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Abstract

In this thesis, we propose the use of the polarization camera for high-dynamic-
range (HDR) imaging. Specifically, observing that natural light can be atten-
uated differently by varying the orientation of the polarization filter, we treat
the multiple images captured by the polarization camera as a set captured
under different exposure times, to support the development of solutions for
the HDR reconstruction problem. Most existing methods are developed for
conventional camera images. However, polarization cameras capture images
differently than conventional cameras. In this thesis, we propose two deep
snapshot HDR reconstruction frameworks, that uses polarimetric cues avail-
able from the polarization camera. With our deep-learning based methods,
the obtained polarimetric information enables us to regress the missing pixels
in polarization images more effectively. We train and validate the methods
on our collected polarization dataset. We demonstrate through experimental
results that our approach can reconstruct visually pleasing HDR results, and
performs favorably than state-of-the-art HDR reconstruction algorithms. The

source code is publicly available on Github®.

!Link to source code: https://github.com/jtuoa/Deep-Polarized-HDRreconstruction
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Chapter 1

Introduction

This chapter first introduces the problem by defining the concept of high dy-
namic range, followed by the motivation for the research. Then background
information to lay the necessary foundation for the rest of the thesis is pre-
sented, where we describe the HDR reconstruction pipeline and HDR image
applications. Next, the thesis contributions are described, and finally the

structure of the thesis is outlined.

1.1 Problem definition

Dynamic range is the ratio between the brightest and darkest value registered
by an imaging device [14]. In photography and imaging, dynamic range repre-
sents the ratio of two luminance values. Luminance is the integrated outgoing
light over a surface arca in a certain direction, and it is what we mecasure
when registering the light as it falls on the area of a pixel in a camera sensor
[23]. This is distinct from illuminance, which is the incident light from the
surrounding environment onto a specific point on a surface. The SI unit for
measuring the luminance in a scene or on a display is candela per square meter
(ecd/m?). In the display manufacturing industry, the same unit is also com-
monly referred to as nit (1 nit = 1 cd/m?). In real-world scenes, the luminance
varies over several orders of magnitude. For instance, Figure 1.1a shows the
luminance of a moonless night sky can be 3.5 x 107 ¢d/m?, while a sunlit sky
can be 2 x 10% cd/m?. An imaging device that can simultaneously render such

a range of luminances has a dynamic range of 5.714 x 103:1 or 45.70 bits or
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45.70 stops/f-stops. The stops/f-stops unit is commonly seen in photography,
and can be computed by logs(dynamic range)/logs.

From the literature in high dynamic range (HDR) imaging, it is not exactly
clear what the definition of low and high dynamic range is, and it may vary
depending on the application. The term low dynamic range (LDR) generally
refers to conventional cameras and displays with a dynamic range of 256:1 or
8 bits or 8 stops/f-stops. Furthermore, some literature use the terms LDR and
standard dynamic range (SDR) interchangeably to denote images that are not
HDR. The term HDR generally refers to anything that has a wider dynamic
range than the conventional cameras and displays.

Figure 1.1b depicts the range of luminances the human visual system (HVS)
is capable of capturing. The HVS can observe a very wide range of luminances
from around 10 x 107% e¢d/m? up to 10 x 10® c¢d/m?, for a total dynamic range
of 1 x 10':1 or 46.51 bits or 46.51 stops/f-stops. However, in order to do so
the eye needs to adapt to the different lighting conditions. This is achieved
partly by changing the pupil size, but mostly from bleaching and regeneration
processes in the photo-receptors [52]. This transition for our eyes to adapt
from a bright to a dark environment can take considerable time before details
can be discerned. The simultaneous dynamic range of the eye, which is also
depicted in Figure 1.1b, is around 10 x 107! ¢d/m? up to 10 x 10* ed/m?, for
a total dynamic range of 1 x 10°:1 or 16.61 bits or 16.61 stops/f-stops.

A camera is designed for a similar task as the HVS, which is to capture the
surrounding environment in order to attain information for subsequent pro-
cessing. Given this similarity, we would expect that a physical scene captured
by a camera and viewed on a display should invoke the same response as ob-
serving the scene directly. However, this is very seldom the case. Though the
dynamic range of a camera sensor can vary greatly, from 8 bits LDR cameras
up to 14 bits high-end HDR cameras, most consumer grade cameras are only
8 bits. Figure 1.1c illustrates the dynamic range for a conventional consumer
level camera sensor. Luminances above the highest detectable value are lost
from a hard cutoff at some peak intensity, since the pixels in the sensors that

act as potential wells are saturated when the well capacity is reached. In-
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Figure 1.1: Dynamic ranges of different capturing techniques.

formation below the lowest detectable value is lost due to sensor noise and
quantization. This dynamic range is much narrower than that of the HVS.
Therefore, this mismatch in dynamic range results in output images with over-
or under-saturated areas where details in the bright and dark regions can not

be captured, but can be detected by the HVS.

1.2 Motivation

Since the production of Charge-Coupled Devices (CCDs), the image restora-
tion problem has been extensively studied for commercial applications, for
decades. The CCD converts optical perception to digital signals, but due
to the semiconductors used in the CCDs, there is an unknown non-linearity
mapping between the scene radiance (luminance) and the pixel values in the
image. This non-linearity is usually modelled by gamma correction, which has
resulted in a series of image restoration methods [5], [21], [69]. However, these

methods tend to focus on image pixel balance, and do not restore image details
3



lost from the under- or over-exposure due to the limitations of conventional
camera Sensors.

The limitations of the camera as compared to the HVS is evident. Conven-
tional camera sensors are unable to capture the wide range of luminances that
the HVS can detect simultaneously, which means that there is more visual
information available in the scene than what can be captured and processed.
This problem falls within the class of image restoration problems, and is known
as the HDR reconstruction problem. HDR reconstruction is the task to recover
the broad range of luminances that the HVS can detect. Although different
image pixel operators have been proposed for HDR reconstruction, the results
are still unsatisfactory, due to the ill-posed nature of the problem.

Some studies have tackled the HDR reconstruction problem using hardware
and software approaches. For example, different camera modalities are used
in combination with image restoration algorithms to realize HDR images. The
motivation is that the camera sensor can help to first narrow the mismatch
between the dynamic range in natural scenes and the capturing device, then
the image restoration algorithm can more effectively infer the HDR image
since it now has more input information. Several camera sensors have been
proposed to realize such designs, such as a spatially varying exposure (SVE)
sensor [61], a color coded filter [22], a non-regular coded exposure mask [78],
an optically coded mask [73], a dual-ISO sensor [20], and a multi-exposure
color filter array (ME-CFA) sensor [81].

An interesting recent development in imaging technology is a polarization
image sensor (Polarsens by Sony) with four directional, on-chip micropolar-
izers [26]. The pixels in a polarization sensor are organized into unit of four
sensing elements, each arranged as a 2x2 matrix with polarizing filters at 0°,
45°, 90° and 135°, to capture four spatially and temporally synchronized im-
ages of a scene with the same ease of operation as a conventional camera.
Since polarization conveys information about the surface normal, a common
application of this image sensor is 3D reconstruction [3], [10]. As a less obvi-
ous application, since a polarizing filter attenuates irradiance, and the extent

of attenuation varies with the direction of the polarizer, in a way similar to
4



changing the exposure time setting, this sensor should also provide us with the
possibility to reconstruct HDR images. We note irradiance refers to a portion
of the luminance that actually falls on the area of a pixel in a camera sensor.
In fact, [76] has made such an attempt based on the idea of light attenuation
by a polarizer for the purpose of eliminating saturated points and enhancing
contrast to achieve HDR; however, [76], did not examine the full HDR image
reconstruction.

Inspired by the approach to combine hardware and software components

to reconstruct better HDR images, we raise two inter-related questions:

1. Isit possible to perform HDR image reconstruction using the polarization

camera?’

2. If question 1 is possible, then given the polarization information, how
do we effectively recover the missing details using a deep-learning based

approach?

This thesis aims to answer the above two inter-related questions, using
the polarization camera - Polarsens developed by Sony [26]. This will be
accomplished with the development of an HDR polarization mathematical

model, a deep HDR reconstruction framework and an image acquisition setup.

1.3 Background

1.3.1 Image restoration

Image restoration methods aim to restore an original image using prior knowl-
edge about the degradation phenomena. Quantitatively, the image restoration

task can be expressed as:

y = H(z)+d (1.1)

where x is the corrupted image, H is the degradation function, d is the additive
noise, and y is the restored latent clean image. A variety of state-of-the-

art image restoration methods have been proposed. Some methods propose
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to obtain y by reducing the noise via deep network designs [35], [97], low-
rank sparse representation learning [41] or soft-rounding regularization [54].
Other methods propose to strengthen details by edge aware filtering [5], [21]
or histogram equalization [69], in order to obtain y. There are also methods
that focus on pixel manipulation, such as color enhancement [92] to obtain a y
that adapts to various user preferences. Although these methods can help to
improve the image quality, they can hardly recover the missing details. The
HDR reconstruction problem is a subclass of the image restoration problem,
and aims to recover the broad range of luminances that the HVS can detect.
Thus, visual details of the scene initially missing due to sensor under- or over-
saturation can be restored.

Another subclass of the image restoration problem is image inpainting.
Image inpainting requires generating plausible pixels for corrupted content ac-
cording to uncorrupted contents. Several methods have demonstrated content
generation [68], [96]. However, it is inadequate to apply inpainting meth-
ods to restore details in saturated regions. There are two distinct differences
between the image inpainting and HDR reconstruction tasks. First, the miss-
ing regions of the images in inpainting are due to random masks, while the
saturated regions are correlated. Second, to generate reasonable results, the
existing contents in the saturated image are required to be adjusted for the
full HDR reconstruction task.

Another subclass of the image restoration problem is the illumination in-
variant task. Illumination invariant aims to remove image variations caused by
illumination changes. This is mainly achieved by reprojecting the colour space
to obtain an illumination invariant representation of the image [4], [80]. Thus,
unlike HDR reconstruction, the resulting images do not restore the natural

color nor expand the dynamic range to restore the luminances of the scene.

1.3.2 HDR reconstruction pipeline

The HDR imaging pipeline, from capturing to display, can be illustrated by
Figure 1.2, which highlights the four major components: capture, reconstruc-

tion, distribution and tone-mapping. The pipeline can be described as follows:
6
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Figure 1.2: The HDR imaging pipcline

First, the physical scene is captured by a camera, followed by processing the
captured information using techniques for HDR reconstruction. Next, the
HDR image is stored using an HDR capable format. Finally, the HDR image
is prepared for display, using a tone-mapping algorithm, which compresses the
dynamic range of the HDR image in order to adapt to the range of the display
while retaining visual image details.

The first stage of the HDR reconstruction pipeline is image capture. Var-
ious cameras can be used to capture the physical scene, and can be generally
categorized as: HDR or LDR cameras. HDR cameras enable one-shot HDR
capturing. The one-shot approach allows high speed capturing of the target,
and avoids ghosting s that can result from scene dynamics or camera shakes
during capture. Several HDR cameras can infer an HDR image directly from
a single exposure value (EV) image, where EV represents the amount of light
that reaches the camera sensor. For example, Figure 1.3a shows the Alexa
model released by the camera manufacturer ARRI, which reported a dynamic
range of 14 stops. As another example, Figure 1.3b shows the CineAlta Venice
model released by Sony, which achieves a dynamic range of 15 stops. In another
example, Figure 1.3c shows the Epic Dragon model released by the camera
manufacturer RED, which further enhanced the dynamic range and reported
a dynamic range of 16.5 stops. The increase in dynamic range by these cam-
eras can be partly attributed to the hardware developments via large size and
manufacturing quality of the sensor, which forms the reduction in the noise
floor of the captured image. However, these high-end cameras have a large
form factor and high cost. Thus, in general, unsuitable for consumer usage.

Instead, a compact and more affordable option is to capture images with

7



(a) ARRI Alexa (b) Sony CineAlta (c) Red Epic Dragon
Venice

Figure 1.3: HDR cameras

conventional one-shot LDR cameras, and then apply image processing to
achieve HDR reconstruction. The image processing operations can be per-
formed via interactively through a post photo editing software, or through a
post or onboard algorithm. However, photo editing can be an intensive manual
process that requires skilled technicians and color artists to restore the miss-
ing details. Furthermore, prior knowledge about the contents in the scene can
be required during photo editing, especially for large saturated regions, which
may not always be available. To alleviate these problems, algorithms can be
applied to automatically hallucinate the missing details in the saturated re-
gions. However, when the input image for the algorithm is an one-shot single
EV image, the algorithms report hallucination s for large saturated areas, due
to the lack of information in the saturated areas [81].

In a LDR camera, the EV is controlled by the aperture, shutter speed, and

sensor sensitivity, and can be expressed as:

ISO) (12)

100

where F' is the relative aperture (F-number), S is the exposure time (=1/shut-

EV =2log, F' — log, S + log, (

ter speed) and 1.SO is the sensor sensitivity. In a LDR camera, an EV image
depicts a certain range of the scene luminance. Figure 1.4a shows that low EV
images can capture details in bright image areas but information in dark im-
age areas are lost due to sensor under-saturation. Figure 1.4b shows that large
EV images can capture details in dark image areas but information in bright
image arcas arc lost due to sensor over-saturation. Thus, combining multiple

EV images can extract both bright and dark image features that represent the
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(a) EV: 45 us. (b) EV: 1153 us.

Figure 1.4: EV images

(b) [83]

Figure 1.5: Multiple LDR camera sctup for one-shot multi-EV image capturing

luminances of the physical world. Furthermore, the multiple EV images can be
used to provide a more informative input that reduces the hallucination arti-
facts for large saturated areas encountered with a single EV input. Therefore,
as another one-shot approach, multiple LDR cameras can be positioned, to
form an acquisition rig, to acquire multiple EV images in one acquisition. Fig-
ure 1.5 illustrates two proposed beam splitter configurations [53], [83], where
the incoming light is partitioned onto multiple sensors to achieve simultaneous
capture of multiple EV images.

However, such sensor setup has high complexity, cost, footprint and re-
quires rigorous calibration. To alleviate the aforementioned issues, there are
LDR cameras based on a snapshot sensor, which acquires multiple EV images
in one acquisition with the ease of using only one camera. Several snapshot
sensors for LDR cameras have been proposed to realize HDR images, such as

a SVE sensor [61], a color coded filter [22], a non-regular coded exposure mask
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(b) [22]

Figure 1.6: LDR snapshot cameras

(78], an optically coded mask [73], a dual-ISO sensor [20], and a ME-CFA
sensor [81]. Figure 1.6 illustrates some of these snapshot sensors.

Alternatively, LDR cameras can also perform multiple-shots to capture
multiple EV images. Many modern cameras are equipped with specific multi-
exposure capturing modes. For example, a burst of images with short EV
duration can be captured. As another example, a sequence of images with
both shorter and longer EVs can also be captured. While the multiple-shots
approach is initially developed to handle only static scenes, since motion be-
tween input images due to scene dynamics or camera shaking during capture
can present ghosting artifacts, the development of state-of-the-art techniques
in image registration, deghosting and machine learning have shown to alle-
viate this image misalignment issue and achieve good results. However, the
additional capturing and processing time can be prohibitive for applications
that demand real-time feeds, such as robotics and autonomous driving.

In our study, we use the polarization camera as our capturing device. This
is a LDR camera with a snapshot sensor. The sensor has four directional,
on-chip micropolarizers to allow capturing of four spatially aligned and tem-
porarily synchronized images of a scene. More details about the polarization
camera are described in Section 3.

The second stage of the HDR reconstruction pipeline is image reconstruc-
tion. Different algorithms have been proposed to reconstruct HDR images, but
it generally consists of two distinct steps: First estimate the camera response
function (CRF). Second, reconstruct the HDR image. This can be expressed

as:
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H = R(F(L)) (1.3)

where L is the LDR image, F' is the CRF estimation, R is the HDR recon-
struction, and H is the degradation function or the reconstructed HDR image.
The CRF describes a mapping between pixel values the camera acquires and
luminances of the scene. Since most cameras have a nonlinear CRF, it results
in a pixel variation across the image that is nonlinear in luminance. To correct
for this variation, the response needs to be estimated and inverted in order
to derive pixel values that are linearly dependent on the captured luminances.
Several methods have been proposed for CRF estimation. For example, [95]
proposed to obtain the CRF by capturing an image with an uniformly lit cal-
ibration chart, such as a Macbeth chart, placed in the scene. Since the chart
has patches with known reflectances, the known radiances of the patches and
the corresponding measurements can be interpolated to estimate the CREF.
However, this estimation method can be inconvenient or not feasible in the
field. For example, when images are taken with a camera attached to a re-
mote mobile device. Furthermore, changes in temperature alter the response
function requiring frequent recalibration. Other chartless methods have also
been proposed. For example, [12], [47], [58] proposed to obtain the CRF using
the radiometric response function estimated using images of arbitrary scenes
taken under different known exposures. While the measured brightness values
change with exposure, scene radiance values remain constant. This observation
allows the estimation of the CRF without prior knowledge of scene radiance.

The HDR reconstruction is the task to recover the broad range of lumi-
nances that the HVS can detect. Various algorithms can be used to reconstruct
HDR images, and can be generally categorized as: one-shot image or multiple-
shot image HDR reconstruction. One-shot image HDR reconstruction requires
only a single acquisition to reconstruct an HDR image. Traditional techniques
are non-learning based, and perform brightness enhancement through expan-
sion operators or light-source detection. For example, [1], [51] proposed global

expansion operators to expand the content equally across all pixels. As another
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example, [66], [72] proposed local expansion operators to expand the content
locally by considering neighboring pixels. Multiple-shot image HDR recon-
struction requires multiple acquisitions to reconstruct an HDR image. Tradi-
tional techniques are non-learning based, and perform image fusion through
pixel selection or pixel weighting to fuse the bracketed images, to generate
HDR content. For example, [46], [91] proposed pixel selection criterions, to
select a single exposure per pixel, to fuse the bracketed images. As another
example, [12], [99] proposed pixel weighting functions that assign different
weights to pixels at each EV, to fuse the bracketed images. However, these
non-learning based approaches may not accurately estimate the luminances of
the physical scene due to the lack of knowledge about real HDR images; thus
limits the quality of the reconstructed HDR images.

In our study, we use the Mitusnaga and Nayar [58] method to calculate
the CRF. To overcome the limitations of non-learning based approaches, we
investigate a deep-learning based approach for HDR reconstruction. More
details are described in Section 3.

The third stage of the HDR reconstruction pipeline is image distribution.
The reconstructed HDR image contains rich visual information that needs a
higher bit-depth format to store and distribute the wide dynamic range data.
A natural goal for an HDR image format is to store the linear pixel values
with floating point precision. However, assuming 32 bit floating numbers, this
means that 96 bits per pixel have to be used in order to encode colors. For a 10
megapixel image, this amounts to a file size of 120 MB with no compression
applied, which in many situations is impractical. Therefore, floating point
HDR image formats use reduced pixel descriptions. Several HDR distributions
formats have been proposed to store HDR information. The two most widely
used formats are Radiance RGBE and OpenEXR. The HDR pixel format used
by the Radiance renderer uses the RGBE pixel description introduced by Ward
[85]. Tt stores RGB values with 32 bits per pixel; 8 bits mantissa for each color
channel, and an 8 bit common exponent. Thus, by using a shared exponent,
the RGBE format is able to provide a better compress representation of the

floating point numbers. The OpenEXR (Extended Range) HDR pixel format
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[30] typically stores the pixels with half floats, which uses 16 bits for cach color
channel. The bits are allocated for 1 sign bit, 5 exponent bits, and 10 mantissa
bits. There are also options for 32 bit float and 32 bit integers. The pixels can
be encoded both by lossy and lossless compression schemes, and thus provides
a better compress representation of the floating point numbers.

In our study, we use the OpenEXR method to store the HDR information.
More details are described in Section 4.

The fourth stage of the HDR reconstruction pipeline is tone-mapping. The
HDR image contains rich visual information that is stored with a higher bit-
depth by an HDR encoding format. However, most displays, such as monitor,
TV, smartphone and printed paper can only display LDR content. Tone-
mapping aims to reduce the dynamic range of HDR images in order to map
scene-referred HDR tones to display-referred LDR pixels, while preserving the
perceptual content as much as possible. Different tone-mapping operators
(TMOs) have been proposed, and can be generally categorized into global
and local operators. For example, [84] proposed to apply a single transfor-
mation globally for all pixels. As another example, [15] proposed to apply
local transformations for different parts of the image. Typically, local TMOs
have two distinct steps: First, decompose the image into a base layer that
is often smoothed but still maintains the original global dynamic range, and
a detail layer that contains only local edges or detail information. Second,
apply a tone mapping curve to compress the base layer, and add the result
with the detail layer to output the final tone-mapped image. This is analogous
to separating the image into a product of illumination and reflectance compo-
nents [6], which is similar to how the HVS processes a scene. The illumination
component describes global variations within the scene, and the reflectance
component describes the image details and textures. Furthermore, compared
to the global TMOs, the local TMOs have demonstrated better performance
in preserving local contrast and detail information.

In our study, we use the Durand TMO [15] and TMOs in Photomatix to
tone-map the HDR images for visualization on LDR displays. More details

are described in Section 4.
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1.3.3 Applications

In the field of computer vision, accurate image details is a necessary prerequi-
site for solving many vision related tasks in autonomous driving and robotics.
For example, in robotics, visual odometry is the process of estimating the
motion of a camera in real-time using sequential images, and is often used for
mapping and navigation. In general, this is accomplished by accurate detection
of image features to generate correspondences between image pairs for feature
matching and tracking. Several common feature detectors include SIFT [44],
SURF [7] and ORB [74] rely on detecting features, such as lines, edges and
corners. However, due to the wide range of luminances in a physical scene,
which can be beyond the acquisition range of the camera, it results in under-
or over-saturated pixels that outputs featureless pixels. Thus, washes out the
lines, edges and corners required as input for feature detection algorithms to
detect accurately. As another example, in autonomous driving, accurate ob-
ject detection and object segmentation allows for safe autonomous navigation.
These tasks also rely on accurate feature representation to detect and segment
objects in the physical scene. However, it can also suffer from pixel satura-
tion that results in featureless content. To alleviate the aforementioned issues,
HDR reconstruction can be a beneficial image restoration pre-processing step.
HDR images seek to recover the broad range of luminances that the HVS
can detect, to output a feature-rich image that matches the contents in the

physical scene.

1.4 Thesis contribution

To tackle the hallucination artifacts observed in one-shot single EV image HDR,
reconstruction, we bring in a LDR camera with a snapshot sensor - polarization
camera. We identify that it is possible to perform HDR image reconstruction
using the polarization camera, and provide the mathematical equations to
model the HDR polarization image formation. Furthermore, we demonstrate
that this has the added benefit of combining with software approaches to first
narrow the mismatch between the dynamic range in natural scenes and the

14



capturing device, then HDR image can be reconstructed more accurately as it
now has a more informative input image.

Next, we tackle the problem of using the polarization images for HDR
reconstruction based on a deep-learning approach. We posit that the polariza-
tion images along with the polarization information deduced from the images
can help guide the network to achieve a better reconstructed HDR image. The
proposed training targets to the networks are polarized images of a scene cap-
tured at different EV to create a traditional exposure fusion HDR image using
the technique in [56]. We intend to train our network to faithfully reconstruct
HDR images from LDR acquisitions by integrating polarization information
into our model.

Finally, as we are interested in studying a deep-learning based approach for
HDR reconstruction, a dataset for training and testing the network is required.
However, there is a lack of such public available dataset for training and testing
HDR techniques with polarized images. We address this issue by collecting a
dataset. The polarization image dataset will be a collection of high resolution
polarization data, with four polarization components, degree of polarization
(DoP), angle of polarization (AoP), and color, for each scene. The dataset will
contain a myriad of scenes with indoor and outdoor illuminations, stationary
targets, and diffuse/specular/hybrid objects. The collection of large amounts
of data is a necessary prerequisite for a data-driven machine learning problem.

This thesis makes three primary contributions:

1. To our knowledge, there is no prior work on reconstructing HDR from
polarized images with deep-learning. We introduce the theory and per-
form extensive experiments supporting the case of using a polarization

camera for HDR reconstruction.

2. This thesis also presents novel deep-learning frameworks for deep snap-
shot HDR reconstruction based on the polarization camera. We leverage
on the prior knowledge about the polarization data and integrate it into

the design of our framework to achieve a more robust model.

3. To support the deep-learning based approach, our work introduces a new
15



dataset, available publicly, for training and testing HDR techniques with
polarized images. The dataset is created to support the development of
data-driven approaches for HDR imaging. We demonstrate promising

results on this new dataset.

1.5 Organization of the Thesis

e Chapter 1. Introduction
We introduce the problem, the motivation behind it, the background
information, and the potential gaps in current approaches to solving it

that can be addressed.

e Chapter 2. Related Works
We provide an overview of the different families of approaches that were

used to tackle the HDR reconstruction problem.

e Chapter 3. Proposed Deep Snapshot HDR Reconstruction
Here we describe the individual ideas introduced in our thesis and how

they all come together for our proposed algorithm.

e Chapter 4. Experiments
We discuss our experiments and how we use them to evaluate our method-

ology against standard approaches.

e Chapter 5. Conclusion
We present the conclusions of this thesis and summarize the ideas newly

introduced here.

e Chapter 6. Appendiz
This section lists the hyperparameters for the different algorithms that

were used.
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Chapter 2
Related Works

Given that HDR reconstruction is a fundamental task in image processing
pipelines, whether it be for object detection, object segmentation or visual
odometry, it is an age old problem which has been approached from many
angles. Traditional techniques are non-learning based that rely on heuristic
strategies to expand the dynamic range. In recent years, deep-learning based
approaches have been proposed, and demonstrated improved performances.
Based on the approaches used to solve the HDR reconstruction problem, they
can be broadly divided into two categories. In this chapter, we discuss these

two categories which are:
1. One-shot image HDR reconstruction
2. Multiple-shot image HDR reconstruction

Furthermore, within each category, we introduce the traditional works fol-
lowed by the learning based works, to provide a comprehensive overview of

the different techniques within the category.

2.1 Omne-shot image HDR reconstruction

This approach uses a single image acquisition to reconstruct an HDR im-
age. Several methods based on this approach have been proposed, and can be

grouped into single image output and multiple image output methods.
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Figure 2.1: The one-shot single image output method HDR image formation
pipeline

2.1.1 Single image output methods

Given a single input LDR image, the single image output methods design a
framework to output a single HDR image. Figure 2.1 illustrates the pipeline
of single image output methods, which aims to recover an HDR image (32
bits/pixel) from a given single LDR image (8 bits/pixel).

Several traditional works are based on heuristic approaches. Particularly,
these traditional works explore different expansion operators heuristically to
transform a single LDR image to an HDR image. Some works proposed global
expansion operators to expand the content equally across all pixels. For exam-
ple, in [1], a linear global expansion operator is proposed based on their psy-
chophysical study on human visual perception. In [51], a gamma curve global
expansion operator is proposed, in which the gamma value is determined au-
tomatically via regression. Other works proposed local expansion operators to
expand the content locally by considering neighboring pixels. For example, in
[72], the local expand map is proposed by selecting a constellation of bright
points through Gaussian filtering, and then expanding them through density
estimation. In [66], the local expand map is generated through cross bilateral
filtering. While all the aforementioned methods are automatic, with the ex-
ception of parameter tuning, there are also interactive methods. For example,
in [13], user markups determine the saturated regions as light, reflections or
diffuse surfaces, in which different expansion functions are then applied for
each of the classified surfaces. In [50], another interactive method is presented
where the user adjusts regional tonal balance of the final HDR image by using

a piecewise linear function. However, all the above techniques can only expand
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Figure 2.2: Feature mechanism as proposed in [77]

the contrast range but cannot reproduce missing details in saturated regions.
Furthermore, most existing expansion operators derived from heuristics have
difficulty handling significant under- or over-exposed LDR contents.

Recently, deep-learning has been extensively used in image recovery ap-
plications. Such data driven approaches have demonstrated improved perfor-
mances compared to heuristic approaches in recovering missing details from
under- or over-saturated LDR contents. Some works presented novel network
architectures. For example, in [49], a three-branch convolutional neural net-
work (CNN) is proposed to extract global, semi-local and local features to
recover missing details in the saturated regions. In [16], a U-Net like archi-
tecture is implemented to predict values in the over-exposed regions with a
fixed mask, and later blend the prediction with the input LDR image for the
unsaturated regions. In [77], an autoencoder structure with a learnable feature
masking mechanism is proposed to predict values in the over-exposed regions,
and later blend the prediction with the input LDR image for the unsaturated
regions. Figure 2.2 shows their proposed feature mechanism. The features at
each layer are multiplied with the corresponding mask, computed based on the
well-exposedness of the pixel, before going through the convolution process.
The masks at each layer are obtained by updating the masks using the weights
from the previous layer. In [60], [62], [90], Generative Adversarial Networks
(GANS) are presented to introduce a hybrid loss that combines reconstruction
loss and adversarial loss to recover realistic HDR content.

Other deep-learning works developed an end-to-end HDR framework that
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takes the image display or image formation pipeline into consideration. For
example, in [94], an HDR-to-LDR framework is proposed to generate an HDR
image, and a LDR image for visualization on conventional displays. They
train a network for HDR reconstruction to restore the missing details from
the input LDR image, and then a second network to transfer these details
back to the LDR domain. In [43], an HDR framework that incorporates the
domain knowledge of the LDR image formation pipeline is presented. They
trained three specialized networks to reverse the image formation steps of
dynamic range clipping, non-linear mapping from a CRF, and quantization,
to reconstruct HDR images. Some works proposed to solve HDR and HDR-
related tasks in a joint optimization framework. For example, in [33], a residual
based network is implemented to learn the direct mapping from low resolution
LDR video to their high resolution HDR version for displays on high-end TVs.
They decomposed the image into base and detail components, then trained the
network through separate feature extraction, and finally fused the images to
obtain the high resolution HDR content. In a similar vein, [34] implements a
GAN to convert low resolution LDR videos to high resolution HDR videos. As
another example, in [29], a two-stage cascade network is designed to learn HDR
image generation and HDR image color refinement to output accurate color
representation of the physical scene. Alternatively, some works presented an
end-to-end joint optimization for optics and HDR reconstruction. For example,
in [57], [82], an optical based encoder and a CNN decoder are jointly trained
to hallucinate the HDR content from a single LDR image.

As another one-shot single output method, several works investigated the
use of snapshot sensors to acquire multiple EV LDR images in one acquisi-
tion, and output a single HDR image. In general, a snapshot sensor refers
to an imaging device capable of acquiring multiple images in a single image
capture (one-shot), as demonstrated in [2], [76], [81], [88]. This is beneficial
for HDR imaging as more information about the scene can be captured in
one-shot to help recover the scene’s dynamic range. Some traditional works
are implemented with heuristics strategies. For example, in [76], a snapshot

sensor based on the polarization camera can acquire multiple polarization im-
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Figure 2.3: The one-shot multiple image output method HDR image formation
pipeline

ages in one-shot. These polarization images are used to identify and eliminate
the saturated pixels, and thus enhance contrast to achieve HDR. Later, [88]
extended the work to examine the full HDR image reconstruction process by
including the camera response calibration step.

There are also some deep-learning based approaches developed using snap-
shot sensors. For example, in cite [2], a snapshot sensor capable of acquiring
multiple exposures in one-shot is co-designed with the HDR reconstruction
network. They train an inception network to jointly optimize for demosaick-
ing, HDR reconstruction, as well as the spatially varying modulation mask in
the hardware. In [81], a deep snapshot HDR imaging framework is presented
to reconstruct HDR values from the raw data captured using a ME-CFA sen-
sor, which consists of a mosaic pattern of RGB filters with different exposure
levels. They pre-train a luminance estimation network, then attach it to the

main framework to reconstruct the final HDR values.

2.1.2 Multiple image output methods

Given a single input LDR image, the multiple image output methods design a
framework to output bracketed LDR images at different exposures, which are
then post-processed to generate the final single HDR image. Figure 2.3 illus-
trates the pipeline of multiple image output methods, which aim to recover
an HDR image (32 bits/pixel) from the bracketed LDR images (8 bits/pixel),
where each EV image infers a part of the luminance range. We note that
the post-process fusion step is a separate task, which we do not tackle in our
thesis; it focuses on generating a visually pleasing LDR image from the brack-

eted LDR images [45], [70], [89]. To the best of our knowledge, all multiple
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Figure 2.4: Network architecture as proposed in [17]

output methods are implemented with deep neural networks, and there are no
heuristic works that transform a single LDR image to multiple LDR images
at different EVs and then merge them into an HDR image.

Using deep-learning, some works presented novel network architectures for
generating bracketed LDR images. For example, in [17], a modified U-Net
architecture is used to generate the multiple exposure images from a single
exposure image. These images are then merged to construct the final HDR
image. Figure 2.4 shows their proposed network. The encoder consists of
2D convolutions and the decoder consists of 3D deconvolutions to generate
consistent images with different exposures. In [40], a chained CNN structure
is proposed to sequentially generate the bracketed LDR images. Later, [38],
[39], proposed to handle this application through a recursive conditional GAN
and a cycle GAN, respectively. Another work in [32] presented an end-to-
end HDR framework that takes the CRF into consideration. They trained a
recurrent network to generate the bracketed LDR images, and then added a
differentiable HDR synthesis layer to learn the appropriate CRF, to reconstruct
the final HDR image.

Here we summarize the pros and cons of the multiple image output method
when compared to the single image output method. A pro of the multiple
image output method over the single image output method is that it can
alleviate the dataset quantity problem, as the focus is on transferring exposures
to accurately generate the bracketed LDR stack. Another pro of the multiple
image output method is that it can generate more accurate results, as each

EV image infers a part of the luminance range rather than inferring the entire
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range at once.

On the other hand, a con of the multiple image output method over the
single image output method is that it requires a dataset of multiple EV LDR
images per HDR image. Another con of the multiple image output method
is that it can require a longer training time as two models: a down-exposure
and an up-exposure model needs to be trained separately, to infer the full
dim-to-bright set of LDR images.

In our study, we investigate both single image output [77] and multiple
image output methods [17] for HDR reconstruction based on the snapshot
sensor - polarization camera. For the post-process fusion step in the multiple
image output method, we used the technique in [56] to fuse the bracketed LDR

images. More details about our proposed methods are described in Section 3.

2.2 Multiple-shot image HDR reconstruction

This approach uses multiple acquisitions to reconstruct an HDR image. Fig-
ure 2.5 illustrates the pipeline of the multiple-shot image HDR reconstruction
method. There is a series of works that focuses on removing ghosting artifacts
caused by moving objects or misalignment in the images shot from multiple
acquisitions for HDR reconstruction. Several traditional works perform align-
ment and HDR reconstruction in a unified optimization system. For example,
in [79], a patch-based optimization system is proposed to fill in the missing
details due to the under- or over-saturated regions in the reference image us-
ing other images within the stack. In [25], a similar patch-based system is

proposed, but includes camera calibration as part of the optimization. Other
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works use rank minimization, in which image misalignment arc considered as
sparse outliers, to align and reconstruct a HDR image. For example in [65],
a rank-1 matrix is proposed to reject ghost-artifacts and reconstruct an HDR
image. In [36], a similar rank-1 matrix is proposed, but includes camera cal-
ibration as part of the unified optimization setup. Another work in [42] uses
a content adaptive filtering scheme to simultaneously correct image misalign-
ment and reconstruct an HDR image. However, the above techniques are not
data driven and produces unsatisfactory results in challenging cases where the
reference has significant under- or over-saturated areas.

Learning based approaches can help to alleviate the aforementioned issues
and output better results. Some works proposed a pre-process step to align
the images before feeding it to a CNN. For example, in [31], a pre-process
step is proposed to first use optical flow to align the input images to the ref-
erence image, and then employ a CNN to obtain the HDR image. In [87],
a pre-process step is introduced to first use homography transformation to
align the background of the input images, and then use an autoencoder struc-
ture to translate multiple LDR images into a ghost-free HDR image. Other
works implemented an end-to-end HDR framework. For example, in [93], an
attention-merging network is presented to generate an HDR image with less
ghosting artifacts, and restore details in the saturated regions. Their atten-
tion network detects useful regions and misaligned regions, while their merging
network, based on a series of dilated residual dense blocks, merges the input
images to reconstruct an HDR image. In [37], an alignment-merging network
is proposed for ghost-free HDR imaging. Their alignment network aligns the
input LDR images to the reference image, and the merging network, based on
a residual dense block, merges the input images to restore an HDR image. In
a similar vein, in [71], a pyramidal alignment and masked merging network
is proposed to synthesize HDR images from the input LDR images. Their
alignment network extracts image features at different scales and aligns them
to the reference view, while their merging network, based on residual dense
blocks, merges the input images to restore an HDR image. In [9], a non-local

network is introduced to explicitly address the feature alignment problem to
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obtain a ghost-free HDR image. In [63], a GAN framework is proposed to
handle this application. Alternatively, another work in [8] proposed to focus
on reconstruction the details from the input images, and assumes the input

images are aligned.

2.3 Summary

In this chapter, we discussed the two categories of approaches that can be used
to group the existing HDR reconstruction methods. These two categorics are:
one-shot image HDR reconstruction, and the multiple-shot image HDR recon-
struction. For each category, we first reviewed the traditional works, which
are non-learning based that rely on heuristics to expand the dynamic range.
Then, we reviewed the deep-learning based works and described their strate-
gies to improve HDR imaging. In the one-shot image HDR reconstruction
category, we further identify two classes of methods which are: single image
output and multiple image output methods. Our work focuses on developing
a deep-learning based approach for HDR reconstruction using the one-shot
image HDR reconstruction approach. We study and adopt a framework from
each class of this category, and present them in Chapter 3 Proposed Deep
Snapshot HDR Reconstruction.

25



Chapter 3

Proposed Deep Snapshot HDR
Reconstruction

Our work tackles the HDR reconstruction problem by using a combination of
hardware and software approaches. In this section, we present the hardware
and software approaches used in our method. First, for hardware, we use
the polarization camera as the capture device, and then show how this new
camera sensor can help to narrow the mismatch between the dynamic range
in natural scenes and the capturing device, to reconstruct a more informative
image. Second, for software, we propose two deep snapshot HDR imaging
frameworks: Deep Snapshot Multiple image output HDR (DSMHDR), and
Deep Snapshot Single image output HDR (DSSHDR). We use a snapshot
sensor - polarization camera, with a deep neural network to design a deep-
learning based approach for HDR reconstruction. The first, DSMHDR, brings
in the ideas of using multiple polarization images as input for the network, to
reconstruct HDR images. The second, DSSHDR, builds on these ideas and
proposes a new framework that further integrates polarimetric cues available

from the polarization camera, to reconstruct HDR images.

3.1 Polarization camera for scene capture

The polarization camera captures the polarization information of a scene. Po-
larization is one of the three fundamental properties of light, along with color

and intensity. Specifically, polarization describes the direction in which light
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as an electromagnetic wave oscillates. Figure 3.1 illustrates three polarization
states of light, in which the light is unpolarized when it oscillates at more than
one angle, linearly polarized when it oscillates at a single angle, and partially
linearly polarized when it oscillates at more than one angle but stronger in a
particular angle. Such polarized light is everywhere [86]. Light can be polar-
ized when scattered by particles in the atmosphere. This scattering occurs in
the atmosphere due to the gas molecules and dust particles, where the light
can be as much as 70% linearly polarized when observed at an angle of 90°
to the sun. Light can also be polarized by refraction underwater, where the
transmission of the light at the air/water interface causes significant polariza-
tion. Finally, light can also be polarized when reflected from a surface, and the
strength of polarization can depend upon the reflecting material. Polarization
is a key property of light, and has been utilized by many creatures, such as
insects, birds and marine animals to achieve their visually guided behaviours.
For example, bees and birds use the polarization pattern in the sky to aid
navigation [24]. Several marine creatures also use similar patterns found un-
derwater for the same purpose [11]. Despite the HVS’s ability to identify the
color and intensity of light, the HVS is blind to this light polarization.

With recent advances in camera technology, polarization effects can now
be captured by imaging devices such as polarizers, and more recently, polar-
ization cameras. The polarizers serve to attenuate irradiance and alleviate

over-exposure by potentially boosting the contrast of dark regions of the en-
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Figure 3.2: The polarizer filter passes the blue beam that is aligned parallel
to its polarizer axis, and blocks the orange beam that is aligned perpendicular
to its polarizer axis [27]

vironment to enable HDR imaging. Like filters, polarizers select a specific
polarization of light while blocking the rest, as shown in Figure 3.2. The
different angles of polarization can be achieved by mechanically rotating the
polarizer placed in front of the camera lens. However, a polarization camera
integrates the polarizers onto the surface of the sensors, which replaces the
need for mechanically rotating the polarizers. The polarized image is thus
captured by forcing light through a polarizer. Recently, Sony has introduced
two CMOS sensors: IMX250MZR (mono) [28] and IMX250MYR (color) [26]
where both sensors use nano-scale fabrication techniques to create a division-
of-focal plane imaging sensor. Figure 3.3 shows the polarization cameras and
their physical layouts. The camera integrates four on-chip directional polar-
izers, at 0°, 45°, 90°, and 135° onto the camera sensor (one calculation unit),
to capture four spatially and temporally aligned high-resolution polarized im-
ages of a scene in real-time. The difference between the two sensors is that
the IMX250MZR (mono) captures grayscale images while the IMX250MYR
(color) captures color images. In our study, we use the IMX250MYR (color)

to collect a colored dataset to train the HDR polarization model.

3.2 Polarization image formation (HDR)

When light reflects off a non-metallic object, it becomes partially polarized.
This polarized light can be captured by a polarization camera, as shown in
Figure 3.4. The image irradiance I, an attenuated version of the scene ra-

diance, is first filtered by the on-chip directional micro-polarizers. Then the
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Figure 3.3: Polarization cameras and their physical layouts

camera’s photosensitive elements convert the light signal, using the CRF, into
four digital images L, to Ly. During this process, the camera has an exposure
time ¢y (not shown), which can be varied to adjust the polarization images.

The effect of a polarizer on image irradiance can be written as [19]:
I =05 x 10(1 + peos(20 — 2ai)) (3.1)

where p denotes DoP, 6 denotes AoP, a; = 0°, 45°, 90°, 135° denotes the angle
of the polarizers, and i = 1, 2, 3, 4 denotes the index of the four polarizers.
Substituting the polarizer angles into Equation 3.1, we get the filtered images:

11,13 =0.5 x [0(1 + pCOSQ@)
(3.2)
I, Iy = 0.5 x Iy(1 £ psin 26)

The DoP (p) which measures the portion of light that is polarized for a
given pixel is computed from the four polarization images, and is in the range
of [0,1]. If p = 0, the light is unpolarized; if p = 1, the light is completely
polarized; when 0< p <1, the light is partially polarized. p can be computed

by:
/St + 53
= 3.3
p S (3.3)
where Sy, S7 and S5 are the intermediate variables called Stokes and represent
the total power, the power of the 0° linear polarization, and the power of the
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Figure 3.4: Polarization camera image acquisition pipeline

45° linear polarization, respectively. Sy, S7 and Sy can be computed by [19]:
So=0.5x (Ly+ Lo+ Ly + Ly)
Sy =L — Ls (3.4)
Sy =1Ly— Ly
where L1, Lo, L3 and L4 are the captured images with the polarizer filters at
0°, 45°, 90°, and 135°, respectively.

The AoP (6) which measures the direction of light in which the polarized
light oscillates at a given pixel is computed from the four polarization images,
and is in the range of [0°, 180°]. If # = 0, the light is oscillating horizontally;
if # = 90°, the light is oscillating vertically. # can be computed by:

0 =05 xtan"" <§j) (3.5)

In general, the relation between image irradiance I; and pixel value L; at

exposure time ¢, can be written as [12]:

L; = f(Iito) (3.6)

where f is the CRF. In particular, we use the method in [58] to calculate
the CRF. While there are other methods that can be used to compute the
response, we selected this method because it is formulated in such a way as is
applicable to the polarization camera, as will be explained shortly. We briefly
summarize the method below for the completeness of the presentation.

The method [58], rather than identifying f, estimates the inverse CRF
(ICRF), g, which is related to Equation 3.6 as:

I — g(th‘) (3.7)
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Figure 3.5: ICRF of the polarization camera

which is of direct use in HDR reconstruction. ¢ can be modeled using a

polynomial of appropriate order N as:

g(Li) = enL (3.8)

With this formulation, the calibration process is viewed as one of deter-
mining the order N as well as the coefficients ¢,. When multiple images are
taken at different EVs, the calibration algorithm makes use of the observa-
tion that the ratio between exposures is the same as that between the scene
luminance, as is defined by Equation 3.8. Using the multiple available ratios
between known exposures, this observation is used to set up constraints on
the coefficients ¢,, of Equation 3.8 whose pixel value L; is captured and there-
fore known. This is applicable for the polarization camera because the basic
constraint used in [58] takes the form of a ratio between scene luminance, the
filtering effect of the polarizer appears on both numerator and the denomina-
tor of the ratio and cancels each other. The algorithm can therefore be used
as is to calibrate the polarization camera.

We have used the above calibration method to perform radiometric calibra-
tion of our polarization camera, and the ICRF is plotted in Figure 3.5. Note
that both the pixel intensity measurement and the scene luminance are on a

normalized scale. In our experiment, we used a total of 17 different exposures.
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We found N = 2 provided the optimal result as the goodness of fit in terms of
R-squared for the RGB channels are 0.928, 0.925, 0.931, respectively. Thus,

the coefficients of each color channels are:

Co C1 Ca
R 10.0196 —-0.2596 1.2400
G 10.0256 —0.2918 1.2662
B 10.0144 —0.2332 1.2188

This ICRF is then used to create HDR images from polarization images as
will be described in Section 4.1.
Finally, by substituting Equation 3.2 into Equation 3.6, and applying the

reciprocity relation in [12], we obtain:

t1,t3 = 0.5 X to(1 £ pcos26)
(3.9)
to, by = 0.5 x to(l + pSiIl 29)

Equation 3.9 provides the polarization image formation model in the case
of HDR reconstruction. When the incoming light is not entirely unpolarized
(p # 0), the four pixels within one calculation unit of the polarization cam-
era experience different exposure times, effectively creating the condition for
multiple exposures. In the extreme case, when p =~ 1 one can expect a large
difference in exposure between the four pixels.

Different from a conventional camera capturing multiple exposures, the
variation in exposure time in a polarization camera is pixel specific as both p
and 6 vary from pixel to pixel. This is because the pixels in different calculation
units of a polarization camera correspond to different points in space, which in
general differ in terms of their light polarization, just as in color or in intensity.

To quantify the potential gain in dynamic range of a polarization cam-
era versus a conventional camera, we compare the dynamic range of the two

cameras by computing Equation 3.10:

DR = 20log ( Linae t’”‘“‘) (3.10)

Lmin tmin
where L,,. corresponds to the full-well capacity of the sensor, and L,,;, corre-
sponds to the minimum signal detectable by the sensor. t,,,. and t,,;, are the
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Table 3.1: Change in dynamic range as a function of DoP (p)

\ P H 0.2 0.5 0.8 \

DR (dB) 3.2 85 16.4
# of bits || 0.53£0.05 | 1.40+0.16 | 2.66+0.41

A

maximum and minimum exposure times, respectively. For a conventional ideal
8 bit camera, its dynamic range = 201log(255) = 48.13 dB, and is fixed. For a
polarization camera, the dynamic range can vary with the scene with a mini-
mum of 48.13 dB and a maximum that depends on the ratio of the exposure
times; where t,,,, = max(t1,to,t3,ts) and tp;, = min(ty, to, ts,t4) within one
calculation unit. The dynamic range of the entire camera can be computed
using the mean of the dynamic ranges of all its calculation units.

Table 3.1 summarizes the results of the dynamic range based on the eval-
uation of Equation 3.10 under three different values of p. In the calculation
of t1,ts,13,t4, using Equation 3.9, we assume a uniform distribution for the
AoP. We also calculate the change in dynamic range in terms of the number

of additional bits in the pixel depth, i.e., logs (t""‘_’z‘ ). At p = 0.2 or a moderate

th

amount of polarization in the environment light, we can expect to increase the
dynamic range by 0.53 bits or 3.2 dB. On the other hand, for space points with
significant light polarization with p = 0.8, the dynamic range of the images
can be increased by 2.66 bits, from 8 bits to 10.66 bits, or by 16.4 dB, from
48.13 dB to 64.53 dB. In Table 3.1, the standard deviation of the change in
dynamic range (A) is due to the variation in the AoP (6). Practically, p can
vary spatially and, as a result, so can the different regions of an image in terms

of their gain in dynamic range from this polarization camera.

3.3 Deep Snapshot Multiple output HDR
framework (DSMHDR)

Here, we study and propose a multiple output deep-learning based method
within the category of one-shot image HDR reconstruction to construct our

DSMHDR framework. There are several deep-learning works proposed to out-
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put multiple exposure LDR images to combine and form an HDR output from a
single LDR input [17], [32], [38]-]40], and have been described in Section 2.1.2.
In particular, the work by Endo et al. [17] uses a modified U-Net architec-
ture to predict multiple exposure images from a single exposure image, which
are then merged to output an HDR image. This method in [17] is able to
predict any number of bracketed images by simply changing the size of the
training input image list. Additionally, [17] reconstructs HDR through super-
vised training, where the CNN learns the correlation between saturated and
unsaturated regions to fill in the missing pixel values in the saturated regions.
On the other hand, other methods require modification to the architecture,
such as extending the sub-networks in [38]-[40] to increase the network depth,
so the method can be used to infer a different size of bracketed set than what
the network was originally trained on. However, such modification increases
network complexity which is more likely to overfit to the training data [75].
Nevertheless, these methods have demonstrated their feasibility to reconstruct
HDR images. However, they are all developed for conventional cameras, and
thus is not suitable to be applied directly on polarization images.

Unlike [17], our proposed DSMHDR framework is developed to directly
handle polarization images. It uses a more informative input derived from the
polarization images to improve HDR reconstruction. Namely, we propose a
pre-processing step to fuse the four LDR polarization images before feeding it
to the network. Based on Equation 3.9, which relates the polarization images
to different exposure times, the fusion step can be implemented by a pixel-
weighting function. It assigns weights to the four pixels in one calculation unit
depending on how well-exposed the pixels are as was proposed by Debevec in

[12], and adopted in [88]. The resulting image Ip., can be computed by:

Z?:l W<Lz' + Li+2) <9(Lz’) + Q(Lz'+2))
S W (Li + Lz+2)to

Ipey = (3.11)
where W is the Gaussian weighted function (¢ = 0.2 in our study). Intuitively,
Equation 3.25 transforms the input to the HDR space, which conveys more

information as Ip., is in floating point and spans a wider dynamic range than
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Figure 3.6: DSMHDR Framework

Then we feed the Ip., image into the network. Figure 3.6 illustrates the
DSMHDR network. We first briefly summarize the architecture for the com-
pleteness of the presentation, and then discuss the improvements we introduced
to the network to improve HDR reconstruction. The network presented in [17]
and adopted for DSMHDR is an 18 level autoencoder architecture. The archi-
tecture consists of 9 levels for the encoder and 9 levels for the decoder. In the
encoder, the first level consists of a 2D convolutional layer and a LeakyReLU
(negative slope = 0.2) layer. The subsequent levels consist of a 2D convo-
lutional layer, batch normalization layer followed by a LeakyReLU layer. In
the decoder, the first two levels consist of a 3D deconvolutional layer, batch
normalization layer, dropout layer followed by a ReLLU layer. The subsequent
five levels consist of a bilinear up-sample layer, convolutional layer, batch nor-
malization layer followed by a ReLU layer. The final two levels consist of a 3D
deconvolutional layer, batch normalization layer followed by a ReLU layer. We
use skip connections between all the encoder layers and their corresponding
decoder layers. The architecture generate 17 different exposure images, and
then merge the images using the technique in [56] to output an HDR image.
Details on the network architecture is summarized in Table 3.2.

Unlike [17], our proposed DSMHDR framework introduces the following
improvements: 1) We replace the deconvolution operation with a bilinear in-
terpolation operation. This reduces the visible tiling artifacts when the input
image has large saturated regions [64]. We apply this operation to five of the

deconvolutional layers due to memory restrictions. We observe that applying
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Table 3.2: Overview of DSMHDR network architecture

Layer Stage # filters | Filter size | Conv. stride | Spatial pad | Activation
1 conv+act 64 (3,3) (2,2) (1,1) LeakyReLU
2 conv+bn+act 64 (3,3) (2,2) (1,1) LeakyReLU
3 conv-+bn-+act 128 (3,3) (2,2) (1,1) LeakyReLU
4 conv+bn+act 256 (3,3) (2,2) (1,1) LeakyReLLU
5 conv+bn-+act 512 (3,3) (2,2) (1,1) LeakyReLU
6 conv+bn-+act 012 (3,3) (2,2) (1,1) LeakyReLU
7 conv+bn+act 012 (3,3) (2,2) (1,1) LeakyReLU
8 conv+bn+act 512 (3,3) (2,2) (1,1) LeakyReLU
9 conv+bn-tact 512 (3,3) (2.2) (1,1) | LeakyReLU
10 | conv-+bn+dropout!-+act 512 (4,4,4) (2,2,2) (1,1,1) ReLU
11 | conv+bn+dropout!+act 512 (4,4,4) (2,2,2) (1,1,1) ReLU
12 conv+bn+dropout! +act 512 (4,4,4) (2,2,2) (1,1,1) ReLU
13 | upsample+conv+bn-+act 512 (3,4,4) (1,2,2) (1,1,1) ReLU
14 | upsample+conv+bn+act 512 (3,4,4) (1,2,2) (1,1,1) ReLU
15 | upsample+conv+bn+act 256 (3,4,4) (1,2,2) (1,1,1) ReLU
16 | upsample+conv+bn+act 128 (3,4,4) (1,2,2) (1,1,1) ReLU
17 | upsample+conv+bn+act 64 (3,4,4) (1,2,2) (1,1,1) ReLU
18 conv-+bn-+act 128 (3,4,4) (1,2,2) (1,1,1) ReLU

L 50% dropout rate

the up-sampling operation to the five deconvolutional layers demonstrates the
removal of tiling artifacts. 2) We add the SSIM loss to the loss function. This
additional loss term improves the perceptual quality of the synthesized content

[100]. Our overall loss function is:
L(W,b) = a x E[|H — H|| + 5 x SSIM(H, H) (3.12)

where H and H denotes the ground truth and predicted image, respectively.
The ground truth image is constructed from the dataset, as discussed in Sec-
tion 4.1.1. The first term in Equation 3.12 corresponds to the mean absolute
error (MAE) loss which measures the pixel-level loss between the predicted
and ground truth images. By minimizing the MAE loss, details can be better
recovered. The second term in Equation 3.12 corresponds to the SSIM loss,
which measures the perceptual loss between the predicted and ground truth
images. By maximizing the SSIM loss, edges and contrast details can be better
preserved to synthesize visually pleasing textures. We empirically set o = 1.0,
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and S = 0.1 in our experiments. Additionally, during inference, the final HDR

image is obtained directly from the predicted image H.

3.4 Deep Snapshot Single-output HDR
framework (DSSHDR)

Unlike DSMHDR which outputs multiple images, here we study and propose
a method which outputs a single image, that also falls within the category of
one-shot image HDR reconstruction. While the DSMHDR method has demon-
strated its feasibility to estimate missing pixels in saturated regions, training
time remains a key challenge in investigating potential framework solutions as
it is a multiple output based one-shot image HDR reconstruction approach.
Therefore, after the development of the DSMHDR framework, we studied and
proposed a single output based one-shot image HDR reconstruction approach,
to construct our DSSHDR framework.

Also unlike DSMHDR that uses only the polarization images for HDR re-
construction, DSSHDR  integrates additional polarization information, specif-
ically from the DoP image, to improve HDR reconstruction. As mentioned in
Section 3.2, the polarization state of light can be quantified by DoP, which
determines the portion of light that is polarized for a given pixel. Namely,
DoP is a ratio of the power of the polarized light versus the total power, which
can be computed by Equation 3.3, and is in the range of [0,1]. Large DoP
values correspond to a strong measure of polarization. Equations 3.3 and 3.4
show that a large DoP values are obtained where there are large pixel varia-
tions among the polarization images (L1, Lo, L3, Ly). In other words, regions
with large DoP values indicate where the polarization camera can provide rich
and reliable polarimetric cues for HDR recovery. Equipped with this domain
knowledge about DoP, we can employ the DoP image as a strong accurate
prior for the DSSHDR framework.

There are several one-shot deep-learning works presented to output a single
HDR image from a single LDR input image [16], [43], [49], [77], [90], and have
been described in Section 2.1.1. In particular, the work by Santos et al. [77]
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uses an autoencoder structure with a learnable feature mechanism to regress
details in the over-saturated regions, and then reconstruct the HDR image
through blending with the input’s unsaturated regions. Namely, the feature
masking mechanism in [77] is based on a soft mask computed from the pixel
intensity of the input image. The soft mask maps the unsaturated pixels to
one, and the saturated pixels to zero. Thus, dark pixels in the soft mask cor-
respond to saturated pixels where the CNN focuses it learning upon, and the
soft mask is continuously updated by the feature weights of each convolutional
layer. Furthermore, [77] uses an input image and soft mask to reconstruct the
HDR image through supervised training, where the CNN learns the correlation
between saturated and unsaturated regions to fill in the missing pixel values
in the saturated regions. Additionally, it also utilizes the weak textures in the
saturated regions, obtained by the soft mask, to fill in the missing details. [77]
claims that such unfixed masking strategy can reconstruct better HDR images
that arc free from visible artifacts as compared to using a fixed mask. While
these methods have demonstrated their feasibility, robustness remains a key
challenge. For example, in [16], the method ignores HDR reconstruction for
under-saturated regions, and implements a fixed feature masking mechanism
which generates visible artifacts in the results. As another example, in [77], the
method neglects HDR reconstruction for under-saturated regions, is unable to
improve HDR estimation for unsaturated regions, and has unreliable recon-
struction in saturated regions due to the lack of prior to enforce consistency.
Furthermore all of the aforementioned methods are developed for conventional
cameras which captures images differently than the polarization camera, and
thus is not suitable to be applied directly on polarization images.

Figure 3.7 illustrates the DSSHDR framework. Unlike [77], our proposed
DSSHDR framework can reconstruct HDR for all unsaturated and saturated
pixels with the help of DoP as a strong accurate prior. In our HDR recon-
struction method, the first step is to compute the image L. for input to the
network. L. computes the mean of the four LDR polarization images, thereby

accounting for the contributions from each polarization filter, and is defined
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Figure 3.7: Overview of the deep neural network used in constructing Hy in
our proposed DSSHDR framework. The LDR input image L. is propagated
through the network, while udpated by the corresponding mask M; before
going through the convolutional layers. The mask at each layer is obtained by
updating the mask from the previous layer.

as follows:
Lt Lo+ Ly+ Ly

2
where Ly, Lo, L3, L4 are the normalized LDR polarization images in the range

of 0,1}, for filters oriented at 0°, 45°, 90°, and 135°, respectively.

L.

(3.13)

Next, we compute the feature mask M; as input to the feature masking
mechanism. The feature mask is constructed where if the pixel value of L.
is properly exposed and DoP is low, then the reconstruction is dominated by
the predicted image H,;. However, if L. is poorly exposed and DoP is high,
then the reconstruction is dominated by the traditional model based image
H,. Then for L. and DoP values that lie somewhere in between will share the
reconstructions results of H; and H;. M), is in the range of [0,1], and is defined

as follows:
p+ K

LT maz(p + K)
where the subscript 1 indicates the first layer in the CNN ([ = 1). p is the

(3.14)

DoP for the input image which indicates the measure of polarization for a
pixel, and is in the range of [0,1]. K is also in the range of [0,1], and indicates
the proper exposedness of each input pixel based on the pixel intensity as
shown in Figure 3.8. K = 0 indicates the input pixel is completely over-
exposed. Therefore, M; computes the well exposedness of each input pixel
based on the combination of polarization and intensity information. M; = 0
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Figure 3.8: We use this function [77] to measure how properly exposed a pixel
is. THe value 1 indicates the pixel as properly exposed, while 0 indicates the
pixel as completely over-exposed. In our implementation we set the threshold
at 0.95.

indicates the feature are computed from low polarization and poorly exposed
pixels, and thus are invalid content that require reconstruction by the CNN.
Then the feature mask is updated at each convolutional layer [ to obtain M;.
As a result, the reconstruction is achieved by using the mask M; to reduce
the magnitude of the feature generated from the invalid content. Specifically

updating the feature maps X, extracted at each convolutional layer as follows:

Z =X M, (3.15)

where with the abuse of notation the multiplication sign - means the pixel-wise
multiplication where appropriate throughout the thesis. In addition, the mask
at each layer is computed by applying the convolutional filter to the mask
at the previous layer. Since the masks are in the range of [0,1] and weights
the contributions of the features, the magnitude of the filters is irrelevant.
Therefore, we normalize the filter weights before convolving them with the

mask as follows:

(Wi )
M, = x M, 3.16
o= (Gt )20 10
where ||-||; is the /4 function, |- | is the absolute operator, and € = 107% is a

small constant added to avoid division by 0.
Our loss function is a combination of an HDR reconstruction loss £, and

a perceptual loss £, as follows:
L=ML+ XL, (3.17)

where Ay = 6.0 and \y = 1.0 in our implementation.
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The reconstruction loss computes the pixel-wise [; distance between the
ground truth image H, and predicted image H, for the invalid content defined
as follows:

Ly =1 = M) - (Hy — Ha)l,y (3.18)

The perceptual loss has been demonstrated useful to improve visual quality
in [77], [82], and its key idea is to enhance the similarity in feature space
between the ground truth and predicted images. Our perceptual loss is a

combination of the VGG loss £, and style loss £, as follows:
L, = XLy + AL (3.19)

where A3 = 1.0 and Ay = 120.0 in our implementation.

The VGG loss is defined as follows:
Lo=Y"lléi(Hy) — ¢i(Ha)l, (3.20)
1

where ¢; is the feature map from the [-th layer of the pretrained VGG-19.
Then to recover more vivid textures, we add the style loss to Equation 3.19,

and is defined as follows:
Lo=>_|Gi(H,) — Gi(HJ)|, (3.21)
!

where G is the Gram matrix [18] applied on the feature map at the I-th layer
of the pretrained VGG-19, and is defined as follows:

Gi(X) = %@(X)%(X) (3.22)

where K is a normalization factor computed as H;W,C;. The feature ¢; is a
matrix of shape (H,W;) x C;, and thus the Gram matrix has a size of C; x Cj.
For the perceptual loss, we extract feature maps from pooll, pool2 and pool3
layers of the VGG-19 network.

Figure 3.9 shows the mask M, at different layers [ of the network. We can
observe from the input image that the building and the fence regions are over-
exposed. We can also observe from the input mask that these regions have a

low measure of polarization. The input mask informs the network where the
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Figure 3.9: Visualization of the masks M, at different layers of the network,
and identifies regions that require CNN to direct its learning upon with higher
feature weights.

invalid features are for the CNN to direct its learning upon. Therefore, the
building and the fence regions consistently have a higher feature weight (i.e.,
brighter pixels) compared to other regions in the masks at each convolutional
layer. As we move deeper through the network, the masks become blurrier
and more uniform. This is expected since the receptive field of the features
become larger in the deeper layers.

With the CNN predicted image H,, we formulate the final HDR image H
through HDR integration as follows:

H=oa -H+(1—«a) Hy (3.23)

where « is as follows:
P

o0=——""—"—"""= 3.24
In Equation 3.23, H, is computed as follows [88]:
S W <Li + Lz’+2) (9 (L) + 9(L¢+2))
Hy = (3.25)

2 W (Li + Li+2> o
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Table 3.3: Overview of DSSHDR network architecture

Layer Stage # filters | Filter size | Conv. stride | Spatial pad | Activation
1 conv+act 64 (7,7) (2,2) (3,3) ReLLU
2 conv-+bn-+act 128 (5,5) (2,2) (2,3) LeakyReLU
3 conv-+bn-+act 256 (5,5) (2,2) (2,3) LeakyReLU
4 | conv+bn+act 512 (3,3) (2,2) (1,1) LeakyReLU
5 conv+bn+-act 512 (3,3) (2,2) (1,1) LeakyReLU
6 conv+bn+-act 512 (3,3) (2,2) (1,1) LeakyReLU
7 conv+bn+act 012 (3,3) (2,2) (1,1) LeakyReLU
8 conv+bn-+act 512 (3,3) (2,2) (1,1) LeakyReLU
9 conv+bn-+act 512 (3,3) (1,1) (1,1) LeakyReLU
10 | conv+bn+act 512 (3,3) (1,1) (1,1) LeakyReLU
11 | conv+bn+act 512 (3,3) (1,1) (1,1) LeakyReLU
12 | conv+bn+act 256 (3,3) (1,1) (1,1) LeakyReLU
13 | conv+bn+act 128 (3,3) (1,1) (1,1) LeakyReLU
14 | conv+bn+act 64 (3,3) (1,1) (1,1) LeakyReLU
15 conv-tact 3 (3,3) (1,1) (1,1) LeakyReLU

where W is the Gaussian weighted function (¢ = 0.2 in our study), and g is
the inverse camera response function.

The HDR formulation by Equation 3.23 uses a combination of H; which
is a traditional model based method, and Hy; which is a deep-learning based
method, to estimate HDR in all areas. H; can estimate HDR well for all areas
with high DoP [88]. Then we let Hy to estimate HDR for all areas with low
DoP, using the predicted pixels from the CNN. Additionally, normalization is
performed where necessary.

The DSSHDR network configuration adopts the 15 level autoencoder arhic-
tecture in [77]. The architecture consists of 8 levels for the encoder and 7 levels
for the decoder. In the encoder, the first level consists of a 2D convolutional
layer and a ReLU layer. The subsequent levels consist of a 2D convolutional
layer, batch normalization layer followed by a ReLU layer. In the decoder,
the first six levels consists of a 2D convolutional layer, batch normalization
layer followed by a LeakyReLU (negative slope = 0.2) layer. The final layer
consists of a 2D convolutional layer. We use skip connections between all the
encoder layers and their corresponding decoder layers. We use the feature

masking strategy in all the convolutional layers and up-sample the features in
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the decoder using nearest neighbor. The architecture outputs an HDR image.

Details on the network architecture is summarized in Table 3.3

3.5 Summary

In this chapter, we discussed our proposed methods to tackle the HDR recon-
struction problem. Our methods are a combination of hardware and software
approaches. We presented the polarization camera, and showed that the extent
of irradiance attenuation by a polarizer filter is similar to multiple exposures,
and thus aids in HDR reconstruction. Then we proposed two frameworks
to achieve one-shot image HDR reconstruction. The results of our proposed

methods are presented in Chapter 4 Experiments.
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Chapter 4

Experiments

This chapter first introduces the dataset used in our experiments; here we
describe the image processing pipeline used to create the images, then the
dataset statistics to provide an overview of our dataset. Next, the experimental
setups are discussed including the implementation details and the evaluation
metrics. Then, we present ablation studies to quantify the effectiveness of the
different components within our methods. Finally, we compare our method

against competing algorithms.

4.1 Dataset

4.1.1 TImage processing pipeline

Since there is a lack of a public dataset for training and testing HDR techniques
with polarized images, we collected a dataset. The dataset is collected by the
IMX250MYR (color) polarization camera, as described in Section 3.1. Dur-
ing data acquisition, the polarization camera is mounted on a sturdy tripod,
and the Spinnaker SDK acquisition provided by the camera manufacturer, is
launched with our custom script and settings summarized by Table 4.1. For
each scene, a high-resolution 2448x2048 colored image is captured at 17 expo-

sure times. The exposure times are:

to = [0.03,0.045,0.068,0.101,0.152, 0.228,0.342,0.513, 0.769, 1)
4.1
1.153,1.73,2.595, 3.592, 5.839, 8.758, 13.137, 19.705] ms

The lowest EV is selected at 0.03 ms, and each subsequent image is cap-

tured by increasing the exposure in multiples of 1.5. In total, each scene takes
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Table 4.1: Polarized capture settings

Aperture 16 FOV 58°x49°x73°
Focal length 8 Pixel format Polarized 8
Gain 0 Pixel range 0-255
Black level 2.22 ADC bit depth 12
Sensor size | 2464x2056 Frame rate 73
Image size | 2448x2048 | # Exposures 17

about 1 second to capture, where the overhead is mainly due to saving the
images into corresponding folders.

After scene capture, the raw data needs to be processed to reconstruct
HDR images, and to extract polarization information. This image processing
pipeline is shown in Figure 4.1a. The pipeline can be described as follows.
First, the raw image needs to be demosaiced in order to extract the four col-
ored polarization images (0°, 45°, 90°, and 135°). Since the physical layout
of the polarized sensor is composed of an array of filters arranged as a 2x2
matrix, the raw 2448x2048 colored image is demosaiced in the spatial domain
to extract four 1024x1224 polarization images. Then, an existing Bayer de-
mosaicing method [55] is applied to each polarization image to interpolate
the missing RGB values, and output colored polarization images. Figure 4.1b
shows the process of applying demosaicing on a 0.769 ms EV image. Second,
the DoP (p) and AoP (#) images which characterize the polarization state
of the light are computed from the four polarization images. The equations
applied to compute p and 6 have been described in Section 3.1. Figure 4.1c
and Figure 4.1d show a DoP and AoP image computed from the 0.769 ms EV
image, respectively. Third, the dataset is augmented by cropping four 512x512
patches from each polarization image, for improved readability. Figure 4.1e
illustrates the data augmentation step. Additionally, Figure 4.1f shows the de-
mosaiced and augmented multiple exposure images with the polarizer at 45°.
Finally, ground truth HDR images are created by first applying the ICRF to
linearize the relation between pixels and luminance. Next, we use the method
in [56] to merge the bracketed images for each polarization channel (0°, 45°,

90°, and 135°), and then apply a pixel-weighting function to fuse the four
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Demosaic

(a) Image processing pipeline

Raw 2448x2048 image

1024x1224x4 spatial demosaic images 1024x1224x4 color demosaic images

(b) Demosaic at EV 0.769 ms

(c) DoP at EV 0.769 ms (d) AoP at EV 0.769 ms (e) Augmentation

(f) Multiple-EV images at 45°

Figure 4.1: Image processing pipeline and results

images, which simultaneously map the pixels to the HDR domain [88]:
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where W is the Gaussian weighted function (o = 0.2), g is the ICRF, and

I gDR is a RGB three-channel ground truth HDR image with 32 bit float per

I0PR = (4.2)

channel.

4.1.2 HDR distribution

To distribute [ ;{DR, the OpenEXR method [30] is applied to store the HDR
information. We used Python’s OpenEXR library [67] to store the HDR, con-
tent with 32 bit float, to obtain image files with .exr extensions that can be

read with mainstream photo editing software.

4.1.3 Tone-mapping

To display the HDR content on an LDR display, we use the Durand [15]
and Photomatix TMOs to map the scene-referred HDR tones to the display-
referred LDR pixels. In our implementation, the Durand TMO parameters
are Gamma = 1.0, contrast = 2.0, saturation = 0.5, sigma-space = 2.0, and
sigma-color=2.0. The Photomatix TMOs selected are Enhanced and Detailed.

Figure 4.2 illustrates some tone-mapped ground truth images for visualization.

4.1.4 Dataset statistics

We build two datasets, namely the EdPolCommunityOutdoor dataset and the
UAPolCampusIndoor dataset. The datasets are collected using the Flir-BFS-
U3-51S4p polarization camera with Sony CMOS sensor IMX250MYR (color).

The EdPolCommunityOutdoor dataset is collected outdoors during day-
time under sunlight conditions. In total, it contains 50,048 LDR images and
736 HDR images. Specifically, 736 pairs of ground truth HDR and LDR im-
ages are available to train and test both DSMHDR and DSSHDR, networks.
The UAPolCampuslndoor dataset is collected indoors during the evening un-

der night time conditions. In total, it contains 13,056 LDR images and 192
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Figure 4.2: Tone-mapped ground truth images

HDR images. Specifically, 192 pairs of ground truth HDR and LDR images are
also available to train and test deep-learning based approaches. The DoP (p)
distributions and the fitted curves for the datasets are plotted in Figure 4.3a.
A mixture model and the expectation maximization algorithm [59] is used to
fit the DoP distributions. Shown in Table 4.2, the mixture model provided
the largest negative log likelihood than the single model, which indicates a
better model fit. We note that the mixture model fitted the EdPolCommuni-
tyOutdoor dataset better than the UAPolCampusIndoor dataset, and a more
complex mixture model for the UAPolCampusIndoor dataset can improve the
model fitting accuracy. The mixture model for the DoP distribution is given
by:

f=w-y+(1—-w)-U (4.3)

where w is the weight of the distributions, v is the Gamma distribution, and
U is the uniform distribution. In our implementation for the EdPolCommuni-
tyOutdoor dataset: w = 0.934, v, = 6.264, 73 = 0.023, Ugqrr = 0.0 and Uepq
= 1.0. We note that Equation 4.3 is a general case that considers the presence

of shot noise, as will be explained shortly. For the EdPolCommunityOutdoor
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Figure 4.3: Data statistics

Table 4.2: Negative log likelihood of different curve fitting model

Distribution Model neg-log likelihood
EdPolCommunityOutdoor | Gamma-+Uniform -548.895
UAPolCampusIndoor Gamma-+ Uniform -118.458

dataset, f in Equation 4.3 is predominantly weighted by the Gamma distri-
bution since its weight w is 0.934, and thus the data can be explained well
with only the Gamma distribution. However, in our implementation for the
UAPolCampusIndoor dataset: w = 0.491, v, = 8.278, v = 0.009, Ustort =
0.0 and U,,q = 1.0. Due to the presence of shot noise that will be explained
shortly, the general case represented by Equation 4.3 is more applicable for
fitting the UAPolCampusIlndoor data as it weights the Gamma distribution
by w = 0.491 and the Uniform distribution by (1 — w) = 0.509.
Interestingly, the indoor poorly-lit scenes have a higher weight for the uni-
form distribution than the outdoor well-lit scenes. A closer inspection of the
indoor images in the UAPolCampuslndoor dataset reveals there are visible
noise streaks present, as shown in Figure 4.3b. This is the effect of shot noise
as it is predominant when insufficient light reaches the sensor due to an ex-

posure that is too brief for the lighting condition. The shot noise results in
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Figure 4.4: Study on effect of noise on DoP distribution over four runs

random pixel variations that contribute to a higher DoP, but do not indicate
that the scene truly has a higher measure of polarization. In particular, we
verified through an experiment that the shot noise can be modelled by an uni-
form distribution. In the experiment, the polarization images L, Lo, L3, Ly
are generated by random numbers sampled from a uniform distribution over
[0,1], and is used to compute the DoP using Equation 3.3. Figure 4.4 plots
the DoP distribution over four runs where in each run, the DoP is computed
from random generated pixel values to represent shot noise. Visually, we can
observe that the resultant DoP distribution generated from shot noise is gen-
erally uniformly distributed. Finally, we take note of the observation that
additional processing is required to account for shot noise when using the Flir-
BFS-U3-515S4p polarization camera to capture poorly-lit scenes, such as the
ones in our UAPolCampusIndoor dataset.

In our study, we focus on HDR reconstruction for outdoor scenes. We

trained and evaluated our network using the EdPolCommunityOutdoor dataset.
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4.2 Experiment setups

4.2.1 DSMHDR implementation details

The framework is implemented using Chainer, where the up- and down-exposure
models are trained on NVIDIA GeForce GTX 1080 Ti, AMD Ryzen Thread-
ripper 1950X 16-Core Processor 32 GB RAM. Our implementation is an exten-
sion of the existing code originally implemented with Chainer, and is publicly

available for download®.

4.2.2 DSSHDR implementation details

The framework is implemented using PyTorch and trained on NVIDIA GeForce
GTX 1080 Ti, AMD Ryzen Threadripper 1950X 16-Core Processor 32 GB
RAM. Our implementation is an extension of the existing code originally im-

plemented with PyTorch, and is publicly available on Github?.

4.2.3 FEvaluation metrics

We evaluate the performance using different metrics. To evaluate the quality of
the HDR images, we used the popular HDR-VDP2 [48] metric. We normalize
the predicted and reference ground truth HDR images [49]. From the HDR-
VDP2 metric, the Q score is reported, and the visibility probability map can
be plotted. This map describes how likely it is for a difference to be noticed
by the average observer, at each pixel. Warm values such as red in the map
indicate high probability differences (undesired), while cold values such as blue
indicate low probability differences (desired). Additionally, we evaluate the
performance of the HDR images using the mean squared error (MSE) metric,
as adapted from other works [43], [77]. Then to evaluate the accuracy of the
HDR tone-mapped LDR images, we used the popular PSNR, SSIM [100] and
FSIM [98] metrics.

'Link to source code: http://www.cgg.cs.tsukuba.ac.jp/ endo/projects/DrTMO
2Link to source code: https://github.com/marcelsan/Deep-HdrReconstruction
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4.3 Ablation study

4.3.1 DSMHDR: study on framework

In this experiment, we validate the effect of the pre-processing step imple-
mented by Equation 3.25, to fuse the four polarizer orientation LDR images
before feeding it to the network. The ablation study is performed by consid-
ering three different cases. First, in the case of DSMHDR - Ip.;, we removed
the pre-processing step, and trained the network to estimate an HDR image
from an LDR image at a single polarizer orientation. Second, in the case of
Ipey,, we removed the network and estimated an HDR image with only the pre-
processing step. Third, in the case of I.nanner, We removed the pre-processing
step and the network, and showed a single polarizer orientation image.
Figure 4.5 illustrates the qualitative result for the ablation study. We can
observe that the case of DSMHDR - Ip., shown in Figure 4.5¢ reconstructs
fewer details compared to DSMHDR, which is reconstructed with Ip., as the
input image (shown in Figure 4.5d). It is because DSMHDR - Ip,, uses only
a single LDR image as input which conveys less information, and thus tends
to neglect textures and local contrasts. On the other hand, with DSMHDR, it
constructs an intermediate HDR image from the four LDR, images with four
different polarizer angles, which represent an information-rich input. These
four images effectively correspond to four different exposure times on a per-
pixel basis, and can thus better reveal scene details and color contrast. We
can also observe that the case of Ip., shown in Figure 4.5b remains saturated
with limited details present compared to DSMHDR. Therefore, CNN predic-
tion by training the network is required for a better HDR recovery. Next, we
can observe that the case of I unne shown in Figure 4.5a reveals few details
compared to DSMHDR, and has overall the worst performance. This is ex-
pected as I.panner is simply a single LDR polarizer orientation image directly
captured by the camera without any processing. Also, when comparing I panner
and Ipe, it reveals that Ip., is a more informative and better input with more
details. The quantitative results shown in Table 4.3 are aligned with our ob-

servations. It indicates that DSMHDR (last row) achieves the best results.
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(a) Ichannel (b) Ipep (¢) DSMHDR - Ipey ) DSMHDR ground truth

Figure 4.5: Qualitative results of DSMHDR and its variants. Example image
from the test dataset where the image details are better restored from left to
right. For comparison, the ground truth image is in the last column. The

Durand TMO is used.

Table 4.3: Quantitative results of DSMHDR model variants.
PSNR | SSIM | FSIM | HDR-VDP2
Lehannel 11.76 | 0.59 | 0.87 44.85
Ipes [88] 15.42 | 0.67 | 0.89 45.72
DSMHDR - Ipe, | 20.61 | 0.80 | 0.90 49.56
DSMHDR 25.35 | 0.91 | 0.94 55.26

Additionally, the deconvolution interpolation operation produces clearer and

smoother images.
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Figure 4.6: Qualitative results of different loss functions, where our choice of
l{y + SSIM loss for DSMHDR - Ip.;, restores more details.

Table 4.4: Quantitative results of different loss functions of DSMHDR - Ip.,
PSNR | SSIM | FSIM | HDR-VDP2

12 17.64 | 0.78 | 0.91 48.48
¢, + SSIM | 20.61 | 0.80 | 0.90 49.56

4.3.2 DSMHDR: study on loss function

In this experiment, we compare the performances of our method with different
loss functions. To solely analyze the effect of each loss function, we use the
model DSMHDR - Ip., for analysis. Qualitative results are illustrated in
Figure 4.6 where ¢; + SSIM loss is better at preserving details. This is also
reflected by the quantitative results shown in Table 4.4. Therefore, we train

the DSMHDR model using £; + SSIM loss.

4.3.3 DSSHDR: study on hyperparameter selection

In this experiment, we validate the model design choice for the HDR formu-
lation, which is performed by comparing the following variants of the HDR

formulation:

(a) DSSHDR (i.e., H=a-H;+ (1 —«)- Hg). The full HDR formulation,
which is the combination of traditional model based and deep-learning

based HDR reconstruction results.

(b) DSSHDR w/o H; (i.e., H = H;). We remove the traditional model
based result in this variant, and obtain the final HDR image H using
our deep-learning based result to show the effect of polarimetric informa-

tion in comparison with the regular images in traditional deep-learning
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Figure 4.7: Qualitative results of DSSHDR hyperparameter selection. The
DSSHDR model formulates HDR using a combination of the traditional model
based method H;, and the deep-learning based method H,; to estimate HDR
in all areas. In contrast to L. and DSSHDR w/o H;, DSSHDR obtains results
with better details that is more closely matched to the ground truth image.
The Photomatix Enhanced tone-mapping operator is used.

methods.

The HDR formulation with (a) is effective for estimating HDR values.
As shown in Figure 4.7, compared with the input L., (b) can restore more
details as our CNN uses the polarimetric information as a prior. However, (b)
suffers color distortions, and is an overall darker image with limited recovery of

details in the poorly exposed regions. On the other hand, (a) can recover better
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Table 4.5: Quantitative results of DSSHDR hyperparameter selection (the

higher the better, except for MSE)

PSNR | SSIM | FSIM | HDR-VDP2 | HDR-MSE

DSSHDR w/o Hy | 19.14 | 0.77 | 0.87 51.19 0.0341
DSSHDR 22.66 | 0.89 | 0.94 56.16 0.0071

(a) c2 (b) cin + con

Figure 4.8: HDR-VDP2 probability maps of DSSHDR hyperparameter selec-
tion. Cold values such as blue indicate imperceptible differences to be noticed
by the average observer (desired). Warm values such as red indicate percep-
tible differences to be noticed by the average observer (undesired). Overall,
C1n + C2, performs better than the other configurations with the most imper-
ceptible difference (blue) show in the images.

details in both under- and over-exposed regions, and alleviate color distortions
and visible artifacts. An explanation for the removal of color distortions in
(a) is that DoP is a mask shared among the colored channels, and thus can
enforce consistency between images which helps to remove the colorization
artifacts for a better HDR reconstruction. The quantitative results are shown
in Table 4.5, and is aligned with the observation that (a) achieves a better
performance. The key difference between these two variants is the effect of

DoP. In the (a) variant, DoP is used as a strong accurate prior to recover HDR,
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where for regions with high DoP the traditional model based method recovers
HDR details well compared to the deep-learning based method. Therefore,
we achieve HDR formulation using the (a) variant. Additionally, we show the

HDR-VDP2 probability maps for the different configurations in Figure 4.8.

4.3.4 DSSHDR: study on input mask

In this experiment, we evaluate the model design choice for the input mask. In
particular, we compare the performances of our input mask K with a Gaussian
input mask G defined by:

1

oV 2T

z—p

e~ Cz)’ (4.4)

G —

where 0 = 0.5 and = 0.5. We selected a Gaussian input mask for comparison
because it can serve as a soft mask to identify pixels in the mid-range values
as well-exposed, while identify pixels in both dark and bright ends as poorly-
exposed and thus requires CNN prediction. The Gaussian mask is centered
at u = 0.5 with a distribution of ¢ = 0.5. This is different than K which
identifies all pixels below a threshold value as well-exposed, and only pixels
in the bright end as poorly-exposed. Qualitative results are illustrated in
Figure 4.9 where the results from using K reveals better textures and are
more closely matched to the ground truth. On the other hand, using G results
in a overall brighter image and reveals fewer textures. This is also reflected
by the quantitative results shown in Table 4.6. One possible explanation for
a limited texture recovery with the input mask G is that our dataset mainly
consists of bright pixels due to the collection of images in outdoor scenes, and
thus there is insufficient dark pixels in the dataset to train the under-exposed
pixels. Additionally, there are significant noise present in the dark regions of
an image that cannot be handled properly by the current setup. Thus, the
network will try to predict based on incorrect pixel values, thus leading to
poor results. Instead, the input mask K considers HDR recovery for only the
bright regions, and predominantly address the recovery of the dark regions by
the traditional model based method. Therefore, we train the DSSHDR model

using K as our mask function, which we apply to the input image.
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Figure 4.9: Qualitative results of different input masks, where our choice of K
mask for DSSHDR restores more details.

Table 4.6: Quantitative results of DSSHDR mask function selection (the higher
the better, except for MSE)

PSNR | SSIM | FSIM | HDR-VDP2 | HDR-MSE
G | 2198 | 0.86 | 0.92 55.18 0.0115
K | 22.66 | 0.89 | 0.94 56.16 0.0071

4.4 Competing Algorithms

We evaluate our method against the following six popular state-of-the-art HDR

reconstruction algorithms.

1. ENet [49]: This is a one-shot single output method that reconstructs an
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HDR image from a single exposure LDR image using a novel three-branch
CNN. The three branches of the network extract global, semi-local and
local image features, respectively to recover missing details in the satu-
rated regions. To reduce the effects of blocking artifacts that may arise
from deconvolutions, and banding artifacts that may arise from nearest-
neighbour upsampling, the architecture avoids the use of upsampling
layers to reduce the aforementioned artifacts. Publicly available code?

and author provided weights are used in the comparison study.

2. HDRCNN [16]: This is a one-shot single output method that maps
the HDR image from a single exposure LDR image using a U-Net like
architecture. The network predicts values for the over-saturated regions
using a fixed mask, and later blends the prediction with the input LDR
image for the unsaturated regions. Publicly available code* and author

provided weights are used in the comparison study.

3. HDRCNN-Mask [77]: This is a one-shot single output method that
recovers the HDR image from a single exposure LDR image with an
autoencoder structure as well, but this approach predicts values in the
saturated regions with an adaptable mask. The adaptable mask is gen-
erated by a feature masking mechanism that updates the mask at each
convolutional layer to better recover the missing details in the saturated
areas and to reduce visible artifacts. Publicly available code® and au-
thor provided weights are used in the comparison study. Additionally,

fine-tuning of the models are also performed for the study.

4. DRCP [43]: This is a one-shot single output method that reconstructs
an HDR image from a single exposure LDR image by incorporating do-
main knowledge about the image pipeline to train three specialized net-
works that reverses the image formation steps. Namely, a dequantization

network to reduce the quantization artifacts in the input LDR image, a

3Link to source code: https://github.com/dmarnerides/hdr-expandnet
4Link to source code: https://github.com/gabrieleilertsen/hdrcnn
°Link to source code: https://github.com/marcelsan/Deep-HdrReconstruction
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linearization network to estimate the CRF, and a hallucination network
to reconstruct the saturated contents due to dynamic range clipping.
Publicly available code® and author provided weights are used in the

comparison study.

5. DrTMO [17]: This is a one-shot multiple output method that restores
an HDR image from a single exposure LDR image using a novel encoder-
decoder architecture. The encoder consists of 2D convolutions, and the
decoder consists of 3D deconvolutions to generate consistent images with
different exposures. The network synthesizes multiple LDR images with
different exposures from a single exposure image, which are then post-
processed to generate an HDR image using standard merging algorithms.
Publicly available code” and author provided weights are used in the

comparison study.

6. PHDR [88]: This is a one-shot single output method that directly maps
to an HDR image from four LDR polarization images acquired at a single
exposure value. To the best of our knowledge, this is the only existing
work to reconstruct HDR images directly from polarization images. This
is a non-learning approach that computes an HDR image heuristically
based on the observation that images taken at different polarization an-

gles are similar to images taken at different exposures.

4.5 Results
4.5.1 DSMHDR vs. State-of-the-art methods

In this experiment, we compare our DSMHDR results with the state-of-the-
art algorithms described in Section 4.4. DSMHDR is a deep-learning based
method that combines the LDR images to form an intermediate HDR for net-

work input. Then, the network outputs multiple LDR images, each covering

6Link to source code: https://github.com/alex04072000/SingleHDR
"Link to source code: http://www.cgg.cs.tsukuba.ac.jp/ endo/projects/DrTMO
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(a) HDRCNN (b) ENet (c) DrTMO  (d) ground truth

Figure 4.10: Qualitative comparative results with state-of-the-art methods.
DSMHDR (ours) in Figure 4.11 recovers the most details. The Durand TMO
is used.

a different luminance range, which are then merged to output an HDR im-
age. Figure 4.10 and 4.11 illustrates the qualitative result for the comparative
study. We can observe that HDRCNN [16] results tend to be dim, and the
network is unable to restore details in the saturated regions. The ENet [49]
generates overly-bright and smooth results, as it over-enhances the extracted
illumination features. It also fails to recover details which reside in the over-
exposed regions. The results of DrTMO [17] suffer from blocking artifacts

and can not preserve details in the saturated areas. The DRCP [43] shares
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(a) DRCP (b) PHDR (c) DSMHDR  (d) ground truth

Figure 4.11: Qualitative comparative results with state-of-the-art methods.
DSMHDR (ours) recovers the most details. The Durand TMO is used.

similar limitations and the results lack color consistency, as in some cases the
generated colors are unnatural with artifacts. The PHDR [88] results tend to
be bright, and the method cannot recover the information in the saturated
regions. Since our method fuses four polarization images captured in a snap-
shot, where the images also correspond to those captured under four different
exposure times, the given input is able to utilize information in the unsatu-
rated pixels from one or more of the images to reveal details. As a result, the
polarized input images collectively convey richer details compared to an image

taken by a conventional camera. This fusion mechanism helps to reconstruct
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Table 4.7: Quantitative comparative results with state-of-the-art methods.
Underline indicates the best performing state-of-the-art.

Methods PSNR | SSIM | FSIM | HDR-VDP2
HDRCNN [16] 14.18 | 0.40 | 0.71 47.49
ENet [49] 15.37 | 0.67 | 0.88 47.24
DrTMO [17] 16.16 | 0.64 | 0.89 47.70
DRCP [43] 17.24 | 0.70 | 0.90 51.46
PHDR ([88] 15.42 | 0.67 | 0.89 45.72
DSMHDR (ours) | 25.35 | 0.91 | 0.94 55.26

details, and outputs visually pleasing textures.
In addition to visual evaluation, the quantitative results are summarized
in Table 4.7. It shows that our method, in the last row, performs favorably

compared to state-of-the-art methods under various evaluation metrics.

4.5.2 DSSHDR vs. State-of-the-art methods

In this experiment, we compare DSSHDR results with the state-of-the-art al-
gorithms described in Section 4.4. The DSSHDR is a deep-learning based
method that compute the mean of the LDR images and feed it to the network,
then the network directly outputs a single HDR image. This is different than
DSMHDR which provides a different input image, and outputs multiple LDR
images that are then post-processed to output an HDR image. Figure 4.12,
Figure 4.13 and Figure 4.14 illustrates the qualitative result for the compar-
ative study. We can observe that images reconstructed with DSSHDR can
overall recover better details in the saturated regions, and are free from color
distortions and visible artifacts. The ENet [49] result tends to be overly-bright
and smooth, as it over-enhances the extracted illumination features. Addition-
ally, it’s unable to improve HDR estimation for properly exposed regions. The
DrTMO [17] method suffers from blocking artifacts, and has difficulty recov-
ering details in all properly exposed and poorly exposed regions. The DRCP
[43] method can restore details in the poorly exposed regions, but exhibits
color distortions. Furthermore, the result is generally darker, thus contents

lost in the under-exposed regions can not be restored. The PHDR, [88] result
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(b) DrTMO (c) DRCP (d) ground truth

Figure 4.12: Qualitative comparative results with state-of-the-art methods
(also in Fig. 4.13 and 4.14). DSSHDR (ours) in Fig. 4.14 recovers the most
details. The Photomatix Enhanced TMO is used.

is overall bright where pixels remain lost in the poorly exposed regions.

The HDRCNN [16] method can recover some contents in the over-exposed
sky region, but the result is overall dim and presents visual artifacts. The
HDRCNN-Mask [77] method follows the approach by HDRCNN to estimate
details in over-exposed regions, and then reconstruct the final HDR image by
combining with the input. However, unlike HDRCNN, HDRCNN-Mask pro-
poses a feature masking mechanism to propagate valid features for properly

exposed pixels. The HDRCNN-Mask-pretrain [77] uses the pretrain weights,
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Figure 4.13: Qualitative comparative results with state-of-the-art methods
(also in Fig. 4.12 and 4.14). DSSHDR (ours) in Fig. 4.14 recovers the most
details. The Photomatix Enhanced TMO is used. HDRCNN-M! is HDRCNN-
Mask-pretrain. The Photomatix Enhanced TMO is used.

provided by the author, to perform inference to generate the output image.
The result is overly-smooth with color artifacts, and has difficulty reconstruct-
ing the boundaries of the cloud in the over-exposed sky area. Also, the content
lost in the under-exposed tree areas can not be reconstructed. The HDRCNN-
Mask-finetune [77] initializes the network with the pretrain weights, freezes the
batch normalization parameters, and fine-tunes on our polarization dataset.
The result is less smooth where the boundaries of the cloud in the over-exposed

sky area can be better reconstructed. However, it also suffers from color ar-
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Figure 4.14: Qualitative comparative results with state-of-the-art methods
(also in Fig. 4.12 and 4.13). DSSHDR (ours) recovers the most details.
HDRCNN-M? is HDRCNN-Mask-finetune; HDRCNN-M? is HDRCNN-Mask-
retrain. The Photomatix Enhanced TMO is used.

tifacts, and remains unable to reconstruct content lost in the under-exposed
trec areas. The HDRCNN-Mask-retrain [77] trains the network from scratch
on our polarization dataset. Similarly, the result exhibits color artifacts and
difficulty in reconstructing details in the saturated regions of the image. On
the other hand, the proposed DSSHDR method presents color consistency, free
of visible artifacts, and overall able to recover richer textures in both under-
and over-exposed regions. This is because the proposed DSSHDR method is

designed to handle polarization images, as we have integrated the polariza-
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Table 4.8: Quantitative comparative results with state-of-the-art methods (the
higher the better, except for MSE). Underline indicates the best performing
state-of-the-art.

Methods PSNR | SSIM | FSIM | HDR-VDP2 | HDR-MSE
ENet [49] 18.24 | 0.84 | 0.91 49.45 0.0429
DrTMO [17] 2042 | 0.82 | 0.88 53.28 0.0591
DRCP [43] 17.99 | 0.80 | 0.92 49.25 0.0784
PHDR [88] 15.48 | 0.67 | 0.89 45.92 0.0639
HDRCNN [16] 22.32 | 0.86 | 0.92 53.66 0.0391
HDRCNN-Mask-pretrain [77] | 16.92 | 0.79 | 0.90 47.72 0.0470
HDRCNN-Mask-finetune [77] | 17.06 | 0.79 | 0.90 47.95 0.0449
HDRCNN-Mask-retrain [77] | 17.03 | 0.71 | 0.89 47.70 0.0440
DSSHDR (ours) 22.66 | 0.89 | 0.94 56.16 0.0071

tion information (i.e., DoP) into the network during training and inference to
formulate the final HDR image. In addition to visual evaluation, the quan-
titative results are summarized in Table 4.8. Since the proposed DSSHDR
method uses DoP as a strong accurate prior to help HDR recovery for po-
larization images, it performs favorably compared to state-of-the-art methods
under various evaluation metrics, including both HDR (HDR-VDP2, MSE)
and HDR tone-mapped LDR evaluation metrics (PSNR, SSIM, FSIM).

Note that the results for the competing algorithms in Table 4.8 differ than
those in Table 4.7. This is because of the input image used to evaluate the
algorithms in the two tables are different. In Table 4.8, the input image to
the algorithms is the mean of the four polarization filter images computed by
Equation 3.13, as the study focus is on the effectiveness of the proposed fea-
ture masking mechanism. On the other hand, in Table 4.7, the input image to
the algorithms is a single polarization filter image, as the study focus is on the
effectiveness of the proposed pre-processing step to generate an informative in-
put image. Furthermore, the input image used in Table 4.7 can be more closely
matched to the input image used in DRCP [43], while the input image used in
Table 4.8 can be more closely matched to the input image used in HDRCNN
[16]. Thus, the difference in the best performing state-of-the-art. Additionally,
we show the HDR-VDP2 probability maps for the different configurations in
Figure 4.15. Results further confirms that our method performs better than
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Figure 4.15: HDR-VDP2 probability maps of DSSHDR and the state-of-the-
art methods. Cold values such as blue indicate imperceptible differences to
be noticed by the average observer (desired). Warm values such as red in-
dicate perceptible differences to be noticed by the average observer (unde-
sired). Overall, DSSHDR (ours) performs better than the other configurations
with the most imperceptible difference (blue) and details shown in the im-
ages. HDRCNN-M! is HDRCNN-Mask-pretrain; HDRCNN-M? is HDRCNN-
Mask-finetune; HDRCNN-M? is HDRCNN-Mask-retrain. The Photomatix
Enhanced TMO is used.

the competing algorithms with the most imperceptible difference (blue) and
details illustrated in the image. We note that Figure 4.15d is mainly blue, but

it reveals little boundaries of the clouds in the sky.

4.6 Summary

In this chapter, we introduced a polarization HDR, dataset called EdPolCom-
munityOutdoor dataset, which we constructed and used to evaluate our two
proposed methods: DSMHDR and DSSHDR. Then we presented the results of
the ablation studies to quantify the effectiveness of the different components
within our methods. In particular, for the DSMHDR method, we investi-
gated the effect of the pre-processing step and the loss function terms. For
the DSSHDR, we investigated the effect of the design choice for the HDR for-

mulation equation, and for the input mask function. Finally, we presented
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the results of the comparative study against state-of-the-art algorithms, and
showed that our method can outperform the competing algorithms.

In addition, the experiments performed correspond to testing our two im-
portant hypothesis: First, we showed that it is possible to perform HDR image
reconstruction using the polarization camera. Second, given the polarization
information from the DoP image, we are able to utilize a deep-learning based

approach and showed that this information helps with HDR reconstruction.
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Chapter 5

Conclusion

5.1 Overview

In this thesis, we have proposed two novel methods based on polarimetric in-
formation for HDR reconstruction. Our methods explores polarimetric cues
obtained by a polarization camera to enhance the reconstruction in both under-
and over-saturated regions, which is a long-standing challenge in computer vi-
sion and robotics applications. We first studied the feasibility of creating HDR
images from a polarization camera that has on-chip multi-directional polariza-
tion filters. We exploited the fact that in environments with polarized lighting,
the effect of the polarizers is analogous to that of imaging with multiple ex-
posures. This gives rise to the possibility of reconstructing an HDR image
from polarization images. In particular, we presented a radiometric model of
the polarization camera, with which we can estimate the expected increase in
dynamic range as a function of the polarimetric cue available from the polar-
ization camera.

Then we proposed two deep-learning based methods to achieve deep snap-
shot HDR reconstruction. The first method, DSMHDR, leverages the prior
knowledge that different polarization images are similar to different exposure
images, which allows us to combine the multiple polarization images at the
input, and feed it to the network for HDR reconstruction. Intuitively, this
method transforms the input to the HDR space, to convey more information
that can help with reconstructing HDR images. However, the first method only
utilizes the polarization image information for reconstruction, while other po-
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larimetric cues are also available from the polarization camera, such as the
DoP. Therefore, in our second method, DSSHDR, we used the polarization
images and the DoP image to reconstruct HDR images. In particular, we use
the DoP image as a mask for the feature masking mechanism, to identify valid
content to propagate through the CNN. Then we blend the predicted HDR
image with the HDR image generated by a traditional model based approach
to formulate the final HDR result.

Due to the lack of polarization images for HDR creation, we collected polar-
ization images of outdoor scenes. We then processed the images to create the
pairs of ground truth HDR and HDR tone-mapped LDR images. To our knowl-
edge, this is the first polarization image dataset available for HDR reconstruc-
tion. Our experimental results on the polarization image dataset showed that
our method demonstrated better quantitative and qualitative performances

over state-of-the-art methods.

5.2 Limitation and Future Work

Despite the aforementioned success, currently the proposed methods are not
sufficiently capable of handling scenes with extremely high dynamic range.
This is mainly because such scenes are rare in our training dataset. In the
future, we will augment our training dataset to incorporate such extreme cases
to improve the performance. In addition, it will be interesting to explore the
use of the AoP image, as an additional polarimetric cue, to further enhance

the image dynamic range and HDR recovery.
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Appendix A

A.1 Algorithm Hyperparameters

All architectures and hyper-parameters for our experiments are listed here
(in case a hyperparameter isn’t mentioned, its default value provided by the

framework was used):

A.1.1 DSBDR

1. learningRate: 2e-4

2. numberOflterations: 100

3. Optimizer: ADAM with 5; = 0.5
4. batchSize: 1

5. weightInitialize: zero mean Gaussian noise with o = 0.02

A.1.2 DSSHDR

1. learningRate: 2e-4

2. numberOfTterations: 150

3. Optimizer: ADAM with learning rate factor of 2.0
4. batchSize: 4

5. weightInitialize: Xavier
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A.1.3 HDRCNN-Mask-finetune

1. learningRate: 2e-4

2. numberOflterations: 60

3. Optimizer: ADAM with learning rate factor of 2.0
4. batchSize: 4

5. weightInitialize: HDRCNN-Mask weights with batch normalization pa-

rameters freeze

A.1.4 HDRCNN-Mask-retrain

1. learningRate: 2e-4

2. numberOfTterations: 100

3. Optimizer: ADAM with learning rate factor of 2.0
4. batchSize: 4

5. weightInitialize: Xavier
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