Guiding Inlining Decisions Using Post-Inlining
Transformations

by

Erick Eduardo Ochoa

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

(© Erick Eduardo Ochoa, 2019

Abstract

Inlining strategies in just-in-time (JIT) compilers have relied on a mixture of
heuristics and frequency information to discriminate between inlining candi-
dates. Even though nested inlining is the norm in JIT compilers, modeling
inlining as a variation of the greedy knapsack algorithm provides sub-optimal
solutions. Recent advancements by Craik et al. [16] allow for solutions for
the nested inlining problem, however, they require grading inlining candidates
based on an abstract notion of “benefit”. In this thesis, we define this abstract
notion of “benefit” through the use of static analysis and frequency information.
The choice of using static analysis instead of heuristics has consequences on
the guarantees that an inlining strategy provides and on the compilation time
incurred by the compiler. We show that our proposed static analysis is compa-
rable to heuristics in terms of compilation time, memory resources used during
compilation, and impact on run time. While our proposed inlining strategy
increased run time by 4% compared to the default inlining strategies found in
the OpenJ9 Java Virtual Machine (JVM), our inlining strategy allows compiler
engineers to fine tune the abstract notion of “benefit” and provides human
readable reports that show why inlining decisions were taken. The number
of proposed inlining plans that differ between the heuristics and the static
analyses is small, however, it provides a lower bound for how more powerful

static analyses may improve inlining in the future.

i

Preface

We intend to publish the results of this thesis after future work and known
improvements have been made. The contents of Chapters 4, 5, and 6 fall under
a patent filed with the U.S Patent Office as A. Craik, E. Ochoa, J. N. Amaral,
K. Ali “Assessment of the benefit of post-inlining program transformation in
inlining decisions”, Patent Reference “P201803683US01”, filed on April 30,
2019. T was responsible for designing, building, and experimentally evaluating
the framework within the OpenJ9 JVM. A. Craik contributed to many technical
discussions and OpenJ9 specific advice. K. Ali was the supervisory author and
contributed to guiding the research direction of the project. J.N. Amaral was
the co-supervisor and also contributed to guiding the research direction of the
project. Many thanks to A. Craik, J.N. Amaral and K. Ali for proofreading
and help editing this thesis.

Another research result, which is not part of this thesis, but was completed
during my M.Sc program at the University of Alberta is a research project
published as T. Lloyd, A. Chikin, E. Ochoa, K. Ali, J.N. Amaral, “A Case
for Better Integration of Host and Target Compilation When Using OpenCL
for FPGAS”, Proceedings of Fourth International Workshop on FPGAs for
Software Programmers, in October 2017. This work introduced a series of
interconnected compiler transformations aimed at improving performance of
Field-Programmable Gate Array (FPGA) programs generated through high-
level synthesis of Open Compute Language (OpenCL). My roles on the project
included setting up and maintaining required infrastructure, implementing the
host analysis and transformation optimization passes, and the evaluation of
the project.

Another research result, which is not part of this thesis, also completed

1l

during my M.Sc program is a research project published as J.N. Amaral, E.
Borin, D. Ashley, C. Benedicto, E. Colp, J.H.S. Hoffmam, M. Karpoff, E.
Ochoa, M. Redshaw, and R.E. Rodrigues, “The Alberta Workloads for the
SPEC CPU 2017 Benchmark Suite”, 2018 IEEE International Symposium
on Performance Analysis of Systems and Software in April 2018. This work
introduces alternative workloads for the SPEC benchmarking suite aimed
at correcting overfitting in profile driven optimization evaluations. My roles
on the project included creating new workloads for the omnetpp benchmark,
mantaining infrastructure related to the evaluation, and running evaluation

scripts for multiple benchmarks with the new workloads.

v

To my family.

Acknowledgements

I would like to thank my supervisors, Dr. Karim Ali and Dr. J. Nelson Amaral,
for their patience and support throughout these three years. Their guidance
and support cannot be understated.

I would like to thank Andrew Craik for lending his expertise uncountable
number of times and answering so many of my questions promptly.

I would also like to thank to my friends and co-workers at the University of
Alberta (listed in alphabetical order): Zaheen Ahmad, Quinn Barber, Artem
Chikin, Shrimanti Ghosh, Adriana Hernandez, J. Fernando Hernandez, Ashley
Herman, Martin I. Oliveira, Ifaz Kabir, Marcus Karpoff, Braedy Kuzma,
Gustavo Leite, Bernard Llanos, Taylor Lloyd, Fernando Lopez de la Mora,
Mehran Mahdi, John Wood, and others that I've failed to mention. Thanks
for the many technical insight and discussions we had. But most importantly,
thank you for making these years fun.

I gratefully acknowledge the funding support of the IBM Center for Advance
Studies (CAS) Canada, the Government of Alberta, and the University of
Alberta.

vi

Contents

1 Introduction

1
2 Background 4
2.1 The Java Virtual Machine 4
2.1.1 Just in Time Compilation 4

2.1.2 The Java Bytecode D

2.1.3 Run Time Structures in the JVM 6

2.2 Eclipse OpenJ9 o 7
2.2.1 VPConstraints, 7

222 Profiler. 9

2.3 Data-flow Problems 9

2.3.1 Lattices 12
2.3.2 Abstract Interpretation L. 13
2.3.3 Interesting Run-Time Properties of Programs 13
2.4 Inline Substitution L. 14
2.4.1 Inlining Non-virtual Functions 14
2.4.2 Inlining Virtual Functions 14
2.4.3 Inlining Multiple Virtual Functions 15
2.5 The Knapsack Problem 16
2.5.1 The Greedy Solution to the Knapsack Problem . . . 16

2.5.2 The Dynamic Programming Solution to the Knapsack
Problem 16
2.5.3 Solving the Nested Knapsack Problem 17
2.5.4 Inlining Dependency Tree 17
2.6 Summaryo 19
3 Related Work 20
3.1 Inlining Strategies 21
3.2 Different Types of Analyses 24
4 IDT-Based Inliner 26
4.1 Building an Inlining Dependency Tree. 28
4.2 Dynamic Inlining Benefits 30
5 Estimating Run-Time Argument Values 33
5.1 Call Stack 33
52 Control Flow 35
5.3 Abstract Semanticso 39
5.3.1 Relating Argument Estimates to Call Sites 39

vii

6 Determining Possible Optimizations
6.1 Computing Constant String Length
6.2 Null-Check Folding
6.3 Instance Of Checking
6.4 CastFolding
6.5 Partial Evaluation 0.
6.6 Combining Static and Dynamic Benefits
6.6.1 Tuning
6.7 Summary
7 Evaluation
7.1 Experimental Setup
7.2 Following Best Practices
7.3 Measurements
731 RunTime
7.3.2 Compilation Time
7.3.3 Difference in Factors Influencing Inlining
7.3.4 Generated Code Size
7.3.5 Memory Usage,
74 Case Studies
741 arrayAtPut()
7.4.2 renderInlineArea()
7.4.3 regionMatches()
7.4.4 loadClassHelper()
7.4.5 StringBuilder()
746 getZero()o
8 Conclusion
8.1 Future Work oo
References

Appendix A Java Bytecode Abstract Semantics
A.1 Transfer Functions

viil

List of Tables

e B R i i e

= OO0 ~1O U LoD —

—_

—_

Values in abstract array at different line numbers 41
Method summary for Figure 6.2 45
Method summary for Figure 6.3 46
Method summary for Figure 6.4 47
Method summary for Figure 6.5 48
Method summary for Figure 6.6 49
Method summary for Figure 6.7 50
Example method summary to illustrate how argument estimates

and argument constraints interact00 0L 51
Method summary for Figure 6.9 54
Method summary for Figure 6.9 after future work 54
Warm up iterations and repetitions for each benchmark 57
Summary of JVM bytecodes 90

X

List of Figures

b
—_

Example of value propagation in which only range propagation
ispossible.
Factorial pseudocode
Data flow equations to solve for finding reachable definitions. .
Pseudocode for method test obtained from [29]
Pseudocode for method test with multiple virtual functions inlined.
Pseudo-code to illustrate properties of an Inlining Dependency
Tree (IDT)o o
IDT corresponding to Figure 2.6

[\OR N GN VN V]

Main algorithm of the proposed inliner.
Generating the IDT

Different cases of input abstract state transmission.
The computation of Lg for abstract states.
The computation of L; for abstract stacks.
The computation of L, for abstract arrays.
Example to illustrate abstract interpretation
Abstract stack containing abstract argument estimates. De-
rivedClass is known to be not null because its provenance is
from the instructionnew.

ST W o~ N SOtk

Pseudocode for generating method summaries
Example code to show branch folding constraints
Example code to show string length constraints
Example code to show null check constraints
Example code to show check cast constraints
Example code to show check cast constraints
Example code to show partial evaluation constraints
Abstract stack containing abstract argument estimates.
Example of branch being conditional on multiple arguments

N PO D
Yo RN RS SN JUN R

—_

Amount of budget allocated for inlining as a function of the
method’s size and compilation level is given by the variable
_callerWeightLimit. [21][{Inliner.cpp, Line 311]
Normalized run time: average of 10 runs for baseline, call ratio,
and benefit inliner 000000
Normalized compilation time: average of 10 runs for baseline
inliner, call-ratio inliner, and benefit inliner
Normalized generated code
Memory usageo
Java source for inlining candidate arrayAtPut().
Java source for inlining candidate renderInlineArea(). :
Java source for inlining candidate regionMatches().

S B
= W N

NN
00~ o

X

7.9 Java source for inlining candidate loadClassHelper ()
7.10 Java source for inlining candidate StringBuilder ().
7.11 Java source for inlining candidate getZero().

x1

List of Acronyms

AOT Ahead Of Time.

CG Call Graph.

IDT Inlining Dependency Tree.

JIT just-in-time.

JVM Java Virtual Machine.

LIFO last-in-first-out.

NUMA Non-Uniform Memory Access.
OS operating system.

VM Virtual Machine.

xii

Chapter 1

Introduction

Function inlining is a program transformation that replaces a call site with the
body of the function being called. It is considered an important transformation
for two main reasons: (1) it allows the compiler to eliminate the overhead of
invocation and frame allocation costs, and (2) it allows the compiler to further
optimize the inlined function into its calling context. These benefits are known
as the direct benefits and the indirect benefits of inlining, respectively. Inlining
is key in reducing run time because of these two benefits and in some cases
it may also help reduce program’s size. However, function inlining also has
its drawbacks: (a) applying function inlining indiscriminately may lead to
slower executions [44], (b) applying it to all invocations will never terminate
for recursive functions [39], and (c¢) inlining usually leads to an increase in
compilation time, and costs in program storage and transmission [10]. Therefore,
function inlining must be applied selectively.

Many strategies have been designed to apply inlining selectively. Each
of these strategies has its tradeoffs in the following areas: (a) compilation
time, (b) quality of generated code, (c) used resources, (d) maintainability,
and (e) extensibility. Contemporary JIT inlining strategies focus on estimating
the direct benefits of inlining using profile information and estimating the
indirect benefits of inlining by using heuristics [5], [25], [44]. These heuristics
include number of arguments, size of methods, inlining based on constant-
ness of arguments, discriminating against inlining polymorphic methods, and

not considering inlining beyond a certain stack depth. While heuristics may

provide a fast decision procedure to determine whether or not to inline a
function, heuristics may be difficult to generalize for different workloads [44].
Heuristics also lead to suboptimal decision making [25]. Furthermore, source-
level heuristics “do not consider the effect of optimizations applied to the body
of the called routine after inlining” [18].

Researchers have been pushing for analysis-driven inlining that provides
guarantees on the inlining process. For example, Hazelwood et al. [25] propose
an analysis to conditionally eliminate the weight given by a heuristic to an
inlining candidate. The weight assigned to an inlining candidate is restored (as
if the heuristic did not exist) if the inlining candidate has not taken advantage
of the static information provided by the heuristic [25]. Also, Shankar et al. [41]
propose an analysis to assign weights to inlining candidates depending on an
analysis to decrease the amount of objects allocated on the heap. However,
these analyses model only the semantics of interests (i.e., whether an object
will escape the stack, or whether devirtualization is likely to happen).

Dean et al. propose an inlining strategy that tentatively inlines a procedure
and matches the static information found in the caller with the optimizations
that took place [18]. Their analysis constrains optimizations to type of ar-
guments. The optimizations being considered are determining the targets of
dynamic dispatches, and constant propagation. However, their analysis per-
forms inlining before the analysis is capable of determining which optimizations
will take place. They resolve this issue by creating a database of optimizations
which is constrained by the type of the arguments. Inlining before the database
is populated might result in suboptimal decisions.

This work generalizes analysis to calculate which compile time optimizations
will take place (like inlining trials). However, unlike inlining trials, the calcula-

tion is obtained without performing an inlining trial. This thesis investigates

1. the compilation cost and the impact of running static analyses in a JIT

context

2. can static analysis be used to guide inlining decisions based on the indirect

benefits of inlining

The results of an experimental evaluation show that a fast static analysis can
be applied in the JIT context. The run time and memory usage is comparable
with state of the art inlining strategies. While it is possible to take advantage
of the static information provided in the code, the applicability of the analysis
is limited by its precision. We show that in industry benchmarks there are few
examples were our proposed inliner can take advantage of static information
to make inlining decisions. However, our inliner has other properties such as
extensibility and explainability which is of interest to compiler developers.

The contributions of this thesis include:

1. A fast framework for performing static analysis on Java bytecode.
2. Guarantees on the optimizations unlocked after inlining.

3. A ongoing open source contribution to the OpenJ9 project.

This thesis is organized as follows: Chapter 2 presents background infor-
mation on the JVM, JIT compilation, abstract interpretation, the knapsack
problem and their relation to inlining. Chapter 3 discusses related work and
provides a model to categorize different inlining strategies according to several
properties. Chapter 4 gives an overview of our proposed selective inlining
strategy, outlining how abstract interpretation and constraints take a part in
determining which optimizations will take place after inlining. Chapter 5 gives
in detail the semantics given to the java bytecode in order to estimate argu-
ments at call sites. Chapter 6 outlines the optimizations which are determined
at analysis time and how they are encoded into method summaries. Section 6.6
combines the processes described in Chapter 5 and Chapter 6 in order to
give a single numeric value to inlining candidates. Chapter 7 describes the
evaluation process and the limits of the proposed inlining strategy. Finally, the

conclusion and future work is found on Chapter 8.

Chapter 2

Background

This Chapter, discusses several properties of the JVM that are important
for understanding this thesis. Furthermore, it introduces the OpenJ9 JVM,
which is the platform where a prototype for the analysis is implemented. The
profiling frameworks and VPConstraint framework available in OpenlJ9 are
outlined as they both contribute to the scoring of inlining candidates. Data-
flow problems and abstract interpretation is related back to the VPConstraint
framework. Differences between inlining static functions and virtual functions

and differences in solutions to the knapsack problem are discussed.

2.1 The Java Virtual Machine

A JVM is is a Virtual Machine (VM) that enables a computer to run Java
programs as well as programs written in other languages that are compiled to
Java bytecode [46]. Different runtime services such as garbage collection and
native interfaces, are part of this execution environment [17]. While its interface
is thoroughly defined, its implementation is loosely defined to allow different
implementations. As a result of this, there are many different implementations
of JVMs including: HotSpot [27], OpenJ9 [22], Azul Zing JVM [8], Jikes
RVM [3], Kaffe [34], Maxine [9].

2.1.1 Just in Time Compilation

The Java Virtual Machine Specification does not specify the execution mode of
the bytecode [31]. Because the bytecode is architecture independent, initially
4

the JVM used interpreters to execute applications. However, even optimized
Java interpreters perform poorly when compared to compiled code [17]. As a
result, a majority of JVMs now use JIT compilation to reduce the overhead
introduced by interpretation. JIT compilation (or dynamic compilation) is an
optimization technique that compiles architecture independent bytecodes into
native code [7].

A JVM invokes the method-based JIT compiler, like the one found in
OpenlJ9, at the method level. Initially the JVM interprets all methods, but
when a given method is executed multiple times, the JVM triggers a JIT
compilation of the method. In some JVMs multiple re-compilations of a given
method, at increasing optimization levels, may be requested as the frequency of
execution of the method increases. At each level different code transformations

are attempted.

2.1.2 The Java Bytecode

JVMs execute architecture-independent bytecodes. The stack-based bytecode
used by the JVMs is usually obtained through compiling Java source into
bytecodes by a Java compiler. However, other languages and compilers also
target the JVM. The semantics of the bytecodes is described in the Java Virtual
Machine Specification [31].

The Java SE Specification [31] defines the following primitive data types
supported by the Java Virtual Machine:

e byte, whose value are 8-bit signed two’s-complement integers

e short, whose values are 16-bit signed two’s-complement integers
e int, whose values are 32-bit signed two’s-complement integers

e long, whose values are 64-bit signed two’s-complement integers
e char whose values are 16-bit unsigned integers

e float whose values are of the float value set or, where supported, the

float-extended-exponent value set
5

e double whose values are elements of the double value set or, where

supported, the double-extended-exponent value set

e boolean which have limited support in the JVM, and are converted to

int s

e returnAddress which is used by the JVM’s jsr, ret, and jsr_w instruc-

tions.

e references, which can point to arrays, classes or interfaces

2.1.3 Run Time Structures in the JVM

Instructions operate on several runtime data structures that are defined in the
Java Virtual Machine Specification. Of particular importance for this work, we

have the operand stack, the local variable array, and the stack frames.

Operand Stack
According to the Java Virtual Machine Specification:

Each frame contains a last-in-first-out (LIFO) stack known as its

operand stack.

The operand stack is empty when the frame that contains it is
created. The [JVM] supplies instructions to load constants or
values from local variables or fields onto the operand stack. Other
Java Virtual Machine instructions take operands from the operand
stack, operate on them, and push the result back onto the operand
stack. The operand stack is also used to prepare parameters to be

passed to methods and to receive method results.

The JVM is designed with security in mind and as such certain properties
are guaranteed to hold over the bytecode. Of particular importance is the fact
that “stack depth is known at every branching point, and two execution paths
merging at the same merge point must also have the same stack depth” [1].
This property is further outlined in the Java Virtual Machine Specification [31,
Chapter 5].

Local Variable Array

Each frame contains an array of variables known as its local variables.

The index of the first local variable is zero.

Frames

A frame is used to store data and partial results, as well as to
perform dynamic linking, return values for methods, and dispatch

exceptions.

A new frame is created each time a method is invoked. [...] Each
frame has its own array of local variables, its own operand stack, and
a reference to the runtime constant pool of the class of the current
method. The sizes of the local variable array and the operand stack
are determined at compile-time and are supplied along with the

code for the method associated with the frame.

2.2 Eclipse OpenJ9

In 2018 IBM open sourced the OpenJ9 JVM as the Eclipse OpenJ9 project [22],
[26]. It includes an open sourced subset of IBM’s Testarossa JIT [24]. Eclipse
OpenJ9 uses selective dynamic asynchronous compilation. The VM selects
methods to compile by inspecting method invocation counters and sampling
the execution stack. The methods selected for compilation are then placed into
the compilation queue. Multiple compilation threads query the compilation
queue for work while the VM is asynchronously running the application.
Dynamic asynchronous compilation uses the profiling and the value propa-
gation constraint frameworks. The next sections describe these frameworks in

detail.

2.2.1 VPConstraints

Value propagation is a compiler transformation that propagates the definition
of constant values to their uses. Value propagation can help alleviate register

pressure by removing register use, replacing register use with immediate values,
7

ra=20

2 if (p) 10
3 else a = -10
4 return a

)
1]

Figure 2.1: Example of value propagation in which only range propagation is
possible.

and pruning entire unreachable program paths which simplifies subsequent
analysis. In some cases, the analysis is not interested in just propagating the
exact value but propagating a safe approximation to the value.

The VPConstraints library is a set of C++ classes that are available in the
OMR project [21]. These set of classes model potential types and values that
can be expected at run-time.

For example, a value of type short is modeled by the VPShortConstraint
class which is a class that holds two integers that correspond to the lower and
upper bound that the value may hold.

For example, in Figure 2.1, the value returned can either be 10 or —10.
The value depends on the condition p, which is not known at analysis time.
Since VPShortConstraint work by modeling integer values as ranges, using
the VPConstraints library would indicate that the return value could be any
of the values in the range of [—10, 10].

Some operations that are valid with short data types are also modeled
. For example, the methods add() and subtract() take another VPShort-
Constraint. In this case, if the value 5 is added to the previously calculated
value, we would obtain the range [—5, 15]. Classes can be modeled according to
constraints on the class hierarchy. The least precise estimate for a class is the
Java primitive object Object. This corresponds to the T of the semi-lattice
which models classes. The rest of the semi-lattice corresponds to the class

hierarchy.

2.2.2 Profiler

Eclipse OpenJ9 has two different active profiling frameworks, the [Profiler, the
JITProfiler [6], [23]. These two sources of profile information are used during
inlining and compilation to determine which targets of virtual call sites are
visited often, which leads to determining hot regions of code.

The IProfiler framework is the least expensive profiling framework available
in OMR. It records branch biases in methods and the percentage of virtual
call-site targets during interpretation of Java bytecodes. The branch biases are
used to compute an estimate of basic block frequencies. Eclipse OpenJ9 uses
this information during inlining to determine which call sites are frequently
executed. The basic block frequencies are used to avoid inlining methods that
are called from basic blocks that have not been visited .

The JITProfiler is the most expensive profiling framework available in
OMR. The VM may decide to profile using the JITProfiler framework only
if the method is executed frequently enough. The JITProfiler compiles an
instrumented version of a method to record accurate basic block frequencies
and virtual method receiver types. The instrumented version undergoes limited
optimization and is interleaved with the corresponding uninstrumented version
of the code. The execution of the instrumented version is interleaved with
an optimized version of the code. A new low-overhead profiling framework is

currently in development by the OpenJ9 team [15].

2.3 Data-flow Problems

Data-flow problems are a kind of program analysis task that asks “what kind
of values a variable may hold at a particular point in the program” without
running the program itself. Data-flow problems are generally undecidable
and are closely related to the halting problem [30]. However, while data-flow
problems generally cannot be solved precisely, a solution to them can be
estimated safely and in finite time.

Different program optimization questions can be formulated as data-flow
problems. For example, which variables are alive, reachable expressions, and

9

which statements are dead can all be formulated as data-flow problems. The
implementation of these analyses would differ in what equations are used to
model instructions, and what domain these equations operate on. For example,
in variable liveness problems, the domain of the data-flow functions is P(v)
(i.e., the power set of variables). In reachable definitions, the domain of the
data-flow functions is P(v x L) (i.e., the power set of the cross product of
variables and labels in the program).

Reachable definitions and live variables would also differ on the equations
used to model instructions. For example, reachable definitions and live variables
model the assignment instruction. However, reachable definitions propagates
the information of variable definition to succeeding program points, while
variable liveness is interested in propagating variable assignments to preceding
program points. As such, how these analyses model the assignment instruction’s
impact on the program’s state would differ.

Solutions to data-flow problems typically model data-flow problems as a
recursive set of equations. Each equation represents a program state trans-
formation and takes as an input the program state at program point p and
outputs the program state at program point p+ 1. These equations are typically
called flow functions. These equations are restricted to operate on lattices, and
should be monotone. Different solutions for data-flow problems exist and vary
on their generality, complexity and precision [14], [30], [33], [35], [37], [38].

The set of recursive equations to be solved for Figure 2.2 can be found
on Figure 2.3 In this example, we want to find out what definitions (a tuple
of the form, (v, L) reaches the program points p. All nodes with multiple
incoming edges must perform the join operation (LI) on the values supplied by
the incoming edges. The join operation find the greatest lower bound for two
elements in the lattice. After that, all statements which are not assignment
statements will use the identity flow function (where the output data-flow facts
equal the incoming data-flow facts). Only the assignment statements will have
a flow function of the form f(X) = X M K UG where K and G are sets of
data-flow facts determined by the statements. K and G are normally called in

the literature the Kill and Gen sets because the K set will remove data-flow
10

N

entry

Po

ni

y4!

no

b2

ns

if (x!1=1)

Ny

U2

exit y =X Ps

Ps

g

x=x-1

Figure 2.2: Factorial pseudocode

11

0 = po
po MK, U{(z,m)} Epy
P MKy U{(y,n2)} C po

P2 Ups & p3

P2 Ups & pa

pa MKy U{(y,n5)} C ps
ps MK, U{(z,m6)} C pe
where

Kx = {(y>n0)7 (yanl)“'(y>n6)}
K, ={(z,ng), (z,n1)...(x,n6) }

Figure 2.3: Data flow equations to solve for finding reachable definitions.

facts from X and G will generate data-flow facts that will be in union with
the result of X M K. The meet operation (1) on a lattice finds the least upper

bound for two elements in the lattice.

Pt+1 = S<Pt)

Iterative solutions to data-flow problems can be seen as a function S that
takes an approximate solution P, for all program points p; and returns a better
approximate solution P, ;. Iterative solutions stop when a fixed point (i.e.,
P,;1 = P, is found). Because the flow functions are monotonic and the analyses

operate on a finite height lattices, a solution is guaranteed to exist [30].

2.3.1 Lattices

A lattice [19] is any set that has a binary relation, J, between the elements

and satisfies the following five properties:
1. the binary relation 3 is reflexive;
2. the binary relation 1 is transitive;

3. the binary relation J is anti-symmetric;

12

4. there is a unique least upper bound between any two elements in the set,

AU B; and

5. there is a unique greatest lower bound between any two elements in the

set, AN B.

Bounded lattices also have a T and a L element. The T element is in-
dempotent for the least upper bound operator. Similarly, the | element is
indempotent for the greatest lower bound operator. In data-flow analyses
with bounded lattices, the T element is usually interpreted as the union of all
possible values. Similarly, the | element is usually interpreted as an undefined

value.

2.3.2 Abstract Interpretation

Abstract interpretation is the theory of data-flow problems [14]. It formalizes
the relationship between concrete values (i.e., those used in the program) and
the abstract values (i.e., those used in the analyses). This formalization is
known as the Galois connection. Abstract interpretation also specifies a frame-
work for solving data-flow frameworks by modeling the concrete semantics of a
program by approximating them using abstract semantics. The abstract seman-
tics operate on abstract values and provide a safe estimate of the program’s

execution.

2.3.3 Interesting Run-Time Properties of Programs

Abstract interpretation can estimate interesting run-time properties of programs.
Branch tests, the classes of references in the variable array, or the null-ness of
arguments are run-time properties of interest. These run-time properties of
programs are useful because they might lead to program optimization or aid
the user in debugging. For example, if an analysis is capable of determining
the value of branch tests, then that branch may be folded away. If a class of
a reference is known, then it is possible to replace a dynamically-dispatched
procedure calls with a direct call. These interesting run-time properties are all

properties that can be obtained by inspecting the operand stack or the variable
13

array. Fortunately, abstract interpretation allows us to safely estimate these

program properties.

2.4 Inline Substitution

Inline substitution or function inlining is the replacement of a function call
with the body of the function being called. While this definition is usually
sufficient for the general understanding of inlining, it omits a lot of details that
need to be explained when introducing other definitions like inlining candidate

and inlining decision.

2.4.1 Inlining Non-virtual Functions

Non-virtual functions are functions that are resolved statically (i.e., at compile
time). The target of non-virtual function calls is unique and non-ambiguous.
As a result, the previous definition for inline substitution is enough to explain
how inlining of non-virtual functions work. A function call would be equivalent
to an inlining candidate as for all non-virtual functions we can find the target
of the function and inline it. An inlining decision is just a yes-or-no decision

on whether the target of the non-virtual function replaces the call site.

2.4.2 Inlining Virtual Functions

Virtual functions are functions that are resolved dynamically (i.e., at run-time).
Virtual function calls may have multiple potential targets for each call. As a
result, virtual functions preclude inlining without safety checks.

Substituting the function call with any of the target functions is unsafe
unless there is a mechanism to resolve the call dynamically. One way of doing
safely resolving a virtual call is through method test [29]. A method test can
be understood as an if-else statement that tests for a particular method. If the
condition in the if-statement is true, then the path that is executed contains
the body of the target method. If the condition is false, then the path that
is executed contains the virtual function call to be resolved at run-time. We

expand the definition of inlining to allow the inlining of virtual function calls.

14

1 RO := <receiver object>

2 R1 := load(RO + <offset-of-class-in-object>)
3 R2 := load(R1 + <offset-of-method-in-class>)
4 if (R2 == <address-of-inlined-method>) {

5 <method inlining>

6 F else {

7 call R2

8 }

Figure 2.4: Pseudocode for method test obtained from [29]

1 RO := <receiver object>

2 R1 := load(RO + <offset-of-class-in-object>)
3 R2 := load(R1 + <offset-of-method-in-class>)
4
5

if (R2 == <address-of-inlined-method-1>) {
<method-1 inlining>
6 } else if (R2 == <address-of-inlined-method-2>) {
7 <method-2 inlining>

8 } else {
9 call R2
10 }

Figure 2.5: Pseudocode for method test with multiple virtual functions inlined.

As a result, an inlining candidate now becomes a call-site-callee-method pair.
This generalization implies that there are multiple inlining candidates for a
single call site. The inlining decision is still just a yes-or-no decision on which

of the targets are inlined.

2.4.3 Inlining Multiple Virtual Functions

It is possible for the method test to allow for the inlining of multiple virtual
functions at one particular call site. In this case, the method test is now not
just a simple if-else statement but it is a chain of if-statements followed by an
else-statement. We expand the definition of inlining to allow multiple target
functions be inlined to call sites to virtual functions.

Reducing the overhead of the calling convention allows programs to finish

execution in less amount of time.

15

2.5 The Knapsack Problem

The Knapsack Problem is a well known optimization problem where: (a)
there exists a set of objects with a value and a weight, (b) another empty
set (the knapsack) which is to be filled with the objects, and (c) a constraint
on the objects’ total weight in the knapsack. There exists multiple strategies
on how to solve the knapsack problem. Understanding the solutions to the
Knapsack Problem is important in the context of inlining because many inlining
strategies model solutions to the Knapsack Problem. In this section, we will
give a general introduction to the different solutions to the Knapsack Problem
without relating it to inlining. In Chapter 3, these different solutions to the

inlining problem will be referenced.

2.5.1 The Greedy Solution to the Knapsack Problem

A linear relaxation of the knapsack problem yields a greedy solution. Linear
relaxation in this context implies that a fraction of the objects may be added to
the knapsack instead of considering the item as a whole. The Greedy Solution
to the Knapsack Problem is simple: sort the objects by the ratio of their value
and their weight, then add objects in descending order and stop when the total
weight is matched. Iterating over the sorted objects has a time complexity of

O(n)

2.5.2 The Dynamic Programming Solution to the Knap-
sack Problem

The Greedy Solution to the Knapsack Problem does not give optimal solu-
tions when linear relaxation is applied. The Dynamic Programming Solution
explores the set of partial solutions to the Knapsack Problem. The Dynamic
Programming Solution to the Knapsack Problem has an asymptote of time
O(nw) in the time required for its execution, where w is the constraint on the

weight the knapsack is allowed to carry.

16

2.5.3 Solving the Nested Knapsack Problem

Variations on the Knapsack Problem exist. Besides the linear-relaxation
Knapsack Problem and the non-linear-relaxed Knapsack Problem, there is also
a variation of the Knapsack Problem known as the Nested Knapsack Problem.
The Nested Knapsack Problem is stated as follows: (a) there exists a set of
objects with a value and a weight, (b) there exists a hierarchical relationship
between the objects, (¢) another empty set (the knapsack) which is to be filled
by the objects, (d) only objects whose predecessors have been added to the
knapsack may be added to the knapsack, and (e) a constraint on the objects’
total weight on the knapsack.

The Dynamic Programming Solution for the Knapsack Problem presented
in Section 2.5.2 is modified by Craik et al. as follows [16]: (a) the input to the
algorithm is a list of functions to process in postorder over the hierarchical
relation, (b) the list must also be considered in order of lowest to highest
cumulative benefit, (¢) backtracking over the partial optimal solutions, and (d)
another backtracking step over a backwards traversal up a column of uniform
cost to identify a previous less optimal solution to augment.

The Nested Knapsack Solution presented by Craik et al. has a time
complexity of O (nwh), where h is the average depth of the hierarchy tree being
considered [16].

2.5.4 Inlining Dependency Tree

Previous inlining algorithms iterated over an abstract program representation
known as the Call Graph (CG). One of the break throughs of the inlining
strategy proposed by Craik et al. [16] is that the iteration happens on a tree-
like data structure as opposed to a graph-like data structure. Allowing the
caller-callee relationship to be represented as a tree as opposed to a graph
allows the dynamic algorithm to consider callsite-method pairs. In a graph,
callsite-method pairs are represented as edges and a naive representation does
not allow for context sensitivity. The tree-like data structure presented by

Craik et al. [16] is called the IDT. The IDT is a data structure that models

17

Figure 2.6: Pseudo-code to illustrate properties of an IDT

inlining decisions and, in the absence of partial inlining, corresponds directly
to a call tree. Call sites are modeled as directed edges and methods as nodes
in a tree. With one edge per call site, the IDT differentiates between call sites
to the same callee by creating distinct nodes. The caller-callee relationship is
maintained by the directionality of the edges with callers pointing to callees.
Unlike a CG, nodes in the IDT only contain a single parent and do not loop.
This tree-like structure preserves context sensitivity in the inlining decisions.

Let us take a look at example pseudocode in Figure 2.6 considering that
method A defined in line 1 as the root of the IDT. First, we note that there are
two distinct call sites for method B. One call site is at line 2 and another is at
line 3. Let us enumerate the call sites to give them unique names. As such,
the call site at line 2 is 1, and the call site at line 3 is 2. In Figure 2.7, we can
see two edges starting from node A to two distinct nodes labeled B. There are
two other nodes labeled C to denote the call-site method pair in lines 4 and 5.
Node C also contains a call to method B.

As mentioned earlier, the IDT allows us to make context sensitive inlining
decisions by referring to the call site indices. We can choose to inline the
call at call site index 5 as opposed to inlining method B at all call sites, or
even inlining method B when called by method C. The edges in Figure 2.7 are
numbered only for the purposes of disambiguiation in this text. In the concrete

implementation of the IDT, edges are not numbered but nodes in the IDT

18

Figure 2.7: IDT corresponding to Figure 2.6

contain the bytecode offset where the callsite was found. Storing the bytecode
offset of the callsite allows one to differentiate between different callsites to the

same method from the same caller.

2.6 Summary

We will be working on the Eclipse OpenJ9 JVM in order to determine which
inlining candidates should be inlined. An analysis which relies on the concepts of
abstract interpretation, the class VPConstraints and the profiling frameworks
available in OpenJ9 has been developed. Unlike other inlining strategies (which
are reduced to the knapsack problem), our solution leverages recent innovations
in the solution to the nested knapsack problem. As such, we will be working
on the IDT as opposed to other abstract program representations. This allows

us to make context sensitive decisions on the inlining process.

19

Chapter 3

Related Work

Function inlining is an optimization that touches many different subsystems
and concepts from compilers. In Section 3.1 we outline previous literature in
inlining research. The research is categorized in what we believe is a model
that explains the differences in inlining. Inlining research can be explained by
looking into the concepts and different subsystems that inlining can influence
or that are influenced by inlining. The properties of inlining that our model

examines are:

1. Problem formulation. Inlining is often modeled as a knapsack problem,

but the literature also presents alternative formulations.

2. Algorithmic differences. There are different algorithms that can solve the
knapsack problem and they have trade-offs in run time, memory usage,

and the constraints handled.

3. Implementation differences. Even within the same algorithms, there can
be room for implementation-specific details that may result in different

inlining decisions.

4. Goal differences. Normally inlining tries to minimize the run time of a

program, however there may be different goals for inlining.

5. Goal estimation differences. There is only one way to measure the impact
of an inlining decision, and that is running the program. As such, in order

to discriminate between different inlining candidates, inlining strategies

20

estimate the impact of an inlining decision. Different inlining strategies
may have the same goal but a different way to estimate the impact of

inlining in achieving that goal.

6. Differences in search space. Finally, inlining strategies may differ from
one another by differences the search space. There may be different
strategies based on how the search space is pruned. For instance some
inlining strategies may consider the whole call graph while others only

consider a section of the call graph. Some may be based on hotness, etc.

3.1 Inlining Strategies

Problem formulation. Inlining is usually formulated as a knapsack problem.
Scheifler was one of the first people to reduce inlining to a knapsack problem [39]
in an Ahead Of Time (AOT) compiler. Since then, reducing inlining to the
knapsack problem has been the default way to solve inlining problems. Paul
Berube describes the inlining strategies used by the LLVM compiler as using the
greedy knapsack solution over strongly connected components in the CG [10].
Arnold et al. study of different inlining strategies that use a solution to the
knapsack solution as a meta-algorithm [5]. Shankar et al. explicitly mention
reducing inlining to the knapsack problem [41] in the J9 IBM JVM. However,
this is not the only formulation of the problem. Chang et. al showed that the
expansion of nested call sites cannot be modeled as a knapsack problem [13]
due to the changes in method size of any method F' once inlining of method L
into method F. As such, Chang et al. [13][p 358] treat inlining as an ezpansion
sequence control minimization problem. “The goal of expansion sequence
control is to minimize the computation cost incurred by the expansion of

b2

[...] selected function calls.” While the formulation of the inlining problem
described by Chang et al. is similar to the knapsack problem, it includes another
constraint on the order in which procedures should be expanded. Inlining can
also be formulated similarly to the knapsack solution, however heuristics are
also used in order to guarantee that call sites that meet some properties are

inlined. Hazelwood et al. describe an inlining strategy that is augmented with
21

heuristics in the Jikes RVM [25]. While the inlining problem is often formulated
as a knapsack problem, nested inlining is actually a more complex problem
than the knapsack problem. Dean et al. [18] formulate the problem without a
notion of available budget. Instead the final inlining decision happens as long
as it is deemed the ratio of time savings to space cost is above a particular
threshold.

Algorithmic differences. There are multiple algorithms to solve the knapsack
problem. There is the traditional greedy inlining algorithm (which solves the
linear relaxation on the knapsack problem). There is the dynamic-programming
algorithm for solving the integer-programming problem formulation of the
knapsack problem. Arnold et al. studies the greedy knapsack algorithm with
different weights and values of inlining candidates [5]. Shankar et al. also use
the greedy inlining algorithm [41]. Even though the greedy solution to the
knapsack problem does not guarantee an optimal solution, it is often favoured
to the dynamic-programming algorithm because of the lower complexity. The
dynamic-programming algorithm must consider all elements that may be
included in the knapsack. However, when performing nested inlining, every
time a new inlining candidate is added to the set of inlined call sites, more call
sites may be added to the set of call sites to consider. Even though the same is
true for the greedy inlining algorithm, it is easier to modify the greedy inlining
algorithm to take into account the newly created call sites. One can add the
newly created call sites at the beginning of the list, at the end, or just re-sort
the list. While this variation on the greedy knapsack algorithm provides no
guarantees about the optimality of the results, experimentally it performs well
enough.

Implementation differences. If an algorithm is vague enough to allow
implementation differences, then even though the same high-level algorithm is
followed, differences in implementation may exist. For example, when modeling
inlining as the greedy solution to the inlining problem inlining candidates are
sorted from highest to lowest benefit-cost ratio. After an inlining candidate
has been chosen to be inlined, new call sites are added to the list of inlining

candidates to consider. Since the traditional greedy solution to the knapsack
22

problem requires all elements to be known in advance, and nested inlining
produces new elements after each element is selected for inlining, the traditional
greedy solution to the knapsack problem does not specify where to place these
newly created elements in the queue. One can consider placing them at the
beginning, the end, or re-sorting the queue of inlining candidates to consider.
Goal differences. The majority of inlining strategies attempt to minimize
run time of the program [5], [10], [39]. The inlining strategy proposed by
Hazelwood et al. attempts to minimize run time, however due to heuristics
it also guarantees that methods smaller than a size thresholds are always
inlined. Dean et al. also use inlining trials to minimize run time [18]. However,
some inlining strategies may attempt to minimize or maximize other program
properties. For example, Appel describes rules for inlining that minimizes
the size of the program representation [4]. Shankar et al. design an inlining
strategy that minimizes object churn (i.e., the excessive creation of short lived
objects) [41]. Sewe et al. extend the Jikes RVM inlining strategy to take into
account optimizations that will take place after inlining has happened [40].
Goal estimate differences. The way the impact of inlining on the optimiza-
tion criteria (or the goal) is estimated may differ. For example, there are a lot
of inlining strategies that attempt to minimize run time. Scheifler estimates
the impact of inlining on run time by looking at offline profile information and
estimating the number of dynamic calls from the offline profile information. [39].
The use of offline profile information is popular for AOT compilation. Paul
Berube extends offline profile information by combining profile information
from multiple inputs [10]. Arnold et al. describe several ways to estimate the
impact of inlining on reducing the number of dynamic calls [5]. For example,
the nodes in the call graph may be annotated with method invocation counters,
or the edges in the call graph may be annotated with call counters. Method
invocation counters are counters placed in instrumented methods that incre-
ment every time the method has been called. These do not preserve context
sensitivity as the counter is increased independently of which method is the
caller. The call counters differ from method invocation counters in that call

counters allow to determine how often a method is called from a specific call
23

site. Hazelwood et al. maintain records to preserve more context on the method
invocation counters [25]. Dean et al. determine the number of instructions
saved from optimizations by estimating how many instructions are saved by
an optimization and multiply it with their expected execution frequency [18].
As these examples illustrate, there are many different ways of estimating a
program property.

Differences in search space. There may be different heuristics used to prune
the search space, thus leading to only exploring a subset of all possible inlining
decisions. Some of the ways in which the search space is pruned is by using
heuristics based on the hotness of a method. If a method is cold and does
not reach a hotness threshold, then neither that method, nor its descendants,
will be considered for inlining. This restriction may lead to some suboptimal
inlining decisions in cases where descendants of the cold method have loops

that are repeatedly executed.

3.2 Different Types of Analyses

The previous section describes all the different ways in which an analysis may
influence inlining. However, we also need to compare the analysis themselves.
There are two approaches to interprocedural data-flow analysis. The first may
be called functional approach [42, Chapter 7], method summary approach [12],
[32], or bottom-up [47] analyses. The second may be called k-CFA [43], call-
strings approach [42, Chapter 7], or top-down analysis [47].

The call-strings approach to interprocedural data-flow analyses can be seen
as an immediate extension of intraprocedural data-flow, where the control flow
graph has been augmented to include edges between call sites and beginning of
procedure, and return statements to call sites. The call-string approach implies
that every time a call site is encountered, the callee has to be reanalyzed under
the new context. To improve the efficiency of this interprocedural analysis,
sometimes analyses are limited to k contexts. Limiting analyses to k contexts
is called k-limiting. While k-limiting produces results, the analysis’ running

time is exponential for large programs.

24

In the functional approach, summary flow functions are computed for each
procedure. These summary flow functions are used as the flow function for
the entire call block. The flow functions need to be distributive and close
under composition. IFDS/IDE are two well-known examples of interprocedural
analysis frameworks done in the functional approach [35], [38] The functional
approach, tends to be faster because functions are not reanalyzed.

One can think of the call-strings analysis as a function that takes a program
and some inputs and produces results. Meanwhile, the functional approach is
a function that takes a program and produces a function that takes inputs and
produces results. In other words, the functional approach is just a curried ver-
sion of the call-strings analysis. Method summaries produced by the functional

approach are the functions returned by the functional approach.

call-strings analysis : program X inputs — results

functional approach : program — (inputs — results)

25

Chapter 4

IDT-Based Inliner

To use the procedure described in by Craik et al., we need to provide an IDT
and annotate it with weights and values corresponding to the cost and benefit
of a given inlining candidate [16]. The value used for the cost of inlining should
reflect the compilation time. There are several different metrics that serve
as an approximation to compilation time (e.g., nodes in the AST, arithmetic
operations, number of instructions). We use the number of bytecodes in a
method as the cost of inlining. The benefit of inlining should be a function
of how often a method is executed and how optimized a method will be
to its calling context. That is, the benefit of inlining is a function of the
direct benefits and the indirect benefits of inlining. Direct benefits will be
covered more extensively in Section 4.2 and indirect benefits will be covered in
Chapters 5 and 6

Figure 4.1 describes the proposed inlining strategy in pseudocode. The
generatel DT function on Line 2 builds the IDT. The cost and the direct benefits
of inlining are calculated during the generation of the IDT.

The next step is to compute the indirect benefits of inlining. The indirect
benefits of inlining are calculated using a data structure called method summary
and through the static approximation of arguments’ run-time values. The
method summaries encode constraints to be satisfied for potential optimization
opportunities. The static approximation to arguments’ run-time values are
used to see if the constraints are satisfied.

Line 9 of Figure 4.1 shows a call that takes a target method as an input and

26

Require: method is method requested for compilation by the VM
Require: budget is inlining budget for method
Ensure: Vnode € IDT, node has benefit > 0 and methodSummary exists
1: procedure INLINER(method, budget)
2: IDT < GENERATEID T (method, budget)
3: for each node € DFS(IDT) do
4: argumentEstimates <— ESTIMATEARGUMENTSTOCALLSITESIN(node)

for each target € node do
if target.methodSummary then
methodSummary < target.methodSummary
else
methodSummary <~ GENERATEMETHODSUMMARY (target)
10: end if

11: target.benefit <— METHODSUMMARY (argument FE stimates)
12: end for
13: end for

14: end procedure

Figure 4.1: Main algorithm of the proposed inliner.

generates a method summary. The potential optimization opportunities are
dependent on the arguments and the contents of the method being summarized.
The process of creating an entry in the method summary is the task of the
compiler developer. The prototype described in this thesis includes several
optimizations in the method summary. These optimizations and their encoding
into a method summary are described in Chapter 6.

Method summaries need an estimate of the argument values to compute
which optimizations will take place. If the estimate of the arguments satisfies
the constraints, then the optimization is realizable and only depends upon the
function being inlined. The abstract interpreter estimates the run-time values
held by the arguments. Line 4 calls the method to estimate the values held by
each argument at call sites. The abstract semantics and the transfer functions
are detailed in Chapter 5.

The static benefit to be assigned to each inlining candidate is computed
after the argument estimates and method summaries. This static benefit is the
aggregation of individual weights assigned to different realizable optimizations.

After the IDT is annotated with the benefit value, the inliner uses the knapsack

27

algorithm described by Craik et al [16]. This process computes the set of nodes
in the IDT and, given a constraint on a budget, maximizes the benefit of the

nodes in the set.

4.1 Building an Inlining Dependency Tree

The IDT is constructed during the inlining pass. The inlining pass receives,
as arguments, the method requested for compilation (i.e., the compilation
request) and a budget. The budget constrains inlining to a maximum increase
in bytecode count. The algorithm used for constructing the IDT in Figure 4.2.
The generateIDT procedure receives the compilation request, the budget, and
a root node that holds the compilation request as arguments. The construction
of the IDT is a recursive process that halts when the inlining budget has been
exhausted.

In Figure 4.2 the control flow graph of a method is accessed through
the following syntax: method.cfg. The cost of inlining (which is reflected by
updating the budget on Line 12 and Line 14) is the size of the target method
in number of bytecodes. This is because the size of a method is often a good
indication of how long a method will take to compile as different analyses used
during compilation have a super-linear time complexity on the size of code [10].

After checking for the stopping condition on Line 2, the algorithm iterates
over each basic block on the argument method. Each instruction of each basic-
block is inspected to determine whether it is a call site. If a call site is found,
the targets of the call site are resolved through the method findCallSiteTar-
gets() available in OpenJ9. On line 8, the pseudocode shows the resolution
of targets through findCallSiteTargets(). Because of dynamic loading and
dynamic dispatch, it is impossible to determine all potential targets of a call
site. However, findCallSiteTargets() provides a list of targets for interface
call sites and virtual call sites that have a high likelihood of being called.

The method findCallSiteTargets() may use method invocation counts,
argument pre-existence information and other analyses to resolve indirect call

sites. In the prototype, the IDT allows for a single target of indirect call sites

28

1: procedure GENERATEIDT (method, budget, root)

2 if budget < 0 then

3 return

4: end if

5: for each basicBlock € REVERSEPOSTORDER (method.cfg) do

6 for each instruction € basicBlock do

7 if instruction = invocation then

8 targets = FINDCALLSITETARGET (method, instruction)
9: for each target € targets do

10: node = new Node(target)

11: INSERT(r00t, node)

12: budget = budget — S1ZE(target)

13: GENERATEIDT (target, budget, node)
14: budget = budget + SIZE(target)

15: end for

16: end if

17: end for

18: end for

19: end procedure

Figure 4.2: Generating the IDT

to be considered; however, there is no real restriction on how many targets may
be added per call site. The decision about how many targets should be added
per call site must consider the trade-off between analysis time and likelihood
that considering more targets improves the inlining plans. This trade-off is
likely a function of how monomorphic the call site is and the depth at which
the call site is found on the IDT.

Similar to the default inlining strategies in OpenJ9, in our implementation,
findCallSiteTargets() does not attempt to resolve methods that have never
been called. This design decision is an example of pruning the search space
during the inlining process, because inlining methods that have never been
called is likely to be a bad decision. Inlining relies on the principle that past
behaviour is an indication of future behaviour. Thus a method that has never
been visited implies that a method is likely to not be executed in the future. If
a method is likely to not be executed in the future, then inlining it will not
have any direct benefits.

A new node in the IDT is constructed after a target for a call site is found.

29

This node holds all the necessary information that describes this call site. This
node becomes a child to the node holding the current method. The algorithm
updates the budget on Line 12 by subtracting the size of the target. The size
of the target is used as an estimate for the cost of inlining. Each target then
undergoes the same process recursively until the budget is consumed.

When the inspection of a method is finished, the algorithm adds the size
of the target to the budget as seen on Line 14. Resetting the budget to its
previous value ensures that each branch of the IDT, from the root node to the
leaves, holds methods whose sizes do not exceed the budget. The nodes in the

IDT correspond to the universe of possible inlining decisions.

4.2 Dynamic Inlining Benefits

The algorithm annotates nodes in the IDT with weights that correspond to the
direct benefits of inlining. It also computes the call ratio, a value to represent
the direct benefits of inlining. The call ratio estimates how often the program
invokes a method upon executing the method at the root node of the IDT. If a
method is inside a loop, its call ratio has a value higher than one, if the method
is inside a conditional block, then its call ratio will be less than one, and if the
method is unconditionally executed with no loops, its call ratio estimate is 1.

The value of callRatio(m o) is defined axiomatically as 1. The algorithm
computes the basic-block frequency using online profile information provided
by the profiling infrastructure in OpenJ9. Generally, the root method contains
n basic-blocks. We use the notation frequency(bb.") to denote the frequency
of basic-block ¢ in method m. The frequency is a value scaled from 0 to
10,000. Where a value of 0 indicates that a block has never been visited and a
value of 10,000 indicates that the basic-block is the most visited basic-block in
the method. The reason the value is caled from 0 to 10,000 is for historical
reasons. The basic block profiler in the JIT compiler available in OpenJ9 scaled
frequencies to 10,000.

To compute the call ratio for any method m e With respect to the method

Meaner, the algorithm queries for the entry basic-block in method in m g,

30

(bb%*m) "and the basic-block containing the call site (b4). Next, the

entry call site to callee

algorithm queries for the block frequency from OpenlJ9’s profiling infrastructure.
The call ratio for a method m ... with respect to a caller m ., is computed

via the following formula.

M caller)
call site to Meqjlee (4 1)

frequency(bb)

entry

frequency(bb

callRatioCallerCallee(m capier, Meatice)

We also extend the call ratio caller-callee formula to account for virtual
methods. The targetPercentage field is an estimate of how often method 7 cqjee
is the target of the call obtained from its call site. The profiling framework
for OpenJ9 provides the values of targetPercentage, which depending on the
profiling infrastructure (chosen at run-time) may be either context insensitive
or context sensitive. A value of 1 indicates that m ... is the sole target of the
call site and a value of 0 indicates that it has never been called from that call

site.

callRatioCallerCallee(m catiers Meatice) =

M caller)
call site to Megliee

frequency(bb

caller) X Mcalee- targetPercentage (4.2)

entry

frequency(bb

This formula works well to compute the call ratio between caller and callee.
However, we are interested in computing the call ratio between any node in
the IDT and the root method. That is, callRatio(m e, M) is computed by

the following formula.

callRatio (Moot Me) =

H callRatioCallerCallee(parent(my), my) (4.3)

Vma € ancestors(me)U{mc}—mroot

Which can also be re-written as:

callRatio (Moo, M) =
callRatio (Meot, parent(m.)) x callRatioCallerCallee(parent(m.),m.) (4.4)
31

This formula allows the ancestors’ call ratios to contribute to the descen-
dant’s call ratio. Specifically, the callRatioCallerCallee(parent(m.),m.) value
is scaled by parent(m.)’s call ratio. This is a desirable property of the for-
mula because the invocation frequency of a method depends on the execution
frequency of its parent.

The calculation of call ratios is done during the construction of the IDT to
save time. Call ratios are stored as doubles during the construction of the IDT.
However, once the algorithm finishes building the IDT annotated with call
ratios, call ratios are scaled to integers between the values of 1 and 10,000. The
reason why call ratios are scaled is to mimic OpenJ9’s profiling infrastructure

which uses values between 1 and 10,000 to denote basic-blocks’ frequencies.

32

Chapter 5

Estimating Run-Time
Argument Values

We have already talked about the types and values available in the JVM in
Section 2.1.2 and how the abstract interpretation framework allows for a safe
estimate of run-time values of a program in Section 2.3. In Section 2.2.1,
we also reviewed the VPConstraint framework available in OpenJ9 and how
it serves as an abstraction of the concrete types found in the JVM. Those
sections serve as the basis for this chapter in which we will discuss our concrete
implementation of an abstract interpreter and its differences with the traditional
abstract interpretation framework.

In Section 5.1, we specify the handling of the calls. In Section 5.2, we
specify the flow of control used in the abstract interpreter. We show how the
abstract state is transferred from different points in the program as inputs to
the transfer functions. We also define how we merge abstracts states within
the program. In Section 5.3, we summarize the abstract semantics for all the

bytecodes available in the JVM.

5.1 Call Stack

At the beginning of a method’s abstract interpretation (i.e., when calling
method ESTIMATEARGUMENTSTOCALLSITESIN() in Figure 4.1), the abstract
frame loads the root method, and the analysis loads the abstract local variable

array with an estimate of the call site’s arguments. The abstract interpretation

33

of the root method differs from the rest of the nodes in the IDT, because, unlike
the rest of the nodes, the root method has no parent node in the IDT. Having
no calling context for the root method means that the abstract arguments
passed onto the root method contain as much static information as the formal
arguments in the root method signature. All other nodes in the IDT have the
abstract arguments from the operand stack passed as arguments. The root
method then undergoes abstract interpretation the same way the rest of the
nodes as discussed in Section 5.3.

Visiting a node n on the IDT is equivalent to performing abstract interpreta-
tion on the method m stored in the node n. During the abstract interpretation
of method m e, if a call site ¢ is found, the targets of the call site are no longer
resolved with findCallSiteTargets. Instead, because the target methods are
already encoded in the IDT as child nodes, the call site ¢ is resolved by looking
at the children of node n. There can be multiple targets ¢ for a single call site
¢, so we adopt the notation t; to distinguish individual targets of a call site.
The order in which multiple targets t are abstractly interpreted is undefined.
After picking a target to abstractly interpret, an abstract frame f is created
and placed on top of the abstract call stack.

Each abstract frame f contains an abstract operand stack § and an abstract
variable array a. Upon encountering a call site ¢ to a method m e, the
elements in the abstract operand stack S§.4 .- of the abstract frame fcalm
correspond to the arguments to method m .. These abstract arguments are
placed in the local abstract variable array a.q. of the abstract frame fca”ee
corresponding to the method m ... and an empty abstract operand stack S.qee
is initialized in abstract frame fca”ee. The placement of the arguments in the
caller’s stack to the callee’s array matches the concrete semantics specified by
the Java Virtual Machine Specification [31].

After the creation of the abstract frame fca”ee the abstract interpreter
proceeds as follows: halt the interpretation of method m ., in frame fca”er;
abstractly interpret method m 4. in frame fcauee; recursively interpret methods
that are called; Upon finishing interpreting method m .., pop the the frame

featiee Off the abstract call stack and continue analyzing method m g

34

When call-sites in leaf nodes are visited the abstract interpreter safely
approximates the return values by placing T in the stack if the method returns
values. If no return value is expected, then nothing is placed on the stack.
The process continues until all nodes in the IDT are visited. If method
Meqiiee S Signature indicates a return value, the abstract interpreter places a safe
approximation based on the function’s signature on the operand stack 5.4

Our current implementation limits the amount of information transferred
from caller to callee. When the interpreter finishes analyzing method m e,
no information except the return value’s type (as specified by the method’s
signature) may be transferred to m g, Future work includes extending the
abstract interpreter to allow for more precise estimates to be returned from
call sites. For example, the type returned by a method may be a class derived
from the method signature’s class. Obtaining the return value’s type from the
method’s signature is less precise than inspecting the type of the value at the
return statements. Optimizations that depend on more precise estimates of
return values will likely not satisfy the constraints needed to guarantee that

the optimization will take place.

5.2 Control Flow

The analysis interprets the basic blocks in reverse post-order. This order ensures
that in the absence of cycles, when interpreting node n, all predecessors of
node n have been interpreted before n is interpreted. During the interpretation,
the abstract operand stack, the abstract variable array, and the abstract call
stack are maintained according to the abstract semantics. The abstract state of
the program is completely determined by the abstract variable array, abstract
operand stack and the abstract call stack.

At the beginning of the interpretation of basic block z, the abstract state
must be transferred from the directPredecessors(x) (according to the control
flow graph) to = to be interpreted. At the end of the interpretation of x, the
abstract state is stored and can be accessed through x. This stored abstract

state will be used as an input for the successors of x. The abstract state will be

35

used together with instructions to compute the next abstract state according
to the transfer function and the abstract semantics. Because reverse post-order

is used to iterate over the basic blocks, we have to consider the following cases:

Case 1 |directPredecessors(z)| = 1 and directPredecessor(z) = y: y has al-

ready been interpreted and has an abstract state stored.

Case 2 |directPredecessors(x)| > 1 and |backEdges(z)| = 0 and
directPredecessors(z) = Y: all nodes in Y have been interpreted and thus

have an abstract state stored.

Case 3 |directPredecessors(x)| > 1 and |backEdges(z)| > 0 and backFEdges(x) =
Z: none of the nodes in Z have been interpreted and thus have no abstract

state stored.

These three cases are shown pictorially in Figure 5.1.

For Case 1, the final abstract state found in y needs to be used as an input
to the flow function used to interpret the beginning of z. For Case 2, the final
abstract states found in nodes in Y need to be merged and used as an input to
the flow function used to interpret the beginning of x. For Case 3, the final
abstract states in nodes in Y can be known, however the abstract states in
nodes in Z remain unknown.

In a traditional abstract interpreter, when z is encountered for the first
time, only the abstract states in Y are considered as input for x. The output
abstract state of x is then propagated to its successors. In traditional abstract
interpretation, in subsequent interpretations of x, the nodes in Z would then
have an abstract state, and would be included as input to z. Intermediate
abstract states, those states that are computed before reaching the least fixed
point, would be considered unsafe estimates to run-time values. Only after the
abstract interpreter finds the least fixed point, are the abstract states safe to
use for analysis.

Our implementation of abstract interpretation differs from the traditional
case in that nodes are only interpreted once. This design decision is made

on the basis that JIT compilation needs to be done fast and iterating until a
36

N
N
)
)

i1

~ ~ A

SO So SO

(a) Input abstract state (b) Input abstract state (c) Input abstract state

S’z}l is transferred to block S’Z-,l and 5}72 is transferred Si,l and 5’1-72 is transferred

x and x produces output to block x and x produces to block x and = produces

abstract state go. output abstract state 5'0. output abstract state go.
However, SA'Z"Q is a back
edge so there is no ab-
stract state to be trans-
ferred.

Figure 5.1: Different cases of input abstract state transmission.

fixed point is reached may be too costly. This decision however has the impact
that our implementation is would not be considered safe. In order to maintain
safety, we decrease the precision of our analysis. Instead of iterating over the
basic blocks until fixed point is reached, our abstract interpreter upon seeing
Case 3 will immediately discard the abstract state from ¥ and assume T ¢ for
the abstract state used as input. T is defined as replacing all values in the
abstract operand stack § and abstract variable array a with T elements. This
jump in the lattice from StoT ¢ reduces precision but maintains safety.

A possible extension for the current implementation would be to switch
between single iteration and iteration until fixed point is reached. Depending
on the precision of the analysis requested and the budget allocated for analysis,
it would be possible to decide how long to execute the analysis at run-time. If
a more precise analysis is requested, then the number of iterations could be
increased. This extension requires a non-trivial modification to the current
implementation.

We define the Lig operator as a binary operator between two abstract states
S, and S’j. The Li; operator performs the least upper bound operation for
the abstract operand stacks s; and 5;, and the abstract variable arrays a; and

a;. We define the Uz and Ll; operator for the abstract operand stack and the

37

. procedure IJS(S'i, S;)

returnState < new S

if Case 1 then
returnState.stack < gi.stack
returnState.array S’Z .array

else if Case 2 then
returnState.stack < gi.stack Lls Sj.stack
returnState.array < S’i.a,rmy Lg @.army

else

10: returnState.stack < T

11: returnState.array <— T,

12: end if

13: return returnState

14: end procedure

Figure 5.2: The computation of Lg for abstract states.

: procedure Li;(s;, s;)
returnStack < new §
for each é¢;, é; €Z1p(§;, §;) do
éres <~ éz |—|é éj
returnStack. push (€ s)
end for
return returnStack
end procedure

Figure 5.3: The computation of LIz for abstract stacks.

abstract variable array. These procedures are described in Figures 5.2, 5.3, and
5.4.

The LIz operator for each abstract element is defined in terms of the merge
function as found in the VPConstraint framework. The merge function com-
putes the least upper bound operation for the different classes modeled by
VPConstraint. For example, the merge operator for the VPClass constraint
is defined as the first common ancestor in the class hierarchy between the
two classes being merged. Similarly the M, operator for each abstract element
is defined in terms of the intersect function as found in the VPConstraint

framework. However, instead M; computes the greatest lower bound.

38

: procedure L;(a;, G;)
returnArray < new a
for each ¢;, é; €Z1p(s, $;) do
Cres — €; Lg éj
returnArray.pushBack(€.s)
end for
return returnArray
end procedure

Figure 5.4: The computation of L; for abstract arrays.

5.3 Abstract Semantics

To show the effect of instructions on the abstract operand stack, the abstract
frame, and the abstract variable array, we define the abstract semantics in a
similar way to the Java Virtual Machine Specification [31, Chapter 6]. However,
instead of listing all bytecodes, Table A.1 groups the instructions encountered
in the JVM. The first column contains the name we use to refer to a group of
similar instructions. The second column contains the mnemonic name for the
instructions in the JVM.

The description of the semantics is in Appendix A. Please note that the
semantics for CALLSTACK and CONTROLFLOW are more thoroughly explained

in Sections 5.1 and 5.2.

5.3.1 Relating Argument Estimates to Call Sites

The calling convention for the JVM specifies that arguments must be placed on
the operand stack before making a call. These semantics almost allow for the
safe estimation of run time values placed on the stack. Unsafe values come from
the tnvokedynamic instruction. Functions which are not resolved at analysis
time can be produced due to invokedynamic. These functions use variadic
arguments. As such, in order to maintain safety, the analysis would need to
determine how many arguments are passed to the unresolved function. Future
work will address this source of unsafety.
Let’s consider the simple example shown in Figure 5.5.

The objective of the analysis is to find the contents of the stack before

39

15
16
17
18
19
20
21
22
23

public static void example(int);

Code:
iconst_0
istore_1
iload_0
ifge

iconst_1
istore_1
goto

bipush
istore_1

new
dup

11

14

100

#2

invokespecial #3

astore_2
aload_2
iload_1
iload_0

invokestatic #4

return

// class DerivedClass

// Method DerivedClass."<init>":()V

// Method foo:(LBase;II)V

Figure 5.5: Example to illustrate abstract interpretation

40

Table 5.1: Values in abstract array at different line numbers

Line Number Array Index Content
Line 6 0 T
Line 10 0 T
Line 10 1 1
Line 12 0 T
Line 12 1 100
Line 15 0 T
Line 15 1 [1, 100]
Line 22 0 T
Line 22 1 [1, 100]
Line 22 2 DerivedClass

Top of stack
T
[1,100]
DerivedClass
Bottom of stack

Figure 5.6: Abstract stack containing abstract argument estimates. Derived-
Class is known to be not null because its provenance is from the instruction
new.

executing Line 22. In order to do so, the semantics specified previously model
the stack and the abstract array. On Line 6 the contents of the variable array
are shown in Table 5.1. The stack at position Line 6 is empty. This abstract
state is transferred to the basic blocks starting at on Line 8 and Line 12.

The abstract variable array on Line 10 is shown in Table 5.1. Similarly, the
abstract variable array on Line 13 is shown in Table 5.1. The stacks remain
empty at these lines. These two states will be merged before Line 15 executes.
The merged states resulting on the abstract state shown in Table 5.1.

Abstractly interpreting the rest of the instructions starting at Line 15 until
Line 22 should result in the abstract stack as shown on Figure 5.6 and the

abstract variable array on Table 5.1.

41

Chapter 6

Determining Possible
Optimizations

We use abstract interpretation as described in Chapter 5 to determine an
estimate to the run-time values of arguments. These argument estimates are
used by a data structure named method summary. This chapter describes the
method summary and how we encoded several analyses in it. The method
summary contains logical predicates that reflect the optimizations done by the
compiler and the conditions on which those optimizations are applied. It is
the job of the compiler developer to determine that the construction of such
predicates correctly reflects the potential optimizations that can be applied by
the compiler due to inlining.

We have developed a procedure in order to construct predicates that reflect

the following potential optimizations:
1. branch folding
2. null checking folding
3. cast folding

4. instance of folding

ot

. partial evaluation

Figure 6.1 contains the pseudo-code for our algorithm to generate method

summaries. Our procedure involves finding the uses of argument definitions.

42

: procedure GENERATEMETHODSUMMARY (method)
for each argument € method do
for each use € Use(argument) do
if use € OptimizableCode then
UPDATE(method.methodSummary)
end if
end for
end for
end procedure

© PN w e

Figure 6.1: Pseudocode for generating method summaries

1 public static boolean branchfolding(boolean);
2 Code:

3 0: iload_O

4 1: ifeq 6

5 4: icomnst_1

6 5: ireturn

7 6: iconst_0

8 7: ireturn

Figure 6.2: Example code to show branch folding constraints

Potential optimizations are found when arguments are used as operands to
instructions that are capable of being eliminated. A potential optimization
is a code pattern that may enable optimizations. The optimizations may
not necessarily be realizable, because they may depend on the estimates of
the argument values. The potential optimization is encoded into the method
summary as a constraint over the possible values held by the arguments.

Figure 6.2 shows the bytecode of a method named branchfolding(). This
method takes a single boolean argument and loads it onto the concrete operand
stack. Depending on the argument’s concrete value, the method will either
return the value 1 or 0.

Iterating over the basic blocks of branchfolding() in reverse post-order
means that we start analyzing the instructions located at byte offset 0 and 1 of
method branchfolding(). The JVM Specification [31, Section 3.6] states that
upon the start of a method’s execution, the arguments are placed in the local

variable array. First, the value of the local variable array at position zero is

43

pushed onto the stack. Because no instruction has overwritten the value of the
local variable array at position zero, it is safe to say that 0: iload_0 loads
an argument onto the stack. Instruction 1: ifeq is a branching statement
that is conditional on the argument. At that point, the analysis does not
know anything about the potential values of the argument; however, due to
the semantics of the ifeq instruction, it is safe to say that if the argument is
less than or equal to zero, then the bytecode in the sixth position (i.e., the
instruction 6: iconst_0) will be the target of the branch. Otherwise, the
bytecode in the fourth position (i.e., the instruction 4: iconst_1) will the
target of the branch.

When the analysis first encounter 1: ifeq, it performs a check to deter-
mine whether the value on the operand stack is a direct use of an argument.
If the check succeeds, we determine which argument was used. The JVM
Specification [31, Section 3.6] states that the arguments are placed in order in
the local variable array upon starting the execution of a method. Since the
value on the operand stack is obtained from the instruction iload_0, we know
that the first argument is the one used as a branch test. At that point, GEN-
ERATEMETHODSUMMARY knows that the test is performed on an argument,
and which argument is being tested.

At bytecode 1: ifeq, a potential opportunity for branch folding exists
if the first argument is equal to zero. We also say that there is another
opportunity for branch folding at 1: ifeq if the zeroth argument is not equal
to zero. The method summary encodes the use of the argument and the branch
inequality as a constraint that must be met by the argument value estimates.
Generally speaking, if the constraints are met by the argument estimates, then
the optimization can take place.

Concretely, each potential optimization opportunity is encoded as a row in
a table where each column represents arguments. Each cell under an argument
represents a constraint on that argument in order for the optimization to
be realizable. Table 6.1 shows an example of a minimal method summary
constructed for the example code in Figure 6.2.

The abstractions in VPConstraints has some limitations. We cannot

44

Table 6.1: Method summary for Figure 6.2

Potential Optimization Bytecode Argument 0
Branch Folding — 1 : ifeq [INT_MIN, —1]
Branch Folding «+ 1 : ifeq [0, 0]

Branch Folding — 1 : ifeq [1,INT_MAX |

express the range [INT_MIN, —1]U[1, INT_MAX | in the VPConstraints framework,
so separating it into to separate disjoint ranges is necessary. The method
summary overcomes this limitation by allowing multiple rows to encode the
same constraint. For example, the range [INT_MIN, —1] U [1, INT_MAX | will be
expressed by two different entries in the method summary. One containing the
constraint [INT_MIN, —1] and the other containing [1, INT_MAX]. Additionally,
multiple potential optimizations may be encoded in the same method summary.
We outline other optimizations considered in the following sections. Ranges
constraints that model intersection (i.e., [INT_MIN, 0] N [—1,0]) on a single
argument are modeled implicitly by their using the result constraint in the
method summary. Modeling the and/intersection across arguments is possible
by placing constraints on different cells. In other words, a method summary
can be read as a set of boolean functions (one for each row), where all elements
in a non-empty cell are and-ed with each other. If a boolean function evaluates

to true, it means that an optimization has been found.

6.1 Computing Constant String Length

From literal strings, it is possible to substitute a call to the method String.length()
by a compile time constant. Therefore, upon encountering calls String.length(),

a row on a method summary is created. Figure 6.3 shows that the bytecode for

the method wrapperStringLength(). On Line 4 the first argument is used as

an implicit argument to the method String.length(). To determine whether

the length of the argument can be known at compile time, we must inspect the

type of constraint.

45

public static void wrapperStringlength(java.lang.String);

1

2 Code:

3 0: aload_O

4 1: invokevirtual #2 // Method java/lang/String.
length: OI

5 4: pop

6 5: return

Figure 6.3: Example code to show string length constraints

Table 6.2: Method summary for Figure 6.3

Potential Optimization Bytecode Argument 0

String Length 1 : invokevirtual asConstString

If the argument estimate is encoded in a VPConstString constraint, then
we know that the length of the argument string can be known at compile
time. The method summary produced upon visiting the wrapperStringLength
method is found on Table 6.2. The asConstString() function is defined in the
VPConstraint framework in such a way that if the constraint is not derived from
the TR: :VPConstString then it returns false. As such, when the function
asConstString() is applied on the estimate of argument, it must return true

for the call to String.length() to be folded.

6.2 Null-Check Folding

A variable containing a reference to null may produce run-time exceptions.
As such, it is important to perform a check to verify that the reference does
not point to null before an operation is performed on the variable. There are
several ways to check for the null-ness of a variable [2]. One of such ways is
to invoke the getClass() method on the variable to test. Calling getClass()
on an non-null object allows the compiler to avoid further null checks on the
same object. This is because the compiler is able to assume that if the call to
getClass() fails, an exception is thrown and instructions that execute after

getClass() are never executed. However, if the call to getClass() succeeds,

46

public static void nullCheck(java.lang.Object);

1

2 Code:

3 0: aload_O

4 1: invokevirtual #2 // Method java/lang/Object.
getClass: (JLjava/lang/Class;

5 4: pop

6 5: return

Figure 6.4: Example code to show null check constraints

Table 6.3: Method summary for Figure 6.4

Potential Optimization Bytecode Argument 0
Null Check 1 : invokevirtual isNullObject
Null Check 1 : invokevirtual isNonNullObject

the instructions that execute after getClass() are allowed to assume that the
object which called it is non-null.

The method summary in Table 6.3 is very similar to the method summary
in Table 6.2. However, in this case, instead of checking the argument’s type, we
will check for the argument’s nullness. If the argument is estimated to be null,
then the code should be replaced to always raise a NullPointerException.
If the abstract interpretation estimates the argument to never be null, then
the compiler can eliminate the null check. Table 6.3 provides the method

summary that is generated upon analyzing the method in Figure 6.4.

6.3 Instance Of Checking

The instruction instanceof can be folded away if the operand is known (or can
be estimated) at compile time. As such, upon encountering the instruction,
our analysis creates a new method summary entry.

We extended the VPConstraint framework to allow for a subset operation.
The subset operation returns true if the second operand is a class assignable
to the first operand. The subset operation allows us to determine whether the

argument is a reference to class Example or a derived class. This definition

47

1 public static boolean instanceofCheck(java.lang.0Object);
2 Code:
3 0: aload_0
4 1: instanceof #2 // class Example
5 4: ifeq 9
6 7: iconst_1
7 8: ireturn
8 9: iconst_0
9 10: ireturn
Figure 6.5: Example code to show check cast constraints
Table 6.4: Method summary for Figure 6.5
Potential Optimization Bytecode Argument 0
instanceof 1 : instanceof subset (Example)

of subset corresponds to the concrete semantics of the instanceof instruction.
Therefore, if the constraint is satisfied, the instruction instanceof can be folded

at compilation time.

6.4 Cast Folding

A checkcast instruction can be folded in a similar way to the instanceof
instruction. However instead of using the subset method, we use the method
already available mustBeEqual. This corresponds to the concrete semantics of
the checkcast instruction. The example method summary found in Table 6.5

corresponds to the example code found in Figure 6.6.

6.5 Partial Evaluation

The analysis that we developed to encode partial evaluation into the method
summary is limited. First, only arithmetic instructions performed over the inte-
ger data type are taken into account. Second, only when the values estimated
on the call site are members of the VPIntConst class are the optimizations

encoded.

48

public static int checkCast(java.lang.0bject);

1
2 Code:
3 0: aload_0
4 1: checkcast #2 // class Example
5 4: ifnull 9
6 7: iconst_1
7 8: ireturn
8 9: iconst_0
9 10: ireturn
Figure 6.6: Example code to show check cast constraints
Table 6.5: Method summary for Figure 6.6
Potential Optimization Bytecode Argument 0
checkcast 1 : instanceof subset (Example)

Only the arithmetic instructions performed over the integers are taken into
account because in the VPConstraint framework only the integer values can
be modeled as constants in the VPIntConst class. The VPIntConstraint is
the base class of VPIntConst or VPIntRange. Similar base classes exist for
short and long types. The difference between VPIntConst and VPIntRange
is that VPIntConst is a single value, which VPIntRange models an unknown
value as a range of integers.

Partial evaluation can only take place if the argument estimates are members
of the VPIntConst class. This is because if the values estimated from the call
site are members of VPIntRange there is no certainty on which of the values in
the range will be used during partial evaluation. What is currently being done
to generate the method summary is, we keep track of the type of constraints
in the abstract operand stack, and when we encounter an arithmetic operation
two, checks are done. The first one to check if either operand is an argument.
The second one to check if is the non-argument operand is a VPIntConst
constraint.

Let’s take a look at the example shown in Figure 6.7. In bytecode 0 :

iconst_1, we obtain a VPIntConst constraint from loading an immediate value

49

public static int partialEvaluation(int);

1
2 Code:
3 0: icomnst_1
4 1: iload_O
5 2: iadd
6 3: ireturn
Figure 6.7: Example code to show partial evaluation constraints
Table 6.6: Method summary for Figure 6.7
Potential Optimization Bytecode Argument 0
Partial evaluation 2 : iadd asConstInt
of 1. In bytecode 1 : 1iload_O the interpreter loads a value from the argument.

In bytecode 2 : iadd both checks succeed. Then the interpreter places an
entry in the method summary as seen in Table 6.6. The constraint asConstInt
is placed in the method summary because the argument tested needs to be of

the class asConstInt.

6.6 Combining Static and Dynamic Benefits

Now that we have the frequency information, the estimate of run-time values
and the method summary, it is possible to aggregate these information into
a single notion of inlining “benefit”. First, as mentioned in Chapter 4 and
Chapter 6, the method summaries are used as constraints and the abstract
values are used to see whether those constraints are satisfied at each call site.
To generate a value out of the method summaries, each row of the method
summary is augmented with a weight. The weight corresponds to the benefit
value associated with a row’s inlining benefit. It is the job of the compiler
developer to create a meaningful weight, but it must be a positive integer value.

For example, the method summary in Table 6.4 can be extended as shown
in Table 6.7. A new column, weight, shows variable w that refers to how

beneficial this optimization is. If the constraint related to the argument is

20

Table 6.7: Example method summary to illustrate how argument estimates
and argument constraints interact

Potential Opt Weight Arg 0 Arg 1 Arg 2
Instance Of Wo subset (BaseClass)

Branch Folding w; [INT_MIN, —1]

Branch Folding ws [0, INT_MAX]

Null check Ws isNull
Null check Wy isNonNull

Top of stack
Argument 2 | T

Argument 1 | [1,100]

Argument 0 | DerivedClass
Bottom of stack

Figure 6.8: Abstract stack containing abstract argument estimates.

satisfied then the weight w,. is added to an aggregate. The bytecode location
column has been omitted to save space. The estimate to the argument values
obtained through the abstract interpretation are found in Table ?7.

With this information, it is possible to aggregate all satisfied constraints
into a single value. The next step is to iterate over every row in the method
summary, check to see if the constraint is satisfied, and if the constraint is
satisfied aggregate the weight values into a single value. For example, argument
at position 0 is a derived class from BaseClass which is stored to be used as
an argument on the constraint. Argument at position 1 has an estimate of an
integer value from 0 to 100. The second entry of the method summary is not
satisfied, but the third one is. Finally, the estimate of argument at position 2
is T. Because T is neither isNull nor isNonNull, then the last entries of the
method summary are not satisfied. The weights wy and w, are added into
what we consider the static benefit of inlining.

The next step is to combine the static benefits of inlining with the dynamic

benefits of inlining which is called callRatio in Section 4.2. There are an infinite

o1

number of functions of the form:
f : static benefits x call ratio — Z+

Different functions represent different design decisions and may give different
weight to the inlining candidates. We have chosen to multiply the callRatio by
the static benefit of inlining.

f(static benefits, call ratio) = static benefits x call ratio

This definition for this function scales the call ratio by the static benefits.
The procedure outlined in by Craik et al. takes as an input an IDT with
each node annotated with a cost and a benefit [16]. A procedure to determine
the cost and the benefit has been covered in this thesis. The procedure
outlined in by Craik et al. can then be used with the weights outlined in this
thesis. Furthermore, design decisions have been explicitly pointed out to allow

exploration of the design space of this solution.

6.6.1 Tuning

An interesting property of grading inlining transformations using method
summaries is the ability to tune inlining decisions based on user parameters.
For example, if a user is interested only a particular optimization, then setting
the weights of all optimizations to zero with the exception of the optimization
of interest, allows the inliner to assign a higher probability of inlining those call-
sites which will allow that optimization to happen. While this is an interesting
property, it has not been implemented thoroughly. Future work includes adding
support for run time selection of weights to optimization based on optional

parameters.

6.7 Summary

In summary, we have developed a systematic way to estimate if some optimiza-
tions will take place during compilation. Most importantly, these optimizations

are conditional upon methods being inlined. That is, these optimizations are

52

examples of the indirect benefits of inlining. These optimizations are encoded
in a data structure that is human readable. Method summaries help compiler
developers understand why a method was inlined.

The optimizations considered in the previous sections are only a proof of
concept. The set of optimizations that are considered by the method summaries
can be expanded in future work. In the simple examples shown previously, there
was only one type of optimization encoded in each method summary, however,
in the general case method summaries contain multiple rows denoting multiple
optimizations. A method summary may encode different types of optimizations
that are unlocked by different arguments. Constraints on multiple arguments
would be equivalent to having multiple non-empty columns in the same row of
the method summary.

Limitations in method summaries exist. For example, at the moment only
a single argument is constrained (i.e., only a single cell in a method summary
entry is a constraint). Figure 6.9 shows bytecode that contains a branch (5:
ifge which depends on the target address of 1: ifle. Our current algorithm
will generate the method summary found in Table 6.8. If an argument estimate
satisfies one of the constraints for 5 : ifge, then that branch would be
folded. However, it might be of interest to calculate when both constraints
are satisfied in the way shown by Table 6.9 which is currently beyond the
capabilities of the current implementation. E.g., our current algorithm can
only generate method summary entries with a single constraint (see rows in
Table 6.8). Generating method summary entries with multiple constraints (see
third row in Table 6.9) per row would allow the current implementation to
determine whether conditional statements that test multiple values can be

folded away, as opposed to conditional statements that test a single value.

23

public static int condition(int, int);

Code:
0: iload_O
1: ifle 12
4: iload_1
5: ifge 12
8: icomnst_1
9: goto 13

12: iconst_0O
13: istore_2
14: iload_2
15: ifeq 20
18: icomnst_1
19: ireturn
20: icomnst_0
21: ireturn

Figure 6.9: Example of branch being conditional on multiple arguments

Table 6.8: Method summary for Figure 6.9

Potential Optimization Bytecode Argument 0 Argument 1

Branch Folding 1 : ifle [INT_MIN, 0]
Branch Folding 1 : ifle [1,INT_MAX |
Branch Folding 5 : ifge [INT_MIN, 0]
Branch Folding 5 : ifge [1,INT_MAX |

Table 6.9: Method summary for Figure 6.9 after future work

Potential Optimization Bytecode Argument 0 Argument 1

Branch Folding 1
Branch Folding 5 : ifge [1,INT_MAX |
Branch Folding 1-

: ifle [INT_MIN, O]

5 [1,INT_MAX | [INT_MIN, 0]

o4

Chapter 7

Evaluation

This performance evaluation contains two comparisons: one against the OpenJ9
JVM to compare the performance of the benefit inliner against an industry-
grade inliner, and another against a call-ratio inliner, which uses only frequency
information. The inlining strategies used in the OpenJ9 JVM are publicly
available as part of the OpenJ9 JVM source code. The OpenJ9 JVM includes
two inlining strategies: TR DumbInliner is used only during cold compilation
levels, and TR MultipleCallTargetInliner is used for the compilation levels
warm and above.

The call-ratio inliner is a modified version of the benefit inliner where only
the call ratio is used to determine what to inline. This comparison allows
us to measure differences in the inlining plans when taking into account the

predicted optimizations.

7.1 Experimental Setup

This performance evaluation uses a subset of the DaCapo 9.12 Bach [11]
benchmarking suite for the evaluation. The DaCapo benchmarking suite is
popular, relevant, and has a diverse set of workloads. The following benchmarks
were excluded from the evaluation: TOMCAT, TRADEBEANS, TRADESOAP. The
evaluation is conducted on a machine equipped with an Intel Xeon Platinum
8180 processor [28]. The machine is configured such that 28 cores are active.
The machine has an L1 data cache and an L1 instruction cache of 32K each.

The L2 cache is 1,024K and L3 cache is 39,424K, and RAM is 1TB. IBM
55

1 if (isScorching(comp())) _callerWeightLimit = std::max (1500,

size * 2);
2 else if (isHot(comp())) _callerWeightLimit = std::max(1500,
size + (size >> 2));
else if (size < 125) _callerWeightLimit = 250;
4 else if (size < 700) _callerWeightLimit = std::max (700,
size + (size >> 2));
5 else _callerWeightLimit = size + (size >> 3);

Figure 7.1: Amount of budget allocated for inlining as a function of the method’s
size and compilation level is given by the variable _callerWeightLimit. [21][In-
liner.cpp, Line 311]

granted access to this machine with the server configured in such a way that
the ports used by the excluded benchmarks were closed.

Red Hat Enterprise Linux Server release 7.4 (Maipo) is installed as the
machine’s operating system (OS) and is running kernel version 3.10.0-693. The
machine is running an OpenJ9 JVM running Java version 1.8.0_.171 !. The
OpenJ9 JVM has been modified to include the prototype implementations of
the benefit inliner and the call-ratio inliner.

We have taken care to match the inlining budgets used in the benefit-driven
and call-ratio inliner to the budgets used in the OpenJ9 JVM. However, the
inlining strategies used in the OpenJ9 JVM conflate the notion of benefit and
size into a weighted size. Furthermore, the OpenJ9 JVM inlining strategies
include a heuristic for ignoring the budget for certain call-site/callee pairs.
As a result, while we have attempted to match the budgets used by in the
different inlining strategies, there are still some differences in the inlining
budgets. Changing the OpenJ9 JVM inlining strategy to avoid conflating the
notion of benefit and size would not be advisable since that is part of our
contribution. Changing the OpenJ9 JVM inlining strategy to avoid ignoring
the budget for certain call-site callee pairs would make the comparison unfair.
As such, the inlining strategies used in the OpenJ9 JVM remain unchanged.

The budget is given by the following function available in the

'The commit hashes are OpenJ9: 615f0cc, OMR: 7al158d9. The JCL version is:
20180604_01.

o6

Table 7.1: Warm up iterations and repetitions for each benchmark

Benchmark Warm up iterations

AVRORA 60
BATIK 100
ECLIPSE 10
FOP 1,000
H2 100
LUINDEX 600
LUSEARCH 100
PMD 100
SUNFLOW 100
XALAN 400

7.2 Following Best Practices

To avoid measuring the effects of stop-the-world garbage collection we set the
JVM heap to be 1 GB. To avoid non-determinism introduced by Non-Uniform
Memory Access (NUMA), all 28 cores have been selected to run under a single
NUMA node. NUMA allows processors in multiprocessor architectures to
access their own local memory faster than non-local memory. Because threads
may be scheduled in a non-deterministic way, NUMA may introduce some
noise. As such, we would like to reduce the noise introduced by NUMA. To
achieve this we disable multithreading on multiple processors. There were
28 threads each assigned to a single microprocessor ensuring that there was
uniform memory access.

All benchmarks run until the JVM ends warming up. Table 7.1 shows
the number of warm up iterations for each benchmark. After warm up, the
benchmark runs one more time and the run time reported by this last run is
recorded. The number of iterations a benchmark needs to run to be considered
warmed up was obtained by measuring the compiler activity. The JVM is
considered to finish the warming up stage when the JVM runs at least 3
iterations of the benchmark without any compilation requests or no new
compilation requests were issued in the last thirty seconds of execution.

The benchmarks were executed in an isolated environment. To account

o7

for variations in execution time introduced by background processes, each
measurement is repeated 10 times. The value reported is the arithmetic mean
of ten runs. The recorded points for each run is modelled as a gaussian
distribution and the standard deviation is reported in the graphs. A single
execution batch consists in running each one of the benchmarks once in a given
order. The order of execution of the benchmarks is randomized from one batch
to the next. Benchmarks are run back to back (i.e., once a benchmark finishes
executing, the next one is scheduled to run).

Source of variations also include the use of sampling profiling to determine
the frequency of execution of methods and trigger compilation requests and
profiling information used in the inlining decisions. Previous inlining decisions
may also affect the profiling information because once a method has been
inlined, it no longer gets profiled by the IProfiler framework. Variations
may be introduced by the thread scheduler because the OpenJ9 JVM uses
asynchronous compilation. These sources of variation affect the inliners by

potentially changing inlining decisions.

7.3 Measurements

7.3.1 Run Time

The DaCapo benchmarks report run time as an output during each iteration
of the benchmark. We run the benchmarks multiple times using the command
line options available in the DaCapo benchmarking suite. These multiple runs
ensure that the virtual machine has finished warming up. The reported time is
normalized against the baseline inliner.

The geometric mean across all benchmarks for the baseline inliner is 1£0.0009.
The geometric mean across all benchmarks for the benefit inliner is 1.04540.006.
This means that the benefit inliner is 4% slower than the baseline inliner.

For the majority of the benchmarks, there is little impact on the run time
compared with the baseline inliner. However, for the benchmark Fop, the
run time increased by almost 20% when running the benefit inliner and the
call-ratio inliner when compared to the baseline inliner. Similarly, benchmarks

o8

Run Time

—— Benefit o

139 — call Ratio
g —— Baseline O
= 8°

1.2 1
5 .
3 8]
o éo
]
Q114 © e o0
[
- 08 o o
18]
= é =1 - °
= 1.0 mi o@ % é é
S : ! B %

o)
o) o)
0.9 1
> o T f= 3 c %
= o] @

Figure 7.2: Normalized run time: average of 10 runs for baseline, call ratio,
and benefit inliner

H2 and LUINDEX also had run time increased by more than 10%.
The geometric mean across all benchmarks for the call-ratio inliner is
1.056 4+ 0.007. The difference in run time between the call-ratio inliner and the

benefit inliner is negligible.

7.3.2 Compilation Time

OpenJ9 provides infrastructure to obtain the compilation time spent by each
compilation thread. The total compilation time is obtained by adding the
compilation time reported by each compilation thread. Figure 7.3 shows the
average compilation time of each benchmark with their respective standard
deviation. The compilation time is normalized to the average of the baseline.
The geometric mean across all benchmarks for the baseline inliner is 1 £+
0.017. The geometric mean across all benchmarks for the call-ratio inliner is
1.1194+0.026. The geometric mean across all benchmarks for the benefit inliner
is 1.102 £ 0.024. We include the geometric mean for the baseline inliner to
show the difference in the standard deviation between the different inliners.

29

Compilation Time

Q o —— Benefit
g 3.5 1 —— Call Ratio
= —— Baseline
c |
9 3.0
Ic
— 2.5 ©
Q.
=
8 2.0 8.5
=l9]

ge; %@ é@ 6
Q 1.5
N 8 o)
© -Q ©

1.0 == =] g- =] %I
g % o g é % © E 0
S 5
= 0.5 -

=
E
a

avrora -
batik -
eclipse

luindex 4 g
lusearch 4
sunflow -

xalan 4 .E:l

Figure 7.3: Normalized compilation time: average of 10 runs for baseline inliner,
call-ratio inliner, and benefit inliner

Figure 7.3 shows a large variation when comparing the benefit inliner and
the call-ratio inliner against the baseline inliner. Some of this increase in time
is attributed to the time spent analyzing code. However, as mentioned in
Section 7.1, there are some fundamental differences in the notion of inlining
budget between the benefit inliner and the baseline inliner. The differences are
that the budget in the OpenJ9 JVM inliners conflates the size of the method
to be inlined with the frequency of execution of that method. Thus, the budget
in the OpenJ9 JVM corresponds to the notion of the number of bytecodes in a
method and how hot the method is. For example, when determining which
methods to inline, the inliner determines if the frequency of invocation of a
method, and if it surpasses a threshold, then the inliner multiplies the size of
the bytecode by a value less than 1 to make this method more likely to be

inlined.

60

7.3.3 Difference in Factors Influencing Inlining

In Chapter 2 introduced the inlining strategies already available in OpenJ9.
The heuristic properties used by the OpenJ9 inliner are spread throughout
the OpenJ9 repository. The OpenJ9 inlining strategies adjust the weight of

inlining candidates considering the following properties:

1. heavily polymorphic interfaces
2. invokedynamic instructions

3. hotness

4. bytecode size

5. polymorphic callee sizes

6. polymorphic root sizes

7. frequency

8. constant arguments

9. number of callers to a method
10. inline depth
11. number of inlined call sites
12. call site is in a loop

13. number of nodes in the intermediate language

Some of these properties are obtained after generating the intermediate
language in OpenJ9. This means that time has been spent translating from
bytecode to intermediate language. Furthermore, methods transformed to
intermediate language in the inlining pass will need to be re-compiled to
intermediate language due to internal implementation details. Because the
benefit inliner works at the byte code level, we are allowed to save time needed
to compile to Trees (the intermediate language of OpenJ9). However, due to

the time spent in the analysis, we still have a slow down of 10%.
61

Generated Code Size

Q
N
Vp)
@ 1.1+ 0
o e} ©o
o
) o %Eo
o 1.0- 2 2 ? s f
0
8 0 ° [
o
© [
L 09+ ?%I o o0
Q
&)
8 0.8 - 05 o}
N = = o]
© —— Benefit o g
e 0.7 | — Call Ratio o é
E —— Baseline o
Z T T T T T T T T T T
© A [l] o ™~ = = o = =
5 § & ® ° 5 £ §E 2 g
- @ =
© 8 = i 7
3

Figure 7.4: Normalized generated code

7.3.4 Generated Code Size

Compilation time is usually proportional to the amount of generated code size.
This is because many of the different analyses used during compilation have
super-linear time complexity on the size of the code [10]. As a result, in order
to estimate the compilation time, we must also look at the amount of code
compiled.

The size of generated code is obtained through the verbose option from the
same 10 runs of each benchmark. The verbose option outputs the start and
end addresses for each compiled method body. The size of generated code for
each compilation request is given by the difference between the end and the
start addresses. The total size of generated code for each benchmark run is
obtained by adding the generated code for each compilation issued during that
benchmark run. Figure 7.4 shows the average amount of generated code during
the execution of 10 runs of each benchmark.

There is a moderate correlation (coefficient 0.522) between the amount of

generated code and the amount of compilation time for the benefit inliner.

62

Memory Usage

o 1.4 - —— Benefit
—— Call Ratio
g %E —— Baseline
v 1.3 A
- o] o]
a 1.2 é?
o —°
%], 05
1.1 o &=
= o 5. °
_g 1.0 508 & % & O
Bl S
C 0.9+ o 0
s | 8
0.8

xalan 4

=
E
a

avrora -
batik -
eclipse
fop 4

h2
luindex -
lusearch
sunflow -

Figure 7.5: Memory usage

This means that more code generated implies a higher compilation time for
the benefit inliner and the call-ratio inliner.

The geometric mean of the generated code size for the call-ratio inliner
across all benchmarks is 0.845 + 0.005. The geometric mean of the generated
code size for the benefit inliner across all benchmarks is 0.848 4 0.004. On
average, using the benefit inliner produces 16% less code and increases run time
by 4%. This variability is high, but the amount of generated code is usually
equal or less than the amount of code generated by the baseline inliner. The
decrease in generated code size is attributed to the baseline inliner’s conflation

of a method size with the method frequency of invocation.

7.3.5 Memory Usage

Figure 7.5 shows the amount of memory used during compilation. This value

was obtained from the logging infrastructure available in the JIT used in

OpenJ9 JVM.

The geometric mean across all benchmarks for the baseline inliner is 1 £+

63

0.017. The geometric mean across all benchmarks for the benefit inliner is
1.074 + 0.004. The geometric mean across all benchmarks for the call-ratio
inliner is 1.074 £ 0.005.

Figure 7.5 shows that the impact of the analysis on the memory consumption
of the compiler is 7%. This difference is small taking into account the greater
amount of search space that is explored. While the benefit inliner and the
call-ratio inliner performs a more complex analysis than the inliners in the

OpenJ9 JVM, the memory consumption increases by an average of only 7%.

7.4 Case Studies

Section 7.3 compares the overall performance of the benefit inliner against a
state of the art inlining strategies. However, these measurements indicate that
the differences between the call-ratio inliner and the benefit inliner are not
statistically significant. The Wilcoxon signed-rank test indicates that there are
no differences in compile time, run time, memory usage and generated code
size between the benefit inliner and the call-ratio inliner (Z = 2133,p = 0.17
Z =1639,p = 0.18, Z = 2046,p = 0.38, Z = 1976,p = 0.33 respectively).
Cliff’s delta for these groups are between -0.02 and 0.05 which corresponds to
a negligible difference [36] (as cited in in [45]) Why is this the case? Are the
inlining plans between the call-ratio inliner and the benefit inliner the same?

Answering this question is difficult, because inlining plans for the same
compilation unit across multiple runs may differ even using the same inliner.
Ideally, we would like to have the same inlining plan across different runs.
However, due to non-determinism discussed in Section 7.2, inlining plans can

be affected in the following ways:

1. Considering the same nodes in the IDT but each node in the IDT may

have different values for the block frequencies.

2. Considering different nodes in the IDT. While the inliner normally con-
siders all nodes for inclusion in the IDT, there are two exceptions: (i)

When considering virtual and interface invocations, only the main target

64

of these methods is added to the IDT and (ii) cold methods are excluded
from the IDT.

3. The VM is in control of which methods it issues for compilation/re-

compilation which is also a non-deterministic process.

As a result of these sources of uncertainty, it is impossible to obtain fully
reproducible inlining plans for all compilation units.

To find out how different the inlining plans generated between the benefit
inliner and the call-ratio inliner, one must look at the following subset of

compilation units:

1. Concentrate on inlining plans in which the abstract interpreter found at

least one optimization.
2. Look at the top 100 hot methods.

3. Look for compilation units in the benefit inliner whose inlining plans are

different for the majority of runs when compared to the call-ratio inliner.

4. Look for the intersection of compilation units found in the benefit inliner

and the call-ratio inliner.

There is little difference between the benefit inliner and the call-ratio inliner
when looking at that subset of compilation units. After manual inspection, the
most prominent examples are outlined here as use cases. These methods are
the ones where the computed benefit by the analysis lead to better inlining

decisions compared to just considering the call ratio.

7.4.1 arrayAtPut()

The DaCapo benchmark ECLIPSE has the method arrayAtPut (int, boolean).
The source of this method can be found in the CodeStream class in the
eclipse repo [20] and is also shown in Figure 7.6. In the compilation re-
quests for ArrayInitializer.generateCode(), arrayAtPut(int, boolean)
has a frequency value similar to other methods. However, due to its rela-

tively large amount of bytecode footprint, the call-ratio inliner decided against
65

inlining it. The abstract interpreter is capable of determining that the ar-
gument valueRequired will always be false when compiling ArrayInitial-
izer.generateCode () and that it leads to folding 8 branches. As a result, the
benefit inliner consistently inlines this method instead of several other smaller
methods. This is a prime example of the type of methods that the analysis in

the benefit inliner discovers.

7.4.2 renderInlineArea()

The method renderInlineArea(InlineArea inlineArea) can be found in
the AbstractRenderer class in the FOP repo and is shown in Figure 7.7. The
benefit inliner was able to determine that the instruction instanceof was
being used heavily in this method and that the class of inlineArea can be
known at analysis time. As a result, if statements in this method can be

folded away.

7.4.3 regionMatches()

In LUSEARCH, when compiling root method SegmentInfos.read(Directory
d,String s) both inliners consider inlining generationFromSegmentsFile-
Name (String fileName). This method calls String.startsWith(String
prefix, int start) (source available in Figure 7.8) with a static final
string obtained from the field IndexFileNames.SEGMENTS. There are other
literal values in the call chain. For example, the arguments thisStart and
start to the function String.regionMatches(int, String, int, int) in
line 18 come from literal values from ancestors in the call graph. The cur-
rent implementation of the abstract interpreter does not model field accesses.
Therefore, it cannot determine the value of the string argument, but it can
determine that the arguments thisStart and start are constants and their
respective values. As such, the branches in Lines 20 and 21 are simplified to
eliminate the inequality comparison for thisStart and start.

The call-ratio inliner considers inlining regionMatches () but the call ratio
alone is not beneficial enough to inline regionMatches() in any of the runs.

The static benefits found by the benefit inliner provide sufficient weight to
66

public void arrayAtPut(int elementTypeID, boolean valueRequired) {

1

2 switch (elementTypeID) {
3 case Typelds.T_int

4 if (valueRequired)
5 dup_x2Q);

6 iastore();

7 break;

8 case Typelds.T_byte

9 case Typelds.T_boolean :
10 if (valueRequired)
11 dup_x2Q);

12 bastore();

13 break;

14 case Typelds.T_short
15 if (valueRequired)
16 dup_x2Q);

17 sastore();

18 break;

19 case Typelds.T_char :
20 if (valueRequired)
21 dup_x2Q);

22 castore();

23 break;

24 case Typelds.T_long :
25 if (valueRequired)
2 dup2_x2Q) ;

27 lastore();

28 break;

29 case Typelds.T_float
30 if (valueRequired)
31 dup_x2Q0);

32 fastore();

33 break;

34 case Typelds.T_double :
35 if (valueRequired)
36 dup2_x2Q) ;

37 dastore();

38 break;

39 default

40 if (valueRequired)
41 dup_x2Q0);

42 aastore();

43}

44 }

Figure 7.6: Java source for inlining candidate arrayAtPut ().

67

1 protected void renderInlineArea(InlineArea inlineArea) {

2 List<ChangeBar> changeBarList = inlineArea.
getChangeBarList () ;

3

4 if (changeBarList != null && !changeBarList.isEmpty()) {

5 drawChangeBars(inlineArea, changeBarList);

6 }

7 if (inlineArea instanceof TextArea) {

8 renderText ((TextArea) inlineArea);

9 //} else if (inlinedrea instanceof Character) {

10 //renderCharacter((Character) inlinedrea);

11 } else if (inlineArea instanceof WordArea) {

12 renderWord ((WordArea) inlineArea);

13 } else if (inlineArea instanceof SpacelArea) {

14 renderSpace ((SpaceArea) inlineArea);

15 } else if (inlineArea instanceof InlineBlock) {

16 renderInlineBlock((InlineBlock) inlineArea);

17 } else if (inlineArea instanceof InlineParent) {

18 renderInlineParent ((InlineParent) inlineArea);

19 } else if (inlineArea instanceof InlineBlockParent) {
20 renderInlineBlockParent ((InlineBlockParent) inlineArea)
21 } else if (inlineArea instanceof Space) {

22 renderInlineSpace((Space) inlineArea);

23 } else if (inlineArea instanceof InlineViewport) {

24 renderInlineViewport((InlineViewport) inlineArea);
25 } else if (inlineArea instanceof Leader) {

26 renderLeader ((Leader) inlineArea);

27 }

28 }

Figure 7.7: Java source for inlining candidate renderInlineArea()

68

the nodes in the algorithm such that regionMatches() is inlined in all the
runs. Similar examples can be found by the benefit inliner across different

benchmarks where only the benefit inliner chooses to inline regionMatches().

7.4.4 loadClassHelper()

The benchmark PMD uses the function 1loadClass(final String className,
boolean resolveClass) from the Java standard library. The source is avail-
able in Figure 7.9. The specific implementation found in the OpenJ9 repo [22]
contains the helper function loadClassHelper () that is consistently inlined
in the benefit inliner but not consistently enough in the call-ratio inliner.
The boolean value delegateToParent can be found to be true by the ben-
efit inliner every time the loadClass(final String, boolean) and load-

ClassHelper(String, boolean, boolean) are inlining candidates.

7.4.5 StringBuilder()

In SUNFLOW and AVRORA and other benchmarks, there are several uses of
StringBuilder. The value INITIAL_SIZE can be determined at compilation

time and can be used to fold away the branch in Line 4 in Figure 7.10.

7.4.6 getZero()

In the PMD benchmark, we found that the function getZero(Locale 1) can
determine that Locale 1 is not null. The new instruction found in Line 2 of
Figure 7.11 when passing the second argument maps to the non null abstract
value for the class StringBuilder. Lines 7 and 8 have no effect on the abstract
interpreter except for manipulation of the stack. However, the call in Line 9
passes a non null abstract value for the object allocated in Line 2. The
method summary for the getZero(Locale 1) function includes a null check
on argument Locale 1. The constraint from the method summary is satisfied

when checked against the abstract argument generated in Line 2.

69

1 public static long generationFromSegmentsFileName(String fileName)

Tt W N

N O

9
10
11
12
13
14
15
16
17

3

{

if (fileName.equals(IndexFileNames.SEGMENTS)) {

return O;

} else if (fileName.startsWith(IndexFileNames.SEGMENTS)) {

return Long.parselong(fileName.substring(1+IndexFileNames.
SEGMENTS.length()),
Character.MAX_RADIX);

} else {

throw new IllegalArgumentException("fileName \"" + fileName + "
\" is not a segments file");

}

public boolean startsWith(String prefix) {

}

return startsWith(prefix, 0);

public boolean startsWith(String prefix, int start) {

3

return regionMatches(start, prefix, 0, prefix.count);

18 public boolean regionMatches(int thisStart, String string, int

19
20
21
22
23
24
25
26
27
28
29

35

}

start, int length) {
string.getClass(); // implict null check
if (start < O || string.count - start < length) return false;
if (thisStart < 0 || count - thisStart < length) return false;
if (length <= 0) return true;
int ol = offset + thisStart, 02 = string.offset + start;
int end = length - 1;
char[] source = value;
char[] target = string.value;
target.getClass(); // implictit null check
source.getClass(); // implicit null check
// fast path check - strings are much more likely to be different

at the end
if (sourcelol + end] != target[o2 + end]) return false;
for (int 1 = 0; i < end; ++i) {
if (sourcelol + i] != target[o2 + i])
return false;

}

return true;

Figure 7.8: Java source for inlining candidate regionMatches().

70

1 protected Class<?> loadClass(final String className, boolean
resolveClass) throws ClassNotFoundException {
2 return loadClassHelper(className, resolveClass, true)
3}
Class<?> loadClassHelper(final String className, boolean
resolveClass, boolean delegateToParent
) throws ClassNotFoundException {
Object lock = isParallelCapable 7 getClassLoadinglock(className)
: this;
7 synchronized (lock) {
8 // Ask the VM to look in its cache.

W~

ot

(=)

9 Class<?> loadedClass = findLoadedClass(className);

10 // search in parent if not found

11 if (loadedClass == null) {

12 if (delegateToParent) {

13 try {

14 if (parent == null) {

15 /*[PR 95894]*/

16 if (isDelegatingCL) {

17 loadedClass = bootstrapClassLoader.findLoadedClass(
className) ;

18 }

19 if (loadedClass == null) {

20 loadedClass = bootstrapClassLoader.loadClass(
className) ;

21 }

22 } else {

23 if (isDelegatingCL) {

24 loadedClass = parent.findLoadedClass(className) ;

25 }

26 if (loadedClass == null) {

27 loadedClass = parent.loadClass(className,
resolveClass);

28 }

29 }

30 } catch (ClassNotFoundException e) {

31 // don’t do anything. Catching this ezception is the

normal protocol for
32 // parent classloaders telling use they couldn’t find a
class.

33 }

34 }

35 if (loadedClass == null) {

36 loadedClass = findClass(className);

37 +

38 }

39 if (resolveClass) resolveClass(loadedClass);

40 return loadedClass;

a1} 71

42 }

Figure 7.9: Java source for inlining candidate loadClassHelper ().

public StringBuilder() {
this (INITIAL_SIZE);
}

1
2
3
5 public StringBuilder(int capacity) {
6 1if (capacity < 0) {

7 throw new NegativeArraySizeException();
8}

9 int arraySize = capacity;

10

11 if (String.enableCompression) {

12 if (capacity == Integer.MAX_VALUE) {

13 arraySize = (capacity / 2) + 1;
14 } else {

15 arraySize = (capacity + 1) / 2;
16 +

17}

18 value = new char[arraySize];
19
20 this.capacity = capacity;

21
Figure 7.10: Java source for inlining candidate StringBuilder ()
1 public Formatter() {
2 this(Locale.getDefault(Locale.Category.FORMAT), new
StringBuilder());
3 }
4
5 private Formatter(Locale 1, Appendable a) {
6 this.a = a;
7 this.1l = 1;
8 this.zero = getZero(l);
9 }
10
11 private static char getZero(Locale 1) {
12 if ((1 !'= null) && 'l.equals(Locale.US)) {
13 DecimalFormatSymbols dfs = DecimalFormatSymbols.
getInstance(l);
14 return dfs.getZeroDigit();
15 } else {
16 return ’0’;
17 }
18 }

Figure 7.11: Java source for inlining candidate getZero().

72

Chapter 8

Conclusion

This thesis shows a systematic way of assigning values to inlining candidates
based on their frequency of execution and the optimizations that will take
place after inlining. While data-flow analyses are not normally used in the JIT
context due to the compiler’s time constraints, our benefit inliner performs
reasonably well compared to the greedy inlining strategy. However, there are
low number of different inlining plans when comparing the benefit inliner to
the call-ratio inliner.

Throughout the course of this thesis, abstract interpretation, a theory of
data-flow analyses, has been used to design a fast static analysis with the
purpose of estimating the benefit of inlining decisions. The benefit inliner
combines the direct and indirect benefits of inlining into a single benefit value.
Additionally, we use a method summary to encode constraints that improve the
likelihood that a method will be inlined. Method summaries are a good way of
encoding the benefits of inlining, because they are easily understandable.

This thesis has shown a lower bound on the quantity of inlining candidates
that are benefitted by this analysis. While the amount of constraints that
were satisfied were relatively low, the static analysis performed in the benefit
inliner lacks precision. This thesis has outlined future work to improve the
precision and usability of the benefit inliner and increase the quantity of satisfied

constraints.

73

8.1 Future Work

The inlining strategy described in this work is just a prototype. Future work

can be categorized the following different areas:

—_

. validate design decisions through experimentation

ro

add support for more optimizations
3. increase analysis’ precision
4. optimize current implementation

5. extend method summaries

Was it a good decision to use the same inlining budget on the call ratio
and the benefit inliner as the default inliners on OpenJ9? Sweeping possible
budget values and finding out the impact of varying the budget on run time and
compilation time can provide evidence to decide on better budgets for inlining.
Another design decision could be interesting to explore is being more selective
on the call-site/method pairs that are added to the IDT. Depending on the
budget, the IDT may be bigger than 1,500 nodes. While the IDT considers
all nodes to find which ones should be inlined, maybe heuristics could help to
narrow down the search space before running inlining packing algorithm. It
could also be possible to limit the growth of the IDT by separating the budget
into two: one budget allows for exploring (which will limit the size and depth
of the IDT) while the other one allows for inlining within the explored search
space.

The current number of optimizations is quite limited and may provide
limited benefits. We are currently exploring the possibility of adding support
for escape analysis. Finding opportunities to allocate elements on the stack
as opposed to on the heap may reduce run time. Other optimizations worth
considering is looking at the return values of functions. In some cases it might
be possible that the return type of a function is a subtype of the function’s
type signature. In these cases, it might be possible to devirtualize calls when

the return type is the target of the call.
74

The benefit inliner strategy discards the state in the case of back-edges. This
limits the precision of the inliner. We are currently exploring the possibility of
doing two passes on the control-flow graph to allow for data flow facts to be
propagated by back-edges. It might be worthwhile to consider an experiment
where the analysis is performed until the fixed point is reach to find the upper
bound on post-inlining transformations discovered on the benchmarks.

Finally, the benefit inliner strategy is in the process of being open sourced.
We are communicating with the OpenJ9 team to make sure that our prototype
is optimized. Futhermore, method summaries are limited in their capacity to
represent constraints. We will be working on extending method summaries to

allow more expressive constraints.

5

References

1]

E. K. (https://stackoverflow.com /users/223429/eugene-kuleshov), How
can the jum verify there’s no potential operand stack overflow when loading
a class? Stack Overflow, https://stackoverflow.com/a/10541774.
eprint: https://stackoverflow.com/a/10541774. [Online]. Available:
https://stackoverflow.com/a/10541774.

R. I. (https://stackoverflow.com/users/225757 /roland-illig), Java: How to

check for null pointers efficiently, Stack Overflow, https://stackoverflow.

com/q/4795455. eprint: https://stackoverflow.com/q/4795455. [On-
line]. Available: https://stackoverflow.com/q/4795455.

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen,
J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp, “The jikes research
virtual machine project: Building an open-source research community,”
IBM Systems Journal, vol. 44, no. 2, pp. 399-417, 2005, 1SSN: 0018-8670.
DOI: 10.1147/s3.442.0399. [Online]. Available: https://doi.org/10.
1147/sj.442.0399.

A. W. Appel, Compiling with continuations. Cambridge University Press,
2006.

M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A comparative
study of static and profile-based heuristics for inlining,” SIGPLAN Not.,
vol. 35, no. 7, pp. 5264, Jan. 2000, 1SSN: 0362-1340. pOI: 10. 1145/
351403.351416. [Online]. Available: http://doi.acm.org/10.1145/
351403.351416.

M. Arnold and B. G. Ryder, “A framework for reducing the cost of
instrumented code,” SIGPLAN Not., vol. 36, no. 5, pp. 168-179, May
2001, 1SSN: 0362-1340. DOT: 10.1145/381694.378832. [Online]. Available:
http://doi.acm.org/10.1145/381694.378832.

J. Aycock, “A brief history of just-in-time,” ACM Comput. Surv., vol. 35,
no. 2, pp. 97-113, Jun. 2003, 1ssN: 0360-0300. po1: 10.1145/857076.
857077. [Online]. Available: http://doi.acm.org/10.1145/857076.
857077.

Azul, Zing jum, https://www.azul.com/products/zing/, 2019.

76

46

23

1, 21-23

https://stackoverflow.com/a/10541774
https://stackoverflow.com/a/10541774
https://stackoverflow.com/a/10541774
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1145/351403.351416
https://doi.org/10.1145/351403.351416
http://doi.acm.org/10.1145/351403.351416
http://doi.acm.org/10.1145/351403.351416
https://doi.org/10.1145/381694.378832
http://doi.acm.org/10.1145/381694.378832
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
http://doi.acm.org/10.1145/857076.857077
http://doi.acm.org/10.1145/857076.857077
https://www.azul.com/products/zing/

[12]

[15]
[16]

[17]

beehive-lab, Maxine vm, https://github.com/beehive-lab/Maxine-
VM, 2019.

P. Berube, “Methodologies for many-input feedback-directed optimiza-
tion,” AAINR89287, PhD thesis, Edmonton, Alta., Canada, 2012, ISBN:
978-0-494-89287-9. DOI: 10.7939/R3DW8K. [Online|. Available: https:
//doi.org/10.7939/R3DWSK.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The dacapo
benchmarks: Java benchmarking development and analysis,” SIGPLAN
Not., vol. 41, no. 10, pp. 169-190, Oct. 2006, 1SSN: 0362-1340. DOTI:
10.1145/1167515.1167488. [Online]. Available: http://doi.acm.org/
10.1145/1167515.1167488.

E. Bodden, “The secret sauce in efficient and precise static analysis:
The beauty of distributive, summary-based static analyses (and how
to master them),” in Companion Proceedings for the ISSTA/ECOOP
2018 Workshops, ser. ISSTA 18, Amsterdam, Netherlands: ACM, 2018,
pp. 85-93, 1SBN: 978-1-4503-5939-9. DOI: 10.1145/3236454 . 3236500.
[Online]. Available: http://doi.acm.org/10.1145/3236454.3236500.

P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.-m. W. Hwu, “Profile-
guided automatic inline expansion for ¢ programs,” Softw. Pract. Exper.,
vol. 22, no. 5, pp. 349-369, May 1992, 1SSN: 0038-0644. DO1: 10.1002/
spe . 4380220502. [Online|. Available: http://dx.doi.org/10.1002/
spe.4380220502.

P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the jth ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL 77, Los Angeles,
California: ACM, 1977, pp. 238-252. por: 10.1145/512950.512973.
[Online|. Available: http://doi.acm.org/10.1145/512950.512973.

A. Craik, https ://github . com/eclipse/openj9 /issues/ 199 #
issuecomment-334290558, [Online; accessed March-08-2019], 2017.

A. J. Craik, R. E. Craik, and P. R. Doyle, Fxpanding inline function calls
in nested inlining scenarios, US Patent App. 15/245,241, Jul. 2017.

T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M.
Wolczko, “Compiling java just in time,” IEEE Micro, vol. 17, no. 3,
pp- 36-43, May 1997, 1sSN: 0272-1732. DOI: 10.1109/40.591653. [Online].
Available: doi.org/10.1109/40.591653.

7

1, 21, 23, 28, 62

55

24

21

10, 13

ii, 17, 26, 28, 52

https://github.com/beehive-lab/Maxine-VM
https://github.com/beehive-lab/Maxine-VM
https://doi.org/10.7939/R3DW8K
https://doi.org/10.7939/R3DW8K
https://doi.org/10.7939/R3DW8K
https://doi.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
https://doi.org/10.1145/3236454.3236500
http://doi.acm.org/10.1145/3236454.3236500
https://doi.org/10.1002/spe.4380220502
https://doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1002/spe.4380220502
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://github.com/eclipse/openj9/issues/199#issuecomment-334290558
https://github.com/eclipse/openj9/issues/199#issuecomment-334290558
https://doi.org/10.1109/40.591653
doi.org/10.1109/40.591653

[18]

[24]

[25]

J. Dean and C. Chambers, “Towards better inlining decisions using
inlining trials,” SIGPLAN Lisp Pointers, vol. VII, no. 3, pp. 273-282, Jul.
1994, 15SN: 1045-3563. DOIL: 10.1145/182590.182489. [Online]. Available:
http://doi.acm.org/10.1145/182590.182489.

R. Dubisch, “Lattices to logic,” 1964.

Eclipse, Eclipse jdt core, https://github.com/eclipse/eclipse. jdt.
core, 2019.

——, Eclipse omr, https://github.com/eclipse/omr, 2019.
——, Eclipse openj9, https://github.com/eclipse/openj9, 2019.

[. Gartley, M. Pirvu, V. Sundaresan, and N. Grecevski, “Experiences
in designing a robust and scalable interpreter profiling framework,”
in Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), Feb. 2013, pp. 1-10. DOI:
10.1109/CG0.2013.6494981.

M. Gaudet and M. Stoodley, “Rebuilding an airliner in flight: A retrospec-
tive on refactoring ibm testarossa production compiler for eclipse omr,”
in Proceedings of the 8th International Workshop on Virtual Machines
and Intermediate Languages, ser. VMIL 2016, Amsterdam, Netherlands:
ACM, 2016, pp. 24-27, 1SBN: 978-1-4503-4645-0. DOI: 10.1145/2998415.
2998419. [Online|. Available: http://doi.acm.org/10.1145/2998415.
2998419.

K. Hazelwood and D. Grove, “Adaptive online context-sensitive inlining,”
in International Symposium on Code Generation and Optimization, 20083.
CGO 2003., Mar. 2003, pp. 253-264. DOT: 10.1109/CG0.2003.1191550.
[Online]. Available: https://doi.org/10.1109/CG0.2003.1191550.

IBM and the Eclipse Foundation, FEclipse openj9, [Online; accessed
January-21-2019], 2019. [Online]. Available: https://www . eclipse.
org/openj9/.

S. M. inc., Java se hotspot vm, [Online; accessed May-06-2019]. [Online].
Available: http://java.sun.com/javase/technologies/hotspot/.

Intel xeon platinum 8180 processor, https://ark.intel.com/products/
120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-
GHz-, [Online; accessed 11-Februrary-2019].

K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, “A
study of devirtualization techniques for a java just-in-time compiler,”
SIGPLAN Not., vol. 35, no. 10, pp. 294-310, Oct. 2000, 1SSN: 0362-1340.

DOI: 10.1145/354222.353191. [Online|. Available: http://doi.acm.

org/10.1145/354222.353191.

78

2, 22-24

12

65

4,7, 69

1,2, 22, 24

55

14, 15

https://doi.org/10.1145/182590.182489
http://doi.acm.org/10.1145/182590.182489
https://github.com/eclipse/eclipse.jdt.core
https://github.com/eclipse/eclipse.jdt.core
https://github.com/eclipse/omr
https://github.com/eclipse/openj9
https://doi.org/10.1109/CGO.2013.6494981
https://doi.org/10.1145/2998415.2998419
https://doi.org/10.1145/2998415.2998419
http://doi.acm.org/10.1145/2998415.2998419
http://doi.acm.org/10.1145/2998415.2998419
https://doi.org/10.1109/CGO.2003.1191550
https://doi.org/10.1109/CGO.2003.1191550
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
http://java.sun.com/javase/technologies/hotspot/
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
https://doi.org/10.1145/354222.353191
http://doi.acm.org/10.1145/354222.353191
http://doi.acm.org/10.1145/354222.353191

[30]

[36]

[39]

J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,”
Acta Inf., vol. 7, no. 3, pp. 305-317, Sep. 1977, 1ssN: 0001-5903. DOI:
10.1007 /BF00290339. [Online]. Available: http://dx.doi.org/10.
1007/BF00290339.

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The java virtual
machine specification-java se 8 edition, march 2014.

R. Mangal, M. Naik, and H. Yang, “A correspondence between two
approaches to interprocedural analysis in the presence of join,” in Pro-
gramming Languages and Systems, Z. Shao, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 513-533, 1SBN: 978-3-642-54833-8.

’

M. Mohnen, “A graph—free approach to data—flow analysis,” in Com-
piler Construction, R. N. Horspool, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 4661, 1SBN: 978-3-540-45937-8.

K. Organization, Kaffe, https://github.com/kaffe/kaffe, 2011.

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow anal-
ysis via graph reachability,” in Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
'95, San Francisco, California, USA: ACM, 1995, pp. 4961, 1SBN: O-
89791-692-1. DOIL: 10.1145/199448.199462. [Online]. Available: http:
//doi.acm.org/10.1145/199448.199462.

J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1-33.

B. G. Ryder and M. C. Paull, “Elimination algorithms for data flow
analysis,” ACM Comput. Surv., vol. 18, no. 3, pp. 277-316, Sep. 1986,
1SSN: 0360-0300. DOI: 10.1145/27632.27649. [Online|. Available: http:
//doi.acm.org/10.1145/27632.27649.

M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” in TAPSOFT °95:
Theory and Practice of Software Development, P. D. Mosses, M. Nielsen,
and M. I. Schwartzbach, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1995, pp. 651-665, I1SBN: 978-3-540-49233-7.

R. W. Scheifler, “An analysis of inline substitution for a structured
programming language,” Commun. ACM, vol. 20, no. 9, pp. 647-654,
Sep. 1977, 18SN: 0001-0782. DOI: 10.1145/359810 . 359830. [Online].
Available: http://doi.acm.org/10.1145/359810.359830.

79

9, 10, 12

4-6, 34, 39, 43, 44, 88, 8

24

10

10, 25

64

10

10, 25

1,21, 23

https://doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339
https://github.com/kaffe/kaffe
https://doi.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
https://doi.org/10.1145/27632.27649
http://doi.acm.org/10.1145/27632.27649
http://doi.acm.org/10.1145/27632.27649
https://doi.org/10.1145/359810.359830
http://doi.acm.org/10.1145/359810.359830

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Sewe, J. Jochem, and M. Mezini, “Next in line, please!: Exploit-
ing the indirect benefits of inlining by accurately predicting further
inlining,” in Proceedings of the Compilation of the Co-located Work-
shops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, &
VMIL’11, ser. SPLASH ’11 Workshops, Portland, Oregon, USA: ACM,
2011, pp. 317-328, 1SBN: 978-1-4503-1183-0. DOI: 10.1145/2095050 .
2095102. [Online]. Available: http://doi.acm.org/10.1145/2095050.
2095102.

A. Shankar, M. Arnold, and R. Bodik, “Jolt: Lightweight dynamic analysis
and removal of object churn,” SIGPLAN Not., vol. 43, no. 10, pp. 127-142,
Oct. 2008, 18SN: 0362-1340. DOI: 10.1145/1449955.1449775. [Online].
Available: http://doi.acm.org/10.1145/1449955.1449775.

M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York, NY: New York Univ. Comput. Sci. Dept., 1978.
[Online|. Available: https://cds.cern.ch/record/120118.

O. G. Shivers, “Control-flow analysis of higher-order languages of taming
lambda,” UMI Order No. GAX91-26964, PhD thesis, Pittsburgh, PA,
USA, 1991.

D. Simon, J. Cavazos, C. Wimmer, and S. Kulkarni, “Automatic con-
struction of inlining heuristics using machine learning,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), ser. CGO 13, Washington, DC, USA:
[EEE Computer Society, 2013, pp. 1-12, 1SBN: 978-1-4673-5524-7. DOI:
10.1109/CG0.2013.6495004. [Online|. Available: https://doi.org/10.
1109/CG0.2013.6495004.

M. Torchiano, Cliff.delta: Cliff ’s delta effect size for ordinal variables, R
Foundation for Statistical Computing, 2019. [Online]. Available: https:
//rdrr.io/cran/effsize/man/cliff.delta.html.

Wikipedia contributors, Java virtual machine — Wikipedia, the free
encyclopedia, [Online; accessed 4-June-2019], 2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Java_virtual _
machine&o01ldid=899749630.

X. Zhang, R. Mangal, M. Naik, and H. Yang, “Hybrid top-down and
bottom-up interprocedural analysis,” SIGPLAN Not., vol. 49, no. 6,
pp. 249-258, Jun. 2014, 1SSN: 0362-1340. DOI: 10.1145/2666356 . 2594328.
[Online]. Available: http://doi.acm.org/10.1145/2666356.2594328.

80

23

2,21-23

24

24

64

24

https://doi.org/10.1145/2095050.2095102
https://doi.org/10.1145/2095050.2095102
http://doi.acm.org/10.1145/2095050.2095102
http://doi.acm.org/10.1145/2095050.2095102
https://doi.org/10.1145/1449955.1449775
http://doi.acm.org/10.1145/1449955.1449775
https://cds.cern.ch/record/120118
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://rdrr.io/cran/effsize/man/cliff.delta.html
https://rdrr.io/cran/effsize/man/cliff.delta.html
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=899749630
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=899749630
https://doi.org/10.1145/2666356.2594328
http://doi.acm.org/10.1145/2666356.2594328

Appendix A

Java Bytecode Abstract
Semantics

A.1 Transfer Functions

Category
Operation
Description

Category
Operation
Description

CONTROLFLOW

Jump conditionally or unconditionally.

The concrete instruction would normally jump to a different
segment of code. However, because the flow of control is
changed, when abstractly interpreting instructions that are
supposed to change the flow of control, we only change
elements on the stack and pass the current block’s abstract
state to the successor blocks. These instructions are also
described more thoroughly in Section 5.2.

CALLSTACK

Push onto call stack

The concrete instruction would normally calls a method.
These instructions are also described more thoroughly in
Section 5.1.

Dynamic methods are a not handled and are a source of im-
precision. Future work includes handling correctly dynamic
invocation instructions.

81

Category
Operation
Format
Operand Stack

Description

Note

ALOAD

Load from array.

...,arrayref,index—

...,value

The arrayref must be a valid abstract value of the ab-
stract array domain. The indexr must be a valid abstract
value of the integer interval domain. The value placed
in the operand stack is an abstract value of the type
corresponding to the type of the concrete instruction.
For example, if the concrete instruction is iaload, then
value is of the integer interval domain type.

If the arrayref is null in the concrete instruction seman-
tics, then ALOAD throws a NullPointerException. In
future work, method summaries can be extended with an
entry to check for the null-ness of arrayref. The current
implementation of creating method summary entries does
not take arrayref’s null-ness into account.

If index is not within the bounds imposed by the
length of arrayref, in the concrete instruction seman-
tics, then ALOAD throws a ArrayIndexOutOfBoundsEx-
ception. In future work, method summaries can be
extended with an entry to check the bounds of index.
The current implementation of creating method summary
entries does not take the bounds of inder into account.

82

Category
Operation
Format
Operand Stack

Description

Note

ASTORE
Store into array.

ASTORE

...,arrayref,index,value—

The arrayref must be a valid abstract value of the ab-
stract array domain. The indexr must be a valid abstract
value of the integer interval domain. The value must be
a valid abstract value capable of being stored in arrayref
For example if the concrete instruction is iaload then
value is of the integer interval domain type.

If the arrayref is null in the concrete instruction seman-
tics, then ALOAD throws a NullPointerException. In
future work, method summaries can be extended with an
entry to check for the null-ness of arrayref. The current
implementation of creating method summary entries does
not take arrayref’s null-ness into account.

If index is not within the bounds imposed by the
length of arrayref, in the concrete instruction seman-
tics, then ALOAD throws a ArrayIndexOutO0fBoundsEx-
ception. In future work, method summaries can be
extended with an entry to check the bounds of indezx.
The current implementation of creating method summary
entries does not take the bounds of indexr into account.

If the type of value is not assignment compatible with
the concrete type component of arrayref in the concrete
instruction semantics, then STORE throws an Array-
StoreException. In future work, method summaries
can be extentended with an entry to check the class of
value. The current implementation of creating method
summary entries does not take the class of value into
account.

83

Category
Operation

Format

Operand Stack

Description

Note

Category
Operation

Format

Operand Stack

Description

Note

LOAD
Load from local variable array.
LOAD
index
or
...,value
The index is an unsigned byte that must be an index into
the local abstract variable array of the current abstract
frame. The local variable at inder must contain an
abstract value. The value in the local abstract variable
at index is pushed onto the abstract operand stack.
This instruction may be affected if preceded by the wide
instruction.

STORE

Store element into local abstract variable
STORE
ndex

or

.., value—

The indez is an unsigned byte that must be an index into
the local abstract variable array of the current abstract
frame. The value at the top of the abstract operand stack
must be an abstract value. It is popped from the abstract
operand stack, and the value of the local abstract variable
at index is set to value.

This instruction may be affected if preceded by the wide
instruction.

84

Category
Operation
Format
Operand Stack

Description

Notes

Category
Operation
Format
Operand Stack

Description

RETURN
Return value from method

RETURN

., value—

[empty]

The value must refer to an abstract type that is assign-
ment compatible with the return type of the current
method.

Because upwards propagation in the IDT is not modelled,
areturn is equivalent to pop whenever there is a return
value.

The values returned may be used in an entry in the
method summary in a future implementation. This would
allow our analysis to propagate information up the IDT.
However, that is not the case in the current implementa-
tion of the abstract interpreter.

The operand stack after the interpretation of these in-
structions is equivalent to being empty. In reality, the
operand stack is not emptied, but it is no longer propa-
gated.

ABINOP

Perform arithmetic operations with abstract values.
...,valuel value2—

...,result

Both wvaluel and value2 must be abstract values where
the operation determined by the concrete instruction is
compatible with the operands. The values are popped
from the operand stack. The result is a safe approxima-
tion to the arithmetic operation of valuel and wvalue2.
The result is pushed onto the operand stack.

85

Category
Operation
Format
Operand Stack

Description

Category
Operation
Format
Operand Stack

Description

Category
Operation

Format

Operand Stack
Description

Notes

LBINOP

Perform logic operations with abstract values.

...,valuel value2 —

... result

Both wvaluel and value2 must be abstract values where
the operation determined by the concrete instruction is
compatible with the operands. The values are popped
from the operand stack. The result is a safe approxima-
tion to the logic operation of valuel and wvalue2. The
result is pushed onto the operand stack.

NEG
Negate abstract value.

NEG
..., value—
o result
The wvalue must be an abstract value compatible with
the negation operator. The wvalue is popped from the
operand stack. The result is a safe approximation to the
negation of value. The result is pushed onto the operand
stack.

IINC

Increment local variable by constant
mnce
index
const

No change

The indez is an unsigned byte that must be an index into

the local variable array of the current frame. The const

is an immediate signed byte. The local abstract variable

at index must contain an abstract value belonging to the

abstract integer interval domain. The value const is first

sign-extended to an int and then the local variable at

index is incremented by that amount.

This instruction may be affected by the wide instruction.

86

lde

Category
Operation

Format

Operand Stack

Description

Category
Operation
Format

Operand Stack

Description

Category
Operation
Format
Operand Stack

Description

LDC
Push item from constant pool
ldc
index
. value
The index is an unsigned byte that must be an index
into the runtime constant pool of the current class. The
value in the constant pool at index is converted to an
abstract value. The wvalue is pushed onto the operand
stack. If the value cannot be resolved statically, T is
pushed onto the operand stack.

CONST
Push immediate to stack
or
CONST
value
R
...,value
Cast immediate or value into an abstract value. Push
value to abstract operand stack.

CMP
Compare two abstract numeric types.

CMP
...,valuel value2—
...,result
Both valuel and value2 must be of numeric type. The
values are popped from the operand stack. An abstract
value assignment compatible with the type of the concrete
instruction is placed in the operand stack.

87

Category
Operation
Description
Note

STACK

Manipulate the stack

Manipulates the stack according to the concrete semantics.
Because of the wide diverse of formats available for this

group of instructions, please consult the Java Virtual Machine
Specification Manual [31, Chatper 6].

Category
Operation
Format
Operand Stack

Description

Note

Category
Operation
Format
Operand Stack

Description

Note

MONITOR
Enter or exit monitor object

MONITOR

...,objectref —

Because our analysis does not model monitors, only the
objectref is popped off the abstract stack.

The concrete instruction semantics for monitorenter and
monitorerit state that if objectref is null, the athrow
instruction throws a NullPointerException. If the ab-
stract interpreter is able to determine safely that objectref
is either null or not null then a method entry can be
added to the method summary. The current implemen-
tation does not consider this case.

ATHROW

Throw exception of error

...,objectref —

objectref

Because our analysis does not model exceptional control
flow, only the objectref is popped off the abstract stack.
The concrete instruction semantics for athrow state that
if objectref is null, the athrow instruction throws a
NullPointerException. If the abstract interpreter is
able to determine safely that objectref is either null
or not null then a method entry can be added to the
method summary. The current implementation does not
consider this case.

88

Category
Operation

Format
Operand Stack
Description

Note

Category
Operation

Format
Operand Stack

Description

Note

Category

GET
Get from class or object

GET

indexbytel

indexbyte?

..., [objectref]—

...,value

Because this analysis is not field sensitive, the value
pushed to the operand stack is always null.

The concrete instruction semantics for getfield mention
that if objectref is null, the getfield instruction throws
a NullPointerException. If the abstract interpreter
is able to determine safely that objectref is either null
or not null then a method entry can be added to the
method summary. The current implementation does not
consider this case.

PUT
Set field in class or object
PUT

indexbytel
indexbyte?

..., [objectref [, value—

...,value

Because this analysis is not field sensitive, this opera-

tion is equivalent to simply popping the values from the

abstract operand stack.

The concrete instruction semantics for putfield mention

that if objectref is null, the putfield instruction throws

a NullPointerException. If the abstract interpreter

is able to determine safely that objectref is either null

or not null then a method entry can be added to the

method summary. The current implementation does not

consider this case.

WIDE

Operation Use a wide index to access the local variable array or the
constant pool [31, Chapter 6].

89

Table A.1: Summary of JVM bytecodes

Category Instructions
ALOAD aaload, baload, caload, daload, faload, iaload, laload, sa-
load
ASTORE aastore, bastore, castore, dastore, fastore, iastore, lastore,
sastore
LOAD aload, aload_<n>, dload, dload_<n>, fload, fload_<n>,
tload, iload_<n>, lload, lload_<n>
STORE astore, astore_<n>, dstore, dstore_<n>, fstore, fstore_-
<n>, istore, istore_<n>, lstore, Istore_<n>
RETURN areturn, dreturn, freturn, ireturn, lreturn, ret, return
ABINOP dadd, fadd, iadd, ladd, ddiv, fdiv, idiv, ldiv, dmul, fmul,
imul, Imul, drem, frem, irem, lrem, dsub, fsub, isub, lsub,
NEG dneg, fneg, ineg, Ineg
IINC wnc
CAST checkcast, instanceof , d2f, d2i, d2l, f2d, f2i, f2l, i2b, i2d,
12f , 121
LDC ldc, ldc_w, ldc2_w
CONST bipush, sipush, aconst_null, dconst.<d>, feconst_<f>,
tconst_<i>, lconst_<[>
CONTROLFLOW goto, goto_w, if_.acmp<cond>, if-icmp<cond>, if<cond>,
ifnonnull, ifnull, lookupswitch, tableswitch
CMP demp<op>, femp<op>, lemp
LBINOP iand, land, ior, lor, ishl, Ishl, ishr, Ishr, wushr, ixor, lxor
STACK dup, dup_xl, dup_x2 dup2, dup2_x1, dup2_x2, nop, pop,
pop2, swap
CALLSTACK jsr, jsr-w, tnvokedynamic, invokeinterface, invokespecial,
imvokestatic, invokevirtual
MONITOR monzitorenter, monitorexit
ATHROW athrow
GET getfield, getstatic
PUT putfield, putstatic
WIDE wide

90

	Introduction
	Background
	The Java Virtual Machine
	Just in Time Compilation
	The Java Bytecode
	Run Time Structures in the jvm

	Eclipse OpenJ9
	VPConstraints
	Profiler

	Data-flow Problems
	Lattices
	Abstract Interpretation
	Interesting Run-Time Properties of Programs

	Inline Substitution
	Inlining Non-virtual Functions
	Inlining Virtual Functions
	Inlining Multiple Virtual Functions

	The Knapsack Problem
	The Greedy Solution to the Knapsack Problem
	The Dynamic Programming Solution to the Knapsack Problem
	Solving the Nested Knapsack Problem
	Inlining Dependency Tree

	Summary

	Related Work
	Inlining Strategies
	Different Types of Analyses

	IDT-Based Inliner
	Building an Inlining Dependency Tree
	Dynamic Inlining Benefits

	Estimating Run-Time Argument Values
	Call Stack
	Control Flow
	Abstract Semantics
	Relating Argument Estimates to Call Sites

	Determining Possible Optimizations
	Computing Constant String Length
	Null-Check Folding
	Instance Of Checking
	Cast Folding
	Partial Evaluation
	Combining Static and Dynamic Benefits
	Tuning

	Summary

	Evaluation
	Experimental Setup
	Following Best Practices
	Measurements
	Run Time
	Compilation Time
	Difference in Factors Influencing Inlining
	Generated Code Size
	Memory Usage

	Case Studies
	arrayAtPut()
	renderInlineArea()
	regionMatches()
	loadClassHelper()
	StringBuilder()
	getZero()

	Conclusion
	Future Work

	References
	Appendix Java Bytecode Abstract Semantics
	Transfer Functions

