 .1  T im e-d om ain  estim ators
3.1.1.1 R /S  Estim ator

Consider the partial sum of the series, i.e.

t
t = l

y(n ) =  £ j f ,

Let

S („)
\

2

n )2
n

denote the standard  deviation of the sample.

Let

R(n)  =  max \ Y ( t )  — —Y(n )  \ — min ( y U) — —Y ( n ) \  
o<t<n \  n )  o<t<n \  n  )

Then the fraction Q(n)  =  denotes the rescaled adjusted range or the R /S  
statistic.

For fractional Gaussian noise or fractional ARIMA, as n —» oo we have:

E[Q(n)j  ~  CHn H,
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where C #  is a positive, finite constant not dependent on n.

To determine H using the R /S  statistic, the following m ethod is used [49, 83]:

1. Given a  tim e series X t of length N, the whole series is subdivided into 
K non overlapping blocks, each of size N /K .

2. For a  num ber of values of n, compute the rescaled adjusted range Q(n) 
starting  a t points ki =  (iN/K) +1, i= l,2 ,... such th a t ki + n  < N .  For 
each value of n, we obtain a number of R /S  Samples, say K. This number 
K decreases for larger values of n  because of the limiting condition on kt 
values mentioned above.

3. Choose logarithmically spaced values of n, i.e. n i+1 =  mni  w ith m  > 1, 
starting  w ith n 0 of about 10 and plot log Q(n) versus log n. This plot is 
called the Pox plot for R /S  statistic.

4. The param eter H can be estim ated by fitting a least squares line to the 
points in the Pox plot.

5. Short range dependence results in a transient zone a t the low end of the 
plot and hence low end of the plot is not used for estm ating H, whereas 
a t the higher end there are very few points on the plot to  make it reliable 
and hence they should also not be used. The values of n  th a t lie between 
the lower and higher cut-off points are used to  estim ate H.

3.1.1.2 A ggregated Variance

1. Divide the original series into blocks of length m and compute the sample 
average w ithin each block.

.. km

= ^  E p-1)
k =  l,2,....,[N /m ]

2. For each m, compute the sample variance of X t ^ a s :

s i
N / m  /

3. Repeat this procedure for different values of m with the value being 
equidistant on a  log scale.

4. P lot log s i  against log m.

5. For sufficiently large values of m, the slope estimates 2H -2 [49, 83], The 
slope is estim ated by fitting a least squares line to the points obtained 
from the plots.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1.1.3 Variance o f residuals

1. Series is divided into blocks of size m. W ithin each block, the partial 
sums of series are calculated as:

k m

Y ( k ) W  = X *>
t=z{k—l ) m + l

k =  1,2,.......,[N/m]

2. F it a least squares line to the partial sums within each block.

3. Com pute the sample variance of the residual . The variance of the 
residuals is proportional to  m 2H for large m and for finite variance LRD 
series. This variance is computed for each block and the  average is 
computed over the blocks.

4. P lot log s'r™'* vs log m, and this should give a line with slope of 2H 
[49, 83],

3.1.1.4 T he A bsolute M om ents M ethod

Consider the series of the averages defined in (3.1), and compute its n th abso­
lute moment as:

[JV/m]

A M ™  = V  X<m) -  X  (3.2)

A M ^  is asym ptotically proportional to  To find an estim ate for
H

1. Com pute A M . ^  for different values of m.

2. Plot it in a log-log plot against m.

3. The point should be scattered along a line w ith slope n(H -l) [49, 83].

3.1.1.5 D etrended Fluctuation Analysis (DFA)

The m ethod of Detrended Fluctuation Analysis (DFA) was introduced by Peng 
et. al. in [64], It was introduced as a way of measuring LRD behavior for 
non-stationary tim e series signals. The m ethod is described as follows:

1. Let x(t) be a  1-D stochastic process. Define the integrated signal y(k) 
as follows

k

y(k ) -  ~  (3-3)

where fi is the mean of x(t).
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2. Divide the integrated tim e series y(k) into boxes of equal length n. Find 
a least-squares line th a t fits the d a ta  in each box of length n.

3. y(k) is detrended by subtracting the local trends yn{k) as shown:

4. The above com putation is repeated across a broad range of scales to 
characterize the relationship between the box size n  and the average 
root-mean-square fluctuation function F(n).  A power-law relationship 
between them  indicates the presence of scaling given by F(n)  ~  N a, 
which means th a t the process obeys the scaling law characterized by the 
scaling exponent a.

5. a  corresponds to  the value of Hurst param eter, and thus represents the 
LRD of the signal.

The m ain advantage of the DFA m ethod lies in its applicability to  non- 
stationary LRD tim e series, and has also been shown to  be superior in es­
tim ating degree of LRD than  conventional tools like the R /S  analysis [92].

3 .1 .2  F requency-dom ain  estim ators

3.1.2.1 Periodogram

The periodogram  is defined as

where i =  1, v  is the frequency, and N is the length of the series.

As sta ted  in Section 2.1, a  series w ith LRD will have spectral density pro­
portional to  \v\1~2H for frequencies close to  the origin.
Thus, if we plot the log-log plot of the periodogram versus the frequency, it 
will display a straight line w ith a slope 1-2H [49, 83],
For this m ethod, we should only use the lowest 10% of the frequencies for 
plotting the line since the proportionality only holds for v  close to the origin.

3.1.2.2 W h ittle ’s M aximum  Likelihood Periodogram

The W hittle  estim ator is also based on the periodogram [83]. Consider the 
function:

k=1
(3.4)

2

(3.5)

(3.6)
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where I (u)  is given by (3.5)
f ( v ,  rj) is the spectral density function
77 is the vector of unknown parameters.

The W hittle estim ator is the value of 77 which minimizes the function Q in
(3.6).

In practice the function which the algorithm tries to  minimize is:

[(iV—1) / 2] , .

5  w k

For fractional Gaussian noise or FARIMA(0,d,0), 77 is the H or d param eter 
respectively. For FARIMA(p,d,q), 77 also includes the unknown coefficients in 
the autoregressive and moving average parts.

The m ain drawback of this m ethod is th a t it assumes th a t the param etric 
form of the spectral density is known which is very rarely the case.

3 .1 .3  W avelet-dom ain  estim ators

3.1.3.1 A bry-Veitch Estim ator

This m ethod was proposed in [86] and the steps for estim ating the param eter 
H using this approach are as follows:

1. For each scale j  and position k, compute the so-called wavelet detail 
coefficients d(j,k) as

OO

d(j, k) =< X t , > =  £  X t V ^ n )  (3.7)
n = 1

where <  .. >  in the above equation indicates the inner-product of the 
series w ith the function and

T j|fe(n) = 2- j ^ 0(2~j n  -  k)

To is the (Daubechies) m other wavelet.

2. The coefficient \d(j, k))\2 measures the amount of energy in the analyzed 
signal about the tim e instant 2j k  and frequency 2~JV0, where v0 is an 
arbitrary  reference frequency selected by the choice of To- Compute the 
wavelet energy jij for each scale j  as

1 Nj
^ ' = Af.^2\d(^k)\2 (3 -8)

J k=1
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where Nj  is the to ta l number of wavelet coeffients a t scale j. Essentially 
Nj  — 2~j N  where N is the length of the data. (3.8) is a measure of 
the am ount of energy th a t lies within a given bandw idth around the 
frequency v and can therefore be regarded as a statistical estim ator for 
the spectrum  of series X t .

3. Make a plot of log^f ij )  versus scale j  and then plot a least squares line 
through the points. W hile plotting the line, we have to  neglect the points 
in the lowest part of the plot as well as some points in the higher range 
as there will be very few transformed wavelet coefficients in this region 
and the estim ation of Hurst param eters using those points will be quite 
noisy. The slope of this line will be 2H-1. The range of scales over which 
the linear fit is considered valid is denoted as [j’i , J2]

4. The confidence interval for the param eter is given by:

H  — (TftZp <  H  <  H  + VftZp (3.9)

where the variance is given by:

0% =  varH ( j i ,h )  =  j  _  2 - ( J + i ) ( j 2  +  4) +  2 -2J

where J  = j 2 — j \  is the number of octaves involved in the linear fit and 
rij1 — 2~J1n  is the number of available coefficients a t scale j \ .
In (3.9), zp is the 1 - / 3  quantile of the standard Gaussian distribution.

3.2 Drawbacks of Hurst param eter estim ators
In this section, we discuss various drawbacks of the Hurst estim ators discussed 
in the above section.

3.2 .1  S ingle E stim ate

All the estim ators described in Section 3.1 give an estim ate of the Hurst param ­
eter for the complete tim e series. These estimators do not give any indication 
of change in the Hurst param eter. However, it is expected th a t in real life, the 
Hurst param eter of the aggregated traffic will not remain constant, instead it 
will vary with time, depending upon the traffic content and traffic intensity 
[87], To dem onstrate th a t in such a scenario it is misleading to  look at only 
the Hurst estimates, we generated a time series of length 32768 points where 
the first 16384 points are from a FGN series of Hurst value 0.5777 and the next 
16384 points are from a FGN series with Hurst value of 0.8793. On running 
the Abry-Veitch estim ator on the resultant series, we get a Hurst param eter 
of 0.7730.
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Figure 3.1: Time series plots for the two data  sets of length 32768 used for our 
experiments. The first one has a change in the Hurst param eter a t the center 
of the series and the second has a constant Hurst param eter.

Next, we generate another FGN series with 32768 points and a Hurst value 
of 0.7793. The tim e series plot for both the d a ta  sets are shown in Fig. 3.1. 
If we compare the Hurst values of these two series, it will appear th a t both 
the d a ta  sets are equivalent. However, th a t is not the case. Thus, it can be 
seen th a t the estim ators discussed above have a serious drawback in the sense 
th a t they give a  single estim ate for the entire series without accounting for a 
change w ithin the series.

The way to  get around this issue is to  first test if the Hurst param eter is 
constant over the d a ta  set. One of the ways to  achieve this is to  study the 
multiscaling behavior of the data  set. This is achieved by plotting a Linear 
M ultiscale Diagram (LMD) representing the scaling behavior as a function of 
scaling order. In order to  study this behavior we have used the Multiscaling 
tool developed by Veitch et. al. [88]. We dem onstrate the use of this M ulti­
scaling tool in Fig. 3.2 where we plot the M ultifractal spectrum  for the two 
series discussed above. From Fig. 3.2, it is clear th a t the Hurst value is not 
constant for the first series. However, this m ethod does not indicate the loca­
tion of the change in the Hurst param eter. We also need to  know the location 
of the change so th a t the series can then be broken down into sections over 
which the Hurst param eter can be considered to  be constant. We discuss such 
techniques in C hapter 5.

3.2 .2  Im p act o f  n on -sta tion arities

In addition to  the drawback of giving a single estim ate for the entire series, 
the Hurst estim ators discussed in Section 3.1 also suffer from presence of non- 
stationarities. It has been shown th a t non-stationarities have an adverse effect 
on these estim ators [40, 41, 54, 83]. In the sections below, we conduct some 
tests to  dem onstrate the impact of non-stationarities on the Hurst param eter 
estim ators discussed in Section 3.1.
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Figure 3.2: Comparison of Linear M ultifractal Spectrum  of two series with 
similar Hurst values.

3.2.2.1 Changing M ean

In order to  study the impact of changing mean of the series, we generated 
several FGN da ta  sets of length 16384 with Hurst values ranging from 0.57 
to  0.92 in steps of 0.05. From each series, we generate a new series of length 
32768 with the first part of the series (16384 points) identical to  the original 
series, and the second part of the series also identical to  the original series but 
with an increase in mean of 100. Thus, the Hurst value for the entire series 
is constant, bu t there will be a step change in the mean of the series a t time 
instant 16385. Next, we use the SELFIS tool [39] to  get the  estim ated Hurst 
values for 7 different estimators; viz. R /S , Aggregated variance, Variance 
of residuals, Absolute moments, Periodogram, W hittle’s estim ator and Abry- 
Veitch estim ator. However, for the Abry-Veitch estim ator, we do not use the 
results reported by this tool, bu t use the results obtained from the M atlab code 
provided by the authors as th a t allows us to  control the number of vanishing 
moments and the scale over which the estimation is carried out. We have 
tabulated  the estim ated Hurst values for these series for the different estimators 
in Table 3.1.

From Table 3.1, it can be seen th a t a change in mean by 100 results in 
errors for almost all the estimators. Only the W hittle and the Abry-Veitch 
(Wavelet) estim ator are able to  give appropriate estimates. However, these 
two estim ators fail when the change in mean is of a higher m agnitude. This 
is clear from Table 3.2 which tabulates the Hurst estimates for series similar 
to  those used for the previous case, except th a t the second part of the series 
now has a change in m ean of 1000.

As can be seen in Table 3.2, all the estim ators fail to  give appropriate 
results. This is a serious drawback of the estimators, as it is expected th a t in
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Estim ation
M ethod

Actual H Value
0.57 0.62 0.67 0.72 0.77 0.82 0.87 0.92

R /S 0.598 0.637 0.675 0.712 0.746 0.776 0.802 0.822
Absolute
Moments

0.755 0.751 0.746 0.741 0.736 0.732 0.731 0.738

Variance of 
Residuals

0.881 0.888 0.895 0.902 0.910 0.918 0.931 0.954

Aggregate
Variance

0.932 0.927 0.923 0.919 0.915 0.913 0.915 0.922

Periodogram 1.037 1.062 1.088 1.113 1.138 1.164 1.189 1.214
W hittle 0.631 0.659 0.693 0.733 0.777 0.824 0.873 0.922
Wavelet 0.594 0.639 0.685 0.732 0.781 0.830 0.880 0.929

Table 3.1: Estim ated Hurst Value for FGN series with change in mean of 100.

Estim ation
M ethod

Actual H Value
0.57 0.67 0.77 0.87 0.92

R /S 0.475 0.553 0.622 0.367 0.368
Absolute
Moments

0.773 0.773 0.773 0.692 0.692

Variance of 
Residuals

1.133 1.151 1.173 1.456 1.483

Aggregate
Variance

1.017 1.017 1.016 1.019 1.019

Periodogram 1.036 1.087 1.137 1.187 1.212
W hittle 0.838 0.862 0.898 0.999 0.999
Wavelet 0.7796 0.8189 0.8754 0.9500 0.9977

Table 3.2: Estim ated Hurst Value for FGN series with change in mean of 1000.

aggregate traffic traces, the mean might change based on tim e of day. As a 
result, it is necessary to  detect points where the mean changes. M ethods have 
been proposed for detecting changes in mean in the presence of long-range 
dependence in [7] and [81].

In [13], the authors propose the use of scale-space techniques to  provide 
a visual display of the goodness-of-fit of an assumed model to  the da ta  set. 
The advantages of this m ethod are th a t it allows studying tim e series th a t will 
exhibit variations a t different scales by carrying out the tests by dividing the 
d a ta  into separate bins, and changing the bin size to  change the scale of study. 
It shows the difference between the assumed model and the synthetic traffic 
a t different scales and across time. The change is detected by checking if the 
derivative of the smoothed curve is significantly different from zero. The null 
model th a t the  authors use for the SiZer technique is white Gaussian noise. 
Since for Internet traffic analysis, white Gaussian noise is not relevant, an 
improvement has been proposed in [60]. In this technique, the user specifies
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th e  co rre la tio n  s tru c tu re  of th e  m odel th a t  will be  used  as th e  base  for te s tin g  
th e  d a ta  set. T h e  to o l th e n  te s ts  for changes in  th e  m ean  of th e  given d a ta  set 
on  th e  basis of th e  specified m odel. T h is  is a  useful to o l as it  w as seen from  
T ables 3.1 an d  3.2 th a t  changes in  th e  m ean  lead  to  in ac c u ra te  e s tim a tes  of 
th e  H u rs t p a ra m ete r, a n d  th u s  d e te c tin g  if th e re  is any change in  th e  m ean  of 
th e  given series w ould  help  to  o b ta in  re liab le  es tim ates . W e d e m o n s tra te  th e  
use of th is  to o l by  using  a  FG N  d a ta  set w ith  a  c o n stan t m ean  an d  a  H u rs t 
value o f 0.92. F ig. 3.3 gives th e  D ep en d en t Sizer p lo t for th is  series. In  th e

50 100 150 200 250 300 350 400
Bin N um ber

F igure  3.3: U sing SiZer to  te s t  for a  change in  th e  m ean  of a  FG N  series w ith  
H u rs t value of 0.92.

p lo t, th e  x-ax is rep resen ts  th e  b in  nu m b er a n d  th e  y-axis co rresponds to  th e  
lo g arith m  of th e  b a n d w id th  of th e  fam ily  of sm ooths. E ach  pixel in  th e  p lo t 
ind ica tes  a  resu lt of a  hypo thesis  te s t  for th e  slope of th e  curve a t  th a t  po in t. 
A  red  (black) colour in d ica tes  th a t  th e  slope is positive, w hile a  b lue  (w hite) 
color ind ica tes th a t  th e  slope is negative. W h en  th e  slope is n o t significant, 
a  p u rp le  (grey) colour is used. M ost p a r t  of Fig. 3.3 is p u rp le  (grey) w hich 
ind ica tes th a t  th e  m ean  of th e  series can  b e  considered  to  b e  c o n stan t.

N ext, we use a  d a ta  set th a t  has a  H u rs t value of 0.92, w ith  th e  first 16384 
p o in ts  hav ing  a  m ean  of zero a n d  th e  n ex t 16384 po in ts  hav ing  a  m ean  of 
1000. As was seen in  T able  3.2, all th e  e s tim a to rs  fail to  give an  accu ra te  
e s tim a te  for th is  d a ta  set. T h e  D ep en d en t Sizer p lo t for th is  case is show n in 
Fig. 3.4. T h e  m odel supp lied  for c re a tin g  th e  D ependen t Sizer p lo t is a  FG N  
series w ith  a  H u rs t value of 0.9977 (e s tim a ted  H u rs t value by  using  th e  w avelet 
e s tim a to r  as seen in  T able  3.2). F rom  Fig. 3.4, it  can  b e  seen th e  d a ta  set is 
flagged to  b e  sign ificantly  different from  th e  m odel supplied . T h is  in d ica tes  
th a t  th e  used  d a ta  set was n o t g en e ra ted  by  a  process w ith  c o n s ta n t H u rst 
value a n d /o r  c o n s ta n t m ean. B y looking a t  th e  figure, it  is n o t possib le to  
d ed u c t w h e th er th e  m ean  or th e  H u rs t p a ra m e te r  of th e  p rocess has changed. 
O ne w ay of going a b o u t th is  is to  p lo t th e  m u ltifrac ta l sp ec tru m  for th e  d a ta
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F igure  3.4: U sing SiZer to  te s t  for a  change in  th e  m ean  of a  FG N  series w ith  
H u rst value of 0.92 an d  change in  m ean  from  0 to  1000.

set a n d  com pare  it  w ith  th e  m u ltifra c ta l sp ec tru m  for a d a ta  set w ith  c o n stan t 
H u rst p a ra m ete r. Such a  p lo t is show n in  Fig. 3.5, w here we p lo t th e  linear 
m u ltifra c ta l sp ec tru m  for th e  d a ta  set w ith  chang ing  m ean  an d  for a  d a ta  set 
of th e  sam e leng th , b u t  c o n s ta n t m ean . From  Fig. 3.5, we can  conclude th a t

0.25
Constant Mean 
Changing Mean

0.2

0.15

0.1

0.05

-0.05 o

- 0.1

Moment order

F igure  3.5: C om parison  of L inear M u ltifra c ta l S p ec tru m  of tw o series w ith  
s im ilar H u rs t values, b u t  d ifferent m eans.

th e  linear m u ltifra c ta l sp e c tru m  for b o th  th e  series is nearly  sim ilar, an d  hence 
it  can  b e  concluded  th a t  th e  H u rst value for th e  d a ta  set th a t  we are te s tin g  
is c o n s tan t. T hus, on  th e  basis of Fig. 3.4 a n d  Fig. 3.5, it  can  be  concluded  
th a t  th e  H u rs t value for th e  d a ta  set has rem ain ed  co n s ta n t, b u t  th e  m ean  has 
changed, as expected .

A fter co n d u c tin g  several experim en ts  w ith  m any  o th e r d a ta  sets, we cam e
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up with the following series of steps to be employed for estim ating the Hurst 
param eter of the series:

1. Run one time-domain estimator; say the R /S  estim ator, the W hittle 
estim ator and the Wavelet estimator. If these estim ators give estimates 
th a t are significantly different from each other, then go to  next step, or 
else use the average of the three estimates.

2. Plot the linear m ultifractal spectrum  (LMS) of the series, and compare 
it w ith the  LMS of a series of the same length with constant mean and 
constant H urst value.

3. O btain the Dependent Sizer plot for the d a ta  set being tested.

4. On the  basis of the two above plots, make a decision on whether the 
d a ta  set being tested can be assumed to  be generated by a  process with 
constant Hurst value and constant mean.

5. If it is found th a t either the mean or Hurst value or both  are changing, 
then  further investigation will be needed to  figure out the location of 
change.

3.2.2.2 Im pact o f Short-Range D ependence

In addition to  the non-stationarities discussed above, Internet da ta  also con­
tains SRD coexisting with LRD [16, 77, 78], In this section, we discuss the 
negative im pact of SRD on the Hurst estimators.

It is shown in [35] th a t a  FARIMA(p,d,q) process has similar LRD behav­
ior to  a FARIMA(0,d,0) process with the same value of d. Since H  is only 
related to  d, the presence of autoregressive (AR) and moving average (MA) 
components in the FARIMA model should not impact the estim ated H  value.

The d a ta  sets used in this section were generated by using the “fracdiff” 
package of R [67] and consist of 65536 data  points in each series. The estimates 
of the Hurst param eter were obtained by using the SELFIS tool discussed 
earlier.

For the first set of tests, we generated FA R IM A (l,d,l) series w ith the AR 
and MA components being 0.2 and -0.4 respectively. The estim ates obtained 
by the different estim ators for a range of value of actual H  are given in Ta­
ble 3.3. From Table 3.3 it can be seen th a t the estim ates obtained in the 
presence of SRD are different from the actual H  values. The worst estimates 
are obtained by the Whittle and Wavelet estim ator giving approxim ately 34% 
and 39% m ean difference respectively from the actual values. In this case, the 
Periodogram m ethod performs the best giving only 2.9% m ean difference.

Next, we generate FA R IM A (l,d,l) series with the AR and MA components 
being 0.4 and -0.4 respectively, and the estimates are tabulated  in Table 3.4. 
From Table 3.4 it is seen th a t the Variance of  Residuals m ethod performs the 
best giving a 5.51% mean difference from the actual values. The Periodogram
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Estim ation
M ethod

Actual H Value
0.55 0.6 0.7 0.8 0.9 0.95

R /S 0.607 0.629 0.708 0.783 0.820 0.844
Absolute
Moments

0.546 0.482 0.671 0.696 0.802 0.807

Variance of 
Residuals

0.592 0.584 0.729 0.836 0.922 0.962

Aggregate
Variance

0.570 0.507 0.701 0.716 0.842 0.850

Periodogram 0.574 0.630 0.728 0.819 0.914 0.953
W hittle 0.908 0.947 0.999 0.999 0.999 0.999
Wavelet 0.860 0.903 0.984 1.072 1.159 1.200

Table 3.3: E stimated Hurst Value for FA R IM A (l,d,l) series, AR=0.2, M A=- 
0.4.

Estim ation
M ethod

Actual H Value
0.55 0.6 0.7 0.8 0.9 0.95

R /S 0.599 0.666 0.710 0.781 0.788 0.772
Absolute
Moments

0.531 0.648 0.583 0.750 0.784 0.803

Variance of 
Residuals

0.592 0.704 0.710 0.835 0.892 0.963

Aggregate
Variance

0.552 0.672 0.613 0.784 0.828 0.852

Periodogram 0.599 0.651 0.745 0.850 0.946 1.001
W hittle 0.999 0.999 0.999 0.999 0.999 0.999
Wavelet 0.975 1.015 1.104 1.196 1.271 1.315

Table 3.4: Estim ated Hurst Value for FA R IM A (l,d ,l) series, AR=0.4, M A=- 
0.4.

m ethod gives a  mean difference of 6.76% from the actual values and is the 
second best estim ator in this case.

We conducted additional experiments by varying the AR and MA param ­
eters for fixed values of d=0.3, p = l ,  q = l  in order to  determine if there is 
any relationship between the reliability of the estimators and the AR and MA 
param eters. The estim ates obtained for different values of AR and MA param ­
eters are given in Table 3.5. From Table 3.5, it can be seen th a t as the absolute 
difference between the AR and MA param eters increases, the accuracy of the 
estim ators reduces. In addition, it is also observed th a t all the estim ators give 
a much higher estim ate when the MA param eter is negative as compared to 
the estim ates when the MA param eter is positive.

On the basis of the above experiments, it can be concluded th a t if the 
series has SRD in addition to  LRD, then most of the estim ators are found to
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Estim ation
M ethod

SRD Param eter Values
AR=0.3
M A=0.4

AR=0.2
M A=0.4 > 

&
 

1! 
II 

o 
P

 
k 

10 AR=0.3
MA=-0.4

AR=-0.3
M A=0.4

R /S 0.753 0.768 0.783 0.785 0.734
Absolute
Moments

0.665 0.670 0.696 0.711 0.692

Variance of 
Residuals

0.724 0.755 0.836 0.807 0.729

Aggregate
Variance

0.688 0.687 0.716 0.747 0.714

Periodogram 0.782 0.766 0.819 0.847 0.755
W hittle 0.683 0.632 0.999 0.999 0.500
Wavelet 0.738 0.674 1.072 1.128 0.400

Table 3.5: Estim ated Hurst Value for FARIMA(1,0.8,1) series. Estim ation 
accuracy dependent on difference between AR and MA values.

be highly inaccurate. In addition, it was also seen th a t in the presence of SRD, 
there is no single estim ator th a t consistently gives the best estim ates for the 
Hurst param eter. It can also be seen th a t the reliability of the estim ators is 
dependent on the difference between the AR and MA values. Consequently, if 
these estim ators are used to  get estimates of the Hurst param eter in Internet 
traffic, they may give unreliable estimates and the amount of LRD in the traffic 
may be incorrectly estimated. In order to  avoid this problem, it is possible to 
filter out the SRD component from the series before estim ating the H  value. 
One such technique is to  shuffie the series [19, 39], so th a t the SRD is removed 
and the LRD is preserved. We tried to  employ this technique, bu t did not 
achieve any success with it. An alternative approach is to  develop new LRD 
estim ation techniques th a t are resilient to  the presence of SRD in the series. 
We have not found any such techniques in literature and it still remains an 
open problem.
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Chapter 4

Traffic Trace Generation using  
Bootstrapping

4.1 Approaches for Traffic Trace G eneration
As discussed in Section 2.2 the most commonly employed technique for gen­
erating traffic traces is the two step procedure of fitting a stochastic model to 
the observed traffic and then using it to generate traffic traces during simula­
tion. However, the step of model fitting requires user intervention and can be 
complicated. For instance, for FARIMA models with alpha stable innovations, 
there are a number of param eters th a t need to  be estim ated using complicated 
estim ation procedures spanning multiple steps with continuous user involve­
m ent [31]. Using simple models like the FGN model [62], allow the LRD to 
be matched, bu t not higher order properties or the marginal distribution. In 
this Chapter, we propose a  technique for generating aggregate traffic traces 
th a t does not involve any model fitting, thereby avoiding the complexity of 
param eter estimation.

4.2 B ootstrapping
The standard  bootstrap  procedure was introduced in [17] for approximating 
the sampling distribution and the variance of many statistics under the as­
sum ption of independent and identically distributed (i.i.d.) data. The idea of 
bootstrapping is to  re-sample the original d a ta  with replacements to  obtain 
a new series. The procedure is repeated a number of times to  obtain multi­
ple datasets (which are known as the surrogate series) from the original data. 
However, when the observations are not independent, the standard  bootstrap 
scheme fails to  capture the dependency structure of the da ta  [22]. A number of 
variants of the original bootstrapping technique have been proposed to  address 
such dependencies in the data. Some examples are the residual bootstrap, sieve 
bootstrap, moving block bootstrap, stationary bootstrap, threshold bootstrap, 
etc. (see [22] and the references therein). All the above bootstrap  techniques
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work for SRD da ta  but not for LRD data.

4 .2 .1  B o o tstra p p in g  for LR D  T im e Series

To deal w ith LRD datasets, it has been proposed to  transform  the da ta  into 
another domain, by using either the Fourier Transform or Wavelet Transform 
[65, 85]. In [6], the authors dem onstrate th a t bootstrapping in the wavelet do­
main (also referred as wavestrapping) works better than  in the Fourier domain 
when attem pting  to  capture the characteristics of non-Gaussian long-memory 
processes. Aggregate da ta  traffic also falls in this category of data, and hence 
we employ the Wavelet transform  for our case.

4.3 B ootstrap  Based A lgorithm  for G enerat­
ing Traffic Traces

In this section, we discuss the algorithm th a t we have proposed for generating 
traffic traces possessing LRD by using bootstrapping in the wavelet domain 
[12]. In addition, we also discuss previous work which is related to  our ap­
proach.

4 .3 .1  R e la ted  W ork
As sta ted  previously, the general trend for generating aggregate traffic traces 
is by fitting a  model to  the observed data, and then  generating traces from 
this model to  be used for simulation. The most common model used for this 
purpose is the FGN model [37, 48, 62]. Like our proposed algorithm, the pro­
cess of generating aggregate traffic traces can be autom ated when using the 
FGN model. However, the FGN model is not useful for most real traffic traces 
since they are usually non-Gaussian, whereas our algorithm will be shown to 
work well for real traffic traces. Traces generated by using the alpha-stable 
models [26, 30, 42, 95] or FARIMA models with alpha-stable distributions [31] 
have been shown to perform better than  FGN models in capturing the char­
acteristics of Internet data. However, using these models involves complicated 
param eter estim ation techniques requiring significant tim e and user interven­
tion. In contrast, as will be dem onstrated in Section 4.4, traces generated 
by our technique are able to  capture the characteristics of real traces, without 
any complex param eter estimation process. One model which does not involve 
very complex param eter estim ation is the m ultifractal wavelet model (MWM) 
th a t has been proposed for efficient synthesis of non-Gaussian LRD traffic 
[70]. This m ethod involves the use of a multiplicative cascade coupled with 
the Haar wavelet transform. This m ethod ensures the generation of positive 
output, thereby making it appropriate for traffic modeling which always con­
tains positive data. However, it will be dem onstrated in Section 4.4 th a t our
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algorithm  significantly outperforms this model for real traffic traces in terms 
of the m ultifractal and queueing behavior.

One approach for generating aggregate traffic traces w ithout using any 
specific model has been proposed in [97], where the authors propose a  feedfor­
ward neural network architecture for generating aggregate self-similar traffic 
traces. However, the proposed technique involves a learning phase where the 
number of samples required for training depends on the traffic pa tte rn  th a t is 
being modelled, w ith a possibility of the network performance diverging during 
training, instead of converging. Thus, the procedure is quite complicated and 
requires a tim e consuming training phase. This is avoided in our algorithm.

A tool called RAMP, proposed in [45] can be used for the autom ated gen­
eration of traffic traces from live network measurements. However, it is used 
for source-level modelling of Web and F T P  traffic, and thus cannot generate 
aggregate traffic traces. In addition, this m ethod will also not work with most 
of the publicly available traces, in which only the aggregate traffic per time 
slot is available. Our algorithm on the other hand, can be used to  generate 
the traffic traces from direct traffic measurements as well as publicly available 
traces (as will be dem onstrated in Section 4.4).

The use of bootstrapping in the wavelet domain (referred to  as wavestrap­
ping), as used by us was first proposed in [65]. It was subsequently employed 
in [11] for testing the  nonlinearity of d a ta  sets. However, neither of these two 
papers on wavestrapping deal w ith LRD data.

The use of bootstrapping for LRD data  was addressed in [28]. In this paper, 
the authors propose the use of post-blackening moving block bootstrap  to 
generate surrogate datasets for testing the effectiveness of some commonly used 
estim ators of the Hurst param eter. However, in this paper the bootstrapping 
technique is applied in the tim e domain, rather than  in the wavelet domain 
as we have proposed here. As a result, the AR (auto regressive) model fitted 
to  the d a ta  in [28] has a  very high order, making it hard to  implement. In 
addition, the block size selected also needs to  be high enough to  capture the 
dependency in the data, making the selection of the block length difficult.

The closest resemblance to  our work is seen in [22], in which the authors 
use the residual bootstrap  technique in the wavelet domain to  create multi­
ple surrogate series for LRD data. Their algorithm involves fitting a Markov 
model to  capture the SRD in the wavelet domain, and then modeling the resid­
uals by Efron’s i.i.d bootstrap  [17] to generate the bootstrap  residuals. The 
bootstrap  samples of the residuals are then combined with the Markov model 
to  generate the bootstrap  wavelet coefficients, and this model is then used to 
produce bootstrap  datasets in tim e domain. The authors dem onstrate tha t 
their technique can be used to  estim ate the sample unit lag autocorrelation 
and standard  deviation for Gaussian datasets. Another similar technique is 
discussed in [51], where the authors propose the use of an independent model 
for the wavelet coefficients and capture the variance of these coefficients at 
each level of decomposition. They dem onstrate th a t their technique is able to 
capture the autocorrelation function and the queue loss ra te  for heterogenous
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traffic possessing both  LRD and SRD. In our algorithm, we do not fit any 
model to  the wavelet coefficients, bu t use the resampling technique to obtain 
the new wavelet coefficients. In addition, we are interested in capturing the 
Hurst param eter, m ultifractal scaling and the queuing behavior for Gaussian 
and non-Gaussian d a ta  sets, as will be dem onstrated in Section 4.4.

4 .3 .2  D escr ip tion  o f  A lgorith m

The tim e series d a ta  is converted into the Wavelet domain by using the DWT, 
and the bootstrap  scheme will be applied to  the wavelet coefficients. However, 
as evident from Fig. 2.1, the wavelet coefficients w ithin a given level have sig­
nificant correlation up to  lag 2. Hence, we cannot use the standard  bootstrap 
mechanism, which has been designed for independent data. In addition, as 
stated  earlier, the wavelet coefficients a t each scale are stationary and hence it 
is necessary to  use a bootstrapping scheme th a t will also produce a stationary 
series.

Considering the above factors, the stationary bootstrap  algorithm [66] is 
selected to  be used on the wavelet coefficients d j This bootstrap  algorithm 
operates as follows.

1. Let the original tim e series be X \ ,  X 2, ..., X t  (here X i ,  X 2, . . .Xt  indi­
cate the wavelet coefficients a t each level of decomposition).

2 . Generate a  sequence of i.i.d random variables Li, L 2, .... having the ge­
ometric distribution for n =  1, 2 , ....., with the density function P(n)  =
(1 - p y - ' p .

3. Generate another i.i.d sequence Ji, / 2, ...., I q with discrete uniform dis­
tribution.

4. The blocks are represented as Bi itLt — { X ^ ,  X j i+i , ..., indicat­
ing a block containing Li observations starting  from X i i .

5. In order to  achieve stationarity  of the re-sampled tim e series, the data  
is wrapped around in a  circle, so th a t X \  follows X t -

6 . The re-sampled tim e series is then formed by taking a  sequence of blocks
B IuLi , B j2il2, ......  This process is continued until the required number
of d a ta  points are generated for the re-sampled series.

We describe the algorithm  used to create the surrogate datasets from any 
given dataset. One of the key requirements for creating surrogate datasets 
from LRD da ta  is to  preserve the scaling behavior. It has been pointed out 
th a t re-sampling each wavelet scale independently does not destroy the fre­
quency content and the energy cascade [6]. Therefore, we apply the stationary 
bootstrap  scheme independently to  each wavelet decomposition scale and then 
take the inverse wavelet transform  to get new datasets. For d a ta  possessing
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long-tailed distribution, the wavelet coefficients will also possess a long-tailed 
distribution [80], As a result, if the wavelet coefficients are random ly sampled, 
then the long-tailed nature of the wavelet coefficients will be destroyed and the 
regenerated series will not possess the long-tailed nature of the parent series; 
thereby having a  different PD F. In order to  avoid this, we employ the Box-Cox 
transform ation [10] to  convert the original da ta  close to  a normal distribution.

The algorithm  can be summarized as:

1. Com pute the DW T of the dataset to  obtain the wavelet and scaling 
coefficients.

2. Apply the Box-Cox transform ation to  the wavelet coefficients a t each 
level.

3. Re-sample the wavelet coefficients a t each scale via the stationary boot­
strap  technique. The param eter p  defining the geometric distribution is 
chosen separately for each scale as

p .  —  2  ( ( - lo9 ( .T j ) / i ° g (2 ) ) /3 )  ^

where pj  is value of p  a t scale j  having 7} wavelet coefficients.

The scaling coefficients obtained at the highest scale of decomposition 
are not re-sampled.

4. Take the inverse Box-Cox transform ation of the resampled wavelet coef­
ficients.

5. Take the inverse DW T of the resampled and transform ed wavelet and 
scaling coefficients to  obtain the surrogate dataset.

6 . Round off the series obtained in the previous step, and change the neg­
ative values to  0 to  obtain the required dataset. Since, the scaling coef­
ficients are not re-sampled there is no need to  make any adjustm ents for 
the mean. The mean of the surrogate series will be close to  th a t of the 
parent series.

7. Steps 3, 4, 5 and 6 are repeated to  obtain as many surrogate datasets as 
required.

The transform ation of the negative values to  0 in Step 6 above might create 
an artifact in the surrogate data  sets. However, after implem entation of our 
algorithm, we found th a t the percentage of d a ta  points having a value of zero 
ranges from 0.004% to  0.3% which is probably low enough to  not cause any 
impact on the  simulations. This observation was made when modeling FGN 
and the real datasets discussed earlier, with one thousand surrogate series 
generated for each parent dataset.

There are two variables in our algorithm, for which we need to  find ap­
propriate values. The first is the number of vanishing moments of the m other
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wavelet and the second is the number of levels of decomposition for the DWT. 
We determine the values for these variables experimentally by using FGN 
datasets (generated by using Paxson’s algorithm [62]) as the parent dataset.

To find the appropriate number of vanishing moments, we experiment with 
the db3, db6 and db9 m other wavelets (having 3, 6 and 9 vanishing moments 
respectively). One thousand surrogate series are created from each FGN series, 
using each of the three m other wavelets. Table 4.1 gives the Hurst values of 
the parent and surrogate series using the different m other wavelets. As seen

Hurst Value 
of Parent 

Series

Hurst Value of Surrogate Series
db3 db6 db9

Mean Variance Mean Variance Mean Variance
0.5214 0.5210 0.000094 0.5147 0.000093 0.5173 0.000224
0.6244 0.6153 0.000090 0.6170 0.000102 0.6181 0.000086
0.7263 0.7087 0.000100 0.7181 0.000088 0.7175 0.000080
0.8274 0.8010 0.000104 0.8196 0.000094 0.8171 0.000082
0.9282 0.8932 0.000111 0.9204 0.000095 0.9154 0.000081

Table 4.1: Hurst Value of surrogate series w ith different m other wavelets

from Table 4.1, using the db6 m other wavelet gives better results than  the db3 
wavelet in term s of the Hurst value. No substantial improvement can be seen 
with the db9 wavelet, and hence the db6 m other wavelet is selected for our 
algorithm.

In order to  find the appropriate number of decomposition levels, we ex­
perim ent w ith the same set of FGN datasets used above, and the db6 mother 
wavelet. The results indicate th a t using between seven to  ten levels gives 
enough variability between the surrogate series, while keeping the Hurst pa­
ram eter of the surrogate series close to the parent series. We use ten  levels for 
our algorithm.

It is possible th a t the optimum m other wavelet and num ber of decompo­
sition levels will depend on the type of traffic pa ttern  and the length of the 
parent series. This will involve conducting multiple experiments and estab­
lishing an appropriate criteria for selecting the right values for these variables. 
We leave this for future work.

4.4 Perform ance Evaluation of A lgorithm
We use a combination of synthetic and real datasets for evaluating our algo­
rithm . The synthetic traces were generated by using the the FGN generator 
proposed by Paxson in [62]. Each dataset is generated to be of length 16384, 
with the Hurst value, H  €  [0.52,0.97]. The da ta  points generated by the Pax­
son generator contain fractional as well as negative values. We are interested 
in representing the aggregate workload (packets or bytes) per tim e slot, so the 
da ta  points m ust be non-negative integers. To achieve this, we add an integer
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value greater than  the absolute of the minimum value of the generated series. 
The da ta  points are then  rounded to the nearest integer, and this dataset is 
used in the analysis.

The real datasets are obtained from publicly available trace repositories 
and a  trace recorded a t the gateway to  our university in 2001. The first 
two traces belong to  the well known set of Bellcore traces analyzed in [49]. 
Prom this set, we use the pAug89 and pOct89 traces and generate datasets 
representing the num ber of bytes per 12 ms and 10 ms respectively. Next we 
have the 20030424-000000-0 trace obtained from the Cooperative Association 
for Internet D ata  Analysis (CAIDA) [2]. This is a 5-minute trace of packet 
headers on an OC48 backbone link, made available to us by CAIDA. We 
created two datasets from this trace; the first containing the number of packets 
per millisecond for the initial 107622 milliseconds, and the second containing 
the num ber of packets per millisecond for the entire trace. The fourth trace 
was collected on April 09, 2002 a t 0300 hours by the Network D ata Analysis 
Study Group a t the University of North Carolina a t Chapel Hill [3]. This 
trace contains the num ber of packets and bytes per millisecond for 732247 
milliseconds. Prom this we created a dataset of the number of packets per 100 
milliseconds giving us 73225 data  points. The final trace was collected in 2001 
on the outgoing link connecting the University of A lberta’s campus network 
to  the Internet. The trace is a record of 100000 packets passing the gateway. 
Prom this trace, we formed a dataset of length 71391 representing the number 
of packets per millisecond. The details of the series formed from the traces are 
summarized in Table 4.2.

Series
Name

D ata
Type

Aggregation 
Period (ms)

Length of 
Series

pAug89 Bytes 12 261902
pOct89 Bytes 10 175962
CAIDA Packets 1 107622

full-length CAIDA Packets 1 300000
UNC Packets 100 73225
UofA Packets 1 71391

Table 4.2: Datasets formed from actual traces

4.4 .1  P erform ance T ests
The criteria we use for evaluation of our algorithm are the Hurst param eter, H, 
(measuring the second order scaling properties), the probability distribution 
function (PDF) plots, the Linear Multiscale diagram (used to  test the higher 
order scaling properties) and the queue tail probability.

We compare our algorithm with the FGN model which has been tradition­
ally used for comparison of all traffic models and a m ultifractal wavelet model
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th a t is one of the latest models proposed to capture the m ultifractal behavior 
for real traffic d a ta  having a non-Gaussian distribution. The FGN datasets 
are generated by Paxson’s algorithm [62] and the /3-multifractal wavelet model 
(MWM) [70] is used as the m ultifractal model. For each of the three tech­
niques, we generate one thousand datasets and for comparison we randomly 
pick one d a ta  set generated by each m ethod and run the corresponding tests.

4.4.1.1 H urst Values

For estim ating the Hurst value, we have used the Wavelet based estim ator 
[86] w ith three vanishing moments for the m other wavelet (It should be noted 
th a t the num ber of vanishing moments used for the estim ator has no relation 
to  the num ber of vanishing moments used in our bootstrap  algorithm). The 
wavelet estim ator gives confidence intervals along with the estimates, however 
we report only the point estimates.

The fourth and fifth columns of Table 4.1 illustrate th a t the surrogate 
series generated by using the db6 m other wavelet have H  close to  th a t of the 
parent series. In addition, it is also necessary to  examine if the variation of the 
Hurst value for the surrogate series changes w ith increasing Hurst values of 
the parent series. To test this, we computed the difference between the Hurst 
value of the parent series and each surrogate series. The hoxplots of these 
differences are plotted in Fig. 4.1. The difference between the Hurst value of

O- -0.02

0.92810.6214 0.6244 0.7262
Hurst Value of Parent Series

0.8274
Series

Figure 4.1: Boxplot of difference between Hurst values of surrogate series and 
parent series for FGN dataset.

the original and surrogate series remains constant over a wide range of values. 
This dem onstrates th a t the accuracy of our algorithm is constant over a wide 
range of Hurst values. However, it is observed th a t there is positive bias in 
the Hurst param eter of the surrogate datasets.

Next, we evaluate the results obtained with the real datasets. The Hurst 
values for the parent series and the means and variances of the Hurst values 
for the surrogate series are reported in Table 4.3. The values in the table
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indicate th a t the Hurst values of the surrogate series closely m atch those of the 
original dataset; thereby dem onstrating th a t our algorithm is able to  capture 
the second order self-similarity of the parent dataset (as measured by the Hurst 
param eter).

Parent Series Surrogate Series

Name Hurst Value
Hurst Value

Mean Variance
pAug89 0.7958 0.7831 0.000052
pOct89 0.7739 0.7630 0.000039
CAIDA 0.5915 0.5869 0.000081

UNC 0.9339 0.9138 0.000563
UofA 0.6112 0.6273 0.000078

Table 4.3: Hurst values for multiple datasets

4.4.1.2 P D F  P lots

We examine the m atch of the distribution for the surrogate series with the 
parent series by plotting their PDFs. We plot the PD F for only one surrogate 
series in each case, bu t similar results are obtained for the other surrogate 
datasets. Fig. 4.2 is a  plot of the PD F for the UofA dataset and one of its 
surrogate series. We also plot the PD F for a FGN dataset generated by using 
the Paxson’s algorithm. The PD F for both the FGN and surrogate da ta  sets 
are close to  the parent dataset, but the surrogate dataset generated by our 
algorithm  is a be tter match. This is expected because the UofA dataset does 
not possess a Gaussian distribution.

Original Series

. Generated by Paxson Method

a  10*3

Packets per ms

Figure 4.2: PD F of Packets per millisecond of UofA dataset.

In Fig. 4.3, we plot the PD F for the parent series and two bootstrap  series; 
one generated by using the Box-Cox transform ation and the other without 
using the transform ation. We also plot the PD F for a FGN dataset generated
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by the Paxson’s algorithm. The PD F for the surrogate series using Box-Cox 
transform ation is much closer to  the original PD F than  the series generated 
without using the Box-Cox transform ation, as well as the FGN dataset. This 
shows th a t using the Box-Cox transform ation provides a  be tter m atch to  the 
distribution of the parent series and surrogate series generated without using 
the transform ation has a  distribution close to  th a t of a FGN dataset.

8
C

10'*
0
1 ■« 
*  
CL

10"*
' Original Series 
' Bootstrap Series
1 Bootstrap Series without Transformation

Packets per m s

Figure 4.3: PD F of Packets per millisecond of CAIDA dataset.

In Fig. 4.4, we plot the PD F for the pAug89 series. The surrogate series 
generated by using the Box-Cox transform ation provides a closer m atch to 
the PD F of the parent series. However, the PD Fs are not as close a m atch

% Original Series
»  Bootstrap Series with transformation 

—♦ —  Bootstrap Series without transformation

cs
w*

o.

Bytes per 12 ms

Figure 4.4: PD F of Bytes per 12 milliseconds of pAug89 dataset.

as observed for the UofA and CAIDA datasets. For the pOct89 and UNC 
datasets, results similar to  the pAug89 case are obtained. We are investigating 
the reason for this divergence in some of the datasets. One possible reason is 
th a t the first two datasets are close to  Gaussian in term s of the PD F (seen 
from Fig. 4.2 and Fig. 4.3).

We applied m ultiple Box-Cox transform ations on the original dataset hop­
ing to  get a  be tter m atch of the PDF. However, no improvement was seen even
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after applying the Box-Cox transform ation three times. Another option ex­
plored was independently applying the Box-Cox transform ation to  the wavelet 
coefficients a t each level. Even this approach does not provide be tte r results. 
In fact, the PD F of d a ta  sets obtained by using this modification is nearly the 
same as th a t without any transformation.

4.4.1.3 M ultiScaling Behavior

As m entioned above, the Hurst param eter is a measure of the second order 
scaling properties of the dataset. This is done by studying the variance S2(j)  
of the wavelet coefficients a t octave j which has the behavior S 2 ( j ) C ja. 
In addition to  the scaling in the second order, the dataset will very often also 
have scaling for all moments, which can be denoted as:

S q(j) = E l\d ( j) \* }~ C qr'>, (4.2)

with q signifying the scaling order.
If a q is a linear function, the process is said to  be monofractal. However, 

if a q is not linear, then  the process is said to exhibit multiscaling. It has been 
discovered [71] th a t da ta  traffic in general and WAN traffic in particular possess 
multiscaling behavior, and a  number of m ultifractal models have been proposed 
for capturing the behavior of such traffic [55, 70], In order to  accurately 
characterize our algorithm  we study the higher order scaling behavior of the 
traces generated by our model and compare them  to  the original traces as well 
as to  traces generated by Paxson’s model and the /3-MWM model.

The multiscaling behavior is studied by plotting a Linear Multiscale Dia­
gram (LMD) representing a q as a function of q. In order to  study this behavior 
we have used the M ultiscaling tool developed by Veitch et. al. [88].

In Figs. 4.5 and 4.6 we have plotted the LMD for the UofA and CAIDA 
datasets respectively. In both the figures, we have plotted the LMD for the 
parent dataset, the datasets generated by our algorithm (referred to  as Boot­
strap  series in the figures), the FGN model and the /3-MWM model. In both 
the figures, it is seen th a t the LMD of the dataset generated by our algorithm 
has a closer m atch to  the LMD of the original trace, as compared to  the (3- 
MWM model and the FGN model. Similar results were obtained for the UNC, 
pAug89 and pOct89 datasets as well.

This dem onstrates th a t our algorithm is able to  capture even the higher 
order scaling properties of the original datasets.

4.4.1.4 Queueing Behavior

The final test is a simple queueing experiment. The setup consists of a single 
server w ith infinite buffer size, servicing the incoming da ta  a t a rate  of 1.1 times 
the mean arrival ra te  of the dataset. We then compute the queue length a t the 
end of each interval and from this series compute the queue tail probability, 
as the probability of the queue length exceeding a certain buffer size, i.e. we
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Figure 4.5: Linear Multiscale diagram for UofA dataset.

 0  Original Serial
—«—  MWM 8«ttoi
—9—  Bootstrap Series 

FGN Series

Figure 4.6: Linear Multiscale diagram for CAIDA dataset.

compute P (Q  >  x), where Q is the queue length, and x  is the buffer size. 
Once again, we use the parent dataset, and a  randomly picked d a ta  set each 
from the set generated by our algorithm (referred to as Bootstrap series) and 
the FGN and (3-MWM model.

Fig. 4.7 is a plot of the queue tail probability for a FGN dataset with 
Hurst value of 0.7263, and one of its surrogate series. The figure shows tha t 
the surrogate dataset has a  similar queuing behavior as the parent series.

The queue tail probability for the UofA trace is plotted in Fig. 4.8. It is 
seen th a t the dataset generated by our algorithm has behavior th a t is almost 
similar to  the original da ta  set, while the other two datasets show a very 
different behavior.

Our algorithm  performs better than  the other two models even for the 
UNC and Caida datasets as seen in Fig. 4.9 and Fig. 4.10 respectively.

For the pAug89 and pOct89 datasets, similar results are obtained for the 
queuing behavior of the surrogate datasets. Thus, it is shown th a t the surro­
gate series generated by our algorithm have queuing behavior th a t is similar 
to the parent dataset for different da ta  sets.
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Figure 4.7: Queue Tail Probability for FGN dataset.
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Figure 4.8: Queue Tail Probability for UofA dataset.

The results reported in this section conclusively dem onstrate th a t our algo­
rithm  is able to  retain  the Hurst param eter of the parent dataset and performs 
better th an  the FGN and /3-MWM models, while considering the m ultifractal 
spectrum  and the queue tail behavior. This performance is achieved without 
using any complex param eter fitting procedure and is completed autom ated, 
thereby m aking it easy to use.
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Figure 4.10: Queue Tail Probability for CAIDA dataset.
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Chapter 5 

Change D etection

5.1 L iterature Survey on Change D etection  
Techniques

There are two different types of techniques in the literature for addressing the 
change point detection problem. In the first technique, a block size is decided 
upon and then the estim ate of the Hurst param eter over this block is obtained. 
The Hurst estim ates for adjacent blocks are compared and if the values are sig­
nificantly different, then a  change is indicated. The advantage of this m ethod 
is th a t along with change detection, the estim ates of the Hurst param eter are 
also readily available. However, the drawback is th a t the resolution of change 
detection is limited by the block size. If a very small block size is selected to 
improve the resolution, then the estimates of the Hurst param eter obtained 
are not so reliable. If a bigger block size is selected, then the resolution for the 
change detection is degraded. The second technique is based on monitoring 
some param eter on a continuous basis and if this param eter changes, then it 
indicates a change in the Hurst param eter.

In [87], the authors proposed a statistical test to  study the stationarity 
of the scaling exponent over time. Using their test, they have shown th a t 
the Hurst value of a  traffic trace does not necessarily rem ain constant. In 
this m ethod, repeated scans of the stored da ta  are performed by breaking the 
dataset into different sized blocks and the Hurst param eter estim ated for each 
block. The estim ated Hurst values are then subjected to a  statistical test to 
check for their constancy. In [14], a Least Square Criterion is used for detecting 
changes in the Hurst param eter or the ARM A param eters of a FARIMA model. 
In [36], the authors propose the use of a Cumulative Sum (CUSUM) like test 
for the on-line detection of changes for Markov M odulated Poisson Process and 
Gaussian FARIMA. However, their m ethod works well only when the value of 
the param eter before and after the change is known in advance. However, in 
practical scenarios, where this is not the case, they propose running a bank of 
change detection algorithms with different assumed values for the param eter 
after the change. This is computationally quite expensive. In [89], a CUSUM
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technique is used for detecting change in the Hurst param eter of LRD traffic. 
However, the drawback of the above m ethod is th a t it is based on a param etric 
model of the traffic. In [90], three tests are proposed for detecting changes in 
the Hurst value. Two of the tests depend on using the W hittle estim ator for 
blocks of non-overlapping data, and the th ird  m ethod is lim ited to  H <  0.75.

In [73], the authors propose decomposing the incoming traffic into different 
scales using wavelets and then use the Schwartz Information Criterion (SIC) 
to  detect when there is a change in the variance of the wavelet coefficients 
a t different scales. If a change is detected in a sufficient number of scales, 
then it says th a t the Hurst param eter has changed. A further refinement 
of this m ethod is proposed in [72], where a combination of the Stationary 
Wavelet Transform (SW T) and Discrete Wavelet Transform (DW T) is used to 
decompose the data. The change points indicated by the SIC are then clustered 
together by the Hough transform  to indicate the change point. Their proposal 
for using the SW T is based on their claim th a t SW T decomposes the d a ta  in a 
similar fashion as the DW T. However, no theoretical basis is provided for the 
same. In fact, our experiments indicate th a t the wavelet coefficients obtained 
by using the SW T are not as decorrelated as those obtained by the DWT. 
This can be seen clearly from the figure 5.1 where we have plotted the ACF 
for the level 2 DW T and SW T coefficients of a FGN series w ith Hurst value 
of 0.92. This figure shows th a t the ACF for the SW T coefficients is significant

ACF of Level 2 DWT coefficients of FGN series ACF of Level 2 SWT coefficients of FGN series

s
£
8
<
J>aE
A

Lag

S  0.2 

<

I  0$ -M
- 0.4

Lag

Figure 5.1: Comparison of ACF for DW T and SW T coefficients of FGN series.

upto a lag of 6, while for the DW T coefficients, it is significant only upto a lag 
of 1. This shows th a t the DW T decorrelates the da ta  be tter than  SWT. In 
addition, the wavelet coefficients obtained by SW T do not possess a normal 
d istribution even for a FGN dataset. To test this, we use the same FGN series 
used above, and decomposed it to  10 levels by using both  SW T and DWT. 
We then test if the wavelet coefficients obtained by both the decomposition 
techniques a t all levels are normal. It is found th a t the wavelet coefficients at 
all 10 levels obtained by using DW T are normal, while for the SW T case, the 
coefficients a t only the first three levels are normal, while those a t the higher 
seven levels are not normal.
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5.2 Proposed A lgorithm
Our algorithm  is similar to  the one proposed by Rincon and Salient [72]. It is 
based on the following equation from [4]:

pj = 2 (5.1)

where c / is given by Eqn. 2.3, C  = J  |i/|1-2ff |\&o(^)|2̂ )  an(i 'ho(z') is the
Fourier transform  of the wavelet pj is the variance of the wavelet coeffi­
cients a t level j  given by the equation:

=  < 5 - 2 >

j  k= 1

where rij is the number of available coefficients a t level j .  Rewriting 5.1 
as

log2(pj) = j(2 H  -  1) +  log2(cf C) (5.3)

it is seen th a t the variance of the wavelet coefficients a t any level is proportional 
to  the Hurst value of the original series. Thus, if the Hurst value of the original 
series changes a t any point, the variance of the wavelet coefficients around th a t 
location will also change. Thus, by detecting a change in the variance of the 
wavelet coefficients we can indicate a change in the Hurst value. In the next 
section, we describe the algorithm used for detecting a  change in the variance 
of the wavelet coefficients.

5.2 .1  V ariance C hange D etec tio n

For detecting a  change in the variance of the wavelet coefficients, we have used 
the algorithm  proposed in [27]. The algorithm can be explained as follows: 
Let X i ,  X 2, .... be independent random variables with density f ( X ;  9, rj). We 
assume 9 G Qi C 5id, d > 1, p £  C 3?p, p  > 0. The param eter 9 is the 
param eter of interest, and p will be the nuisance param eter. The hypothesis 
to  be tested, as shown in [34] is:

H 0 : 9 = 90,90 and rj unknown, for all observations 
H a : X i ,  have density f ( X ;  90,r]), rj unknown

X T,X T+i , .... have density f ( X \ 9 a,rj), 77, 9a unknown, 
where r ,  the change point is also unknown.

For our case, the random  variables X i  s are replaced by the wavelet coeffi­
cients, djtk for each scale j .  The dimension d =  1 and p = 1. The function /

will be the density function of the normal distribution, - j ^ e x p  =£■ ( £^ ) 2 ,

where p, is the  mean and a 2 is the variance. Since, we are interested in moni­
toring the variance, the hypothesis to  be tested becomes:

Ho : a 2 =  cJq, ctq and p  are unknown
H i : a 2 ^  erg, <7q and p  are unknown (5.4)
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In [34], it has been shown th a t the test statistic for this case is

w > =  E  [X ‘ -  ("o +  4 ) ]  /  (2^o)1/2 •
(5.5)

As discussed earlier in Section 2.3, the wavelet coefficients have a mean of zero. 
Thus, the test hypothesis and the test statistic become:

H 0 : cr2 =  o*q , Cq is unknown 
H i : a2 /  <7q, <7q is unknown

,4 \ 1/2

(5.6)

(5.7)
i = 1

The limiting distribution of the statistic m a x i<k<nn~l^ \W k\ (where n  is the 
length of the dataset) under the null hypothesis is a Brownian bridge [27], 
Using this, the critical values Ca have been found to  be [50]

a one-tail two-tail
0.1 1.073 1.224

0.05 1.224 1.358

We conclude th a t H 0 is not supported by the da ta  if 

m a x i<k<nn~1/2\Wk\ > Ca. (5.8)

If no such k, k < n  exists, then Ho is not rejected. For our experiments, we 
have used a  = 0.1 and a two-tail test giving us Ca =  1.224. a \  is obtained by 
computing the variance of the block of wavelet coefficients being tested.

The above discussion applies to  a single level of wavelet coefficients. The 
same procedure is repeated for all the levels of the wavelet coefficients, as dis­
cussed in [34]. We use the results obtained a t the different levels of the wavelet 
decomposition for making a decision if the Hurst param eter has changed. This 
process of deciding if the Hurst param eter has changed is described in the next 
section.

5 .2 .2  D ecis ion  ab ou t C on stan cy  o f  H urst V alue
By using the algorithm  described in the previous section, we are able to  find 
the locations of the variance change points for the wavelet coefficients a t the 
different levels of the DW T of the dataset. The easiest m ethod for concluding 
th a t the Hurst value has changed is to test if Eqn. 5.8 is satisfied for any level. 
In other words, if a change in variance is detected at any level, then  a change 
in the Hurst value is indicated. This is the union-intersection m ethod from 
[34].
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Figure 5.2: Converting change point in variance to  Hurst change point.

However, it is possible th a t the variance change points a t different levels of 
the DW T might be pointing to  different locations in the time domain. Another 
point to  note is th a t each point in the wavelet domain actually corresponds to  a 
range in the tim e domain, with the range increasing as we increase the level of 
decomposition. For example, when using the db6 wavelet, each point a t level 1 
of the DW T representation corresponds to  6 points on the tim e domain, while 
each point a t level 2 corresponds to  16 points, and so on. So, it is necessary to 
convert each variance change point to  its corresponding range along the time 
domain. This is dem onstrated in Figure 5.2, where we have shown 5 levels 
of wavelet decomposition and their corresponding ranges on the tim e domain. 
Thus, a variance change point will actually indicate a range along the time 
domain for the Hurst change. As can be seen from the figure, variance change 
points have been indicated at levels 1, 2, 4 and 5, labeled as V I , V2, V3  and 
V4  respectively. Note th a t, there is no change point indicated at level 3. This 
happens in many cases, specially when the change in the Hurst value is small. 
The m apping of each variance change point to  its range along the tim e domain 
is tabulated  below.

It can be seen from Figure 5.2, th a t the ranges indicated by the variance 
change points are not always overlapping. In some cases the ranges indicated 
by one level are completely enclosed by the ranges indicated by another level, 
as for VT and V2, while in other cases, there is no overlap as for V3  and
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Variance Change Point Time-domain Range
V I T5-T7
V2 T4-T8
V3 T1-T3
V4 T2-T6

V2. In other cases like for V3 and V4, there is partial overlap. In order to 
decide which of the variance change points to  select as the change point, we 
look at the num ber of ranges which intersect or enclose the range indicated by 
each change point, and then select th a t point whose range intersects w ith the 
maximum num ber of ranges. The following is a  tabulation of the intersecting 
ranges for each change point.

Variance Change Point Change Points for which 
its range intersects

V I V2,V4
V2 V I, V4
V3 V4
V4 V1,V2,V3

As can be seen, the range indicated by V4  intersects w ith the maximum 
number of ranges, and hence th a t is selected as the change point. If there 
are two possible candidates to  be selected as the change point, then we select 
the change point a t the lower level. One criteria for selecting the variance 
change point is th a t its range must intersect with a t least one other range. If 
all the variance change points have m utually exclusive ranges along the time 
domain, then  we consider th a t as not a valid detection of a  Hurst change. 
Once, the change point is selected, we need to  decide the range along the time 
domain. One way to  do th a t, would be to take ju st the range indicated by 
this change point. In this example, th a t would mean T2 — T6. However, we 
select the range which encompasses all the intersecting ranges. In this case, 
th a t becomes T1 — T8. Once this “Hurst Change Range” is selected, we take 
the m idpoint of this range as the “Hurst Change Point” .

Now th a t our algorithm  has been explained, we dem onstrate its perfor­
mance in the next section.

5.3 Perform ance Evaluation o f A lgorithm
In this section, we perform a number of tests to dem onstrate the working of 
our algorithm.
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5.3.1 U sin g  F G N  D a ta sets

We tested our algorithm  by using FGN datasets of different lengths. The FGN 
series were generated by using the M atlab function w fb m  which generates a 
Fractional Brownian M otion series with the given Hurst value. The difference 
between adjacent values of this series gives us the FGN series w ith the desired 
Hurst value. For our work, we generated FGN series w ith the following Hurst 
values: 0.52, 0.57, 0.62, 0.67, 0.72, 0.77, 0.82, 0.87, 0.92 and 0.97 of lengths 
10000, 20000 and 30000 for each Hurst value. For every Hurst value of a 
specific length, we generated 1000 series.

We then used the FGN series to  create datasets having a single or no change 
point of the Hurst param eter. The datasets we generated are as follows:

1. Two series of length 20000 each were joined back to  back to  generate 
a dataset of length 40000 (referred as 20000 +  20000, and w ith change 
point a t 20001).

2. One series of length 30000 was joined with another series of length 10000 
to  generate a  dataset of length 40000. There were two different combi­
nations used in this:

(a) The series of length 30000 was followed by the series of length 10000 
(referred as 30000 +  10000, and with change point a t 30001).

(b) The series of length 10000 was followed by the series of length 30000 
(referred as 10000 +  30000, and with change point a t 10001).

3. One series of length 20000 was joined with another series of length 10000 
to  generate a dataset of length 30000. There were two different combi­
nations used in this:

(a) The series of length 20000 was followed by the series of length 10000 
(referred as 20000 +  10000, and w ith change point a t 20001).

(b) The series of length 10000 was followed by the series of length 20000 
(referred as 10000 +  20000, and w ith change point a t 10001).

For each of the above datasets, we tested for all possible combinations of 
the following changes of the Hurst parameter: 0 (no change), 0.05, 0.1, 0.15, 
0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. Both increases and decreases in the Hurst 
value were tested.

As discussed previously, our algorithm consists of decomposing the time 
domain dataset into the wavelet domain by using the DW T. One of the im­
portan t features of DW T is selecting an appropriate m other wavelet. The 
most commonly used m other wavelets used in the literature for LRD are the 
dbl (also known as the Haar wavelet) and the dbS. We use these two wavelets 
and the db6 wavelet for our experiments. We compare the performance of 
these wavelets for our change detection algorithm by using the 20000 +  20000 
datasets. The corresponding results are shown in the second, th ird  and fourth
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columns of Tables 5.1, 5.2, 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17 and 5.19. 
From Tables 5.1 and 5.2, it can be seen th a t the number of false positives in­
dicated by the change detection algorithm are the least when the dbl wavelet 
is used. However, from Tables 5.3, 5.5, 5.7, 5.9, 5.11, 5.13 and 5.15, it is seen 
th a t by using the db6 wavelet gives the best detection results. In order to 
obtain a  proper balance between the false positives and correct detections, we 
decided to  use the db3 wavelet for all our experiments.

5.3.1.1 False Positives

The first test th a t we conducted was to  check the false positive rate; in other 
words the number of changes detected when there was no true  change. For this 
purpose, we used the datasets which were formed by joining FGN series having 
the same Hurst value. The corresponding results are tabulated  in Tables 5.1 
and 5.2. As seen from Tables 5.1 and 5.2, the number of false positives reduce 
as the Hurst value increases. We have not yet found any reason for this 
observation.

Hurst
Value

Series
20000 +  20000 30000 +  10000 

db3
10000 +  30000 

db3dbl db3 db6
0.52 0 189 242 230 257
0.57 2 118 195 164 176
0.62 2 61 121 116 119
0.67 3 23 82 80 90
0.72 0 13 57 74 86
0.77 1 4 37 70 91
0.82 1 8 25 65 63
0.87 5 8 21 63 79
0.92 2 8 13 76 85
0.97 1 4 19 59 66

Table 5.1: Number of false positives detected in 1000 series of length 40000. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of both  the series are the same.

One of the possible reasons for the false positives might be the discontinuity 
introduced a t the point where we join the 2 FGN series. In order to  rule out 
this possibility, we plotted the histogram of the locations where the change was 
indicated. The histogram  for the 20000 +  20000 dataset w ith the db3 wavelet 
is shown in Figure 5.3.

If the discontinuity a t the point of joining the two FGN series would be 
the cause for the false positives, we expect to  see a peak near the center of the 
histogram, since th a t is the point of discontinuity. However, it is seen in Figure
5.3 th a t this is not the case. In fact, for Hurst values of 0.52,0.57,0.62,0.67
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Hurst
Value

Series
10000 +  20000 

db3
20000 +  10000 

db3
0.52 310 315
0.57 217 215
0.62 175 164
0.67 143 105
0.72 120 98
0.77 97 94
0.82 104 73
0.87 98 76
0.92 101 92
0.97 87 95

Table 5.2: Number of false positives detected in 1000 series of length 30000. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of both  the series are the same.

and 0.72, most of the changes are detected in the initial th ird  of the dataset. 
Similar results were obtained for the other datasets. This result also proves 
th a t the discontinuity introduced by putting FGN series back-to-back does not 
cause a problem for change detection.

Another observation from Tables 5.1 and 5.2 is th a t the num ber of false 
positives is the least for the 20000 +  20000 dataset. Even for datasets of 
the same length; viz. 30000 +  10000 and 10000 +  30000, the number of false 
positives are much greater than  the first case. This is another phenomenon for 
which we have been unable to find any explanation. The worst case behaviors 
are for the 10000 +  20000 and 20000 +10000 datasets with Hurst value of 0.52 
giving a False detection rate  of 31%.

5.3.1.2 False N egatives

Here, we test how many true changes are missed by our algorithm; or the 
number of False Negatives. The results for the three series of length 40000 
are tabulated  in Tables 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17 and 5.19, and 
the results for the two series of length 30000 are tabulated in Tables 5.4, 5.6, 
5.8, 5.10, 5.12, 5.14, 5.16, 5.18 and 5.20. For each case, the results for all the 
possible transitions of the Hurst param eter are reported in these tables.

From Tables 5.3 and 5.4, it can be seen th a t the change detection ra te  by 
using the db3 wavelet is not very high. The best case is 52.7% for the transition 
0.52 — 0.57 for the 20000 +  10000 dataset, with the worst case being 23.2% for 
the 10000 +  30000 dataset. By looking at these results, it can be concluded 
th a t our algorithm  is not sensitive enough to  detect changes of m agnitude 
0.05. Another observation th a t can be made from these tables is th a t when 
the change point is not a t the center of the dataset, the algorithm  has better
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Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001
db3dbl db3 db6

Increase
0.52-0.57 141 478 777 448 354
0.57-0.62 135 456 739 407 324
0.62-0.67 133 410 732 366 259
0.67-0.72 133 419 752 301 232
0.72-0.77 140 408 702 347 205
0.77-0.82 139 425 728 358 209
0.82-0.87 156 452 737 328 227
0.87-0.92 178 462 704 362 267
0.92-0.97 196 463 755 376 232

Decrease
0.57-0.52 166 507 657 358 520
0.62-0.57 192 493 602 322 468
0.67-0.62 183 474 590 302 459
0.72-0.67 190 488 574 259 386
0.77-0.72 185 442 539 253 430
0.82-0.77 218 450 566 255 388
0.87-0.82 218 493 570 265 376
0.92-0.87 201 462 561 258 387
0.97-0.92 219 473 591 270 383

Table 5.3: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.05.
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Figure 5.3: Histogram of Change Point Locations for the 20000+20000 dataset 
using the db3 wavelet.

performance in detecting an increase in the Hurst value if the change point is 
towards the  end of the series, while it is the opposite for detecting decreases 
in the Hurst value. This is seen for all possible transitions in the Hurst value.

W hen the change m agnitude is 0.1, it can be observed from Tables 5.5 
and 5.6 th a t the algorithm gives reasonably satisfactory results w ith the best 
performance observed when the change point is in the center of the series 
(20000 +  20000 dataset). However, when the change point is in the initial 
quarter of the series (10000 +  30000 dataset), the algorithm does not have a 
very good performance in detecting increases in the Hurst value.

The observations made from Tables 5.3 - 5.6 show th a t our algorithm ’s 
performance is sensitive to  the location of the change point in the dataset. In 
addition, the algorithm  also performs very differently in detecting increases 
and decreases in the Hurst value if the change point is not in the center of the 
dataset.

For any transition in the Hurst value with a m agnitude of 0.15 or greater, 
our algorithm  detects changes in more than  90% of the cases as can be seen 
from Tables 5 .7 -5 .2 0 . In fact, once the change m agnitude is 0.20 or greater, 
changes are detected in more than  98% of the cases.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.57 394 526 0.57-0.52 525 486
0.57-0.62 390 520 0.62-0.57 494 394
0.62-0.67 382 466 0.67-0.62 471 390
0.67-0.72 325 438 0.72-0.67 417 379
0.72-0.77 338 422 0.77-0.72 424 328
0.77-0.82 320 438 0.82-0.77 426 381
0.82-0.87 310 442 0.87-0.82 428 366
0.87-0.92 327 429 0.92-0.87 407 345
0.92-0.97 332 448 0.97-0.92 417 353

Table 5.4: Number of changes detected for 1000 series of length 30000 by using 
the db3 wavelet. Each series is formed by joining two different FGN series; one 
of length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.05.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001

db3dbl db3 db6
Increase

0.52-0.62 425 807 969 760 566
0.57-0.67 463 806 978 736 549
0.62-0.72 433 835 981 714 542
0.67-0.77 478 826 972 726 535
0.72-0.82 470 817 978 728 556
0.77-0.87 534 859 979 722 550
0.82-0.92 515 852 967 741 585
0.87-0.97 541 866 981 759 560

Decrease
0.62-0.52 515 848 935 625 794
0.67-0.57 535 862 920 626 797
0.72-0.62 551 864 920 614 751
0.77-0.67 557 866 914 598 746
0.82-0.72 553 861 919 597 771
0.87-0.77 605 866 933 633 747
0.92-0.82 571 890 930 593 770
0.97-0.87 612 883 921 593 747

Table 5.5: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.1.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.62 727 799 0.62-0.52 813 734
0.57-0.67 723 794 0.67-0.57 809 720
0.62-0.72 676 803 0.72-0.62 785 703
0.67-0.77 667 792 0.77-0.67 777 718
0.72-0.82 655 800 0.82-0.72 776 688
0.77-0.87 689 821 0.87-0.77 772 708
0.82-0.92 692 815 0.92-0.82 816 693
0.87-0.97 693 800 0.97-0.87 787 693

Table 5.6: Number of changes detected for 1000 series by using the dbZ wavelet. 
Each series is formed by joining two different FGN series; one of length 20000 
and the other of length 10000. The Hurst param eter of the 2 series differ by 
0 . 1 .

Initial Value - 
Final Value

Change Point Location
20001 30001

dbZ
10001
dbZdbl dbZ db6

Increase
0.52-0.67 787 975 1000 961 839
0.57-0.72 795 974 1000 929 813
0.62-0.77 815 976 999 938 822
0.67-0.82 809 988 1000 955 841
0.72-0.87 855 989 1000 955 840
0.77-0.92 874 990 999 957 834
0.82-0.97 881 994 999 959 849

Decrease
0.67-0.52 829 975 995 865 965
0.72-0.57 858 986 995 891 952
0.77-0.62 860 990 994

0000 960
0.82-0.67 856 990 995 876 950
0.87-0.72 865 990 998 869 956
0.92-0.77 883 987 996 875 959
0.97-0.82 886 993 1000 889 957

Table 5.7: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.15.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.67 918 953 0.67-0.52 948 925
0.57-0.72 887 945 0.72-0.57 957 938
0.62-0.77 904 963 0.77-0.62 958 918
0.67-0.82 913 951 0.82-0.67 965 926
0.72-0.87 921 962 0.87-0.72 948 930
0.77-0.92 925 969 0.92-0.77 961 932
0.82-0.97 942 979 0.97-0.82 975 938

Table 5.8: Number of changes detected for 1000 series by using the db3 wavelet. 
Each series is formed by joining two different FGN series; one of length 20000 
and the other of length 10000. The Hurst param eter of the 2 series differ by 
0.15.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001

db3dbl db3 db6
Increase

0.52-0.72 941 999 1000 990 954
0.57-0.77 963 999 1000 996 950
0.62-0.82 956 998 1000 993 962
0.67-0.87 974 1000 1000 996 971
0.72-0.92 972 1000 1000 996 969
0.77-0.97 972 999 1000 997 976

Decrease
0.72-0.52 979 999 1000 965 998
0.77-0.57 958 998 1000 977 994
0.82-0.62 970 1000 1000 981 994
0.87-0.67 971 1000 1000 986 995
0.92-0.72 978 1000 1000 979 998
0.97-0.77 979 1000 1000 979 997

Table 5.9: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.2.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.72 981 990 0.72-0.52 993 989
0.57-0.77 987 994 0.77-0.57 997 990
0.62-0.82 988 998 0.82-0.62 997 987
0.67-0.87 983 998 0.87-0.67 997 993
0.72-0.92 991 997 0.92-0.72 998 998
0.77-0.97 994 999 0.97-0.77 999 990

Table 5.10: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.2.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001

db3dbl db3 db6
Increase

0.52-0.77 991 1000 1000 1000 996
0.57-0.82 993 1000 1000 999 996
0.62-0.87 994 1000 1000 1000 994
0.67-0.92 993 1000 1000 1000 994
0.72-0.97 999 1000 1000 999 996

Decrease
0.77-0.52 983 1000 1000 995 999
0.82-0.57 984 1000 1000 997 1000
0.87-0.62 995 1000 1000 997 1000
0.92-0.67 989 1000 1000 999 1000
0.97-0.72 995 1000 1000 997 1000

Table 5.11: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.25.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.77 1000 999 0.77-0.52 999 999
0.57-0.82 998 1000 0.82-0.57 1000 999
0.62-0.87 1000 1000 0.87-0.62 999 998
0.67-0.92 1000 1000 0.92-0.67 1000 999
0.72-0.97 1000 1000 0.97-0.72 1000 1000

Table 5.12: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.25.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001
db3dbl db3 db6

Increase
0.52-0.82 996 1000 1000 1000 1000
0.57-0.87 1000 1000 1000 1000 999
0.62-0.92 999 1000 1000 1000 999
0.67-0.97 1000 1000 1000 1000 1000

Decrease
0.82-0.52 996 1000 1000 1000 1000
0.87-0.57 996 1000 1000 1000 1000
0.92-0.62 997 1000 1000 999 1000
0.97-0.67 998 1000 1000 1000 1000

Table 5.13: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.3.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.82 999 1000 0.82-0.52 1000 999
0.57-0.87 1000 1000 0.87-0.57 1000 1000
0.62-0.92 1000 1000 0.92-0.62 1000 1000
0.67-0.97 1000 1000 0.97-0.67 1000 1000

Table 5.14: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.3.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001
db3dbl db3 db6

Increase
0.52-0.87 1000 1000 1000 1000 1000
0.57-0.92 999 1000 1000 1000 1000
0.62-0.97 999 1000 1000 1000 1000

Decrease
0.87-0.52 998 1000 1000 1000 1000
0.92-0.57 1000 1000 1000 1000 1000
0.97-0.62 997 1000 1000 1000 1000

Table 5.15: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.35.

Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.87 1000 1000 0.87-0.52 1000 1000
0.57-0.92 1000 1000 0.92-0.57 1000 1000
0.62-0.97 1000 1000 0.97-0.62 1000 1000

Table 5.16: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.35.
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Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001
db3dbl db3 db6

Increase
0.52-0.92 1000 1000 1000 1000 1000
0.57-0.97 1000 1000 1000 1000 1000

Decrease
0.92-0.52 1000 1000 1000 1000 1000
0.97-0.57 999 1000 1000 1000 1000

Table 5.17: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.4.

Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.92 1000 1000 0.92-0.52 1000 1000
0.57-0.97 1000 1000 0.97-0.57 1000 1000

Table 5.18: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.4.

Initial Value - 
Final Value

Change Point Location
20001 30001

db3
10001
db3dbl db3 db6

Increase
0.52-0.97 1000 1000 1000 1000 1000

Decrease
0.97-0.52 999 1000 1000 1000 1000

Table 5.19: Number of changes detected for 1000 series of length 40000 each. 
Each series is formed by joining two different FGN series. The Hurst param eter 
of the 2 series differ by 0.45.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001
Increase Decrease

0.52-0.97 1000 1000 0.97-0.52 1000 1000

Table 5.20: Number of changes detected for 1000 series by using the db3 
wavelet. Each series is formed by joining two different FGN series; one of 
length 20000 and the other of length 10000. The Hurst param eter of the 2 
series differ by 0.45.
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5.3 .2  C om parison  w ith  R incon-S alien t (R -S) A lgorith m

In this section, we compare the performance of our algorithm with th a t of the 
Rincon-Salient (R-S) algorithm discussed previously. This algorithm  has been 
chosen for comparison because it is the latest algorithm proposed for change 
detection of the Hurst param eter.

For our algorithm, we have used the db3 wavelet with 10 levels of decom­
position. The critical value selected was the two-tailed value for significance 
levels of 0.1; i.e. 1.224. For the R-S algorithm, we used the code provided by 
the authors, and the param eters selected are as follows:

1. Number of levels of decomposition =  8

2. Border scale between the two m ethods =  3

3. Significance level for DW T =  IE-12

4. Significance level for SW T =  IE-5

5. Minimum segment size =  10000

6. Offset =  0

7. Resolution =  2000

8. Quorum =  3

9. Number of change points =  1

5.3.2.1 False Positives

The “Quorum ” selected for the R-S algorithm is the minimum number of levels 
on which a  change should be indicated for the point to  be selected as a Hurst 
change point. This is more than  what we have used for our algorithm; we have 
indicated a change in the Hurst param eter, if a  change point is found at any 
two levels, as discussed previously. It is expected th a t using a higher number 
of levels for making the decision should give fewer false positives, and thus 
the false positive ra te  of the R-S algorithm should be less than  our algorithm. 
However, as seen in Table 5.21, the R-S algorithm has a false positive Rate of 
more than  90% for all cases. If “Number of change points” is increased to  2, 
then the false positive rate  further increases. This high false positive rate  is a 
drawback of the R-S algorithm.

5.3.2.2 False N egatives

In this section, we make a comparison of the performance of our algorithm 
and the R-S algorithm  in detecting a true change. The results are tabulated 
in Tables 5 .22-5 .30 . In these Tables, we have given the number of instances in 
which a change is indicated out of 1000 iterations for each case. We have used
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Hurst Value Our algorithm R-S algorithm
0.52 189 912
0.57 118 935
0.62 61 963
0.67 23 955
0.72 13 977
0.77 4 974
0.82 8 978
0.87 8 972
0.92 8 980
0.97 4 984

Table 5.21: Comparison of the number of false positives indicated by our 
algorithm and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series.

the 20000 +  20000 dataset for our comparisons. The accuracy of the change 
point detection algorithms are compared by computing the difference between 
the actual change point location (20001) and the indicated change point. The 
means and standard  deviations of the difference is also shown in those tables.

Prom Table 5.22, it can be seen th a t the R-S algorithm has a much higher 
detection rate  as compared to  our algorithm when the change in Hurst param ­
eter is 0.05. Our algorithm  gives a worst case detection rate  of 41% and a best 
case detection ra te  of 50.7%. The R-S algorithm on the other hand has a worst 
case detection ra te  of 98.8% and a best case of 100%. However, on comparing 
the deviation of the change point indicated, it can be seen th a t in the cases 
where our algorithm  indicates a change, it is much closer to  the actual change 
location than  w hat is indicated by the R-S algorithm. This can be seen more 
clearly in Figure 5.4 and Figure 5.5 which are the plots of the histograms of 
the location of the change points indicated by the R-S algorithm  and our al­
gorithm. Figure 5.5 shows a  sharp peak near 20000 which is the location of 
the actual change point, w ith a few change points indicated in other locations. 
The change points seen near 4000 are all invalid change points. However, in 
Figure 5.4, it can be seen th a t change points are indicated over the entire range 
of the dataset.

It is seen th a t the mean of the deviation from the actual change point some­
times has a negative value for our algorithm. This might be considered as an 
invalid detection, since the change is indicated before the actual change point. 
However, as discussed previously, in our algorithm we decide on the change 
point as the mid point of the range along the tim e domain. For the dbS wavelet 
with 10 levels of decomposition, as used in our algorithm, the maximum range 
is 5116. Thus, any deviation with an absolute value w ithin this range can be 
considered as an accurate detection of change point irrespective of its sign. It 
will be seen th a t in all the cases, the mean deviation has an absolute value 
less th an  5116, thereby showing th a t on an average our algorithm  indicates
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Transition
O ur algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.57 478 1618.82 7771.58 988 2178.21 9183.79
0.57-0.62 456 846.12 6273.32 992 1961.73 8856.92
0.62-0.67 410 178.11 4151.43 997 1956.37 9527.59
0.67-0.72 419 -405.65 3081.06 997 1740.51 9839.81
0.72-0.77 408 -310.15 2342.02 996 1964.59 9193.01
0.77-0.82 425 -246.79 2429.20 1000 2075.47 9269.57
0.82-0.87 452 -389.66 2148.97 1000 1458.30 9708.35
0.87-0.92 462 -428.09 2430.18 1000 2051.85 9659.23
0.92-0.97 463 -350.27 1732.83 999 1543.21 10334.85

Decrease
0.57-0.52 507 1235.53 6936.02 991 2313.07 9168.09
0.62-0.57 493 935.62 5855.80 995 1840.89 9524.70
0.67-0.62 474 488.15 3606.36 997 2329.58 9446.45
0.72-0.67 488 538.63 2558.10 995 2131.32 9609.31
0.77-0.72 442 615.48 2622.39 995 2328.44 9780.62
0.82-0.77 450 272.06 2227.85 1000 2016.51 9349.48
0.87-0.82 493 270.28 2144.51 999 1354.42 9514.67
0.92-0.87 462 367.71 2053.00 999 1955.62 10059.89
0.97-0.92 473 300.84 2163.54 1000 1274.98 10283.36

Table 5.22: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.05.

the change point quite accurately.
For the case where the Hurst value changes by 0.1, the results are given in 

Table 5.23. From the table, it can be seen th a t once again the change detection 
rate  is higher for the R-S algorithm as compared to  ours. But our algorithm 
now has a worst case change detection of 80.7% which can be considered a fair 
detection rate. In addition, it can be seen th a t the mean deviation from the 
actual change point and the indicated change point is lower for our algorithm 
and also has lower standard  deviation as compared to  the R-S algorithm.

The above results indicates th a t our algorithm is not very sensitive to  small 
changes in the Hurst param eter (0.05 and 0.1), as the change in variance for 
the wavelet coefficients is not very significant. However, when the change is 
detected, it is much more accurate than  the R-S algorithm. The sensitivity 
of our algorithm  can probably be improved by changing the selected critical 
value.
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Figure 5.4: Histogram of location of Change point indicated by R-S algorithm 
for an increase in Hurst value by 0.05

Changes in the Hurst value by a m agnitude greater than  or equal to  0.15 
are detected in a t least 97.4% cases by our algorithm, as can be seen in Tables 
5.24 - 5.30. Changes greater than  or equal to 0.2 are detected in 99.9% of the 
cases. On comparing the accuracy of the indicated change point, it can be seen 
th a t our algorithm  is much more accurate than  the R-S algorithm  and also 
has much lower standard  deviation in the difference from the actual change 
point. This again proves th a t our algorithm is much more accurate than  the 
R-S algorithm  in indicating the location of the change point while having the 
same level of sensitivity for changes of 0.15 or higher.
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Figure 5.5: Histogram of location of Change point indicated by our algorithm 
for an increase in Hurst value by 0.05
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.62 807 352.13 3993.36 998 927.65 6514.20
0.57-0.67 806 -73.34 2647.66 1000 960.80 6503.04
0.62-0.72 835 -183.81 2592.01 1000 962.17 7030.32
0.67-0.77 826 -270.72 1496.24 1000 1174.85 7316.95
0.72-0.82 817 -200.49 1226.12 999 986.06 7185.26
0.77-0.87 859 -239.59 1512.26 1000 1332.77 7374.70
0.82-0.92 852 -207.58 1718.70 1000 862.55 7370.26
0.87-0.97 866 -189.65 1488.46 999 -7.86 7945.05

Decrease
0.62-0.52 848 357.53 3712.78 1000 1797.77 6955.99
0.67-0.57 862 254.26 2424.52 998 2361.35 7153.13
0.72-0.62 864 319.12 1829.32 1000 1889.27 6577.37
0.77-0.67 866 303.89 1801.10 1000 1618.54 7102.65
0.82-0.72 861 267.96 1522.06 1000 1668.61 7524.41
0.87-0.77 866 312.18 1640.39 1000 1466.49 7427.96
0.92-0.82 890 219.46 1504.10 1000 1666.42 7878.45
0.97-0.87 883 306.88 1587.14 1000 922.37 7897.06

Table 5.23: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the  Hurst param eter of the 2 series being 0.10.
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.67 975 40.01 1896.91 1000 685.05 5582.62
0.57-0.72 974 -8.73 1417.72 1000 315.29 5664.47
0.62-0.77 976 -117.52 1170.92 1000 496.91 5826.06
0.67-0.82 988 -135.17 1085.63 1000 664.18 6018.67
0.72-0.87 989 -130.63 1088.36 1000 581.65 5985.20
0.77-0.92 990 -191.53 1185.22 1000 865.71 6046.80
0.82-0.97 994 -194.76 1256.14 1000 415.42 6813.14

Decrease
0.67-0.52 975 172.90 1756.84 1000 1352.59 5994.10
0.72-0.57 986 215.78 1599.02 1000 1444.10 5603.67
0.77-0.62 990 222.69 1085.59 1000 1240.56 6090.68
0.82-0.67 990 225.59 1030.76 1000 1024.49 6197.22
0.87-0.72 990 189.31 1079.73 1000 1443.00 6154.58
0.92-0.77 987 209.06 1077.03 1000 1046.24 6459.13
0.97-0.82 993 198.67 1068.77 1000 1044.52 6203.34

Table 5.24: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.15.
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.72 999 -37.73 1304.96 1000 356.01 4906.57
0.57-0.77 999 -76.68 713.43 1000 94.19 4956.41
0.62-0.82 998 -107.96 758.66 1000 351.32 5076.71
0.67-0.87 1000 -81.75 626.50 1000 506.73 5338.87
0.72-0.92 1000 -88.34 694.52 1000 307.26 5067.95
0.77-0.97 999 -81.79 603.67 1000 451.94 5621.55

Decrease
0.72-0.52 999 151.88 918.11 1000 1434.82 5368.49
0.77-0.57 998 186.75 899.44 1000 1119.38 5196.72
0.82-0.62 1000 130.67 791.02 1000 1162.11 5688.18
0.87-0.67 1000 132.19 723.87 1000 1022.27 5538.30
0.92-0.72 1000 115.32 694.65 1000 820.10 6090.31
0.97-0.77 1000 164.72 833.75 1000 906.07 5680.95

Table 5.25: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.20.
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.77 1000 -75.64 640.78 1000 252.13 4781.00
0.57-0.82 1000 -75.05 568.52 1000 82.14 4660.24
0.62-0.87 1000 -32.40 334.31 1000 365.21 4690.48
0.67-0.92 1000 -32.11 421.65 1000 276.60 5298.52
0.72-0.97 1000 -32.74 346.43 1000 45.07 5341.69

Decrease
0.77-0.52 1000 90.43 590.19 1000 1271.04 5400.51
0.82-0.57 1000 73.80 450.68 1000 1440.06 5456.25
0.87-0.62 1000 87.00 505.81 1000 1233.47 5389.78
0.92-0.67 1000 65.98 449.90 1000 1093.06 5725.81
0.97-0.72 1000 70.92 456.12 1000 533.14 5164.68

Table 5.26: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.25.

Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.82 1000 -18.05 330.01 1000 150.33 5162.04
0.57-0.87 1000 -18.51 330.20 1000 -62.72 4798.96
0.62-0.92 1000 -24.32 379.21 1000 132.32 5070.06
0.67-0.97 1000 -38.33 376.35 1000 -88.12 4960.17

Decrease
0.82-0.52 1000 23.71 301.20 1000 1352.49 5575.78
0.87-0.57 1000 33.23 286.78 1000 1070.43 5039.57
0.92-0.62 1000 66.44 457.48 1000 1183.55 5252.98
0.97-0.67 1000 41.23 346.10 1000 731.70 4841.55

Table 5.27: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.30.
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.87 1000 -5.86 204.14 1000 -22.16 4658.21
0.57-0.92 1000 5.03 137.38 1000 -233.52 4877.48
0.62-0.97 1000 -12.85 233.27 1000 -180.16 5008.24

Decrease
0.87-0.52 1000 27.58 302.62 1000 1255.93 5155.16
0.92-0.57 1000 24.59 282.84 1000 1135.56 5079.73
0.97-0.62 1000 29.02 313.64 1000 544.02 5187.97

Table 5.28: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series w ith the 
difference between the Hurst param eter of the 2 series being 0.35.

Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.92 1000 5.48 121.89 1000 -115.39 4755.69
0.57-0.97 1000 2.12 133.76 1000 -492.24 4899.18

Decrease
0.92-0.52 1000 3.65 115.98 1000 1097.76 5433.80
0.97-0.57 1000 13.57 198.32 1000 904.12 5174.34

Table 5.29: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.40.
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Transition
Our algorithm R-S algorithm

Number Deviation Number Deviation
Mean Standard

Deviation
Mean Standard

Deviation
Increase

0.52-0.97 1000 -1.07 188.01 1000 -326.82 4747.17
Decrease

0.97-0.52 1000 5.65 235.44 1000 1011.33 4837.80

Table 5.30: Comparison of the number of change points indicated and the 
deviation of detected change point from actual change point for our algorithm 
and Rincon-Salient (R-S) algorithm for the 20000 +  20000 series with the 
difference between the Hurst param eter of the 2 series being 0.45.
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Chapter 6 

Conclusions and Future 
D irections

6.1 C onclusions
The m ethods commonly used for estim ating the Hurst param eter assume that 
it is stationary over the entire range of the da ta  set. However, it has been 
dem onstrated th a t this is not always true. We used the tool proposed by Abry 
and Veitch to  show th a t it is possible to  detect such non-stationarities in the 
Hurst param eter. However, their tool is unable to  detect the location of any 
change, and we propose a solution to this in Chapter 5. From the results, 
in this chapter it is seen th a t the proposed algorithm for change detection 
performs quite well when used on FGN data  sets. It has very low rate of false 
positives, and a  high rate  of correct detection with high accuracy of the change 
point indication when the change m agnitude is 0.1 or more.

In addition to  the drawback of giving only a  single estim ate, the estima­
tors also suffer from the presence of non-stationarities like changing mean and 
presence of SRD. We have dem onstrated how to use some recently proposed 
tools like the “Dependent Sizer” and the “Linear M ultifractal Spectrum ” for 
deciding if the given d a ta  set has constant mean and constant Hurst value. A 
sequence of steps have been proposed to  be used for estim ation of the Hurst 
param eter for practical da ta  sets. In the case of presence of SRD, the estima­
tors are shown to perform quite poorly and there is still no existing technique 
for negating its effect on the estimates obtained. This remains an area for 
further research.

We also propose a  technique for generating multiple traffic traces from a 
parent trace by using the bootstrapping technique in the wavelet domain. We 
have shown th a t our technique can produce d a ta  sets m atching the original 
trace in term s of its Hurst param eter and m ultifractal spectrum  both  for syn­
thetic and real da ta  sets. The queuing behavior of the traces generated by our 
algorithm  is also shown to be close to  th a t of the actual trace. The behavior 
of our algorithm  is compared to  th a t of the traditional FGN model and the
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more recent /3-MWM model and is dem onstrated to  perform better than  both 
of them.

6.2 Future Work
The way our change detection algorithm is currently implemented, only one 
change point can be detected at a tim e in a given series. This needs to  be 
extended to  be able to  detect multiple change points in a given series. One 
way of doing this would be to  run the algorithm and if any change point is 
found, then  the da ta  set is split into two parts around th a t change point, and 
the change detection algorithm is run on both these parts. This process is 
repeated recursively till no changes are found.

Secondly, the m ethod used for deciding if a change has occurred based 
on results a t different DW T levels (Section 5.2.2) needs to  be made more 
sophisticated. One of the options is to  use the Hough Transform as discussed 
in [72],

In addition, the proposed technique is useful only when the wavelet coeffi­
cients have a  normal distribution. However, if the original d a ta  set does not 
have a  Gaussian distribution, as is the case for most real life traffic traces, 
then the wavelet coefficients will also not have a  Gaussian distribution and 
the algorithm  might not give useful results. One of the techniques for using 
our change detection algorithm with such d a ta  sets is to  use the Box-Cox 
transform ation as used in our trace generation algorithm in Section 4.3.2.

Finally, the algorithm  needs to  be adapted to  be able to  be run online for 
detecting changes in the Hurst value in real time.
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