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Abstract

Background: The current study evaluated the subcutaneous fatty acid (FA) composition of calf- and yearling-fed steers
with or without growth promoting implants. Crossbred steers (n = 112; 267 ± 5.0 kg) of the same contemporary
group were allocated to one of four production system and implant strategy based treatments in a completely
randomized design with a 2 × 2 factorial arrangement of treatments.

Results: There were no interactions (P > 0.05) between production systems and growth promoting implants for
the total and individual subcutaneous FA. Yearling as opposed to calf finishing reduced (P < 0.05) subcutaneous
proportions of C20:3n-6, trans (t)12-18:1, C14:0, several minor cis-monounsaturated FA (c-MUFA; c9-14:1, c11-16:1,
c11-18:1, c12-18:1, c13-18:1, c9-20:1 and c11-20:1), and increased (P < 0 .05) subcutaneous proportions of t11c15-18:2,
total and individual branched-chain FA. Subcutaneous fat from steers implanted with growth promotants had
higher (P < 0.05) proportions of total polyunsaturated FA (PUFA), total n-6 PUFA, C18:2n-6 and individual t-18:1
isomers (t6 to t10) compared to non-implanted steers.

Conclusions: Overall, current findings show that production systems and growth promotants led to only minor
differences in subcutaneous FA composition of beef steers.
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Background
In North America, beef cattle are typically finished using
calf or yearling production systems. In calf production
systems, cattle enter the feedlot immediately after weaning
at 6–8 mo of age and are fed a high-energy finishing diet
ad libitum until slaughter at 12–14 mo of age to take
advantage of the faster growth of large-framed cattle [1,2].
On the contrary, in yearling production systems cattle
graze pasture and/or crop residues post-weaning prior to
entering a feedlot at 15–18 mo of age to allow for growth
of frame in small- to medium-framed cattle and takes ad-
vantage of lower priced forages and subsequent compen-
satory growth in the feedlot. Although age at feedlot entry
has been reported to consistently affect fat deposition
[3,4], little is known about its effect on fatty acid (FA)
composition. It has been suggested that cattle entering a
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feedlot as yearlings may have a healthier FA profile from
a consumer’s perspective due to forage-based diets com-
pared to those entering the feedlot as weanlings [5,6].
Growth promoting implants characterised as being

estrogenic (e.g., estradiol benzoate and estradiol) or an-
drogenic (e.g., trenbolone acetate and progesterone) are
used extensively in calf and yearling production systems
to increase growth rates, carcass yield [3,7] and to re-
duce carcass fatness [8,9]. Regarding FA composition,
studies with estrogen- or androgen-implanted steers
showed small increases in the proportions of saturated
FA (SFA) and decreases in proportions of monounsatu-
rated FA (MUFA) [10,11]. In contrast, other studies
with estrogen-implanted bull calves [12] or steers [13]
found reduced SFA and increased MUFA. In the same
studies, Hozler et al. [12] and Ibrahim et al. [13] re-
ported a decrease and an increase in the proportions of
polyunsaturated FA (PUFA), respectively. In general, the
available information on the effects of growth promot-
ing implants on beef FA composition are inconclusive.
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In addition, the interactive effects of implant strategies
with age entering the feedlot have not been investigated.
The objective of the present study was, therefore, to de-
termine the FA composition of subcutaneous adipose
tissue from beef steers finished as weanlings or yearlings
with and without growth promotants. More specifically
the objectives were to determine the extent reduced adi-
posity can influence concentrations of rumen derived FA
such as conjugated linoleic acid (CLA), trans (t)-18:1 iso-
mers and branched-chain FA (BCFA). This report is part
of a detailed study which also investigated greenhouse gas
emissions [14], economic profitability [15], carcass merit
traits [4], beef quality attributes [16] and beef texture [17].

Materials and methods
Animal management and treatments
Cattle used in this study were cared for under the
guidelines provided by the Canadian Council on Animal
Care [18] and the experimental procedures were approved
by the Lacombe Research Centre Animal Care Com-
mittee. One hundred and twelve crossbred Hereford-
Aberdeen Angus (n = 64) or Charolais-Red Angus (n = 48)
steers born in March and April 2008 at the Lacombe
Research Centre were used in the current study. The
management of the cow-calf herd has been previously
described by Basarab et al. [19]. Calves were weaned at
an average age of 182 d. At weaning, calves were
assigned to one of four production system and implant
strategy based treatments in a completely randomized
design (CRD) with a 2 × 2 factorial arrangement of treat-
ments. There were four pens per treatment (seven steers
per pen). Each breed cross was equally represented across
treatments.
Post-weaning management of calf- and yearling-finished

steers were detailed by López-Campos et al. [15]. In
summary, following weaning, calf-finished steers (n = 56;
268 ± 5.4 kg; 191 ± 3 d) were adjusted from a high forage-
based diet to a high-grain finishing diet over 42 d and sub-
sequently finished on a high-grain diet containing 81.4%
barley grain-based concentrate, 8.9% barley silage and
7.9% grass silage on DM basis for 86 d. After weaning,
56 steer calves (266 ± 4.6 kg, 193 ± 3 d), assigned to the
yearling production system, rotationally grazed alfalfa
(Medicago sativa L.)/meadow brome grass (Bromus
riparius Rehm.) pasture (fall pasture) for 52 d. There-
after, a grower diet (on DM basis) containing 43.1% bar-
ley silage, 41.1% grass hay and 15.8% rolled barley:oat
(60:40) grain mix was fed for 192 d prior to grazing
alfalfa/ meadow brome grass pasture (summer pasture)
for 90 d. Yearling steers were then placed into a feedlot
pen and allowed 21–23 d to adapt to the high-grain diet
before finished on a high-grain diet (on DM basis) com-
prised of 79.0% barley grain-based concentrate and 21.0%
barley silage for a period of 86 d. Half of the calf-finished
steers (n = 28) were implanted with 20 mg estradiol
benzoate and 200 mg progesterone (Synovex-S) at
weaning and 120 mg trenbolone acetate and 24 mg
estradiol (Revalor-S) 90 d before slaughter. Yearling-
finished steers (n = 28) were implanted with Synovex-S
at weaning and re-implanted with Synovex-S 83 d after
weaning (second time), 71 d after the second implant,
86 d after the third implant and finally implanted with
Revalor-S 90 d before slaughter.
Feed analyses
Feed samples for the fall pasture were collected twice,
initially when the cattle went onto pasture and then
when the cattle came off pasture. Feed samples for the
summer grazing period (June to August 2009) were
collected twice per mo, once early and once late, from
each of three paddocks where the animals were graz-
ing in a particular month. Finishing feed samples of
the total mixed ration for the steers were collected
weekly, pooled monthly and analyzed for nutrient and
fatty acid composition. Feed analysis procedures of the
experimental finishing diets fed to weanling and year-
ling steers are detailed by López-Campos et al. [15]
and Girard et al. [16]. Fatty acid methyl esters (FAME)
from the finishing total mixed ration were prepared as
described by Sukhija and Palmquist [20] and analyzed
using the chromatographic conditions reported Dugan
et al. [21].
Animal slaughter and sample collection
For both production systems, weanling and yearling
steers were targeted to be harvested in four groups of
14 animals at a constant backfat end point of 8–10 mm
between the 12th and 13th rib over the right longissimus
thoracis muscle of each animal which corresponded to
11–14 and 19–23 mo of age, respectively. Backfat
thickness was measured on the first and last day of
feed intake by a certified ultrasound technician using
an Aloka 500 V diagnostic real-time ultrasound with a
17 cm 3.5 Mhz linear array transducer (Overseas Monitor
Corporation Ltd., Richmond, B.C., Canada) following
procedures of Brethour [22]. At one to two wk inter-
vals steers were trucked 3 km for slaughter at the
Lacombe Research Centre abattoir such that there
were seven implanted and seven non-implanted steers
within each slaughter group. At slaughter, final live
weights were recorded and animals were stunned, ex-
sanguinated and dressed in a commercial manner. At
approximately, 20 min post-mortem, during eviscer-
ation, a cube of subcutaneous fat (5 cm × 5 cm × the
thickness of subcutaneous fat) was collected from the
posterior end of the 12th rib and stored at −80°C for
subsequent FA analysis.
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Subcutaneous fatty acid analysis
Subcutaneous fat samples (50 mg) were freeze-dried and
directly methylated with sodium methoxide according to
Cruz-Hernandez et al. [23]. Internal standard (1 mL of
1 mg 23:0 methyl ester/ml toluene; EMD Chemicals Inc.
Darmstadt, Germany) was added before the addition of
the methylating reagent. The majority of FAME were
analysed with gas chromatography (GC) using a 175°C
temperature program as described by Dugan et al. [21].
For the identification of FAME by GC, the reference

standard no. 601 from Nu-Check Prep Inc, Elysian, MN,
USA was used. Branched-chain FAME were identified
using a GC reference standard BC-Mix1 purchased previ-
ously from Applied Science (State College, PA, USA).
Trans-18:1 isomers and other PUFA biohydrogenation
intermediates, not included in the standard mixtures,
were identified by their retention times and elution
order [21,23,24]. The FAME were quantified using chro-
matographic peak area and internal standard (23:0 methyl
esters)-based calculations (mg FAME= FAME peak area ×
relative response factor × mg internal standard added /
internal standard peak area). The FAME concentrations
were reported as percentage of total FA identified.

Statistical analysis
Fatty acid data were analyzed using PROC MIXED pro-
cedures [25] as a CRD with a 2 × 2 factorial arrangement
of treatments. The model fitted production system (calf-
Table 1 Nutritional and fatty acid composition (% of total fatty

Calf-fed steers Yearling-fed

Variable Finishing diet Fall pasture

Nutrient, % DM

Crude protein 13.2 ± 1.09 9.40 ± 2.83

ADF 15.2 ± 3.68 36.8 ± 4.54

NDF 27.6 ± 4.45 55.6 ± 3.86

Calcium 0.6 ± 0.19 0.7 ± 0.13

Phosphorus 0.4 ± 0.09 0.3 ± 0.03

TDN, % 75.2 ± 1.72x 57.0 ± 5.91y

ME2, MJ/kg DM 11.4 ± 0.26x 8.61 ± 0.89 y

Fatty acid, % total fatty acids

C16:0 18.7 ± 1.40 24.0 ±1.32

C18:0 2.15 ± 0.17 2.51 ± 0.06

c9-18:1 20.8 ± 1.88 9.67 ± 6.32

c11-18:1 4.37 ± 0.61 2.23 ± 0.60

C18:2n-6 43.3 ± 0.87 23.7 ± 8.40

C18:3n-3 9.20 ± 0.72 30.1 ± 10.3

Total fatty acids (mg/g DM) 2.30 ± 0.69 1.00 ± 0.69
xEquations used to calculate total digestible nutrients (TDN) and metabolizable ene
0.467); ME, MJ/kg DM = ((%TDN/100) × 4.4 × 0.82) x 4.184 MJ/Mcal); yEquations use
fed to yearling steers: %TDN = 82.299 - (ADF, % × 0.467); ME, MJ/kg DM = ((%TDN/1
for the finishing diet fed to yearling steers: %TDN = 82.299 - (ADF, % × 0.467); ME, M
fed, yearling-fed), implant strategy (implant, no implant)
and their interaction as the main effects and the random
effects of pen nested within production system × implant
strategy interaction. Initial body weight was included as
a covariate. Treatment means were determined using
the LSMEANS and PDIFF options and separated using
the LSD test. Significance was declared at P < 0.05.

Results and discussion
Nutritional composition of the experimental diets and
steers subcutaneous fat thickness
Overall, the nutritional composition of the finisher
diets were similar (Table 1), except that calcium was
slighlty higher for the yearling-fed steers compared to
calf- fed steers. Total FA content and FA composition
of the finishing diets were similar (Table 1) with the
diet fed to yearling-finished steers having slightly more
linoleic acid (C18:2n-6, LA) than that fed to calf-finished
steers. Alpha-linolenic acid (C18:3n-3, ALA) was the
dominant FA in fall and summer pasture grazed by
yearling-finished steers (Table 1). End ultrasound
subcutaneous thickness of yearling-fed steers (10.1 ±
0.30 mm) was slightly higher than that of calf-fed
steers (8.4 ± 0.30 mm).

Effects of production system on fatty acid composition
There were no significant (P > 0.05) interactions between
production system and growth implant strategy for total
acids) of the diets fed to calf- and yearling-finished steers

steers

Grower diet Summer pasture Finishing diet

12.6 ± 1.52 13.4 ± 2.51 12.6 ± 0.49

35.3 ± 2.32 34.4 ± 2.71 16.7 ± 1.22

55.1 ± 1.81 56.7 ± 2.68 28.1 ± 1.88

0.7 ± 0.07 0.8 ± 0.21 0.9 ± 0.27

0.3 ± 0.03 0.3 ± 0.14 0.5 ± 0.06

59.0 ± 1.08y 60.2 ± 3.53y 74.5 ± 0.57z

8.91 ± 0.16y 9.1 ± 0.53y 12.6 ± 0.49z

22.1 ± 0.71 28.0 ± 3.82 18.8 ± 0.41

2.07 ± 0.22 2.73 ± 0.56 1.75 ± 0.09

14.1 ± 5.37 4.67 ± 2.12 18.5 ±0.27

2.62 ± 0.86 1.39 ± 0.54 4.00 ± 0.26

28.8 ± 2.39 15.2 ± 0.21 46.5 ± 0.71

26.1 ± 8.09 38.7 ± 8.69 9.00 ± 0.56

1.25 ± 0.69 0.96 ± 0.69 2.34 ± 0.69

rgy (ME) for the finishing diet fed to calf-fed steers: %TDN = 82.299 - (ADF, % ×
d to calculate TDN and ME for the pasture, grower’s diet and summer pasture
00) × 4.4 × 0.82) × 4.184 MJ/Mcal); zEquations used to calculate TDN and ME
J/kg DM = ((%TDN/100) × 4.4 × 0.82) x 4.184 MJ/Mcal).
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and individual FA in subcutaneous fat, and therefore
only main effects were reported. Subcutaneous fat from
yearling steers had greater (P > 0.05) total FA content
than calf-finished steers (Table 2) and may relate to the
maturity of the depot [26]. Subcutaneous fat from calf-
and yearling-finished steers had similar (P > 0.05) pro-
portions of total PUFA. The proportions of total and
individual n-6 PUFA were not affected by production
system except for C20:3n-6 which was slightly higher
(P < 0.05) in calf-finished steers than in yearling-finished
steers (Table 2). The effect of production systems on
C20:3n-6 were, however, small and would be of limited
biological importance. Alpha-linolenic acid, the only
n-3 PUFA identified, was not influenced (P > 0.05) by
production system (Table 2).
Yearling-finished steers had greater (P < 0.05) subcuta-

neous proportions of t11,c15-18:2 (3-fold), one of the
major non-conjugated 18:2 biohydrogenation products
(i.e., atypical dienes, AD) and lower (P < 0.05) proportions
of t9,c12-18:2 (3.5-fold) compared to their contemporaries
finished as weanlings (Table 2). These results could be
related to differences in FA composition of the grower
and finishing diets between the two production systems.
The higher t11,c15-18:2 observed for the yearling-
finished steers was likely derived from ALA obtained
from pasture grazing while the elevated proportions of
t9,c12-18:2 observed for the calf-finished steers may
have been derived from higher LA proportions obtained
from the high-grain finishing diet for these steers. The
finding of increased t11,c15-18:2 in yearling steers dem-
onstrates for the first time its persistence post-grazing;
as such it may be a suitable long-term marker of forage
consumption, and points towards its limited metabolism
in subcutaneous adipose tissue. During rumen biohydro-
genation, ALA yields conjugated linolenic acids, chiefly c9,
t11,c15-18:3, which is in turn sequentially hydrogenated
to yield AD isomers, chiefly t11,c15-18:2 through the
activities of isomerase and reductase enzymes [27].
Overall, high proportions of a given FA in the tissues
could be indicative of its limited metabolism or reflect
slower rate of metabolism [28].
Neither total nor individual CLA isomers were affected

by production system (P > 0.05; Table 2). With the ex-
ception of t12-18:1, production system had no influence
(P > 0.05) on t-18:1 isomers. The subcutaneous propor-
tions of t12-18:1 were greater (P < 0.05) in calf-finished
steers than in yearling-finished steers but the reason for
this is not immediately apparent. Calf vs. yearling finish-
ing increased (P < 0.05) subcutaneous proportions of
several individual cis (c)-MUFA isomers (c9-14:1, c11-
16:1, c11-18:1, c12-18:1, c13-18:1, c9-20:1 and c11-20:1).
These findings could be attributed to age-dependent
differences in gene expression and catalytic activity of
stearoyl-CoA desaturase [29,30]. The increase in c9-14:1,
c11-16:1 and c13-18:1 reported for the weanling steers
could be partly explained by the higher proportions of
14:0 (myristic acid) observed for these steers. Myristic acid
is desatured to c9-14:1 by Δ9-desaturase, which is then
elongated to c11-16:1 and c13-18:1, respectively. The pro-
portions of c9-17:1 were greater (P < 0.05) for yearling
steers than for weanling steers and the explanation for
this is not immediately clear given that the proportions
of C17:0, its derivative, were similar across production
systems. The relative benefit or risk to human health of
consuming the individual c-MUFA isomers remains to
be elucidated, and thus recommendations to either
enrich or deplete these isomers should be reserved until
their effects are known.
Subcutaneous fat from yearling-finished steers as op-

posed to calf-finished steers had elevated (P < 0.05)
proportions of total and individual (BCFA). The ob-
served variability in BCFA proportions found between
calf- and yearling-finished steers may also be partially
attributed to the carryover effects of grower diets and
backgrounding feeding regimes [31,32]. In the current
study, yearling-finished steers as opposed to calf-
finished steers entered the feedlot after a forage-based
backgrounding phase. Overall, forage feeding has been
reported to increase the percentage of BCFA in beef
compared to concentrate feeding [6,33]. How grower
diets and backgounding feeding regimes influence
subsequent feedlot performance and FA composition
of concentrate-finished steers merit further investigation.
Improved understanding of mechanisms involved in
enriching BCFA in meat would also be of interest given
their potential to reduce cancer [34] and necrotizing
enterocolitis [35] in humans.
Calf-finished steers had greater (P < 0.05) subcutaneous

proportions of C14:0 (myristic acid) and smaller (P < 0.05)
proportions of C15:0 compared to steers finished as
yearlings. The observation that calf-finished steers
had higher proportions of C14:0 than yearling-finished
steers agrees with previous findings [36]. This may also
in part be attributed to differences in total FA observed
in the current study. Myristic acid is hypercholesterol-
emic and atherogenic [37] and thus, it is considered a
less desirable component of the human diet. There were
no differences (P > 0.05) in the proportions of total SFA
and several major long-chain SFA (C16:0, C17:0, C18:0,
C19:0 and C20:0) between calf- and yearling-finished
steers.

Effects of growth implants on fatty acid composition
Total FA content in adipose tissue in implanted and non-
implanted steers was similar (P > 0.05; Table 2). Implanted
steers had slightly higher (P < 0.05) subcutaneous propor-
tions of total PUFA, total n-6 PUFA and LA, than steers
without growth implants (Table 2). The subcutaneous



Table 2 Effect of production system and growth implant strategy on fatty acid composition (% of total fatty acids)
from subcutaneous fat of feedlot steers

Production system Implant strategy P-value

Variable Calf-finished Yearling-finished No Yes s.e.m PS IS

Total fatty acids (g/g of tissue) 0.90b 0.93a 0.92 0.90 0.01 0.01 0.91
P

PUFA 1.62 1.69 1.55b 1.77a 0.07 0.54 0.01
P

n-6 1.39 1.42 1.30b 1.51a 0.06 0.74 <0.001

C18:2n-6 1.32 1.36 1.24b 1.45a 0.06 0.67 <0.001

C20:2n-6 0.02 0.02 0.02 0.02 0.002 0.71 0.49

C20:3n-6 0.05a 0.04b 0.05 0.04 0.004 0.05 0.89

n-3

C18:3n-3 0.23 0.27 0.25 0.26 0.01 0.09 0.26
P

AD 0.61 0.64 0.62 0.63 0.02 0.35 0.71

c9,t13-/t8,c13-18:2 0.20 0.22 0.21 0.20 0.01 0.28 0.31

t8,c12-/c9,t12-18:2 0.11 0.12 0.11 0.12 0.01 0.37 0.11

t9,c12-18:2 0.07a 0.02b 0.05 0.05 0.01 <0.001 0.95

t11,c15-18:2 0.04b 0.12a 0.07 0.09 0.01 <0.001 0.09

c9,c15-18:2 0.19 0.18 0.19 0.18 0.01 0.56 0.35
P

CLA 0.54 0.49 0.51 0.52 0.02 0.14 0.63

t7,c9-/c9,t11-18:2 0.48 0.41 0.44 0.45 0.02 0.12 0.76

c10,t12-18:2 0.02 0.02 0.02 0.02 0.01 0.11 0.73

t9,t11-18:2 0.04 0.05 0.04 0.05 0.01 0.21 0.35
P

t18:1 3.29 3.19 3.00 3.46 0.36 0.49 0.61

t6/t7/t8-18:1 0.25 0.25 0.23b 0.28a 0.01 0.98 <0.001

t9-18:1 0.27 0.27 0.26b 0.28a 0.01 0.72 0.01

t10-18:1 1.57 1.65 1.43b 1.79a 0.12 0.67 0.01

t11-18:1 0.67 0.54 0.60 0.61 0.06 0.23 0.92

t12-18:1 0.14a 0.10b 0.12 0.12 0.01 0.01 0.46

t13/t14-18:1 0.27 0.27 0.26 0.27 0.01 0.70 0.29

t16/c14-18:1 0.12 0.10 0.11 0.11 0.01 0.31 0.93
P

MUFA 51.4 51.9 52.1 51.2 0.52 0.63 0.14
P

c-MUFA 50.0 50.0 11.2 10.4 0.05 0.50 0.85

c9-14:1 1.70a 1.32b 1.59a 1.43b 0.06 <0.001 0.05

c7-16:1 0.15 0.15 0.15 0.15 0.01 0.54 0.45

c9-16:1 5.24 4.71 5.16 4.80 0.17 0.09 0.15

c11-16:1 0.37a 0.29b 0.35 0.32 0.02 <0.001 0.07

c9-17:1 0.51b 1.31a 0.91 0.910 0.13 0.02 0.99

c9-18:1 39.0 39.5 39.6 38.9 0.39 0.43 0.16

c11-18:1 1.79 1.76 1.84 1.71 0.06 0.79 0.13

c12-18:1 0.10a 0.08b 0.09 0.09 0.01 0.03 0.34

c13-18:1 0.68a 0.58b 0.66 0.60 0.03 0.04 0.15

c16-18:1 0.06 0.05 0.05 0.05 0.01 0.26 0.68

c9-20:1 0.09a 0.02b 0.06 0.05 0.01 0.01 0.18

c11-20:1 0.32a 0.26b 0.31a 0.27b 0.01 0.02 0.01
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Table 2 Effect of production system and growth implant strategy on fatty acid composition (% of total fatty acids)
from subcutaneous fat of feedlot steers (Continued)
P

BCFA 1.14b 1.45a 1.28 1.32 0.01 0.05 0.96

iso-15:0 0.11b 0.16a 0.13 0.13 0.01 0.01 0.84

anteiso-15:0 0.15b 0.19a 0.17 0.18 0.01 <0.001 0.19

iso-16:0 0.14b 0.22a 0.18 0.18 0.01 <0.001 0.83

iso-17:0 0.32b 0.35a 0.33 0.34 0.01 0.05 0.27

anteiso-17:0 0.56b 0.66a 0.59b 0.63a 0.01 <0.001 0.01

iso-18:0 0.12b 0.17a 0.15 0.14 0.01 <0.001 0.46
P

SFA 42.2 41.9 41.7 42.4 0.52 0.75 0.23

C14:0 3.85a 3.39b 3.65 3.57 0.08 0.01 0.43

C15:0 0.47b 0.65a 0.56 0.56 0.01 <0.001 0.94

C16:0 27.5 26.7 27.2 26.9 0.31 0.13 0.54

C17:0 1.02 1.09 0.99 1.12 0.14 0.81 0.11

C18:0 9.34 10.1 9.23 10.2 0.35 0.20 0.09

C19:0 0.25 0.24 0.24 0.25 0.01 0.65 0.38

C20:0 0.04 0.04 0.04 0.05 0.01 0.84 0.73
a,b,cMeans with different superscripts for a particular FA profile are significantly different (P < 0.05); s.e.m, standard error of mean; PS, production system effect;
IS, Implant strategy effect; c, cis; t, trans;

P
PUFA, sum of polyunsaturated FA = C18:3n-3 + C18:2n-6 + C20:2n-6 + C20:3n-6;

P
n-6, sum of omega-6 FA = C18:2n-6 +

C20:2n-6 + 20:3n-6;
P

AD, total atypical dienes = c9,t13-/t8,c13 + t8,c12-/c9,t12 + t9,c12 + t11,c15 + c9,c15;
P

CLA, conjugated linoleic acid = c7,t9-/c9,t11- + c10,t12-
18:2 + t9,t11-18:2;

P
t-18:1, sum of trans-18 :1 isomers = t6-t8-18:1 + t9-18:1 + t10-18:1 + t11-18:1 + t12-18:1 + t13/t14-18:1 + t16-/c14-18:1;

P
MUFA, sum of monounsaturated

FA =
P

t-18:1 +
P

t-MUFA;
P

c-MUFA, sum of cis- monounsaturated FA = c9-14:1 + c7-16:1 + c9-16:1 + c11-16:1 + c9-17:1 + c11-18:1 + c12-18:1 + c13-18:1 + c16-18:1 + c9-
20:1 + c11-20:1;

P
BCFA, sum of branched chain FA = iso-15:0 + anteiso-15:0 + iso-16:0 + anteiso-17:0 + iso-18:0;

P
SFA, sum of saturated FA= C14:0 + C15:0 + C16:0 + C17:0 +

C18:0 + C19:0 + 20:0.
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proportions of other individual n-6 PUFA (C20:2n-6 and
C20:3n-6) were similar (P > 0.05) across treatments. In
support of the current findings, Ibrahim et al. [13] re-
ported that fat from bull calves implanted with growth
promotants had increased total PUFA and total n-6 PUFA.
These findings could be partly related to the numerical
differences in total FA content between implanted and
non-implanted steers. Overall, the proportions of PUFA
increases with decreasing fat content due to less dilution
by de novo synthesised FA [38]. Growth implants had no
effect on ALA, the only n-3 PUFA identified.
Neither total nor individual proportions of AD and CLA

were influenced by growth implants (P > 0.05). For t-18:1,
a pattern of isomers was found related to the implant
strategy (Table 2). Implantation with growth promotants
increased (P < 0.05) subcutaneous proportions of t-18:1
isomers with double bonds from carbon 6 to 10 compared
to non-implantation. Growth promotants did not, how-
ever, influence (P < 0.05) total t-18:1. In agreement with
the current study, implantation with estradiol benzoate
and progesterone [11] or trenbolone acetate and estradiol
[11,39] increased the proportions of some t-18:1 isomers
(t6-t10) in the subcutaneous fat of concentrate-finished
steers. These findings may relate to decreased dilution of
t-18:1 isomers in subcutaneous fat by de novo synthesised
FA. Trans-18:1 isomers other than t11-18:1 have been
associated with unhealthy changes in blood lipid profiles
in animal models [40] and are considered as undesirable
components of the human diet. It is, however, not certain
if the small differences (< 0.5%) in t-18:1 attributed to the
use of growth promotants in the current study would be
enough to impact human health.
Total and individual c-MUFA were not affected by

growth implants except for c9-14:1 and c11-20:1. Steers
implanted with growth promotants had low (P < 0.05)
c9-14:1 and c11-20:1 compared to non-implanted steers.
The observation that growth implants decreased the
proportions of c9-14:1 agrees with earlier findings [39].
Proportions of total and individual BCFA were not
affected by growth promotants except for anteiso-17:0
which was greater (P < 0.05) in steers implanted with
growth promotants than steers without growth promo-
tants (Table 2), but the differences were small (0.04%).
Implantation had no effect on the proportions of total
and several individual SFA (P > 0.05), however, the propor-
tions of C18:0 tended to be greater (P = 0.09) in implanted
than non-implanted steers. The finding that growth im-
plants tended to increase the proportions of C18:0 may be
related high proportions of PUFA reported for the im-
planted in the current study. Generally, high PUFA pro-
portions inhibit Δ9 desaturase responsible for converting
SFA to their respective MUFA [41].

Conclusions
Yearling as opposed to a calf production system yielded
lower subcutaneous proportions of individual c-MUFA
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and higher subcutaneous proportions of t11,c15-18:2, indi-
vidual and total BCFA. Growth promotants increased sub-
cutaneous proportions of total PUFA, total n-6 PUFA, LA
and individual t-18:1 isomers (t6-t10), likely relating to re-
duced dilution by de novo synthesised FA. Overall,
changes in subcutaneous FA composition of finished beef
steers due to production systems and growth implants
were limited with an average difference of 0.15% in FA
composition which may not be sufficient to result in
differences in human health.
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