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ABSTRACT

This thesis examines the problem of controlling processes
with intermittent measurements. Existing inferential control
strategies are either suboptimal or based on restrictive
assumptions. For example, some model based inferential control
strategies utilize only approximate disturbance models to infer
intersample values of the controllied output from secondary
measurements. Other schemes estimate the unmeasurable controlled
or ’primary’ output assuming that the dynamics of the primary
output are completely observable from secondary measurements.

This work makes three contributions. Firstly, it introduces a
novel multirate structure for the Kalman filter, based on an
optimal multirate Kalman filter design, used previously for
multirate sample rate flight control. The multirate Kalman filter
is used to infer intersample values of the primary output from
secondary measurements. Secondly using innovations model analysis,
the state space multirate Kalman filter formulation is transformed
into a multirate input-output relationship, upon which an
equivalent multirate minimum variance estimator is formulated. The
estimator can be easily implemented in an adaptive framework as
the wuitirate nature of the estimator model facilitates
identification of the model parameters using available infrequent
measurements of the primary output and frequent measurements of

the secondary output. Finally, the multirate minimum variance



estimator is integrated with an implicit self-tuning multirate
generalized minimum variance controller. The formulation of the
minimum variance controller is such that identification of the
multirate estimator model updates the controller parameters as
well,

The adaptive multirate inferential estimation and control
strategies are evaluated by MATLAB simulation on linear and
nonlinear simulated models of a continuous stirred tank reactor.
Simulation results show that these strategies perform
significantly better in an adaptive framework compared to a fixed
parareter framework, especially in the presence of unmeasured time
varying disturbances and process nonlinearities. Recursive least
squares is used to identify the the model parameters in the
adaptive framework. A comparison of different modifications
applied to the basic recursive least squares algorithm show that
the covariance resetting scheme works best under the given
circumstances. Suitable disturbance compensation techniques are
also applied to the estimation algorithm to improve estimation
accuracy and prevent the biasing of parameters in the presence of

time varying load disturbances.



ACKNOWLEDGEMENT

I would like to thank Dr. R. K. Wood for his guidance and
supervision during the course of this research. Thanks also due to
Dr. S. L. Shah for patiently hearing out my ideas and providing me
with valuable suggestions.

The work on this thesis was made more enjoyable by other
graduate students. In particular, I owe much to discussions with
Sreekanth Lalgudi, Christine Ho, Ravindra Gudi, Viral Maniar,
Shaohua Niu, Munawar Saudagar and Pranob Baner jee.

I would also like thank the control group in general for
providing a forum in which ideas could be exchanged in an
intellectual yet friendly atmosphere. To Dr. Rink and Dr. Shah goes
the credit of having really taught me my basics in Control.

The financial support from the Department of Chemical
Engineering and the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged.

Finally, I take the opportunity to thank my parents, brother
and sister in India for their constant support and encouragement

over sSo many years.



TaBLe OF CONTENTS

Chapter Page
1. Introduction 1
2. Suboptimal model based inferential control m2thods 4
2.1 Introduction 4
2.2 Steady state estimator design 5
2.2.1 Least squares estimator 6
2.2.2 Effect of measured variables 8
2.2.3 Selection criteria for measurements 8
2.3 Dynamic inferential control system 9
2.4 Inferential control and the Smith predictor 14
2.4.1 Inferential control versus the Smith
predictor 15
2.4.2 Algebraic properties of the inferential
controller 17
2.4.3 Design of disturbance filter to counter
modelling errors and unmeasured
disturbances 18
2.4.4 Effect of time delay mismatch 19
2.4.5 Effect of error in process gain 25
2.4.8 Effect of error in process time constant 27
2.4.7 Smith predictor with disturbance filter 27



2.5

2.6

2.7

Application of Smith predictor in conjunction with

inferential estimation to c¢ri::irol processes with

unmeasured outputs

An adaptive inferential control algorithm for
chemical processes with intermittent
measurements

2.6.1 Process model

2.6.2 Deconvolution controller

Conclusions

State estimation based methods in inferential control

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Introduction
State space models
3.2.1 Discrete state space representation

State observability

3.3.1 State observability in inferential centrol

schemes
State estimator design
3.4.1 Prediction estimators
3.4.2 Current estimators
Optimal state estimation
3.5.1 Kalman filter
3.5.2 Steady state based optimal estimation
Kalman filter based inferential estimation
Introduction to multirate inferential control

3.7.1 Multirate model formulation

29

33
35
36

38

40
40
42

43

45

46

47

51

55



Adaptive inferential control for proczsses with

multirate sampling

4.1 Introduction 60
4.2 Plant model 61
4.3 Optimal multirate estimator design 62

4.3.1 Remarks 68
4.4 Suboptimal multirate estimator design 69
4.5 Innovations analysis 72

4.6 Multirate formulation for a simple first order

process 79
4.7 Minimum variance multirate output estimation 82
4.8 Multirate self-tuning control 86

4.8.1 Generalized minimum variance control as

a multirate self-tuning control law 87
4.9 Parameter estimation 90
4.10 Offset and load disturbances 92

Multirate inferential estimation and control of a stirred

tank reactor

5.1 Introduction 94

5.2 Process model 95

5.3 Stability analysis 100
5.4 Discrete time model 102
5.5 Formulation of multirate model 104
5.8 Simulation results and discussion 106

5.6.1 Multirate inferential estimation 106



5.6.1.1 Fixed parameter multirate
inferential estimation

5.6.1.2 Adaptive multirate Inferential
estimation

5.6.1.3 Disturbance compensation

5.6.2 Multirate inferential control
§.6.2.1 Fixed parameter multirate
inferential control
5.6.2.2 Adaptive multirate inferential
control
5.6.2.3 Disturbance rejection
6 Conclusions and recommendations for future study
6.1 Conclusions
6.2 Recommendations for future study
References
Appendix A
Appendix B

108

117

132

135

138

144

148

150

150

152

154

159

163



List OF TaBLES

Table Page

2.1 Transfer functions relating the effect of the unmeasured
inputs on overhead butane composition and temperature on

plate 14 13



Figure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

3.2

4.1

List Or FiGURES

Block diagram representation of a dynamic inferential
control system

Block diagram representation of the generalized
inferential control strategy of Brosilow (1979)

Block diagram representation of the Smith predictor
control strategy

Block diagram representation of a generalized
inferential control system which includes a
disturbance filter

Control response of the Smith predictor and the
inferential control system to a unit step disturbance

Block diagram of a Smith predictor control system
utilizing a disturbance filter

Smith predictor control system in conjunction with
inferential estimation

Discrete time block diagram representation of the
predictive Smith inferential control scheme

Block diagram representation for the adaptive
control strategy of Shen and Lee (1989)
An open loop state estimator design

Prediction state estimator using measurement feedback

Multirate adaptive inferential estimation scheme

Page

10

16

16

19

24

28

30

32

34

48

48

85



5.1

5.2

5.3

5.4

5.5

5.6

5.6

5.7

5.8

5.8

5.9

5.9

Schematic diagram of the continuous stirred tank reactor

Energy generation and removal for a continuous stirred
tank reactor

Case 1.1a : Simulation of fixed parameter multirate
inferential estimation with no filtering for a linear
process

Case 1.1b : Simulation of fixed parameter multirates
inferential estimation with filtering for a linear
process

Case 1.1c : Simulation of fixed parameter multirate
inferential estimation with filtering for a nonlinear
process

Case 1.1d : Simulation of fixed parameter multirate
inferential estimation with filtering for a linear
process with a time varying parameters

Case 1.1d : Variation of primary and secondary process
model parameters with time

Case 1.le : Simulation of fixed parameter multirate
inferential estimation with filtering for a linear
process subjected to unmeasured load disturbance

Case 1.2a : Simulation of adaptive multirate inferential
estimation with filtering for a linear process

Case 1.2a : Parameter trajectories for primary and
secondary estimator models

Case 1.2b : Simulation of adaptive multirate inferential
estimation with filtering for a nonlinear process

Case 1.2b : Parameter trajectories for primary and
secondary estimator models

g5

101

108

110

112

113

114

116

119

120

122

123



5.19

Case 1.2b.1 : Simulation of adaptive multirate inferential
estimation with variable forgetting factor for a nomlinear
process 126

Case 1.2b.2 : Simulation of adaptive multirate Inferemtial
estimation with covariance resetting for a nonlimear
process 128

Case 1.2c.1 : Simulation of adaptive multirate inferential
estimation with variable forgetting for linear process
with time varying parameters 130

Case 1.2c.2 : Simulation of adaptive multirate inferential
estimation with cowvariance resetting for linear process
with time varying parameters 131

Case 1.3a : Simulation of adaptive multirate inferential
estimation for linear process subjected to unmeasured
load disturbance 134

Case 2.1a : Servo tracking properties of fixed parameter
inferential controllers with different penalty weights
(Q) implemented on a linear process 140

Case 2.1b : Servo tracking properties of fixed parameter
inferential controllers with different penalty weights
(Q) with setpoint scaling implemented on a linear process 142

Case 2.1c : Servo tracking properties of fixed parameter
inferential controller with setpoint scaling implemented
on a nonlinear process 143

Case 2.2a : Servo tracking properties of adaptive
multirate inferential controller implemented on a linear
process 146

Case 2.2b : Servo tracking properties of adaptive
inferential controller implemented on a nonlinear 147
process



5.20 Case 2.3a : Disturbance rejection properties of
adaptive multirate inferential controller implemented
on a linear process 150

A. 1 Kalman gain trajectories for multirate Kalman filter 162



NOMENCLATURE

Alphabetical
A(q-l) Polynomial corresponding to the primary output
AJ(q-J) Multirate polynomial corresponding to the primary output in

the primary multirate model

aj Coefficients of the polynomial A(EiJ )

K(q-l) Polynomial corresponding to the secondary output in the

secondary model

a Matrix of steady state gains relating secondary outputs to
unmeasured inputs (c.f. Eq. 2.1)

g(s) Matrix of process transfer functions corresponding to the
secondary process related to the unmeasured inputs

al(s) Secondary process transfer function related to unmeasurable
input in continuous time

a(z-l) Secondary process transfer function related to unmeasurable
input in discrete time

A System model matrix

éij Submatrix of A

a; Elements of A corresponding to the primary subsystem states

Ei Elements of A corresponding to the secondary subsystem states

B(q ) Polynomial corresponding to to input

BJ(q-l) Polynomial corresponding to the input in the primary multirate

model

by, Coefficients of the polynomial BJ(q-l)



§(q-1) Polynomial corresponding to the input in the secondary model

b Vector of steady state gains relating the primary output to
the unmeasurable inputs

b(s) Vector of process transfer functions corresponding to the
primary process related to the unmeasured inputs

b(s) Primary process transfer function related to the unmeasured
input in continuous time

b(z-l) Primary process transfer function related to the unmeasured
input in discrete time

B System model vector corresponding to the input vector

gi Vector elements of B

b, Elements of B

C(q-l) Polynomial corresponding to the noise sequence

CJ(q- ) Polynomial corresponding the noise sequence in the primary

multirate model

E(q_l) Polynomial corresponding to the noise sequence in the
secondary model

c Steady state gain relating primary output with the unmeasured
input

c(s) Primary process transfer function related to the measured
input in continuous time

c(z'l) Primary process transfer function related to the measured
input in discrete time

c*(s) Primary process transfer function related to the measured
input without time delay in continuous time

c'(z-I) Primary process transfer function related to the measured

input without time delay in discrete time



c Upper limit of trace of the covariance update matrix in the

Variable forgetting factor algorithm

gl System output vector for the primary subsystem
gz System output vector for the secondary subsystem
gI Pseudo-inverse of C,

g; Pseudo-inverse of 2%

Ca Concentration of A in reactor

Caf Concentration of A in feed to reactor

Cp Specific heat of reaction mixture

d Disturbance input

D(s) Plant-model mismatch transfer function

E{.} Expected value of statistic enclosed in parenthesis
e Estimation or prediction error

ey Error in estimating y

e, Error in estimating v

EJ(q-J) Multirate polynomial resulting from Diophantine identity

in the minimum variance estimator for primary output

E(q-l) Polynomial similar to EJ(q-J) in the minimum variance
estimator for secondary output

E Activation energy

F(s) Filter transfer function in continuous time

F(z™1) Filter transfer function in discrete time

FJ(q-J) Polynomial resulting from Diophantine identity
in the minimum variance estimator for the primary output

£, Coeffictents of F,(q™)

Flqh) Polynomial similar to FJ(q.J) in the minimum variance

estimator for the secondary output

Ll

1 Coefficients of ?(q-I)



li'sy

oA MR QY o0at
[9

<
-]
§
[ 45
~—

Continuous state model matrix

External force on spring (c.f. Eq. 3.1)

Feed flow rate to reactor

Vector representing free response of reactor

Elements of £

Inferential controller transfer function in continuous time
Inferential controller transfer function in discrete time
Controller transfer function

Process transfer function

Process model transfer function

Process model transfer function without time delay

«oad disturbance transfer function

Open loop transfer function (c.f. Eq. 2.28)

Polynomial product of EJ(q-J) and BJ(q~1)

Coefficients of GJ(q-l)

Polynomial product of E(q ') and B(q 1)

Coefficients of Glq 1)

Continuous state model matrix corresponding to input vector
Vector representing forced response of reactor

Elements of g

Polynomial corresponding to setpoint signal

Heat of reaction

State output vector

Measurement sensitivity vector for system

Measurement sensitivity vector at the infrequent sampling
instant

Measurement sensitivity vector at the frequent sampling

instants



-

[ L)

E'-o

ll'-"’

]

]
[
Cate

!
ey

AR A
~—
-}
—r

._.N 'U” ~

L
o

e

in

[ g!" .gl"

Convective heat transfer cefficient

Dimensionless variable

Identity matrix

Integer

Control objective function employed when the control input is
penalized

Integer; a multiple of the sampling period

Minimum variance control objective function

Jacobian matrix of the free response

Kalman gain update matrix

Vector elements of K

Elements of K

Spring constant

Polynomial corresponding to Kalman gain terms in 522 used in
secondary innovations model

Discrete time delay

Proportional control constant

Integral time constant

Arrhenius rate constant

Minimum value for trace of P in covariance resetting algorithm
Feedback gain matrix for prediciive estimator

Feedback gain matrix far currsnt estimator

Feedback gain matrix in tiw simple Kalman filter formulation
(c.f. Eq. 3.19)

Polynomial product of EJ(q-J) and MJ(q-l)

Coefficients of L (q™")

Polynomial product of f‘.(q-l) and l-!(q-l)



ﬁ(q-l)

nv

p(s)

p(s)

piz’ ]

tr (P)
P(q )

Coefficients of I-.(q.l)

Matrix whose elements are propagated values of covariance
update matrix in Kalman filter formulation

Polynomial corresponding to secomdary output in primary model
Polynomial corresponding to secondary output in multirate
primary minimum variance estimator

Coefficients of MJ(q'J)

Polynomial corresponding to primary output in secondary
minimum variance estimator

Coefficients of M(q 1)

number of sample intervals

Total number of states in plant model given by Eq. 4.1

Number of states in primary subsystem in plant model (c.f. Eq.
4.1)

Number of states in secondary subsystem in plant model (c.f.
Eq. 4.3)

Number of states corresponding to secondary process in Lu 's
(1989) plant model (c.f. Eq. 3.27)

Vector of steady state gains (c.f. Eq. 2.14)

Vector of secondary process transfer functions related to the
measured inputs

Secondary process transfer function related to unmeasured
input in continuous time

Secondary process transfer funetion related to unmeasured
input in discrete time

Covariance update matrix

Trace of matrix P

Transformation polynomial



€£a

™

2’ Aﬁ

<=U QW H’ g’

abe

~3
[

o

=] -j
w od o

3
»

Auxilliary output transfer function

Numerator polynomial of Pl(q-J)

Denominator polynomial of Pl(q_J)

Coefficient of PN(q-J)

Coefficient of PD(q"’)

Penalty weight associated with control action in the objective
function I1

Pre-specified matrix to which the covariance update matrix is
reset in the covariance resetting algorithm

Trace of 9

Vector of residuals (c.f. Eq. 2.9)

Noise covariance matrix corresponding to noise vector 3
Noise covariance matrix corresponding to output measurement
noise vector

System model vector corresponding to white noise sequence w
Covariance matrix for to white noise sequence w

Covariance matrix for measurement noise vector ©

Variance of primary measurement noise

Variance of secondary measurement noise

Vector elements of R

Elements of R

Universal gas constant

Laplace or continuous time domain variable

Basic sampling period (c.f. Section 3.7.1)

Temperature of reactor

Temperature of coolant

Temperature of feed to the reactor

Time constants in the secondary process transfer function



Tbi Time constants in the primary process transfer function

T(s) Transfer function in Eq. 2.24

T' (s) Transfer function similar to T(s) (c.f. Eq. 2.41)
t Time

to Initial time

u Measured input or control input

u, Filtered input in Eq. 2.73

ul Model following control input

u Measured input vector

1]

Matrix whose elements are derivatives of u

v Secondary output

v Output vector

Yo Initial output vector

vy Matrix whose elements are derivatives of vector v

v Volume of reactor

¥ Upper bound for the covariance update matrix in the variable
forgetting scheme

w(t) White noise sequence

Xy State or variable

x State vector

51 State vector for primary subsystem

52 State vector for secondary subsystem

y Primary output

ysp Set point for primary output

z Variable in discrete domain



Greek

IR

a(s)

-1)

a(z
a(s)

a(z )

e  ne ”

]
iy} <"0- <

"1

S

td L I ]

At)

Vector of inferential gains

Vector of dynamic inferential estimator transfer functions
Vector of dynamic inferential estimator transfer functions
Dynamic inferential estimator transfer function

Dynamic inferential estimator transfer function
Dimensionless variable in continuous stirred tank reactor
model

Forgetting factor related to disturbance compensation
algorithm

Time delay mismatch

Prediction error during identification

Discrete time state model matrix

Discrete time state model matrix similar to 4

Regression vector

Regression vector corresponding to the primary multirate
estimetor

Regression vector corresponding to the secondary estimator
Dimensionless variable in continuous stirred tank reactor
model

Discrete time state input coefficient vector

Discrete time state input coefficient vector similar to r
Disturbance

Disturbance vector

Auxilliary output corresponding to the primary output

th

i~ eigenvalue of the polynomial A(q.]')

Variable forgetting factor



Function defined in Egq 5.38

Vector of unmeasured distwrbamces

Elements of v

Estimation error associated with the secondary output
Estimation error associated with the primary output
Parameter vector

Parameter vector related to the primary multirate estimator
Parameter vector related to the secondary estimator
Matrix defined in Eq. 3.10

Density of reaction mixture

Noise covariance matrix in the Variable forgetting factor
algorithm

Filter coefficient in Eq. 2.73

Dimensionless variable in continuous stirred tank reactor

model

Continuous time delay

Continuous time filter time constant

Frequency

Vector of measurement noise

Méasurement noise associated withAprimary measurement
Measurement noise associated with secondary measurement
Vector of process noise

Process noise

Prediction error associated with primary output

Prediction error associated with secondary output



Subscripts

Covariance matrix associated with vectors i and j

£ij

y Change in y only due to unmeasured inputs (c.f. 2.15)

;s Steady state value

Superscripts

§T Transpose of b 4

X Deviation of x from its steady state value

X Prediction estimate of state x (c.f. Eq. 3.14)

; Estimate of state x; also the current estimate of x as defined
by Eq. 3.16

§f Vector x after filtering

y1 Value obtained after sutracting the effects of disturbances
from y

g(i) 1*P gerivative of vector v

y:; Scaled set point

Abbreviations

DMC Dynamic matrix control

IMC Internal model control

MAC Model algorithmic control

MPM Model-plant mismatch

MV Minimum variance control

PI Proportional plus integral control

RLS Recursive least squares



CHAPTER 1 INTRODUCTION

Most control system designs rely on measurements of the
controlled output to correct for variations of the output from the
specified set point. Quite often, these measurements are not
available at the desired sampling rate. Under these circumstances,
one alternative is to use indirect measures of the controlled
output that can be measured at the desired rate. For example, in
distillation column control, selected 1liquid tray temperature
measurefients are frequently used to control product compositions in
the absence of on-line composition analyzers or possibly in
conjunction with analyzers if the time delay associated with the
analysis is very long. Controlling an indirect variable, however
does not guarantee the desired control of the variable of interest.
Alternatively, 6ne may have to control a number of indirect
measures to achieve the desired results. Theoretically, under such
circumstances, it would be easier to infer the desired output from
all such indirect measures and control the process using the
inferred estimate. The class of process control strategies that
use an inferred estimate of the desired output to controi the
process are referred to as inferential control strategies.
Inferential control was defined as such, first by Brosilow (1978)
to describe his model based approach that used estimates of the
controlled output obtained by inferring the effects of unmeasured

disturbances on the controlled or ’primary’ output using indirect



or ’secondary’ measurements to control the process. The philosophy
and shortcomings of the model based strategies that followed soon
after Brosilow’s work in 1978 are discussed in detail in Chapter 2.

State estimator designs that estimate unknown states of the
process from available measurements may also be used in an
inferential control framework. A review of existing state estimator
designs used for inferential estimation is presented in Chapter 3.

The Kalman filter is one such state estimator design which
estimates the unknown states optimally from all available
measurements in the presence of process and measurement noise.
Glasson (1880) in a report prepared for the Analytic Science
Corporation outlines a multirate Kalman filter design which
optimally infers the infrequently measured output from secondary
measurements in the context of multirate sampled flight control
system design. This multirate Kalman filter design is adapted with
some modifications for the purpose of inferential estimation.
Innovation model amalysis is used to transform the suboptimal
multirate Kalman filter into a suitable multirate autoregressive
model.

A minimum variance estimator based on the multirate regressive
model is used for inferential estimation. The multirate structure
of the inferential estimator facilitates the identification of the
model parameters (in an adaptive framework) using the frequent
measurements of the secondary output and the infrequent
measurements of the primary output. A multirate generalized minimum

variance control scheme is developed to be implemented in an



adaptive framework with the multirate inferential estimator. The
implementation aspects of the adaptive multirate inferential
controller are considered in Chapter 5 when the estimation and
control algorithms developed in Chapter 4 are applied to linear and
nonlinear models of a continuous stirred tank reactor.

The theoretical implications of the multirate Kalman filter
and its potential application to chemical and biochemical

processes as a software sensor are discussed in the Chapter 6.



CHAPTER 2  SuBoPTIMAL MoDEL BASED INFERENTIAL CONTROL METHODS

2.1 Introduction

The inferential control strategy was originally developed by
Brosilow and co-workers(1978 a,b,c) to deal with control problems
vwhere measurements of the controlled output were not available.
For example, in distillation column control, often the product
compositions which are the controlled outputs of the process
cannot be measured. In such cases, the proposed strategy allows
the unmeasurable controlled output to be inferred from secondary
measurements such as tray temperatures .

The following is an outline of the philosophy of the proposed
strategy. Measurements of the controlled output are usually
required in any control system to counteract the effects of
unmeasured disturbances , since effects of measurable disturbances
can always be compensated by feedforward controcl. In the absence
of measurements of the controlled or primary output, an
inferential control system provides control for the unmeasured
disturbances by inferring their effects on the primary output from
secondary measurements.

In this chapter, we focus on the development of steady state
and dynamic estimators based on the theory outlined by Brosilow
and coworkers. The robustness aspect of inferential control

mechanisms is analyzed by comparing their performance in the



presence of model-plant mismatch with the performance of the Smith
predictor. We finally consider an adaptive inferential control
strategy based on the above philosophy, developed for processes

with intermittent measurements.

2.2 Steady state estimator design

Most chemical process control problems share the following
characteristics: the ©process is subject to unmeasurable
disturbances that vary slowly; the primary output to be controlled
is not easily measured, and there are other process outputs that
are relatively easily measured.

The input disturbances frequently arise because of changes in
the operation of units upstream from the process. For small input
disturbances, the process can be assumed to behave linearly.

Let the unmeasured output y and the measurement vector V be

related to the input disturbance vector v as follows

< i€
| B ]
Iv'ﬂll?._'

(A~ A

When the number of unmeasured inputs is equal or less than
the number of measurements , one can solve exactly for v from

equation 2.1 and compute y exactly from equation 2.2. In this case

2.1
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This approach was taken by Weber and Brosilow (1972).
2.2.1 Least squares based static estimator

The least squares approach proposed by Joseph and Brosilow
(1978 a) looks at a more realistic situation where the number of
unmeasured inputs is unlimited.

If v can be modelled as a zero mean random vector, then v and
y are also random and the problem reduces to the estimation of one
random variable y in terms of another v.

The least squares calculation minimizes the expectation of
the squared error i.e E{( y - y )*(y - y) }. So, if the input
disturbances are Gaussian, then the least squares estimate of y

would be given by (Joseph and Brosilow, 1978 a )

§=(2Wg\-"1')'!

where gw=B{g'gT}

[}
up

.'-l
np

and gyv=g{$,:!1'}_._7,

From equation 2.4, the least squares estimate ; would be

given by
y=go. ¥
where a=[a"al"l o'
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The constant vector a can also be obisinesd vz the least

squares solution of

@ =b 2.7

From equations 2.1 and 2.5, we can write

;' = c_z'r. gr. v 2.8
So, from equations 2.2 and 2.8, the estimation error would be
given by

e= y-vy

= [_T-grgr] v =_Tt_) 2.9
The expected values of the error and error squared are
E{e} =0
E{ele) = grg ¢ 2.11

So. without loss of generality, we can assume QW= ;, in which
case equation 2.11 states that the expected mean-square error is

zero if and only if b =a a.



2.2.2 Effect nf measured variables

Including changes in the measured variable u that affect
the process, the model described by equations 2.1 and 2.2 can be

rewritten as

IU‘._’II;D_.

+ p.u 2.12
+ c.u 2.13

< 1<
I
(L ]

Defining new variables

=V-p.u 2.14
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2.15

the equations derived earlier can be applied to the estimation of

y from v , and the solution is

~ ~

y= gr.[ v-pul + c.u 2.16

2.2.3 Selection criteria for measurements

In the least squares approach , the number of measurements
need not be greater than the number of unmeasured inputs. Hence,
the criteria for selecting secondary measurements must be
specified.

Two conditions for good estimator performance according to
Joseph and Brosilow, 1978a are low relative error and low model

condition number of the matrix: [gral.



Measurements are selected such that the measurement set that
ylelds the lowest relative estimation error, without the model
condition number exceeding a certain prespecified value is chosen.
Morari and Stephanopoulus (1980) suggested a procedure to choose
measurements such that the following relative squared error

criterion

E{(ly-Tty-y }
E(yry}

is minimized.

2.3 Dynamic inferential control system

Since it is generally necessary to add some form of dynamic
compensation to the static estimation scheme discussed earlier,
the static estimator given by equation 2.16 is incorporated into a
dynamic control system which minimizes output feedback as shown in
Figure 2.1.

The difference between the static estimator and the dynamic
inferential estimator &'(s) is the inclusion of simple lead-lag
elements in the static estimator design to compensate for the load
dynamics of the primary and secondary processes. The structure of
the inferential control system shown in Figure 2.1 is similar to
that of a feedforward control system. As in a feedforward control
system, the controller has two inputs: the set point and an
estimate of the disturbance effects.



ysp(SH' (s) u(s) y(s)
— Gx s c(s) —

- “. as) | +
d(s)
T e v
.
3 | 2(8) e
p (s)
+ +

v (s)
p (s) —.O-—-———

a'(s) | ( Ne

+
Figure 2.1 Block diagram representation of a dynamic

inferential control system

The controller GI(s) manipulates the control effort to track
the set point and to produce a cancellation effect - a(s) for the
disturbances affecting the primary process. The cancellation can
be expected to be perfect if the controller dynamics are an exact
inverse of 1:.he proceess dynamics; i.e if GI(s) = c'l(s) and if
the inference of the disturbance effects is accurate; i.e if a(s)
= d(s).

The following factors can be considered to be important to
achieve desirable performance while designing the inferential

control system (Brosilow and Tong, 1978 b):

10



1) Model-plant mismatch

Smaller values of (g(s)-i(s)) would yield a better
approximation of d(s) to d(s). When i(s) # p(s), the parameters
of i(s) are adjusted to assure negative feedback of the
disturbance effects which might prevent instability. In the
presence of model uncertainity, the robustness of the inferential
control system can be improved by designing a low pass filter
that increases the margin of stability. This aspect of the
inferential control system is discussed in detail later in this

chapter.

2) Controller design

The system will be stable provided the original process is
stable and the controller GI(s) is stable. Since the controller is
designed to be an inverse of the process, this means that if one
or more elements of the process is nonminimum phase, it will not
be possible to implement an exact inverse of the process. Thus in
gengral, GI(s) will be designed to be a stable approximation to
the f:verse of the process with its steady state gain chosen such
that GI(O) c(0) = 1.

3) Inferential estimator design

Suboptimal estimators used in the dynamic inferential control

system described in Figure 2.1 are of the form

T.8+1 T.s+1
alg) = [“10 > ’ czo-g----'-‘-- , ]
rb1s+1 'rbzs-l-l

11



The constants %o %g--c- are those asscciated with the
optimal steady state estimator. The time constants Tal’ rbl' .o
associated with the lead and lag elements are determined such that
the expected error in estimation is minimized.

Brosilow and co-workers have suggested ad-hoc methods to
incorporate dynamic elements into the estimator structure. The
following example is reproduced from Brosilow and Tong (1978 b) to

illustrate the estimator design procedure.

Example 2.1

The example process was sixteen stage, five ce=ponent
distillation column with a total condenser and a total reboiler
that had been previously used by Weber and Brosilow (1972). In the
study of Brosilow and Tong (1978 b) the column overhead butane
composition y is estimated from a single tray temperature
measurement v, for the case of three unmeasurable inputs
identified as: Vir Vg Vg The linearized column model, obtained
from step tests on a simulation of the full nonlinear model, was

represented as

y(s) = y’(s) v(s) + c(s) u(s)
v(s) = g_r(s) o(s) + p(s) uls) -
where uis) = (v, v, valT

T
!r(S) = [by, b,, b,)
a(s) = [al. 8y 8.31

12
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The steady state gains of the disturbance transfer functions
pr(s) and gr(s) are denoted by the vectors ET and g? respectively.

The various parameters of the model are given in Table 2.1.

Table 2.1 Transfer functions relating effect of
the unmeasured inputs on overhead butane composition

and temperature on plate 14

v Il1 02 173
b1(s) b2(s) b3(s)
-0.188 0.002 0.00043
y 72s + 1 85s + 1 80s + 1
al(s) az(s) aa(s)

-42.02 0.46 1.10
v 50s + 1 75s + 1 70s + 1

The estimator gain or the steady state inferential gain,
sincethere is only one temperature measurement, is calculated

according to equation 2.6 as

17 'ap = o0.0085

The dynamic elements of the estimator are selected such that the

dynamic error in estimation e(s) is minimized.

[b'(s) - wis) g'(s)].u(s)
gr(s) v(s)

e(s)

13
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if gr(s) is minimized so that it is exactly zero, then the
eslimate is perfect. However, for this particular system, since
there are three unmeasured inputs, there is no one choice of the
estimator a(s) which will yield perfect dynamic estimates.

Since the range of time constants for the primary and
secondary process transfer functions is not large, a reasonable
ad-hoc choice for the magnitude of the lead time constant of the
estimator is the average of the time constants in g(s). Similarly,
the lag time constant in a(s) is the average of the time constants

in b(s). This results in

- (66s _*+ 1)
ofs) = « 7321

and substituting @ from equation 2.19 gives

- (66s_+_1)
a(s) = 0.0045 772+ 1)

2.4 Inferential control and the Smith predictor

The Smith predictor (Smith, 1957) was developed to provide
time delay compensation to improve the performance of systems with
large time delays. Since the Smith predictor is a model-based
controller, it bears a strong resemblance to the structure of the
inferential control system (Brosilow, 1979). Although the Smith
predictor is useful to control load disturbances, the simulation
study of Meyer et al (1976) showed that a conventional PI

controller could provide better regulatory control than the Smith

14

2.21

2.22



predictor under certain conditions. Brosilow(1978) compared the
regulatory characteristics of the inferential control system with
those of the Smith predictor and concluded that it was always
possible to design an inferential controller to perform as well as

or better than a Smith predictor for any stable process.

2.4.1 Inferential control versus the Smith predictor

The generalized inferential control strategy shown in Figure
2.2, proposed by Brosilow (1879), bears a strong resemblance to
the Smith predictor presented in Figure 2.3. The structural
difference between the two is that the controller GI(S) in Figure
2.2 is equivalently implemented by the feedback loop around the

controller Gc(s) in Figure 2.3.

That is
Gyls) = (1 + G (s)GR(s)) ™ G (s)

Essentially, the difference between the two systems lies in
the fact that while the Smith predictor is a closed loop control
system, where the controller Gc(s) is typically a standard PID
control algorithm, the inferential controller is an open loop
controller where GI(s) is a stable inverse of the process transfer

function.

15
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(s)
Y — GL(s) n(s)

ysp(S)

+ . + yis)
-—4><;)__7__,. G;(s) uts) Gb(S) + -
;(s) .

= +
e g Gp(s) ]

Figure 2.2 Block diagram representation of the generalized

inferential control strategy of Brosilow (1979)

v(s)
e : n(s)
v (= . | .
SP . + G_(s) u(.,). 7s) + A _—y(s)

x +
= GD(S)‘ —CS

G; (s)

Figure 2.3 Block diagram representation of the Smith

predictor control strategy
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2.4.2 Algebraic properties of the inferential controller

The response of y(s) to v(s) and ysp(s) for the system given

in Figure 2.2 is

y(s) = Gp(S) GI(s) T(s) ysp(s) +
[1- Gp(s) GI(s) T(s)] #n(s)
- - -1
vhere T(s) =11+ (Gp(s) Gp(s)) GI(s) ]
als) = T(s) a(s)
7(s) = GL(S) v(s)

From equation 2.24, it can be seen that the estimate of the
unmeasured disturbances is distorted when ap(s) # Gp(s).

From equation 2.24, we also note that if Gi(s) = ap'lts), we have
y(s) = ysp(s) for any v(s), i.e. perfect control. However, this
is true only if a stable and realizable inverse of the process
exists. Brosilow (1978) and Garcia and Morari (1985) proposed
stable approximations of the process inverse and also suggested
the use of additional disturbance rejection filters which assured
the stability of the control system and insensitivity to modelling

errors even with imperfect process models.

17
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2.4.3 Design of disturbance filter to counter modelling errors
and unmeasured disturbances

A commonly expressed concern about the performance of the
Smith predictor (Seborg et al., 1989) is its degradation in the
presence of modelling errors. In order to reduce the sensitivity
of the Smith predictor to modelling errors, it is often necessary
to detune the controller thereby degrading the performance of the
control system.

Generally stated, the controller design of an inferential
control system i& divided into two stages. In the first stage, one
designs the controller as a stable approximation of the inverse of
the process transfer function, assuming that the process model is
a perfect representation of the process. In the second stage, one
designs a controller ﬁlter F(s) to account for expected modelling
errors. The relationship between the estimated disturbance ;1 to
the actual disturbance 7, as a result of incorporating the filter
into the design of the inferential control system as shown in
Figure 2.4 is given by

;p(s) = F(s) . 7(s)

[1+ F(‘s)D(s)GI(s)l

G(s) - G
D(s) = ( p(s) p(s))
The characteristic equation for the transfer function given

in equation 2.27 can be written as

18
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v(s) - G]._(s)
7(s)
v (s) + (s) + y(s)
sp — Gc(s) u‘_. Gp(s) + .

;,(s)

- +
— Gp(s)

F(s) |g

Figure 2.4 Block diagram representation of a generalized
inferential contrcl system which includes a

disturbance filter

1 + GOL(S) = 0 2.28

where GOL(s) is the equivalent open loop transfer function given
by
GOL(s) = F(s)D(s)GI(s) 2.28

2.4.4 Effect of time delay mismatch

For a Smith predictor, it has been reported (Schleck and
Hanesian, 1978) that if the assumed time delay is not within 30 %
of the actual process time delay, the predictor is inferior to a

Pl controller with no time delay compensation.

19



of the actual process time delay, the predictor is inferior to a
PI controller with no time delay compensation.
For the inferential control system presented in Figure 2.4,

if we consider a simple first order plus time delay process,

-T., S
c(s)= K ed 2.30
P (xs+1)

and the process model is assumed to be

-~

G*(s) e ‘a®
B )

ap(s)

K
(ts +1)
P

0
o>
4
L]

2.3

where G*(s
e p()

then the characteristic open loop transfer function relating the
estimated disturbances ;p to the actual disturbances 5 , would be

given by equation 2.29 as ( assuming GI(S) = G;-l(s) )

~

Gy (s) = Fi(s) fe” (T T8 _ 11e s 2.32

and if F(s) is taken as unity, then the characteristic

denominator transfer function will become

-3 -7
GOL(s) = (e°°5- 1). e°% 2.33

-~

where d = Time delay mismatch = ( T, - T

Substituting s = Jjuw, the magnitude ratio of the corresponding

frequency response transfer function GOL(JM). is obtained as

| Go () | =v2 * V(1- cos (0 8) ) 2.

20



value of (w3).
With the addition of the filter F(s), equation 2.33 becomes

6 (s) = F(s) (€5 - 1) et
OL

Usually F(s) is a low pass filter which acts to stabilize the
system at the expense of decreasing the system’s ability to
compensate for high frequency gains. If F(s) is chosen to be a

simple first order lag transfer function
1

TS + 1
£

F(s) =

then the magnitude ratio of the complex transfer function

corresponding to equation 2.35 is obtained as

2 * V(1 - cos (v 3)

\’wzt: + 1

[Go (a0 | =

The addition of the filter, as seen by comparing equations
2.34 and 2.37, improves the margin of stability of the control
system in the presence of a time delay mismatch.

The following example compares the performance of the Smith
predictor control system shown in Figure 2.3 with the inferential
control system shown in Figure 2.4 in the presence of time delay

mismatch.
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Example 2.2

The closed loop transfer function relating the output y to the
actual disturbances n for the Smith predictor configuration given

in Figure 2.3 is

y_((i) - [ 1 + GC(S) G;(S) - GC(S)GP(S) ] 2 a8
2(s) = :
1+ Gc(s)G;(s) + Gc(s) ( Gp(s) Gp(s) )]
while the closed 1loop transfer function for the inferential
control system presented in Figure 2.4 is given by
yis) _ - ,
2(s) [1 Gp(s)GI(s)T (s)1.n(s) 2.39
where T (s) = Fis) : 2.40
[1+ F(s)D(s)GI(s)l
Ds) = (G, (s) -&p(s)) 2.41
Consider the following process
G(s) = -1 o~ 30s 2.42
P (48s + 1)
The process model is assumed to be
G (s) = =i (30 +3)s 2.43
P (48s + 1)

where J represents the time delay mismatch

The controller Gc(s) for the Smith predictor control scheme



1s chosen as an ideal PI controller i.e the controller is given

by
Gc(s) = Kp + ( Ki/ s)

The controller parameters estimated using the Cohen-Coon

(C-C) method (Seborg et al., 19839), with & assumed to be zero are

1

found to be xp=2.x=o.1s'.

1
The inferential controller GI(s) is chosen to be the inverse

of the process model

i.e GI(s) = ( 'tps + 1) =(48s + 1)

and the filter F(s), for the inferential control system, is chosen

as
1

ds + 1

F(s) =

The time delay is expected to vary by O to 20 seconds. Figure
2.5 shows the response of the tw: uifferent control systems to a
unit step increase in disturbance 7. From Figures 2.5, it can be
seen that the performance of both systems deteriorate in the
prisence of a time delay mismatch. It is also seen by comparing
the mean absolute errors, for the same magnitude of mismatch in
time delays, that the inferential control system performs better
than the Smith predictor strategy.
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CONTROL RESPONSE

2 . ' r . e v —-
Case a. Control response of Smith predictor
i 3 HEAN ASSOLUTE ERNOR
5F R s o.1882 i
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Case b. Control response of the inferential control system
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P cmie,- s 0.0578
H A ==k | i
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02H 4
N b4
0
)
TIME
Figure 2.5 Control response of the Smith predictor and the inferential

control systems to & unit step disturbance
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2.4.5 Effect of an error in the process gain

Recall that the characteristic open loop transfer function is

given by
'GOL(S) = F(s)[Gp(s) - Gp(s)l GI(s)

Consider the case of the process

K e-tds

G(s) = _~ -~ =
P ('tps + 1)

and the process model is considered to be
K e 'd°

G_(s) e e
(tps + 1)

P

with the controller given by

GI(s) = _f_ (‘tps + 1)
} 4

If F(s) is taken as unity, substituting s=jw, the magnitude of the

frequency response function is

K-K)
Gy (] =] ¢ |

~

K
For stability, the magnitude of the frequency response
function of the open loop transfer function must be less than
unity. However, in order to meet recommended practice (Seborg et

al., 1989),the magnitude must be less than 0.3 at all frequencies.
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so that model-plant mismatch of 30 % in the estimation of the

process gain cannot be tolerated if a filter is not used.

On the other hand, with the addition of a filter given by

1
F(s) =

('tfs-l-l)

where, for arguments sake, if we assume the filter time constant

to be equal to the time delay, i.e TS Ty then the magnitude

and the phase angle of the open loop frequency response function
will be given by

[k -2/
IGo (0 | =

s’(wz 1."21 + 1)

LGOL(Jw )= ~uw T, - tan-.ll ll(mf)]

= wTy - tan i 1/(ur,)]

At the critical frequency, equating the phase angle given by
equation 2.53 to - T radians , the inequality corresponding to
equation 2.51, for the magnitude ratio given by equation 2.52
becomes N

152X < o

"

K

2.51
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Thus , with the addition of the filter, the control system
can now tolerate a model-plant mismatch of 90 % in the estimation

of the process gain.

2.4.6 Effect of error in process time constant

From the frequency response function given by equation 2.49,
with a unity filter, for an error in the process time constant, at
higher frequencies ( wtp >> 1 ), the magnitude ratio is

(t-1)
: = P P
|G (g} = | |

T
p

and the condition for acceptable stability now becomes,

(rp - tp)

| —=
P

Just as for the case of an error in process gain, it can be
similarly illustrated that the stability of the system response
can be improved significantly by including a filter. A suitable
choice for the filter is to select F(s) as a first order lag with

a time constant on the order of (;p- Tp) {Brosilow, 1879).

2.4.7 Smith predictor with disturbance filter

Performance of the Smith nredictor control system
deteriorates in the presence of model-plant mismatch (MPM) as was
shown by Example 2.2. However, rather than detuning the controller

to improve the performance in the presence of model-plant
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mismatch, use of a low pass disturbance filter would be a better
alternative. Furthermore by locating the filter in the feedback
path of the disturbance, as shown in Figure 2.6, the tracking
properties of the control system will not be affected by the
presence of the filter. The filter time constant becomes an
additional tuning parameter whjch can be adjusted to arrive at a
desirable compromise between the robustness of the control systen

and sensitivity to the presence of unmeasured disturbances.

v(s)

P GL(s)
' ln(s) .
ysp(s) + uls) +

+ y(s)
-—-—(:)-————u G,(s) G,(s) 4_(_) -
-4
y(s)
- +
GP[s)
G; (s)

Figure 2.6 Block diagram of a Smith predictor control

system utilizing a disturbance filter

From Figure 2.6, the closed loop transfer function between the

output y and the disturbance n can be shown to be

y(s) [1 + Gs) Gi(s) - G(s) &p(s) F(s) ]

a(s) [1 + Gc(s) Gp‘(s) + F(s) Gc(s) Dis) 1
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vwhich in the absence of model-plant mismatch becomes

y(s) [ 1+G_(s) G*(s) - G_(s) G (s) F(s) ]

n(s) {1 + Gc(s) G;(s) ]

Comparing equation 2.58 to equation 2.38, we can see that a
low pass filter F(s), in addition to the controller Gc(s) would
tend to stablilise the sytem in the presence of high frequency

modelling errors.

2.8 Application of a Smith predictor control strategy in
conjunction with inferential estimation to control processes with

unmeasured outputs

A Smith predictor control scheme configuration used in
conjunction with suboptimal inferential estimation, as shown in
Figure 2.7, can be used to provide inferential control. The
difference between the control system shown in Figure 2.7,
henceforth referred to as the Smith inferential controller and the
inferential c¢ntrol system of Figure 2.1 is that the Smith
inferential contrcl system is a feedback control design while the
original inferential control system was basically a feedforward
control strategy. The advantage is that the design of the Smith
inferential controller Gc(s) is simpler than the design of the

model inverse controller GI(s).
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cts)

,\‘ ) : G (s) u(s) pis)
- b
y(s)
+
;(si
a(s)
F(s)
+
c*ts)

Figure 2.7 Smith predictor control system in conjunction

with inferential estimation

From Figure 2.7, the transfer function relating the input u

to the unmeasured disturbance v can be shown to be

- [Gc(S) a(s)a(s) F(s) ]

:_:%gl = 2.63
[1+ Gb(S) c®(s) + a(s)Gc(s)F(s)D(s) ]
D(s) = [ p(s) ~ pls)] 2.64

If there is no model-plant mismatch, i.e D(s)= 0, the closed
loop transfer function between the primary input y and the

unmeasured disturbance v is
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y(s) = b (s) v(s) + c(s) u(s)
[ b(s) + b(s)Gc(s)c‘(s) - c(s)Gc(s).a(s).a(s).F(s)l »(s)

(1 + Gc(s) c*(s)]

Since the estimator is designed to minimize the estimation
error (c.f. equation 2.20) the above expression can be further
simplified by making the assumption of perfect estimation ( i.e

b(s)= a(s)a(s) ) to yield

[ 1+G(s)c*(s) - Gc(s)c(s)F(s) |
y(s) = ¢ b(s) v(s) 2.65

(1 + Gc(s) c*(s) ]

which on furthur simplification yields

(1 + Gc(s)c‘(s) - Gc(s)c(s)F(s) ]
y(s) = 'ny(s) 2.66

[-1 + Gc(s) c*(s) 1

Comparing equations 2.66 and 2.39, we observe that the closed
loop properties of the Smith inferential control system are similar
to those of the Smith predictor in the absence of model-plant
mismatch and assuming perfect estimation.

The continuous time block diagram of the Smith inferential
control system can be redrawn for discrete time as shown in Figure
2.8. It follows from this representation that the prediction for

the primary output is given by
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Figure 2.8 Discrete time block diagram representation of

the predictive Smith inferential control scheme

veltekr ) = o (z 1) ut) + Fiz D) az” ) tvit) - ptz™) u(e)] 2.67

In the absence of model-plant mismatch and in the absence of
unmeasured disturbances, the prediction is simply the undelayed

output of the process.
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2.6 An adaptive inferential control algoriifs for chemical

processes with interaittent measurements

Shen and Lee (1988) retained the structure of the
inferential control system originally proposed by Brosilow and
Tong (1978 b), but proposed the use of an adaptive inverse
controller which was a stable approximation to the inverse of the
process model. The inverse controller, also referred to as a
deconvolution controller, eould be updated directly from the
nmeasurements of the input and output variables.

This control strategy was later applied to the problem of
controlling processes in which measurements of the controlled
output were obtained at a slow, infrequent rste. This section is
devoted entirely to the study of this adaptive inferential
control algorithm developed by Shen and Lee (1989) for chemical
processes with intermittent measurements.

The block diagram of the adaptive inferential control system
is shown in Figure 2.9. The secondary process model ;(2-1) is
updated at a regular sampling time using frequent measurements of
the secondary output. On the other hand, the primary process model
c(z’l) is updated at a smaller sampling frequency due to the
internittent nature of the primary output measurements. This model

is then used for the adaptation of the controller GI(z-i).
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Figure 2.9 Block diagram representation for the adaptive

inferential control strategy of Shen and Lee (1983)
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2.6.1 Process model

Proce:sr models are required to estimate the process outputs
and to design tne inferent’.i :~ntrollei-w. The process model that
is employed is a general transfer ‘"un:tion moidel, expressed as the

difference equatvion

n n
y(t) = T a y(t-i) + ZT b, u(t-k-i) + d
1 1 1 1

It should be noted that the bias term, d, has been included
so that erroneous model parameters would not be estimated when
unmeasured load disturbances are present.

Due to the intermittent nature of the measurements of the
primary output, use of this transfer function model would be
unsatisfactory. In order to explain this, let us assume that the
primary process output is available every J‘l‘th sample period,

where T is the basic sampling period, then a simple first order

model for the primary process would be

y(t) =a, y(t-(JT)) + l:’1 u(t-(JT)) + d

However, since measurements of the secondary process output
are available at a frequent sampling rate, control action is
adjusted equally fast to accommodate the process changes and
consequently result in efficient control. As a result, any change

in the control action occurring between t and t-JT sampling
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instants will not be accounted for when equation 2.69 is updated.
To overcome this difficulty, all the inputs between the ¢t and

t-JT sampling instants are incorporated in the process model.

So equation 2.69 becomes

- y(t) =a, yt-(J1)) + b, u(t-1) + ... + b, u(t-(JT)) + d

It should be noted that equation 2.70 is a nonminimal
representation of a first order process.The asymptotic stability
and parameter convergence of such nonminmal model based output

predictors has been formally proved by Lu (1880).

2.6.2 Deconvolution controller

Inferential control systems typically utilize a stable
approximation to the inverse of a process model but Shen and Lee
(1988) have used a different approach than previously discussed
controller design methods. Their approach involves the design of
an adaptive inverse controller. The design of the adaptive inverse
controller is based on the assumption that a reasonably good
process model can be obtained by using on-line parameter
estimation techniques. In their scheme, the adaptive inverse
controller uses the process output as an input to the discrete

convolution model as

ult- k) = ;y‘(t-i) g(1)

2.70
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with the weights g(i) adapted recursively to cause its output to
be a least squares fit to the process input. To obtain and update
the deconvolution model, the process model output with the bias
term being excluded is used instead of the actual process output
to prevent biasing of the controller parameters. Adaptation of the
controller parameters is also performed only at infrequent
sampling instants with the updating bssed on the most recently
updated process model outputs excluding the bias term and to
further improwe the stability of the control system, a stabilizing

first order filter is employed.

The filter
uc(t) = (1 - a'u) uc(t-l) + 0, u(t)

is based on the structural equivalence between the inferential
control and the internal model control system (Brosilow, 1979).
Also for nonminimum phase systems, since an exact inverse can lead
to an unstable controller, a suitable time delay k is included in
equation 2.71 to obtain a stable causal approximation of the

inverse.

37

2.73



2.7 Conclusions

The inferential estimator proposed by Brosilow and co-workers
estimates the primary output by inferring the effects of unmeasured
disturbances on the primary output from secondary measurements. The
relative success of the strategy depends on whether a set of such
secondary measurements exists in a given realistic situation.

Design of the inferential estimator 1is fraught with
difficulties. Unmeasured inputs affecting the primary output
cannot be identified in reality and even if they are identified,
one cannot model their effects on the primary output
experimentally because they are simply not measurable. Assuming
then, that either mechanistic models are used or in case
mechanistic modelling 1is complicated (e.g modelling of
distillation columns), approximate models are established using
simulators,the design of the inferential estimator is still
carried out by ad-hoc means and this naturally results in steady
state offset in estimation and control. This motivates us to look
for amore direct means of estimation; that is circumventing the
step of Inferring the effects of unmeasured disturbances by
designing an estimator which directly estimates the primary output
from secondary measurements.

If the inferential estimation scheme discussed in this
chapter is incorporated in a self-tuning scheme (e.g Shen and Lee
controller, 1988), a problem may be easily encountered in

implementing such a strategy. This problem is related to the
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philosophy of combining on-line identification with an internal
model scheme. For example, it would not be correct to identify the
secondary process model parameters using secondary output
measurenents corrupted by unmeasured disturbances and
simultaneously use such a model to infer the effects of unmeasured
disturbances. This problem can be resolved by assuming a
disturbance model or by estimating the effeets of unmeasured
disturbances separately by adding a bias term to the process model

as was done in case of the Shen and Lee control strategy.
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CHAPTER 3 STATE ESTIMATION METHODS IN INFEREMTIAL CONTROL

3.1 Introduction

In the last chapter, some model based ad-hoc approaches
towards inferential estimation were considered. Extensive
theoretical presentations related to the estimation of unmeasured
outputs or ’states’ can be found in text books on linear systems.
(e.g., Kailath, 1980; Franklin et al., 1990; Kwakernaak and Sivan,
1972) In this chapter, we present an overview of some of the
relevant and important results on state estimation and consider
some strategies in the published literature that have exploited

these resvlts to resolve some issues in inferential estimation.

3.2 State space models

A state space model of a system, is simply a collection of
linear first order differential equations which completely
describe the dynamic behavior of a system. For example, the

system of a mass attached to a spring can be described by the

following differential equation

which can be broken down into a system of first order differential

equations by defining
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X, = X 3.2

X, ==—=1 ;3 u=F 3.3

HERMHIEENE

State space models can also be developed for nonlinear
systems by linearizing the system equations around some nominal
solutions (reference states) assuming that the deviations of the
states from the reference states are very small.

The main advantage of using state space models is that they
lend themselves very easily to matrix algebraic manipulations
which can be easily performed on digital computers.

To understand more about the states themselves, let us

consider the following general form of a state space model

x(t) Fx(t) + Gu(t)
- - 3.5

vit) x(t)

It
nr

where the system is broken down into n differential equations,
resulting in n states and the meaningful output vector v is a
linear combination of the n states.

We note that if we know the value of these states at any
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given time t = t, then given the knowledge of ult) for t = t, we
can calculate all present and future values »f the output vector
v(t) and of the states themselves without any knowledge of the old
history of inputs and responses. Thus, the knowledgs of the state
vector at any time specifies the state or the condition of ihe
system at that time. It should also be noted that the solution of
the set of differential equations is unique to the knowledge of

the initial condition of the states themselves.
3.2.1 Discrete state space representation

The set of first order differential equations of equation 3.5
[}

can be solved for any particular set of initial state values and

the solution is given by (Franklin et al., 1990)

E (t-t) t E(t -t)
x(t) = e x(t) + e G u(T)

t

Letting t = iT + T and t°= iT , where T is the basic
sampling period and i is an integer, and assuming a zero order
hold, 1i.e assuming that u(tr) is piecewise constant between
samples, equation 3.6 reduces to difference equations in standard

form

x(t+1) = & x(t) + [ u(t)

v(t)

]
>

x(t)
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3.3 State observability
In section 3.2, we concluded tkat all the future values of
the responses can be calculated providesd the initial conditions of

the states are known.

x(t) = Ex(t) + Gu(t) t=o0
3.8
vit) = hx(t), v0)=y
If the matrices { E, G, h } and also the inputs { u, t 2 0}
are known then the state observability problem constitutes
translating our knowledge of the initial condition !bto determine
the appropriate initial values {x(0) } so that we can obtain x(t)
as a function of t {t 2 0 }. From equation 3.5, since
v(t) = h x(t)
it follows that
v =pxt)=hExt) +hgu (1) 3.9
v@ (@) =hxt)=hFPx(t)+ BEG ult) + BG alt)
and so on, which can be conveniently arranged in matrix form as
yit) = 8x(t) + T U(t) 3.10
)

where  ¥(t) = [ vt) vy ... O Dy T

fut) oMy ... oV T

nc

—~

o

—
L]
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Assuming that y(d -) = 0, we then have

v -) = 8x(0-)

The question obviously is whether we can find an initial
state vector x(0 -) for a given vector ¥(0O -). The solution lies
in the theory of linear equations and the answer is that this is
possible provided the n columns of the @ matrix are linearly
independent, i.e if the nx n @ matrix is nonsingular.

When the 8 matrix is nonsingular, the state space realization
is said to be 'observable’ and the matrix 8 (h, E) is called the
observability matrix of the pair { h, F} (Kailath, 1980).

For multivariable systems, since observabilty properties of
the system are not intuitively obvious, observable canonical forms
are used to describe completely observable multivariable plants.
Any (observable) state space formulation can be transformed into
an observable canonical state representation (Walgama, 1989). For
example, a single input - two output observable canonical state

space representation is used in Chapter 4 to describe the

multivariable plant model.
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3.3.1 State observability in inferential control schemes

The inferential control schemes considered so far are based
on the inference of the effects of unmeasured disturbances on the
primary output using secondary measurements. For nonstationary
disturbances, it has been shown (Morari and Stephanopoulus, 1980)
that the observability criterion is violated, i.e the 8 matrix is
singular unless the number of measurements are equal to or greater
than the number of disturbances, a situation that is rarely met in
process control.

Observability is a key issue to be considered while designing
state estimators to infer values of the unmeasured outputs or
states from secondary measurements. As will be seen later in this
chapter, some schemes (e.g., Guilandoust et al., 1985) are based
on assumption of complete observability of the system from
secondary measurements alone while some others (e.g., Lu, 1989)
are based on less restrictive assumptions of complete system

ubservability f£rom both frequent secondary measurements and

infrequent primary output measurements.
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3.4 State estimator design

The discrete time state space plant model given in equation
3.7 with the addition of noise terms to the states and the

neasurements can be written as

x(t+1)

¢ x(t) + T u(t) + £(t)

v(t) hx(t) + o.(t)
In this model, the process noise vector £(t) and the measurement
noise vector u (t) are assumed to be zero mean white noise

sequences with covariances or noise levels defined by

E{&t) €M) = B . E{g[t) @, (£)} = R

State estimation methods consider the problem of
reconstructing the states of the plant model from available output
measurements that are corrupted by process and measurement noise.
A state estimator design may be classified as & current estimator
design, if the calculation of the state estimate ;(t) is based
on measurements up to and including the tth instant or as a
prediction estimator design, if the state estimate g (t) is only
based on measurements up to and including the (t-l)th sampling
instant. The approach to calculation of these two types of state

estimates will now be considered.
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3.4.1 Prediction estimators

The prediction estimator is based on the idea that the plant
model itself can be used to predict a one-step ahead estimate of

the states as in

x(t+1) = § x(t) +

[l ]

u(t)

The estimator is shown in Figure 3.1. The estimator is
initialized by setting x (0) equal to the true x(0). As can be
seen this is an open loop estimator, because it does not utilize
any measurements of the output. Consequently, we can expect the
estimates to diverge from the true values, unless the dynamics of
the estimator exactly match the plant dynamics. In this case, 'the
initial error would reduce to zero at a rate governed by the
dynamics of the plant.

However, if the difference between the estimated output and
the measured output is fedback to the estimator, the divergence
should be minimized. This would result in estimation of the states

using

x(t+1) = & x(t) + [ u(t) + L, [v(t) - b x(t)]

where I='P is the feedback gain matrix

A schematic representation of this is given in Figure 3.2.
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u (t) v (t)

PLANT -
ESTIMATOR - 3 (0) . 3 (0
? L ) ) ~

Figure 3.1 An open loop state estimator design

u(t) v(t)
PLANT =
ESTIMATOR S () s +
x v (t) -
- h -
¢r = C>

L
S

Figure 3.2 Predicticn state estimator using measurement

feedback
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The dynamics of the estimation error in this case depends on the
roots of (& - I=.p g], in other words the error will converge to
zero and sufficiently fast provided the elements of the estimator
gain matrix I=.p are large. Roots of the estimator can be uniquely

determined only if the system is observable from v(t).

3.4.2 Current estimators

In equation 3.15, the current value of the state estimates do
not carry any current information, i.e i (t) does not depend on
v(t). Therefore it is useful to construct an alternative estimator
formulation that provides a current estimate ;(t) based on the
current measurement vector v(t). Modifying equation 3.15
accordingly, results in the following two step estimator

formulation
x(t) = X(t) + L_( y(t) - b ()
x(t) = § x(t-1) + [ u(t-1)

Comparison of this formulation with #hat in equation 3.15

shows that the estimator gain matrices are related by

1hex

L
Sp
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3. Optimal state estimation

Optimal estimation methods are attractive because they allow
the designer to determine many good candidate designs for the
feedback gain matrix. In fact, the time varying optimal estimator
solution (commonly known as the Kalman filter) is a dual of the

solution to the optimal control problem (Kwakernaak and Sivan,
1972).

3.5.1 Kalman filter

For the discrete time state space representation of the plant
model given in equation 3.12, the optimal estimator solution

equations for a recursive least square error criterion are given

by (Franklin et al., 1980)
x (t) = X(t) + L(t) [y(t) - b X(t)]
x(t+1) = & x(t) + [ u(t)

The change in estimate from x(t) to x(t+1) is called the
"time update’ whereas the change in the estimate from x(t) to x(t)
is a2 ’'measurement update’ which occurs at the fixed time t but
expresses the improvement in the estimate due to the measurements
v(t). For _l_: representing the estimate accuracy immediately after
measurement and M a propagated value of P valid just before the
measurement, the required relations can be summarized as (Walgama,

1986)

S0
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Measurement update (at measurement time)

T,

x(t) = X(t) + B(t) B'R.} [ w(t) - b X(t)]

&,

P(t)=M(t)- Mt)h (hM(t)E - R) " h Mt)

Time update (between measurements)

»

x(t) = ¢ x(t) + T ult)
and M(t+1) = 2RI 8 +[ B [

where the initial conditions for x(0) and M(0) must be known or

assumed.

3.5.2 Steady state Optimal Estimation

It is often desirable to utilize a constant estimator gain
matrix as it considerably simplifies the overall control system
design. Many systems operate for long periods of time and can be
treated mathematically as if operating for infinite time. In this
case the constant galn is satisfactory because the early transient
period has no significant effect. Another reason for using a
constant gain Kalman filter, as will be seen later is that, once
the optimal steady state Kalman gains are determined, they can be
used to calculate (using innovations analysis) optimal filter

transfer functions that can be easily implemented in recursive
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output estimator designs. Regardless of the motivation, a
constant-gain Kalman filter is identical in structure to the
estimator designs expressed by equations 3.15 and 3.16, the only
difference being that the gain, ;., is determined so that the
estimate errors are minimized for the assumed level of process and
measurement noise and therefore it replaces the pole placement
approach followed in the design of l=.¢= or ép Equations 3.21 and
3.23 can be solved for the steady state case and the solution for

the steady state Kalman gain can be expressed as (Franklin et al.,
1990)

3.6 Kalman filter based inferential estimation

Inferential estimation refers to estimation of unmeasured
primary outputs using information available from secondary output
measurements. An ideal situation arises when the plant states are
completely observable from the secondary outputs. In such a case,
Kalman filtering techniques can be employed to estimate the plant
states from the secondary output measurements. In 1985,
Guilandoust (Guilandoust et al., 1985) proposed a Kalman filter
based inferential estimation scheme confined to situations where
the plant states are completely observable from the secondary

outputs. The essence of the strategy is summarized in this
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section.
Let the plant dynamics be represented by the following

discrete time state space model

x'(t+1) = ¢* x°(t) + [’ u(t) + p(t)

vit) = b x'(t) + u/(t)

The disturbance input 3(t) is considered to be a stationary
exponentially correlated noise process (as such a representation
does not introduce the observability problem discussed in section
3.3.1). If all elements of 3(t) can subsequently be assumed to be
stationary random sequences so that each may be represented as the
response of a stable filter to a white noise input then the poles
of 3(t) can be augmented into the system matrix and the plant

model rewritten as

x(t+1) = ¢ x(t) + [ ult) + §(t)

vit) = hx(t) + o/(t)

The state estimates ;(t) could be reconstructed from the
secondary measurements using the optimal Kalman filter algorithm
described by equations 3.19 through 3.24 assuming that the plant
states are completely observable from the secondary outputs.

Since the basis of this inferential estimator design is that
the dynamics of the primary output are completely observable from

the secondary outputs, the primary output, y(t) can be assumed to
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be a linear combination of these observable states, an estimate of
the primary output, ;(t), could then be computed from the state
estimates ;(t) at every time instant.

There are two difficulties that can be identified with this
estimation strategy. The first problem is related to the
assumption of complete observability of the plant states from the
secondary output measurements. This assumption confines the
estimation algorithm to be applied to situations where the states
of the primary process are completely observable from the
secondary output r--surements. For most plants, a set of such
secondary output. cii oe *ifficult to find or, indeed may not even
exist. The se:ci: woi;.-.m is related to the application of the
algorithm to situacions where slow measurements of the primary
output are available. It is obvious that slow measurerents of the
primary output provide valuable information about the states of
the primary process and therefore must be used to update these
state variables whenever they are available. Thig leads us to the
question as to how these measurements can be accommodated to
optimally update the states of the primary process because quite

obviously, this cannot be done using the present structure of the

Kalman filter.
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3.7 Introduction to multirate inferential control

A nmultirate adaptive inferential control strategy for
processes in which slow or intermittent meeasurements of the
primary output are available has been developed by Lu (19839). In
this section, the strategy is ©briefly outlined and its

shortcomings are discussed.

The plant is represented by the following discrete time state

space model

0 0 ~?1 0. 0 --a1 b1
;nv—l
x(t+1) = -a, 0 : x(t) + | b | ult)
0 . 0 -anv+1 ... 0 -anv+1
. ;ny-I -
0 0 -a -3 b
n n r b n -
+ [r | JISPT r 17 w(t)
1 nv n
_ T
x = [xx *nv *n 1
v(t) =

xnv(t) + wv(t)

y(t)

h xnv(t) + xn(t) + wy(t)

Equation 3.27, excluding the noise terms, can be rewritten as

a SIMO structure excluding the noise terms, as follows

55

3.27



41 A4 B
x(t+1) = x(t) + u(t)
b1 By B

If it can be reasoned that Alz and A21 are zero matrices and
h is set equal to zero then in that case the primary and the
secondary process would be independent, with the first 'nv’ states
being observable from ’'v ' alone and the remaining ’'ny’ states
being observable from 'y’ alone.

By successive substitution of states in the plant model
described by equation 3.27, Lu (1989) shows that the following

model results

AlG D) y(t) = Bta™l) uct) + Mg hivit) + c(q Dect)

3.7.1 Multirate model formulation

Equation 3.29 cannot be used to estimate y(t) in an adaptive

framework, as the identification algorithm would require

measurements of the primary output at the frequent sampling rate.

In order to develop a multirate

model which facilitates

identification of the model parameters using frequent measurements

of the secondary output and control input and infrequent

measurements of the primary output, the following approach is

used.
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It is assumed that the primary controlled output, y(t) is
sampled every JT time units while the measured value of the
secondary output, v(t) is available every T time units. The

manipulated variable, u(t) is changed at the basic sampling time T

ny -1

Let Alq'h) = oI 01- (]

i

Multiplication of both sides of equation 3.29 by the polynomial
- ny - -2 - -
Pm1)= n 1+uq)1+(kq)2+.”+(kqﬁJ+(LqﬁJ]
i=1 ! 1 i i

yields, as can be shown by mathematical induction (Lu, 19889)
-J -1 -1 -1
AJ(q Jy(t) = BJ(q Ju(t) + MJ(q Jv(t) + CJ(q ) £(t)

Equation 3.32 is referred to as a multirate model because the
polynomial AJ(q-J) is in terms of the infrequent sampling rate, i.e

the polynomial is expressed in terms of q-J, q°2J... etc.

If a time delay, the same for the primary and secondary

processes, is introduced in the plant model, equation 3.32

becomes

Ataiytt) = Bya ult-i) + MitaThvie) + ¢ qh ge)

57

3.30

3.31

3.32

3.33



estimation of the primary output in the estimation algorithm which

is written simply as

yit) =  $(t-1) B(t-1)
$(t) = [ -y(t-J) -y(t-2J) .... - y(t-M)
u(t-k-1) u(t-k-2) .... u(t-k-M)
vit) vit-1) v(t-2) .... v(t-M) ]
e(t) = [ 1 22 e ¥y
bjp Pyp -er By
erJ mJl sz ..... mJM]

At infrequent sampling instants, the estimator model
parameters are identified using the present and past infrequent
measurements of the primary output. However, for consistency, the
estimated output at all sampling instants is used for feedback
control.

This adaptive inferential estimation algorithm has been
utilized for distillation columr, control using proportional plus
integral (PI) feedback control action by Yiu (1989).

The main drawback of this multirate inferential estimation
scheme is that the estimation strategy is based on an input-output
relationship developed directly by substitution of states in the

plent model. The multirate model derived from the input-output
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relationship, as will be explained in Chapter 4 (section 4.5)
cannot be used as an optimal estimator in the presence of noise

effects.
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CHAPTER 4 ADAPTIVE INERENTIAL CONTROL FOR PrOCESSES WiTH

MULTIRATE SAMPLING

4.1 Introduction

The Kalman filter provides an optimal time varying solution
to the problem of estimating the states of a plant that are
subjected to noisy disturbhances using measurements that are also
corrupted with noise. In the previous chapter, we saw that the
Kalman filter could be aprtizd to the problem of estimating
unmeasurable primary process outputs from secondary output
measurements provided it was assumed that the states of the
primary process were observable from the secondary outputs. We
concluded that u set of such secondary measurements would be
difficult to find. An additional aspect that was considered was
the availability of intermittent measurements of the primary
output. We concluded that although these measurements provide
valuable information about the states of the primary process, they
cannot ordinarily be accommodated in the given structure of the
Kalman filter.

In this chapter, we introduce a suboptimal multirate Kalman
filter based on an optimal (periodic) multirate Kalman filter
design, previously used in flight control applications (Glasson et
al., 1880) to infer or extrapolate intersample values of the

primary output from frequent secondary measurements. Lee and
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Morari (1992) have recently extended the inferential control
strategy to include outputs sampled at different rates using a
similar multirate Kalman filter design. The innovations approach
(Kailath, 1980) is used to develop an equivalent multirate minimum
variance estimator for the primary output. The multirate minimum
variance estimator is combined with an implicit or direct

self-tuning controller to provide multirate adaptive inferential

control for processes with intermittent measurements.

4.2 Plant Model

From the theory of systems, a SIMO system can be written in

observable canonical form as

p - P - L -b 1

X, (t+1) a, By 0 1

: ooy | : :

X (t+1) -2 ... 0] -a ... O b

x____ny weny| = LA — Y x(t) + bﬂ -} u(t)
. ny+1 "?‘rwﬂ‘ : 0 ?'ny-t-l . ny+1

. : 3 I S :

.xnl (t'ﬂ)_ i i1 .. 0 “2n1 ..... 0| 'bnl ]

+ rl""rnyl rny+1 . rnll w(t)
If the states Riveoos xny constitute the primary subsystem

1
x". and states xrwﬂ""’xnl constitute the secondary subsystem
2

X", the plant model, in terms of the primary and secondary

subsystems, can be written as
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x (t+1) éu | (t)
2
x (t+1) Ay l (t)

+ LRI RSD w(t)
Vi) =10 ig 1xt)+ aft)
(1xny) (1xn)
= !2 x(t) + wv(t)
(1xn1)
n=nl-ny

yt) = Ig] | 01 xit) + v (t)
(1xny) (1xn)

H o ox(t) + wy(t)

(1xn1)

4.3 Optimal multirate estimator design

u(t)

4.2

4.3

4.4

The secondary measurement v(t) is available at the basic

sampling period T. The primary output y(t) is sampled every JT

time units.

Although the state model matrices are assumed to be basically

time invariant, the dimension of the measurement vector changes

periodically.
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At the infrequent/major sampl ing instant t = JT

The measurement vector is defined as

z = [lyivl
W R O I Y
5 Oy
= H x(t)+ o(t) 4.5

At all other sampling instants (t # JT)

The measurement vector is defined as

IN
"
<

x (t) + o (t)

N
M

x (t) + w(t) 4.6

The measurement sensitivity vector H and the measurement noise
vector w are variables with (periodic) time variant dimensions,

and the variation is given according to equation 4.5 and 4.86.

Similarly the dimensions of the measurement noise covariance

matrix also varies periodically

R 0
y
R - ; t = JT 4.7
0 R
v
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[}
-

H t #JT
v

R’

The dimensions and magnitude of the Kalman filter gains
derived by propagating the discrete Kalman filter covariance
equation to a (periodic) steady state are also periodic. The
optimal multirate Kalman filter consists of a time update and two

independent measurement update mechanism

Time update

x (t/t-1) by i Ay x! (t-1/t-1) B,
—_— = : + u(t-1)
x2(t/t-1) Ay | Ay x%(t-1/t-1) B
y(t/t-1) = ¢ x! (t/t-1)
vit/t-1) = €] 2 (/e-1)

P(t/t-1) = A P(t-1/t-1) AT+
(nlxnl)

g”

where A is the system matrix and gu is the process noise

covariance matrix.
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Measurement update

The measurement update is performed as and when measurements
are available. This leads to two independent update mechanisms,
one which applies at the infrequent sampling instants when both
the primary and secondary measurements are available and the other
which applies at all other sampling instants (when only the

secondary measurement is available).

At infrequent/major sampling instants, t = JT

T

E = P(t/t-1) H [HRtA-DE + R ]

(n1x2) (nixni) (n1x2) (2x2)

-1

The matrices H and gzin this case are given by equations 4.5 and
4.7.

The Kalman gain matrix can be written as

£ - fumya) | %12 (g1
(nix2) K21(nx1) E22(nx1)
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The infrequent or major update would be made according to

~1 ~1
x (t/t) ) x (t/t-1) . 511(nyx1) Ko (nyx1) _v_y
x2(t/t) 22 (t/t-1) K1 (nx1) K2(nx1) v,

4.15
where vyand v, are estimation errors associated with y and v
respectively, given by
vy(t) = y(t) - y(trst-1) 4.16
vv(t) = wv(t) - v(tst-1) 4.17
The propagated value of the error covariance matrix is calculated
according to
P(tst) = [ I - KE]P (tst-1) 4.18
(nixn1)
At all other sampling instants (t = JT)
E = P H [HPet-DF + p I 18
(n1x1) (nlxnl) (nix1) (1x1)




In this case, the matrices H and gz would be given by equations

4.6 and 4.8

The Kalman gain matrix in this case would be written as

5_ M 4.20
(nix1) K22 (nx1)
The frequent updates would be made according to
L) || en-n Ki2 (nvt)
= T P AL RO a.21
- . Az v
x2(t/t) x2(t/t-1) £22 (nx1)
where » v is the estimation error associated with the secondary
measurement and would be given by equation 4.17.
The propagated value of the error covariance update matrix is
calculated according to
Blt/t) = [] - KHIP (t/t-1) .22
(nixni)
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4.3.1 Remarks

A simple explanation for the filter structure would be that
at the frequent sampling instants when the primary measurement is
not available, the estimates for the states of the primary
subsystem are extrapolated from estimates of the states of the
secondary subsystém using the interaction between the two
subsytems in the plant model, so the error covariance matrix for
the primary subsystem grows with time. At the infrequent sampling
instant, the state estimates of the primary subsystem are reset to
more accurate values and the estimation error covariance is
automatically reset to a smaller value due to the availability of
the primary measurement. These reset estimates are then
extrapolated in the subsequent cycle via integration until a new
primary measurement is available.

It should also be noted that due to the unavailablity of the
primary measurement between the major cycles, the Kalman gains
assoclated with the estimation error of the secondary measurement
grow with time. The Kalman gain values are reset, similar to the
estimation error covariance when the slowly sampled measurement of
the primary output is obtained and the steady state (periodic)
pattern of increasing Kalman gains (those associated with the

estimation error of the secondary measurement) is repeated in the

subsequent cycle.



4.4 Suboptimal multirate estimator design

Innovations analysis has of‘ten been employed to transform
state space filter formulations intov difference equations directly
relating the outputs to the inputs (e g., Walgama, 1983).
Innovations model analysis of the multirate Kalman filter is
simplified if the following ad-hoc changes are made to the cptimal

multirate estimator solution

i. The cross Kalman gain terms Ko and K,y are set equal to zero
for mathematical tractability. Consequently when the measurement
update is performed, the states of the primary and secondary
subsystems are reconstructed individually from the primary and
secondary measurements respectively. The intrinsic interaction
between the states of the two subsystems due to the nature of the
plant model provides the means to extrapolate estimates for the
states of the primary subsystem from those of the secondary

subsystems.

ii. The solution to the (periodic) time varying multirate Kalman
filter equations depends on the characteristics of the process and
measurement noise. The iterative multirate Kalman filter equations
were solved for a sample process (see Appendix A). It is observed
that although the steady state solution to the multirate Kalman
filter problem is periodically time varying, the magnitude of the
variation in the Kalman gains between the major sampling instants

is directly related to the ratio of the process and measurement
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noise variances. For small (gw/gzl ratios, the intersample
variation in the Kalman gains is small and the variation increases
as the noise ratio is increased. A heuristic explanation for this
is that for low values of the noise ratio, the Kalman filter
relies more on the process model than on the measurements, and
hence changes in the measurement pattern do not affect the Kalman
gain calculation significantly. For very small values of the
noise ratio (gh/gz)' the Kalman gain 522 can be assumed to be

fairly constant at steady state. It is to be noted that 51 is

1
calculated only at the major sampling instant and converges to a

steady state value that can be estimated offline.

The resulting suboptimal multirate Kalman filter has the

following structure

Time update

x'(t/t-1) Mol A xt-16-1) | | B
= : + u(t-1)
x°(t/t-1) Any | A x°(t-1/¢-1) 2
y(t/t-1) = ¢] x' (t/t-1)
vitrt-1) = ¢f 3 (b1

The a-priori estimates of the states at any time t are

conditional on data up to and including time (t-1)
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Measurement updates

At infrequent sampling instants (t = JT)

“1 “1

x (t/t)  (trt-1) 0

< l___[ = + l-(ll(nyxl) =(nyx1)
2

L) | | Ren-n 9 (mx1) K2(nx1)

_ T
where 511 = [ k1 . kny]
_ T
22 - [kny+1 r Kyl

At all other sampling instants (t = JT)

“1 1
x (t/t) x (t/t-1) 0
= + —L-ny—xl)——- [ vv(t)]
-2 ~2 K,
x°(t/t) x“(t/t-1) ~22(nx1)
y(t/t) = €y (L)
vty = ¢ 2 (et
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4.8 Innovations analysis

The innovations model analysis is used to transform Kalman
filter algorithms into input-output models. Innovations analysis
operations are performed on the basis of the concept of the
innovations process (Kwakernaak and Sivan, 1972) which can be
stated as follows.

" For an optimal filter, such as the multirate Kalman filter, the
innovations process [z (t) - é (t/t-1)] is a sequence of
zero-mean uncorrelated stochastic vectors with covariance matrix
-l-‘z"' Consequently it can be inferred that the innovations process
refers to the estimation errors vy and v v and their variances

suggest that they are equivalent to the primary and secondary

measurement nolse wy, o, respectively.

Therefore from the innovations interpretation of the

multirate Kalman filter, we can write

vit) - y(t/t-1)

vy(t) wy[t)

v(t) - v(t/t-1)

vv(t) wv(t)

72

4.30

4.31



The innovation model for the primary subsystem can be rewritten as

Time update

1 ~1 ~2

x (t/t-1) = A . x (t-1/t-1) + A, x“(t-1/t-1) + B, u(t~1) 4.32
- =11 = =12 = -1

i T °1

y(t/t-1) = €, x (t7t-1) 4.33

Assuming that the most current measurement of the primary
output was obtained at time t, the last measurement of the primary
output was then obtained at time (t-J). Therefore all the
measurement updates for the states of the primary subsystem until
the time (t-J) are set equal to the previous time update according

to equation 4.27 1i.e

A-posteriori estimate

xl(t-1/t-1) = zM(t-1/t-1-1)  where 1 = 1,...,(J-1) 4.3

y(t-i/t-1)

¢y x (t-1/t-1) 4.35

The development begins by writing

SRS, S | _
yit) = € x(t/t-1) + w (1) 4.36

which on substituting for gi(t/t-l) from equation 4.32 yields
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1 T, 22/ a,_ T _
x (t-1/t-1) + C.A, X (t-1/t-1) + §1§1u(t 1) + wy(t)

- T
y(t) = gl =11~

Since measurements of the primary output are not available at
the basic sampling period, the measurement update expression at
times (t-1),..., (t-J+1) is given by equation 4.34. Substituting

for x (t-1/t-1) from equation 4.34, we get

P o R T 2 a e T -
y(t)= C; A, X (t-1/t-2)+ C; A, X (t-1/t-1)+ €, B, u(t-1)+ wy(t)

vhich applying the time update mechanism again results in

T

y(t) = ¢ AL [ A, x(t-2/t-2) + A, 27(£-2/t-2) + B, u(t-2)] +
T ~2 T
l_::l glz x (t-1/t-1)+ (_:1 §1 u(t-1)+ wy(t)

Repeating the above procedure until the sampling instant

(t-J), we get

y) =7 AT t-ua-n) s

C; 11+ Aga e a2+ Al eIy 1y Pl -
G 1+ Ayd + fa o + A T g e 1+ w )

Since the last primary output measurement was available at

sampling instant (t-J), it follows from equation 4.26 that

x (t-J/t-0) = x (t-J/t-J-1) + Ky 40, (£-0)
and substituting for §l(t-J/t-J) in equation 4.40 yields
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T ad 2 T J -
yt) =€ A X (t=3/t-0-1)  + ¢ AL Kygoy(t=d)  +
T -1, 2 -2 (J-1)_-(J-1) 20 i
Cp [L+ 409+ Aa™+ .- +AL "'a 11 A, x°(t-1/8-1)] «
T -1, ,2 -2 (J-1)_-(J-1)
C, {1+ Ajga+ Aja+ ..+ AG a 10 B, u(t-1) ) + uy(t) 4.41

From equation 4.33 we have

y(t-3/t=d-1) = €] ¥ (t=/t-J-1)

So, multiplication on btoth sides by C, gives

1

<, y(t-drt-J-1) = | C, C_:Il x (t-J/t-J-1) 4.42

and since [glgil is invertible, we can write

+

x! (t-J/t-J-1) = c, y(t-d/t-J-1) 4.43

+_ T,-1 -
where gl- [§1 §1] ¢, is a pseudo-inverse of ¢,

Substitution for gj(t-J/t-J-l) in equation 4.43 results in

yt) = € A3 € ¥ (t-it-d-1) + ¢F A) K)o (t-3) +

T 1 .2 =2 (J-1) -(J-1) o PR
T -1 .2 -2 (J-1) -(J-1) -
Cy [T+ 40a + A a™*.. +AL ' TUB ut-1) ] + af(t) 4.44
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We also note from equation 4.30 that

v(t=d) = y (t-J/t-J-1) + 0y (£-J)

and on substituting for y(t-J/t-J-1) in equation 4.44, we get

T J ct T,J -+ T J
y(t) = C A, C, y(t-J) + c 1811S4 wy(t-.l) +C A, guwy(t-.l) +

(J-l)q‘(J-l)] [ A

T -5, 2 =2 ~2

(J 1) ~(J- 1)] 1

-1 2 =2
[L+ A9 +4,a +.. +A7 @ By ult-1) 1 + at)

(L)

T
1

which can be rewritten as

T.J (.t =J
(-1 Ay el a7 yt) = (1 + CAlIC + K1 7 o (£) +
T -1 2 -2 (J-1) '(J-l)
(_1 [; + é’.lq + éliq + .. Aii ] é’.z ca } V(t"l/t"l) +
T -1, 2 -2 (J-1) '(J-l)
i [+ Aqa+ 49 % -0 A, ] B;} u(t-1)

Equation 4.46 can be expressed in an input-output

relationship as

Ata™) yie) = Byta™h utt-1) + w7 Vie-1e-1) + cta) 0, ()

where

Atah = 1-1g] g €1

BJ(q-l) = e éx1q-1* éf1q-2* . A{: Ng-(-1); g
MJ(q-1) = e é1xq-1‘ éiiq-a* Ny (J D1, A, S
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CJ[q-J) = 1 + C

1 +‘u]"'

For the analysis of the filter for the secondary subsystem,

it is simpler to adopt a more direct approach. The innovations

model for the secondary subsystem can be written as

Time update
xnyﬂ(t/t-l) ] [x L(t-17t-1)
xnl (t/t-1) x (t-1/t-1)
—anyw1 . 0 ny+1(t -1/t-1) bny+1
. + . u(t-1)
-a 0 X1 (t-1/t-1) bnl
vit/t-1) = xny+1(t/t-1)
y(tst-1) = x1 (t/t-1)
Measurement update
(t/t) (t/t-l) kny+1
+ wv(t)
xnl (tst) nl (t/t-1) knl
vit/t) = (t/t)

Xny+1

7
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y(t/t) = % (trt) 4.53

The developmwent begins by writing

~

xny+1 (t7t) = x +1(1:/1:-1) + k 1wv(t‘.) 4.54

ny ny+

and substituting for x

ny+1(t/t'1) from the time update equation

4.48, we have

~ ~

xw+l(t/t) = - any+1 xny+1(t-l/t-1) + xny+2(t-1/t-1)

- arw 1 xl(t-llt-l) + b

. nyet BE1) + k0 (4) 4.55

Successive substitution of states of the secondary subsystem
using the time and measurement update equations 4.48 and 4.51

respectively ylelds

. - -1 - 2 - -n.,:2 .
xnyﬂ(t/t) = [ Bye1d TR @ - 3,4 ] xnyﬂ(t/t) +
-1 -2 -n,°
[ any+1q Byez 1 cr 8 ) xl(t/t)
+
-1 ~(n-1) _ -1 -n ,
( bny-l-l + bny+2q + .. bnl q ] u(t-1) + { kny«tz q '+ "'knlq ] wv(t)

4.56

This expression can be rewritten as
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Adh x 1 (8/4) = Hig Dy(t-1/-1)+ Bgh) u(r-1) + K(q' ) @, (t)

where Kz(q.l) = [k

- -n
mn-lq + ..., ]

+kn1q

vwhich can be further simplified and written as
- =1 _ o=l = -1 =, -1
Alg 7) v(t) = ¥(q “)y(t-1/t-1)+ B(q ~ ) u(t-1) + C (q ) w,(t)
where €@ = A@DUI-k .3 « K(qgH
ny+i K2

In summary, the required input-output relations are

Alg) yib) = B,(a”1) u(t-1) + Mg v(e-1) + cJ(q'J) o ()

Rah vie) = B! ) utt-1) + MqH gt-1) +E (¢ H v, (t)

4.6 Multirate formulation for a simple first order process

Consider a deterministic plant model where the primary and

secondary processes are assumed to be first order processes

x,(t+1) a a X, (tij
1 - 1 1 ult-k+1)
%, (t+1) a, 32 X, (t)
y(t) = x1(t)
vit) = xz(t)
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A simple substitution of states from the plant model would

yield the following input-output model for the primary process

Mg D yit) = BgD utt-k) + Mg D) v(t-1)
where

-1

A(q-l) = 1-a,4 -1

, Blg)h) = b, 4

., M@Y= 3

If process and measurement noise are included in the plant
model, and if both measurements are available frequently, a
simple Kalman filter can be constructed to obtain filtered
estimates of the states and the outputs themselves. Subsequent
innovations analysis would result in the following input-output

relationship for the primary process
-1 _ -1 -1, 2 -1
Alq 7) y(t) = B(q ") ult-k) + M(q °) v(t-1) + C(q ) uy(t)

On the other hand, if measurements of the primary output are
available only intermittently, then the Kalman filter would have
to be modified accordingly to accommodate the infrequent primary
output measurements and the frequently available secondary output
and control input measurements. This can be done according to the
filter proposed in section 4.4. Subsequent innovations analysis
would result in the following multirate formulation for the

primary process

4.“



A v = By uit) + M@ D+ cy@ ) o, ()

where the polynomials, according to equation 4.47, would te given
by

pMah =11 - ap? g

Byla ) =1+ a, g e ai"'l) (O bR by ¢!
R R N T s

It is interesting to note that, if we define a polynomial
P(q}) as

Plql) = [1+ a als .4 aiJ_l) q-u-l)]

which is the same multirate transformation polynomial described by
Lu (1988), multiplication of equation 4.66 throughout by P(q-ll
would result in the input-output relationship similar to equation
4.67, excluding noise effects.

It should be pointed out that the innovaticns interpretation
and the multirate Kalman filter viewpoint leads to a more
convenient formulation as compared to the approach of simply
substituting states in the plant model followed by multiplication
with the transformation polynomial adopted by Lu (1989). The
convenience is because the mulirate formulation obtained in
equation 4.67 describes the process in terms of available input

and output measurements. More specifically, the obsever polynonmial

4.67

4'&



CJ(q-J) is conveniently expressed in terms of the infrequent
sampling rate, the reason being that the associated noise term wb
signifies noise associated with the primary output measurement

which is only available intrequently.
4.7 Minimum variance multirate output estimation

The input-output expressions given in the form of equations
4.60 and 4.61 cannot be wused directly for the purpose of
estimation.

Consider the input-output relationship expressed by equation

4.47
Aa Ty ye) = Bytah ult-k) + Mg v(t-1) + € (g7 0, (t)

A more useful, equivalent form Qielding truncation error
free estimates of the primary output can be obtained by
transforming equation 4.69 such that the input and output data are
filtered by finite impulse response filters. In order to make the
transformation, we consider the following Diophantine identity

(Kucera, 1979)

-J -J
CJ(q ) ) ~J FJ(q ) X
=y, E:J(q ) ¢+ =7
AJ(q ) AJ(q )

. -J - - ~Jy -
e Efq) Aa™) = c g™ - Fita) q®

4.

4.70
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Premultiplication of equation 4.69 with EJ(q—J) gives

Ey(q IAya y(t) = Exa M ta™) vie-1) + (DB ta™h utt-i)
+ EJ(c{J) cJ(q’J) [ oy (t) ]

or

C,(aIy(t) - Fila ylt-k) = Ly(a )v(t-1) + G,(q Dult-k)
+ Efta™) c(q™) 0 (t) ]

for Ly(q ) = EJ(q'J) MJ(q-l)

-1, _ -1 -1
GJ(q ) = EJ(q ) BJ(q )
Rearrangement of equation 4.72 yields

yit) = FJ(q‘J)y(t-k) + LJ(q'l)G(t-1) + GJ(q-l)u(t-k)

-J
Cqu )

+ Ejla) [ aylt) ]

In a similar manner, equation 4.61 can be transformed to

yvield

vit) = Blq ) vit-k) + G(q D) ult-k) + L (g 1) ylt-1)

c (q-l)

+ BE@h o))
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For optimum estimates y(t) and v(t), if the corresponding
estimation errors are ey(t) and ev(t), equations 4.73 and 4.74

can be written as

y(t)

y(t) + ey(t)

v(t) = v(t) + e (t)

y(t) = FJ(q-J)y(t-k) + LJ(q'l)G(t-1) + G(q Dult-k)

CJ(q.J)

v(t) = ?(q’l) v(t-k) + E(q"l) ult-k) + L (q'1) y(t-1)

-1

g

-J
ey(t) EJ(q ) I wy(t) ]

= -1
e (t) = E(@ ) [ o/ft) ]

It should be noted that the elements of ey(t) and ev(t) are
independent of all elements of the data vector. Consequently a
recursive least squares algorithm can be used to obtain unbiased
estimates of the parameters of equations 4.77 and 4.78 if the
estimator is implemented in an adaptive framework. A simple block
diagram of the adaptive inferential estimation scheme based on

equations 4.75 to 4.80 is shown in Fig 4.1.
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4.8 Multirate self tuning control
A minimum variance control law minimizes the cost function

2
= - L ]
J w [ysp(t+k) y*(t+k)]
where y*(t+k) is a k-step ahead prediction of the primary output,
conditional on data up to time t. Based on the models for the
primary and secondary processes given by equations 4.60 and 4.61,
the k step ahead predictions for y(t) and v(t) conditional on data

up to time t would be given by

) = Fila Iy(e) + LG vetsk-1) + Gy(q Dult)

4.81
-J
CJ(q )

ve(t+k) = F(q D) vit) + B(q D) ult) + L (q 1) y*(t+k-1)
4.82

C(qg")

Since the cost function minimizes prediction error for the
primary output by manipulating a single control input, the minimum
variance control law is based on a two step calculation. The steps
are:

Step 1 Calculate u(t) by minimizing the cost function
[ysp(t+k) - y'(t+k)]2. This is achieved by setting
the prediction equal to the set point in equation
4.81
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Step 2 Calculate the prediction for the secondary output
using the value of control input u(t) calculated

in step 1.

4.8.1 Generalized minimum variance control as a multirate self
tuning control law

The self tuning controller derived above is based on
minimizing the output variance of the primary output. Quite of'ten,
a simple minimum variance control law ignores the practical
controllability of the process and the resulting controller is
sensitive to the positions of the process zeros. Clarke and
Gawthrop (1975, 1979) developed a general class of control laws
which broadened the class of performance objectives, retaining the
implicit self tuning property.

Some versions of these generalized minimum variance
controllers involve the prediction of an auxilliary output defined
in terms of an user-specified transfer function Pl(q_l). For our

case, we specify Pl(q-J) as

. - p q) Py (@)
P(q7) = —_—j; = ——=3
[1-p3a’] Pp(@a™)

The coefficients pnand Py such that the overall gain of the

transfer function is unity. For the auxilliary output defined as

W(t) = Pl(q"") yit)

R7
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the primary process model can be modified accordingly as

A e P g Dt = pyta B a7 utt) + Pa™ M (a hvect-)

-J -J
+ _PN(q )CJ(q )wy(t)
In this case, the identity given by equation 4.70 becomes

-J -J ~-J
c(g”) P,q") _ F.(q")
J N - E,q Jy . J

Add)  Pya) Ajq ) Pya)

Multiplying equation 4.72 by EJ(q"’), and repeating the analysis

carried out in section 4.7, it is found that the optimal

prediction of ¥(t+k) is given by

vt = Fitay' o) « La T vettek-1) + 64tq Du(t)

-J
CJ(q )

where yf(t) is the known signal obtained by passing y(t) through
1/ (1= py a7

The explanation for using an auxilliary output is that
control of ¥(t) is easier than the control of y(t) itself.
Further details on interpretation of the auxilliary output
transfer function can be found in Clarke (1981).

Next, we describe a useful way of implementing the control
law to prevent excessive control effort. We recall that ¥*(t+k) is

a function u(t) and can also be written

4'&
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ca™) it = Fila ) « LytaTHvectsen) + 6 ta ute)
If we can write GJ(q-l) as

G ah = g+ (Gah - gy

J JO J JO

where g, is the first element of the polynomial G J(q"l) and if we
define ul(t) as the exact model following control input, then

ul(t) would be calculated according to

Ygp(t+K) + [ C5a)= 11 ¥ (tak) = Fylq@ )y () Ly(q Ive(tsk-1)

+16,ah) - ggg) ut) + ulee)

" &
But the actual prediction ¢*(t+k) is given according to

ca™) vt = Filayf(t) + Lita hveta-1) + 6t Hute)
Subtracting equation 4.90 from equation 4.89 , we have

Ygp(ttk) = (k) = (ulct) - u(t))

€10

Note that u1 is calculated first and depending on whether
there are any hard limits on u, u1 may be clipped. In any event
the u(t) actually implemented is used to update ¥* ready for the
next sample and calculation for ul. Thus all the equations apply
no matter what the actual u(t) that is implemented. It is

interesting to note that, if u(t) is implemented such that

4.89
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1
ult) = — 4.92

substitution for ul, the actual control law being implemented

becomes
Ygp(t+k) - ¢*(t+k) - Qult) = 0 4.93

which is exactly the kind of control law one would expect if one

penalizes the control effort in the cost function.
4.9 Parameter Estimation

The multirate model for the primary process used for

identification can be written simply as

ut) = Fanfie-o + L(q vie-1) + G,tq 1) ult-k)
4.94

-J
CJ(q )

There are two methods of dealing with the filter polynomial
CJ(q_J). It can be explicitly identified by rewriting the

regression model as

t) = Fa -0 + Lyt Hvie- + 6,q7h ult-i)

+ HJ(q"’) ysp(t) 4.95



where HJ(q-J) = 1 - CJ(q-J)

However, the identification usually tends to become

ill-conditioned if the set point is not persistently exciting.

The other, simpler solution is to choose an user-specified
filter CJ(q_J) or calculate CJ(q-J) using the optimal Kalman gains
according to equation 4.47 to filter the noisy measurements.
Calculation of the steady state Kalman gains themselves would
require knowledge of variances of the process and measurement
noises.

Parameter convergence is another serious problem te consider
when we are dealing with multirate models. We note that the
multirate model given by equation 4.60 is not a minimal
representation of the plant. The parameter convargence problem
when the identified model is not of minimal orver has not been
solved even for simple cases such as overparemeterized DARMA
models (Lu, 1989). The parameter convergence »f a multirate model
such as the one expressed by equatior #.50 has, however been
proved by Lu (1989). No conclusign <wu be stated regarding
covergence of the parameters to the {yu= parameter vector. It is
not difficult to see from the development of the inferential
estimator model that the parameterization of the inferential
equation is not unique. 1.e, the identified model paiameter set

can belong to an equivalence class set in the parameter vector



space. However, it would be desirable that the parameters converge
to an unique convergence point.

One way to resolve this problem would be to fix some
parameters asssociated with each of the regressor vectors
corresponding to v and u respectively.

It is important to understand that if ’self tuning’ is what
makes adaptive control schemes superior to fixed parameter
controllers then it is precisely the same feature which can cause
such algorithms to fail. There are many causes of estimator
failure, and it is important that are dealt wi.a by appropriate
software, as bad parameters lead to bad control. Suggested
approaches to deal with several different types of estimation
failures that could possibly result while using recursive least
squares based parameter estimation techniques are given by Shah
and Cluett (1891).

4.20 Offset and Load disturbances

Quite often, in chemical processes one encounters
disturbances of a sustained nature. These disturbances can lead to
steady state offset and cause the identified model parameters to
become biased. One way to aeal with this is to explicitly include
the estimation of d, the sustained disturbance by augmenting the
data vector by 1. This implies that the regression model is of the

form



cyta™) ¥ (tek) = Fita (e + L (q ve(tek-1) + Gqa Hult) +d  4.98

In most cases the offset d will be time varying, not only due
to plant variations but also due to load disturbances. In this

case, the following scheme is suggested by Clarke (1981) to

estimate d
dit) = dit-1) + (1 -8 e(t-1)
Wlt) = we) - d(t) = &(t) e + e(t) : regression model
e(t) = ¥(t) - &(t) o(t) : prediction error

It will be shown in the next chapter that inclusion of the
bias term ’d’ during identification improves the performance of
the controller significantly for a nonlinear process. The possible
explanation is that the extra term accounts for bias resulting
from changes in the operating steady state which may be the
consequence of subjecting the system to large set point changes or

as a result of sustained disturbances.
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CHAPTER 5 MULTIRATE INFERENTIAL EsTiMATION AND CoNTROL OF A
ConTiNuous STIRRED TANK REACTOR

5.1 Introduction

In this chapter, simulation of the control of the reactant
conversion in a continuous stirred tank reactor is studied to
evaluate the estimation and control formulations developed in
Chapter 4. The continuous stirred tank reactor being studied is
shown in Figure 5.1. The continuous stirred tank reactor provides
a good example for the study of the performance of inferential
estimation and control algorithms because while the reactor
temperature can be measured as frequently as desired, the reactant
concentration in the reactor can be assumed to be measured only
infrequently due to possible limitations of on-line composition
analyzers. Mechanistic models relating the reactor temperature and
reactant concentration to the control input (the coolant
temperature) and to each other can be easily developed.

The multirate inferential estimation algorithm developed in
Chapter 4 is used to infer the reactant concentration from the
frequent messurements of the reactor temperature. The general ized
minimum variance controller, adapted for multirate self tuning
control, developed in Chapter 4 is used to control the reactant
conversion level. The frequently avallable measurements of the
reactor temperature and the coolant temperature along with the

infrequently available measurements of the reactant concentration



are used to optimally update the parameters of the estimation and

control algorithms. Cat, T

A»B
41’;'

L\

Tet

Ca, T

Figure 5.1 Schematic diagram of the continuous stirred

tank reactor

5.2 Process Model

The dynamics of a continuous stirred tank reactor can be
described using the principles of conservation of mass and energy.
in the simplest case of a material component A wundergoing a
reaction with first order kinetics in a controlled temperature
environment, the balance equations based on those given by Ray
(1981) can be written as

dCa
VE"‘Caf‘ca’F'Vk exp(~-E/R TR) Ca 5.1

Vo G, %TER = Fp C, (Tp = Tp) - (8H) V k exp(-E/RTp) C, - h AM(Tp- T ) S.2



The balarnce equations can be expressed in a general or

non-specific form by transforming all the variables involved into

dimensionless quantities. Defining dimensionless variables as

(c_.~-C)) T -T
af R'f h A
X, = ¥ B = -~ T =t (F/V)
Ca 2 Tf Fp Cp
E b o ko exp (-7) V ‘- Té - T} . _(-AH) QIF 7
l’lTR F Tf [} Cp 'l'f

allows equations 5.1 and 5.2 to be expressed as

g;l = - x1 + Da(l -x1) exp [ —x 1
(1+(x2/7))
ngz = -x2(1+8) + H Da(l ~x1) exp [ 1+Bu
(1+(x2/7))

The model can be expressed in terms of the free (g). and

forced (g) responses of the system as

where

gg = flx,t) + glu,7)
x = [x1,x]
£ = [f1, 21"

g = [gt, g 17
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f1(x,7) = - x1 + Da(1 -x1) exp [ x2 ]
(1+(x2/7))
£2(x,7) = - x2(148) + HDa (1 - x1) exp [ —X2 ]
(1+(x2/7))
gi(u,7) = 0
g2(u,7) = Bu

Since g is already a linear function of u, only linearization
of f1 and f2 are required. In order to linearize the model about

the steady state of interest, we must establish the Jacobian of f

vwhich is given by

8f1l 8f1
gf(§,r) - ax1 3x2
- 8f2 8f2
&x1 ax2

which can be shown to be

-1 xliss I
[ 1- xiss] [1 + x2ss ]?
gf(:_t,'t) =
— H xlss —(1+B) + [ H x1ss 2]
[ [ 1 - xl1ss ] {1 + %288 ]

After linearization about steady state, the process model can

be written as
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_gg— = f(x,T) + gfss ( !(‘l’) -Ess) + S(U,T) 5.11

and since at steady state, we have

0= g(!slx,'l) + s(uSs,‘t) 5.12

subtracting equation 5.12 from equation 5.11 and writing the model

in terms of deviation variables yields

~

g’t-‘- = S Xr) + g®,1) 5.13

All subsequent calculations are based on the linearized model
given by equation 5.13. The parameter values used are (Ray, 1981)

=134 H=2.5 Da=10 Bg=0.5

The steady state values of the temperature of the feed and

that of the coolant are
T. = 440 K Tc=419K

Based on these values of steady state inputs, the steady

o8



state values for the state are calculated by solving the equations

0 = - xliss + Da(l - xiss) exp [ — 2258 ] 5.14
(1 + (x288/7) )
0 = -x2ss (1+8) + H Da(l -xiss) exp [ — X258 ] + B uss 5.15
(1 + (x2ss/%) )
to obtain

xlss = 0.7127 ; x2s8 = .9747

These values correspond to a steady state conversion of
0.7127 and a steady state reactor temperature of 471.988 K. The
steady state Jacobian based on these values, according to equation

5.10 is

- 3.4809 0.6194
gfss = §.16
- - 6.2022 0.0484

so the linearized process model can now be written as
x1 -3.4808 0.6194 x1 0
. = I u 5.17
x2 -6.2022 0.0484 x2 B
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5.3 Stability analysis

It is well known that solutions for continuous stirred tank
reactors may yield multiple steady states (Friedly, 1872). The
stabllity of these solutions can be typically analyzed by plotting
the energy generation and removal rate versus temperature. The
energy generation is due to the heat generated by the reaction
given by the term <~(ARH) V koexp(-E/RTR) C, in the energy balance
equation 5.2 , while the energy removal is due to the sum of the
cooling effects resulting from the passage of coolant fluid given
by the term h A(TR - Tc) and from the continuous flow of the feed
. ~ TR) in
equation 5.2. Figure 5.2 is a plot which illustrates the stability

stream into the reactor given by the term Fp (:p (T

of the steady state, with the intersection of the two curves
representing the steady state solution. In our case, since the
slope of the heat removal curve is greater than the slope of
the heat generation curve at the steady state, the given steady
state is probably stable. A simple physical interpretation of the
relationship between the heat generation (or removal) and the
stability of the operating steady state is that if, for a slight
increase in temperature, the heat generation was greater than the
heat removal, the temperature would rise even higher and would not
return to the same steady state. i.e the operating steady state
would be considered as being unstable. An analogous argument would

apply for a slight decrease in temperature. The implication is
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Figure 5.2 Energy generation and removal for a continuous

stirred tank reactor
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that a necessary condition for the stability of a given operating
steady state is that the slope of the heat removal curve must be
greater than the slope of the heat generation curve at that point.
However, this is not the only criterion for stability. The

Routh-Hurwitz criterion for stability (Ray, 1981) requires that

det(=J'tss)>0

and from equation 5.16 since det ( gf-s ) = 3.6731 > 0, it can be

concluded that the steady state in consideration is indeed stable.

5.4 Discrete~time model

If the continuous time model given by 5.17 is discretized for
a sampling time step of 0.1 time units, the following discrete

time model results

+ u(t)

-.6217 1.0048 xz(t) B

xl(t-i-l) 0.7080 0.0523 xl(t) 0
xz(t+1)

Note that the state associated with temperature (i.e x2)
exhibits an open loop unstable pole. This is expected because of
the exponential growth term in temperature associated with the
rate constant. The closed loop behavior of temperature according

to the discrete linearized model is however found to be stable.
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The outputs are defined as reactant coversion (y) and
dimensionless reactor temperature (v) expressed as deviations from

the steady state values

The deterministic process model can be rewritten as

xl(t+1) 0.7060 0.0523 xl(t) o]
+ u(t)
xz(t+1) -.6217 1.0049 xz(t) B

y(t)

i
%
~
cr
—

v(t)

[}

Xy
~—
ﬁ
~

A simple substitution of states from the discrete process

model would yield the following input-output model for the primary

process
-1 _ -1 -1
Alq ") y(t) = B(q ") u(t-1) + M(q ") v(t-1)
where
-1, _ -1 -1, _ -1, _
AMlg ) = 1 - 0.7080 q , Blq ") = 0 , M(q ") =0.0523

If process and measurement noise is included in the plant
model, then, assuming that both measurements are avajlable

frequently, a simple Kalman filter can be constructed to obtain
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filtered estimates of the states and the outy ts th-Ttuslves.
Subsequent innovations analysis would result in the following

input-output relationship for the primary process

Agh vty = B@ D ut-1) + ¥eghH W) + ciqh 0 {t) 5.20

5.8 Formulation of Multirate Model

On the other hand, if measurements of the primary output are
available only intermittently, the Kalman filter would have to be
modified accordingly to accommodate the infrequent primary
measurements. This can be done according to the filter proposed in
section 4.2. Subsequent innovations analysis would result in the

following multirate formulation for the primary process

Adg) yt) = B uti) + M qH vit-1) +c (T ) w(t) 5.2
J J J J y *
where the polynomials would be given by (cf. equation 4.54)

Afg) =11 - (0.7080)7 g7
BJ(q-I) =0

1

MJ(q'l) =[1+0.7060 q + ... + (0.7060 1

Y1) (-1 ¢ oeag o

In all foregoing calculations and for the purpose of
simulation it is assumed that infrequent sampling period is an

integral multiple of the basic sampling time, and the multiplying
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integer is equal to 5. ( i.e J = 5§ ). This results in the

following multirate model

AJ(q'J) y(t) = BJ(q-i) u(t-1) + MJ(q'l) vit-1) + cJ(&J ) wy(t) 5.22

where
AJ(q"J) =[1 - .1754 ¢ O}
BJ(q )} =0
-1 -1 -2 -2 -3 -1
M;(q ") = [ 0.0523 q "+ 0.0369 q “+ 0.0261 q “+ 0.0184 q “+ 0.013 q ]

The model for the secondary process would be obtained as
- =1 s¢.-1 = =1, 2 =, ~1
Alq 7) v(t) = B(q ") u(t-1) + M(q ') y(t-1) + C(q ) wv(t) 5.23

where
- -1, _ -1
Alq”) = [1 - 1.0049 q ]

Blq') [0.0501 q 1)

H(q ) [-0.6217 q 1]
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5.6 Simulation results and Discussion
Estimation and control algorithms developed in Chapter 4 are
inmplemented using a linear and a nonlinear model of the continuous

stirred tank reactor process.

The following problems were explicitly considered during the
implementation of these algorithms
(1) Noisy measurements
(i1) Process nonlinearites (inherently present in the
process simulator when the nonlinear
process model was used to simulate the continuous
continuous stirred tank reactor)
(i1i) Time varying process model parameters
(iv) Load disturbance effects
A representative lisiing of MATLAB programs related to the
implementation of the multirate inferential estimation and control

algorithms to the continuous stirred tank reactor is provided in
Appendix B.

§.6.1 Multirate inferential estimation

The minimum variance, amultirate inferential estimator is
obtained by transforming equations 5.22 and 5.23 into a form where
the input and output data are filtered by finite impulse response
(FIR) filters (cf. section 4.7). The resulting minimum variance

estimator for the primary and secondary output can be written
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simply as a product of a parameter vector (g‘) and a filtered

regressor vector (Qf)

y(t)

£
8 (t) . &) (t)

where gy(t) = [ £1, Bjor - By lyp-- 1,1

gﬁ(t) = [ Y-8 ofit-1) .. ofie-s) V-1 L. VFie-s1T

and the superscript 'f’ indicates that the respective signals have

been filtered by C J(o:{-‘l). The parameter values depend on the
filtering polynomial.

Similarly, for the secondary output, the estimator can be

written as

vit) = e.(t). & (t)

-v -v

where @ (t) = [ £, &, Io]

& (t) = [ v ie-1) of(e-) yFee-n)”
and the superscript 'f’ indicates the signals have been filtered
by C(q 1.

The variances or noise levels of the various process and

measurement noise were kept constant during all simulation runs at

the following values
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var { €y } 0.001 var { €v } 0.001

]
o

var(wv) var(uy} 0.05

5.6.1.1 Fixed Parameter Multirate Inferential Estimation

The simulation runs presented in this section correspond to
use of a fixed parameter estimator implemented under a variety of
different situations. The estimator is evaluated for the linear
and the nonlinear process model. In all cases, the process 1is

excited by a series of step changes in the control input.

Case 1.1a : Linear model

The first simulation run corresponds to the case, of the
filter polynomials chosen to be unity. As can be observed from
Figure 5.3, due to the choice of no-filtering, the estimates of
the primary and the secondary output are as noisy as the

measurements themselves.

Case 1.1b : Linear model

For the simulation results presented in Fig 5.4, E(q-l) is
chosen as (1 - 0.8 q-ll. The effect of filtering the noisy
secondary measurement on the estimation of the primary and

secondary outputs is evident. In both cases, however, it is to be
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Figure 5.3 Case 1.1a: Simulation of fixed parameter multirate inferential

estimation with no filtering for a linear process
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noted that the estimates of the process outputs track the true

values accurately and there is no offset.

Case 1.1c : Nonlinear model

The performance of the estimator is evaluated, using
filtering, when the nonlinear process is excited by a series of
step changes in the input. The step changes are large enough to
ensure that the reactor is operating under conditions where the
fixed parameters of the estimator, based on the linearized process
model, are no longer valid. As a result it can be seen from
Figure 5.5 that there is a steady state offset in the process

output when the input does not return to the steady state value.

Case 1.1d : Linear model

In Figure 5.6a, the performance of the estimator is evaluated
on the linear process, when the model parameters of the linear
process simulator are varied with time. The parameters are varied
by + 5 % from their known values. The variation of the process
model parameters is shown in Figure 5.6b. It is once again
observed that under these conditions, the estimator fails to track

the true process outputs.
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Case 1l.1le : Linear model

In this case, the process is subjected to a time varying load
disturbance input. The load disturbance transfer functions
relating the effect of the disturbances on thethe primary and

secondary output are arbitrarily chosen as

0.02

y(t) = -, d(t)
1 -0.98 q

vit) = 0008 att)
1 -0.995 q

The control input is set equal to zero, so that the changes in the
process output are only due to the disturbance input. The
magnitude of the disturbance input is adjusted such that the
minimum signal to noise ratio is as high as 20. As cah readily be
observed from the results in Figure 5.7, the fixed parameter
estimator is unable to track the variation in the process outputs

due to the time varying disturbance.
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§.6.1.2 Adaptive Multirate Inferential Estimation

The simulation runs presented in this section correspond to
cases when the multirate minimum variance estimator is implemented
in an adaptive framework as shown in Figure 4.1 in Chapter 4. The
standard recursive least squares algorithm is used to identify the
parameters of the estimator models.

The standard recursive least squares algorithm is summarized

in the following equations (Shah and Cluett, 1991)

Step 1 Parameter vector update

ot) = 8(t-1) + K(t) [ y(t) - 8(t-1)"a(t) ) 5.28
Step 2 Gain (vector) update

K(t) = B(t-1) 8(t) / [a + @7(t) P(t-1) &(t)] 5.27
Step 3 Covariance matrix update

. P(t-1)8(t)3(t)"B(t-1)
B(t) = — | P(t-1) - 5.28
A

A+ 8(£)TR(t-1)0(t)



Case 1.2a : Linear model

For the simulation results shown in Figures 5.8a and 5.8b,
the linear process is subjected to a series of step changes in the
input. The filter polynomial €q!) is chosen as (1 - 0.8q ). The
simulation conditions are identical to Case 1.1b., In this case the
parameters for the primary and secondary estimator models were
intially set equal to zero. As expected, the performance of the
estimator is poor during the initial adaptation period. The
adaptation of the parameters themselves is shown in Figure 5.8b.
The trace of the covariance update matrix in the recursive least
squares algorithm is also plotted against time in Figure 5.8b. It
can be seen that the magnitude of the trace converges to a zero in
a very short time indicating "confidence" of the recursive least
squares algorithm in the parameter estimates (Shah and Cluett,

1991).

Case 1.2b : Nonlinear model

It was seen, from Figure 5.5 ( Case 1.1c ) that the
performance of the fixed parameter estimator deteriorated when a
nonlinear process model was used to simulate the dynamics of the
continuous stirred tank reactor. One of the advantages of adaptive
estimation and control strategies that is always mentioned in
literature (Seborg et al., 1986) is their ability to perform well
in the presence of process nonlinearities. It is therefore of

interest to evaluate the performance of the adaptive multirate
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inferential estimation strategy when a nonlinear model is used to
simulate the reactor. Figure 5.9a shows the performance of the
adaptive multirate inferential estimation strategy under such
conditions. It can be seen that the estimator tracks the process
outputs fairly accurately until t = 100 time units, after which
the tracking becomes poor. Figure 5.8b shows the adaptation of
the parameter estimates during the simulation run. The true values
of the parameter estimates are not shown since this would require
that the nonlinear process model be linearized at each sampling
instant. A peossible explanation for the poor performance after
t = 100 time units could be that the recursive least squares
algorithm fails to adapt to the changing parameters when the
process outputs change direction to operating conditions lower
than the initial steady state.

Numerous approaches for modifying the standard recursive
least squares algorithm to improve its performance for parameter
estimation have been proposed (Shah and Cluett, 1981). The two
methods studied in this work are:

(1) Variable forgetting (Fortescue et al., 1981)

(ii1) Covariance resetting (Goodwin et al., 1983)
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Case 1.2b.1 : Variable Forgettiqg

Constant data forgetting is one method of ensuring that the
identification algorithm retains its alertness. A choice of A < 1
(cf. Eq. 5.28) results in exponential weighting, with the more
recent data being given more importance or weight as compared to
older data. The variable forgetting scheme differs from the the
constant data forgetting strategy in that in the variable
forgetting scheme, a time varying A(t) is automatically adjusted
depending on the prediction error. So, if the prediction error is
large, A(t) is set to a small value and A(t) —> 1, as the
prediction error decreases. In addition, a constraint must be
imposed to ensure that the covariance update matrix remains
bounded, or with a variable forgetting factor, the covariance
matrix can grow exponentially large ‘(Shah and Cluett, 1991).
Implementation of the variable forgetting factor algorithm (Shah

and Cluett, 1991) involves replacing'equations 5.27 and 5.28 by

K(t) = B(t-1) 8(t)/ [ 1+ &(t)'P(t-1)8(t) ]

[y(t) - o7 (t-1) &(t))?
Alt)

[}
=
!

[ o (1+87(t) P(t-1)8(t) ]

H(t) = B(t-1) - K(t) #(t)"P(t-1)

In order to ensure an upperbound on P(t), the updating is
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governed by

B(t) = H(t)/A(t) if trace of W(t)/A(t) < C

A
o
St
"
i

(t)  (i.e. A(t) = 1)

for c/oh selected to be a large number where o, is the variance
of the process measurement noise.

The performance of the recursive least squares algorithm,
modified using the the variable forgetting scheme with different
choices for { o , C } was studied by simulation. The simulation
results for the best possible choice { ¢ = 10, C = 8 x 10* )
selected by a trial and error process are presented in Figure
5.10, and although this is a slight improvement on the earlier run

(Case 1.2b), the improvement is hardly significant.
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Case 1.2b.3 : Covariance Resetting:

In the covariance resetting scheme, the covariance update

matrix is reset to a large positive non-zero value, whenever it is
noticed that the algorithm has lost its drive to adapt or has
’gone to sleep’. This would occur whenever the elements of the
covariance update matrix, as measured by the trace of the update
matrix becomes very small. The adjustment is governed by the
simple logic that i'f (trace ( P(t) < Kmin) then reset P = Q.
otherwise continue the parameter estimation using the existing
covariance update matrix.
It should be noted that Kmin is a positive number and Q=aql,
where q is also a positive non-zero value and 1 1is the identity
matrix. This results in the trace of the covariance update matrix
changing between between Kminand the trace of Q after the initial
adaptation period. The performance obtained using the covariance
resetting modification with { Kmin = 1000, q = 300 } established
by trial and error is shown by simulation results presented in
Figure 5.11. It is obvious that these results represent a
significant improvement over those shown in Figures 5.9 and 5.10.

Comparison of the results shown in Figure 5.11 with Figure
5.6, show that the adaptive estimation scheme performs
significantly better than the fixed parameter estimation scheme in

the presence of process nonlinearities. Furthermore, it must be
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kept in mind that the adaptive multirate inferential estimation
scheme fequired no a-priori knowledge of the process.

Case 1.2c : “‘near model

The performance of the estimator using the two different
modifications to the basic algorithm was evaluated when the
parameters of the linear process model are varied with time. The
variation utilized was as shown earlier, for the fixed parameter
case ( c.f. Figure 5.6b).

Case 1.2c.1 : Variable Forgettingg_

Simulation results for the case when the standard recursive

least squares algorithm is modified using the variable forgetting

scheme are shown in Figure 5.12.

Case 1.2c.2 : Covarlance Resetting

Simulation results for the case when the covariance resetting
scheme is used is shown in Figure S.13.

It gar be seen by comparing the results in Figure 5.12 for
the estimator using a variable forgetting factor with those in
Figure 5.13, that the covariance resetting modification to the
basic algorithm results in significantly better estimates of the
outputs.

Comparison of the results in Figures 5.13 with those
presented in Figure S5.6a (Case 1.1d) shows that the adaptive
estimation scheme is easily able to cope up with time varying

process parameters unlike the fixed parameter estimation scheme.
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5.6.1.3 Disturbauce Compensatien

In an zlaptive estimation scheme, t.e presence »f a time
varying load disturbance present two problems. The firut problem
is related to the identification of model parameters. In the
presence of load disturbances, the parameter estimates tend to
become bilased unless the effects of these disturbances are
removed. Secondly, the effects of load disturbances have to be
estimated separately in order to estimate the process outputs,
since in an inferential control framework, the estimates rather
than the actual measurements themselves are used by the control
algorithm for calculating the desired control action.

Both these problems are resclved by using the procedure
suggested by Clarke (1981) that has been discussed in Chapter 4
(c.f. Section 4.10). The disturbance compensation procedure

implemented in an adaptive framework is made up of three steps

Step 1 Update the disturbance estimate (or DC bias)

d(t) = d(t-1) + (1 - gh) e(t-1)

Step 2 Identify the estimator models after removing the bias

from the measurement

e.g., yt)= y(t) - d(t)

S S
yie) = 8 (t-1).80 () + e
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Step 3 Estimate the prediction error
e(t) = yl(t) - 8 (t). & (t)
=y =y

Case 1.3a : Linear model

The performance of the multirate adaptive estimator with the
disturbance compensation property incorporated for the case when
the linear process is subjected to a time varying load disturbance
is shown in Figure 5.14. The transfer functions relating the
unmeasured disturbance input to the process outputs are the same
as those utilized in Case 1.1e. Comparison of the results shown in
Figure 65.14 with Figure 5.8 (Case 1.1e) shows that the
compensation procedure is effective in estimating the effects of
the unmeasured load disturbance. Since these estimates are used to
control the variation of the primary output from the specified set
point, accurate estimation would lead to better regulatory
control. Furthermore, in an implicit or direct self tuning control
framework, estimation of unmeasured disturbance effects 1is
necessary to prevent parameters from becoming biased during

identification.
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5.6.2 Multirate inferential control

The multirate inferential generalized minimum variance
control law developed in Chapter 4 involved the prediction of an
auxilliary output defined in terms of a user specified transfer
function Pl(q-J). For the puriose of our simulation, for J = 5,

Pltq'J) is specified as

Pltq-J) - 0.175¢
1 - 0.8246 q

S

with the auxilliary output defined as
-J
¥(t) = Pl(q ) y(t)

The predictions ¥*(t+1) and v*(t+1) based on the multirate

inferential generalized minimum variance control law are given by

Fila 1 57 e) + Lyta™) veee) + 6,(a7h we)
*(t+1) =

c, (@)

F g vit) + Ligh) yoe) + &(q”h) uit)
v (t+1) = -

E(q-l)

The multirate generalized minimum variance control law was

based on a two step calculation. The first step involved the
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calculation of u(t) by setting ¥*(t+1l) equal to the desired set
point. The second step required that the prediction for the
secondary output be calculated using the value of u(t) calculated
in the first step.

In this particular case study, the primary output is not
directly related to the control input. i.e GJ(q-1') = 0. As a
result, the first step in the two step control law calculation
cannot be performed.

This problem was circumvented by artificially introducing the
control input in the primary output prediction. This was
accomplished by penalizing the control input in the control
objective function. Following the approach of Clarke and Gawthrop
(1978), function u(t) was defined
4

plt) ¥(t) + Q u(t-1)

so the control objective function then become

>

1 E{ (¥(ts1) + Qult) - ysp(t))”)
Obviously, I1 is minimized by setting (Clarke, 1981)

(¥ (t+1) + Qalt) - Ygp(t)) =0

so, the control law sets u*(t+1) equal to the set point instead of

¥*(t+1) and the equations for prediction can be rewritten as
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Fila™) yie) + Lyta ™) ve(t)
u*(t+1) = +  Qult)

~J
C, (@ ")

and

Fahw) + Liqh yee) + 8tgh) wie)
v (t+1) =

Eqh
It must be noted that in this case the two step control
calculation can be implemented. However, since the control input
is being penalized in the cost function, there would be a net
steady state :ffset associated with the tracking problem. The

problem of steady state offset is resolved in the following manner

The open loop steady state gain relating the primary output
and the control input can be calculated from the 1linear
deterministic model of the process (cf. equation 5.19) by
eliminating the secondary output from the two equations obtained
at steady state. The open loop steady state gain was found, for

the given operating steady state, to be Kss= 0.84153.
For the control law
(P*(t+1) + Qu(t) - ysp(t)) =0

at steady state, the offset would be given by
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y_~- % = OFFSET =Qu

sp ss ss
Q
or VI —_—y
sp ss 0.84153 °°

Since, the primary output y and the auxilliary output ¥ are

related by a steady state gain of unity, it follows that

0.84153

—_—
sS 0.84153 + Q SP

The steady state offset can be eliminated by scaling the
specified set point appropriately before performing the control
law calculation. This can be done in this case by scaling the
given set point by the expression

sc

ysp = [1 + (Q/0.84153) ] ysp

5.6.2.1 Fixed parameter multirate inferential control

The simulation results presented in this section correspond
to cases when the multirate generalized minimum variance
controller discussed earlier is implemented in a fixed parameter

framework.
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Case 2.1a : Linear model

The set point tracking ability of the multirate gene:x!ized
minimum varajance control algorithm using fixed parameters for
estimation and control is demonstrated by the simulation results
presented in Figure 5.15. The linearized process model is used to
simulate the dynamics of the reactor. As shown in Figure 5. 15, use
of different control input penalty weights ( Q ) in the objective
function results in steady state offset in both cases. Scaling of
the set point discussed earlier has not been incorporated in the
control algorithm. It can be observed that decreasing the value of
Q results in

i. Meking the control system more responsive

ii. Decreasing the steady state offset
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Case 2.1b : Linear model

The effect of incorporating the set point scaling routine in
the control algorithm is shown by the simulation results in Figure
5.16. As is obvious, the steady state offset is completely

eliminated due to scaling.

Case 2.1c : Nonlinear model

The performance of the multirate inferential generalized
minimum variance control algorithm with set point scaling using
fixed parameters for estimation and control has been investigated.
The resulting performance using the nonlinear model for the
continuous stirred tank reactor is not satisfactory as can be
observed from the simulation results presented in Figure 5.17.
From the figure, it can be seen that the controller is unable to
track the changes in the set point. This is because, the fixed
parameter controller is unable to adapt to the changes in tie

operating steady state.
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5.6.2.2 Adaptive multirate inferential control

When the multirate inferential generalized minimum variance
controller is implemented in an adaptive framework, parameters of
the multirate estimator models as well as those of the prediction
models have to be Iidentified. The model parameters for the
estimator model of the primary process are different from those of
the prediction models (cf. equations 4.77, 4.87) because in the
latter case, the auxilliary primary output ®¥(t) is used for
pred.:.isn instead of the primary output y(t). Since it would be
desirable to identify a single model rather than two models for
the primary process, the inferential estimator is modified such
that the auxilliary primary output is estimated instead of the
primary output itself. The estimates of the primary output are
however required during both estimation and prediction. The
estimate of the primary cutput can be obtained from the estimate

of the auxilliary primary output using the transformation

1
-J
Pl(q )

y(t) = w(t)

Case 2.2a : Linear model

The simulation results when the adaptive multirate
inferential control system is subjected to set point changes are
shown in Figure 65.18. The setpoint scaling procedure is

incorporated in the control strategy. The oscillation in the
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parameters during the initial adaptation period was reduced by
decreasing the magnitude of the initial covariance update matrix.
The covariance resetting mechanism was also incorporated to
improve adaptation. As a result, it can be seen that the adaptive
multirate inferential controller with no a-priori knowledge of the
process (the parameters of the estimator and prediction models
were set equal to zero) does as well as the fixed prameter
multirate inferential controller with known parameters (c.f.

Figure 5. 18).

Case 2.2b : Nonlinear model

In this case, the process is simulated a nonlinear model. The
adaptive multirate inferential controller is subjected to changes
in setpoint and the performance is shown in Figure §5.19.
Comparison of Figure 5.19 with Figure 5.17 which corresponds to
the fixed parameter case (Case 2.1c) shows that the net steady
state offget due to change in the operating steady state is much
smaller for the adaptive case. The steady state offset still
exists, despite accurate estimation by the adaptive estimator
because the set point scaling factor is no longer the same when
the operating steady state is changed. It is noted (as an
afterthought!) that the preblem of steady state offset could have
been altogether prevented if the incremental control input (4 u ),
instead of the control input (u) was penalized in the control

objective function (Foley, 1988).
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§.6.2.3 Disturbance rejection

In the presence of time varying lc:d disturbarc:s, it was
seen in section 5.5.1.1 that introduction of a resi. ;al filter
could be effectively used to estimate the effects of the time
varying disturbances and prevent biasing of the model parameters.
Consequently, if the process outputs are estimated accurately, the
feedback control mechanism in the multirate inferential
generalized minimum variance controller would minimize the
difference between the set point and the estimated output and

reject the disturbances.

Case 2.3a Linear model

The simulation results for the case when the process is
subjected to a time varying load disturbance using transfer
functions relating the process outputs to the disturbance input as
given by equations 5.24 and 5.25 are shown in Figure 5.20. It can
be seen from Figure 5.20 that the adaptive multirate generalized
minimum variance controller rejects the time varying disturbance

completely.
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CHAPTER 6 CoNcCLUSIONS AND RECOMMENDATIONS For FUTURE Stupoy

6.1 Conclusions

The problem of controlling chemical processes with
intermittent measurements of the controlled output has been
considered in this thesis. The main contribution of the thesis is
the development of a multirate Kalman filter to optimally infer
intersample values of the controlled output using frequent
measurements of related secondary outputs and infrequent
measurements of the controlled or primary output.

Inferential estimation algorithms that estimate the
intersample values of the primary output by inferring the effects
of unmeasured disturbances on the output using secondary
measurements (e.g. Brosilow and coworkers, 1978 a,b,c ; Brosilow,
1979; Morari and Stephanopoulus, 1979; Shen and Lee, 1988,1989 )
suffer from the following difficulties. The major problem is that
unmeasured disturbances affecting any process cannot be identified
in reality and even if identified, their effect on the process
outputs may not be modelled. The design of an inferential
estimator, under these circumstances is therefore highly
approximate which would lead to offsets in estimation resuiting in
poor control.

The Kalman filter on the other hand provides a more direct

means of estimation. Using the Kalman filter to estimate the
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primary output from only secondary measurements is possible (e.g.,
Guilandoust et al., 1987), if it is assumed that the dynamics of
the primary output are completely observable from the secondary
measurements. However, it would be very difficult to find a set of
such secondary measurements.

The problem of wutilizing intermittent or infrequent
measurements of the primary output to correct the estimates
obtained by inference from the secondary measurements has been
solved in the cont:xt .’ :mltirate flight control applications
(Glasson, 1980). The ogii.c.. «.ltirate Kalman filter was adapted
with some modificati «v= ¥ #ihe purpose of inferential estimation.

Another contribution of this thesis is the development of a
minimum variance inferential estimator from the multirate Kalman
filter. The minimum variance inferential estimator can be used as
a stand-alone estimator (implemented in corjunction with an
independent controller) or in an implicit self-tuning control
framework, where adaptation of the estimator model parameters can
be directly used to calculate the control action. The development
of a multirate generalized minimum variance controller used in
this study was based on the formulations developed by Clarke and
Gawthrop (1975, 19879).

Finally, the relative success or failure of any control
strategy can only be measured by its performance. The performance
of the adaptive multirate inferential control strategy was tested
on linear and nonlinear models of a continuous stirred tank

reactor. Simulation results show that the control strategy is
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effective while tracking set point changes or regulating the
effect of a load disturbance in the presence of noise, process
nonlinearities and time varying process parameters. Simulation
results showed that the performance of the adaptive inferential
controller was superior to the fixed parameter inferential
controlier, especially when utilizing a nonlinear process model.
The performance of the adaptive inferential controller is very
much dependent on the performance of the identification algorithm.
The recursive least squares algorithm was used to identify the
model parameters. From the different modifications that were used
to retain the alertness of the recursive least squares algorithnm,
it was found that the ccvariance resetting algorithm performed

extremely well under the given circumstances.

6.2 Recommendations for Future study

1) Although, it was noted in Chapter 4, that the filter
polynomials in the multirate model are directly related to the
steady state Kalman gains that can be calculated from the
multirate Kalman filter by specifying ‘the noise levels or
variances of the process or measurement noise, ad-hoc filtering
was employed for the simulation results presented in Chapter 5.
This was done because one of the main objectives of this thesis
was to demonstrate the effectiveness of the multirate inferential

estimator. However, it would be useful, from a theoretical
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standpoint, to implement the multirate inferential estimator using
filter polynomials calculated from the Kalman gains using the
variances of the process and measurement noise as parameters,

tuned to obtain the best possible filtering effect.

2) The multirate Kalman filter was developed for the simplest
case Involving one primary and secondary output. It should, if

possible be extended to include more than one of either outputs.

3) It was mentioned earlier that the multirate inferential
minimum variance estimator can be used as a stand - alone
estimator. This means that any control algorithm can be
implemented assuming the inferential estimator provides filtered
estimates of the primary output at the frequent sampling rate.
This allows us to experiment with different control algorithms. It
would be of great practical interest to implement a predictive
controller, such as the generalized predictive controller (GPC)

with the inferential estimator.

4) A number of process variables in the chemical process
industry cannot be easily measured (e.g.chemical composition,
biological activity, polymer properties etc.). The inferential
estimator can be effectively used as a software sensor to estimate
these variables to provide better contreol. Hence, applications of
the inferential estimation and control algorithms developed here

should be investigated for the control of such systems.
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APPENDIX A

A sample exercise to illustrate the effect of process and
measurement noise characteristics on the solution for the multirate

Kalman filter equations
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Multirate Kalman filter

System model matrices :

. 706 .0523

Hy»
L}

-.6217 1.00439

1io0| ., _
Ht) = | —|—| st=JT
01

(1 o] s t = JT

H(t)
Measurement noise covariance matrix :

1000 | ©

R (t) = ; t=JT
0 | 1000
B (t) = 1000 ; t # JT

Process noise covariance matrix :
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The multirate Kalman filter given by the equations

P(t/t-1) = AP(t-1/t-1) A + R

=w
K (t) = B(e/t-DE(L) [ He) Bea-1) BT(e)  + B (e) 17!
B(t/t) = P(t/t-1) - K (t) H'(t) P(t/t-1)

is solved for the Kalman gains for J=10 and for different ratios
of gu’gz' It can be seen from the results plotted in Figure A.1
that the resulting steady state is periodic. It is also observed
that the periodic variation in the Kalman gain K22 becomes small
as the noise ratio decreases. It can be concluded that an
assumption of a constant value for KZZ would be reasonable for

very small values of the process to measurement noise ratio.
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ArPENDIX B

A representative listing of MNATLAB programs related to the

implementation of the multirate inferential estimation and control

algorithms to the continuous stirred tank reactor (CSTR)
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Case 1.1a and 1.1b

% L_FP_INF_EST.M

% Welcome!

4 This program implements the fixed para. multirate inferential estimation
% scheme discussed in Chapter 4 (M.Sc. thesis, Iyer, 1992) for the linear
% process.Files required to run this program are ’reapri.m’,’reapr2.m’

% (Linear process simulators for the primary and secondary processes)

% Also required are 'miso.m" (RLS multi-input single-output parameter

% estimater) and 'fildis.m’ (filter for the secondary estimator). This

4 program is specifically written for the CSTR implementation and would

% have to be modified for a different application

% Initialize variables

J=5; % Multiple of basic sampling period

u=zeros(1, j+1); % Control input

y=zeros(1, j+1); % Primary output measurement

v=zeros(1, j+1); % Secondary output measurement

vest=zeros(1, j+1); % Estimate of secondary output

vunc=zeros(1, j+1); % Secondary meas. minus measurement noise

yest=zeros(1, j+1); % Primary output estimate

uf=zeros(1, j+1); % Control input filtered by the secondary observer
% polynomial

vf=zeros(1, j+1); % Similarly filtered secondary output measurement

yf=zeros(1, j+1); % Similarly filtered primary output measurement

yesf=zeros(1, j+1); % Similarly filtered primary output estimate

theta=[.1754 .0523 .0369 .0261 .0184 .0130]’; ¥ Parameters for primary
% estimator model

thetav=[0.2049 -.6217 .0501])’; % Parameters for secondary
% estimator model

nitr=0; % No of iterations
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% Store random vectors for process and measurement noise

€1=0,001*rand(251,1); % Process noise for primary process
e2=.001*rand(251,1); % Process noise for secondary process

€3=.05"rand(251,1); % Measurement noise for secondary measurement
% Begin iteration

for i=1:251

nitr=nitr + 1;
% Update input vectors

for k=(j+1):-1:2
u(k)=u(k-1);

uf (k)=uf (k-1);
end

% Specify the most current value for control input

if i<51
u(1)=1;
elseif i<101
u(1)=0;
elseif i<151
u(1)=-1;
elseif 1<201
u(1)=0;

else

u(1)=1;

end

uf (1)=f11dis(u(1),uf(2));

% Update output vectors
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for k=(j+1):-1:2
y(k)=y(k-1);
v(k)=v(k-1);

vest (k)=vest (k-1);
vunc (k)=vunc(k-1);
yest (k)=yest(k-1);
vE(k)=vf(k-1);
yf(k)=yf(k-1);
yesf(k)=yesf(k-1);
end

% Use the linear process simulators to calculate the

[y(1)] = reapri(y(2),vunc(2),u(1),el1(i,1));
[vunc(1)] = reapr2(vunc(2),y(2),u(1),e2(i,1));

% Calculate the secondary estimate

phiv={vf(2) yesf(2) uf(1)];
vest(1)=thetav’ *phiv’;

% In case no filter is used the secondary estimator

% would become:

current process outputs

% vest(1)=[vf(2) yesf(2) uf(1)]*[1.0049 -.6217 .0501]";

v(1)=vunc(1) + e3(i,1) ;
vf(1)=Ffildis(v(1),vf(2));

% Calculate the primary estimate

phi=[yest(6) vest(2) vest(3) vest(4) vest(5) vest(8)];

yest(1)=theta’*phi’;
yesf(1)=fildis(yest(1),yesf(2));
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% Store values for purpose of plotting

yrec(i)=yest(1);
yrecl(i)=y(1);
urec(i)=u(1);
vrec(i)=v(1);
vrec1(i)=vunc(1);

vrec2(i)=vest(1);

end
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Case 1.213

NL_AD_INF_EST.M

Welcome!

% This program implements the adaptive multirate inferential estimation

% scheme discussed in Chapter 4 (M.Sc. thesis, Iyer, 1992) for the non

% linear process simulation of the CSIR. Files required are 'refun.m’

% (Function specifying the nonlinear mechanistic model of the CSTR

% expressed as F(x) = 0). Also required are 'miso.®’ (RLS identification
% routine) and 'fildis.m’ (filter for secondary estimator).

% Initialize variables

J=5;

u=zeros(1, j+1);
y=zeros(1, j+1);
v=zeros(1, j+1);
vest=zeros(1, j+1);
vunc=zeros(1, j+1);
yest=zeros(1, j+1);
uf=zeros(1, j+1);

vf=zeros(1, j+1)
yf=zeros(1, j+1);
yesf=zeros(1, j+1);
xunc={0.7127 .9747];

p=10~3*eye(5);
pv=10"2* eye(3);

% Multiple of basic sampling period

% Control input

% Primary output measurement

% Secondary output measurement

% Estimate of secondary output

% Secondary measurement minus measurement noise
% Estimate of secondary output

% Control input filtered by secondary observer

% polynomial

% Similarly filtered sec. output measurement

% Similarly filtered primary output measurement
% Similarly filtered primary output estimate

% Operating values of the actual

% states or outputs. Note that all variables

% defined so far are deviations from the steady
% state. Note that the .:tusl states are

% initialised to the operating steady state

% Covariance update matrix for primary model ID

% Covariance update matrix for sec. model ID
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% Variable 'ufor’ is operating value for the actual input

global ufor elfo e2fo

theta(1:5, 1)=zeros(5,1); % Primary estimator model parameters
thetav(1:3, 1)=zeros(3,1); % Secondary estimator model parameters
nitr=0; % No. of iterations

% Store random vectors for process and measurement noise

e1=0.001*rand(251,1); % Process noise for primary process
e2=.001*rand(251,1); % Process noise for secondary process
e3=.05%rand(251,1); % Measurement noise for secondary measurement

% Begin iterations

for i=1:251

nitr=nitr + 1;

% Update input vectors
for k=(j+1):-1:2
u(k)=u(k-1);

uf (k)=uf (k-1);

end

% Covariance resetting
if trace(p) < 1000
p=300*"eye(S);
pv=100*eye(3);

end

% Specify the current value for the control input (deviation from the SS)

if i<51
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u(1)=1;
elseif i<i101
u(1)=0;
elseif i<151
u(1)=-1;
elseif i<201
u(1)=0;

else

u(1)=1;

end

% Calculate the actual value of control input

ufor= -.6395 + u(l);
elfo=0;

e2fo=0;

uf (1)=fildis{u(1),uf(2));

% Update output vectors

for k=(j+1):-1:2
y(k)=y(k-1);
v(k)=v(k-1);

vest (k)=vest(k~1);
vunc(k)=vunc(k-1);
yest(k)=yest(k-1);
yf(k)=yf(k-1);
vi(k)=vf(k=-1);
yesf (k)=yesf(k-1);
end

% Nonlinear process simulation using Runge-Kutta-Fehlberg forward stepping
% method. ’xunc’ (1x2) is the initial condition vector which changes after
% each iteration. For the RKF routine, the intial time is always specified
% as 0 and the final time as 0.1. Note that the sampling period used for

% discretization of the continuous time model in Chapter 5 (Iyer, 1992) was
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% 0.1 time units. 'xunr’ (nx2) is the output profile vector. ’tt’ (nx2) is
% the vector of time steps which depends on the RKF routine which uses

% a variable step size

[tt,xunr]= oded5(’refun’,0,0.1,xunc);

ste=size(tt); % 'ste’ (1x2) is the no. of time steps assoc. with

% xunc(1) and xunc(2)

xunc(1)=xunr(ste(1),1);

xunc(2)=xunr(ste(2),2);

% Calculate the deviations that represent the outputs

y(1)=xunc(1)-.7127;
vunc(1)=xunc(2)-.9747;

% Calculate the secondary estimate

vest(1)=[{vf(2) yf(2) uf(1)]*thetav;

v(1)=vunc(1);

x=[y(j+1) vest(2) vest(3) vest(5) vest(6)]'; % Regressor for primary estimator
% model

xv=[{vf(2) yesf(2) uf(1)]’; % Regressor for sec. estimator
% model

yf(1)=fildis(y(1),yf(2));

vf(1)=fildis(v(1),vf(2));

% Calculate primary estimate

phi={yest(j+1) vest(2) vest(3) vest(5) vest(6)];

yest{1)= (phi®*theta) + (.0261*vest(4)); % Note that one parameter assoc.
% with v is fixed for unique
% parameter convergence of
% multirate model
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yesf(1)=fildis(yest(1),yesf(2));

% Store values for purpose of plotting

yrec(i)=yest(1);
yrecl(i)=y(1);
urec(i)=u(1);
vrec(i)=v(1);
vrecl(i)=vunc(1);
vrec2(i)=vest(1);
therei(i)=theta(1,1);
there2(i)=theta(2,1);
there3(i)=theta(3,1);
thered4(i)=theta(4,1);
there5(i)=theta(5,1);
therevi(i)=thetav(1,1);
therev2(i)=thetav(2,1);
therev3(i)=thetav(3,1);
ptr(i)=trace(p);

pvtr(i)strace(pv);
phil=y(1)-(.0261*vest(4)); % Output for primary estimator model ID
phiv=v{1}); % Output for secondary estimator model ID

% Estimator model identification

4#if nitr==j

[1,p, thetal=miso(phil,x, theta,p,5);

[1v, pv, thetavl=miso(phiv, xv, thetav, pv,3);
nitr=0;

%end

end
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Case 2.22

%
%
%
%

LC_AD_INF_CON.M

% Welcome!

% This program implements the multirate adaptive inferential control

% strategy discussed in Chapter 4 (M.Sc. thesis, Iyer, 1992) for the

% linear process simulation of the CSTR. The control schieme is based

% on the Generalized Minimum Variance Control strategy proposed by

% Clarke and Gawthrop (1979). The set point scaling routine discussed
% in Chapter 5 has been incorporated in the program. Files required

% to run the program are 'reaprl.m’, ’reapr2.m’ (linear process

% simulators). Also required are 'mise.m’ (RLS identification routine)
% 'fildis.m’ (filter for secondary estimator) and ’'fildisl.m’(filtering
% due to the denominator polynomial of the auxilliary transfer function
% in the auxilliary output prediction.

% Initialize variables

J=5;
pn=0. 8246;

pd=0. 1754;

u=zeros(1, j+1);
y=zeros(1i, (2*j)+1);
ysp=zeros(1, j+1);
yspsc=zeros(1, j+1);
yspf=zeros(1, j+1);

psl = zeros(1, j+1);
psiest=zeros(1, j+1);
v=zeros(1, j+1);

% Multiple of basic sampling period

% Parameter assoc. with numerator polynomial
% of auxilliary output transfer function

% Parameter assoc. with denominator polynomial
% of auxilliary output transfer function

% Control input

% Primary output measurement

% Set point

% Scaled set point

% Set point filtered by secondary observer
% polynomial

% Auxilliary output

% Estimate of auxillliary output

% Secondary output measurement
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vest=zeros(1, j+1);
vunc=zeros(1, j+1);
yest=zeros(1, (2*j)+1);
yff =zeros(1, (2*j)+1);

yestff=zeros(1, (2% j)+1);

uf'=zeros(1, j+1);

vpr=zeros(1, j+1};

vf=zeros(1, j+1);

yf=zeros(1, (2*j)+1);
yesf=zeros(1, (2*j)+1);

p=10~3*(eye(5));
pv=10~3*(eye(3));

lamda=0.05:;
sca= 1 + 8.466%(1lamda);

thetal(1:5,1} = zeros(5,1);

thetapr(1:5,1)
thetapr(6:7,1)

thetal;

nitr=0;

[0.0184%pn
thetav((1:3),1) = zeros(3,1);

%
%
%
%
%
%
%

%
%
%
%
%
%
%

%
%

%
%

%
%4

.0130*pn]’;

Estimate of secondary output

Secondary measurement minus measurement noise
Estimate of primary output

Primary output measurement filtered by
denominator polynoimial of auxilliary
transfer function

Primary estimate filtered by denominator
polynomial of auxilliary transfer function
Control input filtered by secondary observer
polynomial

Prediction of secondary output

Secondary measurement filtered by secondary
observer polynomial

Similarly filtered primary output measurement
Similarly filtered primary output estimate

Covariance update matrix for primary model

Covariance update matrix for secondary model

Control input weighting
Scaling factor

First 5 parameters of the primary estimator
or predictor model

% Parameters that are fixed during ID
% Parameters of secondary estimator
%4 or predictor model

% No. of iterations

% Store random vectors for process and measurement noise

el=,0001%rand(251,1);
e2=,00001*rand(251,1);
e3=,001*rand(251,1);
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% Begin iteration

for i=1:251

nitr=nitr + 1;

% Update input vector, setpoint and prediction

for k=(j+1):-1:2
u(k)=u(k-1);

uf (k)=uf (k-1);
vpr(k)=vpr(k-1);
ysp(k)=ysp(k-1);
yspsc(k)=yspsc(k-1);
yspf (k)=yspf (k-1);
end

% Specify the current setpoint

if i<51

if i<2

ysp(1)=0.0;

else

ysp(1)=0.02;

end

elseif i<101
ysp(1)=0.0;

elseif i<i51
ysp(1)=-0.02;

elseif i1<201
ysp(1)=0.0;

elseif 1<251
ysp(1)=0.02;

end

yspsc(1) = sca®ysp(1);
yspf(1)=fildis(yspsc(1),yspf(2));
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% Calculate the control input

thetapr( (1:5),1) = thetal;

xtilde=[yestff(5) yestff(10) vpr(2) vpr(3) vpr(4) vprif) vpr(6)]’;
u(1)=(yspsc(1)-(thetapr’ *xtilde))/lamda;

uf (1)=fildis(u(1),uf(2));

% Calculate secondary prediction

vpr(1)=thetav’ *[ vf(2) yspf(2) uf(1)]’;

% Update the output vectors

for k=(Jj+1):-1:2
v(k)=v(k-1);

vest (k)=vest (k-1);
vunc(k)=vunc(k-1);
psiest(k)=psiest(k-1);
vf(k)=vf(k-1);
psi(k)=psi(k-1);

end

for k=((2%J) + 1):-1:2
y(k)=y(k-1);
yest(k)=yest(k-1);
yesf (k)=yesf (k-1);
yestff(k)=yestff(k-1);
yf(k)=yfi(k=1);
yEf(k)=yff(k-1);

end

% Calculate the outputs from linear process simulators

y(1)] = reaprl(y(2),vunc(2),u(1}),e1(1,1) );
[vunc(1)] = reapr2(vunc(2),y(2),u(1),e2(1,1));
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% Estimate the secondary output

phiv=[vf(2) yesf(2) uf(1)];
vest (1)=thetav’ *phiv’;
v(1)=vunc(1) + e3(i,1) ;
vf(1)=fildis(v(1),vf(2));

% Estimate the auxilliary output

phi=[yestff(6) yestff(11) vest(2) vest(3) vest(4) vest(5) vest(6)]’;
psiest(1)=thetapr’ *phi;

psi(1) = (pn®y(1)) + (pd*y(Jj+1));

yff(1) = fildisl(y(1),yff(6));

% Estimate the primary output

yest(1)=(psiest(1) ~ (pd®psiest(j+1)))/pn;
yesf(1)=fildis(yest(1),yesf(2));
yestff(1)=fildisi(yest(1),yestff(6));

x2 = [vf(2) yesf(2) uf(1)]’; % Regressor for secondary model ID
phi2 = v(1); % Output for secondary model ID

x1=[yff(6) yff(11) vest(2) vest(3) vest(4)]’; % Regressor for primary model ID
phil = psi(1) - ([thetapr(6,1) thetapr(7,1)]}*[{vest(5) vest(6)]’); % OQutput for
% primary
% model ID
% Store values for purpose of plotting

yrec(i)=yest(1);
psirec(i)=psiest(1);
yrecl(i)=y(1);
urec(i)=u(1);
vrec(i)=v(1);
vrecl(i)=vunc(1);
vrec2(i)=vest(1);
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therel(i)=thetal(1);
there2(i)=thetal(2);
there3(i)=thetal(3);
there4(i)=thetal(4);
thereS(i)=thetal(S);
ysprec(i)= ysp(1);
ptr(i)=trace(p);

% Estimator or predictor model identification
#if nitr==j

[1,p, thetall=miso(phil, x1, thetal,p,5);
[1v,pv, thetav]=miso(phi2, x2, thetav, pv, 3);
4nitr=0;

%end

end
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Auxilliary programs

% REAPR1.M
2
functionlyll=reapri(y2,v2,ul,di)
ay=[1 -.7060];

by=[0];

my=[.05231];

phiy=[-ay(2) my(1) by(1) 1];
thety=[y2 v2 ul dil;
yl=phiy*thety’;

% REAPRZ2. M

'/. ________
function{vuncl]=reapr2(vunc2, y2,ut,dii)
av=[1 -1.0048];

bv=[.0501];

mv=[~.6217];

thetv=[-av(2) mv(1) bv(1) 1 ];
phiv=[vunc2 y2 ul diil;

vuncl=phiv*thetv’;

% REFUN. M

‘/. --------

function xdot = refun(t,x);

da = 1;

h=2.5;

gam=13. 4;

bet=0.5;

xdot (1)=-x(1) + (da®(1-x(1))*(exp((x(2)/(1+(x(2)/gam)))})})+ elfo;

xdot (2)=-(x(2)*(1+bet) )+(h*da*(1-x(1) )*(exp((x(2)/(1+(x(2)/gam))))))
+(bet*ufor)

xdot (2)=xdot (2) + e2fo;
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2 —

function [1,pf,thetf]=miso(yf, phif, thetf,pf,n)

% Calculate the values of variable forgetting factor

%lemdanum=(yf-thetf’ *phif)~2;
%lemdaden=(1.0+phif’ *pf*phif)*sigma;
%lemda=1. 0-lemdanum/lemdaden;
lemda=1;

% Calculate the gain vector

1=(pf*phif)/(lemda+phif’ *pf*phif);
w=pf-(1*phif’ *pf);

if w< 99*eye(n)

pf=w/lemda;

else

pf=w;

end

%4 Calculate the value of covariance update
%pnum=pf*phif*phif’ *pf;
“%pden=lemda+phif’ *pf*phif;
%pf=(pf-pnum/pden)/lemda;

% Updating the parameters

thetf=thetf+1*(yf-thetf’ *phif);

cle

end
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