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ABSTRACT

High and medium resolution multispectral satellite imagery is used to classify live 

post-fire forest residuals within two large forest fire affected areas (> 100,000 ha) in the 

northern boreal forest of Alberta, Canada. Residual forest patches are converted to 

polygons to calculate patch and shape metrics at nine minimum mapping unit classes. 

Results are analyzed and compared within and between the two fires. Results indicate 

how sensor spatial resolution, choice of MMU and anthropogenic features (i.e. highways, 

transmission lines) affect post fire residual patch and shape level metrics.

The spectral angle mapper (SAM) classifier is used to classify forest cover on a highly 

industrialized mountain region in the central part of Honshu, Japan using Landsat TM 5 

satellite imagery. Research findings relate land use and cover change (LUCC) processes 

on the mountain to image classification challenges. Findings illustrate the importance of 

calculating the spectral separability between forest cover types when developing a forest 

cover classification scheme in mountain regions where forest cover has been 

anthropogenically modified.
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CHAPTER 1

1.1 INTRODUCTION

Significant global changes to biodiversity, productivity, migration and sustainability 

of earth’s natural resources are affecting the present and future social, economic and 

political stability of human society (Dale, 1997, Lambin et al., 2001). To effectively deal 

with these global changes, geographers, land managers, foresters, biologists and 

environmentalists will require timely and accurate local and global scale land cover 

information (Vogelmann et al., 2001). With the capability of acquiring synoptic coverage 

over large areas, spacebome satellite imagery provides both a timely and practical means 

for monitoring land cover that can form a useful framework from which to initiate long 

term land cover mapping and monitoring (Cihlar, 2000; Masek et al., 2001; Rogan et al., 

2002). Continuing improvements in imaging sensor capabilities, decreased costs of image 

acquisition, due to competition among data providers, in combination with a large suite 

of commercial image processing and geographic information software, are also leading to 

wider and unprecedented uses of satellite imagery for natural resource management 

applications (ASPRS, 2002). The secondary spatial data products that can be derived 

from satellite imagery, including classified image products, Geographic Information 

System (GIS) layers or tabular/statistical data allow for further insight and analysis into 

regional and global land use and land cover change (LUCC) processes (IPCC, 2000; 

Briassoulis, 2001). Land cover refers to the biophysical attribute of the land surface (i.e.

1
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beech forest) and land use refers to the human processes that the land is being used for 

(Nunes & Auge, 2003). Satellite imagery is thus becoming a mainstream and routine tool 

in academic, government and industrial projects concerned with mapping and monitoring 

land cover changes (Cihlar, 2000; Martinez-Casasnovas, 2000; Franklin & Wulder, 2002)

However, due to the challenge of accurately classifying forest cover (Foody, 2000; 

Woodcock et al., 2001), many new and emerging technologies, methods and techniques 

are evolving and continually being tested and debated by the remote sensing community. 

Forest cover classification challenges via remote sensing arise from the dynamic nature 

of forest ecosystems across both spatial and temporal scales (Bonan & Shugart, 1989). 

Over time the age, structure, composition, and spatial patterns of forest cover change as a 

forest grows and develops toward a mature ecosystem (i.e. forest succession). 

Additionally, those areas affected by a physical disturbance such as a forest fire, or forest 

harvesting, may exhibit a high degree of forest canopy heterogeneity and structural 

complexity, depending on the severity and extent of these disturbances. In these dynamic 

industrialized areas, the process of defining what actually constitutes a forest becomes a 

matter of debate (Bennet, 2001).

The remote sensing and forestry community have placed much emphasis on 

interpreting forest cover from satellite images using various image classification 

techniques (Ichoku et al., 1996; Bastin, 1997; Foody, 2000) and then attempting to 

validate the accuracy of the classification (Congalton, 1991; Stehman & Czaplewski, 

1998). Only recently have remote sensing based studies began examining the dependence

2
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of forest classification accuracy on the spatial locations and patterns of the forest cover 

types within an image scene (Smith, 2002; King, 2002) or even the size of the forest 

stands (Hyyppa & Hyyppa, 2001) in relation to the capabilities of the imaging sensor.

The main objective of this thesis is to classify and examine forest cover using medium 

(i.e. LANDSAT TM & ETM+) and high-resolution (i.e. IKONOS) satellite imagery 

acquired over forested areas affected by both natural (i.e. fire) and anthropogenic (i.e. 

harvesting) processes. The thesis has been organized into the following chapters:

Chapter 2: Detection and Analysis of Post-Fire Residuals Using Medium and High 

Resolution Satellite Imagery

Although forest fires can bum over large areas over short time periods, forest fires 

rarely consume everything in their path. They tend to leave behind live irregularly shaped 

patches and/or linear rows of mature trees (i.e. residuals) within the fire perimeter. This 

chapter uses high [IKONOS] and medium resolution [Landsat Enhanced Thematic 

Mapper Plus ETM+] multispectral satellite imagery and a hybrid unsupervised [image- 

masking] and supervised classification technique, to classify forest residuals within two 

large forest fire affected areas (> 100,000 ha) in the northern boreal forest of Alberta, 

Canada. Residual patches are then converted to polygons to calculate patch and shape 

metrics at multiple minimum mapping unit (MMU) classes. Results are then analyzed 

and compared within and between the two fires. Results analyzed and compared within 

and between the two fires indicate how the choice of satellite imagery, MMU and degree

3
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of linear disturbances (i.e. highways, transmission/seismic lines) affect the interpretations 

of residual patches and shapes within fire perimeters. The results of this study serve as an 

important guideline for the use of data derived from remote sensing platforms into 

residual retention forest harvesting protocols that aim to base forest harvesting practices 

on emulating fire in the landscape (Proposed submission to the Canadian Journal o f 

Forest Research).

Chapter 3: Forest Cover Classification in Industrialized Mountain Terrain Using 

Landsat TM 5 Imagery

Forest cover classification using satellite imagery is complicated in highly 

mountainous terrain by the impacts of topographic shading, but land use and land cover 

change (LUCC) processes that disturb the forest environment also have an impact. These 

disturbances alter the structure of the various forest cover types, affecting the spectral 

reflectance properties they exhibit. Landsat TM 5 satellite imagery is used to characterize 

forest cover types in a highly industrialized ski resort [Naeba Mountains] in the central 

part of Honshu, Japan. Training areas representing the forest cover types are identified in 

the field and Jeffries-Matusita distance is used to calculate the separability between these 

training areas. The forest cover types are then classified using a supervised spectral angle 

mapper classifier (SAM). Research findings highlight the importance of accounting for 

not only topographical shadowing effects, but also the impacts of human induced land 

use changes (i.e. forest harvesting, thinning) practices when attempting to select training

4
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areas to characterize forest cover in industrialized mountainous areas (Proposed 

submission to the Journal o f Mountain Research & Development).

Chapter 4: Summary, Conclusions and Recommendations

The aim of this thesis is to examine and analyze forest cover using satellite imagery. 

In the final chapter of this thesis the major conclusions of the chapters two and three are 

reviewed and a number of recommendations for the use of remote sensing in forest cover 

monitoring and mapping are provided. This chapter provides recommendation to those 

end users from the fields of environmental science, geography and biology that will 

ultimately use the secondary spatial data products derived from such imagery (i.e. image 

classification) for ecosystem management. It is noted that without an understanding of 

how the final land cover classification products have been generated, the effectiveness of 

using the data products to support natural resource management, conservation or habitat 

studies may be limited.

1.2 LITERATURE CITED
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CHAPTER 2

DETECTION AND ANALYSIS OF POST FIRE RESIDUALS USING HIGH AND 

MEDIUM RESOLUTION SATELLITE IMAGERY

2.1 INTRODUCTION

Each year approximately 5000-12,000 forest fires covering roughly 1-3 million 

hectares bum across areas of Canada (Amiro et al., 2001). In boreal regions, these fires 

can affect large areas relatively quickly (Martell, 2001) including peat lands (Kuhry, 

1994). However the destructive capability of such fires (i.e. fire severity) is not constant 

across the landscape and is instead modified by local weather, topography and pre-fire 

vegetation types at the time of burning (Sousa, 1984; Bonan & Shugart, 1989). These 

forest fires rarely consume everything in their path and tend to leave behind live 

irregularly shaped patches and/or linear rows of mature trees (i.e. residuals) within the 

fire perimeter (Rowe & Scotter, 1973) (Figure 2.1).

Residuals are economically and ecologically significant in boreal forest environments. 

Previous post-fire research has shown that residuals may comprise as much as three to 

fifteen percent of the vegetation cover within fire-affected areas (Delong & Kessler, 

2000) and the total number of residual patches increases proportionally to the size of the 

fire perimeter (Eberhart & Woodard, 1987). Identifying and locating post-fire residuals is 

critical for foresters conducting post-fire site evaluations (Eberhart & Woodard, 1987) 

and for aiding in tree regeneration (Green et al., 1999) and protecting bird habitat

10
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(Schieck & Hobson, 2000). From a policy perspective, information on post fire residuals 

can be used at a local scale for establishing guidelines for devising forest harvesting 

practices that are based on emulating fire patterns (i.e. residual-retention harvesting) (Lee 

et. al., 2002). Such information can also aid forestry companies harvest burnt trees from 

within the fire perimeter (i.e. salvage logging operations). At a national scale, information 

on the area and number of residuals can improve estimates of forest area burnt and 

provide key input for forest fuel mapping (Conard et al., 2001; Sandberg et al., 2001), 

carbon (Amiro et al., 2001) and fire modelling databases (Keane et al., 2001).

Various approaches exist for characterizing post fire land cover. Currently within 

Canada, government agencies map the perimeter of fire-affected and define large area 

residual forest stands using a helicopter equipped with an onboard global positioning unit 

or alternately rely on acquiring and interpreting residual stands using aerial photography 

(Amiro & Chen, 2003). However, in the case of large area fires (>100,000 ha) where 

numerous aerial photographs may be needed, manual photo-interpretation can be 

laborious as well as affected by the skill of the photo-interpreter (Strand et al., 2002). The 

large area synoptic coverage provided by medium and high-resolution satellite imagery 

can provide a useful means to examine and characterize fire-affected areas (Pereira & 

Setzer, 1993; White et al. 1996; Sunar & Ozkan, 2001). However, rather than using this 

imagery to detect and analyze residual forest islands, satellite imagery is typically used to 

assess post fire regeneration (Riano et al., 2002) or define the fire affected portions of the 

image scene (Fraser et al., 2001; Sunar & Ozkan, 2001; Bougeau-Chavez et al., 2002). 

This usually involves acquiring images taken before and after the fire (Rogan & Yool,
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2001; Miller & Yool, 2002) or using normalized difference vegetation index (NDVI) 

methods (Garcia-Haro et al., 2001) to define the fire perimeters.

Various explanations can be provided for the lack of studies using satellite imagery to 

detect and analyze post-fire residuals. The first is the human context that often dictates 

what will be considered in the final legend of a land cover classification (Harley, 1989; 

Dorling, 1998). For example, if the economic and ecological significance of residual 

forest patches are not known, it is likely that these patches will not be mapped or 

considered in the legend of a final classification scheme. The second reason may relate to 

the dynamic post-fire landscapes that fires create (Martell, 2001). For example, areas 

subject to a rapid physical disturbance such as a forest fire, can exhibit marked variation 

in the severity and extent of these disturbances that can lead to a high degree of forest 

canopy heterogeneity over space and time. The timing of image acquisition following a 

fire is also critical when attempting to detect residuals, considering the rapid increase of 

vegetation that recolonizes a fire site following the initial disturbance (Larson, 1980; 

White et al., 1996; Diaz-Delgado et al., 2003). Residuals can also maintain various 

shapes and sizes on the land base, and these are further modified by anthropogenic 

features (i.e. seismic lines, roads, transmission lines). The result being that spacebome 

residual detection needs to be optimized with an imaging sensor that can resolve these 

unbumt forest patches from the surrounding burnt areas.

This research chapter employs medium and high-resolution IKONOS (4-m spatial 

resolution) and Landsat ETM+ (28.5 m spatial resolution) satellite imagery to detect and
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analyze the distributions of live post-fire residuals within two large area (> 100, 000 ha) 

fires that occurred in Northern Alberta (Figure 2.2). This study differs from previous 

approaches to characterize fire-affected areas using satellite imagery by focusing not on 

what the fire consumed but on detecting those forest patches that remained alive within 

the fire perimeter. Residual patch and shape level metrics are calculated to examine how 

the choice of satellite imaging sensor, minimum mapping unit and anthropogenic features 

influence residual area statistics, which has implications for the use of residual data in 

post-fire bum mapping and residual retention forest harvesting.

2.2 METHODOLOGY

2.2.1 Study Areas & Data Sets

We examine two large area (>100,00 ha) fires [2001 Chisholm and 2002 House River] 

in Northern Alberta, Canada (Figures 2.3 & 2.4). The Chisholm fire ignited on May 23, 

2001, near the hamlet of Chisholm, Alberta, and was estimated at over 116, 000 hectares. 

The forest industry lost 4.5 million cubic metres of growing stock and over 6, 300 ha of 

harvesting units (i.e. cutblocks) in varying stages of forest regeneration (Chisholm Fire 

Review Committee Final Report, 2001). The primary image data source for the study of 

this fire is a cloud free Landsat Enhanced Thematic Mapper Plus (ETM+) multispectral 

image (Path 43 Row22) acquired on 23 September 2001, approximately four months 

following the fire.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The House River Fire burned over 248 000 hectares in May 2002, forcing the 

evacuation of the communities of Conklin, Sandy Lake, Keg River, Peerless Lake, Trout 

Lake, Fox Lake and the Sunchild Indian Reserve (Chisholm Fire Review Committee 

Final Report, 2001). A multispectral IKONOS image (4 m spatial resolution) was 

acquired on August 29, 2002, approximately three months after the fire at the Crow Lake 

Ecological Reserve (centered at 112.10° W, 55.78° N), which is an area affected by the 

2002 House River fire.

Both the 2001 Chisholm and the 2002 House River fires occurred within the Boreal 

forest region described by Rowe & Scotter (1973). Strong and Leggat (1981) provide a 

description of the physiography and climate of the study areas. Elevation ranges from 

less than 250m above sea level in the northeast to 1400 m in the southwest. Soils consist 

primarily of grey luvisols. Summer precipitation (May to September) varies from 180- 

440mm with maximum precipitation occurring in July. Dominant tree species found 

throughout this area include white spruce (Picea glauca (Moench) Voss), black spruce, 

Picea mariana (Mil B.S.P.), and trembling aspen (Populus tremuloides Michx.).
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2.2.2 Image Preprocessing & Field Data Collection

The process of detecting and analyzing residuals in each of the study areas is outlined 

in the following flow diagram (Figure 2.5). Preliminary interpretation of the satellite 

images focused on identifying the major land cover types in both study area images 

(green residual areas, burnt areas, wetland and water bodies). Following this, each image 

was pre-processed into fifty spectral clusters using the ISODATA unsupervised 

classification (Tou & Gonzalez, 1974; Richards, 1994) to begin grouping the spectral 

classes into the relevant information classes. An atmospheric correction was not applied 

to the satellite images, because each scene was processed and classified independently 

(Song et al., 2001). The fifty spectral classes were then grouped into ten information 

classes that included non-target (lakes, clouds, cloud shadows, haze, fire- affected areas, 

gravel pits, wetland areas) and target classes (residual areas). This resulted in an 

unsupervised classification map for each image that could be used to select areas that 

needed to be visited during the field campaign.

A field campaign was conducted during the summer 2002 (June-July-August) to 

identify green residuals areas and document major land cover types and spurious features 

within the study areas (Sanchez-Azofeifa et al., 2003). To support data collection and 

map readability, both satellite images were printed at a 1:50,000 scale and overlaid with 

1:20,000 scale vector access data (road, transmission lines, hydrological vectors). The 

presence of residuals were labeled on the field maps and recorded with a global 

positioning system unit. As salvage logging practices were taking place previous, during
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and following the field campaign, validation information can only be verified for those 

residual areas viewed during the field campaign. For the 2001 Chisholm fire and 2002 

House River fire study areas, 65 and 98 validation areas were selected, respectively.

Following the collection of residual field data, all non-vegetated land cover types in 

the satellite images (water bodies, clouds, cloud shadows) were eliminated from the scene 

by creating a series of image masks. Certain pixels adjacent to the clouds on the IKONOS 

image exhibited a small degree of class confusion and therefore minimal hand digitizing 

was required to correct this mis-classification. To create an output image that contained 

only vegetated and fire-affected cover types, the non-target features were masked out of 

the images. For each output image five homogeneous training sites, containing at least 

500 image pixels (40 ha Chisholm Fire/0.8 ha House River fire) and representing two 

forest (deciduous and coniferous) and three wetland cover types were chosen in each of 

the study area images. Finally, spectral separability of the training areas was examined 

for both fires in n-dimensional image space. Although tree species would be useful 

information for forest management, such data collection and analysis was out of scope of 

the main goal of this chapter.

2.2.3 Supervised Image Classification & Metric Calculations

Training areas representing the given land cover classes identified in the field were 

input into a maximum likelihood supervised classifier (Richards, 1993) that generated a 

classification layer for each of the land cover types. Since the analysis focused only on
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analyzing residual forest areas, all non-target classes were eliminated from this layer 

using a (1/0) mask. Finally, the residual-only layers were filtered using a 3x3 median 

filter to eliminate single pixels (Zukowskyj et al., 2001). Validation data collected during 

the field campaign were used to assess the image classification accuracy of the residual 

forest areas. For this purpose (Congalton, 1991; Stehman & Czaplewski, 1998), sixty-five 

and ninety-eight validation areas were collected within the perimeter of the 2001 

Chisholm Fire and 2002 House River fire, respectively. Areas salvage logged after the 

September 2002 field campaign cannot be considered as part of the accuracy assessment.

To investigate the impact of changing minimum mapping unit (MMU) on residual 

area statistics, residual polygons from the Chisholm and House River Fire were queried 

into nine minimum mapping unit intervals (0 - 0.01, 0.1 -1 , 1.1-5, 5.1-10, 10.1-20, 20.1- 

40, 40.1-60, 60.1-80, > 80 ha). These intervals were based on previously published data 

on post-fire residual retention harvesting practices (Lee et al., 2002). To analyze 

similarities and differences in each study area, we calculate patch metrics including the 

area of each individual class (CA), the number of patches (NumP) and the mean patch 

size (MPS) (McGarigal & Marks, 1994). We also calculate the area weighted mean shape 

index (AWMSI), which provides an indication of the complexity of the patch shapes.
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2.3 RESULTS & DISCUSSION

2.3.1 Spectral Separability & Accuracy Assessment

As a forest ages the structure, composition, and spatial patterns of forest cover change 

(Larson, 1980). Within the boreal ecosystem, tree species maintain their own natural 

spatial, temporal variability and tree species tend to vary in canopy density, crown 

closure, forming mixed forest stands that do not always conform to clearly identifiable 

boundaries. Therefore, it is necessary to capture accurate training areas that consider the 

different spectral responses between live residuals areas and other land cover types in the 

image. For the 2002 House River fire, each of the selected training areas were chosen 

based on their ability to represent the cover types of interest and form unique locations in 

spectral space. Wetland areas identified during the field campaign formed three separate 

training areas that did not overlap with the fire-affected or the green residual training 

areas. For the 2001 Chisholm fire, the separability of the classes was clear for the 

anthropogenic classes (planning units) and wetland classes. However, some confusion 

existed between residual forest areas in the northern portion of the Chisholm fire study 

area, which was affected by a previous fire in 1998 that burnt over many of the forest 

harvesting cutblocks. These areas now contained trees in various stages of regeneration 

(Figure 2.6). There was no confusion between regenerating forest and residual patches 

within the Crow Lake Ecological Reserve, as forest harvesting operations are not 

conducted in this region due to its conservation status. The classification accuracy of the 

residual forest areas was assessed using the field verification data. For the 2001 Chisholm
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fire, 57 out of 65 validation areas were correctly classified as residual forest for a class 

accuracy of 88 %. In the House River fire, 92 out of 98 residual forest validation areas 

were correctly classified to produce a residual forest classification map with 94 % 

accuracy.

2.3.2 Residual Patch & Shape Level Metrics

The Chisholm and House River study areas are two areas undergoing different land 

use and land cover change dynamics and the residuals have been detected using two 

different satellite image sensors. The Chisholm fire was examined with the Landsat 

ETM+ imaging sensor with a spatial resolution of 28.5 meters and the House River fire 

with a 4-meter spatial resolution IKONOS image. Residual forest within the fires, 

residual area is calculated as 33 % of the Chisholm fire and 27 % of the House River fire. 

Residual forest is also examined according to the nine minimum mapping unit classes 

between study areas to allow for comparisons of the amount of residual forest within each 

of the minimum mapping unit classes. Table 1 displays the results of the patch and shape 

level metrics for the 2001 Chisholm and 2002 House River fires, respectively. In both 

the Chisholm and House River fire, most of the residual forest area is found within the 

largest minimum mapping unit class (> 80 ha MMU) (Figure 2.7).

To investigate why the lower MMU classes contain more residual forest in the 2002 

House River fire, it is useful to examine the number of residual patches and mean patch 

size. Analysis of the House River fire residual polygons shows that this fire contains a 

large number of small area residual patches. The number of patches in the House river
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fire at the [< 0.1 ha] class size is 18,844 patches, while the largest MMU class [> 80 ha] 

contains only 4 residual patches (Figure 2.8). The trend toward smaller number of 

patches at higher MMU classes is also characteristic of the Chisholm Fire data, where the 

number of patches decreases from 6,771 in the lowest MMU class [< 0.1 ha] to only 51 

patches at the highest MMU class [> 80 ha] (Table 2.2). For the 2002 House River fire, 

only the largest MMU class [> 80 ha] shows a significant increase in mean patch size that 

is explained by the large amount of residual forest contained within this class.

From an image classification point of view, the optimal spatial resolution is defined as 

the point where object size meets sensor spatial resolution (Woodcock & Strahler, 1987; 

Marceau & Hay, 1999). As the spatial resolution increases so too does our ability to infer 

smaller area residual patches using conventional pure-pixel based image classification 

techniques. Therefore, if a satellite image is used to detect residuals, but many of the 

residuals tend to occur as small or irregular shaped patches, the results may vary 

significantly if an area is imaged using a different satellite image sensor (Figure 2.9). For 

example, in conventional pure-pixel mapping approaches to image classification, if we 

use one type of imagery (i.e. Landsat TM imagery) to detect forest residuals, the sensor 

capabilities and classification method determine all the potential residual patches we can 

detect, while implicitly excluding those smaller area sub-pixel patches. Therefore, when 

examining an area with imaging sensors at differing spatial resolution, the coarser spatial 

resolution may consider a forested area as a large patch, while at a higher spatial 

resolution, gaps in the forest canopy can appear. For example, the House River contains 

18, 844 patches at the [< 0.1 ha] class size and only 4 patches at the [> 80 ha] class
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(Table 2.1). The House River fire captures more smaller area residual patches at the <0.1 

ha MMU class as this area is being observed using the 4-metre spatial resolution 

IKONOS sensor. With a coarser imaging system such as Landsat ETM+, it is possible 

that many of these individual residual forest patches would be classified as a single 

congruent patch. The result is that coarser resolution sensors can lead to lower estimates 

of the number of patches, but also increase the amount of residual forest occurring within 

the larger sized MMU classes. The physical size of the study area is also a significant 

factor and the House River fire study area is a smaller sized area than the Chisholm fire 

perimeter that needs to be considered when evaluating results across study areas.

When attempting to make comparisons of the number of residual patches and 

complexity of the shapes of those patches using landscape metrics across different study 

areas, the choice of observation tool (i.e satellite sensor) and the selection of minimum 

mapping unit can affect interpretations. The selection of a minimum mapping unit will 

influence the total number and area of residual forest islands within a fire perimeter 

(Tables 1 & 2). If a MMU of five hectares is used, patches that are too small for the 

minimum mapping unit are not considered in the analysis. In previous post-fire residual 

studies using aerial photography, Eberhart and Woodard (1987) explicitly defined 

residual forest patches as unbumt patches at least lha in size, while Delong and Kessler 

(2000) defined a residual as an older forest patch <10 ha in size based on field data. Such 

variations in the scale or MMU used for analysis can complicate the process of making 

comparisons between study areas. Depending on whether residual forest has been
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classified using high or low-resolution imagery, a 10 ha MMU can provide very different 

results in terms of patch size and number of patches within a fire perimeter.

Residual forest areas maintain very different natural shapes/variations in the study 

area that can affect the calculation of patch and shape level metrics. There are residuals 

that form large identifiable homogenous stands that have been surrounded by a larger fire 

affected area. These stands do not occur along the road, but form isolated patches within 

the fire-affected area. Isolated residuals patches also tend to be found at the perimeter of a 

linear anthropogenic feature such as a road or transmission line. Finally, there are 

residuals that do not seem to occur within a larger patch but tend to be found in a region 

that was not prone to burning such as a wetland (Figure 2.10). To investigate the 

complexity of the residual shapes in each fire, the areal weighted mean shape index 

(AWMSI) is calculated. AWMSI is a robust method used to measure the average patch 

shape or the average perimeter to area ratio for the residuals. AWMSI can highlight those 

patches that tend to from circular shapes or follow jagged patterns with rough edges 

(Saura, 2002). This information is important, considering that fire-affected areas do not 

always have clear transitions between deciduous and coniferous forest stands, or these 

stands can be modified by the presence and locations of linear features (i.e roads). The 

AWMSI shows opposite results in each of the study areas. In the House River fire, there 

are increasing complex patches at lower MMU classes, and a decrease in complexity at 

the higher MMU classes (Figure 2.11). In certain areas of the fire perimeters, isolated 

stands maintain bona-fide boundaries between fire affected and residual areas, while in 

other regions there is a gradual transition from residuals to fire affected areas. Although
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forest ecologists can relate residual dynamics to fire and successional processes, such 

configurations may also be related to fire suppression techniques, via the creation of 

linear feature firebreaks that were used to extinguish the fire. Therefore analysis of a 

measure of residual shape complexity (i.e. AWMSI) should be considered relative to any 

linear feature fragmentation of forest patches by roads, transmission and seismic lines 

that also found occur within the fire perimeter (Figure 2.12).

Residual locations and shapes are affected by the various LUCC dynamics occurring 

in an area, making it difficult to compare results from studies using different minimum 

mapping units. Presently data collected on post fire residuals using interpretations from 

aerial photography are used to devise forest-harvesting guidelines based on emulating 

natural disturbances (Lee et al., 2002). However, considering that much of the available 

data on residuals is based on observations at defined minimum mapping units, it is likely 

that certain size residual islands are not being included in the analysis of post fire 

environments. This includes understanding that residual patch sizes and locations can 

vary in areas undergoing different natural ecological processes, fire histories and LUCC 

dynamics. Forest management strategies that are based on examining residual data from 

fire-affected areas should be aware of how anthropogenic features in the landscape and 

the choice of MMU used can affect residual patch metrics.

The mapping of fire-affected areas has been noted as a research area in need of 

improvement (Conard et ah, 2001). In areas continually affected by extensive linear 

disturbances, such as the northern Alberta boreal forest, it will become increasingly
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difficult to determine how the location, distribution and pattern of residuals will change 

in landscapes over time. For example, areas such as the Chisholm Fire study area that are 

undergoing increasing linear feature expansion, may show a greater number of residual 

patches than areas that are not affected by the same degree of linear disturbance. Local 

weather conditions, the timing of year and image acquisition date, as well as the choice of 

satellite image and minimum mapping unit and influence of linear features can affect 

results and interpretations. Therefore, an initial step towards developing meaningful 

characterizations of post-fire land cover will include developing residual classification 

schemes that will allow for increasingly flexible integration of information collected from 

various imaging sensors. Thorough investigations of the number and size of residual 

forest patches in fire affected areas will also require carrying out post-fire residual studies 

not only in the province of Alberta, but also in other jurisdictions and countries that are 

not undergoing the same forest harvesting practices or expansion of linear features that 

are occurring in the province of Alberta.

2.4 CONCLUSIONS

Land cover classifications, in areas affected by forest fire, need to move beyond 

descriptive and qualitative definitions (i.e. burnt area) and provide meaningful 

information on the features occurring within disturbed areas. The goal of this chapter was 

to examine the use of high and medium resolution imagery for residual detection and to 

analyze the distributions of residuals within fire-affected areas. This study demonstrates 

that medium and high-resolution satellite imagery can be used to detect and examine 

post-fire residuals that occur within fire perimeters with > 88 % classification accuracy.
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A hybrid unsupervised masking and supervised image classification techniques were able 

to isolate the residual areas from non-target cover types within the image scene Patch 

metrics derived from classified residuals highlight that the largest minimum mapping unit 

(MMU) classes contain the least number of residual patches, but the highest amount of 

residual forest. The spatial resolution of the imaging sensor used and the size of the 

minimum mapping unit (MMU) used for analysis affect residual patch and shape metrics. 

At a coarse resolution, residual forest can be classified as large area patches, while if the 

same area was observed at high resolution smaller area patches can be identified, thereby 

increasing estimates of the number of patches in a fire perimeter. Linear features 

disturbances within the landscape dissect residual patches in the landscape, affecting the 

derivations of residual patch and shape metrics, complicating direct comparisons of 

residual patch size and numbers between study areas. The results of this study serve as an 

important guideline for the use of data derived from remote sensing platforms into 

residual retention forest harvesting protocols that aim to base forest harvesting practices 

on emulating fire in the landscape.
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Table 2.1. Residual forest patch metrics as a function of minimum mapping unit for the 2002 
House River Fire derived from a supervised maximum likelihood classification on a 4-m 
resolution IKONOS image.

Metrics <0.1 0.11-1 1.1-5 5.1-10 10.1-20 20.1-40 40.1-60 60.1-80 >80

Class Area (ha) 190.8 263.6 218.8 74.2 50.9 155.5 155.7 61.0 1643.9
Number Patches 18844.0 835.0 103.0 11.0 4.0 5.0 3.0 1.0 4.0
Mean Patch Size (ha) 3.3 149.2 212.6 74.2 50.9 155.5 155.7 61.0 1643.9
AWMSI 131.0 1079.8 469.1 82.4 32.5 61.3 34.5 9.5 75.6

Table 2.2. Residual forest patch metrics as a function of minimum mapping unit for the 2001 
Chisholm Fire derived from a supervised maximum likelihood classification on a 28.5-m 
resolution Landsat ETM+ image.

Metrics <0.1 0.11-1 1.1-5 5.1-10 10.1-20 20.1-40 40.1-60 60.1-80 >80

Gass Area (ha) 423.2 1887.9 2790.5 1594.0 1669.8 1828.4 840.7 679.3 26116.9
Number Patches 6771.0 5278.0 1244.0 224.0 117.0 66.0 17.0 10.0 51.0
Mean Patch Size (ha) 0.2 8.4 192.9 528.5 1144.4 1618.1 840.7 679.3 26116.9
AWMSI 3.4 22.8 133.6 192.3 255.5 232.7 90.8 55.4 511.9

Areal Weighted Mean Shape Index (AWMSI)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1 Oblique view of the locations and geometric shapes of residual patches that occur 
a) within fire perimeters; and b) along transmission lines.
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Figure 2.2. Location of the Crow Lake 
Ecological Reserve (affected by the 2002 
House River fire) and the 2001 Chisholm Fire, 
overlaid onto the border of the Province of 
Alberta, Canada.
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Figure 2.3 Outline of the 2001 Chisholm Fire perimeter represented by a 
3-band image composite (bands 5 4 3) of the Landsat ETM+ image. 
Darker colors represent those areas burnt in the fire. Green colored areas 
represent live vegetation cover. The Landsat ETM+ image was subset 
from the original full image scene (Path 43 Row 22) and georectified using 
a image to vector registration by selecting ground control points at key 
road intersection using 1: 20, 000 vector access data. The image was 
reprojected to Universal Transverse Mercator (UTM) Zone 11, NAD 83 
for subsequent processing.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
.St

.t'S
 

No
SS



I—I h—I I T
Map Scale 1:50,000

Figure 2.4 3-Band Image Composite (Bands 4 3 2) of the IKONOS image 
that was acquired over the House River fire on August 29, 2002. Red colored 
areas represent residual forest, while green color regions represent areas 
burnt by the fire. Crow Lake is located near the centre of the image. For the 
2002 House Rive Fire, an IKONOS multispectral image was acquired over a 
10 x 10 km area (Crow Lake Ecological Reserve). This image was 
reprojected to UTM Zone 12 and the boundary of the IKONOS scene formed 
the study area.
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Figure 2.5 Flowchart outlining the methodological processes involved in detecting and 
analyzing residual forest cover using Landsat ETM+ and IKONOS imagery.
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Figure 2.7 Total area of the residual forest classes calculated as a 
function of minimum mapping unit from a classified Landsat 
ETM+ image acquired over the perimeter of the 2001 Chisholm 
fire and from a classified IKONOS image acquired over the 2002 
House River Fire.
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Figure 2.8 Number of Patches and Mean Patch Size calculated as a function of 
minimum mapping unit for the perimeter of the 2001 Chisholm and 2002 
House River Fires.
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Figure 2.9 Bird’s eye view of the effect of increasing sensor spatial resolution on 
different sized residual forest patches overlaid onto a grid representing sensor field of 
view at arbitrary 28.5, 15 and 4 - metre sensor spatial resolution.
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Figure 2.10 Bird’s-eye-view pictorial representation of the locations and geometric 
shapes of unburnt [residual] forest patches located within the Chisholm (2001) and 
House River (2002) fire perimeter occurring as a) isolated forest islands; b) between 
agricultural fields; c) bordering lakes; d) along seismic lines; e) along road edges; and 
f) along transmission lines.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 2 0 0

CF
HRF^  3 ■«̂ s5  “5  6 0 0

•sp S.
^  -5?
c;  co 4 0 0  -

2 0 0  -

< 0.1  0 . 11 -  1.1 5 . 1 1 0 . 1 -  2 0 . 1 -  4 0 . 1 -  6 0 . 1 80>

1 5 10  2 0  4 0  6 0  80

MMU (Hectares)

Figure 2.11 Areal weighted mean shape index calculated as a function of minimum 
mapping unit for the perimeter of the 2001 Chisholm and 2002 House River fires.
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Figure 2.12 Pictorial representation of the effect of increasing sensor spatial 
resolution on different sized residual forest patches affected by a) seismic lines; b) 
bordering lakes; and c) roads overlaid onto a grid representing sensor field of view 
at 28.5, 15 and 4 - metre sensor spatial resolution perimeter.
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CHAPTER 3

FOREST COVER CLASSIFICATION IN INDUSTRIALIZED 

MOUNTAIN TERRAIN USING LANDSAT TM 5 IMAGERY

3.1 INTRODUCTION

Land use and cover change (LUCC) and its associated impacts on global 

environmental and climate change are a growing concern for the international 

scientific community (Dale, 1997; Lambin et al., 2001). Areas particularly prone to 

LUCC are mountain environments because of increasing industrial (i.e. forest 

harvesting) and recreational (i.e. ski resorts) activities in these areas (Jansky et al., 

2002). Increasing LUCC highlights the need for forest protection and conservation in 

mountain environments (Becker & Bugmann, 2001), which are estimated to contain 

one fourth of the world’s forest resources (Gruen & Murai, 2002). Monitoring such 

areas can be difficult, though, as accurate information on the status of forest cover in 

such regions is often either non-existent or unreliable (Matsushita & Masayuki, 2002; 

Welch et al., 2002).

Spacebome remote sensing can take snapshot images of land cover over large 

inaccessible areas on the earth’s surface, making it increasingly useful for long-term 

land and forest cover monitoring (Masek et al., 2001). However, mountain areas pose 

unique challenges for forest cover classification as accurate in situ ground truthing 

data may be difficult to collect and topographic shading is problematic in high relief
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areas. Therefore, instead of using ground data to aid image classification, ancillary 

data sources (i.e. aerial photography) are commonly used. The drawback in utilizing 

aerial photography is that it does not allow for the flexibility of collecting detailed 

information on the various forest cover types nor can it provide insight into local land 

use practices taking place in a given region (Sanchez-Azofeifa et al., 2003). Aerial 

photography may also lack sufficient spatial coverage and may not have been 

acquired at a similar time of year as the satellite imagery. Nevertheless, due to the 

associated costs of field campaigns in support ground data collection for image 

classification, aerial photography often serves as a surrogate data source for ground 

data verification.

The second challenge to forest cover classification in high relief areas relates to 

the effect of topographic shading. Topographic shading is caused when the geometry 

between the sun, target and the imaging sensor (Proy et al., 1989) varies as a function 

of local topography thus modifying the illumination received by a given surface type. 

Topographic correction of satellite imagery can improve the ability to discriminate 

between cover types in mountain areas (Richter, 1998). These correction methods 

have been further refined by incorporating digital elevation models that enhance the 

modelling of variation in local mountain slope and aspect (Fahsi, 2002). However, 

both the coarseness of the digital elevation models used in the topographic correction 

process and the ruggedness of the mountain terrain are still limiting factors in 

topographic correction.
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Recreational and industrial practices occurring in mountain areas can also 

complicate the ability to classify forest cover using satellite imagery. Forestry 

thinning and harvesting operations, for example, can modify the structure (i.e. 

density), composition (i.e. age, # of species & # of trees) and spatial patterns of forest 

cover types. Forest harvesting disturbances may not necessarily involve an actual land 

cover transformation, but both the location and severity of the disturbance can 

contribute to increased landscape heterogeneity (Sousa, 1984). Physical land cover 

transformations can also occur when one forest cover type is harvested from an area 

and then the same area is replanted with another tree species. In such environments, 

the impacts of land use and cover change can lead to both immediate and long-term 

modifications to the natural ecotones that exist between forest communities.

Changes to the openness, age and density of forest cover types in mountain areas 

that result from such LUCC dynamics across multiple slope gradients and elevations, 

can lead to increased intra-class variability in the spectral reflectance of a single 

forest cover. These changes can also reduce the inter-class variability between forest 

cover types. The cumulative impact of long term LUCC in an area can lead to the 

formation of “industrialized landscapes”, which may be defined by prolonged LUCC 

processes that alter the spectral reflectance properties of the pre-existing land and 

forest cover to a new state. Such landscapes are problematic for supervised image 

classification techniques that require the selection of a priori training areas to classify 

similar land cover types within an image scene. Increased intra class variability has
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been noted as a cause of misclassification of high-resolution imagery using 

conventional supervised image classification techniques (Hsieh et al., 2001).

Satellite image based classifications of forest cover in mountain environments 

typically focus on correcting images for topographic shading before proceeding to 

classify the forest cover types. This research differs in its approach to forest cover 

classification using satellite imagery, as spectral separability is computed for each of 

the forest cover classes using Jeffries-Matusita (JM) distance. The JM separability is 

then related to anthropogenic processes occurring on the highly industrialized 

mountain region. Forest cover types are then classified using the spectral angle 

mapper using training areas selected from the Landsat TM imagery (28.5-m 

resolution) on Mt. Naeba, in the central part of Honshu, Japan.

3.2 STUDY AREA

3.2.1. Study Area & Forest Cover Classes

The Mt. Naeba study area is located on the southern part of the Niigata Prefecture 

at the boundary between Nagano and Niigata Prefecture in the central part of Honshu, 

Japan (36 0 51' N and 138 0 41' E) (Figure 3.1). In the study area, Beech forest 

(Fagus crenata) dominates the northern slope of the Naeba Mountains over a range of 

altitudes between 550 m and 1,550 m (Kira, 1949). Species of beech, birch, mixed 

deciduous forest and cedar are also located within this study area. In the 1940’s,
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beech forest dominated the study area (Kakubari, 1991), but the forest community has 

since changed through both forest harvesting activities and the creation of a winter ski 

resort. In addition, ongoing forest harvesting practices have created uneven aged 

beech, cedar, and birch forest stands throughout the region. Typically, younger 

stands of birch (Betula ermanii) are located above 1350 m, after clear cutting since 

ca. 1953, while older birch stands are found at higher elevations (1650m). 

Although Japanese cedar (Chriptomeria japonica) is found within the study site, it 

is not an endemic species but a product of replanting initiatives. Cedar tends to be 

located in the lowland areas at the base of the mountains (less than 1000 metres) 

and from there creeps upward along the based of the mountain slopes. A mixed 

deciduous forest cover class also exists that consists mainly of Beech Fagus 

Crenata, Oak Quercus mongolica, and Bamboo Sasa krylensis. This forest class 

also comprises less dominant species such as Magnolia obovata Betula ermanii, 

Betula maximowicziana, Cornus Controversa, Vibirum Jurcatum, Acer rufmerve, 

Acer nipponicum, and Acer Japonicum.

The cumulative impacts of anthropogenic surface disturbances such as roadways, 

ski hills, chairlifts, gondolas and chalets as well as a network of hydro-electric 

transmission lines have altered the natural shapes of many of the forest cover types on 

Mt. Naeba. For example, before construction of the transmission towers, substantial 

areas of beech forest cover were cleared for the right of way under these lines. 

Following the installation of the transmission towers, the disturbed areas were 

colonized by a dense natural bamboo understory that remains today. Further
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information on the region can be found in (Yamada & Maruyama, 1962; Maruyama 

1971,1977; Kakubari 1977, 1987).

3.3 METHODOLOGY

3.3.1 Image Pre-processing

Figure 3.2 outlines the process of classifying and examining the forest cover types 

in this area. To remove dark current and path radiance biases, pixels were selected in 

a deep lake in order to conduct a dark object correction on the original Landsat TM 

scene (Kruse, 1993). Following this process the Landsat TM 5 scene and digital 

elevation model (DEM) were subset to the outline of the Mt. Naeba study area. Slope 

and aspect layers generated from the DEM were used as inputs for the cosine 

corrected topographic correction (Feng et al., 2003):

NormalizedRadiance = RawRadiance * (cos 6 1 cos i)

where 0  is the solar zenith angle at the time of acquisition and i is the local 

incidence angle, which can be determined using the DEM and the following equation:

cos i = cos P  cos 0 + sin P  sin 6 cos(/l -  $)
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where (3 is the terrain slope (degrees), 0  is the solar azimuth angle at time of image 

acquisition and A is the local terrain aspect. RawRadiance represents the LANDSAT 

TM detected radiance ((W /m2 jUm' 1 s r l)*100) after removal of the diffuse light 

component using the dark object correction. A complete description of this process 

can be found in Feng et al. (2003). The original and topographically corrected images 

are shown in figure 3.3ab.

3.3.2 Field Data Collection

To capture ground data to support image classification, two field campaigns were 

conducted at Mt. Naeba in October 2001 and August 2002. In the first campaign, a 

preliminary classification scheme was developed to represent the dominant forest 

cover types in the area. This included three deciduous forest cover classes (birch, 

beech, and mixed deciduous) and one coniferous forest class (cedar). Training sites 

for the birch, beech, cedar, and mixed deciduous forest types were chosen in vehicle 

accessible areas within the study area that were clearly visible on the Landsat 

imagery. Each forest cover training area is assumed to represent a homogeneous 

representation of the cover type. Training areas were labelled on the map and their 

locations recorded with a global positioning system (GPS) device. In the second 

campaign, field data was collected to validate the accuracy of the forest classification 

following topographic correction. A total of sixty-nine validation areas representing 

the forest cover types were collected.
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3.3.3 Training Area Selection & Spectral Separability

Following the October 2001 field campaign, non-target cover types (water, ski 

slopes, urban areas) were extracted from the satellite image using an unsupervised 

[image-masking] approach. To determine the degree of separability for the birch, 

beech, cedar, and mixed deciduous training sites, spectral separability was computed 

using the Jeffries-Matusita (JM) distance (Richards, 1994). The Jeffries-Matusita 

distance was selected to assess the ability of the image classifier to discriminate 

between the different forest cover types because it accounts for the spectral variability 

among (intra-class) and between (inter-class) forest cover types. A Jeffries-Matusita 

value of 2.0 between training areas implies that these two classes are 100% separable. 

Spectral separability can be useful in developing and refining training areas or 

choosing viable forest cover types that could be represented in a forest cover 

classification scheme. Attempts were made to select those training areas that could 

provide at least a high separability value of (>1.98) (Table 3.1), however not all 

classes could not achieve this high level of separability. These forest training 

areas were displayed in n-dimensional feature space (Landsat TM bands 345) to 

assess where and which forest cover types were distinct or overlapped.
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3.3.4 Supervised Spectral Angle Mapper [SAM] Classifier

The forest training areas captured during the October 2001 field campaign were 

used as inputs for the spectral angle mapper classifier [SAM] (Kruse et al., 1993). 

The SAM uses the n-dimensional angle to compare satellite image spectra to the 

reference (training area) in the Landsat TM 5 image. Rather than using conventional 

statistical techniques based the Euclidean distance to classify land cover types, SAM 

was deemed more appropriate for high relief areas because it treats the spectra as 

vectors in a space with dimensionality equal to the number of bands. The algorithm 

then compares the angle between the reference spectrum vector and each pixel vector 

in n-dimensional space. This technique emphasizes differences in spectral shape 

rather then amplitude, the later having dependence on topographic variations. Smaller 

vector angles between spectra represent closer matches to the training area spectrum 

and can be grouped into the cluster represented by the reference spectrum (Kruse et 

al., 1993). A cut off angle of .10 radians was chosen for the deciduous and coniferous 

cover types. However, the angle was slightly increased to .15 radians for the birch 

class as this class exhibited greater intra class variability in n-dimensional space than 

the other forest cover types. The SAM algorithm outputs an image containing the 

forest classes and the non-target cover types (i.e. anthropogenic classes).

The classified SAM output image was then filtered using a 3x3 median filter to 

eliminate pixels that are not surrounded by any other pixels of the same class 

(Zukowskyj et al., 2001). Sixty-nine validation areas that were collected in August
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2002 were then used to assess the forest cover classification accuracy (Table 2). 

Finally, the forest cover classes were converted to vector polygons to be able to 

analyze the landscape structure of the forest classes. The total landscape area, number 

of patches and mean patch size of the forest cover classes (McGarigal & Marks, 

1994) were computed and are presented in table 3.3.

3.4 RESULTS & DISCUSSION

3.4.1 Forest Cover Spectral Separability

Training areas representing the beech, birch, mixed deciduous and cedar forest 

were selected in the image to characterize these forest cover types across the study 

area. The JM distance measure and views of the spectral clusters in n-dimensional 

space can highlight those forest cover types that are becoming confused through 

increasing intra-class and decreased inter-class reflectance. Both these tools can then 

be used to improve the ability to determine what forest classes can be more accurately 

classified in the image scene.

The JM separability values between the forest cover types for the pre and post 

topographically corrected image are shown in table 3.1.The JM values for the training 

areas prior to image topographic correction shows that all the deciduous forest cover 

types have a high degree of separability (JM value > 1.98) with the coniferous cedar 

forest class. The lowest JM distance values are found between the deciduous forest
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cover types. The mixed deciduous and beech classes maintains a low JM value of 

1.92 and Beech and Birch forest training areas have the lowest JM values 1.69. 

Examining these classes in the 2-dimensional viewer shows that the beech and birch 

forest (JM value 1.69) overlap in the near infrared (band 4) and short wave (band 5) 

infrared bands (Figure 4ab). Although the beech class does appear to be more tightly 

grouped along the mean pixel value, there is a lot of internal variation within this 

class. The birch class pixels form an elongated array along Bands 4 and 5 and appear 

to form three distinct pixel clumps. The characteristic of these two forest classes 

contrasts that of the coniferous cedar forest pixels, which tend to form a tighter 

cylindrical pattern with less internal variability in their spectral cluster.

Following topographic correction, the ability to discriminate between forest cover 

types in the rugged mountain area varies as a function of forest cover type. JM 

distance between the deciduous and the coniferous forest cover, for example, showed 

minimal improvement. This lack of improvement reflects the already high inter-class 

separability between the deciduous and coniferous cover types (JM > 1.98) even 

before the topographic correction (Figure 3.4). The ability to discriminate between 

the previously confused beech and birch did improve following the topographic 

correction from a JM distance of 1.69 to a higher value of 1.74. This is a marginal 

improvement in separability however and still considered as a low separability 

between these two deciduous forest classes. The low separability (JM value 1.69) 

between the mixed deciduous and beech forest classes before topographic correction, 

decreased to a JM value of 1.34 following the topographic correction. The decreased
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separability between the mixed deciduous and beech forest may indicate that this 

cover types is not sufficiently distinct from the beech class, particularly if the mixed 

deciduous forest training areas contain a high proportion of beech trees that is 

characteristic of this class.

An examination of the forest cover classes in 2-dimensional space following the 

topographic correction shows that the birch and beech appear to shift closer together 

along Landsat band 4 and 5. Additionally, the previously noted three independent 

clusters of birch appear to have been smoothed into a larger group and there are no 

longer three distinct clusters (Figure 3.4). The beech and mixed deciduous classes 

show a lower interclass distance, indicating that the brightness variations that result 

from topographical changes may have been slightly dampened after topographic 

correction. The cedar forest class underwent little to no change in shape or distance 

from the birch or beech forest classes.

Human alterations to forest cover types across a study area can affect the spectral 

reflectance properties of a given forest cover type. These structural and composition 

changes to the forest may dictate whether or not suitable training areas can be use to 

represent a forest cover type across the study area. The pre and post-topographic 

correction training areas were examined in a 3-band spectral space composite to 

examine if the forest clusters disperse in a distinct trajectory from that caused by 

topography in the Landsat TM bands (Figure 3.5). Viewing the forest clusters in 

Landsat bands 347 before the topographic correction shows the spread out beech
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forest classes and more distinctly shows the three distinct clusters of birch forest. 

Following the topographic correction, the definitions are lost and this internal 

variability may be attributed to such factors as the age, canopy density, and amount of 

understory visible to the satellite sensor. These factors can contribute to spectral 

variability independent of topographically induced variation in the spectral 

reflectance properties of the deciduous forest classes. In contrast, the mixed 

deciduous appears to exhibit less internal variability in the shape of its cluster, but 

also undergoes the largest shift toward the beech forest following topographic 

correction. The cedar forest training areas that represent both high and low density 

stands, form a defined spectral group with high interclass variability from the 

deciduous cover types.

An analysis of the spectral views should also consider that training areas are often 

selected independent of whether or not training area represents only forest canopy 

reflectance, or also contains the reflectance signal from the secondary understory 

layers of the forest. In this study area, the impacts of the secondary understory may 

play a role of decreasing inter class variability for the younger birch and beech forest 

stands as they tend to form a more open forest canopy and are characterized by a 

dense bamboo understory layer. This understory layer may in fact be potentially 

masking differences between open canopy training areas where younger forest stands 

typically occur, creating class confusion.
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3.4.2 Forest Classification Accuracy & Forest Cover Analysis

Land cover classification studies typically show that certain cover types achieve 

higher or lower classification accuracies than others (Congalton, 1991). The 

classification error matrix for the land and forest cover types is presented in Table 

3.2. The forest cover types accuracies range from 77-89 %. Beech forest had the 

highest accuracy at 89 % followed by cedar at 82 %. Some confusion between the 

beech and birch cover types may exist, since the boundaries of these classes do not 

necessarily form clear bona-fide boundaries but rather grade together with the birch 

replacing the beech through natural regeneration (Kakubari, pers. Comm.).

The final classified classification of the forest and land cover classes is shown in 

figure 3.6. An analysis of the landscape structure metrics for the forest classes shows 

that beech forest dominates the landscape at 41%, followed by mixed deciduous 

(29.5%), birch (19%), anthropogenic/urban (5.1 %) and cedar forest classes (5.0 %). 

The total landscape area patch metric shows that both the beech and mixed deciduous 

forest classes have the largest numbers of forest patches that have the larger mean 

patch sizes in comparison to the other forest and land cover types following 

topographic correction (Table 3.3ab). Ski hills and cedar forest classes instead tend to 

occur as smaller patches. These patches are not forest fragments, however, rather they 

are classes that result from a physical land cover change that occurred the ski course 

was developed and the forest cover types were replanted.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In industrialized areas, forest and land cover classification accuracy should be 

assessed in the context of the complexities associated with a given class and in the 

context of the classifier. Although land and forest cover classification studies 

typically highlight certain forest cover types that exhibit higher classification 

accuracies, they are often not related to the inherent variability in the spectral 

reflectance properties of the forest cover types in the landscape. Forest cover types 

were affected by physical land cover changes (i.e replanting) achieved the highest 

classification accuracies compared to those classes that were altered by localize 

harvesting or thinning practices. The ability to detect and classify the cedar and 

anthropogenic classes increased, as they generally maintained a more bona-fide 

boundary and defined separability from those land and forest cover types that 

surrounded them. Urban areas tended to have much high spectral reflectance in 

comparison to the deciduous beech, birch and mixed deciduous forest cover types that 

are natural to the area tended to exhibit lower spectral contrast.

Therefore, the process of selecting training areas to represent a land cover type 

across a scene that are commonly conducted in non-industrialized flat areas may be 

less transferable to mountain areas that are affected by dynamic land use and cover 

change processes. Forest cover types that are viewed as merchantable timber 

resources, may for example exhibit higher variability in spectral reflectance within a 

study area than another forest cover types, which have no perceived merchantable 

value and are not disturbed. Therefore, knowledge of forest management practices
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over local areas can be particularly important for the selection of training areas for 

satellite image based monitoring systems that attempt to use satellite imagery to 

classify forest cover across administrative boundaries undergoing difference forest 

harvesting practices.

3.4.3 Implications for Regional Monitoring Systems

Industrialized landscapes that have been affected by both natural and human 

alteration are the forested landscapes of the future. Although advances in satellite 

imaging system design may become available to analyze such areas in the future, 

increased spectral variability among land cover types may not be overcome by using 

conventional image classification techniques to process higher spatial resolution 

imagery (Hsieh et. al, 2001). LUCC studies using satellite imagery for classification 

and monitoring purposes (Adams, 1999) should be aware of the limitations when 

attempting to develop standardized vegetation classification schemes and image 

classification methodologies for regional/global forest cover mapping. As a result of 

variability in the spectral reflectance among different forest cover types, similar forest 

cover classification accuracies may not be achievable in industrialized landscapes as 

found in flat, less industrial areas. Assessing the spectral separability of the land 

cover types is key for determining what forest cover types can be suitably represented 

in a forest cover classification scheme.
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It is not possible to provide a single solution to the challenges associated with 

mapping forest and land cover over both small and large areas. But, as satellite 

imagery is increasingly being used to make characterize forest cover and examine 

landscape changes, it is important to consider how LUCC processes can also 

affect the ability to detect and classify forest cover types using a given satellite 

imagery and image processing methodology. Improved methods for managing intra 

and inter class variability in the spectral response of forest cover types requires both a 

better understanding of the spatial and temporal spectral responses of the vegetation 

types. Further study into how both sensor related parameters (i.e. spatial 

resolution) and temporal issues (i.e. phenology) could be used to better quantify 

these two sources of variability. As a result of the high number of species that can 

occur in an area and the phenological changes to the forest cover types over a 

growing season, image classification methodologies will likely achieve high accuracy 

by optimizing satellite image acquisition dates to time periods where maximum 

separability can be achieved among forest cover species. In the case of Mt. Naeba, the 

optimal image acquisition date for the study areas will likely occur in the fall season 

where one or more tree species begins to senesce and change leaf color at different 

time periods.
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3.5 CONCLUSION

This study suggests that the Jeffries Matusita distance and the n-dimensional 

visualizer tools can aid in assessing the ability to select adequate training areas pre 

and post image classification. The topographic correction can also be used to remove 

dominant topographic effects that shade land cover types adjacent to mountain areas. 

Such correction did not however eliminate the spectral variability that is inherent in 

those forest cover types training areas gathered in a landscape affected by prolonged 

forest harvesting and thinning disturbances. Both the JM distance and the n- 

dimensional viewing tools can be useful in developing or refining a forest cover 

classification legend for large scale mapping purposes. Overlapping spectral classes 

can be identified and pixels examined as to the location and cause of the variability 

for a given forest cover type. Both the topographic correction and measures of 

spectral separability should be assessed before using training areas selected in one 

area to generalize land cover types in another regions.
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Table 3.1. Jeffries-Matusita distance calculated on the original and 
topographically corrected image for the four forest cover types over 
Mt. Naeba in the central part of Honshu, Japan.

Original Image Topo-Corrected Image
Cover Types J-M Cover Types J-M

Cedar & Beech 1.99 Cedar & Beech 1.99
Cedar & Birch 1.99 Cedar & Birch 1.99
Cedar & Mix D. 1.98 Cedar & Mix D. 1.98
Birch & Mix D. 1.99 Birch & Mix D. 1.98
Mix D. & Beech 1.92 Mix D. & Beech 1.34
Beech & Birch 1.69 Birch & Beech 1.74
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Table 3.2 Error Matrix for the land cover classes on the topographically corrected image
on the Mt. Naeba study area, Japan.

Land & Foresi Validation Points
Classes Beech Cedar Birch Mix Dec. Water Anthro Total %

Beech 16 1 1 18 89
Cedar 18 2 2 22 82
Birch 2 10 1 13 77
Mix Dec. 1 4 5 80
Water 1 1 100
Anthro 10 10 100

69
Total 18 18 14 8 1 10 86
Percentage (%) 89 100 71 50 100 100 Overall

Accuracy
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Table 3.3a Land cover type as a percentage of total land cover area within the Naeba mountain
study area.

Metrics Anthro Beech Birch Mix Decid Cedar

% of total landscape 5.1 41.0 19.0 29.5 5.0
Class Area (ha) 493 3963 1833 2856 483
Number Patches 165 500 1286 937 321
Mean Patch Size (ha) 448 3747 1211 2477 400

Table 3.3b Land cover type as a percentage of total land cover area within the Naeba mountain 
study area without topographic correction.

Metrics Anthro Beech Birch Mix Decid Cedar

% of total landscape 6.3 45.8 19.2 23.4 5.0
Class Area (ha) 603 4428 1857 2263 479
Number Patches 226 465 1108 778 213
Mean Patch Size (ha) 525 4236 1236 1812 412
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Figure 3.1 Location of the study area, central part of Honshu, Japan.
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Figure 3.2 Flowchart of the processes involved in pre-processing and classifying the 
Landsat TM imagery for Mt. Naeba in the central part of Honshu, Japan. A cloud free 
6-channel multispectral Landsat TM 5 (Path 108/Row 34) image was acquired over 
Mt. Naeba on September 01, 1999 at a solar azimuth of 121° and 59 sun angle 
elevation
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Figure 3.3 a) Original LANDSAT TM 5 color composite (bands 543 as RGB) over Mt. 
Naeba and b) Topographically corrected 3-Band Image Composite (Bands 5 4 3) of the 
LANDSAT TM 5.
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b) post topographic correction. Spectral data displayed in Landsat TM bands 4 & 5.
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Figure 3.5 n-Dimensional Visualization of training site spectral data for the classes of 
interest within the Mt. Naeba study area in the central part of Honshu, Japan a) and c) pre 
topographic correction & b) and d) post topographic correction. Birch (Yellow), Beech 
(Green), Cedar (Red), Mix Deciduous (Cyan). Displayed axis refers to Landsat TM bands.
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CHAPTER 4

SUMMARY & CONCLUSIONS

4.1 SUMMARY & CONCLUSIONS

This thesis has explored the use of medium and high-resolution multispectral satellite 

imagery to detect, classify and analyze forest cover in two forest ecoregions. The first 

study (Chapter 2) focused on detecting and analyzing post-fire residual forest islands 

within the perimeter of two fires that occurred in the boreal forest of Northern Alberta, 

Canada (2001 Chisholm and 2002 House River Fire). The second study (Chapter 3) 

employed Landsat TM 5 satellite imagery to classify forest cover types on the highly 

industrialized temperate Naeba Mountains, which are located in the central part of 

Honshu, Japan. This chapter summarizes the major findings from Chapter 2 and 3 of this 

thesis and provides recommendations for the use of multispectral satellite imagery for 

regional forest and land cover mapping and monitoring.

Chapter 2: Detection and Analysis of Post-Fire Residual Forest Islands Using 

Medium and High-Resolution Satellite Imagery

Forest fires can kill many trees in a forested area, but unbumt residual forest islands 

also remain alive within the fire perimeter. Using medium and high-resolution satellite 

imagery, live residuals could be isolated and classified from non-target cover types with 

> 88 % accuracy using both unsupervised-masking and supervised image classification
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techniques. Grouping residuals into nine MMU classes shows that within the fire 

perimeter smaller MMU classes contain the highest numbers of residual patches, but 

larger MMU classes contain the largest amount of residual forest. Residual tend to exist 

as more complex shapes at smaller MMU classes with the most complex shapes 

occurring in the higher resolution IKONOS satellite imagery. This study suggests that 

although remote sensing techniques can improve estimates of the amount of forest burnt 

by fires, the choice of satellite imagery used and the spectral contrast of the target, size of 

MMU chosen and extent of linear feature disturbances impacts the size, number and 

shape of residual patches within fire perimeters. The results serve as important lessons for 

forest managers that aim to retain green areas in their forest management agreement areas 

in an attempt to emulate fire patterns in the landscape.

Chapter 3. Forest Cover Classification in Industrialized Mountain Terrain Using 

Landsat TM 5

The Jeffries-Matusita distance and the n-dimensional visualizer tools can aid in 

assessing the ability to select training areas to represent the forest cover types within a 

topographically complex industrialized landscape. Although a cosine lambertian 

topographic correction aims to improve separability between different cover types, such a 

correction cannot eliminate the spectral variability inherent in forest cover types that 

occur in areas affected by prolonged forest harvesting and thinning disturbances. The 

Jeffries-Matusita distance highlights forest cover classes with lower separability that is 

critical in developing or refining a forest cover classification legend for accurate forest
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cover mapping purposes. The Jeffries-Matusita distance measure allowed for the 

comparison of separability that can be used to refine the classification legend and aid in 

choosing representative training areas for a forest cover type. This study suggests that 

regional and global monitoring systems using satellite imagery for monitoring purposes 

should recognize the limitations of using forest cover training areas to represent forest 

cover types across a scene in landscape where both natural (i.e. topography) and 

anthropogenic (i.e. forest harvesting) impact the structure of the forest canopy. These 

results have implications for regional monitoring systems that often acquire and use 

medium resolution satellite imagery to classify land cover over areas in areas where 

dynamic land use and cover change processes are occurring.

4.2 RECOMMENDATIONS

■ In post fire studies, it is recommended to optimize the choice o f satellite image

used for investigating a fire-affected area to the level o f landscape detail 

required to provide forest management decisions. The choice of sensor, MMU 

and impact of linear features affect residual metrics and should therefore be 

considered in future investigation of post fire residuals with sensors that have 

higher spatial and spectral imaging capabilities.

* In the Mt. Naeba study area, it is recommended to acquire images at times where

the spectral contrast between forest cover types can be maximized due to 

phenological changes to the forest. If cloud cover does not affect the selection of
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an image, an image should be acquired during the fall season where the spectral 

contrast between the deciduous forest cover types is increased. In the middle of 

the summer season, the spectral differences between the beech, birch and mixed 

deciduous canopies are sufficiently lowered, reducing the separability between 

these forest cover types.
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