
Building Occupancy and Thermal Modelling in the Wild

by

Tianyu Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Tianyu Zhang, 2019

Abstract

Occupancy and thermal modelling is the foundation of several smart building

applications, such as intelligent control of residential and commercial buildings’

Heating, Ventilation and Air Conditioning (HVAC) system to improve energy

efficiency and overall occupant experience in the built environment. And yet

developing occupancy and thermal models is quite challenging due to the lack

of information about the building’s layout and structure, and reliable means

for collecting ground truth about occupant presence and actions. Thus, most

HVAC systems are presently operated without incorporating these models, a

practice that has been proven to be extremely inefficient and inflexible. This

thesis aims to address the challenges of building suitable models using data

collected by sensors that are normally installed in buildings. We propose

black-box models to estimate the occupancy state of the building, and grey-

box lumped parameter thermal models to explain how the indoor temperature

changes over time. The black-box occupancy models are built using the data

acquired through the Building Management System (BMS), while the grey-

box thermal models are built using the data reported by smart thermostats.

We present a methodology for transferring occupancy estimation models from

a controlled environment, where training data is abundant, to another similar

environment, where training data is sparse or non-existent. Experiments run

using real data collected from a large number of buildings corroborate that the

transferred models can achieve high accuracy. Moreover, the thesis presents an

open-source toolkit, which enables the development and evaluation of various

ii

occupancy estimation models across different buildings. Several case studies

are presented to show the usefulness and extensibility of this toolkit.

iii

Preface

This thesis is original work by Tianyu Zhang. Some of the chapters are based

on conference publications co-authored by the author of this thesis.

Specifically, Chapter 3 was originally published as a conference paper: T.

Zhang and O. Ardakanian, “A Domain Adaptation Technique for Fine-Grained

Occupancy Estimation in Commercial Buildings,” in Proceedings of the Inter-

national Conference on Internet of Things Design and Implementation, IoTDI

’19, ACM, 2019, pp. 148–159. I was responsible for conducting the literature

review, developing the methodology, running experiments, and producing re-

sults. The other author is my supervisor who edited the manuscript.

Chapter 4 was also published as a conference paper: T. Zhang, A. Al Zishan,

and O. Ardakanian, “ODToolkit: A Toolkit for Building Occupancy Detec-

tion,” in Proceedings of the Tenth ACM International Conference on Future

Energy Systems, ACM, 2019, pp. 35–46. I was responsible for conducting the

literature review, developing the methodology (except two models which are

mentioned in the thesis), running case studies, and building and documenting

the toolkit. A. Al Zishan assisted with the development of the two models

mentioned in the thesis and contributed to writing one section of the paper.

O. Ardakanian edited the manuscript and designed the case studies.

iv

Acknowledgements

I am greatly indebted to my supervisor, Professor Omid Ardakanian, for giving

tons of valuable suggestions during my graduate studies and carefully review-

ing my thesis. He walked me through all the stages of writing this thesis and

the papers we published before. Without his patient instruction and expert

guidance, the completion of this thesis would be impossible.

Special thanks to my friends who have put considerable time and effort

into their comments on the draft.

Finally, I must express my gratitude to my beloved girlfriend and family

for providing me with unfailing support and continuous encouragement, and

my burned graphics card for its life.

v

Contents

1 Introduction 1
1.1 The need for building occupancy and thermal modelling . . . 2
1.2 Challenges . 4
1.3 Objectives and contributions 6
1.4 Outline of the thesis . 7

2 Literature Review 9
2.1 Occupancy modelling . 9

2.1.1 Sensing modalities . 10
2.1.2 Inference models . 13

2.2 Thermal modelling . 22
2.2.1 RC-network models . 24
2.2.2 Time-series models . 26

2.3 Transfer learning . 28
2.3.1 Domain adaptation . 29
2.3.2 Domain confusion . 31
2.3.3 One-shot & zero-shot learning 32

2.4 Open platforms and toolkits 32

3 Fine-Grained Occupancy Estimation 34
3.1 HVAC system and trend data 35
3.2 Methodology . 36

3.2.1 Data set . 36
3.2.2 Preprocessing . 39
3.2.3 Data-driven models for occupancy estimation 39
3.2.4 Semi-supervised domain adaptation technique 40
3.2.5 Post-processing . 44

3.3 Results . 45
3.3.1 Evaluating the model trained using semi-supervised do-

main adaptation . 45
3.3.2 Changing the amount of labelled data available in the

target domain . 50
3.3.3 Different choices for source and target domains 52

3.4 Discussion . 54

vi

4 Occupancy Detection Toolkit 55
4.1 ODToolkit pipeline . 56

4.1.1 Structuring data . 57
4.1.2 Collecting statistics about data sets 62
4.1.3 Pre-processing . 64

4.2 Methodology . 66
4.2.1 Supervised learning models 66
4.2.2 Evaluation metrics . 66

4.3 Case studies . 69
4.3.1 Extending the toolkit 70
4.3.2 Examining the feature importance 71
4.3.3 Evaluating supervised learning models 72
4.3.4 Comparing domain-adaptive models and supervised learn-

ing models . 77
4.3.5 Investigating model sensitivity to noise 78
4.3.6 Percentage of training data affects model performance . 81

4.4 Discussion . 82

5 Thermal Modelling 84
5.1 Methodology . 85

5.1.1 Grey-box modelling . 86
5.1.2 Estimating parameters of SARIMAX 92

5.2 Results . 97
5.2.1 Data sets . 97
5.2.2 Evaluating performance of the SARIMAX model . . . 97
5.2.3 Evaluating performance of the grey-box RC model . . . 98
5.2.4 Comparing black-box and grey-box models 99

5.3 Discussion . 99

6 Conclusion 102

References 105

vii

List of Tables

2.1 Taxonomy of related work on occupancy detection 12
2.2 Taxonomy of related work on thermal modelling 23

3.1 Description of Building A . 37
3.2 Description of Building B . 37
3.3 Comparing the performance of supervised learning models trained

using labelled data only from the target domain in terms of their
average and standard deviation of RMSE, and nRMSE. 47

4.1 Summary of 5 publicly available data sets imported and ana-
lyzed by ODToolkit . 60

4.2 Features available in each data set 61
4.3 Evaluating performance of the RF model (Accuracy / F1 Score)

with different features on Data Set A. 73
4.4 Comparing the performance of supervised learning models across

different data sets. 73
4.5 Comparing the performance of supervised learning models in

binary occupancy detection and occupancy count determination
tasks on Data Set B. 76

4.6 The effect of increasing training data of a neural network on its
test accuracy in Data Set A. 81

5.1 Performance of the SARIMAX model in two randomly selected
locations . 97

viii

List of Figures

1.1 A high-level overview of the ideas presented in the thesis. . . . 7

2.1 The internal structure of a single LSTM cell 18
2.2 Schematic of an NARX network. 21
2.3 The lumped parameter thermal model representing the building

envelope with a 3R2C network and its interior with a single
capacitance, 1C. 24

2.4 Confusing domains with a gradient reversal layer [42] 32

3.1 Ground truth occupancy data and measurements of carbon diox-
ide and damper position over one week in a room in Building
A. 35

3.2 Data collection and analysis framework 42
3.3 An illustration of the domain adaptation process. 44
3.4 Comparing the accuracy of different supervised, semi-supervised,

and unsupervised learning algorithms. 46
3.5 Estimated and true occupancy levels of a lecture room in Build-

ing A over one day. 47
3.6 Estimated and true occupancy levels of a study area in Build-

ing A over one day. 48
3.7 Estimated and true occupancy levels of a meeting room in Build-

ing B over one day. 49
3.8 The impact of increasing the amount of available ground truth

data on the accuracy of different approaches. 51
3.9 The RMSE of supervised and semi-supervised domain adapta-

tion algorithm on different target domains given one day train-
ing data from the target domain. 53

4.1 Overall architecture of ODToolkit. 57
4.2 Correlation of different features in Data Set A with the two

occupancy states. 58
4.3 Fraction of time each building is occupied at any given time of

the day. 62
4.4 Comparing supervised learning models for binary occupancy

detection in Data Set A. 74

ix

4.5 A swarm plot showing the distributions of occupancy events
estimated by different supervised learning models along with
the true occupancy events in Data Set A. 74

4.6 Distributions of the start times and the end times of occupancy
intervals obtained by different supervised learning models in
Data Set E. 75

4.7 The F1-score of domain-adaptive models and supervised learn-
ing models on Data Set A using different amounts of training
data form the target domain. 78

4.8 Correlation of different features in Data Set A with the two
occupancy states after adding noise to the features. 79

4.9 Correlation of different features in Data Set A with the two
occupancy states after adding too much noise to the features. . 80

5.1 Structure of the BNN-RC model used to predict the indoor
temperature. 90

5.2 Sample time-series data before and after performing differencing. 93
5.3 PACF calculated for a sample temperature time-series. 94
5.4 ACF calculated for a sample temperature time-series. 95
5.5 Resulting time-series after decomposing and removing the daily

effect. 96
5.6 Resulting time-series after decomposing and removing the weekly

effect. 96
5.7 Distribution of RMSE values for all homes in our data set. . . 100
5.8 Estimation result comparison. 100

x

Chapter 1

Introduction

In recent years, smart networked systems have become increasingly popular as

they are capable of monitoring their surrounding environment and modelling

it dynamics by fusing data from a variety of sensors. Unlike human-in-the-

loop control systems, these systems have a higher degree of autonomy, relying

mostly on the sensor readings and other (possibly external) sources of informa-

tion to update their control settings or complete a desired task with minimal

human intervention. For example, smart thermostats, which are prevalent in

modern homes and buildings, can sense the ambient air temperature and oc-

cupants’ presence, and download the electricity price and weather forecasts

from the Internet. This data is used to proactively adjust the temperature

setpoint of heating or cooling equipment. The quality of data available to

such a system would greatly affect its performance. If the embedded sensors

are noisy, or have a low sampling frequency when the environment is highly

variable, the system operation would become sub-optimal. In case of a smart

thermostat, the system can be “fooled” by noisy estimates of the occupancy

state to turn on heating or cooling equipment to condition an empty room.

A smart system can utilize different sensing modalities to monitor its en-

vironment. For example, the occupancy state of a room can be inferred from

the measurements of a passive infrared (PIR) sensor, a carbon-dioxide (CO2)

sensor, a thermal sensor, or a camera. Some of these sensors offer a more reli-

able estimate of the occupancy state, often at the cost of being more expensive

and intrusive. Other sensors are zero-cost as they are commonly installed in

1

buildings for other purposes, e.g., a carbon-dioxide sensor feeds nested control

loops of the Heating Ventilation and Air Conditioning (HVAC) system and its

measurements are logged by the Building Management System (BMS).

1.1 The need for building occupancy and ther-

mal modelling

A large fraction of smart systems are currently installed in homes and build-

ings to ensure safety and security of occupants, improve their thermal comfort,

reduce energy consumption of various building subsystems, and support other

building applications. Examples of these applications are demand-controlled

ventilation, occupancy-driven lighting control, physical security, and space uti-

lization [17], [100], [111], which could reduce the energy consumption of build-

ings [25] and improve occupant experience and thermal comfort. Furthermore,

most control applications require a model to predict building-level or room-

level occupancy and a model that explains the heat flow inside the building

to make optimal control decisions regrading the operation of a building sub-

system. In particular, recent studies suggest that incorporating fine-grained

occupancy information (i.e., presence and count) in building controls can re-

markably improve human experience and operational efficiency of HVAC [1],

[5] and lighting systems [79]. According to the data published by U.S. Depart-

ment of Energy, the HVAC system uses more energy than any other building

subsystem, which is around 47% of the total energy consumption for residen-

tial buildings [36] and 43% of the total energy consumption for commercial

buildings [40]. Thus, it is imperative to improve the efficiency of the HVAC

system, which highlights the significance of modelling occupancy and temper-

ature inside the building.

Modelling building occupancy and temperature is a challenging task. This

is mainly due to (a) the lack of special-purpose sensors for occupancy monitor-

ing, such as cameras, which are costly and carry a heavy deployment stigma,

(b) the highly uncertain and complex nature of occupancy and temperature

dynamics in the built environment, and (c) insufficient labelled data. Existing

2

approaches to incorporate occupancy in the control loops require retrofitting

the building with numerous occupancy sensors, such as cameras, microphones,

PIR, CO2, and illumination sensors, which is intrusive, costly, and error-prone

given the scale.

There are multiple approaches to determine the real-time occupant pres-

ence and count in the built environment. The first approach builds high-

dimensional heat transfer models, such as the lumped parameter thermal

model [99] (aka Resistance-Capacitance (RC) network model), and uses them

to infer the internal heat gain in individual rooms. This heat gain is attributed

to room-level occupancy [96], [108] subsequently. The RC models describe

temperature dynamics inside the building according to heat transfer and ther-

modynamics theories, but they must be customized for each room based on

its size, layout, and envelope1. Thus, the RC models cannot be simply used

to distinguish the effect of occupancy from other confounding effects. The

second approach builds data-driven models to determine occupant presence

and count in the many rooms in a building [5], [9], [10], [58]. These models

are easier to build and can substitute complex physics-based models with an

insignificant loss of prediction accuracy [107]. However, developing such mod-

els requires extensive training with a significant amount of labelled occupancy

data, which is not ordinarily available for different rooms and buildings. The

third approach uses data from other sources such as work schedules and room

booking information for an office or educational building, and household de-

mands for residential buildings to approximate the occupants’ presence and

count. These estimations generally have low accuracy and the corresponding

data feeds are not readily available in all types of buildings. The shortcom-

ings of the first and third approaches motivate the development of data-driven

models for occupancy estimation.

Besides the need for estimating and predicting occupancy, another key el-

ement that contributes to human comfort is the temperature inside a room.

There are several approaches to build thermal models for buildings, including

1The building envelope is the physical separator between the building space and outside
environment; it includes doors, windows, exterior walls and insulation.

3

first-principle (white-box), data-driven (black-box), and hybrid (grey-box) ap-

proaches. First-principle approaches estimate the indoor temperature based

on the physical and mathematical models of the building. The RC model is

an example of grey-box model which models heat flow by creating an analog

circuit model based on semi-physical laws [61]. Data-driven approaches use

various mathematical methods to estimate the trend of the temperature base

on real measured historical data. One well-known black-box model for time-

series analysis is the seasonal autoregressive integrated moving average with

explanatory variable (SARIMAX). This thesis focuses on the development of

grey-box and black-box thermal models.

1.2 Challenges

Residential and commercial buildings are complex cyber-physical systems with

many subsystems and various dynamics that span multiple time scales; these

dynamics cannot be easily modelled for several reasons. For example, to model

temperature dynamics of a building, it is necessary to know physical param-

eters that depend on its size, layout, envelope and structure. Many of these

parameters are not typically known for buildings that are in operation to-

day. While it is possible to acquire this knowledge through energy audits,

they are time-consuming and expensive. This motivates the use of appropri-

ate analytics to estimate these parameters from sensor data. But dedicated

and high-accuracy sensors are not currently installed in most residential and

commercial buildings and we have to rely on the data collected by sensors

that are commonly available in these buildings to develop portable building

applications. Examples of the sensors that are commonly available are smart

thermostats and HVAC sensors which we explore in the thesis.

Another critical challenge is that training data is often unavailable or insuf-

ficient for occupancy and thermal modelling. In particular, developing data-

driven models usually requires a substantial amount of labelled data collected

over an extended period of time. This is because occupancy schedules, ther-

mal comfort requirements, and the usage of heating and cooling systems vary

4

from one season to another in a building. However, reliable ground truth data

collection is overly costly and intrusive in real world scenarios since it needs

an enormous effort to manually log occupancy events in all rooms for a least

several weeks or requires the deployment of multiple cameras in different areas

of the building. Thus, to achieve scalable deployment of building applications

across the building stock, it is necessary to adapt and reuse existing models

that are originally trained for a small set of fully-instrumented test buildings

to estimate occupancy and temperature dynamics in other buildings. This can

be achieved by applying transfer learning.

Transfer learning concerns mapping multiple data sets (from different do-

mains) into a latent space such that they have a similar distribution. In other

words, it transfers knowledge from one learned task to a new task, thus im-

proving the learning outcome in the new task [83]. Many recent studies show

that transfer learning is quite effective in different areas, such as computer vi-

sion [44] and natural language processing [57]. Transfer learning can also help

to reduce the amount of data needed to build an accurate model for estimating

occupancy and temperature dynamics inside a building [106], because it allows

for reusing a well-suited model that is originally built for a test building to

another similar building which may not be instrumented.

Finally, recent studies on occupancy modelling utilize different sensing

modalities and are typically validated on a small number of test buildings,

which do not necessarily represent the occupancy pattern of real buildings.

Moreover, there is no consensus on how to report the accuracy of models, es-

pecially when models estimate the number of occupants. For these reasons,

it is virtually impossible today to evaluate various occupancy detection al-

gorithms and form a conclusive opinion about which sensing modalities are

more indicative of occupancy, what sensor precision is necessary, or how much

training data (occupancy labels) must be collected to build an accurate model.

This manifests the need for a toolkit for occupancy estimation tasks (similar

to NILMTK [16] which was designed for non-intrusive load monitoring) that

enables researchers to evaluate the performance of their occupancy detection

algorithms using a standard set of metrics on data sets collected from multiple

5

types of buildings in different climates.

1.3 Objectives and contributions

To address the above mentioned challenges, we identify and set the following

objectives:

1. Developing accurate data-driven models for estimating the presence and

count of occupants inside the many rooms of a building. These models

must be trained using data collected by sensors that are commonly avail-

able in commercial buildings rather than dedicated sensors for occupancy

monitoring which are not deployed in legacy commercial buildings.

2. Developing a toolkit that offers open-source implementation of state-

of-the-art occupancy estimation models and contains publicly available

data sets pertaining to residential and commercial buildings in several

countries around the world. With this toolkit, it will be possible to com-

pare and analyze different occupancy estimation algorithms by adopting

standard evaluation metrics.

3. Building black-box and grey-box thermal models for describing how the

temperature inside a building responds to changes in the outside temper-

ature and the operation of heating or cooling equipment. To determine

the superior model, these two kinds of models are compared in residen-

tial buildings without assuming the knowledge of building insulation and

thermal mass.

4. Showing empirically how transfer learning can be applied to customize

and reuse pre-trained occupancy estimation models in test commercial

buildings.

To achieve these objectives we use real data from two commercial buildings, in

Canada and Denmark, and data collected by ecobee thermostats from thou-

sands of homes and buildings in Canada.

6

Figure 1.1: A high-level overview of the ideas presented in the thesis.

The contribution of this thesis is three-fold. First, we train long short

term memory (LSTM) networks and non-linear autoregressive network with

exogenous inputs (NARX) networks for the occupancy estimation task us-

ing the HVAC sensor data available through a rudimentary BMS [106]. We

demonstrate how these models can be transferred from one zone to another

zone located in the same commercial building. Second, we design and imple-

ment an occupancy detection toolkit, called ODToolkit [105], hoping that it

supports the effort to benchmark new models and algorithms against previ-

ous work, and contributes to a subtask of Annex 79 of International Energy

Agency (IEA). Third, we describe mathematical derivations for building a low-

order RC-network model and explain how a Bayesian neural network (BNN)

helps estimate the parameters of this model. The accuracy of this model is

predicting the indoor temperature is compared with a black-box time-series

model, namely the SARIMAX model. Figure 1.1 summarizes the contribution

of this thesis.

1.4 Outline of the thesis

The rest of this thesis is organized as follows. Chapter 2 describes related work

on building occupancy and thermal modelling, Bayesian neural network, and

different applications of transfer learning. Chapter 3 explains how to build

and evaluate occupancy estimation models using data from HVAC sensors,

and how to adapt these models so that they can be used to estimation the

occupancy of another room with the same commercial building. Chapter 4

focuses on the design and implementation of an occupancy detection toolkit,

7

and discusses how it can be extended to incorporate new data sets, algorithms,

and metrics. It also presents several case studies for evaluating the toolkit.

Chapter 5 explains how to build and evaluate thermal models for residential

buildings equipped with smart thermostats. Finally, the thesis is concluded in

Chapter 6 by specifying the limitations of this work and providing directions

for future work.

8

Chapter 2

Literature Review

This chapter reviews the fundamental concepts related to modelling and con-

trol of smart buildings and surveys related work on building occupancy de-

tection, thermal modelling, and transfer learning. It also summarizes recent

efforts to build a toolkit for thorough comparison of different algorithms. The

rest of this chapter is outlined as follows: Section 2.1 describes occupancy

modelling and algorithms proposed in the literature. Section 2.2 provides a

detailed overview of thermal modelling, followed by a discussion of transfer

learning in Section 2.3. Section 2.4 surveys the related work on building a

toolkit.

2.1 Occupancy modelling

Occupancy is one of the main factors determining the building energy con-

sumption. Despite huge variation in occupancy over space and time, the whole

building is often treated as a uniform environment controlled with a fixed ven-

tilation rate and static schedules for air conditioning and lighting, thereby

wasting much energy in conditioning and lighting empty or partially occupied

spaces. Thus, controlling HVAC and lighting systems based on occupancy can

result in substantial energy savings and tangible improvements in occupant

comfort.

Fine-grained occupancy information is one of the building blocks of many

smart building applications, such as the energy-efficient operation of the HVAC

system, smart lighting, workspace utilization, security, etc. While most exist-

9

ing building applications rely on the information about the binary occupancy

state (i.e., occupied or empty) of each room, the ability to discern the number

of occupants in each room enables even more applications, for example smart

lighting, demand-controlled filtration and ventilation [100], space utilization,

safety, and evacuation [64]. The more accurately the number of occupants is

estimated, the better it would be for the target application. Given the impor-

tance of obtaining high-accuracy occupancy information, several models have

been developed for occupancy detection in the literature.

2.1.1 Sensing modalities

Several attempts have been made to date to monitor building occupancy using

wired and wireless sensor networks. For example, motion sensor data is fused

with data from magnetic reed switches [1], thermal sensor arrays [17], carbon-

dioxide sensors [3], [7], [8], [15], [60], [96], cameras [37], passive infrared [88],

[97], and other ambient sensors [73] to estimate the room-level occupancy

state (viz. occupant presence or count). In recent work, a custom sensor

tag has been designed which integrates and fuses a large number of sensing

modalities [67]. This general-purpose sensor enables monitoring occupancy

along with several other environmental facets. Nevertheless, all these systems

require hardware retrofits, posing many challenges from sensor placement and

calibration to ensuring that the sensors have a reliable network connection

and power supply. Moreover, some of them utilize sensors that are recognized

for being privacy-invasive (e.g., cameras and microphones) and carry a heavy

deployment stigma.

To preserve privacy while maintaining the overall occupancy estimation ac-

curacy, Kjaergaard et al. [64] installed high-precision, dedicated people count-

ing sensors in common areas of a building to count the occupants. Combining

these estimates with measurements of low-accuracy sensors, they disaggre-

gated the building occupant count into room counts, i.e., they estimated what

fraction of building occupants are in each individual room. This solution

improves the accuracy of occupancy estimation in the whole building, but re-

quires retrofits to install people counting sensors and a model to normalize the

10

data collected from each sensor.

To address these limitations, a growing body of research focuses on the

opportunistic use of existing building infrastructure to monitor occupancy,

when possible. For example, the wireless networking infrastructure is lever-

aged in [12], [29], [94], [102], [111] to estimate the occupancy state of different

spaces in a building. Wireless network includes radio-based devices that use

Bluetooth, WiFi, or electromagnetic waves. Using multipath fading (MP)

with a line of sight based on received signal strength indication (RSSI), Ref-

erence [33] achieves around 96% accuracy for outdoor occupancy. Similarly,

building occupancy is inferred in [45] leveraging the wireless networking in-

frastructure, and security and access control systems. The above approaches

assume that occupants always carry WiFi-enabled devices. Even with this as-

sumption, it is often impossible to estimate the occupancy state of each room

because an access point may cover multiple rooms.

The majority of medium and large commercial buildings are equipped with

HVAC sensors sending their measurements to the central BMS. Therefore, a

number of recent studies address the occupancy detection problem by mea-

surements of the room temperature, and damper and valve position, which are

parts of the HVAC system, is used to infer the occupancy state of individual

rooms [5], [47]. These techniques have two main shortcomings. First, they

achieve an acceptable level of accuracy only if physical sensors are installed in

suitable locations in the building. Second, modelling occupancy using these

techniques requires an abundance of labelled occupancy data collected from

the same environment. It is quite challenging to obtain labelled data as it

requires substantial manual effort or reliable video-based systems which are

costly and intrusive.

Another approach to monitoring building occupancy is to build a high-

dimensional physics-based model for heat transfer in a room [59], [99], [107].

The internal heat gain due to occupancy can be inferred from the physical-

based model, as shown in [10]. This approach makes strong assumptions about

the indoor environment, i.e., the internal heat gain can be attributed to the

HVAC system and occupants only and other heat sources, such as appliances,

11

T
ab

le
2.1:

T
ax

on
om

y
of

related
w

ork
on

o
ccu

p
an

cy
d
etection

C
a
te

g
o
ry

S
e
n

so
rs

E
stim

a
tio

n
T

y
p

e
M

e
th

o
d

G
ra

n
u

la
rity

D
u

ra
tio

n
G

ro
u

n
d

tru
th

R
e
f.

co
lle

ctio
n

N
ew

W
ired

/W
ireless

S
en

sor

N
etw

ork

m
u

lti-m
o
d

al
sen

sors
cou

n
t

R
u

le-b
ased

15
m

in
1

m
on

th
tagged

w
/

ap
p

[73]
G

P

L
R

G
rid

-E
ye

an
d

P
IR

sen
sors

cou
n
t

K
N

N

0.1
sec

3
w

eek
s

v
id

eo
p

lay
b

ack
[17]

A
N

N

L
R

cam
eras,

P
IR

sen
sors

cou
n
t

K
N

N
0.03

sec
4

w
eek

s
v
id

eo
p

lay
b

ack
[37]

P
IR

,
C

O
2

sen
sors

cou
n
t

A
R

M
A

+
E

M
1.8

sec
1

d
ay

m
an

u
al

loggin
g

[60]

C
O

2
sen

sors
cou

n
t

S
N

M
F

1
m

in
13

d
ay

s
m

an
u

al
loggin

g
[15]

am
b

ien
t

sen
sors

cou
n
t

P
F

10
sec

16
d

ay
s

v
id

eo
p

lay
b

ack
[47]

N
A

R
X

C
O

2
sen

sors
cou

n
t

S
en

sin
g

b
y

P
rox

y
m

an
u

al
loggin

g
[59]

B
ayes

n
et

P
IR

an
d

C
O

2
sen

sors
cou

n
t

D
C

ou
n
t

1
m

in
30

d
ay

s
v
id

eo
p

lay
b

ack
[64]

am
b

ien
t

sen
sors

cou
n
t

G
A

K
F

1
m

in
several

m
on

th
s

v
id

eo
p

lay
b

ack
[96]

cam
era

C
A

M

P
IR

sen
sor,

reed
sw

itch
p

resen
ce

classifi
cation

15
m

in
4

d
ay

s
m

an
u

al
loggin

g
[1]

am
b

ien
t

sen
sors

p
resen

ce

R
F

14
sec

3
w

eek
s

v
id

eo
p

lay
b

ack
[23]

G
B

M

C
A

R
T

L
D

A

C
O

2
sen

sors
cou

n
t

R
U

P
5

m
in

14
d

ay
s

m
an

u
al

loggin
g

[8]

C
O

2
sen

sors
p

resen
ce

D
A

-H
O

C
+

+
5

m
in

2
m

on
th

m
an

u
al

loggin
g

[7]
cou

n
t

E
x
istin

g

In
frastru

ctu
re

W
iF

i
cou

n
t

S
en

tin
el

15
m

in
3

w
eek

s
m

an
u

al
loggin

g
[12]

W
iF

i
cou

n
t

L
O

S
+

m
otion

0.02
sec

5
m

in
m

an
u

al
loggin

g
[33]

W
iF

i
cou

n
t

W
in

O
S

S
30

sec
24

w
eek

s
m

an
u
al

loggin
g

[111]

H
V

A
C

sen
sors

p
resen

ce
E

M
D

10
m

in
3

m
on

th
m

an
u

al
loggin

g,
cam

era
[5]

W
iF

i,
calen

d
ar

p
resen

ce
classifi

cation
1

m
in

6
w

eek
s

tagged
w

/
ap

p
[45]

sm
art

m
eters

p
resen

ce
N

IO
M

1
m

in
7

d
ay

s
tagged

w
/

ap
p

[27]

12

are not present in the indoor environment. This assumption does not hold in

practice, hence this approach is not studied further in this thesis.

Table 2.1 shows the taxonomy of related work on occupancy detection

using various sensing modalities, algorithms, data sets, and ground truth data

collection techniques.

2.1.2 Inference models

An overview of the multitude of data-driven algorithms for occupancy mod-

elling is provided in the following. This thesis divides these data-driven algo-

rithms into two categories, single snapshot prediction models and time-series

models. All the algorithms explained below are implemented in ODToolkit as

described in Chapter 4.

Single-snapshot models:

Single snapshot models take into account sensor data from the current time

slot to estimate the occupancy state of the same time slot. These models do

not have a memory; therefore, they ignore data from previous time slots when

making predictions about the occupancy state of the present time.

Hidden Markov Model (HMM) is a probabilistic graphical model where the

underlying system is assumed to be a Markov process. States are hidden but

can be estimated from measurements. HMM is a directed graph with loops,

which encodes the possibility of moving from one state to another state and

being in a certain state given sensor measurements. The edge weights are

transition and emission probabilities learned from the data set. The vertices

in this graph are the states and possible output results, i.e., labels. Training a

HMM requires a lot of ground truth data. When HMM is used for occupancy

detection, the vertices are the number of occupants from 0 to the maximum

capability of the room. Measurements of occupancy-indicating sensors are

considered as emissions or outputs of the hidden states.

The transition probabilities of HMM are denoted by P (Xt|Xt−1) where

Xt is the occupancy state at time t. If the maximum possible occupancy

count is K at time t, then Xt can take one of the values from 0, 1, . . . , K.

13

These probabilities form the transition matrix denoted by AK×K . The emis-

sion probabilities are defined by P (Yt|Xt) where Yt =
[
Y

(1)
t , Y

(2)
t , . . . , Y

(M)
t

]
is the measurement vector of M sensors at time t. We assume that sensor

measurements are independent and follow Normal distribution:

P (Yt|Xt) =
M∏
i=1

P (Y
(i)
t |Xt)

P (Yt|Xt = k) = N (µ̂, σ̂2|k)

Here, µ̂ and σ̂2 are the conditional mean and variance estimated from data.

The emission probabilities form a matrix denoted by B:

Bi(j) = p(Yt = j|Xt = i)

The initial probability, π, is assumed to be uniform over the hidden states.

These three HMM parameters are expressed together as θ = (A,B, π). For

training HMMs, this thesis implements the maximum likelihood estimation

(MLE) of θ. Specifically, for a sequence of occupancy states (hidden states)

and corresponding measurements (emission states), i.e., {(Xt, Yt)}, the MLE

of the HMM parameters is given by:

θ∗ = arg max
θ
p ({(Xt, Yt)}|θ)

The optimum parameters, θ∗ = (A∗, B∗, π∗) can be expressed as,

A∗ij =
of transitions from i to j

of transitions from i

B∗i = (µi, σ
2
i)

Here (µi, σ
2
i) are respectively the estimated mean and variance of the mea-

surements observed from state i. For prediction, Viterbi algorithm is used

to estimate the underlying sequence of hidden states from a given sequence of

sensor measurements. This model was used to predict the number of occupants

in [2] with an accuracy of over 80%.

Random Forest (RF) leverages a large number of decision trees. The algorithm

applies bootstrap aggregating to train the trees. For RF, it selects feature data

and the corresponding label randomly (with replacement) to generate a bag,

14

and train a decision tree on this bag. Each bag is also a randomly selected

subset of the features. After generating several such trees, RF can use those

trees or the forest to predict the label. For each feature vector, RF applies all

trees to the vector and computes the average prediction from each tree to get

the final prediction.

This algorithm can maintain a high accuracy even when part of the feature

value is missing for the prediction. Also, the algorithm has the ability to

compute the importance of each feature. It also runs faster than some other

algorithms. Reference [23] shows that the performance of RF in an occupancy

estimation task depends on the features. It works best when light and carbon-

dioxide data are available, resulting in an accuracy of over 95%.

Support Vector Machine (SVM) is a machine learning algorithm which is uti-

lized to classify data with non-linear boundaries for classification. It finds the

hyper-plane that separates most of the data that does not belong the same

label. Therefore, the label must be categorical rather than numerical. SVM

only works on categorical data, but the occupancy estimation problem is trying

to find the function between features and labels. Therefore, we used Support

Vector Regression (SVR) to perform occupancy estimation.

SVM has been used in the smart home environment to detect visitors [90],

yielding an accuracy of over 67%. It is also used to predict occupancy in [74]

from HVAC data with an accuracy of 92%, and in [35] with an accuracy of

82.6%.

Artificial Neural Network (ANN) is a computational approach that mimics the

functioning of biological neural networks. ANN is a non-linear statistical data

modelling tool and has been very successful for tasks involving pattern recogni-

tion. They have proven to be useful in extracting patterns and detecting trends

in high-dimensional data sets which cannot be analyzed with other computa-

tional models. Within each layer, multiple nodes are acting as neurons. Each

node has a relation with all nodes in the next layer. We use weights to present

this kind of relation. Also, we add one more node in each layer except the

output layer. We use this extra node as the bias node. Biases are always

helpful. In effect, a bias value allows the model to shift the activation function

15

to the left or right, which is critical for successful learning. Reference [35]

trains ANN to estimate the occupancy level from HVAC sensors and reports

an accuracy of 81.1%.

Particle Filtering (PF) is a well known and suitable approach for solving the

state estimation problem in the non-Gaussian and non-linear regime. It is

a variant of Sequential Monte Carlo (SMC) where particles (or samples) are

used to estimate the underlying hidden state sequence. It has been previ-

ously used for binary occupancy detection [24], [84] and for occupancy count

determination [47], given measurements of multiple sensors.

There are two models associated with PF: the system model describing the

change of occupancy states over the time and the measurement model rep-

resenting the relation between hidden states and sensor measurements. We

implement PF on top of HMM where the system model is equivalent to the

transition matrix (i.e., A), and the measurement model is represented by emis-

sion probabilities (i.e., B). The only difference between PF and HMM is how

they predict the occupancy state.

Algorithm 1 shows different steps of the PF method. It takes a sequence

of measurements, Y1:T , and gives an estimated sequence of occupancy states,

X1:T . For each time t, it updates a set of particles based on the previous

(i.e. t − 1) set according to p(Xt|Xt−1) and assigns some weights. Later the

particles are resampled according to these weights. The sample mean of these

new particles represents the occupancy state at time t.

Sparse Non-negative Matrix Factorization (SNMF) is a dimensionality reduc-

tion algorithm that learns a non-negative low-dimensional representation of

sensor data. In PerCCS [15], SNMF is used as a pre-processing step to find

a low-dimensional representation of CO2 data. Precisely, it provides reduced

noise CO2 data, which is then fed to an Ensemble Least Square Regression

to estimate the occupancy count. PerCSS can estimate the occupancy with

a normalized mean squared error (NMSE) of 7.5% and can predict the occu-

pancy count with NMSE of 91% and 15% when the room is unoccupied and

occupied, respectively. Consider the implementation of PerCCS where the

16

Algorithm 1: Particle Filtering

Input: N : number of particles; T : size of the data set
Y1:T : measurements up to time T

Output: X1:T : sequence of hidden sates
X1:T = {}
for t = 1 to T do

for s = 1 to N do

x
[s]
t ∼ p(Xt|Xt−1 = x

[s]
t−1)

w
[s]
t = p(Yt|Xt = x

[s]
t)

end

Normalize w
[s]
t

for s = 1 to N do

x
[s]
t ∼ resample according to w

[s]
t

end

X1:T = X1:T + {average(x[1:N]
t)}

end

matrix decomposition is:

min
W≥0,H

1

2
‖X −WH‖2F + α‖W‖22 + β‖W‖1

Here, X ∈ RN
15
×30 is the data matrix, W ∈ RN

15
×15 is the new representation,

N is the number of observation, time length (i.e. time required to affect the

CO2 readings) is 30 minutes, prediction resolution is 15 minutes, and α and β

are the regularization and sparsity coefficient, respectively. must be tuned.

Time-series models

Time-series models utilize several previous data points and current input to

predict the current value(s). The structure of these models allows them to

memorize the historical input and output data. Recurrent neural networks

(RNN) are one of the most popular models to deal with time-series data (i.e.,

sequences of inputs). In particular, an RNN maintains a state to capture the

history of the input sequence, enabling it to learn complex temporal depen-

dencies. In the last few years, there has been an incredible success in applying

RNNs to a variety of problems, such as speech recognition [51], language mod-

elling [76], translation [28], etc.

17

Figure 2.1: The internal structure of a single LSTM cell. Arrows indicate the
direction of data flow.

Long short term memory networks and nonlinear autoregressive exogenous

models are two types of RNNs we adopt in this paper. Both networks are

designed to memorize historical data and identify trends. We explain them

below.

Long Short Term Memory (LSTM) is a recurrent neural network which was

first introduced in [56] and has been widely applied since then to learn long-

term dependencies in data. As depicted in Figure 2.1, an LSTM cell is com-

prised of three gates: an input gate, an output gate, and a forget gate.

There is an identity activation function to compute the weight of the input.

This weight decides whether the value is essential to be stored and sent to the

output layer. Thus, it can memorize the value in an uncertain length of time.

We use the following notation to describe LSTM networks:

1. d ∈ R: the dimension of the input vector

2. h ∈ R: the dimension of the output vector

3. t ∈ R: the time index

4. xt ∈ Rd: inputs at time t

5. yt ∈ Rh: outputs at time t

18

6. ft ∈ Rh: the activation vector for the forget gate at time t

7. it ∈ Rh: the activation vector for the input gate at time t

8. ot ∈ Rh: the activation vector for the output gate at time t

9. Ct ∈ Rh: the cell state vector at time t

10. σ: logistic sigmoid function

11. tanh: hyperbolic tangent function

12. Wf , Wi, Wo, WC , bf , bf , bi, bo, bC : weights and biases

The cell state is the memory in the module, enabling the LSTM network to

memorize the values. The gates are designed to help the cell state vector to

track useful information. There are three gates in each module. The result

of the logistic sigmoid function is between 0 and 1. The result indicates the

percentage of the value that should pass through.

The first (leftmost) gate in Figure 2.1 determines how much the input would

affect the state, or equivalently, how much of the history would be forgotten

given the current input. Therefore, the activation vector for the forget gate

can be computed by:

ft = σ(Wf · [yt−1, xt] + bf)

Here σ is the logistic sigmoid function which returns a value between 0 and 1.

Next, the input gate indicates which input (it) would update the state

at time t, and the hyperbolic tangent function, denoted by tanh, creates the

candidate values that could be added to the state. After these two gates, the

state is updated as follows:

it = σ(Wi · [yt−1, xt] + bi)

After these two gates, we can update the cell state vector. We first need to

forget some values by using the forget gate. We then add the new information

into the vector by employing the input gate. The update function is defined

as follows:

Ct = ft × Ct−1 + it × tanh(WC · [yt−1, xt] + bC)

19

The last (rightmost) gate in the LSTM module computes the final output.

The output is picked from the current state (passed through a tanh) using a

Sigmoid gate to evaluate which value it should present in the output vector.

The final output vector yt can be computed as follows:

ot = σ(Wo · [yt−1, xt] + bo)

yt = ot × tanh(Ct)

The current output, yt, is an input to the next LSTM module. We use the

backpropagation-through-time algorithm to train this model.

The LSTM network used for occupancy modelling in this thesis has one

hidden layer which contains 64 cells. The output layer contains one output

node representing the occupancy state, and the input layer contains as many

nodes as the number of features in our data set. The cost is computed using

the softmax cross entropy between logits and labels. We partition data into

multiple batches, where the batch size is equal to one day (from 12:00 am to

11:59 pm). For each batch, we minimize the cost using a first-order gradient-

based optimization method [63].

Nonlinear Autoregressive Network with Exogenous Inputs (NARX) is a non-

linear autoregressive time-series model with one or more exogenous inputs in-

fluencing the output. It is a powerful model when it comes to discovering long-

term dependencies. It can be used to model nonlinear dynamic systems and

have been applied in time-series modelling [22]. We use the backpropagation-

through-time algorithm to compute the gradient for calculating the weights.

The input to this model is the current and d past input values (xt, xt−1, · · · , xt−d),

along with d past output values (yt−1, · · · , yt−d), simulating the memory cell.

Feeding previous outputs to the input layer allows for storing historical data

and helps with learning the long-term dependencies. Figure 2.2 depicts the

structure of an NARX network.

The NARX model uses the following notations.

1. t: the time label

2. T : the set of time labels

20

Figure 2.2: Schematic of an NARX network.

3. N : the set of neurons

4. O: the set of output neurons

5. I: the set of input neurons

6. x(t): the inputs at time t

7. y(t): the output at time t

8. C: the state variables

The state space representation of the NARX model can be written as [75]:

Ci(t+ 1) =

{
Φ(u(t), Ci(t)), i = 1

Ci(t), i = 2, · · · , N

where Φ(·) represents the nonlinear mapping of the neural network, u(t) rep-

resents the past inputs at time t. The output at time t can be computed by

y(t) = C1(t). The forgetting behavior is due to:

lim
m→∞

∂Ci(t)

∂Cj(t− t′)
= 0 ∀t, t′ ∈ T, i ∈ O, j ∈ I

We use a NARX network with one hidden layer containing 40 nodes. We

use the dynamic backpropagation algorithm to optimize ttimeserieshe cost.

The model is similar to a simple feed-forward neural network [78].

21

2.2 Thermal modelling

Thermal modelling is essential for designing building envelops [11], conducting

an energy audit, managing energy consumption of HVAC systems (through

chiller sequencing and occupancy-based HVAC control [71] for example), and

demand response programs [34]. The lumped parameter thermal model is one

of the most common thermal models, which offers a better understanding of

temperature dynamics of the building by dividing its interior and envelope

into a number of temperature-uniform lumps. It models heat flux through the

building by creating an analog circuit model [61]. Thus, this physics-based

model is also known as the Resistance-Capacitance (RC) model.

Many software and tools rely on the RC models to simulate and analyze

building energy use, such as Smart-E [18], CitySim [93], DIMOSIM [89], Build-

ingSystems [69], [81], and BuildSysPro [92]. They build arbitrarily complex

RC models with several sub-circuits for different rooms and the building en-

velope.

In addition to RC thermal modelling, the temperature inside a building

can be described using a time-series model. Compared to building RC models,

this approach is completely data-driven rather than physics-based. It devel-

ops separate models for the temperature inside different rooms. The models

developed for different rooms can be combined by referencing the output of

other models as explanatory variables of the model.

Previous studies used various combinations of sub-circuits in the RC net-

work, such as 4R1C [53], [71] and 3R2C [82], [110] for the envelope model,

and 2R2C [82] and 1R1C [53], [110] for the room model. Reference [107]

compared a low dimensional data-driven thermal model to a high dimensional

physics-based one, concluding that the data-driven model can substitute the

high-dimensional physics-based model with a negligible loss of accuracy.

Table 2.2 shows the taxonomy of related work on thermal modelling using

various platform, model settings, parameter estimation methods, and model

scales.

22

T
ab

le
2.2:

T
ax

on
om

y
of

related
w

ork
on

th
erm

al
m

o
d
ellin

g

T
y
p

e
P

la
tfo

rm
/
A

lg
o
.

E
n
v
e
lo

p
e

m
o
d

e
l

R
o
o
m

m
o
d

e
l

P
a
ra

m
e
te

r
e
stim

a
tio

n
M

o
d

e
l

sca
le

O
b

je
ctiv

e
R

e
f.

W
h

ite-b
ox

S
m

art-E
10

p
aram

eters
U

tility
m

o
d

els
M

easu
rem

en
ts

C
ity

D
em

an
d

resp
on

se
strategy

[18]

R
C

m
o
d

el
3R

2C
1R

1C
G

en
etic

algorith
m

[77]
F

lo
or

D
em

an
d

resp
on

se
strategy

[110]

S
H

E
M

S
V

ariou
s

1C
M

IL
P

H
ou

se
D

em
an

d
resp

on
se

strategy
[34]

C
ity

S
im

4R
1C

1R
1C

A
n

alog
valu

e
O

ffi
ce

ro
om

H
u

m
an

-en
ergy

in
teraction

[53]

D
IM

O
S

IM
6R

3C
1R

1C
M

easu
rem

en
ts

B
u

ild
in

g
M

o
d

el
com

p
aresion

[89]

B
u

ild
in

gS
y
stem

s
3R

2C
5R

1C
M

easu
rem

en
ts

T
h

erm
al

zon
e

M
o
d

el
com

p
arison

[69]

R
C

m
o
d

el
3R

2C
N

/A
N

on
-lin

ear
op

tim
ization

R
o
om

R
C

p
aram

eter
estim

ation
[54]

R
C

m
o
d

el
3R

1C
1C

M
easu

rem
en

ts
F

reezer
ro

om
S

im
u

late
th

erm
al

b
eh

av
ior

[38]

T
R

N
S

Y
S

17
V

ariou
s

V
ariou

s
M

easu
rem

en
ts

H
ou

se
S

u
ggest

b
u

ild
in

g
en

velop
e

[11]

B
E

A
M

3R
2C

1C
M

easu
rem

en
ts

H
ou

se
S

u
ggest

con
trol

state
[95]

G
rey

-b
ox

R
C

M
o
d

el
3R

2C
2R

2C
G

en
etic

algorith
m

[77]
T

h
erm

al
zon

e
C

o
olin

g
load

m
o
d

ellin
g

[82]

R
C

m
o
d

el
4R

1C
1C

P
aram

eter
ad

ap
tive

b
u

ild
in

g
O

ffi
ce

ro
om

M
o
d

el
u

n
certain

ty
[71]

T
R

N
S

Y
S

10R
6C

3R
2C

N
on

-lin
ear

regression
H

ou
se

P
red

ict
H

V
A

C
load

s
[20]

23

Tout

interiorwall

QHAVC

R1 R2 R3

C1 C2 C3

outside air

TinT1 T2

Figure 2.3: The lumped parameter thermal model representing the building
envelope with a 3R2C network and its interior with a single capacitance, 1C.
This simplified model incorporates the heat introduced or extracted by the
HVAC system, but neglects internal heat gain and solar radiation.

2.2.1 RC-network models

The RC model describes heat flux, Q, in a building similar to how current flow

is described in an electric circuit composed of several resistors and capacitors

in series or shunt. Concretely, a thermal resistor in the RC model creates a

difference in the temperatures of its two terminals. We have Q = ∆T/R, where

R is the thermal resistance, and ∆T represents the temperature difference.

The thermal capacitor in the RC model acts as a thermal energy reservoir; it

can store heat: C ∂T
∂t

= Q, where C is the thermal capacitance. The RC model

divides the building space and its envelope into a certain number of lumps.

The fundamental assumption here is that the temperature of each lump is

uniform.

A variety of RC network models have been proposed in the literature. A

high-order RC model is generally more accurate and more complex, but this

complexity comes at a price: it is computationally expensive to use this model

especially for fast timescale analysis of heat transfer and real-time control

applications. A reduced-order thermal model can offer a reasonable tradeoff

between accuracy and model complexity. For example, a 2nd-order RC model

would give minimal loss of accuracy compared to a 20th-order benchmark

model with a considerably lower computational demand [50]. Hence, in this

work we focus on developing low-order RC network models.

We model the building envelope as a 3R2C network. This model is com-

24

prised of three thermal resistors, denoted by R1, R2 and R3, and two thermal

capacitors, denoted by C1 and C2, describing the three-layer structure of the

wall [54], [95]. The building interior is modelled using a thermal capacitor (C3)

as it absorbs and retains heat. It is also connected to the HVAC system which

injects or extracts heat from the building space based on the operation mode

of the HVAC system. We denote the total heat flux from the HVAC system

by QHV AC . Figure 2.3 shows the equivalent circuit of this RC model. A set of

partial differential equations govern the dynamics of temperature evolution in

the building space:

∂T1 =
1

C1R1

(Tout − T1)∂t+
1

C1R2

(T2 − T1)∂t

∂T2 =
1

C2R2

(T1 − T2)∂t+
1

C2R3

(Tin − T2)∂t

∂Tin =
1

C3R3

(T2 − Tin)∂t+
QHV AC

C3

∂t

(2.1)

where Tin represents the temperature inside the building, Tout represents the

outside temperature, T1 and T2 represent the temperature of the two lumps

used to model the wall, and QHV AC = kheatQheat − kcoolQcool where kheat and

kcool are two binary control variables defined as:

kheat =

{
1, if Tin < Tsetheat & HVACmode ∈ {auto, heat}
0, otherwise

kcool =

{
1, if Tin > Tsetcool & HVACmode ∈ {auto, cool}
0, otherwise

(2.2)

Here Tsetcool and Tsetheat respectively denote the cooling and heating set-

points, Qcool and Qheat respectively denote the energy flux from cooling and

heating systems, and HVACmode denotes the operation mode of the HVAC

system which can take a value from the following set: {auto, heat, cool, off }.

When HVACmode is auto, the HVAC system can be either in the heating or

cooling mode depending on how the indoor temperature compares with the

two setpoints. We assume the temperature sensor is installed in an ideal lo-

cation in the room and can measure the room temperature with negligible

error. We further assume that the HVAC system delivers (or extracts) the

same amount of heat during the period it is heating (or cooling) the space.

25

Although there exists a large body of work that used RC models to study

the building thermal transfer, most of them focus on modelling the heat flux

using measurements of inside and outside temperature assuming that the re-

sistance and capacitance parameters are known [20], [31], [38], [98]. In other

words, they assume the knowledge about the building thermal mass and its

insulation, which might be easy to obtain for commercial buildings, but is not

necessarily available for residential buildings in operation today.

Since the resistances and capacitances depend on the construction material

and building structure, they are treated as time-invariant or constant parame-

ters. Our goal is to estimate these parameters using pre-trained neural network

models so that the resulting RC model can be used to predict Tin given Tout,

kheat, and kcool. This process is described in Section 5.1. Note that we ignore

solar radiation and internal heat gain since this data is not provided in the

data set we use.

2.2.2 Time-series models

The temperature inside a building is a time-series, and therefore, can be mod-

elled using a standard time-series modelling technique. Time-series models

relate the next observation to historical observations.

Autoregressive Integrated Moving Average (ARIMA) model is a time-series

model which has been widely used in demand forecasting and various planning

problems [26]. It can capture lagged correlations between forecast errors and

time-series data. The ARIMA model is expressed as:(
1−

p∑
i=1

αiB
i

)
(1− B)dXt =

(
1 +

q∑
j=1

βjB
j

)
εt + c (2.3)

where X is the time-series, BXt = Xt−1, and p, d, q are the parameters of the

ARIMA model. This model has three parts, namely the autoregressive part

(AR), the integrated part (I), and the moving average part (MA). An ARIMA

model is uniquely characterized by three parameters, p, d, q, corresponding to

the three parts of the model, and coefficients of the AR and MA parts (α and

β).

26

A time-series must be at least wide-sense stationary so that we can fit a

suitable Autoregressive Moving Average model to it. When the time-series is

not wide-sense stationary, taking differences of consecutive observations makes

it stationary. Hence, differencing is the first step of building an ARIMA model

for a non-seasonal time-series and corresponds to the integrated part of the

model. The differenced time-series can be written as:

X ′t = Xt −Xt−1

where Xt and X ′t are respectively the value of the original time-series and the

value of the differenced time-series at time t. If the data does not appear to be

stationary after the first differencing we can perform differencing repeatedly

until the resulting time-series is stationary. The number of differencing opera-

tions performed on the time-series is reflected in the parameter d. In practice,

the second order differencing usually suffices.

Time-series may exhibit temporal correlation. In this case, past observa-

tions can be used to determine the next value. The autoregressive (AR) part

of the model captures this intuition. Specifically, it defines the current value

Xt as the weighted sum of the past values Xt−1, · · · , Xt−p:

Xt = c+

p∑
i=1

αiXt−i + εt

Here c is a constant value, ε is the white noise term, α represents the weights,

and p indicates the number of historical values used.

Lastly, the moving average (MA) part portrays the relationship between the

next time-series value and historical white noise terms. The model estimates

the current value Xt as the weighted sum of the past white noise terms:

Xt = µ+

q∑
i=1

βiεt−i + εt

Here µ is the mean of the series (often assumed to be 0), β represents the

weights, and q indicates the number of historical white noise terms used.

Putting the three parts together, we obtain the model expressed in Equa-

tion 2.3. This model is particularly useful to model a stochastic process, even

27

when it is non-stationary. It is also suitable for modelling non-seasonal time-

series, where the trend is not white noise and has a certain pattern.

In many cases, the time-series value depends on the values of some external

or exogenous variables. The ARIMAX is a variation of the ARIMA model that

takes these explanatory variables into account:(
1−

p∑
i=1

αiB
i

)
(1− B)d

(
Xt −

r∑
k=1

γkE
[k]
t

)
=

(
1 +

q∑
j=1

βjB
j

)
εt + c

where E
[k]
t is the value of k-th exogenous variable at time t, γ represents the

weights of exogenous variables, and r is the total number of exogenous variables

in the model. Moreover, some time-series data have seasonality, meaning that

they exhibit a certain cycle or periodicity. To model seasonality, it is crucial

to separate it from the original time-series. SARIMAX is an ARIMAX model

that performs seasonality decomposition. It can be written as(
1−

p∑
i=1

αiB
i

)(
1−

P∑
i′=1

α′iB
si′

)
(1− B)d(1− Bs)D

(
Xt −

r∑
k=1

γkE
[k]
t

)
=

(
1 +

q∑
j=1

βjB
j

)(
1 +

Q∑
j′=1

β′JB
sj′

)
εt + c

where P , D, and Q are respectively the orders for the seasonal autoregres-

sion, seasonal integration, and seasonal moving average components, and s

represents the seasonal length. A detailed explanation of how to estimate the

parameters of the SARIMAX model is described in Section 5.1.2.

2.3 Transfer learning

Humans have the ability to transfer knowledge from tasks in which they had

some experience to a new task, which may not be identical to these tasks. This

past experience often helps them finish the new task more efficiently, even with

less experience in that task. Drawing on this idea, “transfer learning” is intro-

duced in the machine learning literature. As put by Andrew Ng, a renowned

machine learning scientist, “after supervised learning, transfer learning will be

the next driver of ML commercial success”.

28

Training accurate data-driven models requires enormous amounts of data;

this limits their application in practice. But transfer learning enables model

training even when little or no training data is available. This is accomplished

by adapting and reusing a pre-trained model.

The initial idea of transfer learning came out as early as the 1990s. The

most attractive part of transfer learning is the ability to solve a complex prob-

lem starting with an almost optimal model. This means that the amount of

training data can be reduced significantly, just as the time and effort to train

a suitable model. Moreover, even if people are willing to collect and train such

complex models, in the real world scenario, data is usually difficult to collect,

and people cannot directly reuse well-trained models in a new environment.

For example, it took several years to build ImageNet [32].

The formal framework of transfer learning is defined by [85]. The frame-

work defines a domain, denoted by D, as the combination of feature space X

and marginal probability P (X), i.e., D = {X, P (X)}. Also, the framework

states a task, denoted by T, as the combination of label space Y and objective

function P (Y|X), i.e., T = {Y, P (Y|X)}. Therefore, given the source do-

main DS, task TS, target domain DT , and task TT , transfer learning suggests

a good prior of P (YT |XT) in DT with the knowledge from DS and TS, where

DS 6= DT or TS 6= TT .

We classify transfer learning techniques into four classes: domain adapta-

tion, domain confusion, one-shot learning, and zero-shot learning. Note that

these classes are not mutually exclusive because a transfer learning technique

can belong to more than one of these classes.

2.3.1 Domain adaptation

Domain adaptation usually refers to the case of where marginal probabilities

are different between domains, i.e., P (XS) 6= P (XT). It seeks to learn from

one or multiple source domains a model that performs well on a related target

domain. It is assumed that the source and target domains are associated

with the same label space. Domain adaptation has been used extensively in

computer vision and natural language processing [104]. The early applications

29

of domain adaptation can be traced back to 1990s [21]. In recent years, domain

adaptation has been applied to the image translation problem. Reference [109]

develops two conditional Generative Adversarial Networks (GANs), one to

translate an image from the source domain to the target domain (Y ← f(X)),

and another one to translate it from the target domain to the source domain

(X ← g(Y)). The two networks are trained to minimize the difference between

X and g(f(X)), enabling translations such as a zebra to a horse or a photo

to a Monet painting. Reference [62] transfers both texture and geometrical

properties of an image, enabling them to successfully transform a chair to a

car or a vehicle to a human face. Reference [44] employs a domain adaptation

technique to build a Convolutional Neural Network (CNN) model for image

recognition on a large set of car images drawn from e-commerce websites and

Google Street View. In a different line of work, Reference [30] uses domain

adaptation to find the common embedding between two languages to perform

an accurate translation.

Despite the extensive literature on domain adaptation, little work has been

done to investigate whether it can be applied to data collected by IoT devices

which are possibly deployed in different environments. To our knowledge, Ref-

erence [9] is the only paper that utilizes domain adaptation to determine the

number of occupants in a room by using carbon-dioxide measurements from

this room and a large cinema. It proposes a human occupancy counter which

employs an accurate occupancy model trained with minimum labelled data.

This model is developed in a small room and then adapted to a larger room (a

cinema with a seating capacity of 279 people). The authors develop a seasonal

decomposition model which captures the nonlinear relationship between car-

bon dioxide and occupant count. This model has four components which are

trained in the source domain and then adapted to the target domain. They

show that it is possible to achieve higher accuracy with the adapted model on

the target domain. The accuracy they report is around 90% for binary occu-

pancy detection and 60% for estimating the number of occupants. The main

issue with this work is that they consider an occupancy estimation as accurate

if the absolute differences between predicted and real occupant counts are less

30

than five people.

Our work on occupancy modelling is similar to [9] in that we also leverage

semi-supervised domain adaptation to estimate the number of occupants with

minimum labelled data from the target domain. However, their approach has

several shortcomings. First, they only consider one feature, which is the car-

bon dioxide concentration, and build a model that only works if this feature is

available; hence, it cannot be extended to other occupancy-indicating features.

The carbon dioxide sensor is not always available in the HVAC system, and

it detects occupancy events after a certain delay since carbon dioxide builds

up slowly. In our test, the carbon dioxide sensor takes about 15 minutes to

sense any change in the carbon dioxide concentration level after an occupancy

event. Second, they only study the case where the source and target domains

have the same feature space. Third, the accuracy of their model is low when

it comes to determining the number of occupants, especially given that they

consider an occupancy estimation as accurate if the absolute differences be-

tween predicted and real occupant counts are less than five people. We address

these shortcomings in this work, build recurrent neural network models that

are general enough to be used with an arbitrary set of features, and evaluate

our algorithm in two commercial buildings with different features located in

two countries.

2.3.2 Domain confusion

The basic idea of domain confusion [42], [43] is to add another objective (or

change the task in the source domain) that maps the source domain to a

latent domain which is more similar to the target domain than the source

domain. This change of the objective function in the source domain confuses

the domain itself. Figure 2.4 shows the idea of reversing the gradient of the

flow from the loss to the remaining network. The reversed gradient asks the

model to maximize the error instead of minimizing the error which is the case

in most networks. This allows the model to minimize the source objective and

prevents it from differentiating the two domains.

31

Figure 2.4: Confusing domains with a gradient reversal layer [42]

2.3.3 One-shot & zero-shot learning

There are two main approaches in transfer learning [48]: one-shot and zero-

shot learning. Consider a model that is trained in a given source domain. In

one-shot learning, some amount of labelled data from the target domain is

utilized to retrain this model, whereas in zero-shot learning this pre-trained

model is used without adaptation to make predictions in the target domain.

We compare the accuracy of models obtained through one-shot learning and

zero-shot learning in Section 3.3 and Section 5.2.

2.4 Open platforms and toolkits

An inevitable part of scientific research is developing mathematical models

and algorithms. Each model serves a specific purpose and is often tailored

for a target application. Thus, most models cannot be generalized and used

in a different context. This has made model validation an essential task.

Researchers need a set of tools to handle different types of input data and are

required to write many lines of code to compare their new model with existing

models.

To address this problem, a publicly available toolkit would be a natural

choice. A lot of work in literature offers publicly available toolkits for different

purposes. NILMTK [16] is an open-source toolkit that provides an easy to use

platform for evaluating different energy disaggregation algorithms across differ-

32

ent data sets. It contains tools for analyzing and processing publicly available

data sets, implementation of well-known energy disaggregation algorithms for

benchmarking, and a diverse set of evaluation metrics. scikit-learn [87] is a

well-known toolkit that incorporates a vast number of machine learning algo-

rithms with various data sets and analysis APIs. GraphLab [70] is another

robust machine learning framework that provides a distributed as well as uni-

fied multicore API for parallel machine learning algorithms. For physiologic

signal processing and analysis, PhysioToolkit [46] is an API library with an

extensive collection of algorithms and tools. For wireless network community,

CRAWDAD [65] compiles several data sets and algorithms.

We argue that a similar toolkit is needed for evaluating occupancy detection

models on publicly available data sets using standard metrics. The design and

implementation of this toolkit are discussed in Chapter 4.

33

Chapter 3

Fine-Grained Occupancy
Estimation

Fine-grained occupancy information is essential to improve the human experi-

ences and operational efficiency of buildings, yet it is quite challenging to ob-

tain this information due to the lack of special-purpose sensors for occupancy

monitoring, and insufficient training data for developing accurate data-driven

models. This chapter addresses this challenge by (a) utilizing recurrent neu-

ral network models to uncover latent occupancy patterns in individual rooms

from trend data available through the building management system, and (b)

applying a domain adaptation technique to transfer existing occupancy models

trained in a controlled environment (i.e., the source domain) to another envi-

ronment (i.e., the target domain) where labelled data is sparse or non-existent.

We adjust the model parameters based on the apparent differences between

the two environments and apply the adapted model to estimate the number of

occupants in the target domain. Our results from two commercial test build-

ings in two continents indicate that the adapted model yields only slightly

lower accuracy than a model that is built initially on the target domain gave a

large amount of labelled data. Furthermore, we study how many labelled data

is required from the target domain for the semi-supervised domain adaptation

technique to achieve promising results.

Our approach is to build data-driven occupancy models using the trend

data, e.g., measurements of carbon dioxide and damper position sensors, which

are readily available through the BMS in most commercial buildings. Since

34

Figure 3.1: Ground truth occupancy data and measurements of carbon dioxide
and damper position over one week in a room in Building A.

training these models requires an abundance of labelled occupancy data, we in-

vestigate the use of a semi-supervised domain adaptation technique to transfer

occupancy models that are built in a controlled environment where sufficient

labelled data is available to an environment where little or no labelled data is

available. We study this problem when the source and target domains are in

the same building.

The rest of this chapter is organized as follows. Section 3.1 shows the

feasibility of estimating the room-level occupant count from the available trend

data. Section 3.2 describes our data sets and defines the proposed methodology

for training and adapting the occupancy models. Section 3.3 explains the

evaluation results, and Section 3.4 presents discussion points and suggests

directions for future work.

3.1 HVAC system and trend data

An HVAC system typically consists of one or more Air Handling Units (AHUs),

which supply cold air through ducts to Variable Air Volume (VAV) systems,

each controlling a thermal zone. If a zone requires cooling to balance the heat

gained from occupants, appliances, and external sources, the VAV unit opens

its dampers to the required extent to allow cooler air to flow into the zone.

Conversely, if a zone requires heating to maintain its operating point, the VAV

unit opens the radiator or reheat valve.

The heating or cooling action of a VAV unit is determined by a control

35

system which keeps the zone temperature around its setpoint while maintain-

ing the required minimum airflow. The VAV control system monitors the zone

temperature and actuates the dampers and valves. The BMS typically logs

the instantaneous values of the sensors and states of the actuators.

Figure 3.1 shows the ground truth occupancy (i.e., the number of people

in the room), the carbon dioxide concentration level, and the damper position

over one week in a room in our test building (as described in Section 3.2.1). It

can be readily seen that the number of occupants is significant when the carbon

dioxide concentration peaks and the damper becomes half-open. Furthermore,

it can be seen that the carbon dioxide concentration is low, and the damper

is closed most of the time during the weekend when the room is generally

unoccupied. This implies that these sensors are occupancy-indicating, and it

is possible to uncover the underlying occupancy pattern of a room using only

trend data available through the BMS and sophisticated machine learning

algorithms.

3.2 Methodology

Our goal is to transfer an existing model built for a room with sufficient train-

ing data to another room in the same building, for which training data is

sparse or non-existent. Our hypothesis is that the adapted model is more ac-

curate than a model that is originally built on the target domain using limited

training data that is available. In the following, we describe our data set and

then present our domain-adaptive occupancy models.

3.2.1 Data set

Our data set is comprised of two commercial buildings located in two coun-

tries, which are referred to as Building A and Building B, respectively. Both

buildings are equipped with a BMS system capable of logging, trending, and

reporting. Building A is a 8, 500m2 campus building at the University of

Southern Denmark [6] with an average of 1,000 occupants on normal weekdays.

The building contains graduate student and faculty offices, lecture rooms, and

36

Table 3.1: Description of Building A

Room type Study area Lecture room

Room number 1 2 3 4

Seating capacity 36 36 85 85

Var. occupancy 21.7 20.5 67.7 231.9

PAR occupancy 13.7 10.4 10.6 9.0

Min. CO2 level (ppm) 256 268 370.88 304

Max. CO2 level (ppm) 907.52 688 844.8 1384

Area (m2) 125 125 139 139

Max. air flow (m3/h) 3000 3000 4800 4800

Table 3.2: Description of Building B

Room type Meeting room

Room number A B C

Seating capacity 10 8 10

Var. occupancy count 3.35 1.25 2.27

PAR occupancy count 107.1 89.3 95.1

Min. temperature (◦C) 20.10 20.81 20.74

Max. temperature (◦C) 27.76 25.97 28.39

Relative area 1.2 1 1.2

Number of windows 2 0 2

Max. air flow (L/s) 130 85 130

Min. air flow (L/s) 65 6 65

study areas. We consider four rooms in this building to develop and vali-

date the data-driven occupancy models. Each rooms is equipped with high-

precision people counting cameras mounted over the two entrances to record

the number of occupants, which is treated as ground truth occupancy data.

Two of those rooms, Room 1 and Room 2, are 125m2 study areas with the

seating capacity of 36 people. The other two rooms, Room 3 and Room 4, are

139m2 lecture rooms with the seating capacity of 85 people. The HVAC system

in this building supplies a maximum of 3000m3/h and 4800m3/h fresh air into

the study areas and lecture rooms, respectively. Table 3.1 summarizes the in-

formation about these rooms, including the variance and peak-to-average ratio

37

(PAR) of the number of occupants during the period that data was collected.

Each room constitutes a thermal zone and is controlled by a separate VAV

system. The VAV system uses two sensors, i.e., carbon dioxide and damper

position sensors, in each room to control the indoor climate. The carbon diox-

ide sensor samples the carbon dioxide concentration level in parts per million

(ppm), and the damper position sensor measures the damper openness in per-

centage of fully opened. Both quantities are sampled at one minute intervals

and measurements are archived by the BMS system. The measurements are

obtained between March 21st, 2017 and April 6th, 2017 through the API of the

BMS system. The ground truth data was also available for the whole period.

Building B is a four-story office building owned and operated by PCL Con-

structors in Edmonton, AB, Canada. It contains 44, 000ft2 of office space,

workstations, and meeting rooms. This building does not have a vision-based

system for collecting ground truth occupancy data. Thus, we only consider

three meeting rooms for which we could extract the number of attendees,

time, and duration of meetings from their calendars. Admittedly, the ob-

tained ground truth data is not reliable, because people may enter the room

before the meeting starts and may leave before it ends. Moreover, the real

number of attendees may be different from the number of people accepted the

calendar invitation. In any case, this data shows the overall occupancy trend

in each meeting room. Table 3.2 summarizes the information about these

rooms. Each meeting room constitutes a thermal zone and is controlled by a

separate VAV system. Each VAV system has several sensors in each room to

control the indoor climate. We obtained temperature, airflow, pressure, and

damper position data sampled by these sensors at 10-minute intervals. We ob-

tained measurements between December 18th, 2016 and December 18th, 2017

through the BMS system.

Room A and Room C are corner meeting rooms on two consecutive floors

of the building with the exact same size and layout; they have floor-to-ceiling

glass on the north and east sides, and 4 diffusers. Room B is an interior room

with no window and is on the same floor as Room A, but has a different layout.

It has 2 diffusers. All meeting rooms have a rectangular conference table with

38

chairs arranged around it on all four sides. The VAV systems of these three

rooms are connected to the same AHU.

In addition to the trend data, we extend our feature space by acquiring

cloud cover and outdoor temperature for the cities where Building A and

Building B are located using the Dark Sky API [101]. In each case, the weather

and climate data are available every one minute during the intervals that sensor

data was collected. We consider these features when developing a model for

perimeter rooms that have at least one window. This is because the outdoor

temperature and cloud cover (as a proxy for solar irradiance) can affect the

heat load in the room, thereby causing the HVAC system to respond, for

example by opening or closing dampers. It is important to make sure that

these effects are not confused with the heat gain due to occupants.

3.2.2 Preprocessing

Our data set contains noisy and missing values and must be cleaned before it

can be used to build occupancy models. We specifically identify and remove

redundant time value pairs, resample all features at the same frequency, and

impute missing values using a simple linear interpolation of neighboring, non-

missing values. Once the data are cleaned, we combine all features for each

time slot and store them in an array data structure.

3.2.3 Data-driven models for occupancy estimation

We develop four data-driven models to predict the number of occupants in the

source domain where sufficient ground truth data (labelled occupancy data)

is available. To this end, we train LSTM and NARX networks introduced in

Section 2.1.2. These nonlinear models that have memory, are suitable for un-

covering latent occupancy patterns. We also adopt Support Vector Regression

(SVR) and Logistic Regression (LR) to estimate the number of occupants.

These models are used to evaluate our proposed recurrent neural network

models.

To understand how these models would generalize to an independent data

set, we use 5-fold cross-validation. In particular, we split data from the source

39

domain into five equal sized segments, and use four of them (80% of data) to

train the model, and the rest (20% of data) to test it. This process is repeated

five times with different segments selected for testing. We compute the Root-

Mean-Square Error (RMSE) to score the models and set model parameters to

the ones that had the smallest RMSE. In addition, we calculate the normalized

RMSE (nRMSE) which is the ratio of the RMSE to the range of occupant

counts in the corresponding room. These metrics are defined as follows:

RMSE =

√∑
t∈T

(ŷt − yt)2,

nRMSE =

√∑
t∈T (ŷt − yt)2

max y −min y
,

where y denotes the true number of occupants in a given room and ŷ denotes

the predicted number of occupant in that room. We note that we do not use

Mean Absolute Percentage Error (MAPE) as an evaluation metric in this case

since it not defined when the room is not occupied (it results in division by

zero). Instead, we use nRMSE which also gives a relative sense of how accurate

the occupancy estimations are.

3.2.4 Semi-supervised domain adaptation technique

We now present a domain adaptation technique to build a model for estimating

the number of occupants in a given room. We assume that the true number

of occupants is known in the source domain for the entire duration that trend

data is available. Hence, we use all trend data and corresponding occupancy

labels for model training. Domain adaptation transfers this model to the target

domain where ground truth data is limited or non-existent. The adapted model

is then used for classification or regression in the target domain.

We leverage both semi-supervised and unsupervised domain adaptation

techniques. Both techniques update the model trained in the source domain

based on the differences between the source and target domains. The differ-

ence is that the unsupervised domain adaptation technique applies the model

trained in the source domain to estimate the number of occupants in the target

domain without updating the model using labelled data from the target do-

40

main, whereas the semi-supervised domain adaptation technique utilizes the

available labelled data from the target domain to retrain the model. This

retraining phase is key especially when the source and target domains have

different feature spaces.

Figure 3.2 shows the overall framework for developing occupancy models.

Since sufficient ground truth data is available in the source domain, it is pos-

sible to develop a well-suited model using supervised learning. Turning our

attention to the target domain, one can develop a model using supervised

learning but since labelled data is sparse, if not non-existent, the accuracy

of such a model will not be high. Alternatively, it is possible to apply the

supervised learning model built on the source domain to estimate the number

of occupants in the target domain. We refer to this approach as unsupervised

domain adaptation. Lastly, it is also possible to use a semi-supervised domain

adaptation technique to adapt the model trained in the source domain to the

target domain. This is a two-step process which starts with re-weighting the

model and then retraining it using a small amount of labelled data that is

otherwise insufficient for training an accurate model. We explain these two

steps below.

Re-weighting:

The first step in our domain adaptation technique is called re-weighting. The

basic idea is to compute transform matrices Aw and Ab, extract the weights w

and biases b from the model, and finally use Aww and Abb as the new weights

and biases, respectively. When the target domain is identical to the source

domain, the transform matrices, Aw and Ab, are identity matrices. Otherwise,

we need to construct Aw and Ab based on the apparent differences between

the two domains, including size, seating capacity, and maximum air flow (or

ventilation power).

The damper position determines how much fresh air can enter the room.

Hence, the higher the maximum air flow is, the larger the effect of the damper

position is on the amount of supplied air. Thus, the weight corresponding to

41

Figure 3.2: Data collection and analysis framework

the damper position in the input node must be updated based on the ratio of

the maximum air flow in the target domain to the maximum air flow in the

source domain:

wdamper in ← wdamper in ·
Max. airflowtarget

Max. airflowsource

We only change the weight of the node corresponding to the damper position.

The weights of all other nodes remain the same.

As the size of the room and the maximum air flow change, the weights of

all gates that are related to the carbon dioxide concentration level need to be

adjusted. The unit of the air flow is m3/h which is the volume of fresh air

that enters the room per hour. Suppose all rooms within a building have the

same height. We have;

Room’s Volume = Height× Floor Area,

42

Time =
Room Volume

Air flow
,

where Time is approximately the amount of time that it takes to fill the room

with fresh air. We use this value to estimate the carbon dioxide diffusion rate.

When it is smaller, it implies that carbon dioxide diffuses faster, hence the

carbon dioxide sensor would measure it faster. In this case, we must increase

the weight of the carbon dioxide feature. But unlike the damper position,

which varies between 0% and 100%, the carbon dioxide level does not have a

fixed upper bound. This means that we should not change the input weight of

the carbon dioxide sensor. Instead, we increase the weight in each gate that

corresponds to the carbon dioxide feature. In particular, wco2 must be updated

as follows:

wco2 ← wco2 ·
Timesource
Timetarget

← wco2 ·
Height · Areasource/Max. airflowsource

Height · Areatarget/Max. airflowtarget

← wco2 ·
Areasource ·Max. airflowtarget

Areatarget ·Max. airflowsource

Moreover, we need to adjust the bias terms, b, when we adjust the weights.

We do this based on the differences in the seating capacity of source and target

domains because the HVAC system is designed to condition each room based

on its maximum occupancy. We have:

b← b · Capacitytarget
Capacitysource

.

Figure 3.3 shows the weights of an RNN cell that we update in the re-weighting

progress; these weights are represented with dotted lines.

Retraining:

After re-weighting the model, we train it again using the available labelled

data from the target domain to update the weights. We choose this training

data from a contiguous time period so as to preserve the temporal dependency

in the occupancy data. We use the same algorithm used to train the neural

43

Figure 3.3: An illustration of the domain adaptation process. Dotted lines
represent the weights that are updated.

network model to retrain it, the only difference being that the weights are

initialized to the weights that are calculated in the re-weighting step.

3.2.5 Post-processing

To prevent error propagation over time, we correct obvious erroneous predic-

tions in the post-processing step. This includes a negative or an unreasonably

large number of occupants, and drastic changes in the number of occupants.

We say that the predicted number of occupants is ‘unreasonably large’ when it

is greater than the seating capacity of the room plus ∆. We use a non-negative

value for ∆ to account for the cases that the number of occupants is temporar-

ily above the seating capacity of the room (e.g., between two successive classes

when some students are entering the room while others are leaving it). We

refer to changes in the occupant count as ‘drastic’ when the occupancy count

increases or decreases by more than K occupants in an interval of length T .

We set the values of ∆, K, and T of a given room based on its type, size, and

function. In our experiments, we set ∆ to 5. For study areas, we set K to 5

44

occupants and T to 4 minutes. For lecture rooms, we set K to 10 occupants

and T to 1 minute.

To correct these errors, we replace negative occupant counts by zero, and

unreasonably large occupant counts by the seating capacity of the room plus

∆. Moreover, drastic changes in the occupant count are replaced by K.

3.3 Results

In this section we corroborate the efficacy of the proposed semi-supervised

domain-adaptive models by comparing them with two supervised learning

models developed for occupancy estimation. We run each model 10 times

for a given parameter setting, compute the mean and standard derivation of

its prediction accuracy, and report the 97% confidence interval. The results

presented in this section belong to Building A unless otherwise stated.

3.3.1 Evaluating the model trained using semi-supervised
domain adaptation

Figure 3.4 shows the accuracy of estimating the number of occupants using

different techniques and models. This figure is divided into three parts to

group supervised learning models, unsupervised domain adaptation models,

and semi-supervised domain adaptation models. The labels below the x-axis

show whether re-weighting is carried out for semi-supervised and unsupervised

domain adaptation techniques. We choose the best parameters for each model.

We assume that labelled data is available only for 1 hour from the target

domain. The target domain is Room 1 and Room 2 and the source domain

is Room 3 and Room 4 in Building A. The supervised learning models are

trained using 1 hour of labelled data from the target domain only, ignoring

labelled data from the source domain.

It can be readily seen that the supervised learning models have the low-

est accuracy. For example, the supervised LSTM model has an RMSE of

6.1094 (nRMSE of 17%), which is 43.76% higher than that of the LSTM model

trained with the semi-supervised domain adaptation method. Moreover, the

45

Figure 3.4: Comparing the accuracy of different supervised, semi-supervised,
and unsupervised learning algorithms. Error bars represent the 97% confidence
interval.

LSTM model has a significantly higher accuracy than the NARX model. The

LSTM model trained with the unsupervised domain adaptation method on

the target domain without re-weighting has the worst performance among all

LSTM models built using domain adaptation. The LSTM model trained by

the semi-supervised domain adaptation technique with re-weighting has the

highest accuracy. In particular, it achieves an RMSE of 4.0599 (nRMSE of

11%) which is 1.23% lower than that of unsupervised domain adaptation with

re-weighting and 3.69% better than that of semi-supervised domain adaptation

without re-weighting.

In conclusion, Figure 3.4 shows that domain adaptation can help to in-

crease the accuracy when the ground truth labels are insufficient in the target

domains. In the meantime, semi-supervised domain adaptation is better than

unsupervised domain adaptation, and our re-weighting method can also re-

duce the errors. Moreover, the re-weighting can decrease more errors than

46

Table 3.3: Comparing the performance of supervised learning models trained
using labelled data only from the target domain in terms of their average and
standard deviation of RMSE, and nRMSE.

Training data

1 hour 3 hours 1 day

SVR

RMSE 8.01 5.88 4.39

nRMSE 0.22 0.16 0.12

STD.DEV 2.79 1.33 0.68

LSTM

RMSE 6.11 5.99 4.67

nRMSE 0.17 0.17 0.13

STD.DEV 1.41 1.23 0.41

Logistic Regression

RMSE \ \ 4.89

nRMSE \ \ 0.14

STD.DEV \ \ 0.36

Figure 3.5: Estimated and true occupancy levels of a lecture room in Build-
ing A over one day.

changing the unsupervised learning to semi-supervised learning. All of those

results show that our approach is the best approach when the ground truth

labels in the target domains are limited.

47

Figure 3.6: Estimated and true occupancy levels of a study area in Building A
over one day.

Figure 3.5 and Figure 3.6 depict the true and estimated occupancy counts

in a lecture room and a study area in Building A, respectively. The lecture

room reached its maximum occupancy during the day shown in Figure 3.5. The

prediction is obtained from the LSTM model trained using the semi-supervised

domain adaptation technique with re-weighting and retraining. We specifically

use 3 hours of labelled data in the target domain to retrain the model. The

data plotted in these figures is not part of the data used for retraining. Both

figures suggest that the adapted model estimates the number of occupants

accurately and successfully detects the overall occupancy pattern of the room.

This confirms our main thesis that the number of occupants can be accurately

estimated from trend data available through a rudimentary BMS.

These results not only prove the data-driven model can be used for occu-

pancy estimation based on HVAC sensors, but also show that our proposed

domain adaptation technique can increase the accuracy of the model when

only a small amount of ground truth data is available in the target domain.

Figure 3.7 shows the true and estimated occupancy of a meeting room in

Building B during one day, where the semi-supervised domain-adaptive LSTM

48

(a)

(b)

Figure 3.7: Estimated and true occupancy levels of a meeting room in Build-
ing B over one day.

model is used for occupancy estimation. Specifically, we choose Room A as the

source domain and Room B which has a different size and layout as the target

49

domain, and assume that labelled data is available for one day in the target

domain. The RMSE and nRMSE of this model are 1.87 and 18%, respectively,

suggesting that the model successfully detects the overall occupancy pattern

although its accuracy is lower in some intervals (for example, before and after

meetings). The low accuracy in these intervals can be attributed to the fact

that ground truth occupancy is extracted from the calendar, but occupants

may arrive before the start of a meeting or leave before the meeting ends.

We plan to investigate this in future work using a more reliable method of

collecting ground truth data.

3.3.2 Changing the amount of labelled data available in
the target domain

In this section, we investigate how much ground truth data is needed in the

target domain to train an accurate model for occupancy estimation. Suppose

the source domain is Room 3 and Room 4, and the target domain is Room 1

and Room 2 in Building A.

Table 3.3 shows the performance of supervised learning models trained

using labelled data from the target domain only when it is provided for 1 hour,

3 hours, and 1 day. Although the LSTM model had the highest accuracy when

only 1 hour labelled data is available, the SVR model outperforms the LSTM

model when more labelled data becomes available. Therefore, we choose SVR

as our supervised learning algorithm and compare the accuracy of this model

with unsupervised and semi-supervised domain adaptation models. Note that

we cannot train a logistic regression model when only 1 hour or 3 hour worth

of labelled data is available.

Next, we build different models using supervised learning (i.e., the SVR

algorithm), and unsupervised and semi-supervised domain adaptation (with

re-weighting) when ground truth data is available for 1 hour, 3 hours, and 1

day in the target domain. We compare their accuracy in determining the num-

ber of occupants. As shown in Figure 3.8, the RMSE of the model developed

using unsupervised domain adaptation is always the same. This is expected

because the unsupervised model does not use the labelled data from the tar-

50

Figure 3.8: The impact of increasing the amount of available ground truth
data on the accuracy of different approaches. Error bars represent the 97%
confidence interval. The target domain includes Room 1 and Room 2 in Build-
ing A.

get domain. Another observation is that the accuracy of the semi-supervised

domain adaptation model improves only slightly when more labelled data be-

comes available. This suggests that we do not need an abundance of labelled

data when we use the semi-supervised domain adaptation technique and we

get satisfactory performance when only 1 hour labelled data is available. Fi-

nally, it can be seen that the accuracy of the supervised learning model (SVR)

improves markedly (by 40%) as more labelled data becomes available. But its

accuracy is still less than that of the semi-supervised domain adaptation even

when training data is available for 1 day.

Based on the results of the two buildings, we conclude that the model

trained using the semi-supervised domain adaptation technique with re-weighting

achieves the highest accuracy in predicting the number of occupants (an nRMSE

of 17%) among other models when only a small amount of labelled data (e.g.,

51

1 hour) is available in the target domain. However, when sufficient labelled

data is available, the model trained using SVR outperforms other models with

an nRMSE of 12%.

To highlight the benefit of performing domain adaptation, we compare it

with two cases where we train supervised learning models using all labelled

data from the target domain, and from both source and target domains. Sup-

pose all labelled data are available in the target domain and consider the

supervised learning model (i.e., the SVR model) trained with 80% of this data

from the target domain, using the other 20% for testing. The RMSE of this

model is 3.72 (nRMSE of 10%), which is only slightly better than the semi-

supervised domain-adaptive model trained using only 1 hour labelled data

from the target domain. Furthermore, if we train a supervised learning model

using all labelled data from both source and target domains without perform-

ing any adaptation, the RMSE increases to 7.87 (nRMSE of 21%). In this

case training data come from two different distributions and cannot be simply

combined to train a model. Using the same training data, the semi-supervised

domain-adaptive LSTM yields an RMSE of 3.66 (nRMSE of 10%).

3.3.3 Different choices for source and target domains

We now change the source and target domains and compare the accuracy

of different models in each case. Figure 3.9 shows the RMSE obtained for

different combinations of source and target domains. In each case, the target

domain is the two rooms identified below the figure, while the source domain

is the other two rooms in Building A. In all cases we use 1 day labelled data

from the target domain. The bar with a solid fill shows the RMSE of the semi-

supervised domain adaptation method, and the bar with a hatch fill shows the

RMSE of the best supervised learning method.

Note that we need to carry out re-weighting when the target domain is

Room 1 and Room 2 and when it is Room 3 and Room 4 (the two leftmost

pairs of bars). This is because Room 1 and Room 2 are both study areas, and

Room 3 and Room 4 are both lecture rooms, causing the source and target

domains to have completely different parameters: floor area, ventilation power,

52

Figure 3.9: The RMSE of supervised and semi-supervised domain adaptation
algorithm on different target domains given one day training data from the
target domain. Error bars represent the 97% confidence interval.

etc. Without re-weighting, it is expected that the adapted model performs

poorly in the occupant count determination task because the two domains are

completely different. In the other four cases, both source and target domains

contain one study area and one lecture room. Hence, the re-weighting step is

unnecessary since the parameters in the two domains are the same. Therefore,

the domain adaptation methods will not include the re-weighting method.

It can be readily seen that the average RMSE of the semi-supervised do-

main adaptation technique with re-weighting (i.e., the first two target domain

pairs) is 6.5575, the average RMSE of the same technique without re-weighting

(i.e., the last four target domain pairs) is 7.5854, and the average RMSE of

the supervised learning method across all target domain pairs is 9.3785. This

suggests that the domain adaptation method works better when the source

and target domains have different settings and re-weighting is performed.

53

3.4 Discussion

To achieve scalable deployments of building applications across the building

stock, it is necessary to adapt existing occupancy models to new buildings.

In this chapter we showed that only 1 hour labelled occupancy data from the

target domain is sufficient for the proposed semi-supervised domain adaptation

technique to train a relatively accurate model for the target domain. This

justifies the effort to collect a small amount of ground truth occupancy data

so that building applications can adapt and reuse existing well-suited models.

Despite the novelty of our semi-supervised domain adaptation technique,

it has several limitations. First, in our experiments, the source and target

domains are different rooms within the same building (Building A or Build-

ing B). Thus, they are located in the same geography and share the same

building envelope. This assumption makes it easier to adapt the model that

is trained in the source domain. Second, the source and target domains share

the same feature space, i.e., they have the same sensing modalities. Thus, it

is not necessary to change the structure of our neural network model when we

apply the domain adaptation technique.

In future work, we plan to investigate whether it is possible to train an

occupancy detection model in one building and adapt to another building

(possibly in a different climate) such that the performance of the adapted

model is better than the performance of supervised learning models trained

in that building using the available training data. Furthermore, we intend to

study the domain adaptation problem when the two domains do not have the

same feature space. Borrowing ideas from [103] and [52], which transfer the

features into a latent space, we believe that this problem can be addressed in

future work.

54

Chapter 4

Occupancy Detection Toolkit

Recent years have witnessed a steady increase in the number of occupancy

detection algorithms and people counting systems designed for residential and

commercial buildings, yet comparing the accuracy of existing solutions has

been impossible to date due to the lack of publicly available test data sets,

open-source implementation of the state-of-the-art algorithms, and consensus

on the evaluation metrics. This chapter addresses this problem by present-

ing the design and implementation of an open-source toolkit for occupancy

detection. ODToolkit is capable of importing and converting sensor data ac-

quired from various buildings into a common data format, provides imple-

mentation of a broad suite of data-driven occupancy detection techniques,

and calculates a set of evaluation metrics for each experiment. We present

several case studies to show how this toolkit facilitates the development of

new occupancy detection algorithms. In particular, we extend this toolkit

by implementing novel domain-adaptive occupancy detection algorithms and

compare them with the benchmark supervised learning algorithms on multi-

ple data sets. Furthermore, we investigate what sensing modalities and pre-

cision are needed to achieve a desired level of accuracy for occupancy estima-

tion through sensor fusion. ODToolkit code and documentation are available

at https://odtoolkit.github.io/.

In this chapter, we present the design and implementation of ODToolkit–

an open-source occupancy detection toolkit which is available on GitHub.

ODToolkit has a modular design and can be easily extended by users. It

55

https://odtoolkit.github.io/

is comprised of five main modules for data wrangling, preprocessing, analysis,

evaluation, and plotting. The first module pulls in data sets from different

public repositories, such as GitHub, and converts them to a unified data for-

mat, so that they can be efficiently stored and retrieved. The preprocessing

module tackles various data quality issues in a number of steps. The data

analysis module allows for training and testing a broad suite of supervised

learning models and semi-supervised domain-adaptive models provided in this

toolkit or added by users. and performs hyper-parameter optimization for each

algorithm. Users can train different occupancy models using the provided al-

gorithms. The evaluation module includes a suite of metrics for comparing

the models, and the plotting module provides various methods to create plots

and showcase the results.

The rest of this chapter is organized as follows. Section 4.1 explains the

pipeline and detailed information of the toolkit. Section 4.2 describes the

occupancy estimation algorithms and introduce the evaluation metrics. Sec-

tion 4.3 uses several case studies to demonstrate the usage of the toolkit and

answer some research questions, and Section 4.4 presents discussion points and

suggests directions for future work.

4.1 ODToolkit pipeline

ODToolkit is a Python package that offers open-source implementation of

various occupancy detection techniques and allows for comprehensive evalua-

tion of these models on publicly available data sets collected from residential

and commercial buildings1. It is similar to machine learning toolkits, such as

scikit-learn [87], Cloud AutoML [49], GraphLab [70], and is inspired by the

design of NILMTK [16] which is a toolkit for evaluating energy disaggrega-

tion algorithms. Being written in Python, it utilizes several Python libraries,

such as NumPy, pandas, SciPy, Scikit-learn, and Matplotlib, for data wran-

gling and cleansing, machine learning, and visualization. Figure 4.1 shows

the components of ODToolkit. In the remainder of this section, we introduce

1ODToolkit code and documentation are available at https://odtoolkit.github.io/

56

https://odtoolkit.github.io/

each of these components and discuss how the design of this toolkit allows for

swapping in and out features efficiently and loading new data sets.

Figure 4.1: Overall architecture of ODToolkit.

4.1.1 Structuring data

ODToolkit currently contains a collection of data sets imported from public

repositories and converted into a common data format. It also provides a func-

tion to load data sets, use them to train models, and compare their accuracy.

This function can automatically detect new data sets (in CSV, JSON, or plain

text format) that exist in a specific folder, making it easy to add new data set

by just dropping them in that folder.

Public Data Sets

Five data sets are currently imported into ODToolkit and are stored using a

data structure discussed in the next section. All these data sets have been

previously used in related work to estimate the building occupancy level. Ta-

ble 4.1 provides some statistics about these data sets and Table 4.2 shows the

occupancy-indicating features in each data set.

Data Set A contains three periods of data collection in an office which lasted

for five days, two days, and seven days [23]. In each period, room temperature,

humidity, light level, and carbon-dioxide concentration were collected at one-

minute intervals. The door of the office was mostly open in two of these

57

Figure 4.2: Correlation of different features in Data Set A with the two occu-
pancy states (painted in red and green).

58

periods, while it was mostly closed in the third period. Binary occupancy

labels were obtained from a digital camera. This data set is used in [23]

to assess the performance of a small number of occupancy detection models

and investigate the importance of features. Figure 4.2 depicts the correlation

between different features in Data Set A.

Data Set B includes carbon dioxide and damper position data from four

rooms in a campus building [6]. Data is collected in one-minute intervals

from March 22, 2017 to April 5, 2017. Eight vision-based occupancy detection

systems (i.e., people counting cameras) are employed to count the number of

occupants during the time data was collected from these rooms. This data set

is previously used in [96] to detect the number of occupants using a physical

model of the indoor environment, and in [106] to count the occupants using

recurrent neural networks.

Data Set C contains minutely electricity consumption of two homes, for a

total of three weeks in 2013 [14]. Ground truth occupancy data is obtained

through the use of a tracking application running on smartphone reporting

the GPS location of the individual. Reference [27] uses this data set to study

non-intrusive occupancy monitoring.

Data Set D contains 116 features collected from an office building in Philadel-

phia, USA, between July 2012 and July 2013 at 15-minute intervals [66]. The

features include longitudinal data on the thermal conditions and related be-

haviors. Despite the large number of features in this data set, only a fraction

of them had valid data simultaneously. Binary occupancy information is also

logged manually for this duration. Reference [80] uses this data set in an

intrusion detection application.

Data Set E includes data from a residential building in KIT’s Energy Smart

Home Lab [39]. It was previously used for occupancy detection in [47]. Three

types of sensors were installed in this building, monitoring the Volatile Or-

ganic Compounds (VOC) concentration, the number of Bluetooth Low Energy

(BLE) key fobs in the range of a BLE receiver, and the number of connected

network devices (NW) every 10 seconds. The number of occupants is logged

manually for 52 days from August 10, 2016 to September 27, 2016.

59

Table 4.1: Summary of 5 publicly available data sets imported and analyzed
by ODToolkit

Date set A [23] B [6] C [14] D [66] E [39]

Granularity 1 min 1 min 1 min 15 min 10 sec

Occupancy

label
Binary Count Binary Binary Count

Collection

method
Camera Camera GPS Manual Manual

Dropout

rate
0% 0% 0.14% 93.43% 0%

No.

features
6 3 2 10 5

No.

rooms
3 4 3 24 1

No.

time slots
20560 97440 30240 35041 377549

Pct. time

occupied
23.10% 45.89% 72.28% 22.82% 23.99%

Duration 14.25 days 17 days 7 days 1 years 43.66 days

60

Table 4.2: Features available in each data set

A B C D E

Temperature • •
Humidity • •

Light • •
CO2 • • •

HumidityRatio •
DamperPosition •

LoadPower •
AirVelocity •

RadiantTemperature •
OutdoorTemperature •

OutdoorHumidity •
OutdoorAirVelocity •

VOC •
Network •

Bluetooth •

Data format

Each data set must be transformed into a common data format before it can

be efficiently processed by downstream modules in the pipeline. We refer

to this data format as ODTK-Dataset. The ODTK-Dataset describes the

whole data set with all rooms combined together; it stores data points in a

NumPy array, and saves the names of features in a dictionary. We use NumPy

multidimensional arrays because most operations we need are more efficient

on this data structure compared to the list data type, and they can be easily

converted to other data types, such as pandas DataFrame. Another advantage

is that NumPy is a widely used library and several Python libraries rely on it.

ODToolkit assigns a unique index to each feature that does not have a name.

For ease of use, ODTK-Dataset supports various ways of accessing the

data set. For instance, user can give the name or the index of the room as the

key to get features and occupancy labels for that specific room. In addition,

ODToolkit supports two occupancy encoding methods: value encoding and

61

Figure 4.3: Fraction of time each building is occupied at any given time of the
day.

one-hot encoding. The ODTK-Dataset retains information about the names

of the features, size, function, and name of rooms (if provided), the occupancy

label, and corresponding features. It allows for including or excluding certain

features from a data set. Thus, users are capable of using ODTK-Dataset to

run all occupancy detection algorithms provided as part of this toolkit.

ODToolkit allows users to import and export ODTK-Datasets at any time.

An ODTK-Dataset can be dumped into the disk as a binary file or a JSON

file, and can be loaded back when needed. Everything in the data set folder

must be saved by this function as a binary file. The read/write speed of this

binary file is on average 20 times faster than the original data file.

4.1.2 Collecting statistics about data sets

Occupancy data sets are collected from different types of buildings instru-

mented by different types of sensors. There is also a variety of approaches to

acquiring and storing sensor data. Hence, each ODTK-Dataset has unique ele-

ments. To understand these elements, inform the transformation and analysis

62

processes about missing or low quality data, and investigate how they could

impact the accuracy of occupancy detection models, ODToolkit provides func-

tions to analyze an ODTK-Dataset and collect certain statistics about the en-

tire data set, a particular room in the data set, or a particular feature in that

room (or in all rooms in that data set). We describe these statistics below:

• Frequency indicates the average sampling frequency of all features in

an ODTK-Dataset.

• Dropout rate indicates the percentage of data points missing in an

ODTK-Dataset. Concretely, it is defined as

Dropout =
of valid data points× average frequency

time duration

• Gap is defined as the case where the difference between time-stamps of

two successive values exceeds a predefined threshold.

• Occupancy distribution over time is the distribution of different oc-

cupancy states in an ODTK-Dataset. The knowledge of this distribution

is essential when interpreting the accuracy of an arbitrary model. For

example, 95% accuracy may not be acceptable if it is achieved in a room

which is always unoccupied. Figure 4.3 shows the percentage of time

each building was occupied over the course of the day. If there are more

than one room in a building, we plot the average of their occupancy

distributions.

• Uptime is the length of time a sensor reported values. It differs from

the dropout rate in that it captures the length of the time interval in

which data points were available.

For all analysis functions above, ODToolkit has two options on data sets:

data-set-based and room-based. For data-set-based function, the results are

based on the whole data set. For example: in data-set-based occupancy evalua-

tion, only the distribution cross all rooms is returned. However, in room-based

occupancy evaluation, the function will return multiple distributions for each

room.

63

Also, ODToolkit has two options on features: data-set-based and sensor-

based. For example, in data-set-based gap detection function, if a data point

has any feature with an empty value, then the data point is invalid. However,

in sensor-based gap detection function, each feature is independent, so there

may have some gaps on only one feature.

4.1.3 Pre-processing

Sensor data collected from the built environment are often dirty, containing

noisy, erroneous, and missing values. This data must be cleaned before being

used by machine learning algorithms. ODToolkit provides various functions to

clean and normalize data, detect and remove outliers, impute missing values,

resample at a desired frequency, and change the feature representation. We

discuss some of these functions below:

Outlier detection: ODToolkit could adopt different outlier detection

algorithms. The default algorithm requires calculating the interquartile range

(IQR), i.e., the difference between the largest and smallest values in the middle

50% of the data set. ODToolkit then flags any value more than 1.5 IQR above

the third quartile or below the first quartile as an outlier2. Outliers and missing

values are treated similarly.

Missing data imputation: ODToolkit uses a forward-filling method to

impute missing data. More specifically, it uses the last value before a gap to fill

in the gap. When forward-filling is not feasible, ODToolkit adopts backward-

filling to tackle missing data. More sophisticated algorithms, such as multiple

imputation, can be easily added to the toolkit.

Changing the sampling frequency: Building occupancy data sets con-

tain measurements from various sensors with distinct sampling rates and preci-

sion. This leads to the problem of having non-uniform sampling intervals which

complicates multivariate analysis of this data and training models. ODToolkit

tackles this problem by changing the sampling frequency of different data

streams in ODTK-Dataset; it has two functions for upsampling and down-

2The threshold used for outlier detection can be modified by user depending on the
distribution of data.

64

sampling. Downsampling is the process of increasing the sampling frequency

of data. It involves computing the mean of multiple data points in a fixed size

window and replacing them with the mean. In contrast, upsampling is the

process of decreasing the sampling frequency and requires performing some

sort of interpolation. ODToolkit uses linear interpolation by default.

Encoding ground truth occupancy data: ODToolkit can change the

encoding of occupancy data in ODTK-Dataset from the actual number of

occupants to the binary occupancy state. Moreover, it can carry out one-hot

encoding, when necessary.

Naming convention: ODToolkit identifies features representing the same

physical quantity across all data sets, and unifies their names. Inspired by [13],

[23], [72], ODToolkit assigns a name that consists of two parts, i.e., a lo-

cation identifier and a tag, to each feature. The location identifier can be

indoor, outdoor, and unknown. Tags provide a consistent way of anno-

tating features associated with the same physical quantity and enable users

to run models that expect a specific feature on multiple data sets containing

this feature, yet with different names. For example, we use the CO2 tag for

both CO2Meter and CO2GasSensor features. ODToolkit comes with a

vocabulary of acceptable tags which may be extended by user. For any new

feature found in a data set, ODToolkit computes the similarity between its

name and tags in its vocabulary. If it is sufficiently similar to an existing tag

(using a predefined threshold), ODToolkit annotates the feature using this tag.

Otherwise, it extends its vocabulary by defining a new tag.

To measure the similarity between a feature name and a tag, ODToolkit

computes the Jaro similarity of two strings. Jaro similarity is an accurate

metric for string comparison and can be computed efficiently [91]. It gives

a more reliable result than Hamming distance and is computed faster than

Levenstein distance. The higher the Jaro distance is, the more similar the two

strings are. The Jaro distance is normalized such that 1 indicates an exact

match and 0 indicates no similarity between the strings. It is also close to one

65

when one string is a prefix of another string. It is defined as:

Jaro(a, b) =

{
0 if m = 0,
1
3

(
m
|a| + m

|b| + m−t
m

)
otherwise,

where m is the number of matching characters, and t is half the number of

transpositions. Two characters from a and b are called matching characters if

they are the same and their indices are no more than bmax(|a|,|b|)
2

c − 1 apart.

4.2 Methodology

ODToolkit provides the implementation of several data-driven occupancy de-

tection models. Data-driven models are trained using all features that are

available in a data set without taking into account the physical properties

of each room. Note that some of these models can only be used for binary

occupancy detection and are not suitable for occupant count determination.

In addition, ODToolkit provides various evaluation metrics for both binary

occupancy detection and occupant count determination tasks.

4.2.1 Supervised learning models

Several supervised learning models proposed in related work are added to

ODToolkit. These include standard black-box models, such as Random Forest

(RF), Hidden Markov Model (HMM), Support Vector Machine (SVM), Artifi-

cial Neural Network (NN), Recurrent Neural Network (RNN), and Sparse Non-

negative Matrix Factorization (SNMF), which are introduced in Section 2.1.

For supervised learning models, ODToolkit requires two data sets: training

data set and testing data set. The training data set must include all ground

truth occupancy labels, and the two data sets must be collected from the same

environment.

4.2.2 Evaluation metrics

ODToolkit contains 16 standard metrics to evaluate the performance of various

occupancy detection models. This set can be easily extended by adding the

definition of a new metric to the evaluation folder. This way the new metric

66

is automatically picked up by ODToolkit. Suppose the predicted occupancy

state is denoted by ŷt at t and the true occupancy state is denoted by yt. We

describe these metrics below:

True positive (TP), False positive (FP), True negative (TN), and

False negative (FN) are used to evaluate binary occupancy prediction mod-

els. The TP rate indicates the proportion of the actual occupied states that are

correctly identified as such, the FP rate indicates the proportion of the actual

unoccupied states that are identified as occupied, the TN indicates the pro-

portion of the actual unoccupied states that are correctly identified as such,

and the FN indicates the proportion of the actual occupied states that are

identified as unoccupied.

Precision, Recall, Fall-out, Miss-rate, Selectivity are used to eval-

uate the performance of binary occupancy detection models. The two main

metrics are precision and recall. Precision indicates the percentage of correct

occupancy predictions by:

Precision =
TP

TP + FP

While recall is the percentage of the true occupied states:

Recall =
TP

TP + FN

Fall-out is defined as

Fallout =
FP

FP + TN

Miss-rate:

Missrate =
FP

FP + TN

And selectivity:

Selectivity =
TP

TP + FN

F1-score is the harmonic average of the precision and recall, and can only

be used for evaluating binary occupancy prediction models. It is defined as

F1 =
2× TP

2× TP + FP + FN

67

Accuracy is the only evaluation metric which can be used to evaluate

the performance of binary occupancy detection and occupant count prediction

models. ODToolkit allows users to set a tolerance for this metric. If the

difference between predict occupancy level and the actual occupancy level is

less than this parameter, ODToolkit considers the prediction correct.

Accuracy =
1

T

∑
t∈T

countt

countt =

0, if only one of ŷt and yt is 0

0, if |ŷt − yt| > τ

1, otherwise

The parameter τ is set to zero in the binary occupancy prediction task, while

it can take any positive value (defined by the user) in the occupant count

determination task.

Root Mean Square Error (RMSE) is a measure of the differences be-

tween predicted and observed occupancy states. We use RMSE to evaluate

models that determine the number of occupants. Smaller RMSE values indi-

cate more precise predictions:

RMSE =

√∑
t∈T

(ŷt − yt)2

Normalized RMSE (nRMSE) is similar to RMSE but gives a relative

sense of the accuracy by normalizing it by the difference between the minimum

and maximum of the true occupancy count3:

nRMSE =

√∑
t∈T (ŷt − yt)2

max y −min y

Mean Absolute Error (MAE) is the average magnitude of the absolute

errors. Unlike RMSE which puts a heavier penalty on large errors, MAE

penalizes error values similarly.

MAE =
1

T

∑
t∈T

|ŷt − yt|

3ODToolkit also supports another definition of nRMSE, which normalizes based on the
average of the true occupancy count.

68

Mean Absolute Percentage Error (MAPE) is a measure of relative

accuracy similar to nRMSE. However, it is not symmetric and cannot be used

when the true occupancy state is zero since it results in a division by zero.

MAPE =
100%

T

∑
t∈T

∣∣∣∣ ŷt − ytyt

∣∣∣∣
Mean Absolute Scaled Error (MASE) is a scale invariant measure

of prediction accuracy that penalizes positive and negative errors equally. In

particular, it normalizes the absolute prediction error with respect to a baseline

that uses the previous value as a predictor of the next value.

MASE =

∑T
t=1 |yt − ŷt|

T
T−1

∑T
t=2 |yt − yt−1|

4.3 Case studies

We study the usability of ODToolkit through several case studies. In particu-

lar, we discuss how the toolkit can be extended with new algorithms and how

it facilitates comprehensive evaluation of various occupancy detection models,

including the models developed in this work and the models proposed in re-

lated work and implemented in the toolkit across residential and commercial

buildings. In particular, we use this toolkit to (a) investigate the importance

of different sensing modalities for occupancy detection, (b) understand how

different models that rely on the same set of features perform on a given

building and how their differences can be explained, (c) reason about why

a given occupancy detection model performs poorly on one building, while

it works well on other buildings, (d) find out if low-cost, noisy sensors can

provide input to occupancy detection models, (e) explore if the models orig-

inally developed for binary occupancy detection can be used to discern the

number of occupants, and (f) compare the accuracy of domain-adaptive and

supervised learning models in various occupancy detection tasks and discuss

how much ground truth data is necessary from the target domain to train a

domain-adaptive model with a sufficient accuracy level.

In the following, we address the above questions and show how ODToolkit

helps researchers gain key insights about occupancy detection models and data

69

sets. To save space, we choose a single data set to discuss each case study

below, but all these experiments can be repeated on other data sets using the

toolkit.

4.3.1 Extending the toolkit

The first case study involves adding a new class of occupancy detection models

(i.e., domain-adaptive models) to the toolkit. Unlike the supervised learning

models that are trained and tested in the same room, the domain-adaptive

models are pre-trained using the abundance of occupancy labels that are avail-

able from one room in a data set and are tested after some adaptation in an-

other room, within the same data set or in another data set, where occupancy

labels are presumably sparse or nonexistent. The former room is referred to

as the source domain, while the latter is referred to as the target domain. We

first present these models and then discuss the usability of the toolkit.

Domain-adaptive models

Three domain-adaptive models, namely domain-adaptive hidden Markov model

(DAHMM) domain-adaptive particle filter (DAPF), and domain-adaptive long

short-term memory (DALSTM), are added to ODToolkit as part of this case

study. DAHMM and DAPF is proposed in [105], which is not part of the the-

sis, but implemented in ODToolkit. All models are pre-trained in the source

domain using the algorithms presented in Section 2.3.

Domain-adaptive Long Short-Term Memory (DALSTM): DAL-

STM is an extended version of LSTM and relies on the LSTM model trained

in the source domain [106]. The algorithm is same as the work in Section 3.2. It

has two steps before estimating occupancy in the target domain: a re-weighting

step followed by a re-training step. In the re-weighting step, selected weights

of each gate in the LSTM network are adjusted based on the known (or ap-

parent) differences between the source and target domains [106]. If physical

properties of the two domains are known, the weights of the input nodes for all

gates are adjusted. Similarly, re-weighting should happen for the output layer.

The distribution of two domains becomes closer after re-weighting because of

70

the mapping of weights for each features. After re-weighting, we use the avail-

able labels from the target domain to re-train the LSTM model. After these

two steps, the adapted model is used for occupancy detection in the target

domain.

Usability of the toolkit

The first two algorithms described above were implemented by a researcher

who was not initially involved in developing the toolkit but read its documen-

tation. The third algorithm was implemented by a researcher who developed

the toolkit and was familiar with its codebase. Both researchers were asked to

implement a super class for the new class of occupancy detection models and

derive the domain-adaptive model(s) from this class. We interviewed them

after they finished the assigned tasks to understand how they evaluate the

usefulness of the toolkit. We found that using the toolkit reduced the effort

and time required to build a new occupancy detection model for both of them

because of three reasons:

• they used a supervised learning algorithm that was already implemented

in the toolkit for pre-training the model. Hence, they only had to imple-

ment the adaptation algorithm. Additionally, they used machine learn-

ing libraries in Python, such as Scikit-learn, to build the models;

• since all data sets are transformed into the same format by the toolkit,

it was easy to tackle the case that the source and target domains were

in two different data sets;

• they could easily compare the new models against the benchmark models

using the available metrics to verify their implementation.

We aim to evaluate the usability of the toolkit at a larger scale and in a more

systematic way in future work.

4.3.2 Examining the feature importance

While there is a plethora of sensors installed in different types of buildings,

not all of them are measuring quantities that are correlated with occupancy,

71

and include irrelevant features may confuse the model, therefore reduce the

accuracy of occupancy estimation. Thus, a fundamental question is how to

rank and find the most appropriate sensing modalities based on the amount

of information they provide for occupancy detection. In this case study, we

explore whether ODToolkit allows for investigating this question. Knowing

the relative importance of features could help us build parsimonious models

relying on the most distinguishing features, thereby reducing the complexity

of model training.

ODToolkit provides methods for adding and removing specific features to

and from a data set and evaluating how it affects the performance of models

trained on that data set. To illustrate this we train an RF model on Data

Set A and apply it to estimate the occupancy state. Table 4.3 shows F1-score

of the RF model when we use different subsets of features. A lower score

appearing on the right column suggests that the feature has more influence on

predictions. A higher score appearing on the left column indicates a strong

correlation between the feature and the occupancy state. The model is trained

using 80% of data in Data Set A.

If we rank the most distinguishing features with respect to ANOVA F-

values, we get the following order:

Light > Temperature > CO2 > HumidityRatio > Humidity

which is consistent with the results shown in Table 4.3 and the conclusion

made in [23] about the importance of features in this data set for occupancy

detection.

4.3.3 Evaluating supervised learning models

The primary benefit offered by ODToolkit is the ability to compare the per-

formance of an arbitrary model with benchmark models on different data sets.

To illustrate this, we predict occupancy using supervised learning models and

evaluate their performance on all five data sets.

Figure 4.4 depicts the evaluation results of supervised learning models pre-

sented in Section 2.1. All models are trained on Data Set A using 80% of data

72

Table 4.3: Evaluating performance of the RF model (Accuracy / F1 Score)
with different features on Data Set A.

including this

feature only

excluding this

feature

Temperature 0.8745 / 0.4901 0.9968 / 0.9889

Light 0.9966 / 0.9880 0.9270 / 0.7099

CO2 0.8818 / 0.4927 0.9910 / 0.9677

Humidity 0.8057 / 0.2354 0.9951 / 0.9828

HumidityRatio 0.6671 / 0.3319 0.9954 / 0.9837

Table 4.4: Comparing the performance of supervised learning models across
different data sets.

Data set

A B C D E

RF
Accuracy 0.9959 0.6416 0.7624 0.8234 0.9088

F1 Score 0.9854 0.6608 0.8364 0.6151 0.7399

NN
Accuracy 0.9981 0.6172 0.8884 0.8000 0.9662

F1 Score 0.9932 0.7141 0.9279 0.1957 0.8945

LSTM
Accuracy 0.9981 0.6719 0.8472 0.8068 0.9412

F1 Score 0.9932 0.7478 0.8816 0.1436 0.8947

and are applied to estimate the binary occupancy state. It can be readily seen

that all data-driven models achieve a high level of accuracy in the binary occu-

pancy detection task. Specifically, NN and LSTM obtain the highest accuracy

of 0.9981, followed by SVM which achieves the accuracy of 0.6729. while all

other models all have an accuracy of above 0.99. The lowest accuracy is for

SNMF which is around 0.9229. These two models achieve the F1-score of

0.6489 and 0.6428, respectively.

Table 4.4 summarizes the results obtained on the five data sets using RF,

NN, and LSTM models to perform binary occupancy estimation. According

to this table, there is at least one model that yields above 90% accuracy in

Data Sets A, C, and E. We also observe that the high dropout rate of Data

Set D negatively affects the performance of all models.

Comparing the results of RF and NN across data sets, RF performs better

73

Figure 4.4: Comparing supervised learning models for binary occupancy de-
tection in Data Set A. Note that the y-axis does not start from 0.

Figure 4.5: A swarm plot showing the distributions of occupancy events esti-
mated by different supervised learning models along with the true occupancy
events in Data Set A.

on Data Set D, while NN gets a higher score on other data sets. Recall that

ODToolkit fills in missing values using forward-filling. This leads to having

the same values for many time slots when the dropout rate is high, lowering its

importance in RF. RF assigns weights to features based on their importance.

Thus, it uses features with higher dropout rate less in estimation. As a result,

RF performs better when data set has a higher drop out rate.

74

Figure 4.6: Distributions of the start times and the end times of occupancy
intervals obtained by different supervised learning models in Data Set E.

Note that Data Set B contains two types of rooms (large classrooms and

small study rooms) and training the same model for both types of rooms re-

duces the test accuracy as seen in Table 4.4. ODToolkit also supports training

and testing models separately in each room. In this case, LSTM achieves F1-

score of 0.85 and 0.75 for large and small rooms in Data Set B, respectively.

Figure 4.4 compares the performance of all supervised learning models on

Data Set A in terms of their prediction accuracy and precision. For each

model, we use 80% of data for training and report the test accuracy on the

other 20%. It can be readily seen that all these models achieve high accuracy

in the binary occupancy detection task. Specifically, NN and LSTM obtain

the highest accuracy of 0.998, while all other models reach above 0.99 accu-

racy. The lowest accuracy is for SNMF which is around 0.923. Figure 4.5

shows the number of times a room in Data Set A was occupied according

to the ground truth labels and estimations of different supervised learning

models. We witness that SNMF has several spurious detections around 9pm.

75

Table 4.5: Comparing the performance of supervised learning models in binary
occupancy detection and occupancy count determination tasks on Data Set B.

Prediction Task (F1 Score/Accuracy)

Count Binary

RF 0.6426 / 0.3825 0.6615 / 0.6421

LSTM 0.6773 / 0.4059 0.6507 / 0.6669

NN 0.2682 / 0.4132 0.7106 / 0.6288

Comparing the distribution of ground truth occupancy times with the inferred

occupancy times indicates that all other models can estimate the room-level

occupancy state quite accurately. Nevertheless, most models exhibit a small

delay in estimating the occupancy states, which could be attributed to the

fact that carbon dioxide builds up slowly.

We note that accuracy may not be the best metric to compare two occu-

pancy detection algorithms, especially when estimated occupancy schedules

will be incorporated in the HVAC control loop to minimize energy use, while

maintaining occupant comfort. In particular, a practical approach to HVAC

control is to condition rooms for the entire occupancy period over a day, even

if they are unoccupied for a short period of time in between, for example dur-

ing the lunch time [4], [102]. Considering this application, we should compare

different occupancy detection models in terms of their ability to accurately

predict the earliest time a room gets occupied (aka occupancy start time) and

the latest time it remains occupied (aka occupancy end time) during the day.

Figure 4.6 depicts the distributions of start times and end times in Data Set

E using different occupancy detection models as well as the true distributions.

In each case we use 80% of labelled data for model training. It can be read-

ily seen that SNMF and RF fail to correctly identify the distribution of start

times, whereas all other models have a relatively reliable estimation. RF also

has high error when it comes to predicting the end times, making it the worst

choice for detecting the daily occupancy schedule in this data set.

Finally, we use the toolkit to compare the accuracy of selected models in

binary occupancy estimation and occupant count determination tasks. All

76

models are trained using 80% of data from Data Set B. As shown in Table 4.5,

every model yields a higher accuracy for binary occupancy estimation than

occupant count determination. This is expected as counting the number of

occupants is a more difficult task and enough labels may not even exist in the

training data for each occupancy level.

4.3.4 Comparing domain-adaptive models and super-
vised learning models

In this case study, we use the toolkit to investigate two important questions

about the new domain-adaptive models: whether they outperform supervised

learning models in the binary occupancy detection task and how much train-

ing data must be available in the target domain so that we get a meaningful

improvement in the accuracy of the domain-adaptive models compared to su-

pervised leaning models trained using labels from the target domain only.

ODToolkit allows for changing the amount of ground truth occupancy data

(labelled data) in the source domain to initially train a model and the amount

of ground truth occupancy data from the target domain used for adapting the

pre-trained model.

Figure 4.7 shows the comparison of F1-scores obtained by domain-adaptive

and supervised-learning models which are trained in the target domain only,

when we use Room 3 in Data Set A as the source domain and Room 1 in that

data set as the target domain. We use all data in the source domain to train the

domain-adaptive models, and vary the percentage of data in the target domain

which is used to re-train the domain-adaptive models and train the supervised-

learning models. Specifically, we increase the amount of training data from the

target domain from 10% (4.5 hours) to 30% (13.5 hours) of all available data.

It can be seen that domain-adaptive models achieve sufficiently high accuracy

even when a limited amount of training data is available. Supervised-learning

models require much more training data to achieve the same level of accuracy.

Also all supervised learning models become more accurate as more training

data becomes available from the target domain. Specifically, when only 20% of

training data is available in the target domain, the F1-score of LSTM improves

77

Figure 4.7: The F1-score of domain-adaptive models and supervised learning
models on Data Set A using different amounts of training data form the target
domain.

from 0.504 to 0.975, and the F1-score for PF improves from 0.783 to 0.975.

We do not observe much improvement for domain-adaptive models because

they achieve high accuracy (F1-score of 0.95 for both DALSTM and DAPF)

with smaller amounts of training data.

4.3.5 Investigating model sensitivity to noise

We now study how the accuracy of a model changes when the data used to

train the model is perturbed by noise. When adding noise to data points,

we make sure that they are not detected as outliers and fixed by the outlier

detection module of ODToolkit.

In particular, we consider Data Set A in this section and apply an additive

white noise to all features in this data set, except for the occupancy label

and time-stamp. In each case, the standard deviation of noise is set to one

fourth of the standard deviation of the corresponding feature. This gives a

reasonable level of noise and preserves the original distribution of the feature

(see Figure 4.8 compare with Figure 4.2 and Figure 4.9). Figure 4.9 indicates

that if the white noise has even higher standard deviation, data lose its trend

and noise lead the distribution.

We consider 7 supervised learning models, namely RF, HMM, PF, NN,

78

Figure 4.8: Correlation of different features in Data Set A with the two oc-
cupancy states (painted in red and green) after adding noise to the features.
The main diagonal shows the probability density function of each feature.

SVM, LSTM, and SNMF, and train them using 80% of data. As a result

of adding noise, the F1-score of the first 5 models decreases by about 0.01,

from 0.99 to 0.98. However, the performance of LSTM and SNMF reduces

dramatically, by around 0.19 (from 0.99 to 0.80) and 0.25 (from 0.69 to 0.44),

respectively. We attribute this to the fact that LSTM is a recurrent neural

network model with memory, and therefore, the error accumulates over time

and has a more pronounced effect on the performance of the model compared

to the memory-less models. In case of the SNMF model, it considers multiple

rows of the matrix together as input. Thus, errors in multiple rows affect the

79

Figure 4.9: Correlation of different features in Data Set A with the two oc-
cupancy states (painted in red and green) after adding too much noise to the
features. The main diagonal shows the probability density function of each
feature.

SNMF’s predictions to a greater extent.

Overall, our results imply that this level of noise, which can be possibly

introduced by analog sensors, does not noticeably impact the occupancy de-

tection accuracy. ODToolkit makes it possible to repeat this study for other

types of noise to understand what combination of low-accuracy sensors can be

used for occupancy detection given a target level of accuracy.

To understand why adding noise decreases the accuracy of RF, HMM, PF,

NN, and SVM models only slightly, we use ODToolkit to plot the correlation

80

Table 4.6: The effect of increasing training data of a neural network on its test
accuracy in Data Set A.

Percentage of labelled Data (%)

20 40 60 80

F1 Score 0.9187 0.9369 0.9469 0.9932

Accuracy 0.9656 0.9706 0.9764 0.9981

between different features before and after applying the white noise. For a

high performance before applying noise, the correlation between each feature

shows in Figure 4.2. Figure 4.2 shows two identifiable cluster represents occu-

pied state and unoccupied state. Figure 4.8 shows how features are correlated

after adding noise. Comparing it with the original correlations (depicted in

Figure 4.2 in the appendix), it can be seen that the two classes, viz. occupied

and unoccupied, are still distinguishable. Hence, the prediction accuracy does

not decrease substantially for these models which perform a simple classifica-

tion.

4.3.6 Percentage of training data affects model perfor-
mance

For the question of how sensitive is the performance of a given model to the

amount of ground truth data available for training, ODToolkit can modify the

dividing point on all data sets.

Following the property of the data-driven model, the more distinct feature

data and the corresponding label is given, the more accurate the model is.

The over-fitting problem rarely arises when increasing the number of distinct

feature data. Therefore, a higher percentage of training data results in a better

model.

The result of a simple experiment is shown in Table 4.6. We select Data

Set A to train and test the NN model. The trend in Table 4.6 on both metrics

strongly supports the statement of the training percentage have a positive

relationship with the prediction result.

81

4.4 Discussion

Buildings are historically operated based on a rough estimate of their occu-

pancy schedule, a practice that has led to significant energy waste and oc-

cupant discomfort across the building stock. With recent advances in sensor

networking and data mining, it has become possible to obtain fine-grained and

accurate occupancy information in an inexpensive and non-intrusive way using

data-driven occupancy detection techniques. However, none of the techniques

proposed in related work is validated on a large set of buildings with distinct

occupancy patterns in different climates. Furthermore, it is currently virtu-

ally impossible to answer the following questions: which occupancy detection

model has superior performance? how much training data does it need? is

it possible to reuse models developed in a building to accurately detect the

occupancy of a similar building? and what combination of sensors should be

deployed in a building to increase the accuracy of the occupancy detection

models? In this chapter we introduced an open-source toolkit which improves

reproducibility of occupancy detection experiments and enables the research

community to address the above questions. To evaluate the usability of this

toolkit, we implement three semi-supervised domain-adaptive occupancy de-

tection models and compare their performance on specific data sets using the

standard evaluation metrics provided in the toolkit.

ODToolkit aims to set up an open-source platform for the occupancy detec-

tion community. With the purpose of enabling researchers to quickly evaluate

their model with any available models and share their experimental resources

with the community, the toolkit must easy to use, implement, as well as ex-

tend. ODTK-Dataset is the core part of the toolkit. This data structure offers

a standardized data structure for the occupancy detection community. The

structure provides a various way to extract, edit, and concatenate data. Also,

the structure has a self-adaptive ability. It can narrow down or expand the

feature set to fulfill the requirement of easy to add any new room into the data

set and keep the consistency of the data set at the same time.

Besides, the soul and the reason of the community demand ODToolkit is

82

the expandability of the toolkit. To minimize the coding structure researcher

need to understand and follow, ODToolkit uses a subclass to build models.

The researcher only needs to copy two function name and parameters, and no

other structure need to know. For data sets, after the researcher use functions

in ODToolkit to transform the raw data set into ODTK-Dataset, the researcher

can save and load ODTK-Dataset as a binary file. Base on the experiment, the

I/O speed for ODTK-Dataset binary file is 20 times faster than the raw data

set file. Consider each study can have a different target to utilize, ODToolkit

allows the researcher to add and use their evaluation metrics with the same

rule as models. Additionally, to saving time for the researcher to adapt their

model into ODToolkit, ODToolkit provides three folders for models, evaluation

metrics, and data sets separately. The researcher can put the ODTK-Dataset

binary file, formatted model, and evaluation metrics into the corresponding

folder, then ODToolkit can automatically detect and adapt it into the toolkit.

Our work has several shortcomings that we intend to address in future

work. Specifically, we have so far implemented a fraction of data-driven ap-

proaches proposed in related work to showcase how ODToolkit can be used

to evaluate them. We plan to implement other data-driven approaches and

extend the toolkit to grey-box and white-box models (e.g., high-order physics-

based occupancy detection models). We also intend to develop other domain-

adaptive models and test them in a scenario where the source and target

domains are located in two different buildings. Finally, we have not yet fully

explored how flexible and user-friendly this toolkit is. We plan to conduct

a survey among the potential users of this toolkit to solicit feedback, and

understand their needs and expectations.

83

Chapter 5

Thermal Modelling

Thermal modelling is essential for intelligent control of building heating and

cooling systems and for exploiting the thermal capacity of the building to

offer a wide range of services to the electrical grid. In particular, thermal

models explain how the indoor temperature responds to changes in the outside

temperature and the operation of heating and cooling systems. Furthermore, it

is possible to estimate time-to-temperature, i.e., when the indoor temperature

reaches a desired temperature, or to estimate how much energy would be saved

as a result of lowering the setpoint temperature or widening the deadband, i.e.,

the temperature range where the HVAC system does not operate.

There are several approaches to develop a thermal model which are dis-

cussed in Section 2.2. While an RC model is sufficiently accurate in most

cases, the resistance and capacitance parameters are not typically known in

practice. To identify these parameters, one must know the building’s size,

layout, structure and insulation. This information is not readily available for

most residential buildings in operation today. Estimating the model param-

eters also requires a large amount of data. Another possibility is to take a

data-driven approach to build a time-series model, e.g., SARIMAX, for pre-

dicting the temperature inside the building.

In recent years, smart thermostats, such as ecobee and Nest, have been

installed in many homes and buildings. A smart thermostat measures the

temperature inside and outside of a building at regular intervals. Additionally,

users can enter the setpoint temperature and cooling/heating schedules via its

84

interface. Using the data collected by these thermostats, it is possible to build

both physics-based and data-driven thermal models as we will explain in this

chapter.

This chapter describes a methodology for building thermal models that

addresses the above-mentioned challenges and presents our preliminary re-

sults for modelling temperature dynamics of residential buildings. We utilize

Bayesian Neural Network to identify the RC model of a residential building,

and compare the accuracy of this model with that of a SARIMAX model built

using the same amount of data. Both models estimates the current indoor

temperature by using current observations and historical data.

Our results indicate that the performance of the RC model is stable and

does not depend on the granularity of data. Temperature predictions are

generally accurate with a low RMSE of around 0.4 Fahrenheit. Meanwhile,

the accuracy of a SARIMAX model relies heavily on data granularity. With

fine-grained measurements, the accuracy is high. It reduces noticably when

measurements are coarse-grained. If the smart thermostat collects data every

5 minutes, the RC model and SARIMAX model perform similarly.

The rest of this chapter is organized as follows. Section 5.1 describes our

methodology that involves relaxing an RC model, estimating model parame-

ters, and fitting a SARIMAX model to the time-series data. Section 5.2 ex-

plains the evaluation results, and Section 5.3 presents discussion and suggests

directions for future work.

5.1 Methodology

A first-principle RC model requires the knowledge of building insulation and

thermal mass which determine the values of resistance and capacitance pa-

rameters. However this information is not readily available for all homes. To

address this problem, we adopt a grey-box modelling approach, that is we use

the data acquired from smart thermostats to train Bayesian Neural Networks.

These networks learn the physical relations governing the temperature of a

building. In effect they eventually learn parameters of the RC model. We

85

also develop data-driven SARIMAX models to evaluate the so obtained RC

models.

5.1.1 Grey-box modelling

Consider the 2nd-order RC model with 3 capacitors and 3 resistors which is

illustrated in Figure 2.3. A set of differential equations (refer to Equation 2.1)

explain the changes in the temperature inside the building based on the tem-

peratures of other lumps and operation of the HVAC system. The state space

representation of these differential equations is:

∂~x

∂t
= A~x+ B~u (5.1)

~y = C~x+ D~u (5.2)

where ~x =
[
T1 T2 Tin

]>
is a vector that represents the state, ~y is the mea-

sured temperature by a smart thermostat, ~u =
[
Tout kheat kcool

]>
is a vector

that represents the control input, and

A =

− 1
C1R1

− 1
C1R2

1
C1R2

0

1
C2R2

− 1
C2R2

− 1
C2R3

1
C2R3

0 1
C3R3

− 1
C3R3

B =

1

C1R1
0 0

0 0 0

0 Qheat

C3
−Qcool

C3

 C =

0

0

1

>

D =

0

0

>

Here A,B,C and D are constant coefficient matrices. Equation 5.1 describes

the state evolution over time given the input, and Equation 5.2 describes how

the output is computed given the state and input. As shown in [98] the solution

to this system of differential equations can be written as:

~xt = (F · I− Φ)−1(F · Γ2 + Γ1 − Γ2)~ut (5.3)

86

where F denotes the forward shift operator (i.e., F ~xt = ~xt+δ where δ denotes

the time step), Φ = eAδ is the exponential matrix, and

Γ1 = A−1(Φ− I)B

Γ2 = A−1
[

Γ1

δ
−B

]
Equation 5.3 relates the state at time t+ δ to the state at t and the inputs at

times t and t+ δ. Substituting ~xt into Equation 5.2 yields:

~yt = C(F · I− Φ)−1(F · Γ2 + Γ1 − Γ2)~ut + D~ut (5.4)

Since D =
[
0 0

]
we can rewrite the above equation as follows:

~yt = C(F · I− Φ)−1(F · Γ2 + Γ1 − Γ2)~ut (5.5)

To solve the equation, we first need to calculate the inverse of (F · I − Φ)

matrix, which is equal to the adjoint of (F · I− Φ) divided by determinant of

(F · I− Φ), assuming that its determinant is nonzero:

(F · I− Φ)−1 =
R0F

2 + R1F + R2

F 3 + e1F 2 + e2F + e3
(5.6)

and then take the Equation 5.6 back to the Equation 5.5:

(F 3 + e1F
2 + e2F + e3)~yt = C(R0F

2 + R1F + R2)(F · Γ2 + Γ1 − Γ2)~ut

This can be written in a more compact form

~yt =
3∑
i=0

Si~ut−iδ −
3∑
i=1

ei~yt−iδ (5.7)

where

S0 = CR0Γ2

S1 = C[R0(Γ1 − Γ2) + R1Γ2]

S2 = C[R1(Γ1 − Γ2) + R2Γ2]

S3 = CR2(Γ1 − Γ2)

87

and
R0 = I

R1 = ΦR0 + e1I

R2 = ΦR1 + e2I

e1 = −Tr(ΦR0)

e2 = −Tr(ΦR1)/2

e3 = −Tr(ΦR2)/3

where Tr() denotes the trace of a matrix.

Therefore, we get a linear relationship that maps the measured indoor tem-

peratures Tin for the previous three time slots, and the outside temperatures

and heat fluxes from the HVAC system for the current time slot and the pre-

vious three time slots to the indoor temperature of the current time slot (refer

to Equation 5.7):

~yt = f(~ut, ~ut−1, ~ut−2, ~ut−3, ~yt−1, ~yt−2, ~yt−3)

Here f is a linear function which can be learned using a Bayesian neural

network. We refer to this neural network model as BNN-RC because it mimics

the structure of the RC model presented in Section 2.2.1.

Variational Bayesian Learning

Consider the problem of finding a posterior distribution over some parameters,

e.g., weights of a neural network denoted by a vector w. From the Bayes’

theorem we have:

p(w|D) =
p(D, w)

p(D)
=
p(D|w)p(w)

p(D)

=
p(D|w)p(w)∫
p(D|w)p(w)dw

(5.8)

where D is the training data set of size m

D = (x1, y1), (x2, y2), · · · , (xm, ym),

p(w|D) is the posterior probability, p(D, w) is the joint probability, p(D|w) is

the likelihood, p(w) is the prior probability, and p(D) is the evidence. We note

that computing the integral which appears in the denominator of Equation 5.8

is intractable for nontrivial problems.

88

Since calculating p(w|D) is intractable, we can approximate it with the

variational posterior q(w|θ) which is restricted to belong to a family of distri-

butions simpler than p(w|D). Variational learning finds the parameters θ of

the variational posterior that minimize the dissimilarity between p(w|D) and

q(w|θ). We use Kullback-Leibler (KL) divergence of the true posterior from

the variational posterior as the dissimilarity function:

θ̂ = arg min
θ

KL[q(w|θ)||p(w|D)]

= arg min
θ

KL[q(w|θ)||p(w)]− Eq(w|θ)[log p(D|w)]

Hence, the dissimilarity function that is minimized is [19]:

F(D, θ) = KL[q(w|θ)||p(w)]− Eq(w|θ)[log p(D|w)]

Using Monte Carlo (MC) sampling, we can evaluate the expectation in this

dissimilarity function and rewrite it as follows:

F(D, θ) ≈ 1

N

N∑
i=1

log q(w(i)|θ)− log p(w(i))− log p(D|w(i))

where w(i) is the i-th MC sample from the variational posterior, and N is the

number of samples.

We can use a Gaussian prior for the parameters (e.g., weights of the neural

network):

p(w) =
∏
i

N (wi|0, σ2
p)

,

log p(w) =
∑
i

logN (wi|0, σ2
p)

or a Gaussian scale mixture prior:

p(w) =
∏
i

(πN (wi|0, σ2
1) + (1− π)N (wi|0, σ2

2))

log p(w) =
∑
i

log(πN (wi|0, σ2
1) + (1− π)N (wi|0, σ2

2))
(5.9)

The variational posterior when choosing the Gaussian distribution becomes:

q(w|θ) =
∏
i

N (wi|µ, σ2)

89

Figure 5.1: Structure of the BNN-RC model used to predict the indoor tem-
perature.

log q(w|θ) =
∑
i

logN (wi|µ, σ2)

Finally, stochastic gradient descent is applied to optimize the variational pa-

rameters.

Bayesian Neural Networks

Artificial neural networks have been quite successful in numerous learning

tasks. But sometimes they suffer from over-fitting and cannot effectively clas-

sify data, especially if this data has not been seen before. To address these

limitations, a Bayesian neural network (BNN) introduces uncertainty in the

weights and biases of the network [19]. The benefit of adding uncertainty is

two-fold. First, this uncertainty furnishes the neural network with the ability

to recognize any unseen pattern, and give more reasonable predictions when

similar data has not been seen before. Second, this uncertainty counters the

issue of over-fitting, providing a means for selecting optimal neural network

model [55], [68]. Besides, as discussed by [86], the Bayesian approach offers

90

other advantages when it comes to building an RC model.

In BNN, weights are represented by probability distributions rather than

having a single fixed value. The probability distributions are learned in a way

that explains variability in the training data. The proposed method trains

an ensemble of networks, where each network has its weights drawn from the

learned probability distributions.

Drawing on variational Bayesian learning, it is possible to define a proba-

bility distribution over the weights of an artificial neural network and estimate

the posterior probability given the prior probability and the likelihood.

We specifically adopt the Bayes-by-Backprop algorithm [19] which uses

Monte Carlo sampling to obtain unbiased estimates of gradients of the dissim-

ilarity function to learn a distribution over the weights of the neural network.

The proposed method trains an ensemble of networks, where each network has

its weights drawn from the learned probability distribution.

We develop a BNN with the model structure suggested by the RC model.

We refer to this model as BNN-RC. To estimate the current value of indoor

temperature, we use three previous outside temperature values and the mea-

sured indoor temperature, and also the HVAC control state kheat and kcool,

plus the current value of the HVAC control state and outside temperature as

input to the model. Thus, as Figure 5.1 shows, the BNN-RC model consists

of 15 input nodes and one bias node, no hidden layer, and one output node.

This makes the model linear, matching exactly the structure suggested by the

RC model. For each neuron, we initialize its weight using a Gaussian scale

mixture prior presented in Equation 5.9) with σ1 = 1, σ2 = 0.1, and π = 0.2.

We note that the BNN-RC model does not recover the R-C parameters that

pertain to this home; it simply maps the features (15 input variables) to the

indoor temperature with a linear relationship that resembles the RC model

(see Equation 5.7). The average weight of each neuron yields the coefficient of

the corresponding input variable in the RC model.

91

5.1.2 Estimating parameters of SARIMAX

The SARIMAX model is previously explain in Section 2.2. In this section,

we aim to address how the parameters of this model can be estimated from

data. Temperature time-series data from a randomly selected home is utilized

to showcase the process.

Estimating d for integrated part of the model requires analyzing the time-

series data and determining whether the data is stationary or not. We have

two types of stationarity, namely strict-sense and wide-sense. Let FX represent

the joint distribution and Xt represent a stochastic time-series, if the following

equation holds, the time-series is strict-sense stationary:

FX(xt1+τ , xt2+τ , · · · , xtn+τ) = FX(xt1 , xt2 , · · · , xtn)

for all τ, t1, · · · tn ∈ R

Similarly, wide-sense stationarity is defined as follows:

mX(t) = mX(t+ τ) for all τ ∈ R

KXX(t1, t2) = KXX(t1 − t2, 0) for all t1, t2 ∈ R

E[|X(t)|2] <∞ for all t ∈ R

where

mX(t) = E[Xt]

KXX(t1, t2) = E[(Xt1 −mX(t1))(Xt2 −mX(t2))]

Thus, we iteratively apply the differencing operator discussed in Section 2.2

(increasing d from 0) and each time we check if the differenced time-series has

become stationary. To check stationarity of the differenced time-series, we

use the Augmented Dickey-Fuller (ADF) test - a formal statistical test for

stationarity. This test helps to identify whether the time-series has a unit

root (i.e., a stochastic trend in the time-series). The null hypothesis is that

a unit root is present in the time-series, which is rejected when the p-value

of ADF is lower than or equal to 0.05; this indicates that the time-series is

stationary. Moreover, the ADF statistic is a negative number that represents

92

(a)

(b)

Figure 5.2: Sample time-series data before and after performing differencing.

93

Figure 5.3: PACF calculated for a sample temperature time-series.

the evidence for rejecting the null hypothesis at some confidence level. The

more negative this number is, the stronger is the evidence for rejecting the

null hypothesis. Figure 5.2 shows the original time-series and the differenced

time-series (d = 1), and the ADF test suggest the parameter d as 1.

To estimate p of the autoregressive part, it is essential to draw the partial

autocorrelation function (PACF). PACF shows the lagged correlation between

time-series values, after excluding intermediate lags. It is defined as follows:

PACF(X, k) =

{
corr(X2, X1) , for k = 1

corr(Xt+k+1 − Pt,k(Xt+k+1), Xt+1 − Pt,k(Xt+1)) , for k ≥ 2

where k is the lag, which is 5 minutes in this sample data set, and P (X) is the

surjective operator of the orthogonal projection of X onto the linear space of

Hilbert space spanned by Xt+1, · · · , Xt+k.

Looking at the PACF, which is shown Figure 5.3, it can be concluded that

p should be set to 4 as the first value falls into the confidence interval.

To estimate q for the moving average part, it is crucial to draw the au-

94

Figure 5.4: ACF calculated for a sample temperature time-series.

tocorrelation function (ACF). ACF suggests how many terms the MA model

needs to remove autocorrelation in the time-series. ACF is defined as follow:

ACF(k) =
1

n−k
∑n

t=k+1(Tt − T̄)(Tt−k − T̄)√
1
n

∑n
t=1(Tt − T̄)

√
1

n−k
∑n

t=k+1(Tt−k − T̄)

Looking at the ACF, which is shown in Figure 5.4, we set q to 12.

We adopt the same features used in the grey-box RC model as explanatory

variables in the SARIMAX model. These variables are the HVAC operation

mode and outside temperature. Turning out attention to the seasonal effect,

Figure 5.4 suggests that diurnal and weekly effects exist in the temperature

time-series. Thus, we have to remove these effects by decomposing those ef-

fects. We apply a convolution filter to the data to identify the seasonal compo-

nent [41]. Figure 5.5 shows the resulting time-series after removing the diurnal

effect and Figure 5.6 shows the resulting time-series after removing the weekly

effect. We repeat the same process for all homes in order to build well-suited

SARIMAX models.

95

Figure 5.5: Resulting time-series after decomposing and removing the daily
effect.

Figure 5.6: Resulting time-series after decomposing and removing the weekly
effect.

96

Table 5.1: Performance of the SARIMAX model in two randomly selected
locations

Location A Location B

MSE 0.0695 0.0615

RMSE 0.263 0.241

MAPE 0.1765% 0.176%

5.2 Results

In this section, we discuss the accuracy of the proposed grey-box RC model

and SARIMAX model, assuming that both of them are built for each home as

explained earlier. The evaluation metrics are defined in Section 3.2.

5.2.1 Data sets

We obtained data from over 7000 homes in Canada from ecobee smart ther-

mostats. The data set contained homes with 3 months to 3 years worth of

data. For each home we had the city it is located in, the indoor temperature,

the setpoint of the HVAC system, and the outdoor temperature, all of them

recorded at 5-minute intervals.

5.2.2 Evaluating performance of the SARIMAX model

Table 5.1 shows the result of predicting temperature using the SARIMAX

models built for two different geographical locations. For each location we

randomly selected five homes and computed the mean of their prediction ac-

curacy. All selected homes contain at least two years of data. We used 3

months of data to train the model, and then used it to predict the tempera-

ture for the rest of the time.

From Table 5.1, the model predicts the temperature relatively accurately,

with RMSE around 0.25 and MAPE of 0.17%. This result motivates the use of

black-box models. Also, increasing the amount of available training data, does

not affect the accuracy of this model in a consistent manner. We attribute this

to the fact that the SARIMAX model learned to predict the temperature using

97

a value that is very similar to the previous value, irrespective of the amount

of training data that was available. Since the sensor reported data every 5

minutes, the change of temperature between two consecutive intervals is very

small, explaining the good performance of the SARIMAX model.

Furthermore, we train the SARIMAX model on all homes available using

3 months of data to train the model, and then test on all available data we

have. The average RMSE across all homes after filtering out significant outliers

(by using the rule of 1.5 interquartile range) is 0.3454. Figure 5.7 shows the

distribution plot of the RMSE.

5.2.3 Evaluating performance of the grey-box RC model

We evaluate the grey-box RC model by considering its performance on the

training and test data sets both pertaining to the same home. Because BNN

uses Gaussian distributions to represent weights, the estimation accuracy is

different for each run even for the same model. To get an accurate and reliable

result, we test the model with 5 runs and 50 runs and compute the average

result in each case. The differences between the average RMSE of 5 runs and

the average RMSE of 50 runs are only 0.037 on all cases with different settings,

which is equivalent to an nRMSE of only 0.000046. But the runtime for 5 runs

only takes 1 minute for each home, while carrying out 50 runs requires almost

7 minutes for each home on Core i7-7700 CPU. Therefore, we use the average

RMSE of 5 runs in the rest of this thesis.

First, we evaluate the average performance of building models on a given

home with enough available training data. The average RMSE of the model

is 0.3471 when using three-month data for training, which is slightly worse

than the SARIMAX model. Figure 5.7 shows how the RMSE is distributed

for BNN mdoel. Second, we explore how the RMSE changes as the amount

of training data changes. The result shows that when only one-day data is

available, the average RMSE is 44.584, and when two months of training data

is available, the average RMSE is 0.35. Therefore the RMSE always decreases

when training data is abundant.

98

5.2.4 Comparing black-box and grey-box models

Figure 5.7 demonstrates the distribution of RMSE values for the two pro-

posed thermal models, SARIMAX and BNN-RC, when considering all homes

in Canada. The SARIMAX model has a narrower distribution of RMSE

values compared to the BNN-RC model. Furthermore, the distribution of

RMSE values of the BNN-RC model is skewed to the left compared to that of

the SARIMAX model, which suggests that BNN-RC significantly outperforms

SARIMAX for many homes.

Figure 5.8 shows a real estimation result on a non-exist average home1.

The naive baseline in this experiment estimates the same value for the cur-

rent indoor temperature as the the previous indoor temperature. Both RC

and SARIMAX models are trained with 3 months worth of data. The fig-

ure shows that although SARIMAX has a lower RMSE compared to grey-box

RC model, the estimation is usually delayed, whereas the grey-box RC model

estimates the trend correctly. Therefore, we can conclude that grey-box RC

model performs better in general.

5.3 Discussion

Despite the extensive body of research on thermal modelling, few related works

consider the temperature as the model output. Most studies focus on the heat

flux. This chapter demonstrated why the data-driven model works surprisingly

well by extending and deriving the open form of the RC model. Moreover, we

leveraged a BNN to accomplish the thermal modelling task for the first time

and obtained very low average RMSE of 0.3471. We finally concluded that

grey-box models slightly outperform black-box models, highlighting the fact

that knowing the physical relations can help to increase the modelling accuracy.

We only used data from homes located in Canada in this preliminary work.

One possible direction for future work is to generate and evaluate both types

of models for other countries to see whether there is any meaningful difference

when considering a different climate. Moreover, further research should be un-

1We cannot share results for a real home due to privacy reasons.

99

Figure 5.7: Distribution of RMSE values for all homes in our data set.

Figure 5.8: Estimation result comparison.

100

dertaken to investigate the possibility of retrieving the actual RC values from

the BNN weights. The combined RC values can only work for this tempera-

ture estimation model. Determine the actual RC values can be useful in other

applications, such as the ones that require analyzing the building envelope.

Last but not least, we aim to apply transfer learning to facilitate model de-

velopment for homes that are not equipped with a smart thermostat. BNN is

an appropriate framework for transfer learning because the posterior learned

in the source domain can be used as the prior in the target domain. If the

two domains are similar, utilizing the posterior probability from a well-trained

model should be better than simply adopting a Gaussian distribution as the

prior probability.

101

Chapter 6

Conclusion

Intelligent control of building subsystems could provide a more comfortable

environment for the occupants while reducing the energy consumption of the

whole building. Most advanced control techniques are proactive in the sense

that they predict occupancy and temperature dynamics of the built environ-

ment, and utilize the thermal capacity of the building to shape the demand of

the HVAC system. Thus, the occupancy and thermal models play a key role

in these model-based control techniques. This thesis studied comprehensive

occupancy and thermal modelling for residential and commercial buildings to

support advanced control applications and investigated the feasibility of ap-

plying transfer learning to enable, facilitate, and speed up model development,

especially when training data is sparse or non-existent.

The contribution of this thesis is as follows:

• We developed accurate data-driven models for occupancy estimation

when sufficient ground truth data is available. Training these models

requires only HVAC sensor data and weather data, and the obtained

models are capable of describing the complex, nonlinear relationship

between historical sensor data and the number of occupants, and the

temporal dependence of the occupancy data.

• We adopted semi-supervised and unsupervised domain-adaptation tech-

niques to reduce the amount of ground truth data required for developing

a well-suited model.

102

• We evaluated the efficacy of these models in different settings and studied

how the prediction accuracy would change with the amount of available

ground truth data.

• We presented the design and implementation of ODToolkit and dis-

cussed how it can be extended to incorporate new data sets, algorithms,

and metrics. We extended the toolkit with three new semi-supervised

domain-adaptive occupancy detection algorithms and evaluated their

performance by comparing them against the state-of-the-art supervised

learning algorithms which are also implemented in the toolkit. This way,

we justified the effort to obtain reliable occupancy labels even for a short

period of time.

• We investigated how using the toolkit reduces the time and effort re-

quired to build new models and addressed important research questions,

such as what algorithms perform best in various occupancy detection

tasks, and what sensing modalities and how much ground truth data are

necessary to train a model that could achieve a sufficiently high level of

accuracy.

• We used Bayesian neural networks to identify the parameters of a 2nd

RC model without assuming the knowledge about the building insulation

and thermal mass.

• We compared the prediction accuracy of the grey-box RC model with

the SARIMAX model when both are trained using the limited training

data that was available.

For future work, we plan to focus on evaluating the performance of these

models when it comes to predicting the room temperature and its occupancy

state several hours in advance. Moreover, we intend to investigate how transfer

learning can be applied to building thermal models. Additionally, we aim

to study how the developed models can be incorporated in learning-based

control of building subsystems and compare the performance of model-based

103

and model-free control techniques for HVAC and lighting systems. We also

plan to deploy these control applications in real buildings and empirically

validate our results.

104

References

[1] Y. Agarwal et al., “Duty-cycling buildings aggressively: The next fron-
tier in HVAC control,” in Proc. 10th International Conference on In-
formation Processing in Sensor Networks (IPSN), ACM/IEEE, Apr.
2011, pp. 246–257. 2, 10, 12

[2] B. Ai, Z. Fan, and R. X. Gao, “Occupancy estimation for smart build-
ings by an auto-regressive hidden markov model,” in American Control
Conference (ACC), 2014, IEEE, 2014, pp. 2234–2239. 14

[3] I. B. A. Ang, F. D. Salim, and M. Hamilton, “Human occupancy
recognition with multivariate ambient sensors,” in International Con-
ference on Pervasive Computing and Communication Workshops (Per-
Com Workshops), IEEE, 2016, pp. 1–6. 10

[4] O. Ardakanian, A. Bhattacharya, and D. Culler, “Non-intrusive tech-
niques for establishing occupancy related energy savings in commer-
cial buildings,” in Proc. 3rd International Conference on Systems for
Energy-Efficient Built Environments, ACM, 2016, pp. 21–30. 76

[5] ——, “Non-intrusive occupancy monitoring for energy conservation in
commercial buildings,” Energy and Buildings, vol. 179, pp. 311–323,
2018. 2, 3, 11, 12

[6] K. Arendt et al., “Room-level occupant counts, airflow and co2 data
from an office building,” in Proc. 1st Workshop on Data Acquisition To
Analysis, 2018, pp. 13–14. 36, 59, 60

[7] I. B. Arief-Ang, M. Hamilton, and F. D. Salim, “A scalable room oc-
cupancy prediction with transferable time series decomposition of co2
sensor data,” ACM Trans. Sen. Netw., vol. 14, no. 3-4, 21:1–21:28, Nov.
2018, issn: 1550-4859. 10, 12

[8] ——, “RUP: Large room utilisation prediction with carbon dioxide sen-
sor,” Pervasive and Mobile Computing, vol. 46, pp. 49–72, 2018. 10, 12

[9] I. B. Arief-Ang, F. D. Salim, and M. Hamilton, “Da-hoc: Semi-supervised
domain adaptation for room occupancy prediction using co2 sensor
data,” in Proc. 4th International Conference on Systems for Energy-
Efficient Built Environments (BuildSys), ACM, 2017, 1:1–1:10. 3, 30, 31

105

[10] A. Aswani et al., “Reducing transient and steady state electricity con-
sumption in hvac using learning-based model-predictive control,” Pro-
ceedings of the IEEE, vol. 100, no. 1, pp. 240–253, 2012. 3, 11

[11] C. Baglivo, P. Congedo, M. Di Cataldo, L. Coluccia, and D. D’Agostino,
“Envelope design optimization by thermal modelling of a building in a
warm climate,” Energies, vol. 10, no. 11, p. 1808, 2017. 22, 23

[12] B. Balaji et al., “Sentinel: Occupancy based HVAC actuation using ex-
isting WiFi infrastructure within commercial buildings,” in Proc. 11th
Conference on Embedded Networked Sensor Systems (SenSys), ACM,
2013, 17:1–17:14. 11, 12

[13] ——, “Brick : Metadata schema for portable smart building applica-
tions,” Applied Energy, vol. 226, pp. 1273–1292, 2018. 65

[14] S. Barker et al., “Smart*: An open data set and tools for enabling
research in sustainable homes,” SustKDD, August, vol. 111, no. 112,
p. 108, 2012. 59, 60

[15] C. Basu, C. Koehler, K. Das, and A. K. Dey, “Perccs: Person-count
from carbon dioxide using sparse non-negative matrix factorization,”
in Proc. International Joint Conference on Pervasive and Ubiquitous
Computing, ACM, 2015, pp. 987–998. 10, 12, 16

[16] N. Batra et al., “Nilmtk: An open source toolkit for non-intrusive load
monitoring,” in Proc. 5th international conference on Future energy
systems, ACM, 2014, pp. 265–276. 5, 32, 56

[17] A. Beltran, V. L. Erickson, and A. E. Cerpa, “ThermoSense: Occupancy
thermal based sensing for HVAC control,” in Proc. 5th ACM Workshop
on Embedded Systems For Energy-Efficient Buildings (BuildSys), ACM,
2013, 11:1–11:8. 2, 10, 12

[18] T. Berthou et al., “Smart-e: A tool for energy demand simulation and
optimization at the city scale,” in Proceedings of the 14th Conference
of International Building Performance Simulation Association, 2015. 22, 23

[19] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning -
Volume 37, JMLR.org, 2015, pp. 1613–1622. 89–91

[20] J. E. Braun and N. Chaturvedi, “An inverse gray-box model for tran-
sient building load prediction,” HVAC&R Research, vol. 8, no. 1, pp. 73–
99, 2002. 23, 26

[21] J. S. Bridle and S. J. Cox, “Recnorm: Simultaneous normalisation and
classification applied to speech recognition,” in Advances in Neural In-
formation Processing Systems, 1991, pp. 234–240. 30

106

[22] E. Cadenas, W. Rivera, R. Campos-Amezcua, and C. Heard, “Wind
speed prediction using a univariate arima model and a multivariate
narx model,” Energies, vol. 9, no. 2, p. 109, 2016. 20

[23] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection
of an office room from light, temperature, humidity and co2 measure-
ments using statistical learning models,” Energy and Buildings, vol. 112,
pp. 28–39, 2016. 12, 15, 57, 59, 60, 65, 72

[24] L. M. Candanedo, V. Feldheim, and D. Deramaix, “A methodology
based on hidden markov models for occupancy detection and a case
study in a low energy residential building,” Energy and Buildings, vol. 148,
pp. 327–341, 2017. 16

[25] W.-K. Chang and T. Hong, “Statistical analysis and modeling of oc-
cupancy patterns in open-plan offices using measured lighting-switch
data,” Building Simulation, vol. 6, no. 1, pp. 23–32, 2013. 2

[26] C. Chatfield, The analysis of time series: an introduction. Chapman
and Hall/CRC, 2003. 26

[27] D. Chen et al., “Non-intrusive occupancy monitoring using smart me-
ters,” in Proc. 5th Workshop on Embedded Systems For Energy-Efficient
Buildings, ACM, 2013, pp. 1–8. 12, 59

[28] K. Cho et al., “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078,
2014. 17

[29] K. Christensen et al., “Using existing network infrastructure to estimate
building occupancy and control plugged-in devices in user workspaces,”
International Journal of Communication Networks and Distributed Sys-
tems, vol. 12, no. 1, pp. 4–29, 2014. 11

[30] A. Conneau et al., “Word translation without parallel data,” arXiv
preprint arXiv:1710.04087, 2017. 30

[31] A.-H. Deconinck and S. Roels, “Comparison of characterisation meth-
ods determining the thermal resistance of building components from
onsite measurements,” Energy and Buildings, vol. 130, pp. 309–320,
2016. 26

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, Ieee, 2009, pp. 248–255. 29

[33] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation
using only wifi power measurements,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 7, pp. 1381–1393, 2015. 11, 12

[34] B. Du, G. Verbic, and J. Fletcher, “Thermal modelling for demand
response of residential buildings,” in 2017 Australasian Universities
Power Engineering Conference (AUPEC), IEEE, 2017, pp. 1–6. 22, 23

107

[35] A. Ebadat et al., “Estimation of building occupancy levels through envi-
ronmental signals deconvolution,” in Proc. 5th Workshop on Embedded
Systems For Energy-Efficient Buildings, ACM, 2013, pp. 1–8. 15, 16

[36] U. EIA, “Residential energy consumption survey, 2015 recs survey data,”
Tables HC6, vol. 8, 2015. 2

[37] V. L. Erickson, S. Achleitner, and A. E. Cerpa, “POEM: Power-efficient
occupancy-based energy management system,” in Proc. 12th Inter-
national Conference on Information Processing in Sensor Networks,
ACM, 2013, pp. 203–216. 10, 12

[38] M. Fayazbakhsh, F. Bagheri, and M. Bahrami, “A resistance–capacitance
model for real-time calculation of cooling load in hvac-r systems,” Jour-
nal of Thermal Science and Engineering Applications, vol. 7, no. 4,
p. 041 008, 2015. 23, 26

[39] F. Fiebig, S. Kochanneck, I. Mauser, and H. Schmeck, “Detecting occu-
pancy in smart buildings by data fusion from low-cost sensors: Poster
description,” in Proc. 8th International Conference on Future Energy
Systems, ACM, 2017, pp. 259–261. 59, 60

[40] M. File, “Commercial buildings energy consumption survey (cbecs),”
2015. 2

[41] B. Fischer, Decomposition of time series: comparing different methods
in theory and practice. Eurostat, 1995. 95

[42] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” arXiv preprint arXiv:1409.7495, 2014. 31, 32

[43] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016. 31

[44] T. Gebru, J. Hoffman, and L. Fei-Fei, “Fine-grained recognition in the
wild: A multi-task domain adaptation approach,” in Proc. International
Conference on Computer Vision (ICCV), IEEE, 2017, pp. 1358–1367. 5, 30

[45] S. K. Ghai, L. V. Thanayankizil, D. P. Seetharam, and D. Chakraborty,
“Occupancy detection in commercial buildings using opportunistic con-
text sources,” in Proc. International Conference on Pervasive Comput-
ing and Communications, IEEE, Mar. 2012, pp. 463–466. 11, 12

[46] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
“Physiobank, physiotoolkit, and physionet: Components of a new re-
search resource for complex physiologic signals,” Circulation, vol. 101,
no. 23, e215–e220, 2000. 33

108

[47] S. Golestan, S. Kazemian, and O. Ardakanian, “Data-driven models for
building occupancy estimation,” in Proceedings of the Ninth Interna-
tional Conference on Future Energy Systems, ACM, 2018, pp. 277–281.

11, 12, 16, 59

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016. 32

[49] Google, Cloud AutoML, Online https://cloud.google.com/automl/,
2018. (visited on 2018). 56

[50] M. Gouda, S. Danaher, and C. Underwood, “Building thermal model
reduction using nonlinear constrained optimization,” Building and En-
vironment, vol. 37, no. 12, pp. 1255–1265, 2002. 24

[51] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp. 6645–
6649. 17

[52] H. Hagras, V. Callaghan, M. Colley, and G. Clarke, “A hierarchical
fuzzy–genetic multi-agent architecture for intelligent buildings online
learning, adaptation and control,” Information Sciences, vol. 150, no. 1-
2, pp. 33–57, 2003. 54

[53] F. Haldi and D. Robinson, “The impact of occupants’ behaviour on
building energy demand,” Journal of Building Performance Simulation,
vol. 4, no. 4, pp. 323–338, 2011. 22, 23

[54] V. Harish and A. Kumar, “Reduced order modeling and parameter
identification of a building energy system model through an optimiza-
tion routine,” Applied Energy, vol. 162, pp. 1010–1023, 2016. 23, 25

[55] H. S. Hippert and J. W. Taylor, “An evaluation of bayesian techniques
for controlling model complexity and selecting inputs in a neural net-
work for short-term load forecasting,” Neural networks, vol. 23, no. 3,
pp. 386–395, 2010. 90

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997. 18

[57] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018. 5

[58] M. Jin et al., “Occupancy detection via environmental sensing,” Trans-
actions on Automation Science and Engineering, 2016. 3

[59] M. Jin, N. Bekiaris-Liberis, K. Weekly, C. J. Spanos, and A. M. Bayen,
“Occupancy detection via environmental sensing,” IEEE Transactions
on Automation Science and Engineering, vol. 15, no. 2, pp. 443–455,
2018. 11, 12

109

https://cloud.google.com/automl/

[60] D. Jung et al., “EnergyTrack: Sensor-driven energy use analysis sys-
tem,” in Proc. 5th Workshop on Embedded Systems For Energy-Efficient
Buildings (BuildSys), ACM, 2013, 6:1–6:8. 10, 12

[61] S. Kakaç, Y. Yener, and C. P. Naveira-Cotta, Heat conduction. CRC
Press, 2018. 4, 22

[62] T. Kim et al., “Learning to discover cross-domain relations with gen-
erative adversarial networks,” arXiv preprint arXiv:1703.05192, 2017.

30

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014. 20

[64] M. B. Kjærgaard, M. Werner, F. C. Sangogboye, and K. Arendt, “Dcount-
a probabilistic algorithm for accurately disaggregating building occu-
pant counts into room counts,” in International Conference on Mobile
Data Management, 2018. 10, 12

[65] D. Kotz and T. Henderson, “Crawdad: A community resource for archiv-
ing wireless data at dartmouth,” Pervasive Computing, vol. 4, no. 4,
pp. 12–14, 2005. 33

[66] J. Langevin, P. L. Gurian, and J. Wen, “Tracking the human-building
interaction: A longitudinal field study of occupant behavior in air-
conditioned offices,” Journal of Environmental Psychology, vol. 42, pp. 94–
115, 2015. 59, 60

[67] G. Laput, Y. Zhang, and C. Harrison, “Synthetic sensors: Towards
general-purpose sensing,” in Proc. Conference on Human Factors in
Computing Systems (CHI), ACM, 2017, pp. 3986–3999. 10

[68] P. Lauret, E. Fock, R. N. Randrianarivony, and J.-F. Manicom-Ramsamy,
“Bayesian neural network approach to short time load forecasting,” En-
ergy conversion and management, vol. 49, no. 5, pp. 1156–1166, 2008.

90

[69] M. Lauster, J. Teichmann, M. Fuchs, R. Streblow, and D. Mueller, “Low
order thermal network models for dynamic simulations of buildings on
city district scale,” Building and Environment, vol. 73, pp. 223–231,
2014. 22, 23

[70] Y. Low et al., “Graphlab: A new framework for parallel machine learn-
ing,” arXiv preprint arXiv:1408.2041, 2014. 33, 56

[71] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli,
“Handling model uncertainty in model predictive control for energy
efficient buildings,” Energy and Buildings, vol. 77, pp. 377–392, 2014. 22, 23

[72] A. Mahdavi and M. Taheri, “An ontology for building monitoring,”
Journal of Building Performance Simulation, vol. 10, no. 5-6, pp. 499–
508, 2017. 65

110

[73] S. Mamidi, Y.-H. Chang, and R. Maheswaran, “Improving building
energy efficiency with a network of sensing, learning and prediction
agents,” in Proc. 11th International Conference on Autonomous Agents
and Multiagent Systems, Valencia, Spain: IFAAMAS, 2012, pp. 45–52. 10, 12

[74] ——, “Improving building energy efficiency with a network of sensing,
learning and prediction agents,” in Proc. 11th International Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 1, Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2012, pp. 45–52. 15

[75] D. P. Mandic and J. Chambers, Recurrent neural networks for pre-
diction: learning algorithms, architectures and stability. John Wiley &
Sons, Inc., 2001. 21

[76] T. Mikolov et al., “Recurrent neural network based language model,”
in Eleventh Annual Conference of the International Speech Communi-
cation Association, 2010. 17

[77] M. Mitchell, “An introduction to genetic algorithm.-mit press, 1996,”
1996. 23

[78] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Transactions on neural
networks, vol. 1, no. 1, pp. 4–27, 1990. 21

[79] B. V. Neida, D. Manicria, and A. Tweed, “An analysis of the energy
and cost savings potential of occupancy sensors for commercial lighting
systems,” Illuminating Engineering Society, vol. 30, no. 2, pp. 111–125,
2001. 2

[80] E. Nwafor, A. Campbell, and G. Bloom, “Anomaly-based intrusion
detection of iot device sensor data using provenance graphs,” in 1st
International Workshop on Security and Privacy for the Internet-of-
Things, 2018. 59

[81] C. Nytsch-Geusen, T. Nouidui, A. Holm, and W. Haupt, “A hygrother-
mal building model based on the object-oriented modeling language
modelica,” in Proceedings of the Ninth International IBPSA Confer-
ence, vol. 1, 2005, pp. 867–876. 22

[82] O. T. Ogunsola, L. Song, and G. Wang, “Development and validation
of a time-series model for real-time thermal load estimation,” Energy
and buildings, vol. 76, pp. 440–449, 2014. 22, 23

[83] E. S. Olivas, Handbook of Research on Machine Learning Applications
and Trends: Algorithms, Methods, and Techniques: Algorithms, Meth-
ods, and Techniques. IGI Global, 2009. 5

111

[84] J. L. G. Ortega, L. Han, and N. Bowring, “A novel dynamic hidden
semi-markov model (d-hsmm) for occupancy pattern detection from
sensor data stream,” in New Technologies, Mobility and Security (NTMS),
2016 8th IFIP International Conference on, IEEE, 2016, pp. 1–5. 16

[85] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010. 29

[86] N. Pathak, J. Foulds, N. Roy, N. Banerjee, and R. Robucci, “A bayesian
data analytics approach to buildings’ thermal parameter estimation,”
in Proceedings of the Tenth ACM International Conference on Future
Energy Systems, ACM, 2019, pp. 89–99. 90

[87] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal
of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011. 33, 56

[88] Y. Peng, A. Rysanek, Z. Nagy, and A. Schlüter, “Using machine learn-
ing techniques for occupancy-prediction-based cooling control in office
buildings,” Applied Energy, vol. 211, pp. 1343–1358, 2018. 10

[89] N. Perez, P. Riederer, C. Inard, and V. Partenay, “Thermal building
modeling adapted to district energy simulation,” in Proceedings of the
14th Conference of International Building Performance Simulation As-
sociation, 2015. 22, 23

[90] J. Petersen et al., “SVM to detect the presence of visitors in a smart
home environment,” in Proc. Annual International Conference of En-
gineering in Medicine and Biology Society, IEEE, 2012, pp. 5850–5853.

15

[91] M. del Pilar Angeles and A. Espino-Gamez, “Comparison of methods
hamming distance, jaro, and monge-elkan,” in International Confer-
ence on Advances in Databases, Knowledge, and Data Applications.
DBKDA, 2015. 65

[92] G. Plessis, A. Kaemmerlen, and A. Lindsay, “Buildsyspro: A modelica
library for modelling buildings and energy systems,” in Proceedings of
the 10 th International Modelica Conference; March 10-12; 2014; Lund;
Sweden, Linköping University Electronic Press, 2014, pp. 1161–1169. 22

[93] D. Robinson, F. Haldi, P. Leroux, D. Perez, A. Rasheed, and U. Wilke,
“Citysim: Comprehensive micro-simulation of resource flows for sus-
tainable urban planning,” in Proceedings of the Eleventh International
IBPSA Conference, 2009, pp. 1083–1090. 22

[94] A. J. Ruiz-Ruiz et al., “Analysis methods for extracting knowledge
from large-scale wifi monitoring to inform building facility planning,”
in Proc. International Conference on Pervasive Computing and Com-
munications (PerCom), IEEE, 2014, pp. 130–138. 11

112

[95] S. Salakij, N. Yu, S. Paolucci, and P. Antsaklis, “Model-based predic-
tive control for building energy management. i: Energy modeling and
optimal control,” Energy and Buildings, vol. 133, pp. 345–358, 2016. 23, 25

[96] F. C. Sangogboye et al., “Performance comparison of occupancy count
estimation and prediction with common versus dedicated sensors for
building model predictive control,” in Building Simulation, Springer,
vol. 10, 2017, pp. 829–843. 3, 10, 12, 59

[97] J. Scott et al., “Preheat: Controlling home heating using occupancy
prediction,” in Proc. 13th International Conference on Ubiquitous Com-
puting, ACM, 2011, pp. 281–290. 10

[98] J. Seem, S. Klein, W. Beckman, and J. Mitchell, “Transfer functions
for efficient calculation of multidimensional transient heat transfer,”
Journal of heat transfer, vol. 111, no. 1, pp. 5–12, 1989. 26, 86

[99] H. Shi, J. Liu, and Q. Chen, “HVAC precooling optimization for green
buildings: An RC-network approach,” in Proc. 9th International Con-
ference on Future Energy Systems (e-Energy), ACM, 2018, pp. 249–260.

3, 11

[100] J. Taneja, A. Krioukov, S. Dawson-Haggerty, and D. Culler, “Enabling
advanced environmental conditioning with a building application stack,”
in Proc. International Green Computing Conference Proceedings, Jun.
2013, pp. 1–10. 2, 10

[101] The Dark Sky Company LLC, Dark sky API, Online https://darksky.
net/dev, 2018. (visited on 2018). 39

[102] A. Trivedi et al., “iSchedule: Campus-scale HVAC scheduling via mo-
bile WiFi monitoring,” in Proc. 8th International Conference on Future
Energy Systems (e-Energy), ACM, 2017, pp. 132–142. 11, 76

[103] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using
manifold alignment,” in Proc. 22nd International Joint Conference on
Artificial Intelligence - Volume Two, ser. IJCAI’11, AAAI Press, 2011,
pp. 1541–1546. 54

[104] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, 2018. 29

[105] T. Zhang, A. Al Zishan, and O. Ardakanian, “Odtoolkit: A toolkit for
building occupancy detection,” in Proceedings of the Tenth ACM Inter-
national Conference on Future Energy Systems, ACM, 2019, pp. 35–46.

7, 70

[106] T. Zhang and O. Ardakanian, “A domain adaptation technique for fine-
grained occupancy estimation in commercial buildings,” in Proceedings
of the International Conference on Internet of Things Design and Im-
plementation, ser. IoTDI ’19, ACM, 2019, pp. 148–159. 5, 7, 59, 70

113

https://darksky.net/dev
https://darksky.net/dev

[107] D. P. Zhou, Q. Hu, and C. J. Tomlin, “Quantitative comparison of
data-driven and physics-based models for commercial building hvac
systems,” in American Control Conference (ACC), 2017, IEEE, 2017,
pp. 2900–2906. 3, 11, 22

[108] D. Zhou, Q. Hu, and C. J. Tomlin, “Model comparison of a data-driven
and a physical model for simulating hvac systems,” CoRR, vol. abs/1603.05951,
2016. 3

[109] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” arXiv
preprint, 2017. 30

[110] N. Zhu, S. Wang, Z. Ma, and Y. Sun, “Energy performance and optimal
control of air-conditioned buildings with envelopes enhanced by phase
change materials,” Energy conversion and Management, vol. 52, no. 10,
pp. 3197–3205, 2011. 22, 23

[111] H. Zou et al., “WinLight: A WiFi-based occupancy-driven lighting con-
trol system for smart building,” Energy and Buildings, 2017. 2, 11, 12

114

	Introduction
	The need for building occupancy and thermal modelling
	Challenges
	Objectives and contributions
	Outline of the thesis

	Literature Review
	Occupancy modelling
	Sensing modalities
	Inference models

	Thermal modelling
	RC-network models
	Time-series models

	Transfer learning
	Domain adaptation
	Domain confusion
	One-shot & zero-shot learning

	Open platforms and toolkits

	Fine-Grained Occupancy Estimation
	HVAC system and trend data
	Methodology
	Data set
	Preprocessing
	Data-driven models for occupancy estimation
	Semi-supervised domain adaptation technique
	Post-processing

	Results
	Evaluating the model trained using semi-supervised domain adaptation
	Changing the amount of labelled data available in the target domain
	Different choices for source and target domains

	Discussion

	Occupancy Detection Toolkit
	ODToolkit pipeline
	Structuring data
	Collecting statistics about data sets
	Pre-processing

	Methodology
	Supervised learning models
	Evaluation metrics

	Case studies
	Extending the toolkit
	Examining the feature importance
	Evaluating supervised learning models
	Comparing domain-adaptive models and supervised learning models
	Investigating model sensitivity to noise
	Percentage of training data affects model performance

	Discussion

	Thermal Modelling
	Methodology
	Grey-box modelling
	Estimating parameters of SARIMAX

	Results
	Data sets
	Evaluating performance of the SARIMAX model
	Evaluating performance of the grey-box RC model
	Comparing black-box and grey-box models

	Discussion

	Conclusion
	References

