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Abstract 

 

Affect detection is increasingly viewed as an essential component of computer-

based learning systems because it aims to improve learner outcomes by adapting to the 

learner’s affect. However, most computer-based learning environments used across formal 

and informal educational contexts do not respond to students’ affective needs. Moreover, 

it is not clear which affective states should be assessed and which states have a positive or 

a negative effect on student learning. The aim of this review is to examine how affect is 

automatically detected and analyzed via affect-sensitive computational systems in 

educational settings. This systematic literature review analyzes 36 peer-reviewed 

publications that focus on finding relationships between affect and learning in 

computational applications. Evidence from the reviewed articles shows that most studies 

(1) were published in the last four years; (2) mainly used facial expressions to detect affect; 

(3) identified engagement, boredom, frustration, and confusion as the most frequent 

affective states in learning settings; and (4) used supervised machine learning algorithms 

to classify learner emotions. The present review identifies the following gaps in the related 

literature. First, it revealed that there is a paucity of studies in non-STEM domains and that 

sample K-12 students and participants from countries other than the US, given that two-

thirds of the reviewed studies sampled university students, almost half of the studies 

sampled participants from North America, and almost three quarters of the studies focused 

on STEM contexts. Second, it identified facial expression as the most common 

physiological and behavioral data channel, with system log data being the most frequent 

performance-related channel. Third, it found that few studies examined both affect and 

achievement measures. Finally, it revealed that few studies employed unsupervised 
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learning techniques or supervised learning regressors, given that supervised learning 

classifiers were overwhelmingly employed to predict affective states. This research 

provides recommendations on how to address these gaps, including the need for more 

methodological approaches, both theory- and data-driven, in capturing and analyzing 

affect. This review suggests the exploration and development of adaptive intelligent 

educational interfaces that use affective and behavioral states to provide a better learning 

experience by offering suitable responses. Likewise, the review suggests the exploration 

of creating affective datasets to improve existing machine learning affect detecting models. 
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Chapter 1. Introduction 

 

Modeling the user interaction experience is important for the design and uptake of 

adaptive intelligent systems. Affective user modeling has received increasing attention with the 

proliferation of digital devices, and it has been prompted by advances in the fields of human-

computer interaction (HCI), cognitive science, psychology, education, neuroscience, and 

computing science. These advances have improved computational systems’ detection of user 

behaviors, affect, and emotional reactions, which is important, given that emotions can have a 

considerable impact on learning experiences and subsequently on learning and performance 

outcomes.  

In recent years, several models have been built to detect learning-centered affect (e.g., 

boredom, confusion, happiness, delight, motivation, engaged concentration, anxiety, and 

frustration) in computer-based learning environments (CBLE) with the ultimate goal of creating 

affect-sensitive, adaptive learning systems that improve learning outcomes. This has the potential 

to improve the learning experience by monitoring learners’ progress and providing timely 

interventions. For example, if a student feels frustrated, the system may suggest an easier 

problem or revisiting a tutorial, whereas if a student seems engaged, the system may not 

intervene. 

Modeling user experience is a challenging task mainly because the detection of affect is 

difficult to accomplish in computational systems (Jraidi et al., 2013). For example, frustration 

was shown to be difficult to both identify and address in intelligent tutoring systems (ITS) 

(DeFalco et al., 2018). Moreover, it is not clear which affective states have positive or negative 

effects on student learning (Bosch et al., 2015; DʼMello, 2013; Pekrun et al., 2007). For example, 

it was found that long-term frustration was negatively associated with learning outcomes, 
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whereas short-term frustration was not problematic for learning (DeFalco et al., 2018; DʼMello 

& Graesser, 2009; Liu et al., 2017; Robison et al., 2009). Also, boredom has been negatively 

associated with learning outcomes (Craig et al., 2004), whereas engaged concentration has been 

positively associated with learning outcomes (Pardos et al., 2014). 

The use of affective computing within a system is intended to meet one or more of the 

three possible goals that were described by Picard: 1) to detect user emotions; 2) to express a 

human emotion (e.g., an avatar, robot, and animated conversational agent); and 3) to “feel” an 

emotion (Calvo & DʼMello, 2010; Picard, 1997). An interdisciplinary literature review in the 

field of affective computing (AC) examined affect-detection systems from the perspective of 

several key emotion theories, methods, and data sources (Calvo & DʼMello, 2010).  

1.1 Challenges 

Affect detection is difficult because emotions cannot be measured directly, and they vary 

in both expression and experience from one individual to another. Overlapping areas between 

emotion research (i.e., affective science) and affective computing include affect expression and 

detection by humans and computers (Calvo & DʼMello, 2010). Learning-centered affective states 

are different from the basic emotions whose relationships with expressions were thoroughly 

studied for decades. Thus, it is not clear whether there are similar links between learning-

centered affective states and expressions (Bosch et al., 2015). Moreover, using physical sensors 

to collect data about learnersʼ affective states has one important limitation in that it is preferred if 

studies are conducted in a controlled laboratory setting, which hinders the generalizability of the 

findings stemming from this research (Baker & Ocumpaugh, 2014). Even using the more 

unobtrusive interaction-based affect detection may limit the generalization of the interaction-

based detectors across populations and systems (Kai et al., 2015). The present review aims to 

identify any potential gaps in knowledge about affect detection. 
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1.2 Study Purpose 

 This review examines the relevant literature spanning several and often overlapping 

fields concerned with the theory, methodology, and practice of detecting affect. One of the goals 

of the present literature review is affect detection (i.e., the detection of individualsʼ affective 

states, including emotions, feelings, moods, attitudes, affective styles, and temperament; Calvo 

& DʼMello, 2010) in the broader context of emotion research (i.e., affective science) and 

affective computing. The current review aims to ascertain the degree to which computational 

systems can automatically recognize or respond to users’ affective states. Moreover, the review 

aims to investigate whether affect-sensitive interfaces facilitate human-computer interaction in 

terms of enjoyment and effectiveness (e.g., learning gains). The review poses the following 

research questions: 

RQ1: What are the key characteristics of the studies reviewed? 

RQ2: What are the channels of data employed in the studies reviewed? 

RQ3: What are the affective states (classes of emotions) investigated in the studies 

reviewed? 

RQ4: What are the machine learning algorithms used to detect affect in the studies 

reviewed?  
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Chapter 2. Conceptual Background 

 

This section starts with the definition and theories of emotions found in the literature, 

followed by the definition of affect and its relationship with learning. Next, it describes the kinds 

of data modalities and how these are used for affect detection. Afterwards, it introduces one of 

the most commonly found affect classification observation method. Moreover, it discusses how 

machine learning techniques can be used to predict and classify learnersʼ affective states. 

Further, it discusses the Cultural Dimensions Theory and delves into how affect can vary across 

cultures. Finally, it describes the physical data channels explored in this review. 

2.1 Theories of Emotion 

Emotions are usually conceptualized using six perspectives: expressions, embodiments, 

outcomes of cognitive appraisals, social constructs, products of neural circuitry activity, and 

psychological interpretation of basic feelings or core affect (Calvo & DʼMello, 2010). The first 

four perspectives (i.e., expressions, embodiments, outcomes of cognitive appraisals, and social 

constructs) draw on traditional emotion theories (Calvo & DʼMello, 2010). The fifth perspective 

(i.e., products of neural circuitry activity) draws on theories related to affective neuroscience. 

Finally, Russell (1980) introduced a unified theory of emotion to bridge the gaps from the 

previous theories by proposing that emotions are neurophysical states with either a positive or 

negative valence and a level of arousal. 

2.2 Affect 

Psychologists describe affect as a set of independent dimensions that can range from 

positive to negative. Nowlis and Nowlis (1956) concluded that there are at least six factors of 

affect: sadness, anxiety, anger, elation, tension, and preference. Russell (1980) elaborates on 

Schlosbergʼs (1952) proposal of these six factors of affect, posing that, rather than being 
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independent of each other, these factors are related to each other, and when illustrated, they 

should be organized in a circle representing two bipolar dimensions, rather than at least six 

monopolar ones.  

2.3 Learning and Affect   

 Kort et al. (2001) view learning as a cyclical process that involves many affective 

responses as it often entails various levels of natural failure. This failure can lead to a lack of 

motivation and can occasionally lead learners to abandon an activity. Therefore, accurately 

identifying the learner’s affective state during the learning process is important to avoid attrition 

and keep motivation levels high, especially in science, math, engineering, and technology 

(STEM) learners. The authors propose a model where the relationship between affective states 

and the learning process is associated. In a circular manner and divided into four quadrants that 

are numbered in a counterclockwise fashion, being the first (i.e., curious about the subject) and 

second (i.e., motivated to reduce confusion) quadrant where ideally the learner starts the process. 

After a failure, it is expected that the learner will fall to the third quadrant (i.e., frustrated and 

eliminating some misconceptions). When the learner has reviewed the mistakes, they may move 

to the fourth quadrant (i.e., hopeful about learning the subject). As it is a cyclical process, a new 

idea or adequate feedback can help the learner jump to the first quadrant again, as shown in 

Figure 1. According to this theory of affect, it is important to approach the learner when they are 

in the quadrants related to negative affective states and negative learning experiences and help 

them see that these emotions are part of the process. 

 

Figure 1 

Graphical Representation of the Cyclical Process of Learning Involving Affective Responses 

Based on Kort, Riley, and Piccard (2001) 
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2.4 Sensors 

A sensor is a device that detects and records a physical electronically transmitted input and 

produces an output of the measurements of the detected phenomenon (Hao & Foster, 2008). 

Sensors can function as a measuring device (e.g., electrodermal activity sensor) for a phenomenon 

or respond to the measurement of the signal (e.g., motion-activated light). 

2.5 Data Modalities: Data Channels for Affect Detection 

2.5.1 Data Modality 

A data modality (i.e., signal) is a single input or output of data obtained by a channel 

between a human and a computer (Karray et al., 2007). Data modalities could be used by 

themselves (unimodally) or in combination (multimodally) to obtain richer information about the 

subject that is being sensed. 
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Data modalities of affect-detection techniques can be classified into more long-

established modalities (e.g., physiology, facial expressions, voice), burgeoning modalities (e.g., 

brain imaging/neuroimaging, text processing, body language, posture), and combinations of 

these modalities (Calvo & DʼMello, 2010).  

For example, in intelligent tutoring systems, learner affect has been detected using less 

invasive interaction, visual, and audio data, including webcams to capture facial expressions, 

gaze trackers to capture eye-gaze patterns, facial expressions (Lan et al., 2020), but also 

physiological-dependent wearable devices that measure physiological signs through 

physiological sensors such as pressure-sensitive devices (e.g., seats, back pads, keyboards and 

mice, and posture-sensing chairs), skin conductance sensors or wristbands (i.e., electrodermal 

activity or EDA; or galvanic skin response or GSR), electroencephalogram (EEG), functional 

near-infrared spectroscopy (fNIRS), and heart rate (PPG; Alqahtani et al., 2021). These types of 

data are usually collected to infer learnersʼ cognitive states (e.g., attention, memory workload; 

Dorneich et al., 2007), affective states (e.g., boredom, confusion, engagement, frustration; 

Saxena et al., 2020), and behavioral states (e.g., on task, off task; Ding et al., 2022) during the 

learning process. Physical sensor-based detectors directly capture embodied representations of 

learnersʼ affective states via multiple data channels (e.g., facial expressions and body movements 

or posture via a webcam). For instance, vision-based affect detection can be inexpensive, non-

invasive, and is available on many devices (e.g., a webcam is a common vision-based sensor), 

facilitating affect detection through facial recognition or body movements. In contrast, 

interaction-based detectors indirectly capture learnersʼ affective states via learnersʼ actions 

within the computer-based system (e.g., the time between the start and the end of the interaction, 

the number of actions taken during the interaction with the system, speed of help requests). For 
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this reason, physical sensor-based detectors often outperform interaction-based detectors in 

predicting some affective states, including delight, engaged concentration, and frustration (Kai et 

al., 2015). However, the physiological sensor-based detectors are applicable in more learning 

contexts than the former detectors. Affect detectors have been developed to collect data via 

multiple data types, including physiological, behavioral, and performance related.  

2.5.2 Data Channel 

A data channel refers to a medium that transports and delivers data (Shim et al., 2022). A 

data channel occurs where a reaction caused by a human produces data bits that are encoded by a 

computer-based sensor and later decoded by a software to retrieve human-readable information 

about that interaction. For example, the Empatica E4 wristband is composed of several sensors, 

each of them collecting data from different channels, such as temperature, voltage level of 

electrodermal activity, and blood-volume pressure.   

2.5.2.1 Physiological Channels 

Physiological features track bodily changes associated with emotion. For example, 

galvanic skin response (GSR) or electrodermal activity is usually linked with emotional arousal 

(Chatterjee et al., 2022). Cardiovascular measures, such as heart rate (HR), are employed to 

understand the autonomic nervous system function and are associated with emotional valence 

(Griffin & Howard, 2022). Brain activity collected through electroencephalograms (EEG) 

provides neural indexes related to cognitive changes such as alertness, attention, workload, 

executive function, or verbal and spatial memory (Buzsáki & Watson, 2012). System log data is 

employed to understand the engagement the learner is experiencing in the platform, such as 

clickstream patterns. A study found that clickstream patterns combined with task performance 

were associated with frustration and boredom (Yu et al., 2019). Yue et al. (2019) used a 
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combination of webcam video, eye tracking data, and clickstream data to detect engagement in 

students learning Python programming in a MOOC. 

2.5.2.2 Behavioral Channels 

Behavioral features track the interaction between the learner and the learning 

environment to ascertain the degree of involvement with the task (e.g., rate of requesting help, 

hints used, mouse or keyboard presses, click frequency). System log data is also used to capture 

behavior as it provides a registry of the interaction between the learner and the environment. This 

rich data channel is usually composed of the event information (e.g., timestamp, mouse location) 

and other behavioral markers (e.g., number of hints requested, timestamp of requested hint, or 

whether a task was finished or not). 

2.5.2.3 Performance-Related Channels 

Performance features constitute objective measures of the level of task proficiency (e.g., 

correctness, errors made in the task, response time). These features are useful when predicting 

academic performance and when combined with sensor-based data that may be able to create 

generalizable models for affect detection. For example, the system logs record the number of 

attempts before completing a task or whether a task was completed correctly or incorrectly.  

Rajendran et al. (2019) used system log data to compare how motivational messages influence 

the degree of frustration detected in students when learning mathematics. There are other 

variables that are useful when interacting with the computational system, such as the context 

(i.e., environment, such as task difficulty, the relevance of the hints or help provided, the 

imposed time constraints) and the learner profile (i.e., user characteristics, such as the learner’s 

goal, preference, skills, personality, computer usage frequency). Physiological sensor-based 

detection infers affective states from the physical reactions of the learner (e.g., video-based data 

collected via a webcam). Interaction-based detection infers affective states from interactions of 
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the learner with the computer-based learning system (e.g., logs of the learnersʼ interaction with 

the learning environment). Performance-related detection infers affective states from task 

performance of the learner (e.g., scores, error rate, number of hints requested, etc.).  

2.6 Observation Methods 

The Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP 2.0) is a field coding 

protocol. Researchers use BROMP to perform live identification of predominant affective states 

(e.g., boredom, confusion, engaged concentration, frustration, delight, and dejection) and 

behavioral states (on task, on-task conversation, and off-task) of learners while they perform a 

learning activity (Bosch et al., 2015). It has been used to observe each learner individually until 

visible affect is detected or 20 seconds have passed; then, the researchers focus on another 

student, in a round-robin manner (Baker & Ocumpaugh, 2014). Usually, BROMP is 

implemented using the Android app, Human Affect Recording Tool (HART; Baker et al., 2012). 

Furthermore, BROMP is then used to support supervised learning to build affect and behavioral 

state detectors. 

2.7 Self-report Measures 

Self-report is a test-taking method in which participants provide a rating on a certain 

scale of their own characteristics (e.g., mindset or confidence; Johnson & Christensen, 2014). 

Self-report observation methods were found in the literature as an alternative, an addition, or a 

confirmation of other observation methods, such as inventories. For instance, Grafsgaard et al. 

(2014) explored how models using different channels of data performed when predicting 

normalized learning gains. The model using a combination of the self-report and physiological 

data outperformed the models that only used unimodal data. 

For example, the reviewed publications have employed a wide variety of self-report 

instruments. Big Five Inventory (BFI) is a self-report inventory designed to assess learners' 
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personality traits, namely openness, conscientiousness, extraversion, agreeableness, and 

neuroticism (John et al., 1991). The Intrinsic Motivation Inventory (IMI) is a scale for measuring 

the sense of presence experienced in a virtual environment (Ryan, 1982). The Presence 

Questionnaire is a scale for measuring the sense of presence experienced in a virtual 

environment (Witmer & Singer, 1998). The New General Self-Efficacy Scale is an eight-item 

measure that assesses how much people believe they can achieve their goals, despite difficulties 

(Chen et al., 2001). The Game Engagement Questionnaire (GEQ) is used to quantify 

engagement of participants in games and includes a set of 19 questions classified into four 

categories: absorption, flow, presence, and immersion (Brockmyer et al., 2009). The Self-

Assessment Manikin (SAM) survey is a non-verbal pictorial assessment technique that directly 

measures the pleasure, arousal, and dominance associated with a person’s affective reaction to a 

wide variety of stimuli (Bradley & Lang, 1994). The NASA-TLX Load Index is a tool for 

measuring and conducting a subjective mental workload (MWL) in an assessment (Hart & 

Staveland, 1988). Finally, the User Engagement Survey (UES) measures self-reported user 

engagement (O’Brien et al., 2018). Some publications also used surveys to assess the quality of 

the activity and to receive feedback on the computer-based system. 

2.8 Machine Learning 

One of the most important components of an affect-sensitive system is the capacity to 

predict the affective state of students. Researchers have attempted to identify learnersʼ affective 

states in computer-based learning environments by building machine learning models to 

categorize learnersʼ emotional states. The integration of multimodal affect-sensing systems with 

artificial intelligence (AI) techniques and, particularly, with machine learning (ML) algorithms, 

may improve these systems’ ability to infer learnersʼ affective states. Classification models have 

been created to use features extracted from different modalities of data collection to predict 
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several affective and behavioral states. For instance, classification algorithms used in affect 

detection (i.e., to predict emotional states) based on manifesting features of affect include rule-

based reasoning, support vector machines, and tree-based models. Then, machine learning 

classifiers can be trained to recognize learner affect in learnersʼ facial expressions or posture 

(e.g., confusion) and the computer-based system may intervene in real time by providing hints or 

by suggesting tutorials. 

2.9 Cultural Dimensions Theory  

Culture is the societal programming that helps individuals distinguish from different 

members of society (Hofstede, 2011). Cross-cultural communication is essential for society and 

economic benefits in contemporary society. Hofstede developed the cultural dimensions theory 

framework to show how a society’s culture influences the value of its members and their 

behavior. Although it was first proposed around 1970, this theory has been reworked and 

updated due to new findings in research. The current Hofstede model proposes six dimensions of 

culture that can be analyzed: (1) power distance, measures how a culture views relationships of 

power between people, (2) uncertainty avoidance, measures the extent to which a culture 

attempts to cope with anxiety of an unknown future, (3) individualism versus collectivism, 

measures the degree to which a culture is integrated into groups, (4) masculinity versus 

femininity, measures the extent to which a culture’s gender roles are distinguished, (5) long term 

versus short term orientation, measures a cultures choice of focus on the past, present and future, 

and (6) indulgence versus restraint, measures the degree to which a culture allows basic human 

desires to conduct behavior. 

Literature indicates that the way and the extent to which we display emotions are 

influenced by our culture (Kleinsmith et al., 2006). Although body posture and non-verbal 
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behavior has been found to vary cross-culturally (Davidson et al., 2009), facial expressions for 

some emotions have been found to be similar across cultures (Mandal & Ambady, 2004).   

2.10 Affect Detection: Signals, Data, and Methods 

 Calvo and DʼMelloʼs (2010) review discussed affective computing approaches to affect 

detection, linking each approach to the closest corresponding emotion theory. 

2.10.1 Facial Expressions 

Most of the affect detection research detects basic emotions from the face, drawing on the 

“emotions as expressions” view of modeling affect, which links basic emotions with distinctive 

facial expressions. The Facial Action Coding System (FACS; Ekman & Friesen, 1978) offers a 

more standardized method to classify facial activity using “facial actions” (i.e., facial motions) to 

identify six basic emotions: anger, disgust, fear, joy, sadness, and surprise (Ekman, 1992). This 

system enables human coders to decompose an expression into action units (AUs) that identify 

independent facial motions. The coding of emotions is a tedious and time-consuming task, which 

prompted several alternative techniques based on machine learning classifiers to automatically 

detect AUs from static images (Calvo & DʼMello, 2010). 

2.10.2 Body Language and Posture 

This affect-detection modality provides valuable and reliable information not captured 

via other modalities that are prone to social editing. For instance, automated temporal-transition 

posture analysis in a learning environment was conducted using the Tekscanʼs Body Pressure 

Measurement System (BPMS) to infer affective states (e.g., interest in a task) of children during 

a computer learning task (Mota & Picard, 2003). Similar to the analyses used for other 

modalities (e.g., face and voice), a machine learning classifier (i.e., neural network) was used to 

analyze posture sequences over a 3-second interval and predicted nine static postures with high 

accuracy (Mota & Picard, 2003). Machine learning techniques were also used to detect boredom, 
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confusion, delight, flow, and frustration, respectively, with accuracy ranging from 70 to 83 

percent (DʼMello & Graesser, 2009). 

2.10.3 Physiology 

AC applications analyze physiological activity to extract affect patterns that capture the 

expression of emotions, drawing on theories of embodiment of emotion. The measures employed 

to capture physiological states are based on electrical signals produced by the brain (e.g., 

Electroencephalography or EEG), heart (electrocardiogram or EKG/ECG), muscles (e.g., 

electromyogram or EMG), eye movement (e.g., electrooculogram or EOG), and skin (e.g., 

electrodermal activity or EDA). Researchers devised the multimodal affective user interface 

(MAUI) system to map physiological signals to emotions (Nasoz et al., 2004). A 

Psychophysiological Emotional Map (PPEM) was proposed to link physiological signals (e.g., 

heart rate and skin conductance) to dimensional models (e.g., valence, arousal) through user-

dependent mappings (Villon & Lisetti, 2006). 

2.10.4 Brain Imaging and EEG 

Affective neuroscience has focused on mapping neural circuitry corresponding to 

emotion using techniques such as Functional Magnetic Resonance Imaging (fMRI) or 

Electroencephalography (EEG). 

2.11 Computer-based Learning Environments 

Computer-based learning environment (CBLE) refers to the wide variety of technologies 

employed to support learning grounded in learning theories (Lajoie & Naismith, 2012).  

For example, an Intelligent Tutoring System (ITS) is a CBLE that must have: (1) domain 

knowledge (expert model); (2) knowledge of the learner (student model); (3) knowledge of 

teaching strategies (tutor) (Shute & Psotka, 1994). ITSs were developed to enhance what or how 
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much a student is learning through engaging mechanisms to personalize teaching (Joshi et al., 

2019). Examples of ITSs include MetaTutor, AutoTutor, and MathSpring. Students use the ITS to 

complete activities to stimulate learning, whereas the instructor uses it to understand and adapt 

teaching strategies (Han et al., 2019). 

Massive Open Online Courses (MOOC) are web-based learning programs designed for 

large groups of students (Terras & Ramsay, 2015). Students can register for free or at a low cost 

to these programs and learn at their own pace (Zhu et al., 2020). Examples of MOOCs include 

Harvard University’s Introduction to Computer Science course hosted on the edX platform and 

Stanford University’s Machine Learning course hosted by Coursera. 

An online platform is a tool where online services such as websites and mobile applications 

are hosted (Sofi Dinesh et al., 2021). Examples of online platforms include Amazon Web Services, 

Microsoft Azure, and Google Cloud Platform. In education, an online platform refers to a portal 

where educational resources are stored in one place (Nurhudatiana et al., 2018). 

A Learning Management System (LMS) is a platform, usually hosted online, for the 

tracking, reporting, and delivery of educational courses usually found in university settings 

(Oliveira et al., 2016). Some examples of LMSs are Moodle, Blackboard Learn, and Schoology. 

 

 

  



16 

 

Chapter 3. Method 

 

3.1 Search Strategy 

 A comprehensive strategy to search for relevant records guided the present review to 

ensure the identification of a wide range of studies. Publications for this systematic literature 

review were gathered from ACM Digital Library, ERIC, IEEE Xplore, and SpringerLink. These 

databases were selected as they contain an extensive array of publications on education and 

technology and are representative of the work published in the topic of interest, in this case the 

relationship of affective state with learning, for the present review. The Association for 

Computing Machinery (ACM) Digital Library is an online archive of computer science work 

from the 1950s onwards. It contains the full text to ACM journals, magazines, conference 

proceedings, and e-books on topics related to computers and technology. ERIC is a 

comprehensive educational database that includes studies from 1996 onwards that cover pre-

school to post-secondary and adult education. IEEE Xplore covers electrical and electronic 

engineering, computer engineering, and computing science topics; it provides full-text access to 

IEEE transactions, journals, magazines, and conference proceedings published since 1884. 

Springer Link is a database that provides access to the full text of books and journals from 

Springer-Verlag and associated publishers, covering life sciences, chemical sciences, 

geosciences, computer science, mathematics, medicine, physics, astronomy, engineering, 

environmental sciences, law, and economics.  

The searches were conducted using the following Boolean search terms: “*affect*” AND 

(“*sensor*” OR “*physiologic*” OR webcam) AND “learn*” AND (“programming” OR 

"gam*" OR “intelligent tutoring system*”) AND “student*”. After the retrieval of peer-reviewed 

publications (i.e., journal articles and conference proceedings), 542 studies (478 retrieved from 
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the ACM Digital Library, 26 from ERIC, 38 from IEEE Xplore, and 2 from SpringerLink) were 

imported into the Covidence (2019) systematic review platform for screening. Of the total 

studies, 17 duplicates were removed during screening. One rater completed the process, and a 

second rater reviewed the steps of the process leading to the selection of the final set of records. 

Then, two other raters reviewed independently the summaries of the final records included. Only 

records published until June 2021 were selected. 

3.2 Exclusion Criteria 

This systematic literature review follows the PRISMA (Page et al., 2021) guidelines for 

article selection. This process was facilitated by Covidence (2019). The first stage was the 

screening stage of the title and abstract, where one of the raters removed the publications that 

were not eligible for inclusion. This process required the reviewer to critically analyze the title 

and abstract of each publication to determine if the topic and procedures aligned with the 

purpose of this literature review. During this stage, 435 records were discarded. Publications that 

used the word “affect” referring to causality were discarded as this was not the definition of 

interest. The keyword “sensors” yielded results in the computer systems area, which were also 

discarded as the type of sensors used did not capture any physiological data. Project proposals 

were also discarded as they did not provide evidence of the claims. Finally, publications that 

only described the procedure of the intervention and not the results were also discarded.  

The following stage was the full-text review. We excluded publications that (1) were not 

empirical studies, (2) were not peer-reviewed articles or conference proceedings, (3) were not 

available in English, (4) lacked the full text, (5) were not sampling learners, and (6) were not 

measuring affective state. Only peer-reviewed publications were retained, as they tend to include 

more rigorous methodologies, including more methodological detail and more robust results. 
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During this stage, 54 records were discarded. The final number of publications included for this 

review was 36 records, as shown in Figure 2. 

Figure 2 

The PRISMA 2020 Flow Diagram for New Systematic Reviews Employed in This Study 
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3.3 Coding Procedure 

During the extraction phase, all 36 records were thoroughly screened for ensure they 

provide data to answer the research questions.  Table 1 describes the variables used in this review. 

Variables were divided into two categories: characteristics (i.e., those variables that identify the 

publications) and methodology (i.e., those variables that were employed in the experiments of the 

reviewed publications). 

 

Table 1 

Description of the Variable Extracted from the Reviewed Publications 

 Variable Description 

Characteristics Title Title of the record 

 Authors Full names of the authors of the record 

 Venue Venue where the record was published 

 Year Year when the record was published 

 Author Country Country of the university the author is associated in the record 

 Participant 

Country 
Reported country of the participants of the experiment 

 Educational 

Level 
Level of education reported of the participants of the experiment 

 Research 

Design 
Research design employed in the experiment 

Methodology Domain Educational domain of the experiment 

 System Type Type of computer-based system employed in the experiment 

 Sensor 
Sensor or sensors employed to record data channels in the 

experiment 

 Observation 

method 

Methods employed in the experiment to infer or define the 

participants’ affective state in the experiment 

 Emotion Affective state or states recognized in the experiment 
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 ML Algorithm 
Machine learning algorithms employed to analyze data from the 

experiment 

 

3.4 Inter-rater Reliability 

One rater reviewed all 36 publications and another rater reviewer 15% of these 

publications. To find the inter-rater reliability coefficient, the records that were coded by both 

authors were compared. After both raters extracted the necessary data from the records, the results 

were coded into categories. The data was transformed into two vectors and analyzed using IBM 

SPSS Statistics. The Cohen’s Kappa coefficient, κ, that represents the inter-rater reliability was κ 

= 0.929 (95% CI, 0.876 to 0.973), p < 0.001, indicating near perfect agreement. 
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Chapter 4. Results 

 

A summary of the key characteristics of each reviewed publication is included in Table 2, 

showing the publication identifier, citation in APA format, publication year, geographical 

location of the authors and of the study sample, educational level, and research design. Table 3 

includes the methodology employed in each of the reviewed publications, subject domain of the 

study, the application (i.e., educational game, intelligent tutoring system) used in the experiment, 

the sensors used to collect affective data, and the machine learning algorithm applied to analyze 

the data. Table A1 in the Appendix A shows all the publications included in the present 

systematic review. 

 

Table 2 

Key Characteristics of the Reviewed Publications 

Pub

ID 

APA 

Citation 
Year Database 

Author 

Country 

Participant 

Country 

Education 

Level 

Research 

Design 

1 

Barron-

Estrada et al. 

(2018) 

2018 IEEE Mexico Mexico University Experimental 

2 
Bosch et al. 

(2015) 
2015 ACM USA USA K-12 

Quasi-

Experimental 

3 
Burleson & 

Picard (2007) 
2007 IEEE USA USA K-12 Experimental 

4 
DeFalco et al. 

(2018) 
2018 

Springer

Link 
USA USA University Experimental 

5 
Ghaleb et al. 

(2018) 
2018 IEEE Netherlands Netherlands University Correlational 

6 
Grafsgaard et 

al. (2014) 
2014 ACM USA USA University 

Quasi-

Experimental 

7 
Joshi et al. 

(2019) 
2019 IEEE USA 

Not 

disclosed 
University Correlational 

8 

Jraidi & 

Frasson 

(2013) 

2013 ERIC Canada 
Not 

disclosed 
University Experimental 

9 
Jraidi et al. 

(2013) 
2013 ACM Canada 

Not 

disclosed 

Not 

disclosed 
Experimental 
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10 
Kai et al. 

(2015) 
2015 ERIC USA USA K-12 

Quasi-

Experimental 

11 
Korn & Rees 

(2019) 
2019 ACM Germany Germany University Experimental 

12 
Lee-Cultura 

et al. (2020) 
2020 ACM 

Norway, 

Greece 
Norway K-12 

Quasi-

Experimental 

13 Leong (2015) 2015 IEEE UK Singapore University Experimental 

14 
Mangaroska 

et al. (2020) 
2020 ERIC 

Norway, 

Australia 
Norway University Experimental 

15 
Mills et al. 

(2017) 
2017 ACM Canada USA K-12 

Quasi-

Experimental 

16 
Muñoz et al. 

(2016) 
2016 ERIC 

Mexico, 

Ireland, UK 
Mexico University 

Quasi-

Experimental 

17 
Park et al. 

(2018) 
2018 ACM 

South Korea, 

USA 

Not 

disclosed 
University 

Quasi-

Experimental 

18 
Pham & 

Wang (2016) 
2016 ACM USA USA University Experimental 

19 
Psaltis et al. 

(2017) 
2018 IEEE Greece Greece K-12 Experimental 

20 
Rajendran et 

al. (2019) 
2019 IEEE India India K-12 

Quasi-

Experimental 

21 
Sharma et al. 

(2018) 
2018 ACM Norway Norway K-12 Experimental 

22 
Sharma et al. 

(2021) 
2021 ACM Norway Norway K-12 Experimental 

23 
Sinha et al. 

(2015) 
2015 IEEE India India 

Professiona

ls 
Experimental 

24 
Sottilare & 

Proctor (2012 
2012 ERIC USA USA University 

Quasi-

Experimental 

25 
Srivastava et 

al. (2018) 
2018 ACM Australia Australia 

Professiona

ls 

Quasi-

Experimental 

26 
Standen et al. 

(2020) 
2020 ERIC 

UK, Italy, 

Spain 

UK, Italy, 

Spain 
K-12 

Quasi-

Experimental 

27 
Subburaj et 

al. (2020) 
2020 ACM USA USA University Experimental 

28 

The & 

Mavrikis 

(2016) 

2016 ACM 
Singapore, 

UK 
Singapore University Experimental 

29 
Vail et al. 

(2016) 
2016 ACM USA USA University 

Quasi-

Experimental 

30 
VanLehn et 

al. (2017) 
2017 IEEE USA USA 

K-12 and 

University 
Experimental 

31 
Veliyath et al. 

(2019) 
2019 ACM USA USA University Experimental 

32 
Wu et al. 

(2020) 
2020 

Springer

Link 
Taiwan Taiwan University Experimental 
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33 
Xiao & Wang 

(2015) 
2015 ACM USA USA University Experimental 

34 
Xiao & Wang 

(2016) 
2016 ACM USA USA University Experimental 

35 
Yang et al. 

(2019) 
2019 ERIC USA 

Not 

disclosed 
K-12 Experimental 

36 
Yue et al. 

(2019) 
2019 IEEE 

China, UK, 

USA 
China University Experimental 

Note: PubID = Publication Identifier 

 

Table 3 

Methodology Employed in the Reviewed Publications 

Pub 

ID 

APA 

Citation 
Domain 

System 

Type 
Sensor ML Algorithm 

1 

Barron-

Estrada et 

al. (2018) 

English to 

Spanish 

Language 

Online 

platform 

Cellphone: 

microphone, 

accelerometer, and 

gyroscope. 

SVM 

2 
Bosch et al. 

(2015) 
Physics Game Webcam 

SVM, C4.5 trees, and 

Bayesian classifiers. 

3 

Burleson & 

Picard 

(2007) 

Mathematics Game 

Video camera, a 

pressure mouse, a skin-

conductance sensor, 

and a posture chair 

Not disclosed 

4 
DeFalco et 

al. (2018) 

Military Medical 

Training 
ITS 

Microsoft Kinect and 

Affectiva Q-Sensor 

J48, JRip, Logistic, 

Regression, Naïve Bayes, 

SVM, Step Regression, 

KStar 

5 
Ghaleb et 

al. (2018) 

Mathematics, 

History, Sports, 

and Geography 

Game Mouse and keyboard SVM 

6 
Grafsgaard 

et al. (2014) 
Programming ITS 

Kinect camera, 

webcam, skin 

conductance sensor, 

and database logs 

J48 DT 

7 
Joshi et al. 

(2019) 
Mathematics ITS 

Webcam and GoPro, 

mouse location and 

clickstream, video 

stream of the screen. 

Multi-layer perceptron 

with Adam optimizer 

8 

Jraidi & 

Frasson 

(2013) 

Mathematics ITS 

Electroencephalogram, 

skin conductance 

sensor, and blood 

volume pulse sensor 

SVM, Decision tree, Naïve 

Bayes 

9 
Jraidi et al. 

(2013) 
Mathematics ITS 

EEG, video cameras 

and mouse movement 
DBN 
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10 
Kai et al. 

(2015) 
Physics Game Webcam 

JRip, J48 decision trees, 

KStar, Naïve Bayes, step 

and logistic regression 

11 
Korn & 

Rees (2019) 
Mathematics Game 

Video cameras and 

Shimmer sensor 
Not disclosed 

12 
Lee-Cultura 

et al. (2020) 

English 

Language 
Game 

Eye tracker. webcam, 

Empatica E4, and 

Kinect Skeleton 

Not disclosed 

13 
Leong 

(2015) 
Programming NA 

Webcam, keyboard 

stream, and screen 

video stream 

Logistic regression with 

lasso regularization 

14 
Mangaroska 

et al. (2020) 
Programming 

Online 

platform 

Empatica E4, eye 

tracker, and webcam 
Random Forest 

15 
Mills et al. 

(2017) 
Biology ITS QUASAR Qstate classifier 

16 
Muñoz et 

al. (2016) 
Physics Game Not disclosed Bayesian Networks 

17 
Park et al. 

(2018) 
Programming 

Online 

platform 
Platform logs Not disclosed 

18 

Pham & 

Wang 

(2016) 

Law ITS 
Attentive Review and 

webcam 

Linear kernel ranking 

SVM 

19 
Psaltis et al. 

(2017) 
Game Theory Game Kinect camera ANN 

20 
Rajendran 

et al. (2019) 
Mathematics ITS Not disclosed Not disclosed 

21 
Sharma et 

al. (2018) 
Programming 

Online 

platform 
SMI and eye tracker Not disclosed 

22 
Sharma et 

al. (2021) 
Programming 

Online 

platform 
Webcam Not disclosed 

23 
Sinha et al. 

(2015) 
Not disclosed Game 

Neurosky, pulse 

oximeter, eSense, game 

videostream, and 

mouse keystrokes 

Gaussian Mixture Model 

24 

Sottilare & 

Proctor 

(2012 

Military Medical 

Training 
Game Not disclosed Not disclosed 

25 
Srivastava 

et al. (2018) 
Programming NA Eye tracker 

SVM, KNN, Random 

Forest 

26 
Standen et 

al. (2020) 

Social skills, 

STEM learning, 

language, 

mathematics 

Online 

platform 

Audio, posture-sensing 

chair, and video camera 

Linear mixed model and 

log-linear mixed models 

27 
Subburaj et 

al. (2020) 
Physics Game 

Webcam and eye 

tracker 
Random forest 

28 

The & 

Mavrikis 

(2016) 

Programming 
Online 

platform 

Eye tracking device, 

video screen capture 
Not disclosed 

29 
Vail et al. 

(2016) 
Programming ITS 

Kinect camera, 

webcam, and skin 

conductance bracelet 

Not disclosed 
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30 
VanLehn et 

al. (2017) 
Mathematics ITS 

Video camera and 

posture-sensing chair. 
Not disclosed 

31 
Veliyath et 

al. (2019) 

Mechanical 

engineering 
NA Eye tracker 

Random Forest, SVM, 

Adaptive Boosting, and 

Extreme Gradient Boosting 

32 
Wu et al. 

(2020) 
Physics Game 

Eye tracker and 

emWave 
Not disclosed 

33 

Xiao & 

Wang 

(2015) 

Game Theory MOOC Nexus 5 flashlight RBF SVM 

34 

Xiao & 

Wang 

(2016) 

STEM learning MOOC 

Neurosky Mindwave 

EEG headset and 

Nexus 5 flashlight 

Ranking SVM 

35 
Yang et al. 

(2019) 
Mathematics ITS Not disclosed LMMSE 

36 
Yue et al. 

(2019) 
Programming MOOC 

Microsoft LifeCam, 

eye-tracker, and 

clickstream 

VGG16, Inception-

ResNetV2, VGG16 with 

LSTM, Inception-

ResNetV2 with LSTM, 

CART, Random Forest, 

GBDT 

Note: PubID = Publication Identifier 

 

4.1 What are the key characteristics of the studies reviewed? 

 Most research designs in the reviewed publications were experimental (n = 22; 61.11%) 

followed by quasi-experimental (n = 12; 33.33%) and correlational (n = 2; 5.55%), as shown in 

Figure 3. There were no studies employing a qualitative research design. 

 

Figure 3 

The Reviewed Publications by Research Design 
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More than half of the records reviewed were published in the last 4 years, with a peak in 

2018 (the highest frequency year of publication with 7 publications), as shown in Figure 4. The 

results also show an overall increasing trend (with the exception of 2017), with 86% (n = 31) 

records being published since 2015. 

 

Figure 4 

The Reviewed Publications by the Year in Which They Were Published 
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Most of the records were published in the ACM digital library (47%, n = 17), followed 

by IEEE (28%, n = 10), ERIC (19%, n = 7), and SpringerLink (6%, n = 2), as shown in Figure 5. 

Most of the reviewed studies (n = 24) were published in conference proceedings (67%, n = 24), 

with only 12 published in journals (33%, n = 12). Specifically, most of the studies reviewed were 

published in conference proceedings in the field of computing science (61%, n = 22) and 

education (6%, n = 2), followed by journal venues in the fields of computing science (14%, n = 

5) and education (19%, n = 7). Also, most studies were published in the field of computing 

science (75%, n = 27, with 22 proceedings and 5 journals), followed by education (25%, n = 9, 

with 2 proceedings and 7 journals).  

 

Figure 5 

The Publications Reviewed by Searched Database 

 

 

Most studies were conducted in formal education settings, such as schools, colleges, or 

universities. Also, most of the studies that we reviewed sampled university or college students 

(59%, n = 22), followed by K-12 students (32%, n = 12) and professionals (research staff and 

engineers; 5%, n = 2), as shown in Figure 6. For instance, (VanLehn et al., 2017) conducted an 

https://www.zotero.org/google-docs/?iKgDuA
https://www.zotero.org/google-docs/?iKgDuA
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experimental study on both high-school and university students to understand the effectiveness 

of an interactive tutor offering motivational messages. Five studies sampled a variety of K-12 

students: middle school and high school (n = 4) as well as elementary, middle, and high school 

(n = 1). Finally, one study did not disclose this information. 

 

Figure 6 

Publications by Educational Level of the Participants Included in the Reviewed Studies 

 

The 36 records included in this review represented 14 countries across four continents, as 

shown in Figure 7. The samples included countries from North America (n = 16; USA: n =14, 

Mexico: n = 2), Europe (n = 10; Norway: n = 4, Germany: n = 1, UK: n = 1, Italy: n = 1, Greece: 

n = 1, Spain: n = 1, The Netherlands: n = 1), Asia (n = 6; Singapore: n = 2, India: n = 2, China: 1, 

Taiwan: n = 1), and Australia (n = 1). Five of the publications reviewed failed to specify the 

sample location. Standen et al. (2020) sampled participants with intellectual disabilities and 

autism spectrum disorder from three European countries (e.g., The UK, Italy, and Spain) to 

classify learnersʼ affective states (e.g., engaged, frustrated, or bored). 

In terms of author country, most authors were from North America (n = 22; USA: n = 17, 

Canada: n = 3, Mexico: n = 2), Europe (n = 16; Norway: n = 4, Germany: n = 1, UK: n = 5, Italy: 
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n = 1, Greece: n = 2, Spain: n = 1, The Netherlands: n = 1, Ireland: n = 1), Asia (n = 6; 

Singapore: n = 1, India: n = 2, China: 1, Taiwan: n = 1, South Korea: n = 1), and Australia (n = 

2). Figure 8 shows the relationship between authors’ location and the location of the sample of 

the studies. 

 

Figure 7 

Publications by Continent of the Participants Included in the Reviewed Studies 

 

 

Figure 8 

Sankey Chart Linking Author Country to Sample Country 
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As shown in Figure 9, most of the reviewed publications included medium sample sizes 

between 30 and 100 participants (n = 18), followed by large sample sizes exceeding 100 

participants (n = 9), followed by small sample sizes with less than 30 participants (n = 8). One 

study did not disclose its sample size. 

 

Figure 9 

Publications by Sample Size Included in the Reviewed Studies 
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Regarding the subject domain explored in the reviewed studies, most studies (71.43%) 

were conducted in the context of STEM, as shown in Figure 10. Many of the STEM studies 

involved CS and engineering education (n = 12): programming (n = 10), computer and network 

security (n = 1), and mechanical engineering (n = 1). This was followed by mathematics (n = 

12), physics (n = 5), biology (n = 1), and geography (n = 1). Social sciences accounted for 

20.41% of the studies (n = 10). The smallest percentage of studies (6.12%) explored the domains 

of military medical training (n = 2) and sports (n = 1). One study did not disclose the domain of 

interest. 

 

Figure 10 

The Reviewed Publications by Subject Domain 
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Regarding the type of application reviewed, serious games (n = 12; 33.33%) and ITSs (n 

= 11; 31.1%) were the most employed, as shown in Figure 11. Online platforms were used in n = 

7 (19.4%) of the reviewed publications, while MOOCs were used in three (8.3%) of the studies. 

Three studies did not disclose the type of application used in the analysis. 

 

Figure 11 

The Reviewed Publications by the Type of Application 
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4.2 What are the channels of data employed in the studies reviewed? 

4.2.1 Physiological Modality Channels 

Several (n = 8) channels of physiological data were identified in the reviewed 

publications. The most popular channels of data associated with tracking learner activity to infer 

their affect related to emotions were facial expressions (n = 14), followed by eye-gaze behavior 

(n = 11), and electrodermal activity (n = 10). This was followed by behavior observation (e.g., 

upper facial movements, such as eyebrow scrunching; n = 7), EEG measures (n = 5) and 

cardiovascular measures (n = 5), body posture (n = 4), and the subjects’ orientation and location 

(n = 1), as shown in Figure 12. 

 

Figure 12 

The Reviewed Publications by Type of Physiological Data Channels 

   

For each of the physiological channels, the sensors that were used to collect the data, 

including their brand name, were identified. To collect EEG data, the following devices were 

used: QUASAR (n = 2) and NeuroSky cap (n = 2). Two studies did not specify the sensor. To 

collect eye-gaze behavior, the majority of the publications used different devices from the Tobii 

brand (n = 8; 72.72%): the Tobii X2-30 screen-based eye sensor (n = 2), the wearable Tobii 
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glasses (n = 2), the Tobii 4C (n = 3), and the Tobii X3-120 (n = 1), the most expensive 

alternative of the screen-mounted sensor. Also, one study reported using a screen-based eye 

sensor from the brand Eye Tribe and one study did not specify the sensor.  

To collect cardiovascular measures, publications reported using the Empatica E4 

wristband (n = 1) or an oximeter from an unspecified brand (n = 1). Two studies did not specify 

the sensor used to collect this channel of data. To collect skin conductance measures, half of the 

publications reviewed (n = 5) did not specify the brand name of the sensor used, whereas the 

other half reported using the Empatica E4 wristband (n = 2), the Shimmer bracelet (n = 1), the Q-

sensor bracelet (n = 1), and the eSense (n = 1), a device that consists of two nodes attached to the 

index and middle finger. For spatial location data, a cell phone was used in one of the reviewed 

publications. Finally, for body posture data (n = 4) and facial expressions (n = 14), no specific 

(i.e., brand or model) video-based sensor was mentioned. 

4.2.2 Behavioral Modality Channels 

 Behavioral data channels related to the learnersʼ level of involvement in the activity were 

identified, each sensor was counted individually. From the reviewed publications in descending 

order of frequency: facial expressions (n = 16), eye-gaze behavior (n = 10), affective state (n = 

9), body posture (n = 7), EEG (n = 6), EDA (n = 5), BVP (n = 2), HRV (n = 2), PPG (n = 2), and 

mouse pressure (n = 1), as shown in Figure 13. To collect behavioral data, the most popular 

sensor was the Kinect sensor (n = 4), whereas the rest of the publications reviewed did not 

specify the sensor used (n = 3).  

 

Figure 13 

The Reviewed Publications by Type of Behavioral Data Modality Channels 
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4.2.3 Performance Related Modality Channels 

Finally, among performance related modality channels, the most popular channel was log 

data (n = 28; 50%). The rest of the channels identified were not represented as often in the 

reviewed records: EDA (n = 4), audio (n = 3), mouse movement (n = 2), clickstreams (n = 2), 

keystrokes (n = 2), pre/posttest performance (n = 2), temperature (n = 2), webcam video (n = 2), 

cardiovascular measures (n = 1), body motion (n = 1), device orientation (n = 1), task completion 

and error rate (n = 1), and eye-gaze (n = 1), as shown in Figure 14. 

 

Figure 14 

The Reviewed Publications by Type of Performance Related Data Channels 
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4.3 What are the affective states (classes of emotions) pertaining to the studies 

reviewed?  

Several (n = 18) affective states were identified from the 36 reviewed publications as 

shown in Figure 15. The most common were engagement (n = 16), boredom (n = 15), frustration 

(n = 14), and confusion (n = 9). The rest of the recognized affective states seldom repeat 

themselves: anxiety (n = 4), joy (n = 3), anger (n = 3), interest (n = 3), flow (n = 3), surprise (n = 

2), disgust (n = 2), confidence (n = 2), stuck (n = 2), sadness (n = 1), agreement (n = 1), 

disagreement (n = 1), hope (n = 1), and gratitude (n = 1). Korn and Rees (2019) conducted an 

experimental study in professionals to identify the affective states the participants experienced 

when performing tasks in a gamified environment. The identified affective states for this study 

were: joy, anger, sadness, surprise, fear, contempt, and disgust. 

A subset of the affective states of boredom, confusion, concentration, and frustration 

were commonly (n = 14) found in classification problems and machine learning algorithms were 

used to distinguish learnersʼ current state among these. For instance, VanLehn et al. (2017) 

compared several machine learning algorithms using middle school and high school learnersʼ 

multimodal data when playing a serious game and to classify them among the following affective 

states: boredom, confusion, delight, engagement, and frustration (Kai et al., 2018). 

 

Figure 15 

The Reviewed Publications by Affective States 

https://www.zotero.org/google-docs/?PtbWOO
https://www.zotero.org/google-docs/?PtbWOO
https://www.zotero.org/google-docs/?PtbWOO
https://www.zotero.org/google-docs/?7ikf7j
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4.4 What are the machine learning algorithms used to detect affect in the studies 

reviewed? 

This review also found that most of the machine learning techniques employed to 

recognize users’ emotional states were supervised learning techniques, specifically classification 

algorithms. Figure 16 shows that SVMs were the most popular, followed by probabilistic 

classifiers (e.g., dynamic Bayesian network or DBN, which is a hierarchical probabilistic 

framework used to classify user concurrent emotions; Naive Bayes), tree-based classifiers (e.g., 

J48, C4.5), neural networks (e.g., multi-layer perceptron), rule-based (e.g., JRip), instance-based 

classifiers (e.g., KStar), logistic regression, and other linear classifiers (e.g., step Regression). 

 

Figure 16 

Publications by the Type of Machine Learning Algorithm Used for Classification 



38 

 

 

 

 From the 25 publications that used at least one machine learning algorithm, all of them 

reported using a cross-validation technique to evaluate the model, as shown in Figure 17. Most 

publications (n = 13; 52%) used a k-fold cross-validation technique, followed by Leave-One-Out 

cross-validation (n = 4), a basic holdout approach (i.e., splitting of the training and test dataset; n 

= 3), an algorithm-specific approach (n = 3), and nested cross-validation (n = 1). 

 

Figure 17 

Publications by Type of Model Evaluation Used on the Machine Learning Algorithms 
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 From the publications that used cross-validation (n = 13), most (n = 7; 53.84%) used 10 

folds to evaluate the model, followed by 20 folds (n = 2), 4 folds (n = 4), 6 folds (n = 1), and 1-

fold (n = 1). Of the publications that evaluated their model by splitting the training and testing 

datasets, (n = 1) used a 75/25 split, (n = 1) used a 65/35 split, and (n = 1) was not specific. For 

the algorithm specific approach, (n = 1) publication used an SVM classifier and adjusted the C 

parameter (i.e., value of avoiding misclassification at each training example) to 10 and the 

gamma parameter (i.e., the value to define how far the influence of a single training example 

reaches) to 0.01. Another (n = 1) used K-Nearest Neighbors and adjusted the number of 

neighbors (i.e., parameter of nodes to include in the classification voting process) to 10, and, 

finally, the publication (n = 1) using Random Forests adjusted the number of trees (i.e., number 

of decision trees to build before averaging the decisions). 
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Chapter 5. Discussion 

 

5.1 What are the key characteristics of the studies reviewed? 

The findings revealed an increase in the number of studies published in recent years. One 

reason for this result could be linked to the emergence of new, low-cost, and non-invasive wearable 

sensors becoming available to the public. For example, Empatica Inc. released their first wearable 

wristband to detect physiological data around 2015 (Comstock, 2015). Similarly, the more popular 

models of Tobii eye-trackers mentioned in 70% of the reviewed publications that collected eye-

gaze behavior were released around 2017. Thus, the increase of publications could be tied to the 

increase of availability of sensors for research purposes. The increase of publications could also 

be associated with the publication of the second iteration of the BROMP observation method in 

2015 (Ocumpaugh, 2015). 

In terms of research design, none of the reviewed publications employed a qualitative 

methodology. Most of the studies (61.11%) used an experimental approach to their analyses, which 

is expected because of the quantitative nature of the usage of sensors and the convenience of access 

to large datasets. However, qualitative research could provide deeper insights into learner affect. 

Thus, future studies could explore more varied research designs that include interviews, 

observations, or think-aloud protocols. 

 The findings revealed that twice as many publications were reported in conference 

proceedings than in journal venues. Consistent with venue bias (Alshareef et al., 2019), results 

show that three times more studies were published in the field of computing science than in the 

field of education. Moreover, twice as many studies across the fields of computing science and 

education were published in refereed conference proceedings than in journal venues. This result is 

reasonable, given that some of these publications require advanced machine learning techniques 
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employed in the field of computing science, a fast-moving field, and, increasingly, in the field of 

education. Although the chosen databases were selected to balance the fields of computing science 

and education where this research is usually published, three fourths of the reviewed publications 

were found in the ACM Digital Library and IEEE Xplore databases that mainly focus on 

publishing computing science venues. Around 90% of the reviewed publications used at least one 

sensor and 40.90% employed an experimental design to test the hypothesis that sensors could 

enhance learnersʼ experiences and outcomes. This may be attributable to much of this work 

requiring the processing of sensor signals. We may see a shift as detectors become commercially 

available. The choice of an experimental design is likely related to the sample sizes reported in the 

reviewed publications where 75% of studies collected data from a medium (i.e., between 30 to 100 

subjects) to large (i.e., over 100 subjects) of people. 

 Around two-thirds of the reviewed studies sampled university students. One of the reasons 

to support this result could be that research consent in younger learners is more difficult to achieve 

because parents and guardians must be informed and in agreement with the study. Another reason 

could be that some of the sensors mentioned required placement on the learnersʼ body or limited 

movement to decrease noise in the data. Moreover, many of the studies (47.2%) were conducted 

in laboratory settings. Thus, they have limited generalizability to other learning environments, 

such as classrooms or informal learning settings. Only 38.8% of the studies were conducted in a 

school laboratory (e.g., computer laboratory) where the data was noisy (Bosch et al., 2015; Kai et 

al., 2015). 

The review found that most studies (75%) employed a limited sample size, especially when 

exploring particular affective states that occur infrequently (Bosch et al., 2015; Kai et al., 2015). 

This lack of variability may be due to the variety in the types of learning platforms, which may 
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affect the generalizability of the findings of this review. For example, 33.33% were serious games, 

25% were ITSs, 19.44% were online platforms (e.g., Scratch, DuoLingo, etc.), 11.11% were 

MOOC-based, and 11.11% were not specified. For instance, game-based systems may be 

conducive to engagement but hinder other affective states. Thus, it would be helpful to conduct 

more studies sampling large populations, and a variety of system types.  

In terms of the sample location, almost half (44%) of the reviewed publications were 

located in North America. This could be explained by the major investment in sensor-based 

research across the continent, specifically the United States. In terms of education-based research, 

Silicon Valley in California (Min et al., 2020) had an increase in investment for the creation of 

sensors. According to the (Market Research Future, 2018) the North American sensor market has 

been on the rise since 2016 due to advances in technology and it is expected to double in revenue 

by 2023. Another explanation for this result could be that the major developers of sensor-based 

research are located in North America, such as Siemens AG, Honeywell International Inc., General 

Electric, etc. As most studies sampled students from North America and mostly from classrooms, 

more research needs to be conducted to explore affect detectors with diverse populations in terms 

of age, gender, race, and geographic distribution. 

Finally, when analyzing the subject domains explored in the reviewed publications, results 

showed that most studies reviewed focused on STEM contexts (71%). Specifically, there is an 

interest in exploring how learners react to programming courses which are deemed as difficult and 

stressful (Demir, 2022). Similarly, serious games and ITSs were the most popular learning 

applications. These application types are most commonly used in STEM educational contexts. 

Some examples are Physics Playground (Shute et al., 2013), which is a serious game that teaches 

fundamental principles of Newtonian physics, and JavaTutor (OʼBrien et al., 2014), which is an 

https://www.zotero.org/google-docs/?broken=2wYgeS
https://www.zotero.org/google-docs/?broken=2wYgeS
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ITS that enables learners to visualize their code, execute example problems, and receive reviews 

from freelance tutors. 

5.2 What are the channels of data employed in the studies reviewed? 

Results revealed that facial expression was the most common physiological and behavioral 

data modality channel, being mentioned in a third of the reviewed publications. This result is not 

surprising because facial expressions are easy to collect and used to explain the affective state of 

the learner. Also, individuals are more likely to understand non-verbal communication through 

facial expressions (Buck et al., 1969). Similarly, facial expressions of emotion have been found to 

exhibit features in common across different cultures (Cowen et al., 2021). Another reason for this 

result could be that the collection of facial expressions is one of the least disruptive and intrusive 

data modality channels. Researchers can understand the emotion a learner is experiencing through 

observation of video streams of the face and computer vision algorithms can vectorize frames of 

these video streams and identify if the learner expressed an emotion. This identified emotion can 

then be correlated with the learner’s interaction with the learning system. Through the use of video 

cameras and webcams, learners can be monitored without being physically connected to a sensor 

or device. This could also explain why eye-gaze behavior was the second most common 

physiological data channel. However, there are ethical implications of using even the most 

unobtrusive sensors. For example, using a wristband sensor (e.g., Fitbit or Apple Watch) requires 

the learner to input their personal information, such as height, weight, and date of birth. This 

sensitive information can have a negative effect in younger participants as they might see 

themselves as too heavy or too tall. On the other hand, unsafe storage of sensitive data can result 

in participant [missing word]. Consequently, additional safeguards and informed consent of the 

storage, coding, and sharing of the data are necessary. 
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Finally, log data was the most frequent performance-related data-modality channel. This 

result is also reasonable because data collected from any type of computer-based systems such as 

serious games, ITSs, or MOOCs can provide feedback to the researcher about the type of learning 

experience. This log data can explain if learners are mastering the skill to be learned or if they are 

struggling to learn it through the number of hints needed or incorrect attempts. 

5.3 What are the affective states (classes of emotions) pertaining to the studies 

reviewed? 

The findings revealed that the most commonly explored affective states were engagement, 

boredom, frustration, and confusion. These states were usually explored together. These results 

are not surprising given that the literature has identified these affective states as cognitive-affective 

states (Baker et al., 2010; DʼMello & Graesser, 2011). These states are divided into positive and 

negative (DʼMello & Graesser, 2011) and have been shown to be influential in learning 

experiences. This supports Russell's (1980) theory that levels of arousal and emotions have a 

positive or negative valence and Kort et al.'s (2001) view that emotions are influential and 

necessary to the learning cycle. For example, negative cognitive-affective states (e.g., frustration) 

can affect a learning experience positively because they can motivate students to complete 

challenges (Baker et al., 2021) but they can also affect learning negatively because they can lead 

to attrition (Vinker & Rubinstein, 2022) and to students feeling unsupported. 

To understand learnersʼ affective state through physiological signals, most of the reviewed 

publications used at least one sensor. These physiological signals can offer researchers more 

reliable feedback given that these signals originate directly from the sympathetic system and, thus, 

are more difficult to fabricate, in contrast to behavior that can be controlled such as facial 

expressions and body posture (Gazzaniga & Smylie, 1990). Likewise, sensors can quantify 



45 

 

physiological signals without the added bias from cultural aspects that influence emotion, posited 

in Hofstede's (2011) Theory of Cultural Dimensions, such as a person’s background and how social 

behaviors like gender roles influence their behavior. 

Some of the reviewed publications that used physiological signals to classify learnersʼ 

affective states (42.85%) were focused on measuring participant engagement in the activity. For 

example, Lee-Cultura et al. (2020) conducted a study in which middle-school learners played 

different versions of a serious game in English grammar and math. The authors measured the level 

of engagement using physiological data channels, such as electrodermal activity and skin 

temperature collected from an Empatica E4 wristband. Results showed that students felt more 

represented in the game which led to higher engagement.   

Several observation methods were used to classify the learnersʼ affective states. In the 

BROMP coding protocol, certified observers assign one of the affective labels (i.e., boredom, 

confusion, delight, engagement, frustration, and surprise) to students. The BROMP protocol was 

a recurring method in the reviewed publications that were interested in identifying the most 

common cognitive-affective states (i.e., engagement, boredom, frustration, and confusion). Other 

reviewed publications employed other types of observation methods to classify the students’ 

affective states, such as surveys, post-tests, and questionnaires. The holistic nature of the 

observation method (e.g., BROMP) can lead to incomplete data where the coder lacks confidence 

in the label they assign or misunderstands the learner’s behavior. Other observation methods did 

not have reliability measures as some of the publications used surveys to get feedback in the 

activity. Although the BROMP observation method is featured repeatedly, there is no agreed upon 

method to classify learnersʼ affective state through observation. Future studies could compare the 

effect of the observation method on participants’ affective and behavioral states. 
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The results from the reviewed studies indicate that sensor data can identify different 

affective states related with achievement, such as engagement, frustration, and boredom (Standen 

et al., 2020). The absence of boredom was the state most strongly linked to achievement (Standen 

et al., 2020) because boredom has been found to be a barrier for learning (Chen, 1998). In their 

experimental study, Standen and colleagues (2020) found significantly more engagement and less 

boredom in intervention sessions than in control sessions; however, they did not find any 

significant differences in achievement based on the detection of frustration and engagement. 

Conversely, Subburaj et al. (2020) conducted a quasi-experimental study sampling undergraduate 

student triads. The authors used eye-gaze patterns and identified collective gaze agreement (i.e., 

looking at a similar location for a similar amount of time). Their findings showed that groups with 

similar eye-gaze sequences reported higher scores when playing an educational game compared 

to groups that struggled to agree as a team. 

The studies rarely showed a relationship between affective state and academic performance 

(5.55%). Thus, there is an opportunity to develop and validate models that explore this 

relationship. For example, Kort et al. (2001) suggests that affective states can act as motivation to 

either continue or abandon a learning cycle. Contrary to machine learning algorithms that require 

data to be input, teachers can learn to intuitively detect these emotions after forming a relationship 

with the learners. Both of the studies that predicted academic performance focused on how eye-

gaze patterns and behaviors when interacting with a computer-based system correlated with 

academic performance (Sharma et al., 2019; The & Mavrikis, 2016).  
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5.4 What are the machine learning algorithms used to detect affect in the studies 

reviewed? 

Only about 10% of the studies reviewed used an unsupervised machine learning method 

(e.g., clustering) that did not require labeled data. Most of the studies reviewed (91.66%) used 

supervised learning methods. The findings revealed that the following supervised learning 

classification algorithms were commonly used in the literature to recognize user emotional states: 

rule-based reasoning, support vector machines (Bosch et al., 2015; Jraidi et al., 2013; Pham & 

Wang, 2016), decision trees (Jraidi et al., 2013). One reason for this result can be that these 

methods are fast and cheap while still yielding valuable models and work well with small amounts 

of data. In contrast, other algorithms used for affect recognition use past knowledge regarding the 

user state, such as hierarchical probabilistic methods (e.g., dynamic Bayesian networks or DBN; 

Jraidi et al., 2013). This result is aligned with the purpose of these studies, which was to predict 

the affective state of the learner from unimodal or multimodal data channels. One thing to note is 

that the data used in training and evaluating these supervised learning models requires labels, 

which can be difficult and costly to produce. The review reveals that it is difficult to definitively 

compare different types of affect detectors, due to different data sources and particular techniques 

used to process the data (e.g., missing data techniques) for each data source (e.g., interaction-based 

versus video-based, etc.). These types of data with different modalities also display a high level of 

noise, which makes it more difficult to discover useful patterns in the data. More research needs 

to be conducted to address the issue of noise in multimodal data. 

The results revealed that K-fold cross-validation (CV) was the most commonly used 

evaluation method. This resampling technique splits the dataset into K - 1 subsets for training and 

one subset for testing. K-fold CV is important, especially when the datasets are smaller because it 
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may reduce bias. Likewise, this method is not as computationally demanding as other resampling 

methods, such as Leave-One-Out cross validation, and can inform which model yields the best 

results to previously unseen data. 

Regarding vision-based detectors emerging from the studies reviewed include classroom 

distractions (e.g., fidgeting, talking with one another, asking questions, leaving the computer, and 

using a cell phone; (Bosch et al., 2015), lighting conditions, and large imbalances in affective state 

distributions (Bosch et al., 2015; Kai et al., 2015). For example, in some studies, the participant 

faces could not be captured in a third of the instances even when modern computer vision 

techniques were employed (Bosch et al., 2015). For instance, some affective states occur at lower 

rates (e.g., around 5% in (Bosch et al., 2015; Kai et al., 2015), whereas others occurred at higher 

rates (e.g., around 80%; (Bosch et al., 2015; Kai et al., 2015). Addressing these issues often 

requires the application of oversampling or under sampling techniques on the training data to avoid 

creating models that always predict the majority class to the detriment of affective states that are 

rare but important for learning (e.g., confusion). Likewise, this could be addressed by creating 

binary classifiers to distinguish between the dominant class and the other classes to find insights 

on differences among the unbalanced classes. 

There was the lack of consistency in the parameters used across models for detecting affect. 

Differences in performance accuracy of some classifiers were found when different time windows 

were used. In one study, affective states such as confusion and behaviors such as off-task behaviors 

were classified better when larger time windows were used, whereas affective states such as delight 

were better classified using a smaller time window (Bosch et al., 2015). This result is not surprising 

because behavioral states tend to unfold over longer periods of time (i.e., flow state when actively 

performing a task in a serious game), contrary to affective states that tend to be situation specific 
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and can be triggered by unexpected stimuli (i.e., sudden change in level of electrodermal activity 

after receiving pictorial stimuli (Betella et al., 2014; Törmänen et al., 2021). Additionally, there 

was a lack of consistency in the classifier and feature selection parameters across the studies 

reviewed. Thus, indicating that the features that are heavily influential have yet to be identified 

when creating models to predict affective states. Future studies would benefit from tailoring model 

parameters to particular classification tasks. 

5.5 Limitations and Future Work 

A limitation of this review is that, although the process of selecting databases and keywords 

was thorough, it is likely that relevant publications may have been missed. Additionally, the 

databases used are mostly focused on education and computing, which may have limited the topics 

covered in the publications. Likewise, the keywords used to perform the search narrowed the 

results to learning environments, which can explain why there were few studies using samples of 

professionals. Indeed, almost two-thirds of the samples were from learners at the university level 

(59%) and only 5% of these were professional learners. This is a limitation because the findings 

can be difficult to generalize for younger learners (i.e., K-12). Another limitation of the query was 

that it guided the results towards more quantitative research methods as the exclusion criteria 

required the studies to use sensors to measure affective state.  

Future research can focus on learners in the K-12 level of education to further understand 

how affective state can predict academic performance. The outcome of this research could aid to 

the development of safe (i.e., that younger learners cannot swallow or tangle) and more stable 

sensors (i.e., that may endure movement without introducing noise to the data). Future research 

would benefit from exploring different databases with a wider range of topics. Furthermore, the 

choice of keywords could be altered to find a larger variety of sensors and samples. 
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Chapter 6. Educational Contributions 

 

6.1 Theoretical Contributions 

This literature review enhances our understanding of how affective experiences have been 

designed and developed, which methods have been used to analyze the data, and which research 

designs have been employed. The current review also shows that the detection of affective states 

conducive to learning and engagement needs to consider the duration and context of the respective 

affective event, together with the nature of the interaction (DeFalco et al., 2018). The review also 

points to the need to develop and validate affective models and interventions (DeFalco et al., 2018).  

6.2 Methodological Contributions 

This review also highlights the use of data-driven machine learning techniques in detecting 

affect. Specifically, most of the reviewed studies that used any type of machine learning algorithm 

(62.5%) built classifiers to detect affect. Affect detection models used different data channels to 

yield results. Many of the studies (33%) relied on only physical sensor-based detection, with 67% 

of the studies relying on interaction-based detection (Kai et al., 2015) To detect affective state, the 

publications focused on different on different information from the learners. Most of the reviewed 

studies detected user emotions (77.7%), while the rest of the publications focused on detecting 

learning patterns (13.8%), achievement (5.5%), and receiving feedback from the learners about 

the educational tool (2.7%). Also, models that use the temporal dynamics of the evolution of affect 

or behavior during a learner’s interaction with the ITS tend to have better predictive accuracy 

(Joshi et al., 2019; Jraidi et al., 2013). Additionally, some hierarchical probabilistic machine 

learning approaches (e.g., DBN; Jraidi et al., 2013) can be used to predict interaction trends 

concomitantly with subsequent affective states. 
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The results suggest that more research is needed to ascertain whether blending physical 

sensor-based observation with interaction-based detectors (i.e., within-environment interaction 

logs) when modeling affective states may increase the utility of each individual modeling approach 

and act as a backup when data from one of the modeling approaches is missing, especially as this 

matter is still not elucidated in the explored literature (Kai et al., 2015). In general, some studies 

found that using several data modalities combined with environment and individual-difference 

variables leads to better predictive accuracy of a learner’s interaction experience and affective 

states (Jraidi et al., 2013). These combined data modalities can be predictive of learner profile 

information that can, in turn, be used to trigger tailored interventions that are conducive to better 

learning (DeFalco et al., 2018). 

The review also highlights that physiological sensing often involves non-expensive and 

non-invasive biofeedback devices that can be used with a variety of systems and provides 

quantitative information that may be more objective as compared with self-report data collected 

from questionnaires. Most studies reviewed did not explore the impact of affect on learning, thus, 

future studies could focus on identifying the context in which affective states have a positive 

impact on learning outcomes. 

6.3 Practical Contributions 

The findings of this review may inform the development of adaptive intelligent interfaces 

for educational software to support learning experiences. These interfaces can detect learner 

affective states (e.g., engagement) and behavioral states (e.g., off-task behavior). They can also 

respond in a suitable manner to the affect detected. Thus, such interfaces may adapt to the student 

depending on the students’ affective state (i.e., not intervene if the student is engaged or provide 

hints, feedback, or suggestions for the next activity otherwise). Also, one of the studies reviewed 

used facial recognition to predict whether students will answer questions correctly, so that the ITS 
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can adjust the difficulty level of the next question or proactively provide the learner with hints 

(Joshi et al., 2019). 

More research could also be directed towards creating and maintaining domain-specific 

education datasets that would improve the performance of machine learning algorithms in 

predicting affect. By constructing these datasets, new models can be optimized through transfer 

learning (i.e., when an algorithm is storing knowledge that can be used in a related problem; e.g., 

the algorithm originally learns to classify apples, then it can use that knowledge to identify oranges; 

Zhuang et al., 2021) and become more accurate at discerning among several affective states and 

improve from the binary classifiers. However, there is an ethics concern due to the sensitivity 

nature of the collected data (e.g., educational setting) that can make the individuals easily 

identifiable. 
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Chapter 7. Conclusions 

 

In the fields of human-computer interaction (HCI), cognitive science, psychology, 

education, neuroscience, and computing science, affect detection is increasing in popularity 

because it aims to improve learner outcomes through adaptation to the learner’s affect. In recent 

years, several models have been built to detect affect in computer-based learning environments. 

However, affect detection is difficult because emotions cannot be measured directly and can vary 

from one individual to another. Using physical sensors to collect data about learnersʼ affective 

states has several limitations (e.g., confinement to laboratory settings, expensive and invasive 

sensors that are prone to noisy data). This complicates the replication of studies and generalization 

of results. Even the less invasive sensors can impede the reproduction of studies in younger 

participants, where sensors require additional supervision and parental consents.  

The current review shows that the detection of affective states conducive to learning and 

engagement needs to consider the duration and context of the respective affective event, together 

with the nature of the interaction. At least one sensor was used in most of the publications to 

understand learnersʼ affective state through physiological signals. Some of the reviewed 

publications that used physiological signals to classify learnersʼ affective states were focused on 

measuring participant engagement in the activity. 

Results revealed that facial expression was the most common physiological and behavioral 

data modality channel and log data was the most frequent performance-related data-modality 

channel. Likewise, it was revealed that the most explored affective states were engagement, 

boredom, frustration, and confusion, which can be identified through sensor data. These affective 

states can be found in BROMP-based observation, which was a recurring method in the reviewed 
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publications that were interested in identifying the most common cognitive-affective states. 

Conversely, the studies rarely showed a relationship between affective state and academic 

performance, suggesting that using sensors to detect affective state is not always beneficial to 

learning. 

This review also highlights the use of data-driven machine learning techniques in detecting 

affect. Specifically, most of the reviewed studies that used any type of machine learning algorithm-

built classifiers to detect affect through supervised learning methods. These methods are easy to 

compute, require minor data preparation, and are not costly computationally, while still yielding 

valuable models and work well with small amounts of data. 

The results suggest that more research is needed to ascertain whether blending physical 

sensor-based with interaction-based detectors (i.e., within-environment interaction logs) when 

modeling affective states may increase the utility of each individual modeling approach and act as 

a backup when data from one of the sensing approaches is missing, especially as this matter is still 

not elucidated in the current literature. Some studies found that combining multimodal data 

channels, environmental, and individual-difference variables led to better predictive accuracy of a 

learner’s interaction experience and affective states. 

This review also points to the need to develop and validate affective models and 

interventions. Among the reviewed publications, there was no agreed-upon method to detect affect 

from unimodal or multimodal data. Several studies used observation methods that were not 

validated, such as surveys, which introduces biased data to the models. Also, most of the 

publications focused on university-level learners, leaving open questions about how these results 

could be applied to other types of learners (e.g., military trainees, language learners, young and 

adult learners, students with intellectual disabilities, etc.).
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Appendix A: Detailed Summaries of the Reviewed Studies 

 

Barron-Estrada et al. (2018) conducted an experimental study sampling n = 10 (3 

females) university students enrolled at the Culiacan Institute of Technology in Mexico. The 

study presented the initial implementation of a system to detect learnersʼ emotion using mobile 

devices, specifically boredom and engagement. The proposed system does not require the use of 

invasive and expensive sensors, as it only requires a mobile device that is able to run the 

EmoData application, a software to collect information from the user using the device 

components, such as the microphone, accelerometer, and gyroscope. The authors also developed 

an affective database with the help of the EmoData application. 

The students interacted with the popular language learning app, Duolingo, while using 

the mobile device that had the EmoData application installed. The authors describe the Duolingo 

application as ideal for their study because they could collect audio recordings for English 

pronunciation exercises for Spanish speakers. 

Each of the channels (audio, position, and movement) was classified unimodally (i.e., 

each gets an emotion, resulting in three emotions), then these emotions are merged through a 

"fuzzy inference system". The fuzzy system uses rules to determine the emotion (Engagement, 

Boredom, or None). The results of only using the accelerometer and gyroscope to recognize 

posture without using the EmoData app information yielded a 73% of accuracy, whereas the 

results of only using the audio recognition yielded a 50% of accuracy. 

One limitation mentioned by the authors was the small sample, which affected the accuracy of 

their system. 

 Bosch et al. (2015) conducted an online quasi-experimental (qualitative pre-/post-test 

testing physics knowledge and skills) classroom study that developed and validated face-based 



75 

 

detectors of learning-centered affect (boredom, confusion, delight, engaged concentration, and 

frustration) and of student behaviors: on task (i.e., when looking at their own computer), on-task 

conversation (i.e., when conversing with other students about the task), and off-task (i.e., in other 

situations, such as using a cell phone) in a physics game, Physics Playground, which was 

designed to teach principles of Newtonian physics. This study uses multimodal data sources. It 

showed that learning-centered affective states can be identified from naturalistic facial 

expressions and from body movements in a school context. In this study, facial expression 

recognition was applied to video data collected via a webcam. 

This study sampled n = 137 (80 female) Grade 8-9 US public-school students. Students 

were tested in groups of 20. They played Physics Playground during regular 55-minute class 

periods over four days. Live field observations of learnersʼ on-task versus off-task behaviors 

were collected during gameplay by two Baker Rodrigo Ocumpaugh Monitoring Protocol 

(BROMP 2.0; Baker & Ocumpaugh, 2014) certified observers. Usually, BROMP is implemented 

using the Android app, Human Affect Recording Tool (HART; Baker et al., 2012). The 

observations constituted the ground truth affect and behavior annotations used in training 

automated detectors for both types of detectors to predict learnersʼ affective states and off-task 

behaviors. There were 1767 successful observations of affective stats and 1899 observations of 

on-task/off-task behavior. 

For the video-based detection, 78 facial features were extracted using the FACET version 

of the Computer Expression Recognition Toolbox (CERT) software (Littlewort et al., 2011). 

FACET is used to automatically detect 19 Action Units (AUs; Ekman & Friesen, 1978) as well 

as orientation and position of the face, which constitute labels for specific activations of facial 

muscles (e.g., lowered brow). As before, the AU-labeled data was temporally aligned in small 
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time windows with observations of affect to create features. Features were created by 

aggregating (i.e., maximum, median, and standard deviation) FACET values (i.e., AUs, face 

orientation, and face position) in a window of time leading up to each observation. For video-

based models, body movement features were also extracted by measuring the proportion of 

pixels in each video frame that differed from a continuously updated estimate of the background 

image generated from the four previous frames. One detector model was built for the overall 

five-way affect discrimination (bored, confused, delighted, engaged, and frustrated). Separate 

binary (i.e., two-class) detector models were built for each affective state, where the affective 

state (e.g., engaged concentration) was discriminated from the combination of the rest of the 

instances (e.g., frustrated, bored, delighted, and confused combined, referred to as “all other”). 

This enables the parameters (e.g., window size, features used) to be optimized for that particular 

affective state. Behaviors were also grouped into two classes: off-task behaviors versus the not 

off-task behaviors (i.e., combined on-task behaviors and on-task conversation behaviors related 

to the game). Fourteen different classifiers were used to build models for seven discriminations: 

overall five-way classifier, five affective state models, and off task vs. on task model) and they 

included support vector machines (SVMs), C4.5 trees, and Bayesian classifiers from the WEKA 

machine learning tool (Holmes et al., 1994). 

Model evaluation was conducted using a 10-fold nested cross-validation process on 

student data and the performance metric used was A’ (i.e., the probability of correctly 

determining if an instance belongs to a certain affective state) or the area under the receiver 

operating characteristic (ROC) curve. The results revealed that classification was successful, 

exceeding chance for both data modalities. The classification results showed that performance 

exceeded chance for off-task behavior (AUC = .816) and each affective state: boredom (.610), 
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confusion (.649), delight (.867), engagement (.679), and frustration (.631) as well as a five-way 

overall classification of affect (.655).  

One limitation of this study is that the link between affect and learning was not explored. 

Burleson & Picard (2007) conducted an experimental study to investigate students’ 

levels of engagement when playing Towers of Hanoi, an educational game to learn mathematics. 

For this game, multimodal non-verbal data was used to develop a game companion that interacts 

with the learner based on their sensor information in real-time. The authors address the 

importance of the social bond between instructors and middle schoolers, as it can significantly 

predict their learning performance. The researchers collected facial expressions using a camera, 

electrodermal activity, posture using a sensor driven chair, and logs from the game. 

The study collected data from n = 76 middle school (age range: 11 to 13 years) students 

from three semi-rural schools in western United States. The learners were randomly assigned to 

one of the two strategies: (1) sensor driven non-verbal mirroring, where the sensors were used to 

mimic the participants behavior, and (2) pre-recorded interactions generated from a previous 

pilot study. Additionally, the participants were randomly assigned to two interventions: (1) 

affective support intervention targeting the learnersʼ current emotion, and (2) task support 

intervention to help the student struggling in the task. The intervention started with a pre-test to 

assess the learnersʼ self-theories of intelligence and goal mastery orientation. Then, the digital 

character presented the activity and, after four minutes, the character started interacting with the 

learner depending on the strategy and intervention assigned. During the communication, the 

companion asked the student to report their frustration level on a 7-point scale. Afterwards, the 

students answered post-activity questions about the activity (e.g., asking how much of the time 

interacting with the game they felt frustrated, etc.). Then, a 1.5 calming video was shown, as a 
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neutral affect inducement. Finally, the students answered the post-test, identical to the pre-test, 

and the Working Alliance Inventory, to assess their impression on the character (Bickmore & 

Picard, 2004). 

The researchers found differences with the social bond girls and boys developed. Results 

from ANOVA analyses demonstrated that the intervention had opposing effects for boys and 

girls, as boys responded more positively in the task support condition than in the affect support 

condition, while girls presented an opposite relationship from boys in both interventions. 

Moreover, girls were more motivated by frustration in either intervention, whereas boys were 

more perseverant when they received sensor driven non-verbal interactions. Finally, girls were 

less frustrated than boys at the end of the intervention. 

 DeFalco et al. (2018) conducted three experimental studies to detect undergraduate 

students’ frustration in a modified serious game for military training, the TC3Sim combat medic 

care training course that provides training for first responders. Authors used sensor-based and 

interaction-based sensor-free affect detectors that were developed as part of their three-year 

project. The study aims to integrate and unify affect detection, validation, and intervention, and 

to investigate whether linking different types of affective interventions to detectors improves 

students’ learning outcomes. The results of the first study revealed a negative correlation 

between frustration and learning gains when participants engaged in the TC3Sim game and were 

further used to inform the development of the affect detectors. The second study integrated the 

interaction-based detectors into the TC3Sim game-based simulation through affect recognition 

functionalities provided by the GIFT framework for intelligent tutoring. The results of the second 

study revealed that motivational intervention feedback messages designed to address student 

frustration (i.e., self-efficacy enhancing feedback interventions based on interaction-based affect 
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detectors) yielded significantly greater learning gains than control conditions that did not include 

motivational feedback messages. The third experiment compared feedback messages triggered 

by the sensor-based affect detectors (i.e., the Kinect-based detectors) and the interaction-based 

sensor-free detectors. The findings of the third study showed that the Kinect-based detectors did 

not detect participant frustration. Also, there were no differences in learning among (1) 

interventions triggered by the interaction-based detector, (2) interventions triggered on a fixed 

schedule, and (3) no interventions at all. 

Ghaleb et al. (2018) conducted a correlational study to evaluate a model that detected 

learnersʼ affective state, such as boredom, engagement, and frustration. Based on the Theory of 

Flow (Csikszentmihalyi, 1990), which refers to the satisfaction of individuals when they are fully 

immersed in performing an activity. The researchers designed a serious game where the students 

answer questions in different formats (i.e., multiple answers, true or false, and fill in the blank) 

from major topics, such as Mathematics, History, Sports, and Geography. The question database 

included 800 questions with different levels of difficulty that produce different affective states. 

The study collected data from n = 32 (18 females) bachelor (n = 20) or master (n = 12) 

students from the University of Maastricht in the Netherlands. Each student performed four 

sessions for each of the four topics. The average duration of the intervention per participant 

lasted 26 minutes. The researchers collected n = 459 sessions from the students, which were 

labeled by self-reported affective states of the participants. The logs from the interaction with the 

game were recorded using xAPI, an event-centered framework for tracking and storing 

educational data (Santos et al., 2015) covering a larger range of actions. 

An SVM classifier with a radial basis function (RBF) kernel was trained using a one-

versus-all strategy to classify emotions. For example, the first model was a binary classifier, that 
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distinguished between frustration and a combined class of boredom and engagement. The second 

and third models were created using the same strategy. Finally, the three models were combined 

into a hidden layer to create a more robust model. Two settings of cross validation were applied 

to the model: (1) cross-subject validation, to test generality across students with different 

profiles, and (2) subject-based validation, to enable adaptive learning according to the learnersʼ 

personality. 

The cross-subject model applied leave-one-out-cross-validation (LOOCV) and 10-fold 

cross validation yielded a precision of 66%. As expected, the model was more accurate at 

detecting engagement and frustration because boredom was the least reported affective state. 

Afterwards, to improve model precision, a binary classifier was built to detect between 

engagement and not engagement, which yielded a precision of 75%. The subject-based model 

reported a 74% precision and was able to detect sudden changes in affective states. 

In sum, the proposed models reported a high classification accuracy. However, the results from 

the subject-based model highlight the relevance of a learnersʼ affective state and interactive 

features to offer personalized learning activities. For example, results show a higher detection 

accuracy of engagement than non-engagement for engineering students with an exception in 

sport. For psychology students, in all topics, the detection of non-engagement was relatively 

higher than engagement. Overall, engineering students outperformed psychology students, which 

might explain their engagement in playing the game. For psychology students, the non-

engagement can be due to the perceived challenge and their lower interest towards the game 

topics. These observations and results are consistent with the Theory of Flow model. 

Grafsgaard et al. (2014) conducted a quasi-experimental study to determine how 

multimodal feature sets are used to predict the overall affective state a student experiences during 
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an entire learning session. Using the JavaTutor platform to visualize Java code, the researchers 

collected several streams of data, such as recordings from the sessions (i.e., webcam video, 

Kinect depth video, database logs), audio recording for dialogue analysis from human tutors 

communicating with the students through the platform, physiological data (i.e., electrodermal 

activity), and non-verbal behavior (e.g., facial expressions, hand-to-face gestures, and posture). 

The authors built different classifiers using unimodal, bimodal, and multimodal data and 

compared them to identify which feature set was the most predictive. 

The study collected data from n = 67 (average age 18.5 years) university students in the 

United States enrolled in an introductory engineering course. Before each session using the 

JavaTutor platform, the students completed a content-based pretest. After each session, the 

students completed a posttest, which was identical to the pretest, and a post-session survey that 

included: (1) the User Engagement Survey (UES) to measure aesthetic appeal, focused attention, 

novelty, usability, involvement, and endurability in human-computer interactions (HCI; OʼBrien 

et al., 2018) and (2) the NASA-TLX workload survey, which included a question regarding the 

learner’s frustration level. 

Three data streams were established to build the models: (1) dialogue, which included 

dialogue messages and their respective answers from the platform, (2) task, which included 

database logs from the platform (e.g., compile attempts, running the program, etc.), and (3) 

nonverbal, which included the student’s facial expression, hand to face gestures, and posture. 

The models were built using linear regression and using leave-one-out cross-validation. 

To predict engagement, eight classifiers were built: three used unimodal data, three used 

combinations of bimodal data, and two used combinations of the three streams of data. Results 

from the R2 value show that the trimodal model combining dialogue, nonverbal behavior, and 
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task actions was the best performing model (R2 = 0.282). A similar approach was conducted to 

build the model to predict frustration. As in the previous engagement detector model, the 

trimodal model combining dialogue, nonverbal behavior, and task actions outperformed the rest 

of the models (R2 = 0.520). Finally, to detect normalized learning gain using the pretest and 

posttest results, a similar approach to the previous models was conducted, thus creating eight 

models. Just as in the previous models, the trimodal model combining the three data streams 

outperformed the rest of the models (R2 = 0.544). However, in contrast to the models that 

predicted affective states, the unimodal model using only the dialogue data stream had 

significant predictive power (R2 = 0.370). 

In sum, multimodal feature sets are the most predictive classifiers when detecting affective state. 

Dialogue was a significant predictor when detecting learning gain in the three levels of this 

classifier. 

 Joshi et al. (2019) conducted a correlational study sampling n = 30 (26 females) college 

students. The study predicted students’ learning outcomes (i.e., correctness of responses to 

mathematics questions) from facial affect signals (i.e., action unit-based feature representations) 

based on videos of student interactions with the MathSpring ITS as they begin to solve 

mathematics problems. It also attempts to predict how early the student learning outcome can be 

predicted, so appropriate interventions can be provided. The multimodal detector uses signals 

from a laptop webcam and a GoPro camera placed on the trackpad of the laptop to capture 

students’ facial expressions, a video stream of the screen activity (ITS interface and users mouse 

interactions with the ITS interface), and mouse movements (location trajectories and clicks). 

Importantly, the binary classification model built in this study used the temporal dynamics of the 

evolution of facial behavior during a learner’s interaction with the ITS. This study attempts to 
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elucidate the relationship between facial features extracted from a video stream and learning 

outcomes. One of the contributions of this study is the creation of a facial affect database 

containing 38 videos of college students’ interactions (n = 1596) with the MathSpring ITS, with 

each interaction lasting for approximately an hour. Each instance used to train the machine 

learning classifier consists of a video clip of the student solving a problem together with the 

outcome (solved or not). OpenFace, a facial behavior analysis toolkit (Baltrušaitis et al., 2016), 

detected 17 Action Units (AUs) from the video stream data. From each frame of all the video 

streams in the data set, the mean Action Unit Occurrence (AUO) for 18 AU presence and 17 AU 

intensity values was computed. Additionally, head-pose and eye-gaze vectors were extracted. 

Finally, a 376-dimensional feature representation was used for a multi-layer perceptron with 2 

hidden layers, each with 100 activation nodes, and the Adam optimizer to predict several classes 

of effort. Model training was performed using the first 1, 5, 10, and 30 seconds, along with the 

entire length of the input. The baseline model trained and tested on the entire input length 

yielded a mean accuracy of 0.54 and a mean F1-Score of 0.27. Also, individual one-vs-all binary 

classifiers were trained to predict all seven effort labels. The results show that model 

performance for both the multiclass and binary classifiers increases when features are computed 

from longer temporal sequences. The findings also show that, overall, the baseline models 

predict more accurately whether a student eventually answered correctly after seeing one or more 

hint, whether a student performed some action but without having read the problem, and whether 

a student answered correctly on the first attempt without seeing any hints, in comparison to 

predicting whether a student did not see any hints but solved the question after one incorrect 

attempt, whether a student performed some action but did not solve the problem at all, whether a 
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student did not see hints but solved the question after greater than one incorrect attempt, and 

whether a student skipped the problem with no action. 

Jraidi & Frasson (2013) conducted a quasi-experimental study to propose a multimodal 

sensor-based model to detect learnersʼ uncertainty based on electroencephalogram (EEG) 

activity that measured cognitive load, affective state, and personal characteristics. The study had 

two main purposes: (1) to find the behavior trends related to uncertainty and (2) to build a model 

that predicts uncertainty. Data were collected via three physiological channels: EEG to measure 

mental concentration, skin conductance (SC) to measure arousal, and blood volume pulse (BVP) 

to measure valence of arousal (i.e., positive, or negative). 

The study collected data from n = 38 (14 females) recruited learners, with an average age 

of 27.31 years. The experiment was presented upon arrival to the laboratory setting and the 

students were set up with the sensors. Learners completed the tasks on a problem-solving 

Intelligent Tutoring System (ITS) while the researchers recorded the response time and the 

answer for each question. Finally, the students answered the following surveys: (1) 

demographics survey, (2) self-perceived logical problem-solving skill level, and (3) Big Five 

Inventory to measure personality dimensions. 

An ANOVA analysis was performed to find relationships between learnersʼ uncertainty 

and affective reactions. Results suggest that when learners are uncertain, they may be more 

focused on trying to solve a problem, whereas when learners are certain, they may be at ease and 

not very concentrated. 

To predict uncertainty, binary classifier algorithms were compared: Decision Tree, Naïve Bayes, 

and SVM. WEKA was used to train the classifiers and K-fold cross-validation was used to 

evaluate the model. The SVM classifier yielded the highest performance (83.25% accuracy). 
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Jraidi et al. (2013) conducted an experimental study sampling n = 44 learners that 

interacted with three learning environments solving cognitive tasks in the domain of 

mathematics: trigonometry, backward digit span, and logic. The study employs a dynamic 

multimodal approach (i.e., physiology: electroencephalography or EEG; skin conductance or SC, 

and blood volume pulse or BVP; behavior: patterns of the learner interaction with the system; 

performance during a cognitive task; and two video cameras to record the learnersʼ faces and the 

onscreen activity) to predict trends in the interaction experience, such as being stuck, off task, or 

in a state of flow. As predictive features, the model used the learner’s individual differences and 

environmental factors (the current context and learner profile) as well as dynamic features that 

track the interaction experience over time (the temporal evolution of the learner’s experience). 

Authors used a hierarchical probabilistic framework using a dynamic Bayesian network (DBN) 

to concomitantly predict the probability of each trend and the emotional responses that followed 

it. Participants completed the Big Five Inventory (BFI) questionnaire to assess learnersʼ 

personality traits, whose answers served as the ground truth. The model was trained using 1848 

samples (42 observations for each participant). A 10-fold cross-validation technique was 

employed to evaluate the model performance. The findings show that the proposed model 

outperforms static modeling approaches (e.g., static Bayesian networks or SBNs) and three non-

hierarchical static algorithms (e.g., Naive Bayes classifiers, decision trees, and support vector 

machines). The DBN model achieved an accuracy of 82% to characterize a positive vs. a 

negative experience, as well as an accuracy ranging between 81% to 90% to predict four 

emotions related to interaction: stress, confusion, frustration, and boredom. 

One limitation of this study is that the link between affect and learning outcomes was not 

explored. 
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 Kai et al. (2015) conducted an online quasi-experimental (qualitative pre-/post-test 

testing physics knowledge and skills) classroom study to compare the performance (i.e., 

detection accuracy of the affective states: boredom, confusion, delight, engaged concentration, 

and frustration) of two types of affect detectors in a physics game, Physics Playground, which 

was designed to teach principles of Newtonian physics. In addition to affect, student behaviors 

were also coded as: on task (i.e., when looking at their own computer), on-task conversation (i.e., 

when conversing with other students about the task), and off-task (i.e., in other situations, such as 

using a cell phone). This study uses multimodal data sources. Six video-based detectors (i.e., 

facial expression recognition was applied to video data collected via a webcam) were compared 

with six interaction-based detectors (i.e., learnersʼ interactions with the game were recorded in 

log files). They sampled n = 137 (80 females) Grade 8-9 US public-school students. Students 

were tested in groups of 20. They played Physics Playground during regular 55-minute class 

periods over four days. Live field observations of learnersʼ on-task versus off-task behaviors 

were collected during gameplay by two Baker Rodrigo Ocumpaugh Monitoring Protocol 

(BROMP 2.0; Baker & Ocumpaugh, 2014) certified observers. Usually, BROMP is implemented 

using the Android app, Human Affect Recording Tool (HART; Baker et al., 2012). The 

observations constituted the ground truth affect and behavior annotations used in training 

automated detectors for both types of detectors to predict learnersʼ affective states and off-task 

behaviors. There were fewer than 2087 observations of affect and behavior used in the creation 

of the detectors. 

For the interaction-based detector, 76 gameplay features were extracted from the student 

interactions with the game (e.g., the time between the start and the end of a level, the mean 

number of gold and silver trophies obtained in a level, etc.). Several classification algorithms 
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were built to detect each affective state using a two-class approach, where the affective state 

(e.g., engaged concentration) was discriminated from the combination of the rest of the instances 

(e.g., frustrated, bored, delighted, and confused combined, referred to as “all other”): JRip, J48 

decision trees, KStar, Naïve-Bayes, step regression, and logistic regression. Behaviors were also 

grouped into two classes: off-task behaviors versus the not off-task behaviors (i.e., combined on-

task behaviors and on-task conversation behaviors related to the game). 

Model evaluation was conducted using a 10-fold batch cross-validation process on 

student data and the performance metric used was Aʼ (i.e., the probability of correctly 

determining if an instance belongs to a certain affective state) or the area under the receiver 

operating characteristic (ROC) curve. The results revealed that classification was successful, 

exceeding chance for both data modalities. Moreover, video-based detectors (average Aʼ of .695) 

slightly outperformed interaction-based detectors (average Aʼ of .634), with video-based 

detectors showing a stronger advantage for delight (Kai et al., 2015). Although accuracy of the 

two detector suites was more comparable for the other constructs, the video-based detectors 

showed some advantages for engaged concentration and frustration, exceeding interaction-based 

detectors on 5 of the 6 constructs. 

One limitation of this study is that the link between affect and learning was not explored. 

Korn & Rees (2019) conducted an experimental study to evaluate the learning effects of 

performing repetitive tasks in gamified environments by collecting and analyzing bio-signals and 

performance measures.  

They collected data from n = 23 (10 females) participants in Germany, of which n = 19 

were students from the Offenburg University and n = 4 were trainees at the MAHLE 

International GmbH, with an average age of 23.6 years. Participants were randomly assigned into 
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two groups: 13 participants who used the gamified application and 10 participants who used the 

applications without gamification. Participants were instructed to assemble 10 Lego houses using 

12 bricks in 20 minutes. Two cameras were set up to record behavior, one in front of the student 

to record facial expressions and one over the participant’s left shoulder to record the assembly 

area. The participants were also adjusted to a Shimmer wristband sensor on their right hand to 

track their electrodermal activity (EDA). To minimize noise in the EDA data, participants were 

instructed to use their left hand during the intervention. 

Results showed that the gamification group spent less time completing the activity 

compared to the non-gamification group. However, the gamification group made 0.7 more 

mistakes on average when building the Lego houses than the non-gamification group. Results 

from the bio-signals showed that instances of joy were detected more for the gamification group 

than for the non-gamification group, supporting the authors’ hypothesis that gamification 

increases positive emotions. The EDA analyses revealed that the gamification group tended to 

experience a consistent state of arousal, while the non-gamification group tended to experience 

boredom. Anger emotions were also identified more often in the gamification group, indicating 

that gamified environments increase emotions. 

Lee-Cultura et al. (2020) conducted a quasi-experimental (within-subjects study) to 

identify how Avatar Self-Representations (ASR) influence the learnersʼ affective state while 

playing Motion-Based Touchless Games (MBTG), because this style of games has become 

widely popular in multiple educational domains, such as literacy, STEM, social skills, and 

development of motor skills. The authors explain that literature that explores the relationship 

between learnersʼ affective state, behavior while playing an educational game, and how they feel 

represented by a game’s character is scarce and usually conducted qualitatively through 
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interviews and expert observation. The researchers used multimodal data collected from different 

physiological channels, such as eye-tracking glasses, webcams, and wearable devices. 

The study collected data from n = 46 (28 females) children with an average of 10.3 years 

of age. The study was conducted in two settings: a science center, where n = 30 children 

participated, and an elementary school, where n = 16 children participated. Each intervention 

consisted of 9 gameplay sessions that lasted on average 30 minutes. The sensors used included a 

pair of Tobii eye-tracking glasses and an Empatica E4 wristband to collect heart-rate variability 

(HRV), electrodermal activity (EDA), skin temperature, and blood volume pressure (BVP), 

while the videogame setting included a webcam, to collect videos of facial expressions, and a 

Kinect Skeleton, to collect movement data from 20 joints (e.g., head, shoulders, spine, hips, 

hands, knees, and feet). The learners played three times (i.e., practice round and two non-practice 

rounds) for each of the three levels of the ASR. The levels of the ASR can be described as 

follows: (1) low ASR, where the avatar was in the shape of a white-hand moved minimally, (2) 

moderate ASR, where the avatar was in the shape of a blue yeti and was controlled by the 

learner’s movement, and (3) high ASR, where a photo-realistic avatar of the learner mimicked 

the student’s complete range of movement. 

Results from an ANOVA analysis, using the level of the ASR as independent value, 

demonstrated that arousal (measured by EDA) and stress (measured by skin temperature) were 

significantly different across the degrees of ASR. Arousal significantly increased as the ASR 

level increased, and stress significantly decreased as ASR level decreased. These results indicate 

that children were most engaged using high ASR and least engaged with low ASR because of the 

playfulness of the avatar and the intrigue of seeing themselves in the learning environment. 
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One limitation of the study was the age of the study population, given that slightly younger or 

older populations might produce different results and their needs in ASR might differ. Another 

limitation stemmed from the collection of physiological data because measuring children’s 

experience via multimodal data involves a degree of error due to potential interference. 

Considerations of additional data-streams (audio and interviews) may have offered additional 

insights. Future work, including longitudinal studies, is needed to determine whether the findings 

hold true over time. 

 Leong (2015) conducted a quasi-experimental study to evaluate a logistic regression with 

lasso regularization model to student detect frustration while performing programming exercises 

using contextual (i.e., status of completion, number of submissions) features and keystrokes from 

a Java tutoring system developed by the author of the study. This study highlights the importance 

of detecting when a student might become frustrated while learning complex subjects, such as 

programming, and ultimately offer the student intervention before they lose motivation and 

abandon the task. The author explores the hypothesis that frustration can be detected with only 

contextual data and keystrokes, without the necessity of using expensive and intrusive 

physiological sensors.  

This study sampled n = 14 (7 females) students from a post-secondary vocational 

institution in Singapore in a laboratory setting. All the students were enrolled in a diploma course 

in information technology and had at least one year of programming experience. The students 

were presented with instructional pages on six different topics (i.e., use of variables, loops, 

conditionals, and arrays) on the basics of the Java programming language. Each of them included 

two programming exercises, totaling in 12 exercises overall. The exercises consisted of code 

snippets with blank spaces for the students to complete the missing lines. The students were able 
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to run the code with the help of a compiler that allowed them to check their answers and fix 

mistakes, if required. When the students were satisfied with their answer, they could submit the 

final answer and the platform would mark it as complete. The interventions were on average 81.3 

minutes long. 

Students’ keystrokes, contextual features, and timestamps were recorded and used to 

build the logistic regression model. The outcome of this study was a binary output (i.e., whether 

the student was frustrated or not). The dataset was limited (n = 56), making the model prone to 

overfitting, which was addressed by employing a regularization technique to penalize large 

coefficient values (Peng et al., 2002). Two models were compared: (1) a model that only 

considered the contextual behavior, yielding an accuracy of 58.3% and (2) a model that 

combined the contextual behavior and the keystrokes, yielding an accuracy of 66.7%. Although 

the multimodal model yielded a low accuracy, the recall measure was high (83.3%), meaning 

that the model was highly accurate when making the correct prediction.  

In sum, the results support the hypothesis that frustration of a student with the programming task 

on hand can be detected through utilizing the contextual and keystroke features of the student 

collected within the tutoring system.  

One of the limitations of this study is that the approach used is not quite useful to detect 

frustration in real-time but can help the instructor identify which of the topics or exercises are 

frustrating the students. The author suggests that implementing new channels of data (i.e., 

clickstreams), could be useful to create a more robust platform that offers instructional aids (i.e., 

hints) to struggling students. 
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Mangaroska et al. (2020) conducted a quasi-experimental study to determine how using 

multimodal data, in addition to using IDE-log data, could improve machine learning models’ 

interpretation of learner behaviors. 

The study collected data from n = 46 (8 females) university students enrolled in CS 

majors at the Norwegian University of Science and Technology. All the students had 

programming experience in Java using the Eclipse IDE. The authors collected for channels of 

data: gaze data using a Tobii X3-120 eye-tracking device mounted at the bottom of a computer 

screen, physiological data (i.e., HR, BVP, temperature, and EDA using the Empatica E4 

wristband), facial expressions using a LogiTech web camera pointing directly to the participantsʼ 

faces, and log data from the IDE using an Eclipse plugin that captured the moments when 

students saved their programs. The intervention started with setting up and calibrating the 

sensors per participant. During the intervention, the students were asked to finish three small 

debugging tasks with different difficulty levels (i.e., easy, medium, high) within 20 minutes. This 

task was used as a level placement activity. Afterwards, participants had 40 minutes to solve the 

main task, where they debugged code from a Person class method in Java, and five debugging 

sub-tasks as questions, where they had to fix the code to make the class successfully perform 

parent-child relationships. 

Eight Random Forest classifier models were trained to observe how physiological data 

improves the base model trained with only IDE log data. The model was evaluated using 10-fold 

cross-validation. For each of the models, accuracy, precision, recall, and F1-Score were 

calculated. To compare the models, the adjusted R2 metric was considered. Results from the 

adjusted R2 showed that the second model (i.e., log data and eye-tracking data) and the eighth 

model (i.e., log data, eye-tracking data, facial expressions, and physiological data) significantly 
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outperformed the base model. Feature performance analysis was conducted. From the log data, 

expertise was the most influential variable, indicating that log data can imply patterns that 

represent previous knowledge on how to perform the debugging tasks. From the eye-tracking 

data, the average length of the saccade was the most influential variable, indicating an increase in 

mental effort. For the facial data, nose wrinkling was the most influential data. Finally, for the 

physiological data, average temperature was the most influential variable. 

         One of the limitations of this study is that they do not exclude the possibility of 

measuring complex internal conditions with other methods such as think-aloud protocols, pre-

/post-tests, or self-report questionnaires. Additionally, findings originate from tasks based on 

problem-solving practiced by an individual using a computer screen, which can be difficult to 

generalize. A limitation on the study design is that it was performed in a controlled environment 

and students were aware of the study. Lastly, a limitation on the data analysis was that the 

authors only used one algorithm; using different algorithms may produce different results. 

Mills et al. (2017) conducted a quasi-experimental (within-subjects) study to evaluate a 

model to detect cognitive load on learners using and electroencephalography (EEG) system 

based on the cognitive load theory, that suggests that learning can be promoted or prevented by 

the amount of cognitive load produced by the system (Paas & Ayres, 2014). The EEG measures 

the brain’s voltage that passes through the scalp, which may be an index of cognitive state. 

The study collected data from n = 12 (7 females) high-school students enrolled in a Grade 

9 biology class. EEG data was collected using the QUASAR, a hat-like headset that uses ultra-

high impedance dry electrodes. Guru is a dialogue-based ITS where a digital tutor interacts with 

the student to instruct them on 120 biology topics in 15 to 40-minute sessions. Two levels of 

difficulty were developed to fit the research design, where the versions of the topics, Ground 
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Building Instruction (CGB) and the Scaffolded Dialogue, were mixed up. The intervention 

started with setting up the headset on the student and ensuring that the electrodes were properly 

producing data. The students then completed the training tasks of the ITS. Afterwards, they 

completed a knowledge pre-test before completing a session of the biology topic. This process 

was repeated twice. After each session, the students completed a survey to assess the difficulty of 

the material and a knowledge post-test. After the second session, the students completed an eyes-

closed and eyes-open tasks. The intervention lasted on average 1.5 hours per student. 

Four models to detect cognitive states were trained using the Qstates algorithm. The 

output was determined using a stratified k-fold (k = 6) cross-validation technique. Multivariate 

normal probability density functions (MVNPDF) were used to classify the instance as low or 

high cognitive load. Linear mixed effects regression analyses were performed to evaluate the 

models. Results showed that students did not perceive the difficulty changes. Further analyses on 

the Scaffolding phase were performed and found that cognitive load was higher during the 

difficult scaffolding questions. These results can be corroborated by the students’ rating from the 

post-intervention survey. 

One of the limitations from this study was that the sample size was small (n = 12). A second 

limitation was the setting of the study. Being a laboratory environment can make it difficult to 

generalize to a classroom setting. 

Muñoz et al. (2016) conducted a quasi-experimental study (pre-/post-test testing physics 

knowledge and skills) sampling n = 118 undergraduate students enrolled in an engineering 

degree at the ITESM in Mexico. The study evaluated a Bayesian Networks model that detected 

the emotional state of students while interacting with a serious game, PlayPhysics. The model is 

based on Pekrun et al.ʼs (2007) control-value theory of achievement of emotions, which posits 
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that academic emotions are influential to learnersʼ motivation to learn, therefore affecting their 

academic outcomes. However, the authors emphasize how most of the modeling of affect in 

education is based on theories from other fields, such as neuroscience. Therefore, pointing out 

the novelty of their study where they attempt to detect the students’ emotions using a game-

based environment that can emotionally connect with the learner via storytelling. 

After completing a pre-test, the students interacted with the first challenge of 

PlayPhysics, this challenge was about the one-dimensional multilinear motion. During this 

challenge, the students were required to choose the correct direction of the in-game vehicle, 

correctly set the mass of the object, consider the amount of fuel of the vehicle, and define the 

appropriate braking time. Finally, they completed a post-test and a qualitative questionnaire. 

Students self-reported their emotional state before, during, and after performing the game 

activity. During the interaction with the game challenge, the student’s emotion could be reported 

at any time, using the EmoReport wheel. At the end of each game dialogue, students self-

reported their emotions. The researchers collected multimodal data from the game: contextual 

behavior of the students with the game (i.e., mouse position, number of times they asked for 

help) and behavioral data from the self-report surveys of the learnersʼ emotion. 

The model was created using a dynamic Bayesian Network (DBN) to model a temporal 

relationship (Neapolitan & Jiang, 2007). In this case, there were three networks: (1) prospective 

outcome, corresponding to the emotions observed related to the future activity; (2) activity, 

corresponding to the emotions observed when the student was interacting with the game; and (3) 

retrospective outcome, corresponding to the willingness to keep interacting with the game. 

WEKA was employed to perform random sampling and to convert continuous variables into 

categorical variables. Model evaluation was conducted using a 10-fold cross-validation process 
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on student data. The prospective-outcome emotions (i.e., anxiety and hope) were classified with 

80% and 67% accuracy respectively. The activity emotions (i.e., enjoyment and frustration) were 

classified with 67.8% and 60%, respectively. Finally, the retrospective-outcome emotions (i.e., 

anger and gratitude) were classified with 77% and 0%, respectively. 

In sum, results showed that the model attains fair-moderate accuracy with results that are not 

random using answers in game dialogues and contextual variables, but it is not highly accurate. 

The authors suggest that future work involving observable features, such as video recordings of 

facial expressions and audio could help improve the classification accuracy of the model. 

 Park et al. (2018) conducted an experimental (pre-/post-test testing programming 

knowledge and skills) study to analyze how learners engage with embedded Python 

programming exercises using Elicast, a screencast tool that allows instructors to embed 

programming activities within the video recordings of the lecture. On the student side, the video 

recording is displayed and when the exercise is presented, the video pauses, allowing the student 

to complete or skip the activity. Elicast provides immediate feedback to the student and the 

system can verify that the functionality of the students’ submission, even if incomplete, is the 

same as the correct solution. 

This study sampled n = 63 undergraduate students with previous introductory knowledge 

of Python. The majority of the students (n = 46/63) had only taken one course on CS before the 

experiment. The experiment consisted of three stages. First, students completed a pre-test survey 

asking the students their proficiency in programming, this survey was based on Wigfield & 

Ecclesʼs (2000) Expectancy-Value Theory of Achievement Motivation. Afterwards. Second, the 

students watched two video lectures on Elicast, one lecture that included an embedded exercise 

and a second lecture without an embedded exercise. The purpose of this was to analyze the 
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effectiveness of embedded exercises. Before each lecture, the students were asked to answer the 

five-question programming skills pre-test about the concepts to be covered during the lecture 

(i.e., Introduction to Python, Queues, and Regular Expressions). Finally, the students answered a 

skills post-test and an open-ended survey to report their satisfaction and how effective they 

considered the embedded exercises. Each lecture took around 15 to 20 minutes, making the 

overall process about one hour long. To analyze the platform, the authors applied a combination 

of qualitative data from the post-test and observations, quantitative data from the pre- and post-

tests, and the platform’s logs from the lectures that included embedded exercises to analyze 

active engagement. There were 2612 video navigation events of video engagement. Unequal 

variances t-tests were used to measure the learning gains before and after the procedure. 

Results show that students actively engaged in lectures when the lectures have embedded 

programming exercises. The answers to the questions from the post-study survey showed 

consistent results of active engagement of students. In the post-study survey, most of the students 

reported that the embedded exercises positively affected their learning experience. From the free 

form questions, 13 students mentioned that they were able to stay focused and be engaged 

throughout the lecture because of the embedded exercises. On the other hand, a few students felt 

disengaged from the lecture because there were too many things to do. One of the limitations of 

this study was that the lectures selected for this intervention were already familiar to the majority 

of participants, which made it difficult to determine the effect size of learning gain with the pre-

test post-test experiment. 

Pham & Wang (2016) conducted an experimental study that sampled n = 32 (9 females) 

University students. It used AttentiveReview, an affect-aware, adaptive intelligent tutoring system 

(ITS) designed as an intervention technology easily integrated into mobile massive open online 
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courses (MOOCs) to enhance learning through adaptive content review. The system employed 

one data modality, being only based on physiological signals. AttentiveReview uses the built-in 

camera of unmodified smartphones and on-lens finger gestures for video control while 

participants watch MOOC tutorial videos on their smartphones. It blends the 

photoplethysmography (PPG) sensing process with the video via a tangible video control 

channel. Specifically, participants cover the back camera lens of a smartphone to play a tutorial 

video and uncover the camera lens to pause the video. The transparency detected in the learner 

fingertip by the camera changes with every heartbeat as the heart pumps blood to capillary 

vessels and it correlates with heart beats. Thus, the implicit PPG signals have been used in the 

literature to infer learnersʼ affective states (Pham & Wang, 2016). The goal of AttentiveReview is 

twofold. First, it aims to predict a learner’s perceived difficulty levels of learning each topic 

using input features extracted from rich but noisy physiological signals such as PPG sensing (i.e., 

waveforms captured implicitly from fingertip transparency changes) on unmodified smartphones 

via a back camera. Second, it adaptively recommends the optimal review materials through 

personalized review sessions based on a user-independent model.  

The findings show that AttentiveReview was able to capture PPG signals effectively to 

provide adaptive review (i.e., recommend review materials) that improved learnersʼ information 

recall (+14.6%) and learning outcomes (+17.4%) compared with the no review condition. Also, 

AttentiveReview achieved comparable performances with significantly less time when compared 

with the full review condition. Participants reported that AttentiveReview was intuitive and 

responsive. The authors used a supervised learning technique, linear kernel ranking support 

vector machine (SVM) to predict perceived difficulty in each learning topic from PPG signals. 

Specifically, AttentiveReview extracted 17 temporal domain features and frequency domain 
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features from a learner’s PPG waveforms that were collected from the learning process. The 

model yielded an accuracy of 62.5% in predicting perceived difficulty. Participants completed a 

survey to indicate their perceived difficulty of each topic in the video tutorials. This information 

provided the ground truth labels for the AttentiveReview model. 

One of the limitations of this study is that the system requires course-dependent training. 

Additionally, the review recommendations are at the learning topic level and some MOOCs may 

not organize their tutorial videos by learning topic. This may limit the prediction accuracy of the 

model especially for short videos. Also, the recommendation of review materials takes place 

after finishing multiple learning topics (due to the ranking SVM algorithm chosen in this study) 

instead of during the learning process. Lastly, the link between affect and learning was not 

explored. 

Psaltis et al. (2017) conducted a quasi-experimental study to evaluate neural network 

models using multimodal data to detect student engagement while playing the self-developed 

prosocial game, Path of Trust. In the game, the learner chooses one of the playable characters: 

the Muscle who follows directions and the Guide who interacts only through suggestions. The 

two characters must work together to collect equal parts of the treasure. A Microsoft Kinect 

device was used to collect the affective data: facial expressions were collected using the Kinectʼs 

SDK face tracking engine and the Kinect sensor was used to extract joint-oriented skeleton 

tracking. 

The study collected data from n = 72 (34 female) primary school students from three 

different schools in Greece. The intervention consisted of two sessions where the students played 

the Path of Trust game in a classroom setting. The setup consisted of one desktop PC with a 

Microsoft Kinect sensor. After each of the gameplay sessions, the students answered the 19-
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question Game Engagement Questionnaire (GEQ), to quantify the learnersʼ engagement when 

playing a game (Brockmyer et al., 2009). The intervention time was between ten and fifteen 

minutes. 

To detect affective states, a two-layered network model with seven stacked Artificial 

Neural Networks (ANNs), six at the first layer and one in the second layer, was trained. This 

model was compared with other multimodal affective states classifiers (i.e., Linear Weighted, 

Nonlinear SVM, and Shallow NN). The emotions recorded in the dataset were labeled as anger, 

fear, happiness, sadness, surprise, and neutral (i.e., where none of the previous emotions were 

detected). The dataset contained n = 750 three-second videos from n = 15 subjects. The model 

was trained using an augmented noisy dataset with added neutral state samples. The proposed 

neural network outperformed the other classifiers with a recognition rate of 98.3% when 

combining the two data channels. 

To detect engagement, a binary classifier neural network was trained. The model 

obtained an average engagement value of 0.728, meaning that a game that is challenging can 

trigger high levels of engagement to the players. Compared to the other classifiers, the neural 

network outperformed them with an 85% classification rate. 

Rajendran et al. (2019) conducted an experimental study to evaluate a model that 

detects students’ frustration in real-time using ITS log files to offer immediate personalized 

solutions, such as providing motivational messages as feedback. The model was implemented in 

the software Ei MindSpark (Rajendran & Muralidharan, 2013), an AI powered platform for 

learning mathematics. The researchers added motivational messages based on the identified 

cases that caused frustration. 
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The study collected data from n = 769 Grade 6 students from three schools (School 1: n = 

326; School 2: n = 279; School 3: n = 164) from different cities in India (Rajkot, Bangalore, and 

Lucknow). After preprocessing and data cleaning, the dataset was reduced to n = 188 students in 

the experimental condition (i.e., receiving motivational messages from the ITS) and n = 188 in 

the control condition (i.e., not receiving motivational messages from the ITS). 

To evaluate the model, the researchers conducted a Mann-Whitney test to compare the 

number of instances of detected frustration between the control group, which were collected a 

week prior from the intervention, and the experimental group. Results from this test indicated 

that the average number of instances of frustration was greater from the control group than the 

experimental group. In other words, when the students receive immediate feedback, in this case 

through motivational messages, the students appear to become less frustrated when using the Ei 

MindSpark platform. 

In sum, the results from the statistical analysis show that providing students with 

motivational messages, which addressed the cause of frustration when using an ITS, significantly 

reduced frustration in mathematics learners. 

Sharma et al. (2018) conducted an experimental study to understand the relationship 

between children learning basic programming concepts and the behaviors and attitudes presented 

while coding using eye gaze data. The authors highlight the relevance of interpreting the 

learnersʼ affective state while learning to code because of the demand for younger students to 

learn this topic that is usually deemed as difficult. 

The study collected data from n = 44 (12 females) Grade 8 to Grade 12 students with an 

average age of 12.64 years, recruited from local schools. The intervention consisted of five 

coding workshops at the Norwegian University of Science and Technology in Trondheim, 
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Norway. Each workshop lasted approximately four hours. For the first part of the intervention, 

the students interacted with digital robots, and they received a paper tutorial to learn how robots 

react to simple loops using Scratch for Arduino. Next, the students developed a simple game 

using Scratch. Researchers collected eye gaze data during both workshop activities using four 

SMI and one Tobii eye-tracking glasses. After the intervention, a 5-point Likert-scale survey 

asked the learners to rate their perceived learning, enjoyment, teamwork, and intention to 

participate. 

Results from correlations analyses demonstrate that gaze behavior moderate the 

relationship between the explored attitudes. In the relationship between teamwork and perceived 

learning, participants working on teams with high gaze similarity reported higher levels of 

perceived learning. In the relationship between teamwork and enjoyment, participants with high 

gaze similarity reported higher levels of enjoyment. In the relationship between intention to learn 

and perceived learning, participants with gaze similarity reported higher levels of perceived 

learning. 

Sharma et al. (2021) conducted an experimental study to investigate the relationship 

between the joint gaze of students coding in pairs and their affective state while they were 

performing block-based programming tasks. The authors present a system that uses eye-gaze 

behavior and facial expressions collected from a Logitech webcam, and logs from Scratch to 

assess the learnersʼ emotion and performance when working in teams.  

The study collected data from n = 50 (29 females) Grade 8 to Grade 10 students who 

voluntarily attended an after-school workshop at the Norwegian University of Science and 

Technology. The students were organized into 10 pairs and 10 triads. The learners were 

introduced to block-based programming through Scratch and were instructed to modify and 
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develop their own games by iterative coding and testing and by working either in pairs or in 

triads. After completing the games, the teams reflected on the process and played each other’s 

games. Several measurements were collected to evaluate the system. The Joint Visual Attention 

(JVA) measurement represents the time the team individuals spent looking at similar objects 

within a timeframe computed from facial video. The Joint Emotional State (JES) measurement 

represents the time the team individuals spent experiencing the same emotion (i.e., frustration, 

boredom, or confusion) computed from facial video. Finally, the Information Flow measurement 

represents the amount of information presented to the students on the screen, computed from the 

screen recordings. 

Results from correlational analyses showed no significant differences between the 

number of members in a team (i.e., the number of students in a team did not affect performance). 

All of the results are based on a collaborative coding activity context. Groups of children that 

performed well spent time looking at similar locations on their screen, indicating strong 

cognitive load. On the other hand, the teams that had lower agreement when looking at similar 

locations on their screen displayed lower performance. When analyzing instances of boredom 

between high and low performing students, the results indicate that students that showed joint 

states of boredom displayed lower performance. Similar results were found when analyzing 

states of confusion, meaning that students who showed joint confusion also displayed lower 

performance. Groups of children that performed poorly experienced confusion together. When 

analyzing instances of confusion, the arrangement of the information presented on the screen 

influences higher joint states of confusion. In other words, when the team is confused together, it 

is unlikely that the team members will produce high quality code, which can lead to boredom 

and/or frustration in later stages. Finally, the low performing group showed higher instances of 
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frustration. The overall result of this study implies that JVA causes cognitive load for high gain 

teams. This result can indicate that students arranged in teams can produce more correct code 

when in JVA (i.e., the time the students spent looking at similar locations on the screen) because 

it is correlated with mutual understanding and high collaboration quality. 

One limitation of the study is that findings might be restricted by the fact that the tasks 

were tailored to the study. Also, participants were sampled from schools where students already 

showed an interest in the workshops, so self-selection may be a concern. Finally, all of the data 

collected came from only one session, thus complicating the generalization of the results. 

Sinha et al. (2015) conducted an experimental study to evaluate a model that predicts 

learnersʼ cognitive flow using multimodal physiological data. Cognitive flow is defined as the 

mental state where the learner is fully concentrated while feeling involved and enjoying the 

activity. The researchers developed a modified version of the Tetris game where the falling 

objects are replaced with Stroop color-texts that the participants needed to assign to color boxes 

at the bottom of the screen. The authors highlight that creating learning platforms where the 

learners find themselves in a constant state of flow is challenging, however doing so can 

ultimately improve learning experiences and outcomes. 

The study collected data from n = 20 (10 females) right-handed engineers from the 

researchers’ lab with an average age of 30 years. The researchers collected the following 

channels of data: electroencephalogram (EEG) signals using the NeuroSky device placed on their 

left earlobe, electrodermal activity (EDA) using the eSense device placed on their middle and 

ring left hand fingers, oxygen saturation and pulse rate using a Contec oximeter placed on their 

left index finger, and keystroke data. Tasks in the game were designed to induce flow or 

boredom. Participants were randomly assigned into one of the two categories and then alternated 
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to the opposite one: the order of the tasks was boredom-flow-boredom-flow or flow-boredom-

flow-boredom. The intervention consisted of four blocks. For two of the blocks, the participants 

interacted with the game in one of the categories (i.e., boredom-flow-boredom-flow), whereas 

for the last two blocks, the participants interacted with the game in the opposite category (i.e., 

flow-boredom-flow-boredom). After each block, the participants answered the Game Flow 

Inventory (GFI) questionnaire to measure their affective state (i.e., level of engagement, 

enjoyment, or happiness) and motivation. 

The results of this study were divided by data channel. Results from the subject feedback 

using the GFI survey were evaluated using a t-test, which showed that 16 of the 20 subjects 

experienced a flow state. Results from the keystroke analysis were standardized. For the 

boredom condition, most values of the correct number of keystrokes divided by the total number 

of keystrokes were close to 1, whereas for the flow condition, the value of correctness decreases 

as the speed increases. Results from the EEG analysis were estimated by a Gaussian Mixture 

Model (GMM) and showed no significant differentiation for the participants. Results from EDA 

data were evaluated by a t-test and did not show significant differences between conditions. 

 Sottilare & Proctor (2012) conducted a quasi-experimental study to find methods to 

allow an Intelligent Tutoring System (ITS) to detect a leaner affective state using student 

behavior and physiological responses. The rationale of this study is for ITS to understand the 

affective state of the learner and adapt the instructional strategies to improve learning 

experiences. The target population of this study was military students who interacted with the 

training package, Tactical Combat Casualty Care (TC3), a software used to train cadets on 

hemorrhage control. 
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The study collected data from n =124 (16 females) cadets from the United States Military 

Academy, with low-moderate competence in tactical combat casualty care. The intervention 

started with a demographics survey, a training course on the software, a knowledge pre-test, a 

mood assessment before the intervention using the Self-Assessment Manikin survey to measure 

pleasure, arousal, and dominance related to the learnersʼ affective state (Bradley & Lang, 1994). 

During the intervention, the learners interacted with the TC3 to apply the knowledge learned 

during the training course. After the intervention, the students answered a knowledge post-test, 

Self-Assessment Manikin. The researchers collected timestamped logs from the platform, and 

interactive controls to detect strategy. 

Linear regression analyses were conducted to find relationships between the variables that 

predicted the following moods: (1) pleasure, (2) arousal, and (3) dominance. Results of the 

pleasure and dominance detecting models showed that there were no reliable predictors. These 

results were unexpected to the authors because it was hypothesized that mouse movement would 

be a reliable arousal predictor. To measure the differences between the mood of the learner 

before and after the intervention, a non-directional t-test was conducted. For the pleasure and 

arousal moods, significant differences were found. However, there were no significant 

differences in dominance for the dominance mood. Finally, to measure performance, a linear 

regression analysis was conducted. Results showed that initial dominance, mouse movement, and 

final knowledge scores explained a large portion of the variance on performance (R2 = 0.23). 

These results were not expected for the authors because it was hypothesized that previous 

training experience and interest in the topic would be reliable performance predictors. 

Srivastava et al. (2018) conducted a quasi-experimental study to compare the 

performance of machine learning classifiers using mid-level gaze eye activity to detect the type 
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of task the learner is performing on a computer screen, using a Tobii Pro X2-30 eye tracker. 

Mid-level gazes are defined as a combination of low and high-level gaze features that are shape- 

and distance-based and that do not require information of the interface design. 

The study collected data from n = 24 (8 females) postgraduate students and research staff 

from a university, with an average age of 29.8 years. Participants were proficient C# or Python 

programmers. Before the intervention, the participants were fitted with an eye-tracker and a 

posture-sensing chair in a laboratory environment. During the intervention, each participant 

performed five common desktop activities (read, watch, browse, play, and search) and three 

software engineering activities (interpret, debug, and write). Depending on the activity, the 

participants were instructed to interact with the keyboard and/or mouse. Each session lasted 60 

minutes on average. 

Using only low-level gaze or a combination of low and mid-level gazes, three classifier 

models were trained using the following algorithms: SVM, K-NN, and Random Forest. The 

models were evaluated using 4-fold cross validation. Afterwards, hyperparameter tuning was 

conducted to find the best hyperparameter values for the models. The SVM classifier C 

parameter (to control error) was set to 10 and the gamma parameter (to give curvature weight of 

the decision boundary) was set to 0.01 with a Radial Basis Function (RBF) kernel. The Random 

Forest classifier was tuned using 1000 trees. Finally, the K-NN model used k = 10 neighbors. 

The results showed that the Random Forest using the combination of gaze features 

classifier outperformed the rest of the models, yielding the highest F1-Score. These results 

suggest that mid-level gaze features are related to the type of activity. 

Standen et al. (2020) conducted a quasi-experimental study evaluate the online platform 

MaTHiSiS, an adaptive learning system used to identify students with intellectual disabilities 
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(ID) and affective states linked to learning (e.g., engagement, frustration, and boredom) using 

multimodal data. The authors highlight the importance of developing personalized and accessible 

learning systems to address the limitations of current standardized platforms for learners with ID. 

The study collected data from n = 67 (21 females) students, ages 6 to 18 years, with an ID 

or with an autistic spectrum condition (ASC) from six schools in the UK, Italy, and Spain. Three 

participant groups were identified: (1) those with ID only (n = 23); (2) those with ID and autistic 

tendencies (n = 22); and (3) those with the primary diagnosis of autism (n = 22). The 

intervention used an online equivalent of a specific lesson in traditional learning environments, 

where several learning goals are defined and are expected to be acquired. Interaction with the 

system was made by devices (laptop, tablet, or NAO robot) at the instructor’s discretion.   

Results from the model indicate that sensor data can identify the three different affective 

states (engaged, frustrated, and bored) all with a strong relationship with achievement. “Lack of 

boredom” was the state most strongly linked to achievement. There was significantly more 

engagement and less boredom in the intervention than in the control sessions, but no significant 

difference in achievement. 

Subburaj et al. (2020) conducted a quasi-experimental study to evaluate the 

performance of models using different channels of multimodal data that predict student success 

in solving a level in Physics Playground, an educational game to learn Newtonian physics 

concepts. The novelty of this project is that it adds a layer to the multimodal studies by exploring 

multiparty signals (i.e., combining signals of individuals arranged in teams). However, this 

approach raised questions on how individual features could be weighted when building machine 

learning models. The researchers focused on collecting nonverbal behavior, such as facial 

expressions, acoustic-prosodic information, eye gaze, and task information. 
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The study collected data from n = 303 (56% female) undergraduate students from two 

large public universities (38.5% from one university) in the United States. Students were 

arranged into 101 groups of three. The students met using the Zoom video conferencing 

software. Before the intervention using the educational game, the students answered a 

demographics survey, and the following assessments: (1) a validated measure of physics self-

efficacy, to assess their ability in physics; (2) the Big Five inventory, to assess personality 

dimensions (i.e., extraversion, agreeableness, openness, conscientiousness, neuroticism; Gosling 

et al., 2003); (3) the Leadership Domain Identification measure, to assess their self-perceived 

capability of leadership; and (4) the Individual Satisfaction with the Team Scale, to assess 

willingness to work in teams, and teamwork self-efficacy (i.e., their self-perceived ability to 

work in teams). Finally, they completed a tutorial on the platform before the intervention. For the 

intervention, the students met via Zoom using a personal computer with a webcam to record 

facial expressions and upper body posture, an audio recorder for dialogue, and a Tobii 4C eye 

gaze recorder. The teams interacted with the game for three 15-minute blocks. For each block, 

one student was randomly assigned as the leader or controller who was in charge of the mouse 

interactions, whereas the two other students were observers who could contribute to the solution 

for that level. 

The authors trained Random Forest models to predict successful or unsuccessful attempts 

to pass the level in the game. The model was evaluated using five-fold nested cross validation, 

whereas the training set was split into three folds for hyperparameter tuning using grid search to 

tune the number of trees in the forest and the maximum depth of the trees. The performance 

metric to assess the model was AUC-ROC. Models were trained using different sets of their data 

(i.e., unimodal, and multimodal using different combinations). Based on the performance results, 
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the best model (AUC-ROC = 0.73) was the one that combined eye-gaze behavior, task context, 

and facial expressions, excluding the acoustic prosodic features. After this result, models to 

compare the performances of nonverbal and language-based models were trained using Random 

Forests. Results showed that the nonverbal model was the best model (AUC-ROC = 0.73). 

The & Mavrikis (2016) conducted an experimental study to determine how different 

patterns of eye fixations and saccades of students learning programming in Codecademy relate to 

their achievement and performance. The authors highlight how the use of online learning 

systems has improved learning experiences by helping educators monitor progress and 

deepening learning for students by facilitating problem-solving activities. Thus, addressing the 

different learning approaches using bio-signals, in this case eye behavior, can help educators 

understand the effectiveness of personalized online learning systems. 

The study collected data from n = 60 final year students from the School of Information 

Technology at the Nanyang Polytechnic in Singapore. Before the intervention, the eye-tracking 

device from Eye Tribe was calibrated. The intervention consisted of completing 13 programming 

tasks in the PHP language provided by Codecademy. Video-screen recordings were documented 

to validate the eye-tracking recordings. 

Analysis of the eye-tracker data identified three types of visual scanning behaviors: (1) 

Type FP1, where the eye fixations were consistent among all the blocks (i.e., Introduction, 

Instructions, Hints, Editor, and Output); (2) Type FP2, where the eye fixations were mostly on 

the Hints section and barely any eye fixations on the Introduction and Instructions sections; and 

(3) Type FP3, where the eye fixations were consistent on all blocks except the Hints section. 

Results from linear regression analyses revealed a strong positive relationship between the 

identified visual scanning behaviors and levels of engagement. These results highlight the 
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relevance of creating models that identify the students struggling to learn the material (e.g., 

before assessments at the end of the semester) to provide additional support to those who are 

struggling with the material. Another significant result suggests that students who were 

consistently engaged with the system scored higher in online and traditional methods of learning. 

Vail et al. (2016) conducted a quasi-experimental study to evaluate a model using facial 

expressions to find how genders differ while learning. Facial expressions have been widely 

analyzed to detect everyday emotions and with the growing literature on the relationship between 

emotions and learnings, this channel of data has been found to be informative when used to 

detect learning emotions (e.g., engagement, frustration, etc.). Literature has mentioned that 

females respond with more pronounced facial expressions, thus the novelty of this study is to 

find the extent of information females’ facial expressions can provide. 

The study collected data from n = 67 (24 females) undergraduate students enrolled on an 

introductory engineering course. The students interacted with JavaTutor, a tutorial interface to 

learn introductory computer science, and received texts from a human tutor when needed. The 

intervention consisted of six 40-minute lessons over four weeks. Before the intervention, 

students answered a content-based pre-test, and after the intervention, they answered an identical 

post-test. Facial expression data were collected using a Kinect depth camera, a webcam, and a 

skin conductance bracelet. 

A standard t-test with the Bonferroni correction was performed to find facial expression 

differences between genders. Although no significant differences were found, females displayed 

a lower facial expression significantly more than males, while males displayed brow lowering 

and lip fidgeting more than females. Additional results found that certain facial expressions were 
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associated with learning depending on gender. For example, females exhibited brow raising and 

nose wrinkling and males exhibited eyelid raising. 

VanLehn et al. (2017) conducted an experimental study to evaluate the effect of a non-

cognitive learning companion (LC) that reacted to students’ affective states and provided 

motivational and affective messages to improve learning outcomes by inviting the student to 

persist. To detect affective states two sensors were used: a video camera to record facial 

expressions and a posture-sensing chair. Additionally, log data from the tutoring system were 

recorded.  

The study collected data from n = 66 university students from Arizona State University, 

with an age range of 18 to 21 years. After filling out a background questionnaire and setting up 

the sensors, the students started the intervention which consisted of three parts. The first part was 

the introduction, where the participants studied 76 slides with simple exercises to learn how to 

use the system and learn introductory concepts of model construction. The second and third parts 

were the training phases, where the students solved as many problems as possible with the 

opportunity to refer to the slides from the previous phase; the students were reminded to keep 

talking. These two phases lasted 75 minutes. Finally, after a 30-minute break, the learning 

transfer phase started, where the student solved as many problems as possible without the 

support of the LC. The students were randomly assigned to one of three conditions: (1) the 

control condition, where the tutor only intervened during the training phase (e.g., offering 

feedback, hints, and instructions addressing the domain knowledge); (2) the meta-tutor condition, 

where the meta-tutor only intervened during the training phase (e.g., offering instruction on the 

learning strategy); and (3) the non-cognitive LC condition, where in addition to the tutoring and 

meta-tutoring, the LC intervened between tasks. 
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Results from the experiment showed that during the training phase, the meta-tutored 

students outperformed those who only had the tutor, but the advantage disappeared during the 

transfer phase. This result is consistent with findings of earlier studies. Results from the second 

experiment showed that the LC students outperformed the meta-tutored students during the 

training phase; however, during the transfer phase, there were no significant differences and 

there were no medium-sized differences in performance between the two conditions. 

One of the limitations was the small sample for the second experiment which somewhat 

underpowered the performance results. Additionally, physiological measures had poor accuracy 

because they were calibrated using a different population. 

Veliyath et al. (2019) conducted a quasi-experimental study to evaluate the performance 

of a model that detects students’ attention in a classroom setting using eye gaze behavior. The 

researchers focused on gaze data as a method to estimate attention because it is almost non-

intrusive to the subject and requires small amounts of setup, thus producing fewer errors in the 

data. Additionally, the authors highlight the relevance of detecting affective states, and attention 

in this case, to keep a student engaged, thus more open to learning and to improving learning 

outcomes. 

The study collected data from n = 10 (4 females) junior undergraduate students enrolled 

in the field of mechanical engineering. The intervention took place in a computer-lab where the 

professor was located at the front of the class delivering a PowerPoint presentation. The students 

could use the computers, notebooks, and other tools freely. The computer in front of every 

student was set up with a Tobii 4C eye tracker and software installed to collect data of the 

student’s interaction with the computer (e.g., timestamps, the application the student was using, 

etc.). Finally, a pop-up appeared every five minutes asking the students to rate the level of 
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engagement of the previous five minutes of the class in a 10-point Likert-scale format. The 

purpose of the setup was to allow the students to decide to pay attention to the instructor or to 

follow along with the material on the computer. 

Four binary classifiers to estimate attention were trained: Random Forest, Support Vector 

Machine, Adaptive Boosting, and Extreme Gradient Boosting. For each of the models, accuracy, 

precision, recall, and F1-Score metrics were calculated. The models were evaluated using K-fold 

cross validation (k = 20). Accuracy results showed that the Extreme Gradient Boosting algorithm 

outperformed the rest of the models (0.77). Feature importance analysis indicated that timestamp 

was the most significant feature (46%) of the model, followed by gaze location (31%), which can 

greatly influence the estimation of attention. 

In sum, data collected from the eye tracker can be used to predict a student’s attention as a 

measure of affect over the course of a class. However, one limitation of the study could be the 

existence of the Hawthorne Effect (Allen & Davis, 2011), whereby students might act differently 

when they are aware of the experiment. 

Wu et al. (2020) conducted an experimental study to compare the statistical differences 

between students learning on SURGE, a physics digital game-based learning (DGBL) 

environment, and a traditional e-learning platform. Physiological data was collected to detect 

learnersʼ attention level, using NeuroSky; affective state was collected using the emWave sensor; 

and cognitive load was measured using an eye-tracker. The authors make note of how game-

based learning can increase learnersʼ motivation and improve learning experiences and 

outcomes. However, the literature on the topic reported ambiguous findings regarding learning 

achievement. 
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The study collected data from n = 32 (18 females) university students in Taiwan. Before 

the intervention, the students completed the 30-question FCI pre-test, to assess the student’s 

understanding of basic Newtonian physics concepts (e.g., kinematics, type of forces and the first 

three Newton’s Laws). Students were randomly assigned to the two groups: the DBGL group or 

the traditional e-learning group, where both groups interacted with their respective platform for 

approximately ten minutes. After the intervention, the learners answered a post-test with two 

problems varying in difficulty from the Mechanics Baseline Test, a companion to the pre-test. 

Results from a one-way ANOVA analysis showed that the DBGL group had a higher 

attention score than the static e-learning group, but no significant differences were found. 

Learners who start with a successful motivation exhibited a higher attention in game-based 

learning. No evidence on whether students pay more attention during game-based learning. The 

DBGL group did not have better affective experiences compared to the traditional group and had 

lower scores in total fixation durations and number of fixations, but higher scores on average 

fixation duration and percentage of viewing time (greater cognitive load). Finally, the DBGL 

group had better academic achievement in the post-test, although there was no statistically 

significant difference. 

Xiao & Wang (2015) conducted a quasi-experimental study to report the efficacy of their 

proposed platform AttentiveLearner, a mobile learning system that captures learnersʼ 

physiological states in Massive Open Online Courses (MOOCs) through heart rate sensing by 

having the learner cover the back-camera lens with their finger while playing a lecture video. 

This physiological data is a real-time feedback response on the learnersʼ cognitive state. 

The study collected data from n =18 (7 females) undergraduate and graduate students in a 

laboratory-based setting. The intervention consisted of an introduction to the system, afterwards, 
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the students watch the introductory chapter of an MOOC on Game Theory, that included four 

chapters (i.e., Introduction to Game Theory and the Predator Prey Example, Normal Form 

Definitions, Dominance, and Nash Equilibrium). The total duration of the chapter was 

approximately fifty minutes. The students watched the videos on a Nexus 5 smartphone on 

landscape mode, with the freedom of pausing when needed. After each lecture, the students 

answered a survey about their interest on the topic and confusion levels in a 5-point Likert scale. 

Finally, the students completed a feedback questionnaire after each lecture. 

From quantitative and qualitative data, the researchers build a dataset of n = 428 samples 

of interest and boredom predictions, as well as n = 490 instances of confusion. Later, they trained 

five supervised machine learning algorithms to predict the students’ affective state. The 

algorithms evaluated were: kNN, Naïve Bayes, Decision Tree, Linear SVM, and radial basis 

function kernel SVM (RBF-kernel SVM) and used WEKA to train the classifiers. Leave-one-out 

cross-validation was used to evaluate the models. To determine the best algorithm, the average 

Kappa value was evaluated. 

Performance results show that the RBF-kernel SVM yielded the best overall Kappa 

(0.297 and 0.269) when predicting boredom and confusion. However, one limitation of this 

approach is that the classifiers are binary and may not be sensitive enough at discerning other 

affective states, such as joy and engagement. 

Xiao & Wang (2016) conducted an experimental study to evaluate the capability of the 

Context and Cognitive State triggered Feed-Forward (C2F2) intelligent tutoring system, built 

upon AttentiveLearner, on improving student engagement and learning efficacy in Massive Open 

Online Course (MOOCs) using real-time bio-signals. When the system detects lack of 

engagement on the student, it intervenes to remind the student of important content. The authors 
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highlight the importance of keeping the learner engaged to avoid low course completion rates in 

MOOCs. 

The study collected data from n = 48 (20 females) undergraduate and graduate students 

with an average age of 23.4 years. The researchers collected camera-based 

photoplethysmography (PPG) using the built-in camera of a Nexus 5 smartphone and a 

NeuroSky Mindwave EEG headset. The intervention consisted of four phases. First, the 

introduction phase consisted of a demographic’s questionnaire and a 40-second video to 

introduce the interface. Second, an 18-question content (i.e., computer and network security) pre-

test was applied. Third, for the evaluation phase, the students were randomly assigned into four 

conditions: (1) no feed-forward; (2) context only feed-forward; (3) cognitive only feed-forward; 

and (4) C2F2. Fourth, in their assigned condition, the learners watched short videos on the 

learning topics, and, after each video, the participant evaluated it using the Subjective Impression 

Questionnaire and a content test to measure their understanding on the topic. Finally, the 

participants completed the Subjective Impression Questionnaire to evaluate the entire lesson and 

a survey to evaluate the MOOC. 

Results from ANOVA analyses to determine the effect of different levels of feed-forward 

interventions on learning performance showed no significant differences between conditions. 

Main effect results suggest that the C2F2 model was useful for learners who became disengaged 

from learning and struggled to refocus. Additionally, a Ranking SVM model was trained to 

predict participants levels of engagement using EEG-based data from a video feed that achieved 

a 55.56% accuracy at identifying the low engagement. A second model using PPG-based 

features was trained to compare the previous model which achieved a 69.44% accuracy, thus 

outperforming the model using EEG data. 
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Yang et al. (2019) evaluated an affect detector using logistic regression on a large-scale 

affect dataset (n = 3,109 observations) from real-life students interacting with the ASSISTments 

ITS. Affective states are highly predictive of students’ academic outcome, thus creating an 

environment where the student stays in a positive affective state, such as engaged, can be greatly 

beneficial to obtaining higher academic outcomes. The authors emphasize that the purpose of the 

study was to determine if a simple model, like the one proposed, could collect better data than 

more refined and computer expensive models. 

The dataset has been widely used for training other affect sensors. Each instance consists 

of a label of the affective state detected in a window of time of 20 seconds and features to 

identify the task the student interacted with from the ASSISTments (i.e., time the student spent in 

the task, number of hints the student asked for, etc.). However, the dataset was reduced to the 

instances where the students were labeled into any of the four BROMP affective states: boredom, 

confusion, engaged concentration, and frustration. The Linear Minimum Mean-Square Error (L-

MMSE)-based model was compared to three more active learning methods: uncertainty sampling 

(US), expected variance reduction (EVR), and model change (MC). Two settings of cross 

validation were applied to the model: (1) treating each of the instances as independent students 

and (2) merging every instance of a student and treating it as one instance. 

Two models were created: the first one to detect engaged concentration, due to being the 

most recurrent affective state of the cleaned dataset (82%). Results from the AUC, the capability 

of a model to distinguish between classes, indicate that the proposed model outperformed the 

other models at classifying between both cross-validation settings. The second model was 

created to the other three affective states from the dataset (bored, confused, and frustrated). Due 

to the instances of these states being rare, resampling was used to balance the dataset. Results 
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from the AUC indicate that the proposed model outperformed the other models at classifying 

between both cross-validation settings. Although the performance metric is significantly smaller 

compared to the model to detect engaged concentration. 

In sum, the proposed active learning methods are effective at making informative 

observations, thus reducing the number of instances needed for a model to accurately detect 

affective states. One of the limitations of the study is that the proposed model is only able to 

perform binary classifications between affective states (i.e., engaged or not engaged). However, 

the authors point out that creating multi-class classification models are more useful for classroom 

settings. 

Yue et al. (2019) conducted a quasi-experimental study to propose a framework to detect 

students’ learning engagement when interacting with e-learning platforms using multimodal 

data, such as video feed from a webcam, eye tracking information, and clickstream data from a 

MOOC to learn Python programming. Data for this study was acquired from two databases used 

to train facial expressions: ImageNet, used to pre-train the models, and USTC-NVIE, used for 

the model to learn Asian face features. The researchers developed an eye learning behavioral 

database using a Tobii Eye Tracker 4C in n = 22 subjects. 

The study collected data from n = 46 (14 females) undergraduate (n = 33), graduate (n = 

11), and doctoral (n = 2) students. Majority of the subjects (66%) were enrolled in a Computer 

Science and Technology program. Before the intervention, the students answered a 

demographics survey that asked for their prior Python language knowledge level. After watching 

a short video on the MOOC, the learners self-assessed their learning performance from 10 to 

100. Finally, they answered a knowledge post-test. The intervention lasted on average 50 

minutes per participant. 
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To evaluate the proposed facial expression model, four models were compared: (1) 

VGG16 (Convolutional Neural Network with 16 layers) without Long Short-Term Memory 

(LSTM), (2) Inception-ResNetV2 without LSTM, (3) VGG16 with LSTM, and (4) Inception-

ResNetV2 with LSTM. The LSTM models were the most accurate, meaning that a combination 

of spatial and temporal features can improve models for facial expression classification. The best 

performing model was the VGG16 with LSTM (76.08% accuracy). To evaluate the proposed eye 

behavior model, three models were compared: (1) Classification and Regression Trees (CART), 

Random Forest, and Gradient Boosted Decision Tree (GBDT). The GBDT was the best 

performing algorithm with an 81% accuracy. 

In sum, the proposed framework was proven to be effective. However, one limitation of the 

study was that it only focused on distance-learning environments from PC settings and not 

mobile devices.  
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