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Abstract

The adoption of electric vehicles has been growing steadily in recent years,

and projections indicate that this trend will continue. However, the availability

and capacity of charging stations have not kept pace with this growth, leading

to long wait times and congestion at charging stations. The installation and

operation of electric vehicle charging stations (EVCSs) are non-trivial problems

and require careful consideration of several factors, including the size of the

charging station. This involves determining the optimal number of charging

units and their capacity to meet the expected charging demand. This becomes

even more complex when the charging station is coupled with an on-site solar

photovoltaic (PV) panel system and a battery energy storage system (BESS).

The goal of sizing EVCSs is to create a methodology that can enhance the

utilization of charging infrastructure, decrease waiting times, and enhance the

user experience. An efficient sizing strategy will guarantee that the charging

stations can meet the projected demand while keeping installation and operat-

ing expenses to a minimum. Moreover, the proper implementation of charging

infrastructure is crucial to the widespread adoption of EVs, as the availability

of charging infrastructure is a key factor in consumer decision-making.

We study two problems in this thesis:
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Our first task involves a two-stage sizing assessment of a single EVCS that

is co-located with on-site PV and BESS systems. Initially, we want to iden-

tify EVCS sizing options that meet a blocking rate threshold, which is a user

experience performance metric. Subsequently, for each optimal-sized EVCS

option, we recommend robust sizing solutions for the PV and BESS systems to

minimize the reliance on the main power grid. We address this problem using

convex optimization and introduce a Chebyshev inequality for robust sizing.

Our simulation results establish a correlation between the sizing of the PV and

BESS systems and confirm that larger sizing of PV and BESS is required for

reduced dependency on the main grid. Additionally, we discover that a sig-

nificant PV system is necessary for an EVCS to rely entirely on solar energy

without the assistance of a BESS. Thus, we recommend combining a PV system

with a BESS for optimal performance.

In the second problem, we proceed to assess a network of EVCSs and es-

tablish an optimization problem to optimally size each EVCS in the network,

subject to various constraints. These constraints stem from performance met-

rics (such as response time) and total costs, encompassing both capital and

operating costs, across all locations. Due to the complex nature of this queue-

ing system optimization problem, we must make certain assumptions to obtain

a feasible solution. We solve the optimization problem for a small-scale network

of EVCSs including the traffic flow. Our findings indicate that when optimizing

a network of EVCSs, the sizing alternative at each location is likely to have a
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direct impact on the performance metrics.
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Chapter 1

Introduction

Electric vehicles (EVs) have gained immense popularity in recent years as an

environmentally-friendly alternative to gasoline-powered vehicles. The transi-

tion from internal combustion engine vehicles to fully electric vehicles promises

a tremendous reduction in CO2 emissions and improved air quality [1]. The

technological achievements in the EV manufacturing field (e.g. increased driv-

ing range, reduced charging time, low on parts compared to gas-based vehicles)

have triggered a spike in demand for EVs. By 2040, 57% of all passenger ve-

hicles are projected to be electric worldwide. One of the critical components

of this electric-based transportation infrastructure is the electric vehicle charg-

ing stations (EVCS). An EVCS typically consists of multiple charging pods

which may have different types of chargers. The proper sizing and allocation

of chargers at EVCSs are crucial for the efficient and cost-effective operation

of the charging infrastructure.

Oversized EVCSs can lead to underutilization, which means the charging

infrastructure is not being used efficiently. On the other hand, undersized

EVCSs can lead to long wait times, frustrated customers, and ultimately, lost

revenue for the charging station operators. Therefore, the sizing of EVCSs

should be based on the expected demand for charging services, which can vary

significantly depending on various factors such as the location of the charging
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station, time of day, day of the week, and season. There are heterogeneous

types of chargers based on their rating charge power (level 1, 2, and 3 (or

fast DC)) and this makes the sizing problem more difficult to solve. Hence we

focus our concentration more on determining the efficient number of chargers

for both single and multiple EVCS locations.

Throughout this thesis, our goal is to find answers to the following research

questions:

• What is the optimal sizing strategy for EVCSs with on-site PV and BESS

systems to enhance the utilization of charging infrastructure, decrease

waiting times, and enhance the user experience?

• How can a network of EVCSs be optimally sized while ensuring perfor-

mance metrics and total costs are within acceptable limits?

Several approaches have been introduced in the literature to properly size

an EVCS located in a certain area of the city. In chapter 2, we provide a

comprehensive survey of the existing strategies on

• factors that must be considered when sizing an EVCS (e.g. EV user

range anxiety and satisfaction, service provider profit, transformer feeder

capacity, etc.).

• suitable strategies for sizing an EVCS, even when it is co-located with

renewable energy sources including solar panels and battery storage sys-

tems.

In Chapter 3, we focus on presenting fundamental concepts of queueing

theory that play a crucial role in creating a model for EV charging workload

and defining the sizing problem. Our discussion delves into the modeling of

EV workload at EVCS and showcases the reliability of these models by incor-

porating actual datasets from real-world scenarios.
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In Chapter 4, we present a two-stage approach to optimize the sizing of a

single charging station, which is co-located with a solar panel and battery stor-

age system. Our optimization focuses on two primary objectives: 1) identifying

the optimal number of charger ports that can meet a pre-determined threshold

on blocking probability at the EVCS (i.e. EVCS sizing), and 2) providing a

reliable sizing recommendation for the renewable energy system to minimize

reliance on the main power grid based on the EVCS’s sizing. We explain in

this chapter the robustness of our approach which stems from:

• future EV demand growth

• seasonal/daily stochastic changes solar power generation

• EVs time of charging throughout an optimization time horizon

The independent operation of an EVCS can significantly reduce carbon emis-

sions and offer several environmental benefits. To achieve these objectives, we

propose a novel CTMC based on the EVCS states, leveraging queueing theory.

Additionally, we introduce two different types of charger ports. To ensure a

robust sizing option, we utilize Chebyshev’s inequality to establish confidence

criteria for the reliability of the sizing strategy. Chapter 4 can be summarized

schematically in Figure 1.1 (from left to right).

Figure 1.1: (from left to right) Demographic summary of Chapter 4

In Chapter 5, we focus on presenting sizing strategies for multiple charging

stations in a network, such as a road network. Our discussion includes incorpo-

rating a traffic network with infinite size capacity, modeling distributed EVCSs,
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and formulating an optimization problem to determine the sizing of multiple

charging stations. We solve this optimization problem for a small-scale case

study and demonstrate the effectiveness of the proposed sizing strategy for a

network of EVCS. This chapter can be summarized in the demographic shown

in Figure 1.2 (from right to left).

Figure 1.2: (from right to left) Demographic summary of Chapter 5

Chapter 6 provides concluding remarks and summarizes the research out-

comes and our findings around EVCS sizing strategies.
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Chapter 2

Literature Review

In the past decade, there was a spike in the demand for EVs and it is anticipated

that this demand will grow at an unprecedented rate in the future. Designing

and analyzing the charging infrastructure for EVs goes back to when the first

fast charging equipment was developed by SatCon in 1994 [2]. The company

then investigated Rapid-recharge projects at levels of approximately 150 kW

for blue bird bus vehicles. There has been a growing demand to charge at the

residential premise and so different types of chargers emerged. According to an

article, the electrification of U.S. transportation is expected to raise demand

by 800-1700 TWh/year by the 2050s, which accounts for 21-44% of the entire

electricity demand in the U.S. in 2016 [3]. The main concern is whether the

traditional expansion of generation capacity can meet this surge in demand.

Additionally, addressing the spatio-temporal patterns of electricity demand

from EV charging poses a complementary challenge [4].

Our goal in this chapter is to review the literature on the following topics:

• EVCS Planning & Operation Optimization Goals

• Sizing of charging stations jointly with solar panel and battery storage

In summary, the literature on sizing strategies, operation, and planning

optimization for charging stations has identified several key concerns that need
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to be addressed for the successful deployment and operation of EVCSs. These

concerns include range anxiety, investment, service costs, location, expansion

planning, and grid constraints on transformer capacity. By addressing these

issues, policymakers, and stakeholders can promote the widespread adoption of

EVs and accelerate the transition toward a sustainable transportation system.

Some key goals in adopting joint sizing of EVCS and solar PV panels are

summarized in Table 2.1. Table 2.2 brings a summary review of EVCS net-

works.

2.1 EVCS Planning & Operation as An Opti-

mization Problem

The increasing adoption of EVs has led to a growing demand for EVCSs. As

a result, research in sizing strategies, operation, and planning optimization for

EVCSs has gained significant attention in recent years. Key concerns in the

literature that need to be solved for the deployment and operation of EVCSs

include range anxiety, investment, and service costs, location and expansion

planning, and grid constraints on transformer capacity.

The first work on analyzing the sizing of EVCS was initiated in 2010 to

study the optimal design of fast EVCS [20]. The authors analyzed an optimal

design considering the topology and technology of various power electronics

converters.

2.1.1 Adopting Queueing Theory Models

Queueing theory is a powerful tool that can be used to optimize the performance

of EVCSs. It is crucial to accurately size these charging stations to ensure

that they can meet the increasing demand while minimizing wait times and

maintaining high levels of service quality. Queueing theory models provide a
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Table 2.1: Summary of literature review on joint sizing of EVCS and solar PV
panels

Modeling

Ref EVCS Renewables Goal

[5]
Simplified Erlang
Loss model

PV and BESS
Dynamics

minimize net investment
and maintenance costs

[6]
Erlang B model
(M/M/c/c)

Wind, PV, and
BESS

maximize net present value
(i.e. EVCS service provider
profit)

[7]
model EVCS feeder
as M/M/1

N/A
optimize service capacity
and arrival rate for a given
EVCS capacity

[8]
Dual mode Queue-
ing Model

N/A minimize service drop rate

[9] Simplified model
scheduling of PV
and BESS

minimize energy loss of dis-
tribution grid

[10]
regression model for
M/M/c

N/A

find a trade-off between to-
tal investment cost mini-
mization and customer sat-
isfaction

[11] M/M/c
PV panels and
BESS

minimize the number of
charging ports while main-
taining the waiting time
within a permissible thresh-
old

[12] M/M/c/k/N
PV panels and
wind farms

find a probabilistic model
for power grid characteris-
tics

[13]

the modified
capacitated-flow
refueling location
model

integrated PV
generation with
voltage control
capability

minimize the cost of charg-
ing and upgrading and ex-
pansion costs of the grid

rigorous approach to sizing EV charging stations by taking into account the

stochastic nature of EV arrivals and service times. These models can provide

insights into the optimal number of charging stations, the optimal service rate,

and the expected wait times.
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Table 2.2: Summary of literature review on optimization goals for EVCS net-
works

Ref EVCS Modeling Goal

[14]
multi-server network of
M/M/c

Analyze dynamic responsive price
adjustment

[15] network of M/M/c/c
minimize blocking probability,
maximize profit by hard limiting
the maximum charging delivery

[16]
joint distribution system
and a network of M/M/g/z
EVCS

maximal usage of charger ports
at each EVCS through a dynamic
programming allocation

[17]
BCMP network of EVCS
and traffic

charging decision making mecha-
nism to balance load at EVCSs

[18] closed Jackson’s network investment minimization cost

[19]
mixed queueing network for
battery swapping modeling
M/M/S/N

Blocking probability evaluation

Empirical evidence from the literature suggests that queueing models have

been effective in sizing EV charging stations. For example, a study conducted

by Zhang et al [21] used a queueing model to optimize the performance of a DC

fast charging station. The study found that increasing the number of charging

stations and reducing the service time can significantly reduce wait times and

increase the utilization rate of the charging station.

The design of a single EVCS is explained in [6] where the EV demand is

modeled as an Erlang B queueing model and includes the implementation of

renewable energy sources. The solution to the sizing problem is achieved using

genetic algorithms to overcome the problem’s complexity.

The focus of our work in this thesis is primarily to model EVCS with queue-

ing models that are derived from Markov chain modeling of EVCS states in

continuous time.
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2.1.2 Considering the User’s Perspective

Range anxiety, the fear of running out of battery charge and being stranded, is

a significant concern for EV owners and can affect the location and utilization of

charging stations. Therefore, studies have been conducted to identify optimal

locations for EVCSs to alleviate range anxiety and maximize user convenience.

Charging service providers must invest in building more charging stations to

alleviate this significant concern and satisfy EV owners that they will not be

stranded with a dead EV battery [22]. Urban congested areas will likely adopt

fast-charging equipment. While it could result in efficient drive-throughs, it

may also cause a substantial surge in electricity peak demand.

The mobility of EVs plays a key role in the expansion of electrified trans-

portation systems in urban areas. To tackle the long total trip time of EVs in

this system and thus improve users satisfaction, authors in reference [23] model

the routing problem as a multi-server queueing system where the single and

multiple charger units are modeled with M/M/1 and M/M/c queues, respec-

tively. The stochastic convex optimization is then solved using the Lagrangian

method.

We consider blocking probability as one of the major factors driving the siz-

ing decision for EVCS and hence we deploy blocking probability in our problem

description in Chapter 4.

2.1.3 Installation and Service Cost Optimization

When designing and operating EVCSs, it is important to consider investment

and service costs. Several studies have explored cost-effective charging station

configurations and operating strategies to minimize capital and operational

expenses while ensuring optimal performance. Most EV owners can charge their

vehicles overnight using level 1 or 2 charging equipment at home. However, for

about 40% of Americans who lack access to private charging, access to multi-

9



unit dwellings, workplaces, or public charging facilities is necessary, highlighting

the need for commercial-scale charging stations that can accommodate multiple

EVs. Nevertheless, the main challenge is managing the significant impact of

EVCS penetration on the main grid. Capacity sizing and siting of electric

vehicle charging stations have been extensively researched in the literature.

Authors in reference [24] introduce a simulation-based approach to gen-

erate trip trajectories and simulate charging behavior based on various trip

attributes. This simulation tool is an input to the optimization problem that

considers the total system cost, including charging stations and charger instal-

lation costs, charging, queueing, and detouring delays. The objective function

implemented in [24] includes the total delay cost experienced by EV users as-

suming that there is an infinite capacity for waiting in the queue.

A scheduling problem is investigated for multiple EVCSs where they receive

EV charging requests and the goal is that each EVCS aims to maximize the

amount of charged energy and the number of charged EVs [25]. The authors

propose an agent-based simulation approach, where the EVs announce their

requests to the stations and each station computes an optimal solution using

ILP techniques.

In our study, we determine the optimal sizing of a single EVCS where the

assumption is that the maximum number of charger pods is restricted. Rather

than accounting for delay costs, we focus on the expenses incurred due to the

blocking rate. To address the optimization problem, we utilize a decomposition

technique for smaller-scale issues, and we intend to explore heuristic methods

for larger-scale networks in future research.

2.1.4 Sizing of EVCS and Power Network Expansion

Location and expansion planning are crucial considerations for the effective

deployment and operation of EVCSs. The scientific literature has investi-

gated multiple approaches to identify the optimal number, location, and type
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of charging stations required to meet the surging demand for EV charging ser-

vices. Additionally, transformer capacity limitations imposed by the grid can

restrict the installation of EVCSs in some areas. Innovative solutions such as

load management techniques have been studied to address these limitations

and facilitate the smooth operation of EVCSs. Reference [26] is among the

early works on siting and sizing of EVCS. The paper proposes a two-stage op-

timization approach, whereby the optimal locations of EVCSs are determined

in the first stage, and the optimal sizing is then incorporated to minimize the

total costs associated with EVCS planning. To solve this problem, the authors

have formulated a modified primal-dual interior point algorithm. A multi-

objective EVCS planning problem is introduced in [27] where the charging

service allocation is achieved ensuring that power loss and voltage deviations

are minimized. The data-envelopment analysis (DEA) is a multidimensional

measurement method incorporating multiple input and output variables that

is a data-oriented method for the final decision-making. The authors used

DEA to find the optimal solution and the planning problem is solved using

the cross-entropy method. DCFCs are desirable choices for EV owners when

considering the charging session duration. However, the investment cost and

high operation impact of these EVCS types on the main grid is still a big chal-

lenge. Reference [28] elaborates on the integration problem of a network of

fast charging stations into the power grid from both the power grid and user

satisfaction perspectives. The authors address the strain of high penetration of

EVs at fast DC EVCS on the power grid and tackle this issue along with reduc-

ing the blocking probability at EVCS. The relationship between the size of an

EVCS with DC fast chargers and customer satisfaction is investigated in [10]

where statistical approaches, including Monte Carlo simulation, are used to es-

timate the charging impact of EVCS and service quality, and an optimization

problem is solved to determine the number and capacity of ports. In [29] a

chance-constrained stochastic model for planning EVCS is presented where a
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mixed integer programming model is developed to determine the sizing and

siting of EVCS. Foundational work is investigated to find locations of EVCS to

maximize their usability by private EV owners where a combination of level 1

and level 2 chargers is preferred over the adoption of only level 2 chargers [30].

In some works, the expansion planning is inspected from the power grid per-

spective. For instance, in [31], the authors explain a power grid expansion plan

to support energy requirements from an uncertain set of EVs geographically

dispersed over a region in a two-stage stochastic programming approach. The

first stage determines where to expand the power grid. In the second stage,

they determine where to locate charging stations and intuitively the locations

are selected where ample energy supply can be provided by the power grid. The

sizing problem of the transformer for a parking lot with chargers is explained

in [32] assuming that information about EV arrivals is known a priori.

Another line of work focuses on optimizing the sizing and siting of EVCS

considering the interaction of power and transportation traffic as two inte-

grated networks. BCMP1 queueing-based modeling of the network of EVCS

is investigated in [34] where the traffic flow data is optimally assigned to the

transportation network to determine the capacity of charging stations. The

proposed sizing candidate is then evaluated based on the grid load deployment

capacity.

Reference [32] models a charging station with a M/M/1 queueing system

connected to a distribution feeder. An algorithm is developed in [8] to exploit

the EVCS charging capacity by minimizing the service drop rate. The authors

modeled the EVCS as a dual charging mode queueing system with multiple

servers.

Fast charging stations will soon be installed on highways to rapidly recharge

the batteries. An origin-destination analysis is performed in [35] to obtain po-

tential locations for EVs to charge and the capacity of each station is identified

1A BCMP network is a class of queueing networks for which a product-form equilibrium
distribution exists. It is a significant extension to a Jackson network [33].
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using a queueing model.

Another work that explains the coordination of distributed generation,

EVCS, and battery storage is reference [36]. In this paper, the authors fo-

cus on the system life cycle cost by maximizing the grid power usage.

Another recent work that explores siting and sizing of EVCS considers the

finite queue length at EVCS in M/M/k/N systems [37]. The objective of the

optimization problem (akin to prior works) is to minimize the total EVCS costs.

Capacity provisioning is studied in the problem of electric taxi transporta-

tion where EVs have limited dwelling times at EVCS locations which are mod-

eled as M/M/k/N queue [38]. The objective is to minimize the infrastructure

investment. The authors simplify the models with regression and logarithmic

transformation and solve the optimization problem using integer linear pro-

gramming.

2.2 Sizing of EVCS Jointly with Solar Panel

and Battery Storage Systems

The sizing of EVCSs is a critical consideration when designing charging in-

frastructure. Incorporating solar panels and battery storage systems can help

to increase the efficiency of charging stations and reduce their environmen-

tal impact. Many efforts are put into sizing PV and BESS jointly in smart

houses [39] and microgrids [40, 41]. The joint operation of EVCS, PV, and

BESS leads to mitigating the need for the grid power and meeting the charging

load or compensating the total amount of power that must be bought from the

grid [42]. A multidisciplinary approach to jointly plan PEV charging stations

and distributed PV systems in a coupled transportation and power network is

introduced in [43]. They formulate a two-stage stochastic programming model

to determine the locations and sizes of 1) PEV charging stations and 2) PV

power plants.
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A two-stage optimization problem is proposed in [9] to solve the siting of

EVCS along with the solar panel and battery storage schedule. The authors

minimize the energy consumption of EVs with respect to traffic congestion.

The capacity allocation problem is solved using heuristic algorithms.

A queueing network model of EVCS supplied with RES is explained in [44]

where EVs are modeled as platoons. The uncertainty associated with renewable

energy, EV arrival behavior, and charging price variation is considered.

A number of works have studied how to partially or completely rely on

renewable energy sources which relieve the burden from the main grid. Authors

in [45] present a strategy based on simple search algorithms to find optimal

sizing for solar panels and battery energy storage. In more recent works, a

robust sizing of RES and BESS for the optimal sizing option of a single charging

station is analyzed in [46] where the robust sizing option is selected based on the

Chebyshev inequality, allowing the joint sizing of RES and BESS for selected

EVCS sizing options.

The algorithm presented in Reference [47] suggests an optimization-based

approach for allocating charging stations to PEVs in a commercial area. The

primary objective of this approach is to increase the adoption of PV panels

and reduce the negative impact of EV loads. A CS sizing algorithm based on

queuing theory is proposed in [48]. This algorithm aims to improve the capacity

utilization of charging stations while also benefiting EV users.

Quality of service (QoS) requirements and various sizing strategies are in-

vestigated in [49] where the operation of smart chargers is also included in

the optimization problem. Reference [50] presents a multistage distribution

planning model to coordinate the joint operation of RES, BESS, and EVCS.

Feasibility analysis of EVCS equipped with DERs including wind and solar

energy is the focus of [51] where a conventional solar energy sizing strategy is

taken into account for pure EV, hybrid EV (HEV), plug-in HEV (PHEV), and

the solar-powered charging stations.
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Sizing of a shared EVCS for a car rental company is investigated in [52]

where solar-powered parking lots are considered, and the pick-up/drop-off times

of vehicles are known. Based on this assumption, a linear programming problem

is solved to maximize the utilization of solar energy while maintaining the same

charging level of all EVs.
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Chapter 3

Electric Vehicle Charging

Station: Optimization of

Queueing Networks

The modeling of traffic networks for a population of EVs is based on the queue-

ing theory. Charging ports are equivalent to servers as EVs have to charge up

their battery at EVCS. Our goal is to analyze the behavior of EVs at charg-

ing stations and model the whole charging station as a queueing system. In

this chapter, we review the fundamental results from the queueing theory that

assist us in developing the model for an EVCS.

With the burgeoning proliferation of EVs, the imperative of installing ad-

ditional charging infrastructure and suitably sizing charging stations become

increasingly paramount. Given the concomitant high-load impact that these

charging stations engender upon the electrical grid, utility operators must ef-

fectively harmonize the load distribution amongst charging stations, all the

while assiduously adhering to an array of performance metrics (such as block-

ing probability, average response time, and quality time) to ensure optimal user

experience.

Initially, we conduct an examination of the EVCS concept and subsequently
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deliberate on the EV workload modeling at charging stations. Through em-

pirical demonstration, we establish that the EV charging demand at charging

stations conforms to an exponential distribution, and arrivals at the charging

station adhere to the Poisson process, which are the two essential factors in

characterizing M/M/... queueing models. Kendall’s notation, which denotes

the M/M/k/N system of notation, is utilized to identify the distinct attributes

of a queuing model. The first two “M”s signify the Markovian or memoryless

qualities, while the third letter, “k”, represents the number of servers that are

actively engaged in the queuing system. In cases where a fourth term “N”

is present, it signifies the maximum number of users permitted to join the

queuing system, with the “N+1” user being excluded. Finally, we determine

the limiting probability for the distinct case of a solitary EVCS modeled as

M/M/k/k.

3.1 Definitions

Here we briefly define some of the queueing theory terms that are used in the

context of EV charging in this thesis.

Job Size The amount of energy necessary to satisfy the energy requirements

of an EV is postulated as a constant rate of charging, denoting the maximum

charge power that the charger is capable of supporting. In the event that an

EV necessitates charging for a total of 33 kWh utilizing a charger with an 11

kWh maximum rate, the size of the job is quantified as 3 hours, assuming the

unit time is equivalent to 1 hour.

Arrival rate The number of EVs that arrive at a charging station per unit

of time. It is denoted by λ.
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Inter-arrival The time between two successive arrivals at the charging sta-

tion. In Chapter 4, we show that this rate for the ACN dataset [53] follows an

exponential distribution in an uncontrolled charging station.

Service average response time The expected amount of time (denoted by

E[T ]) for an EV that arrives at a charging station until it gets its service (i.e.

waiting time in the queue plus the service time).

Waiting time or Delay The time a job waits until its service starts is

denoted by T[Q].

Mean waiting time The expected waiting time when an EV arrives at the

queue until its service begins. Generally the mean waiting time of a system is

E[TQ] = E[T ]− E[S].

Number of jobs in the system N (population size) Total number of

EVs both in the queue line and in service.

Number of jobs in the queue NQ Only EVs that are waiting for their

turn to get service.

Blocking probability is the probability that a user that arrives at the

system cannot join the queue. This is available only for queueing systems of

type M/M/k/N as will be discussed later in this thesis.

Utilization denoted by ρi (for a single server) is the fraction of time that

the charger i is busy.

Squared coefficient of variation C2
X is the squared coefficient of variation

of random variable X defined as C2
X = V ar[X]

E[X]2
. Note that for exponential

distributions C2
X = 1.
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3.2 EVCS Workload Modelling

Within the realm of queueing theory, the intricacies of a queue are dictated

by a stochastic process, wherein the job service prerequisites, such as the EV

charging demand, and the interarrival intervals of jobs, are deemed to be ran-

dom variables. It is noteworthy that the general stochastic model of a queueing

system is not necessarily always amenable to analytical tractability. Neverthe-

less, as we shall expound in subsequent sections, the Markovian assumptions

serve to greatly simplify the analysis. In Section 3.4, we undertake an empirical

exploration of diverse EV charging stations and scrutinize real-world data from

EV charging stations, thereby ascertaining the plausibility of the Markovian

assumption and substantiating its inherent characteristics.

The workload of a charging station is predominantly reliant on the arrival

rate of EVs in the system, along with their respective service requisites. Ordi-

narily, the job size of an incoming EV is not known a priori, and the service rate

may not be fixed whilst the jobs are being serviced. Nonetheless, to simplify the

problem at hand, we posit that the EVs are charged at the maximum power

that is supported by the charger. In light of this, we can model the arrival

process utilizing a Poisson distribution with λ serving as the parameter, owing

to the independent arrival of EVs at the charging station and the exponential

distribution governing their interarrival times.

3.3 Steady State Queuing Analysis

The queueing models that were used in the literature for EVCS modeling are

explained here and the derivation of the limiting probability and performance

measures (response time, blocking probability, etc.) are explained in detail.
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3.3.1 M/M/1 Queues

This model indicates that there is a single charger with EVs arriving at the

charger following a Poisson process. The first M indicates that the inter-

arrival times are exponentially distributed. The second M characterizes the

distribution of service times. The third term is the number of charger ports

available to provide service. Based on Kendall’s notation, there might be a

4th term and it is by default infinity for M/M/k queues indicating that the

capacity of the system (i.e., the sum of the queue length and the user in service)

is unbounded.

For this queuing system, we have the following definitions:

The birth and death process for each charger port holds and the balancing

equations are expressed as:

p0.λ = p1.µ (3.1)

p1.(λ+ µ) = p0.λ+ p2.µ (3.2)

...

→ pi = (
λ

µ
)i.p0 (3.3)

where pi is the probability that there are i users in the queueing system (both

in the queue and at service). λ and µ are respectively the arrival and service

rates at EVCS.

Considering the sum of all probabilities equates to one, we solve for p0:

∞∑
i=0

pi = 1 → p0 = 1− λ

µ
(3.4)

the ratio
λ

µ
is called the server utilization (ρ). The condition ρ < 1 must be

held for a stable queuing system with infinite queue capacity.

Let the number of users in the system (i.e., system length) be denoted as
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E[N ]. The general term for the number of customers in the system is given by:

E[N ] =
∞∑
i=0

i.pi (3.5)

=
ρ

1− ρ
for M/M/1 system (3.6)

The expected length of the queue also referred to as queue occupancy (E[Q] or

Lq or Q) is the expected length of the system E[N ] minus the server effective

utilization ρeff. λeff is the actual arrival rate seen at the EVCS and ρeff is derived

accordingly.

E[Q] = Lq = E[N ]− ρeff =
ρ2

eff

1− ρeff

(3.7)

ρeff =
λeff

µ
(3.8)

λ
M/M/1
eff = λM/M/1 (3.9)

From Little’s law, the average time in the system or total delay is determined

as:

E[T ] = D =
E[N ]

λeff

(3.10)

E[T ]M/M/1 =
1

µ− λeff

(3.11)

E[TQ]M/M/1 = E[T ]M/M/1 − E[S] (3.12)

=
1

µ− λ
− 1

µ
=

ρ

µ− λ
(3.13)

3.3.2 M/M/k Queues

M/M/k queues are a type of queueing system in which arrivals are modeled as

a Poisson process, and service times are modeled as exponentially distributed.

The ‘k’ in M/M/k refers to the number of service channels or servers available

to serve the incoming arrivals.
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In an M/M/k queue, there can be up to ’k’ parallel service channels available

for serving EVs. When an EV arrives, it joins the shortest queue or channel,

and upon reaching the front of the queue, it is served by an available server.

If all ’k’ servers are busy, the arrival joins the queue and waits for the next

available server.

The main difference between M/M/k and M/M/1 queues is the number

of service channels available. In an M/M/1 queue, there is only one server

available to serve the incoming arrivals. When an arrival occurs, it joins the

queue and waits for the server to become available. Once the server finishes

serving the customer at the front of the queue, it becomes available to serve

the next customer.

M/M/k queues are often used in scenarios where multiple servers can pro-

vide service to the arrivals.

One important metric in evaluating the performance of M/M/k queues is

the probability of the queue being full, or the utilization of the servers. When

the arrival rate is higher than the service rate, the queue can become full, and

customers may experience longer waiting times or even abandon the queue.

Thus, it is essential to design the queueing system to ensure that the servers

are utilized efficiently without causing excessive waiting times for customers.

3.3.3 M/M/k/N Queues

Prior to the formulation for the M/M/k/N queuing model, let’s elaborate on

M/M/1/N where we have a single charger with the cap on the EV population.

This would be helpful when designing the optimization problem considering an

extension of M/M/1/N to k identical chargers with a shared pool of service

rate µmax. for M/M/1/N system, the limiting probabilities explained earlier

for M/M/1 are valid except that the number of states is finite (until N). It is
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expressed as:

ΣN
i=0pi = 1 (3.14)

p0 =
1− ρ

1− ρN+1
(3.15)

pk = ρk[
1− ρ

1− ρ(N + 1)
] (3.16)

E[N ] = ΣN
i=0iρ

i =
ρ

1− ρ
[
1 +NρN+1 − (N + 1)ρN

1− ρN+1
] (3.17)

As can be seen, the mean number of users in the system E[N ] for this case has

an extra term. The formulation for this queuing model will be different since

there is a cap on the queue length. Hence, the following definitions and terms

hold for M/M/k/N queuing systems:

ΣN
i=0pi = 1 (3.18)

λeff = λ.(1− pN) (3.19)

E[T ] =
E[N ]

λeff

(3.20)

3.3.4 Blocking Probability in M/M/k/N Queues

The blocking probability of a queueing system is the probability that a customer

is blocked due to a lack of resources. For an M/M/k/N queueing system,

where arrivals follow a Poisson distribution with rate λ and service times follow

an exponential distribution with rate µ, there are k servers and a maximum

capacity of N customers in the system.

The blocking probability, denoted by Pb, is the probability that all k servers

are busy and there are already N customers in the system. In this case, any

arriving customer will be blocked and unable to access the service.

The blocking probability can be derived by considering the limiting prob-

ability of the system being in the blocking state. Using the birth-and-death

process, we can calculate the probability of each state from i = 0 to i = k.
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Let Pi be the probability of the system being in state i, where i is the

number of customers in the system, including those being served. Then, we

have:

pi+1 =
λ

µ
pi, i = 1, 2, ..., k − 1 (3.21)

where P0 is the probability of the system being empty and Pk is the prob-

ability of the system being in the blocking state.

Using the normalization condition
∑N

i=0 Pi = 1, we can solve for P0 as:

p0 = (
k∑
i=0

(λ/µ)i

i!
+

(λ/µ)k

k!

N∑
i=k+1

(λ/µ)i−k

ki−k
)−1 (3.22)

and for Pi as:

pi =


(λ/µ)i

i!
p0 i = 1, 2, ..., k

(λ/µ)i

k!k(i−k)p0 i = k + 1, ..., N

(3.23)

Therefore, the blocking probability is given by:

pblk = pk (3.24)

The Erlang B formula is a special case of the blocking probability formula for

a M/M/k queueing system with infinite capacity (N = ∞). In this case, the

formula simplifies to:

pb =
(λ
µ
)k

k!

1∑k
i=0

(λ/µ)i

i!

(3.25)

The Erlang B formula is commonly used in telecommunications to calculate

the blocking probability in telephone networks. It assumes that blocked calls

are immediately cleared and do not retry, which is a reasonable approximation

for busy hour traffic in large networks.

24



3.4 Modeling the EVCS Workload based on

Real Data

Many EVCS operators (both state and privately owned entities) provide their

charging session records for public access and research purposes. A compre-

hensive review of EV open datasets is presented in [54]. However, no work has

explored whether standard queueing theory assumptions hold for real datasets.

This section is dedicated to providing performance measures for some EVCS

charging stations. This evaluation analysis is significant to recognize the ex-

isting EVCS charging model to facilitate the formulation of an optimization

problem.

We look at four publicly available datasets:

• The ACN dataset provides a record of EV arrivals and the charge demand

at Caltech Pasadena parking station and JPL parking lots [53].

• The Boulder-Colorado city provides the charging records of 20 charging

stations [55] where all installed chargers are level-2 (with max charge

power of 11 kW).

• ElaadNL is an innovation center based in the Netherlands that man-

ages smart charging strategies nationwide. They provide open data for

thousands of charging sessions that occurred in their charging infrastruc-

ture [56].

Common data features among the aforementioned datasets are

• arrival time

• charging duration

• departure time

• amount of charge delivered
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Figure 3.1: Arrival rate and inter-arrival time distributions. The dotted lines
in (b) represent the best-fitted exponential distribution.

These parameters are useful in determining the performance measures of a

queueing-based model.

Our goal is to find the maximum likelihood estimator of the parameters

representing the arrival rate and service rate for these datasets. As mentioned

earlier, the majority of existing real-world examples of queueing systems are

based on a Markov process which significantly simplifies the analysis. However,

if the service distribution in any queueing system does not have the memoryless

property (i.e. it is not an exponential distribution) then the analysis of that

system becomes complex and it is outside the scope of this research work.

Fig. 3.1, illustrates the distribution of arrivals extracted from four datasets.

The exact time of arrivals is shown in Fig. 3.1(a) where the precision of arrivals

is presented in seconds. The inter-arrival time of two consecutive EVs (shown
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Figure 3.2: Service time/rate and requirement of four datasets. The dotted
lines in (a) represent the MLE exponential distribution

in Fig. 3.1(b)) is determined using the following formulation

Si+1 = Ai+1 − Ai (3.26)

where Si+1 is the inter arrival time between two EV arrivals Ai+1 and Ai at

times i+1 and i, respectively. An exponential distribution using the maximum

likelihood estimation (MLE) method is fitted to the inter-arrival times. The

inverse of inter-arrival time gives us the arrival rate and the estimated value

denoted by λ̃ is shown in Table 3.1.

Fig. 3.1(c) shows the arrival rate (per second) of EVs to the charging station

in the four datasets. For instance, the arrival rate for the ACN dataset has a

peak value of around 2 pm.

Fig. 3.2(a) shows the service time and service requirement distribution of

four data sets.

The same approach is taken to fit an exponential distribution to the service

time, depicted by the dashed lines in Fig. 3.2(a) and the estimated service rates

denoted by µ̃. Their values are presented in Table 3.1. The estimated values

follow closely to the actual service rate values which proves that Markovian
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Table 3.1: Queueing Parameters Estimated in each Dataset

Boulder
Colorado

Elaad NL
ACN-

CalTech
ACN-JPL

C2
µ 16.23 1.48 0.77 0.21

µ̃ 0.61 0.35 0.35 0.25

λ̃ 0.85 1.14 0.97 2.24

modeling is a suitable option for charging stations. We use the resulting values

from Table 3.1 for the ACN dataset in an optimization problem presented in

Chapter 4 of the thesis.
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Chapter 4

Capacity Provisioning for a

Charging Station Equipped with

PV System

EVs powered by renewable electricity can reduce petroleum usage and green-

house emissions [57]. From the grid’s perspective, the high impact of charging

EVs at charging stations is the main concern of utility providers. One solution

is to install onsite renewable technologies such as PV solar panels and battery

storage systems to curtail the sharp EV loads.

In this chapter, our goal is to formulate a two-level optimization problem to

find the smallest number of chargers installed at a charging station to meet EV

users’ satisfaction. The designated EVCS is equipped with two different charg-

ing levels because it improves the charging efficiency of the station as concluded

in [30]. This is translated into a performance measure for a queueing system

represented by M/M/k/k. Then using the resulting number of charger ports,

PV panel, and battery storage capacity are optimized to minimize energy de-

pendency on the electricity grid. In our work, we attempt to provide practical,

robust advice on system sizing to ensure that it is resistant to perturbations to

the inputs (i.e. charging patterns).
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In summary, the contributions of this chapter are as follows:

• Queueing model of EVCS considering two levels of chargers is developed

• We determine the blocking probability of EVCS is determined

• We solve an optimization problem for the number of chargers to meet a

minimum blocking probability

• Having the sizing of EVCS, we solve a MILP optimization problem to

find the minimum PV and battery capacity

• We find a robust size of PV and battery to minimize the dependency on

the main grid

4.1 EVCS Queueing Model

We use a Markovian model to characterize the EVCS demand and find the

blocking probability. A reasonable choice of the state space is the number of

EVs being served at the station [58]. Some prior works assume that EV own-

ers communicate with the charging service provider so the charging demand is

known ahead of time [59]. This approach is not practical and one solution to

this is to use the historical data to predict the distribution of service require-

ments similar to what has been done in computer networks [60]. By analyzing

the actual data in section 4.3, we show that the Poisson process is an accurate

model for EV arrival and that the exponential distribution is a good fit for

EV charge requirements. We model a single EVCS as an M/M/k/k queue

equipped with two types of servers (fast and slow) and determine the blocking

probability by finding the steady state distribution of the Markov chain shown

in Fig. 4.1. This birth-death process has k = nL3 +nL2 states. The arrival rate

is denoted by λ. We divide the charge requirement of each EV by the charge

rate of the respective charger to get the service time distribution of L2 and L3
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Figure 4.1: State transition diagram for the proposed CTMC of EVCS con-
structed with nL2 and nL3 number of L2 and L3 chargers, respectively.

chargers. The mean of these exponential distributions is denoted by 1/µ2 and

1/µ3, respectively. The service completion rate in state s, denoted by µ(s), can

be written as:

µ(s) =

sµ3 0 ≤ s ≤ nL3,

nL3µ3 + (s− nL3)µ2 nL3 < s ≤ k.

(4.1)

To calculate the total amount of real power consumed by the EVCS in a state,

we associate every state s with the total power delivered to EVs by the active

chargers:

PL(s) =


s·PL3

η3
0 ≤ s ≤ nL3,

nL3·PL3

η3
+ (s−nL3)·PL2

η2
nL3 < s ≤ k,

(4.2)

where η2 and η3 are the charging efficiency of L2 and L3 chargers, respectively.

We determine λ by calculating the average number of EV arrivals per unit

of time. We find the best distribution fit for the inter arrivals and we show

that the error of the best fit exponential distribution and the actual recorded

values is less than 5% (see Fig. 4.2). µ2 and µ3 are determined by calculating the

amount of time required to charge each EV based on their charging requirement

(which is also accessible in recorded history). The service time requirement is

the ratio of each EV charge requirement (in kWh) to the maximum power rate
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of chargers denoted by P 2 and P 3 for L2 and L3, respectively.

Since Poisson arrivals see time averages (a.k.a. the PASTA property), the

probability that an EV finds no available charger upon arrival is the stationary

probability of being in state k = nL3 + nL2 . It can be written as:

πblk =
λ(nL3

+nL2
)

nL3 !µ
nL3
3

∏nL2
i=1 (nL3µ3 + iµ2)

π(0), (4.3)

where π(0) is the stationary probability that the EVCS is empty and can be cal-

culated from the normalizing equation that states the stationary probabilities

must sum to 1:

1

π(0)
=

nL3
−1∑

i=0

λi

i!µi3
+

k∑
i=nL3

λi

nL3 !µ
nL3
3

∏i−nL3
j=1 (nL3µ3 + jµ2)

The full derivation of limiting probabilities is explained in the appendix A. As-

suming that we have access to representative traffic data and historical charging

demand data, for example, from [53], we can estimate the arrival and service

rates. The resulting transition rate matrix can be used to generate sample

paths of a desired length. We can then calculate the net demand of the EVCS

for each sample path. The PV generation traces are based on publicly available

solar radiation data collected at regular intervals (e.g., hourly) for the specific

location of the EVCS from the Solcast API1 and fed to PVWatts2. It is worth

noting that the EV charging and PV generation datasets must have the same

temporal resolution, otherwise we have to use a re-sampling technique. Once

both traces are ready, they can be sampled from to create scenarios for the

optimization problems defined in the next section.

1https://solcast.com/solar-data-api/api/
2https://pvwatts.nrel.gov/pvwatts.php
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4.2 Joint Sizing of EVCS and Co-located DER

We start with solving the first problem which deals with finding all feasible

numbers of level 3 and level 2 chargers representing as (nL3 , nL2) pairs. In the

next step, given a feasible EVCS design and a fixed BESS size, we find the

minimum size of the PV system such that the ratio of unmet load (RUL) by

DER to total load is less than a threshold δ.

To find all possible sizing options for the EVCS, we solve the following

feasibility problem

min
nL3

,nL2
Z (4.4a)

s.t. πblk ≤ θ, (4.4b)

nL3PL3

η3

+
nL2PL2

η2

≤ PG, (4.4c)

where Z is an arbitrary constant, and PG is a limit imposed by the power utility

based on the rating of the transformer that feeds the EVCS. Constraint (4.4b)

is the performance measure hard constraint and gives the lower bound on the

required number of L2 and L3 chargers (θ is the maximum acceptable block-

ing probability), while (4.4c) caps the number of chargers with respect to the

maximum charging consumption at the station (PG). This is a convex problem

if we pre-calculate and cache the blocking probability for different (nL3 , nL2)

pairs. Solving (4.4) gives a set H that includes all tuples (n∗L3
, n∗L2

) that meet

the performance measure requirement and do not strain the power grid.

To size the co-located DERs, given a feasible EVCS sizing option (∈ H),

we solve an optimization problem over T timesteps of equal length, Tu. We

denote the power supplied to EVCS directly from PV panels in timestep i by

P i
in and the SOC of the BESS by eib. The battery charge (resp. discharge)

rate, labeled Pc (resp. Pd), must be less than the BESS power capacity, which

is assumed to be a multiple of the battery energy capacity (αcEB and αdEB)
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because BESS has a modular structure. P i
cs is the charging station demand at

time i, and Si is the solar energy produced at time i. Given P i
cs and Si, we

solve the following optimization problem to minimize the capacity of the PV

system such that DER’s RUL is lower than a threshold δ.

min
Cpv ,Pc,Pd,Pin,u,eb

Cpv (4.5a)

s.t. P i
c + P i

in ≤ SiCpv (4.5b)

P i
in + P i

d = P i
cs − ei (4.5c)

e0
b = EB (4.5d)

ei+1
b = eib + P i

cηcTu − P i
dηdTu (4.5e)

a1P
i
d + b1EB ≤ eib ≤ a2P

i
c + b2EB (4.5f)

0 ≤ P i
c ≤ αcEBu

i (4.5g)

0 ≤ P i
d ≤ αdEB(1− ui) (4.5h)

EB, Cpv, P
i
in, e

i, eib ≥ 0 ∀i (4.5i)

ui ∈ {0, 1} ∀i (4.5j)

T∑
i=1

ei ≤ δ
T∑
i=1

P i
cs (4.5k)

The above problem is a (mixed integer linear programming) MILP and the only

integer variable is u. Constraint (4.5b) ensures that the total PV power deliv-

ered is less than the PV system output; (4.5c) is the power balance equation

that ensures grid power is used to supply the unmet charging demand denoted

by ei; (4.5d)-(4.5h) are related to the battery characteristics and the model

is extracted from [61]. (4.5d) is the initial energy state of the battery, (4.5e)

represents the state of the energy at each time i, (4.5f) ensures that the battery

should not be charged beyond its capacity and the charge power available at

the terminal, (4.5g) and (4.5h) are the constraints associated with the charging

and discharging instances of the battery, respectively. (4.5k) limits the ratio of
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the charging demand that must be supplied from grid power in T time steps to

the total charging demand. We solve this optimization problem over intervals

of length T that are randomly sampled from the entire dataset. Each sample

gives a sizing scenario. We solve the optimization problem for n scenarios, each

time setting the BESS capacity to a fixed value.

4.2.1 Robust Sizing Strategy

Solving the two optimization problems introduced earlier in this section for

each scenario yields a set C that contains PV system sizes for a fixed BESS

capacity EB = B and an EVCS sizing option. The cardinality of this set

is Npv ≤ n. Considering the elements of this set, we compute the empirical

estimates of the mean mC,Npv and standard deviation σC,Npv , and write the

Chebyshev inequality [62] as follows:

P{|Cpv −mCNpv
|≥ βσCNpv

} ≤ min(1, f(β)), (4.6)

f(β) = (Npv + 1)−1

⌊
(Npv + 1)(N2

pv − 1 +Npvβ
2)

N2
pvβ

2

⌋
(4.7)

Essentially, Chebyshev’s inequality is investigated when the population average

and variance are estimated from a sample. The necessary modification to the

inequality is simple and is actually valid when (a) the population moments

do not exist and (b) the sample is exchangeably distributed. The latter case

would include, for example, a sample taken without replacement from a finite

population and the independent and identically distributed case [62]. Equation

(4.6) gives an upper bound on the probability that the difference between a

value of Cpv (for any, possibly unseen, scenario) obtained for a BESS of size B

and the estimated mean mCNpv
exceeds a factor β of the estimated standard

deviation σCNpv
. Note that β is the smallest number that satisfies f(β) ≤ γ
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and γ is our confidence measure.

min
β
f(β) ≤ γ (4.8)

As γ approaches 1, the value of β that satisfies the confidence measure becomes

larger. This will result in a more conservative sizing, i.e., the requirement for a

larger PV system. In other words, we tend to use more DER capacity to be less

dependent on the main grid. Given the value of β, we derive the optimal PV

sizing from (4.6), that is C∗pv = mCNpv
+βσCNpv

. We use Chebyshev inequality to

find an upper estimate for C∗pv. For each value of EB drawn from an admissible

battery capacity range, we construct a set of tuple points (EB, Cpv) comprising

several curves along the intersection of EB = EB′ for n samples. Not all sizing

curves have values at all EB selected in the admissible range. (4.6) gives a

bound on the probability that the distance between some future value of Cpv

for a specific EB′ from the estimated mCpv exceeds a factor of β. The resulting

points can be interpolated to define a curve which can be called Chebyshev

curve on Cpv, since each point on the curve is a Chebyshev bound on Cpv

values. Similarly, we construct a Chebyshev curve on EB for each value of cpv

chosen from an admissible range on the solar capacity Cpv′ .

The upper envelope of these Chebyshev curves represents robust system

sizes with respect to both EB and Cpv with confidence measure 1 − γ. We

use both curves (from PV and BESS sizing) to calculate an upper envelope for

DER sizing. We then employ a simple grid search to find the least expensive

sizing tuple for Cpv and EB among the points that lie on the upper envelope of

the Chebyshev curves.

4.3 Results

The proposed robust sizing methodology is evaluated using real data traces of

PV generation from NREL’s PVWatts and historical EV charging data from

36



Table 4.1: Average Arrival and Service Rate Parameters

Year 2018 2019 2020 2021

λ 0.66 0.516 0.68 1.67

µ2 0.75 0.98 1.17 1.41

µ3 3.42 4.44 5.31 6.41

the adaptive charging network (ACN) [53] that contains more than 30,000

charging sessions since 2018. We collect the traces for a period of 4 years with

hourly resolution. In the next step, we verify that the inter-arrival times and

energy requirements follow exponential distributions (see Fig. 4.2), and then

estimate the parameter of each distribution to obtain the average arrival and

service rates. These rates are used to construct the transition rate matrix

and subsequently compute the blocking probability of the CTMC. To account

for the future increase in EV penetration, we can multiply the birth rate of

the CTMC found empirically by a factor that represents the annual growth

in the EV population. The best-fit exponential distributions for the empirical

distributions of these two variables result in the Wasserstein distance of 1.09 and

1.40, respectively which verifies the accuracy of our best-fitted distributions. By

definition, the average arrival rate λ is the reciprocal of the average inter-arrival

time. and hence we can traverse arrival rates from actual data. Similarly, the

energy requirement is also exponentially distributed with high accuracy and

therefore the EVCS system is modeled with queueing of type M/M/k/k.

Estimated arrival and service time rates are provided for each year in Ta-

ble 4.1. The arrival rate during the year 2019 is lower because the Caltech EVCS

service provider introduced a paid parking. The time step is set to Tu = 1 hr

(the temporal resolution of the solar irradiance data). The total length of EV

charging (Pcs) and PV generation (S) traces are 4 × 365 × 24 = 35040 hours.

From the traces, we randomly select 100 scenarios, 720 hours each, solve the

optimization in (4.5) problem for each scenario, and find the upper envelope of

the empirical Chebychev sizing curves. For each scenario, we find the optimal

Cpv for 30 values of EB in the set EB = [45, 700]. The battery parameters
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(a) (b)

Figure 4.2: Probability density function of (a) the time between two successive
arrivals to the EVCS and (b) energy requirement of EVs upon arrival. The
best fit is an exponential distribution. λ = 0.98, µ2 = 0.98, µ3 = 4.44 hr−1.

Table 4.2: Battery Storage and Charging Station Parameters

Battery Parameters

Parameter ηc, ηd a1, b1 a2, b2 αc, αd

Value 0.99, 1.11 0.053, 0 -0.125, 1 1, 1

Charging Station Parameters

Parameter PL2, PL3 η2, η3 δ γ

Value 11, 50 0.96, 0.98 0.05 0.95

are borrowed from the lithium-ion battery model used in [61]: ηc = −0.99,

ηd = 1.11, a1 = 0.053, a2 = −0.125, b1 = 0, b2 = 1, αc = αd = 1. The initial

SOC for BESS is set to e0
b = B. The charging station parameters and other

parameters used for the simulations are PL2 = 11 kW, PL3 = 50 kW, η2 = 0.96,

η3 = 0.98, δ = 0.05, γ = 0.95. We use the operating policy to charge/discharge

the BESS when PV generation exceeds/fails the load.

4.3.1 EVCS Sizing

The total power consumed by the installed chargers cannot exceed the rated

capacity of the transformer, which is assumed to be 250 kW. By solving the

feasibility problem (4.4), we found 49 feasible tuples (nL3 , nL2). The installed

costs of L2 and L3 chargers are set to $800 and $16,500, respectively [32]. Due

to the high computation overhead of the optimization, we only investigate two

extreme sizing tuples: T 1) the least expensive option (0, 8), and T 2) the most
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Figure 4.3: Chebyshev bound curves for optimal sizing of Cpv for (a) T 1 and
(b) T 2 sizing options with δ = 0.05. Plots in the second row show the empirical
distribution of Cpv for EB = 295kWh.

expensive option (4, 4). Each sizing tuple accounts for a blocking probability

of πblk,T 1=8.8e-8 and πblk,T 2=2.87e-12 and Both sizing options have very low

blocking probability given the current traffic flow rates. Both options yield a

blocking probability that is below θ = 10−6.

4.3.2 Solar and Storage Sizing

For each EVCS size, we size the PV system and BESS based on the mean

and standard deviation of sizing curves obtained for a sample population of

sizing scenarios. Specifically, for each value of EB, we have 100 curves in the

(EB, Cpv) space. Similarly, for each value of Cpv, we have 100 curves in the

(EB, Cpv) space. We depict the optimal sizing curves and empirical Chebyshev

bounds for two specific EVCS sizing options T 1 and T 2 in Fig. 4.3 for δ = 0.05.
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Figure 4.4: Optimal robust sizing recommendation values of δ. In each case,
the design with the lowest cost is suggested as (C∗pv, E

∗
B) in the legend.

The recommended Cpv sizing, as shown in Fig. 4.3 for a randomly selected

EB value, is higher for T 2 than T 1. This shows that the EVCS equipped with

4 L2 chargers and 4 L3 chargers requires approximately 60% higher PV capac-

ity than (0,8). The upper envelope of Chebyshev curves (shown as a dotted

black curve in Fig. 4.3) shows our robust sizing recommendation. Considering

all (EB, Cpv) points that lie on the upper envelope of Chebyshev curves, we

find the least expensive sizing option (C∗pv, E
∗
B) assuming the installed cost of

$2,500/kW for PV and $460/kWh for BESS.

Sensitivity to δ: We evaluate the proposed sizing method for PV and BESS

by incorporating different values of δ in (4.5). We illustrate the sizing results

for three sample values of δ in Fig 4.4. It can be readily seen that the minimum

BESS size increases as the minimum PV system decreases and vice versa. For

small values of δ, both PV system and BESS must be considerably larger

to satisfy the RUL requirement for a fixed EVCS sizing. The BESS size is

especially important for small δ values because it is impossible to meet the

RUL requirement before sunrise or after sunset regardless of the PV system

size.

Sizing PV-powered EVCS without BESS: We also investigate the case where

BESS is not installed in the EVCS to shift PV generation. To solve the sizing

problem in this case, we modify the optimization problem in (4.5) by removing
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Figure 4.5: Robust sizing of a PV-powered EVCS without BESS.

the constraints and variables corresponding to BESS. The updated optimization

problem is a linear program that can be solved efficiently. We find that the

sizing problem has no feasible solution for δ ≤ 0.46, which is expected because

without BESS it is impossible to meet the EVCS demand using PV generation

without relying too much on grid power. Fig. 4.5 shows the minimum C∗pv

required to meet the grid import requirement for values of δ > 0.46. One

interesting observation is that a 10 MW PV system is required to meet the

EVCS demand for a threshold of δ = 0.51. Should we install a small 45 kWh

BESS, the PV system size could be reduced to 15.25 kW for δ = 0.05 which is

10 times lower than the previous delta value. This underscores the importance

of installing a BESS for shifting PV generation.

4.4 Summary

With the falling costs of solar PV and battery technologies, it is anticipated

that more EV charging stations will be equipped with DER. In this chapter,

we proposed an optimal sizing methodology for an EVCS with two types of

chargers and co-located DERs, given the constraints imposed by the power

grid operator and customers. Our approach guarantees the robustness of the

resulting system size to non-stationarity of PV generation and EV traffic. Using

real data, we provide robust sizing recommendations with minimum cost.
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Chapter 5

Sizing Multiple Charging

Stations

In the previous chapter, we scrutinized the process of sizing a lone charg-

ing station with an optimal number of L2 and L3 chargers. Nevertheless, the

framework we established, albeit practical for an EVCS provider with a solitary

charging station, is inadequate to estimate the scale of a network of charging

stations disseminated throughout a geographic area. Consequently, an alter-

native optimization problem is constructed for a network of charging stations

dispersed throughout a transportation system, reflecting a realistic business

scenario where the service provider possesses a multitude of chargers spread

out within a municipality, and their objective is to minimize installation and

service expenses.

One of the crucial components of transportation electrification is the in-

frastructure of charging stations, which is not only confined to residential or

private locations but also encompasses workplaces, shopping centers, and street

parking stalls [63]. To curtail the charging duration of EVs at public charging

stations, DCFC technology coupled with off-board chargers is typically em-

ployed. The DCFCs effectively replenish the battery up to 50% of its capacity

within 10 to 15 minutes, with a charging power of no less than 30 kW [64].
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In the case of multiple charging stations coexisting within a small traffic sys-

tem, a network model of charging stations is indispensable [17]. Based on this

network model, a multiclass capacity planning framework is introduced in [65],

and QoS metrics are formulated for the traffic flow of various types of multiclass

EV vehicles.

The current chapter pertains to the integration of optimization formulations

for the purpose of sizing a network of charging stations. The proposed approach

entails modeling traffic as an infinite queue to factor in the commutes1. More-

over, the transformer that feeds each EVCS station has a restricted capacity.

Other assumptions that are taken into account include:

• EVCS with single port chargers are distributed in a region and each

charger port is modeled as an M/M/1 queue.

• Traffic flow is modeled as M/M/∞ where the inverse service rate is the

time it takes an EV to reach its origin/destination to start another charg-

ing session.

• There exists a finite EV population in the network denoted by Mev.

• External arrivals to the network are neglected (i.e. it is a closed queueing

network).

5.1 Modeling Traffic Flow and the EVCS Net-

work

EVs that are part of the network arrive at a charging station and upon being

serviced, depart from the station. Subsequently, based on the nature of their

commute (e.g., grocery shopping, dining out, commuting to or from work),

1We posit that commutes are independent and identically distributed, with similar random
variable distribution being drawn. A similar assumption has been studied in reference [66]
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they join the traffic network. The traffic network is presumed to be substan-

tial, facilitating an EV’s swift integration into the flow of traffic, thereby ini-

tiating their commute without delay. The traffic network is represented as an

M/M/∞ where the first M represents that arrival to the queue follows the

Poisson process and the second M shows that all commutes are exponentially

distributed [67]. A schematic representation of multiple charging station net-

works and the corresponding queueing network model is shown in Fig. 5.1.

The queueing model that represents an aggregated charging station can be

thought of as an M/M/k queueing system (k charger ports at one location)

while each particular charger port can be represented as an M/M/1 and the

two models result in different outcomes [68]. For the purpose of simplification,

this research adopts the M/M/1 model. However, in actuality, the queue size is

finite; nonetheless, to streamline the network modeling process, it is presumed

that the queue length is infinite. Each EVCS station is represented as an

M/M/1 model, with a singular server denoting a solitary charger port. As

shown in Fig. 5.1, this is a closed network with a finite number of EVs (Mev).

Arrivals at each station are assumed to follow the Poisson process and services

are completed following an exponential distribution. The service rate µT for

the traffic network is small (i.e. it takes each EV a considerable amount of time

to finish its commute) compared to the charging rate at EV chargers.

With these assumptions, the multiple EVCS network can be represented as

a closed Jackson’s Network [69] which has a product-form solution, i.e., limiting

probabilities of the whole network is the product of the limiting probabilities

of individual queueing systems.

It should be noted that for closed Jackson networks, a normalization factor

must be calculated to determine the limiting probabilities [68]. Closed queueing

networks represent many practical applications, including flexible manufactur-

ing systems, biotech manufacturing systems etc. [33].
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(a)

(b)

Figure 5.1: Queueing Network model representing a network that consists of
multiple charging stations (a) illustration of the queueing network, (b) the
equivalent queueing model using M/M/1 and M/M/∞
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5.1.1 Performance Measures in Multiple Charging Sta-

tion Queueing Model

To measure the QoS of the queueing network, we need to calculate the per-

formance measures. Average response time is one of the critical performance

measures to be analyzed. By definition, average response time is the time that

an EV spends at a charging station (or the traffic network) to be served. This

time includes the waiting time (i.e. the time spent waiting in the queue) plus

the service time.

The limiting probability for all states of the system has the form:

π(n1,n2,...,nk) = C
k∏
i=1

πni
(5.1)

n1 + n2 + ...+ nk = Mev (5.2)

k is the number of EVCSs (charger ports) and C represents the normal-

ization factor. To find the average response time we need to solve (5.1). This

approach for a network of queueing systems is a challenging process and involves

significant computation to determine the normalization factor [68]. Hence, we

adopt a more efficient method that directly calculates the average performance

values without the need to determine limiting probabilities. This method is

called mean value analysis (MVA) and it is a recursive approach to finding

the average response time in a queueing system.

MVA inherits two strong theorems in queueing theory: 1) The Arrival

theorem [70] and 2) Little’s Law described in chapter 3 [71]. The Arrival

theorem in a closed Jackson network with M > 1 total jobs states that an

arrival to server j witnesses a distribution of the number of jobs at each server

in the same network with M − 1 total jobs. In particular, the mean number

of jobs that the arrival sees at server j is E[N
(M−1)
j ]. The arrival theorem is

referred to as the counterpart of PASTA [68].
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For single server queueing systems (M/M/1), the average response time is

calculated by iteratively adding up the number of jobs in the system. Starting

at M = 1, the average response time is equal to the service rate at jth station

denoted by:

E[T
(1)
j ] =

1

µj
(5.3)

and this is true for all queueing systems in the network. We then use

E[T
(1)
j ] to calculate E[T

(2)
j ] and so forth until we have E[T

(M)
j ]. These recursive

calculations are summarized in the following equations:

E[T
(M)
j ] =

1

µj
+

E[Number at server j as seen by an arrival to j]

µj
(5.4)

=
1

µj
+
pj.λ

(M−1)E[T
(M−1)
j ]

µj
From Little’s Law (5.5)

λ(M) =
M∑N

j=1 pjE[T
(M)
j ]

(5.6)

To derive the closed form for λ(M), the sum of the average number of EVs

at all queueing locations is equal to the total population:

M =
k∑
j=1

E[N
(M)
j ] (5.7)

=
k∑
j=1

λ
(M)
j E[T

(M)
j ] from Little’s Law (5.8)

=
k∑
j=1

pjλ
(M)E[T

(M)
j ] (5.9)

=λ(M)

k∑
j=1

pjE[T
(M)
j ] (5.10)

−→ λ(M) =
M∑k

j=1 pjE[T
(M)
j ]

(5.11)
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In the above equations, λ(M) denotes the total arrival rate into all queueing

systems with (M) jobs in the system. pj represents the ratio of arrival rate at

jth station (λ
(M)
j ) over the total arrival rate λ(M).

Using the above iterative derivation, the average response time at all lo-

cations is derived for a closed Jackson network of M/M/1 queueing systems.

The full derivation of the above equations is explained in [68, 72].

5.1.2 Approximate MVA Value for Closed Network of

EVCS

Closed queueing networks that exhibit a product-form structure, such as Jack-

son’s network, can be analyzed exactly [73]. However, computing the steady-

state performance metrics, including server utilization and mean queue lengths,

necessitates the calculation of limiting probabilities and normalization con-

stants. Despite its efficiency, obtaining the normalization constant for moder-

ately sized networks can be computationally demanding due to the numerous

states involved [73]. Efficient algorithms, including the convolution and MVA

methods, have been developed to solve this problem [74, 75].

While the convolution method can be problematic due to numerical diffi-

culties, MVA is frequently utilized to determine closed queueing network per-

formance metrics since it circumvents these problems [73]. However, MVA’s

time complexity escalates for networks with many service stations, customer

classes, and customers in each category. Thus, approximations for performance

measures obtained using MVA are necessary. Several approximations have

been suggested to decrease the computational complexity of MVA. Chandy

and Neuse introduced an approximation for networks with multiple-server sta-

tions, which Akyildiz and Bolch subsequently improved [76, 77].

The approximation also helps with defining the performance measures ac-

cording to control variables that we later use for resource allocation optimiza-
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tion problems for the sizing of an EVCS network.

In summary, below are the steps for obtaining an approximate MVA value

for performance measures (e.g. average response time):

• Determine a canonical form for the average response time at each EVCS

as a function of service rate (and the number of charger ports for networks

with M/M/k EVCS).

• Verify that the approximate function follows the disciplined convex pro-

gramming [78].

Approximation derivation is explained in a case study in the following sec-

tions.

5.2 Optimization Problem Formulation

Consider a charging service provider seeking to construct K charger ports at N

designated sites. Each charger port adheres to an M/M/1 queue, and the ith

location possesses ki ports. Let Mev represent the population of electric vehicles

that connect to (or wait in the queue for) residential charger ports before en-

tering the traffic network and subsequently accessing other public fast chargers

or waiting in line for charging. The objective is to minimize the charging and

investment expenses for all N locations while fulfilling grid-imposed and user-

centric performance constraints. Mathematically the optimization problem is
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formulated as follows:

min
k1≥0, k2≥0,···,kN≥0

N∑
j=1

fcj(kj.µj) (5.12a)

s.t. ki ≤ kmaxi (5.12b)

k1 + k2 + · · ·+ kN = K (5.12c)

ki.µi ≤ PTri (5.12d)

E[Ti] ≤ E[Ti]
max {i = 1, · · · , N} (5.12e)

N∑
j=1

E[Tj]
max = τ (5.12f)

It is assumed that the installation and service costs of charging are of the

quadratic function form (fcj(kj.µj) = zj + yj.(kj.µj) + xj.(kj.µj)
2). The ob-

jective function is to minimize the sum of costs at all locations. The decision

variables are ki that are integer variables (i.e. the number of chargers cannot

take float values). At each location, there is a cap on the number of chargers

to be installed (5.12b). Maximum power consumption at ith location must be

less than the transformer feeder rating at that location (5.12d). The response

time at each location should be less than a maximum tolerable time (5.12e).

The sum of all maximum response times is set to τ (5.12f). This is a strict con-

straint on the response time and indeed for flexible sizing, τ can be considered

as an upper bound in (5.12f).

This problem is a MILP optimization that cannot be solved using standard

solvers. Additionally, we have nonlinear function expressions for E[Ti] using the

MVA recursive approach. These nonlinearities make the optimization problem

hard to solve and to tackle this issue, we make some assumptions and relax the

decision variables and recursive functions to comprise a convex optimization

problem 2.

2The optimization problem should follow the standard form [79]
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5.3 Case Study

To illustrate how to solve the optimization problem in (5.12) and the application

of closed Jackson’s network analysis, we investigate a case study where we

model two EVCSs at two locations: 1) residential and 2) public stations with

the following assumptions:

• Residential charging ports are available for EV owners to get serviced

• Each residential charger is modeled as an M/M/1 with maximum service

rate µ1. It is assumed that there are k1 of these chargers active for charge

delivery in the area.

• The traffic network is modeled as an M/M/∞ with service rate denoted

as µT .

• Each public charger is modeled as an M/M/1 queue with maximum ser-

vice rate µ2 which is assumed to be greater than µ1. It is assumed that

k2 of these chargers are installed in the second location.

• The population of EV owners is larger than the number of chargers and

hence there is a probability of queueing at some charger ports.

• It is assumed that charger ports are not shared and rerouting is neglected.

An EV driver starts their commute at a residential charging location and joins

the traffic flow and then connects their EV to a public charger. Fig. 5.2 illus-

trates this case study for one single EV and single charger port. Indeed the

illustration can be extended for k1 and k2 number of chargers at residential and

public locations, respectively. Case study information is depicted in Table 5.1.

The constraint in (5.12e) is convex based on the results shown in Fig. 5.3.

A similar practice is investigated in [73] for multi-server queueing networks.

The average response time is then approximated as a function of the number
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Figure 5.2: EVCS network illustration and the closed queueing network repre-
sentation

Table 5.1: Data information for the multiple EVCS case study

Parameter Value

µ1, µ2, µT 50, 150, 5

kmax1 , kmax2 15, 10

PTr1 , PTr2 1000, 6000 [kW]

τ 2.9 [hour]

x1, y1, z1 500, 5, 0.1

x2, y2, z2 5000, 7.5, 0.6

of charger ports and their utilization. In our case, the arrival rate is assumed

to be constant and the service rate is variable. Average response time E[T1] for

different values of µ1 are shown in Fig. 5.3.

The approximate MVA function is shown to be of the following form:

E[T1](k1µ1) = α(k1µ1)β (5.13)

Similar formulation applies for E[T2].
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Figure 5.3: Location A; Average response time TA for various values of µA

Using the information in Table 5.1, α = 159.74 and β = −2.25 for location

1. With the approximate function, the optimization problem in 5.12 follows

the disciplined convex programming (DCP) and can be readily solved using

cvxpy3 solvers.

The optimum solution µ∗1 = 15.64 and µ∗2 = 26.08 are the results of the

optimization problem (assuming k1 = k2 = 1).

In the next part, we run the optimization problem for multiple M/M/1

chargers at residential and public locations with limited transformer capacity.

The objective function is to minimize the installation costs of charger ports

at two locations subject to making sure that each charger port does not violate

the maximum charge service, the total sum of charger service rates is below the

transformer rating capacity (PTr1 and PTr2). The users do not want to wait

for a long period of time to charge at either location. This observation comes

from the fact that the expectation is to have a constant waiting time at both

locations (i.e. E[T1] + E[T2] ≤ τ ). The simulation result for this scenario is

shown in Fig. 5.4. This figure shows that investing at both locations is a trade-

3For details on solving cvx programming problems visit https://www.cvxpy.org/

tutorial/dcp/index.html
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Figure 5.4: Simulation result of the optimization problem explained in 5.12
considering average response time with respect to total charger installation
costs and require service rate for locations A and B, respectively.

off; we can have too many expensive chargers installed at the public location

and impose costly investment on the EVCS service provider while a moderate

expansion at both locations can result in an acceptable response time and thus

a response time of approximately 1.5 hours is achieved by installing at least 4

charger ports at either location. The results demonstrate an interesting balance

between costs and EV user satisfaction.

Observation Fig. 5.4 shows the results of solving the optimization problem

in (5.12) for various mean response time thresholds. As shown, the charging

installation costs vary and has a minimum value of around 2.0 hour. Our

observation from the results reveals that for lower response time achievement,

higher installation is required in public areas.
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Chapter 6

Conclusion & Future Works

6.1 Conclusion

We proposed a robust sizing strategy method to decrease the dependency of

EVCS on the main power grid. We investigated a two-fold optimization ap-

proach to 1) find the optimal sizing of EVCS to meet service performance

requirements (e.g. EV user blocking probability) and 2) provide renewable

resource (e.g. solar panel and battery storage) sizing recommendations to sup-

port green EVCS and mitigate carbon emissions from fossil fuel-based power

grid. We evaluated the sizing strategy on a single EVCS with real-world data.

The recommended sizing results are proven to allocate enough resources to

meet the seasonal and future growth of EV users for a single EVCS. The final

results of reference [30] align with the outcomes of our sizing strategy solution

that a combination of level 2 and 3 chargers is more efficient than having level

3 chargers only. The trade-off is the balance between the service provider’s

profit and EV owners’ satisfaction (i.e. a function of the service time etc.).

We modeled a network of charging stations and the traffic flow, and show

that Jackson’s network in queueing theory is a suitable approach for modeling

a network of EVCS and our methodology and solution of modeling a network

of EVCS is similar to the one presented in [17] where BCMP network approach
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is utilized. We proposed a sizing optimization problem to find the number

of charger ports to be installed at multiple locations to meet certain criteria

(e.g. service cost budget, service time requirements, etc.). Our result shows a

trade-off between the total installation cost and service time. For a very small

response time (i.e. user satisfaction), high utilization is required (i.e. service

investment cost, a burden on the utility provider). Using some assumptions

and relaxations, we turn the complex optimization problem into a convex form

that can be readily solved.

Lastly, we address the research questions presented in chapter 1 of this

thesis.

• The optimal sizing strategy for EVCSs with on-site PV and BESS sys-

tems involves a two-stage sizing assessment. The first stage identifies

EVCS sizing options that meet a blocking rate threshold, and the sec-

ond stage recommends robust sizing alternatives for the PV and BESS

systems to minimize reliance on the primary grid. This can be achieved

using convex optimization and a Chebyshev inequality for robust sizing.

Simulation results indicate that larger sizing of PV and BESS is required

for decreased dependence on the main grid, and combining a PV system

with a BESS is recommended for optimal performance.

• To optimally size a network of EVCSs, an optimization problem must be

established, subject to various constraints such as performance metrics

and total costs. Due to the complex nature of this queueing system

optimization problem, certain assumptions must be made to obtain a

feasible solution. Simulation results indicate that the sizing alternative

at each location has a direct impact on performance metrics, leading to

an optimal sizing option at each location.
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6.2 Future Works Directions

Some aspects of this research work have great potential for improvement. For

a single EVCS sizing problem, we incorporated Chebyshev inequality [80] to

recommend a robust sizing of solar panels and battery storage. It is worth

investigating other probability inequalities such as Chernoff bound as it is an

exponentially decreasing upper bound. A comparison of sizing recommenda-

tions by incorporating different inequalities has great potential to yield the best

robust solution.

An empirical sizing validation of the optimization model for multiple EVCS

sizing is necessary and will be performed in future work. We model k charger

ports with M/M/1 at one location which made the formulation simpler and

allowed us to solve the optimization problem. A more rigorous approach would

be to model each station as an M/M/k queue which is briefly explained in

Appendix B.
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Appendix A

CTMC Model of an EVCS with

two types of chargers

This appendix provides a detailed explanation of how the CTMC model is

derived for an EVCS with two charger types (level 2 and level 3).

Consider the design of a charging station with two levels of chargers, denoted

as level 1 and level 2. Let the number of chargers at level 1 and level 2 be

represented by A and B, respectively, with service rates denoted as µ1 and µ2.

It is assumed that µ2 > µ1, indicating that level 2 chargers provide a higher

service rate. When the charging station is unoccupied, A level 2 chargers are

prioritized to be occupied, and for the A + 1th electric vehicle (EV), B level 1

charger ports are available.

The arrival rate of EVs is modeled as an independent Poisson process with

an expected arrival rate of λ. The inter-arrival time of EVs follows an expo-

nential distribution, which is an appropriate assumption to model a continuous

Markov chain for this EV charging system. The state transition of the sys-

tem, as a function of the number of EVs present, is illustrated in Figure A.1,

following Kendall’s notation of M/M/k/k where k = A+B.

We denote the limiting probabilities for each state i in the EVCS queue

system as πi.
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Figure A.1: Continous-time Markov Chain representation of M/M/k/k based
EVSE states with ‘A’ level 2 and ‘B’ level 1 chargers.

We show that the EVCS system is time-reversible and irreducible and con-

sidering the summation of all limiting probabilities is 1 we then determine πi

for i ∈ {0, 1, ..., k}.

From Fig. A.1, we can write the following balancing equations for states:

λπ0 = µ1π1

λπ1 = 2µ1π2

...

λπA−1 = Aµ1πA

λπA = (Aµ1 + µ2)πA+1

...

λπA+B−2 = (Aµ1 + (B − 1)µ2)πA+B−1

λπA+B−1 = (Aµ1 +Bµ2)πA+B (A.1)

Hence, the limiting probability πi can then be generally determined as fol-
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lows:

πi =



λi

i!µi1
π0 0 ≤ i ≤ A

λi

A!µA1
∏i−A

j=1 (Aµ1 + jµ2)
π0 A < i ≤ A+B

(A.2)

where π0 is solved from the following equation:

A+B∑
i=0

πi = 1 (A.3)

π0 = [
A∑
i=0

λi

i!µi1
+

A+B∑
i=A+1

λi

A!µA1
∏i−A

j=1 (Aµ1 + jµ2)
]−1 (A.4)

The average number of EVs at the charging station denoted as EN is then

determined as

E[N ] =
A+B∑
i=0

iπi

= π0[
A∑
i=0

λi

(i− 1)!µi1
+

1

A!µA1

A+B∑
i=A+1

iλi∏i−A
j=1 (Aµ1 + jµ2)

] (A.5)

Using little‘s law the average waiting time ET is then determined as follows

E[T ] =
E[N ]

λ
(A.6)

An interesting problem to be solved for this type of queueing system is to

minimize the blocking probability denoted by Pblk = πA+B subject to certain

constraints on performance measures.
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Appendix B

Performance Analysis of

Multiple Charging Stations with

Multi-Charging Ports

This appendix is dedicated to providing a more comprehensive derivation of

the average response time using MVA for closed networks with M/M/ki EVCS

and road network.

Figure B.1: Network of EVCS modeled as M/M/k

As shown in Fig. B.1, we are interested in calculating the average response

time for stations with multiple charging ports (i.e. M/M/ki).

The derivation for M/M/ki is briefly explained in [72] and in detail for
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multiclass users in [77]. In [73], an approximation method is used to find

the average response time for queueing systems of multiple servers, however,

the computation of limiting probabilities has not been defined, and nor has

the evaluation of the proposed approximation method is tested for general

networks.

Here, we explain and provide the results for average response time for charg-

ing stations with multiple charger ports (i.e. M/M/ki queueing model). The

full derivation is explained in Appendix C.

The average response time for queueing systems with infinite server capacity

and queueing systems with multiple servers is determined as follows:

E[T
(m)
j ] =


1
µj

Infinite Server

1
µj

+
E[(T )

(m−1)
j ].pjλ

(m−1)+S
(m)
j

µj
Multi server FCFS

(B.1)

where pj and λ(m−1) are calculated similar to the single server queues. S
(m)
j

is defined as

S
(m)
j =

cj−1∑
k=1

(cj − k)Pj(k − 1,m− 1) (B.2)

Pj(k,m) is the marginal probability of k jobs at station j given population

m. This probability is determined as follows

Pj(k,m) =

1−
∑K

i=1Pj(i,m) for k = 0

λ(m)Pj(k−1,m−1)

µj
for k = 1,..., (ck − 1)

(B.3)

Using above recursive equations, average response time for K multiserver

charging stations (j=1,...,K), each charging station with cj charging port and

the total network population of m EVs (m=1,...,M). The recursive function

terminates when m = M .
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Appendix C

Closed Network of Multiple

Charging Stations

This appendix explains in detail the derivation of a closed queueing network of

charging stations with multiple classes of EVs.

A network of charging stations taking into account multi-class types of EVs

present in the traffic network with a closed queueing Jackson’s network with

a finite population. The Arrival Instant Distribution Theorem states that a

class-r EV, arriving at station i in the system with population K, sees the

system with population (K − 1r) in equilibrium. From the Arrival Instant

Distribution Theorem the mean response time of a class-r job in station i,

t̄ir(k), is computed. The algorithm for the MVA computation is shown in 1.

Using Little’s Law, the system throughput for each class, λr(k), and the mean

number of jobs, k̄ir(k), are obtained. The general algorithm for classical mean

value analysis with multiple server stations is given below.
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Table C.1: Table of notations for Algorithm 1

Notation Definition

M the total network EV population
Mr the EV population in class r
K total number of charging stations in the network
ki the number of charger ports at charging station i
R total number of EV classes

µir
the mean charge service rate of a class r EV at charging
station i

m the job vectors denoted by (m1,m2, ...,mR)

m− 1r
the job vector m with one charge demand removed from
class r

pir; js
the transition probability of a class r charge demand at
station i to class s at station j

eir* mean number of visits a class-r job makes to station i
xir = eir/µir relative utilization of station i for class r jobs

T̄ir
mean response time for a class-r job at station i, given
EV population m

m̄ir(m)
the mean number of jobs at station i in class r, given
population m;

λr(m) the total throughput of class r, given population m

pi(j|m)
marginal probability of j jobs at station i, given popu-
lation m

*eir =
∑K

j=1

∑R
s=1 ejspjs;ir
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Algorithm 1 Calculate Average Response Time using MVA [77]

Initialise:

m̄ir(0) = 0∀i = 1, ..., K r = 1, ..., R

pi(j|0) = 0∀j = 1, ..., (ki − 1)

pi(0|0) = 1

for m = 0 to M do
for stations i = 1 to K and r = 1 to R do

T̄ir(m) =
1

µirki
[1 +

∑R
s=1 m̄is(m− 1r) +

∑ki−j
j=1 pi(j − 1|m− 1r)]

λr(m) =
mr∑K

i=1 eirT̄ir(m)
m̄ir(m) = eirλr(m)T̄ir(m)
for j = 1 to ki − 1 do

pi(j|m) =
1

j
[
∑R

r=1 xirλr(m)pi(j − 1|m− 1r)]

end for

pi(0|m) = 1− 1

mi

[
∑R

r=1 xirλr(m) +
∑ki−1

j=1 (ki − j)pi(j|m)]

end for
end for
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