1	N2 in deep subsurface fracture fluids of the Canadian Shield: Source and
2	possible recycling processes
3	
4	
5	Long Li ^{1,2*} , Kan Li ¹ , Thomas Giunta ^{2,3} , Oliver Warr ² , Jabrane Labidi ⁴ , Barbara Sherwood
6	$Lollar^2$
7	1. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton,
8	Alberta, Canada
9	2. Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
10	3. IFREMER, Unité des Géosciences Marines, 29280 Plouzané, France
11	4. Université de Paris, Institut de Physique du Globe de Paris, Université Paris Diderot,
12	75005 Paris, France
13	
14	* Corresponding author (email: long4@ualbertaca)
	corresponding addior (ontain rong i c daloortada)
15	
16	Key Words
17	Nitrogen cycle, Canadian Shield, deep subsurface, abiotic nitrogen reduction, microbial ammonium

18 oxidation

19 Abstract: In addition to high concentrations of CH₄ and H₂, abundant dissolved N₂ is found in subsurface fracture fluids in Precambrian cratons around the world. These fracture fluids have 20 21 hydrogeological isolation times on order of thousands to millions and even billions of years. Assessing the sources and sinks of N_2 and related (bio)geochemical processes that drive the nitrogen cycle in these 22 23 long isolated systems can shed insights into the nitrogen cycles on early Earth with implications for other 24 planets and moons. In this study, we collected dissolved gas samples from deep subsurface fracture fluids 25 at seven sites (Kidd Creek, LaRonde, Nickel Rim, Fraser, Copper Cliff South, Thompson, and Birchtree) in the Canadian Shield. Multiple gas components (e.g., H_2 , O_2 and Ar) were integrated with $\delta^{15}N_{N2}$ values 26 27 to characterize the N_2 signatures. Results show that the dissolved N_2 in deep subsurface fracture fluids from the Canadian Shield sites are more ¹⁵N-enriched than those from the Fennoscandian Shield and the 28 29 Witwatersrand Basin in the Kaapvaal Craton. The nitrogen isotopic signatures of the Canadian Shield samples coupled with their hydrogeological framework indicate the N₂ was sourced from fixed 30 31 ammonium in silicate minerals in host rocks and was generated by metamorphic devolatilization. 32 Modeling of nitrogen devolatilization from host rocks supports this interpretation, but also suggests that a second process, likely abiotic N₂ reduction, is required to account for the observed ¹⁵N enrichment in the 33 N₂ samples from the Canadian Shield. A 10-year monitoring study for one of the boreholes, at 2.4 km of 34 the Kidd Creek Observatory, shows a steady decrease in $\delta^{15}N_{N2}$ values with time, which coincides with 35 36 the temporal isotopic evolution of some other gas components in this borehole. Although it cannot be 37 confirmed at this time, this isotopic shift in N_2 may be potentially attributed to microbial processes (e.g., anaerobic oxidation of ammonium). Nevertheless, the large ¹⁵N enrichments for the majority of the 38 39 samples in this study suggest that the nitrogen cycle in the deep saline fracture fluids in the Canadian 40 Shield is dominated by abiotic processes. This is in contrast to the nitrogen cycles in the subsurface 41 fracture fluids in the Fennoscandian Shield and the Witwatersrand Basin, which have been shown to be 42 strongly affected by extant microbial ecosystems discovered in those fracture waters.

43 **1. Introduction**

Precambrian cratons occupy the majority of the Earth's continental crust (> 70% by 44 surface area; Goodwin, 1996). These remnants of early Earth's crust are dominated by 45 (meta-)igneous rocks varying from ultramafic to felsic in composition (e.g., Hoffmann, 1989). 46 Abundant fractures developed over the history of these igneous rocks host a large terrestrial 47 subsurface water reservoir of up to 30% of the planet's total groundwater inventory (Warr et al., 48 2018). Geochemical signatures (e.g., salinity, major and trace elemental compositions, dissolved 49 gas contents, redox condition, δ^{18} O and δ^{2} H) of these fluids indicate that they have been strongly 50 influenced by water-rock reactions, and, in some cases, affected by mixing with varying amounts 51 52 of secondary (paleo-)meteoric water (e.g., Ward et al., 2004; Onstott et al., 2006; Li et al., 2016; Heard et al., 2018; Warr et al., 2021a and references therein). Most of these deep subsurface 53 fracture water systems have been hydrogeologically isolated over geological time scales, e.g., up 54 55 to hundreds of million years to billions of years in the Canadian Shield (Holland et al., 2013; 56 Warr et al., 2018), up to tens to hundreds of million years in the Fennoscandian Shield 57 (Kietäväinen et al., 2014) and the Witwatersrand Basin in the Kaapvaal Craton, South Africa (Heard et al., 2018; Lippmann et al., 2003). Closed-system water-rock interactions over these 58 59 extended time periods has progressively produced chemicals (e.g., H_2 , hydrocarbons, sulfate) and 60 highly reducing habitable environments favorable for chemo(litho)trophic microbes (Lin et al., 61 2005, 2006; Li et al., 2016; Magnabosco et al., 2018; Lollar et al., 2019). Studies of the subsurface fracture fluids from the Kaapvaal Craton, the Canadian Shield 62 63 and the Fennoscandian Shield have identified some general quasi-depth-controlled variations in geochemistry and microbial community attributed to the degree of penetration of 64 (paleo-)meteoric water into the subsurface (Warr et al;., 2021a and references therein). Based on 65

noble gas studies, the shallower fracture fluids generally have shorter residence times, whereas 66 the deeper, more saline fracture fluids have longer residence times (Lippmann et al., 2003; 67 Lippmann-Pipke et al., 2011; Heard et al., 2018; Warr et al., 2018; 2021a). The shallow fracture 68 fluids are mostly highly oxidizing fresh to brackish waters, and contain abundant biomass with 69 diverse microbial communities; in contrast, the deep fracture fluids are mostly highly reducing 70 71 saline to brine waters, and contain low-abundance biomass with less microbial diversity (e.g., Ward et al., 2004; Onstott et al., 2006; Lin et al., 2006; Magnabosco et al., 2015; Lollar et al., 72 2019). 73

74 These geochemical and microbiological differences can directly impact the isotopic signatures of the dissolved gaseous components in the fracture fluids. For example, different 75 carbon recycling pathways have been clearly identified in these fracture fluids based on the 76 carbon and hydrogen isotopic signatures of CH₄ and other light n-alkanes (e.g., Sherwood Lollar 77 et al., 1993a, b, 2002, 2006, 2008; Ward et al., 2004; Warr et al., 2021b) and clumped isotopic 78 signatures of CH₄ and N₂ (Young et al., 2017; Labidi et al., 2020; Warr et al., 2021b). These 79 studies have reported consistent observations from both the Canadian Shield and the Kaapvaal 80 Craton suggesting that CH_4 in the shallower fracture fluids is dominantly microbial, whereas 81 82 CH₄ in the deeper, more saline fracture fluids with longer residence times can show predominantly abiogenic signatures (Sherwood Lollar et al., 2006; 2008, 2021; Warr et al., 83 2021b;). More recently, formate and acetate in fluids at 2.4 to 3 km below surface (kmbs) at one 84 85 of the key deep subsurface sites of the Canadian Shield, the Kidd Creek (KC) Observatory, have been demonstrated to be produced by abiotic organic synthesis (Sherwood Lollar et al., 2021). 86 87 Multiple sulfur isotopic signatures of dissolved sulfate in fluids from 2.4 kmbs of the KC

Observatory also indicate that the dissolved sulfate in these fluids was derived from abiotic
process by indirect radiolytic oxidation of sulfide minerals in host rocks (Li et al., 2016).

Despite numerous studies on the carbon and sulfur cycles in the subsurface fracture fluids 90 in Precambrian cratons, to date, the cycle of another life-constituting element, nitrogen, has not 91 been well examined, particularly in the Canadian Shield. N_2 is typically the second largest 92 93 dissolved gas component by volume in subsurface fracture fluids in Precambrian cratons around the world. In an earlier study, Sherwood Lollar et al. (1993a) reported the δ^{15} N values of N₂ 94 95 collected from fracture fluids in the Fennoscandian Shield and the Canadian Shield. Thirteen N₂ samples from the Fennoscandian Shield show a δ^{15} N range from 0.2‰ to 5.1‰ (with one high 96 value of 10.0%), whereas four N₂ samples from the Canadian Shield mostly show higher $\delta^{15}N$ 97 values (Thompson: 1.4‰; Matagami: 8.6‰; Norita: 11.8‰; Val d'Or: 9.1‰). Labidi et al. 98 (2020) also reported two δ^{15} N data from Sudbury (2.6‰ and 2.8‰) and two δ^{15} N data from the 99 KC Observatory (6.6‰ and 6.8‰). Dissolved N₂ in subsurface fracture fluids from the 100 Witwatersrand Basin in the Kaapvaal Craton was studied by Silver et al. (2012). After correction 101 for air contamination using the N₂/O₂ ratio as an index, a δ^{15} N_{N2} range from -1.3% to 5.8% was 102 yielded and considered to result from complicated geochemical and, more importantly, 103 biological recycling processes (Silver et al., 2012). 104

105 The relatively few δ^{15} N data from the Canadian Shield make it difficult to compare with 106 those from the Fennoscandian Shield and the Kaapvaal Craton for the understanding of nitrogen 107 cycle in subsurface fracture fluids in Precambrian cratons. In this context, it is important to carry 108 out a more comprehensive investigation of N₂ in deep fracture fluids in the Canadian Shield, 109 particularly those from the KC Observatory. The KC Observatory located in Timmins (Ontario) 110 is an iconic site for the study of subsurface fracture fluids, given the tremendous knowledge 111 about this site accumulated from studies over nearly three decades (e.g., Sherwood Lollar et al., 1993a, b, 2002, 2021; Doig et al. 1995; Holland et al., 2013; Li et al., 2016; Lollar et al., 2019). 112 In particular, long-term monitoring has been possible at an observatory location 2.4 kmbs since 113 2007, commencing shortly after the exploratory boreholes were drilled. Noble gas studies 114 indicate that the mean residence times of the fluids at KC were extremely long (e.g., 1.0 - 2.2 Ga 115 116 at 2.9 kmbs; Warr et al., 2018), while hydrogeological draining of the fluids may result in some boreholes decreasing in age over time (e.g., at 2.4 kmbs, initially 1.1 - 1.7 Ga but has decreased 117 to 0.2 - 0.6 Ga recently; Holland et al., 2013, Warr et al., 2018). To date, these fluids show the 118 119 presence of chemolithotrophic organisms (sulfate-reducing organisms in particular) but with low biomass and low rates of activity (Li et al., 2016; Lollar et al., 2019; Sherwood Lollar et al., 120 2021; Warr et al., 2021b). The geochemical and isotopic signatures of these fluids (including 121 122 dissolved components) may represent the closest abiotic end-members available in the terrestrial deep subsurface (e.g., Sherwood Lollar et al., 2021; Warr et al., 2021b). Such abiotically 123 dominated sites provide a valuable opportunity to assess the long-term abiotic nitrogen recycling 124 processes occurring in these highly reducing waters. This knowledge may further provide crucial 125 insights into the geochemical processes that could have influenced the origin and early evolution 126 127 of life on the early Earth, and inform models of possible habitability on other planets and moons (NASEM, 2019). 128

Here we report the gas concentrations and $\delta^{15}N_{N2}$ values of 45 samples from 7 sites in the Canadian Shield (Fig. 1). In particular, 25 samples were collected from the KC Observatory from 2.1 to 2.9 kmbs, and at the 2.4 kmbs sampling location, over a temporal span of 10 years (2007-2017). This sample suite provides a high-density dataset to evaluate the spatial and temporal changes of the nitrogen cycle in these fracture water systems. Aiming to better constrain the

nitrogen source and recycling processes in the fracture fluids in the Canadian Shield, bulk-rock
nitrogen concentrations and isotope compositions were also analyzed on 23 host rock samples
from KC, Sudbury, and Thompson. For comparison, nitrogen isotope compositions were also
measured on refractory carbon component in 6 graphite-bearing samples from KC.

138

139 **2. Geological background and samples**

The samples in this study were collected from two sites in the Abitibi greenstone belt
(i.e., KC and LaRonde), three sites in the Sudbury Basin (i.e., Copper Cliff South, Nickel Rim,
and Fraser), and two neighboring sites (Birchtree and Thompson) in the Thompson nickel belt in
the western Superior boundary zone, near Thompson, Manitoba (Fig. 1).

The KC Observatory in Ontario is geologically located in the volcanic successions of the 144 145 Kidd-Munro assemblage in the Abitibi. The host rocks at KC include 2.71 - 2.72 Ga ultramafic, mafic (gabbros and basalts) to felsic (mainly rhyolites) rocks with graphite-bearing lenses 146 147 formed in a rifting sub-proximal seafloor setting (Bleeker and Parrish, 1996; Hannington et al., 148 1999; Prior et al., 1999). The rocks experienced regional metamorphism which started at 2.69 Ga, reached peak metamorphism of greenschist facies (~ 400 °C) at 2.64 Ga, and ended as late as 149 150 2.60 Ga locally (Barrie and Davis, 1990; Smith et al., 1993; Davis et al., 1994; Bleeker et al., 1999; Powell et al., 2011). 151

LaRonde (LR) in Quebec is geologically located in the Bousquet formation of the 2.7 Ga Blake River group in the Abitibi. The host rocks are composed of a continuous magmatic series of tholeiitic – transitional mafic to felsic rocks in the lower member, and transitional – calcalkaline intermediate to felsic rock in the upper member (Mercier-Langevin et al., 2007). The 156

157

rocks experienced a prograde metamorphism to upper greenschist – lower amphibolite facies and a subsequent greenschist-facies retrograde metamorphism (Dimroth et al., 1983).

Copper Cliff South (CCS), Nickel Rim (NR) and Fraser (FR) are all in the Sudbury 158 impact basin (Ontario). The dominant rock assemblage in the region is the Sudbury Impact 159 Complex (SIC) which was formed by meteoritic impact-induced melting of the Archean 160 basement (Faggart et al., 1985) in ~1.85 Ga (Krogh et al., 1982; Davis, 2008). FR is in the 161 162 middle of the North Range and NR is in the east of the South Range of the SIC. Both sites geologically lie in the footwall of the SIC that is dominated by 2.64 Ga granitic rocks (Meldrum 163 et al., 1997) and Archean meta-volcanic and metasedimentary rocks that were metamorphosed to 164 165 upper greenschist – lower amphibolite facies at 2.69 Ga with some reaching granulite facies at 2.65 Ga (Krogh et al., 1984). CCS is located in a radial offset quartz-diorite dyke in the South 166 Range with brecciated country rocks and abundant sulfide mineralization (Lightfoot and Farrow, 167 168 2002) related to the ~1.85 Ga bolide impact. Post-impact thermal influences by multiple orogenies, such as the Yavapai-Mazatzal (1.7-1.6 Ga), the Chieflakian-Pinwarian (1.5-1.4 Ga) 169 and the Grenville (1.2-1.0 Ga), have been found at various degrees across the Sudbury region, 170 e.g., mid- to upper-greenschist facies in the South Range (Fleet et al., 1987) and sub-greenschist 171 facies (<150 °C) in the North Range (Thompson et al., 1998). 172

The Thompson nickel belt (near Thompson, Manitoba) is a northeast-southwest trending
belt formed in an early Proterozoic continental margin. It is constituted by reworked Archean
basement and meta-supracrustal rocks (Hulbert et al., 2005). In the western part of the belt where
BT and TH are located, the rocks are dominated by 2.2 – 2.0 Ga serpentinized ultramafic rocks,
metagabbros, amphibolites, gneisses, schists, skarns, and quartzites (Hulbert et al., 2005;

Zwanzig et al., 2007). The rocks experienced a series of metamorphic events during 1850 – 1750
Ma (Couëslan et al., 2013) with peak metamorphic temperatures of ~ 700 °C in the Thompson
area (Paktunç, 1984). Later (not yet dated) low-temperature (250 – 300 °C) alteration of rocks at
Thompson by chloride-rich fluid is evidenced by the PGE-Au-As mineralization (Chen et al.,
1993).

Gas samples were collected following the method described by Ward et al. (2004) and 183 184 Holland et al. (2013). In brief, a packer was used to seal the borehole and funnel the water and gas flow from the borehole through a sterilized Tygon tube into a bucket. After a period of 185 flushing to ensure representative sampling, gases were introduced into an inverted beaker 186 187 submerged into the fracture fluids collected in a bucket. The gases were then transferred through a 22-g syringe needle on a Luer attachment at the top of the beaker into 160 ml borosilicate vials 188 with blue butyl stoppers which had been sterilized, prefixed with 50 µL saturated HgCl₂ solution, 189 190 and pre-evacuated.

Rocks samples were collected from exploration drill cores provided by the mines. A total
of 23 samples were selected from representative lithologies of the host rocks from KC, Sudbury,
and Thompson.

194

195 **3. Methods**

196 Gas concentrations and nitrogen isotope compositions of N_2 were analyzed at University 197 of Toronto. Gas concentrations were generally measured within days after sample collection to 198 avoid possible shifts in gas (e.g., H₂ and O₂) concentrations due to diffusion and/or reaction, 199 although the results of re-analyses in 2007 on a batch of samples collected in 2000 show no 200 significant difference in H_2 and O_2 concentrations in comparison with the results obtained in 2000. Gas concentrations were measured by a Varian gas chromatography equipped with Varian 201 Molecular Sieve 5A PLOT fused silica column and a micro-thermal conductivity detector 202 (µTCD) for H₂, He, N₂, CO₂, O₂, Ar and a flame ionization detector for alkanes following the 203 published protocols (e.g., Ward et al., 2004). NH₃ is not specially examined here because it 204 205 requires high pH condition to drive NH_3 from fluids to gas phases (e.g., Deng et al., 2018), whereas the modeling based on the pH and temperature conditions of the studied fluid samples 206 suggests that NH₃ mostly concentrates in fluids and barely occurs in the gas phases (Li et al., 207 2012). The 2σ analytical error is < 5% of the absolute concentrations based on repeated analyses 208 209 of lab standards and natural samples. The nitrogen isotopic ratio of N₂ was measured by gas 210 chromatography-isotope ratio mass spectrometry. An aliquot of a gas sample was taken by gas-211 tight syringe from a sample bottle and injected into a Varian gas chromatography, in which a slow flow rate of 1.2 ml/min was used for the carrier gas (ultrahigh-purity helium) to ensure the 212 separation of N₂ from other gas components such as H₂ and O₂. CO₂ and CO are not significant 213 interferences in this analysis because their natural abundances in the gas samples are below the 214 215 detection limit (< 0.01 vol%). A time window was set to allow N₂ but no other interference gases 216 to be carried into a Finnigan 252 isotope ratio mass spectrometer for isotopic measurements. The isotopic ratios are reported using the δ notation ($\delta^{15}N = ({}^{15}N/{}^{14}N)_{sample}/({}^{15}N/{}^{14}N)_{standard} - 1$), in 217 which "standard" is atmospheric N₂. All samples were measured in duplicate. Repeat analyses of 218 219 these samples and laboratory working standards cross-calibrated against international IAEA nitrogen reference materials gave 2σ analytical errors better than 0.2‰. 220

Nitrogen isotopic ratios of rocks were measured at University of Alberta following the
method described by Li et al. (2021a). In brief, after removal of the surface by sawing, rock

223 chips from drill cores were ground into fine powders (< 200 mesh). For the graphite-bearing lens samples, nitrogen was measured on both bulk-rock samples and refractory reduced carbon 224 residues following the extraction protocol of Eigenbrode and Freeman (2006). The powder 225 226 samples were weighted and loaded into pre-cleaned one end-sealed quartz tube together with 227 CuO reagents, pumped in a metal manifold, sealed under high vacuum, and combusted first at 1200 °C for 30 min to 60 min (depending on lithology; see details in Li et al., 2021a) and then at 228 900 °C overnight to completely release the fixed nitrogen in minerals. The sample tube was then 229 cracked under high vacuum to release N₂, which was further cryogenically purified, quantified 230 231 by a capacitance manometer, and carried by an ultrahigh-purity helium gas to a Thermo Finnigan MAT 253 for nitrogen isotopic measurements. The $\delta^{15}N$ values are reported relative to the 232 233 atmospheric N₂. Repeat analyses of two standards (Low Organic Content Soil and High Organic Content Soil) from Elemental Microanalysis Ltd gave 2σ analytical errors better than 0.2% (Li 234 et al., 2021a). 235

236

237 **4. Results**

238 4.1. Gas concentrations and $\delta^{15}N_{N2}$ values

The major gas concentrations and $\delta^{15}N$ values of N₂ are reported in Table 1. The results are briefly summarized below.

Twenty-five gas samples from KC are dominated by CH₄ (64 – 83 vol%) and other light n-alkanes (e.g., ethane, propane, butane; in total < 9 vol%). N₂ is the second most abundant gas component with concentrations varying from 4.5 vol% to 16.9 vol% and δ^{15} N values from 3.2‰ to 8.0‰ (Table 1). These isotopic values fall in the δ^{15} N range of 2.8‰ – 8.8‰ from a limited set of KC samples in Montgomery (1994) and Labidi et al. (2020). H₂ gas was detected in all KC
samples except one, with variable concentrations from 0.3 vol% to 10.7 vol%.

Two gas samples from LR are also dominated by CH₄ (66 – 72 vol%) and N₂ (9 – 15 vol%) with δ^{15} N values of 6.5‰ and 7.4‰, respectively. Both samples contain H₂ (1.8 vol% and 3.6 vol%, respectively). All these features are similar to those of the KC samples.

250 Six gas samples from CCS (on the south rim of the Sudbury Basin) are characterized by 251 extremely high H_2 concentrations (10 – 58 vol%). CH₄ is the other major gas component in these 252 samples (14 - 70 vol%). N₂ concentrations are generally low in the samples studied at this site (Table 1). The $\delta^{15}N_{N2}$ values (0.6% to 4.2%) of these samples are also much lower than those of 253 the KC and LR samples. It is worth noting that variable amounts of O_2 (0.4 – 5.5 vol%) are 254 255 detected in these samples, which suggests significant air contamination (see Section 4.2). In a previous unpublished study by Montgomery (1994), much higher N₂ concentrations of up to 65 256 vol% and δ^{15} N values up to 17.5‰ were reported from CCS. The other samples from the 257 Sudbury Basin show significantly higher N₂ concentrations. The five NR gas samples are 258 259 dominated by N₂ (47 – 53 vol%), He (24 – 32 vol%) and CH₄ (15 – 24 vol%). H₂ occurs all samples in varying amounts (0.01 – 2.7 vol%). The $\delta^{15}N_{N2}$ values display a small range from 260 3.5% to 5.0%. The only gas sample available from FR is also dominated by N_2 (66 vol%), He 261 (17 vol%) and CH₄ (20 vol%). It also contains much higher Ar concentration (5.2 vol%) than all 262 the other studied gas samples from the Canadian Shield (< 2 vol%). The reason for this is not 263 fully understood at this time. The FR sample has a $\delta^{15}N_{N2}$ value of 5.0%, similar to those of the 264 NR samples. 265

266	Three gas samples from BT and four gas samples from TH are all dominated by CH_4 and
267	N_2 . The CH ₄ concentrations (63 – 69 vol%) are higher than N_2 concentrations (29 – 31 vol%) in
268	the BT samples, whereas the N_2 concentrations (46 – 66 vol%) are higher than the CH_4
269	concentrations (35 – 48 vol%) in the TH samples. Despite the difference in N_2 concentration, the
270	$\delta^{15}N_{N2}$ values are consistent between BT and TH, ranging from 7.4‰ to 8.7‰. All of the BT and
271	TH gas samples except one contain detectable $H_{2,}$ generally at levels between $0.02 - 2.75$ vol%.
272	

4.2. Distinguishing sampling-related air contamination

A characteristic feature of the studied gas samples from the Canadian Shield is the ubiquitous occurrence of H₂ gas (Table 1). This indicates that highly reducing conditions have been established and maintained in the host fracture fluids of these gas samples, which is consistent with all past studies. These highly reduced fracture fluids should not contain any *insitu* O₂ gas (Holland et al., 2013; Warr et al;, 2018, 2021a). Therefore, any O₂ detected in the gas samples should be indicative of recent air contamination, mostly likely during sampling.

To assess the air contamination in the studied samples, $\delta^{15}N_{N2}$ values are compared with N₂/O₂ and N₂/Ar concentration ratios (Fig. 2). Fig. 2A illustrates a decreasing trend of $\delta^{15}N_{N2}$ values following the decrease in N₂/O₂ ratios toward the air end-member, particularly seen in some of the CCS and KC samples. The data comparison (Fig. 2A) shows that more consistent ranges of $\delta^{15}N_{N2}$ values can be observed for samples with N₂/O₂ ratios > 15 at each site. The $\delta^{15}N_{N2}$ values of samples with N₂/O₂ < 15 are more or less altered by air contamination.

Unlike O_2 , which can be readily identified as a result of air contamination in these highly reducing fluids, ⁴⁰Ar (the dominant isotope of Ar) can be produced by subsurface processes and hence cannot be used to evaluate air contamination (Fig. 2B). ⁴⁰Ar, a product of the radioactive

289	decay of ⁴⁰ K, can accumulate in the fracture waters over time and vary significantly depending
290	on the lithology of local host rocks and isolation time of the fracture fluids (Warr et al., 2019).
291	N ₂ concentrations may also vary significantly, depending on the thermal history, nitrogen source,
292	abiotic reactions, and biological activities (if any) in the fracture waters (Silver et al., 2012).
293	These two factors can result in highly heterogeneous N_2 /Ar ratios in the deep subsurface of the
294	Canadian Shield (Fig. 2B), which may be a result of <i>in-situ</i> processes and not necessarily reflect
295	air contamination. The data compilation of less contaminated samples (i.e., $N_2/O_2 > 15$) on Fig.
296	2C illustrates that the N_2 /Ar ratios increase in order from LR, FR, NR, KC, to BT and TH.
297	Therefore, without knowing the N_2 /Ar values of uncontaminated gases, N_2 /Ar ratios alone cannot
298	be used to estimate the fractions of air components in gas samples from Precambrian cratons.
299	Accordingly, the discussion below on the $\delta^{15}N_{N2}$ values of the Canadian Shield samples
300	will focus only on those with $N_2/O_2 > 15$.

301

302 **4.3.** δ^{15} N values of rock samples

The nitrogen concentrations and δ^{15} N values of rock samples are listed in Table 2. Six silicate host rock samples from KC, including three rhyolites, two silicified cherty breccia and one quartz feldspar porphyry, show a δ^{15} N range from 6.0‰ to 10.4‰. Six samples of the graphite-bearing lenses from KC give a δ^{15} N range from 6.7‰ to 15.6‰ for bulk-rock nitrogen, but a lower δ^{15} N range from 0.4‰ to 10.4‰ for extracted refractory reduced carbon residues.

Sudbury host rock samples comprise of two samples (a meta-gabbro and a breccia
matrix) from the Creighton mine, which has similar wall rock to the CCS mine, and six samples
from NR (two felsic gneisses, two felsic norites, one granodiorite, and one breccia). All the

samples give a small δ^{15} N range from 1.3‰ to 3.4‰ except one felsic norite sample with a δ^{15} N value of -5.6‰.

Three host rock samples from TH, inducing one gneiss, one schist, and one skarn, show relatively high δ^{15} N values from 7.0% to 10.2%.

316

317 **5. Discussion**

318 5.1. $\delta^{15}N_{N2}$ variability across sites in the Canadian Shield

After discarding all the samples with $N_2/O_2 < 15$, the $\delta^{15}N_{N2}$ distribution (Fig. 2C) shows 319 a general trend with the lowest values in NR and FR, and steadily increasing values from LR, 320 KC, to BT and TH. However, this isotopic pattern is not confirmative at the moment given that 321 322 only a small number of samples were collected from a specific depth in each of the sites (except KC). A larger dataset from multiple depths at KC give much larger $\delta^{15}N_{N2}$ variation than those of 323 the other sites (Fig. 2C; see Section 5.4 for discussion). Two samples from different depths at 324 CCS also show large $\delta^{15}N_{N2}$ variation (Montgomery, 1994; Fig. 2A). Therefore, more data from 325 each site are needed in future studies to examine the inter-site $\delta^{15}N_{N2}$ variability and its 326 327 controlling factors in the Canadian Shield. 328

5.2. Comparison with the Fennoscandian Shield and the Kaapvaal Craton

The δ^{15} N values of N₂ from subsurface fracture fluids have been reported from some sites on other Precambrian cratons, e.g., the Fennoscandian Shield (Sherwood Lollar et al., 1993a) and the Kaapvaal Craton (Silver et al., 2012). As mentioned above, the thirteen published gas samples from the Fennoscandian Shield (Sherwood Lollar et al., 1993a) have $\delta^{15}N_{N2}$ values from 0.2‰ to 5.1‰ (except one high value of 10.0‰) with a peak at the bin of 0-1‰ (Fig. 3A). Silver

335	et al. (2012) reported the $\delta^{15}N_{N2}$ values of eighteen gas samples from Beatrix (BE116, 325, 327),
336	Driefontein (Dr938), Evander (EV219, 522, 818), Kloof (KL441, 739), Masimong (MM5),
337	Merriespruit (MS151), Mponeng (MP104) in the Witwatersrand Basin in the Kaapvaal Craton.
338	These fracture systems have mean residence times varying from 0.7 Ma (EV522) to 20 Ma
339	(KL739 and MP104) with one sample (Dr938) having a ¹⁴ C-derived age of 1022 years
340	(Lippmann et al., 2003; Lin et al., 2006; Silver et al., 2012 and reference therein). The hydrogen
341	and oxygen isotope compositions of these fracture fluids spread from on (or close to) the global
342	meteoric water line (GMWL) to above the GMWL (Lippmann et al., 2003; Ward et al., 2004;
343	Lin et al., 2006; Onstott et al., 2006; Warr et al., 2021a). Their $\delta^{15}N_{N2}$ values fall in the range of
344	-1.3% to 5.8‰ (Fig. 3B). The $\delta^{15}N_{N2}$ values do not correlate with either the residence times or
345	the magnitude of isotopic deviation above the GMWL, indicating the major control on the $\delta^{15}N_{N2}$
346	values of the samples in the Kaapvaal Craton may not be geological processes (e.g., fluid-rock
347	interaction) but biological processes.
348	In contrast, the Canadian Shield samples show consistently higher $\delta^{15}N_{N2}$ values (Fig.
349	3C). A total of thirty-five samples studied here cluster in a $\delta^{15}N_{N2}$ range of 3.0% to 8.0% with a
350	peak at the bin of 7-8‰ (Fig. 3C), while three historical samples from Montgomery (1994) and
351	Sherwood Lollar (1993a) give more variable $\delta^{15}N_{N2}$ values of 1.4‰, 1.5‰ and 17.5‰,
352	respectively (Fig. 2A). The $\delta^{15}N_{N2}$ discrepancy between the Canadian Shield samples and the
353	samples from the Fennoscandian Shield and the Kaapvaal Craton could be attributed to the
354	differences in nitrogen source and abiotic and biological processes among these deep subsurface
355	fracture waters, which are discussed in detail below.
356	

5.3. Source of N2 in the Canadian Shield

Several sources could potentially contribute to the N₂ in the terrestrial subsurface fracture water systems, such as ancient atmospheric N₂, dissolved inorganic nitrogen species (nitrate, nitrite, ammonium) in pore water and/or fluid inclusions in host rocks, and fixed nitrogen in host rocks.

In the studied samples from the Canadian Shield, although noble gas studies imply that 362 363 these fracture fluids contain a minor initial component of noble gas (e.g., Xe) derived from ancient air (Holland et al., 2013; Warr et al., 2018), a ballpark estimation based on the 364 concentration data of gases and rocks in Li et al. (2016) and typical N₂ concentration of seawater 365 366 (Kipfer et al., 2002) suggests that the ancient air contributed at most 0.1 - 6% of the gas components. Therefore, ancient atmospheric N_2 can be excluded as the main source. In addition, 367 a recent study discovered extreme ${}^{15}N^{15}N$ enrichment of atmospheric N₂ (Yeung et al., 2017). 368 Assuming the ancient atmospheric N₂ had comparable ¹⁵N¹⁵N enrichment, and little re-ordering 369 of the internal bonding of N₂ molecules in these low-temperature fracture systems, a ¹⁵N¹⁵N 370 enrichment would be expected if significant amount of ancient atmospheric N₂ contributed to the 371 fluids. However, Labidi et al. (2020) found no ¹⁵N¹⁵N enrichment in the KC samples. This 372 suggests that the amounts of atmospheric N_2 , from both ancient air and modern air 373 374 contamination, are relatively small in the total N₂ of the samples.

Dissolved inorganic nitrogen species in pore water and fluid inclusions in host rock have been proposed to account for the abundant nitrate, N_2 and ammonium in the subsurface fracture waters in the Witwatersrand Basin in the Kaapvaal Craton, South Africa (Silver et al., 2012). In this model, it requires (1) a high NH₃-NH₄⁺ pool in fluid inclusions in the first place, (2) efficient migration of nitrogen in fluid inclusions to fracture fluids, and (3) abiotic and biological recycling processes to convert NH₃/NH₄⁺ to other nitrogen species (e.g., N₂ in this case). These

conditions are relatively difficult to reach in the Canadian Shield where the igneous-rock
dominated host rocks contain small volumes of primary fluid inclusions. Furthermore,
geochemical and hydrogeological analyses have shown that contribution of young surface fluids
is little in these fracture systems (e.g., Warr et al., 2021a), ruling out later infiltration of dissolved
inorganic nitrogen from surface.

Sedimentary rocks are a commonly considered source for N₂ in basinal environments. 386 387 However, in the Canadian Shield, host rocks are dominated by crystalline rocks. At KC where host rock lithology has been well characterized from drill cores, graphite-bearing lenses occupy a 388 very small volume in host rocks. The nitrogen concentrations of the graphite-bearing lenses (40-389 390 99 ppm; Table 2) are significantly smaller than those of typical deep-sea sediments and their 391 metamorphosed equivalents (hundreds to thousands of ppm; e.g., Bebout and Fogel, 1992; 392 Busigny et al., 2003; Sadofsky and Bebout, 2004; Li and Bebout, 2005). Therefore, the graphite-393 bearing lenses can less likely account for the widely occurring gases in the highly confined and 394 locally controlled fracture water compartments (Warr et al., 2018). This conclusion is further 395 supported by the carbon and hydrogen isotopic signatures of n-alkanes in the gas samples. The δ^{13} C and δ^{2} H patterns of n-alkanes are very different to that of conventional thermogenic gases 396 397 (Sherwood Lollar et al., 1993b, 2002, 2008; Warr et al., 2021b). Overall, both isotopic fingerprints and hydrogeological frameworks do not favor organics as the main source of the 398 399 gases.

Significant amounts of nitrogen (in form of ammonium) can be assimilated into the
crystal structures of secondary phyllosilicate minerals (e.g., clay and serpentine) formed during
the alteration of igneous rocks by seawater and/or hydrothermal fluids (Busigny et al., 2005; Li

et al., 2007). The nitrogen measurement on six representative silicate samples from KC give a nitrogen concentration range from 12 ppm to 34 ppm (average: ~ 24 ppm; Table 2) and a δ^{15} N range from 6.0‰ to 10.3‰ (average: 8.0‰). Given the large volume of the silicate host rocks in Precambrian cratons, such high nitrogen concentrations of the igneous host rocks represent a huge nitrogen reservoir, with an inventory orders in magnitude higher than that in the small volume of fluids. Mobilization by devolatilization of a small proportion of this reservoir is able to account for the N₂ in the subsurface fracture waters.

410 To devolatilize the ammonium fixed in the igneous host rocks, it requires relatively high temperatures. In light of previous laboratory and field studies (e.g., Haendel et al., 1986; Bebout 411 and Fogel, 1992), nitrogen devolatilization from minerals and rocks could have easily taken 412 place under the peak (and retrograde) metamorphic conditions in the study sites, e.g., 400 °C at 413 414 KC, 700 °C at TH, and variable temperatures (depending on the distance to the crater; Abramov and Kring, 2004) during the impact event at Sudbury. At crustal conditions, high temperatures 415 416 facilitate N₂ as the devolatilization product (e.g., Bebout and Fogel, 1992; Li et al., 2009). The 417 lower temperature limit for N₂ devolatilization from minerals and rocks is however unconstrained. Even taking the smectite-illite transition temperature of 60 °C (Freed and Peacor, 418 419 1989) as the lower limit, it is still higher than the current temperatures of the studied fracture fluid systems. In particular, the Canadian Shield has been relatively stable and maintained a low 420 thermal gradient since at least 2 Ga (Slack, 1974). Temperature estimation using the method of 421 Li et al. (2016) suggests that the temperature at KC should have been < 60 °C since at latest 1.3 422 Ga for the 2.1 kmbs site and 0.9 Ga for the 2.9 kmbs site. Therefore, the observed N_2 was mostly 423 likely produced during earlier time periods. N₂ production would have been most efficient during 424 425 the peak metamorphism at each site, and diminish exponentially with the decrease in temperature

with time. Given that the analyzed host rocks consistently show high nitrogen concentrations (Table 2), it only requires a very small (almost negligible) fraction of the total nitrogen in the rocks to account for the observed N_2 in the fluids, which can be easily satisfied.

429 5.4. Possible N recycling processes in subsurface fracture fluids

430 5.4.1. Abiotic N₂ reduction

Based on above discussions, the N₂ in the deep subsurface fracture fluids in the Canadian 431 432 Shield most likely originated by devolatilization of fixed ammonium in their silicate host rocks. Nitrogen devolatilization from rocks is associated with an isotopic effect with preferential uptake 433 of ${}^{14}N$ by N₂ and preferential retention of ${}^{15}N$ in host rock (e.g., Bebout and Fogel, 1992; 434 Haendel et al., 1986; Li et al., 2021b, c). The magnitude of ¹⁵N depletion in the N₂ product is 435 436 dependent on two factors, i.e., the temperature-dependent isotope fractionation factor and the 437 fraction of ammonium in rock that is converted into N₂. The nitrogen isotope fractionation factors between N₂ and clay minerals can be derived from Li et al. (2021b, c) to be -13.2% at 60 438 °C, -10.9‰ at 100 °C, -6.2‰ at 200 °C, -4.1‰ at 400 °C, -2.3‰ at 700 °C and -1.5‰ at 1000 439 °C. Based on these fractionation factors, the theoretical δ^{15} N differences between N₂ product and 440 remaining ammonium in host rocks along the progress of metamorphic devolatilization are 441 442 illustrated by a Rayleigh fractionation model in Fig. 4A-C for KC, Sudbury and Thompson, respectively. Comparison of average δ^{15} N values between N₂ and host rocks yield Δ^{15} N_{N2-rock} 443 values of -0.3% for the 2.1 kmbs site, -1.1% for the 2.4 kmbs site, and -3.1% for the 2.9 kmbs 444 445 site at KC, +2.5‰ at NR, +4.0‰ at FR, +0.3‰ at TH and -0.4‰ at BT. All these values are 446 higher than the expected values for N₂ devolatilization at their peak metamorphic conditions (Fig. 4A-C). Any N₂ generated from retrograde metamorphism would make the isotope 447 discrepancy ever larger. At CCS, although all the samples in this study have been severely 448

contaminated by air during sampling, their values are still higher than the predicted values (Fig. 450 4B), not even mention the extremely high δ^{15} N values (up to 17.5‰) observed on less air-451 contaminated samples (Montgomery, 1994). These results indicate, while the magnitude and 452 direction of isotope fractionation are indeed consistent with N₂ production via devolatilization of 453 ammonium in host rocks, the extents of observed isotopic discrepancy between N₂ and host 454 rocks require an additional process to explain the ¹⁵N enrichments in N₂.

455 Diffusive loss of N₂ and abiotic N₂ reduction are two known processes that can induce 456 ¹⁵N enrichments in remaining N₂. Extensive studies of the noble gas concentrations (in the KC 457 system in particular) have demonstrated that diffusion cannot be a major factor due to the 458 concordance in the ages of the fluids derived from both light (helium and neon) and heavy (argon 459 and xenon) noble gases. In systems where diffusion is a significant process, preferential loss of 460 light noble gases would produce an artifact of significantly younger apparent ages for helium and neon – which is notably not observed in any of the KC studies (Holland et al., 2013; Warr et al., 461 2018). Accordingly, diffusion process is less likely to significantly impact the $\delta^{15}N_{N2}$. Rather 462 463 than diffusion, abiotic N₂ reduction may play an important role. Following the cooling of the fluids, N₂ input from metamorphic devolatilization diminished to negligible level. Meanwhile, 464 the nonstop interaction between water and Fe^{2+} -bearing minerals (e.g., olivine, pyroxene, biotite, 465 pyrite) in host rocks can produce secondary minerals to seal the fracture system and subsequently 466 establish and maintain a highly reducing environment enriched in H_2 and dissolved Fe^{2+} (Li et 467 468 al., 2016) inside the fracture system. These reducing agents in the fuids, as well as abundant Fe²⁺-bearing minerals in host rocks, would facilitate abiotic reduction reactions. This is 469 470 supported by the observation that abiogenic products (e.g., alkanes, acetate, and formate) 471 dominate the gaseous and/or dissolved organic compounds in the KC fracture fluids (Sherwood

472 Lollar et al., 2021) and also widely occur (if not dominate) in other sites in the Canadian Shield (Sherwood Lollar et al., 2006). 473

474

Abiotic N_2 reduction in a geological setting generally refers to the mineral catalyzed reduction of N₂ to produced NH₃ or NH₄⁺ in fluids, via reactions such as equation (1): 475

476

$$N_2 + 6Fe^{2+} + 8H^+ \to 2NH_4^+ + 6Fe^{3+} \tag{1}$$

Laboratory experiments demonstrate that abiotic N2 reduction is most efficient at 500 °C 477 (Brandes et al., 1998), but can also occur at temperatures as low as 22 °C (Smirnov et al., 2008). 478 Abiotic N₂ reduction generally produces a kinetic nitrogen isotopic effect due to the difficulty in 479 breaking the strong N \equiv N bond of N₂. Based on the nitrogen isotopic measurements of altered 480 igneous rocks, Li et al. (2007, 2014) yielded nitrogen isotopic enrichment factors of -15% to -481 482 11‰ for abiotic N_2 reduction at medium- to high-temperature hydrothermal conditions (>300 °C). The magnitude of kinetic nitrogen isotopic effect could be larger at lower temperatures (Li 483 et al., 2009), but no data are available yet. Using the average value of -13‰ (Li et al., 2007, 484 485 2014) as the lower limit and a Rayleigh fractionation model (Fig. 4D-F), a ballpark estimate can be made for the fractions of N₂ required to be reduced in order to match the observed $\delta^{15}N$ value 486 487 in the studied samples. The results suggest that the fractions of the initial N₂ that has been abiotically reduced is 25 - 63% at 2.1 kmbs, 21 - 61% at 2.4 kmbs, and 7 - 54% at 2.9 kmbs, 488 respectively (Fig. 4D). This decreasing trend along depth is self-consistent with the temperature 489 and time framework that 2.1 kmbs has the shortest time for N₂ production but longest time and 490 491 lowest temperature for abiotic N_2 reduction, whereas the 2.9 kmbs has the longest time for N_2 492 production but shortest time and highest temperature for abiotic N_2 reduction. Similar extents of abiotic N₂ reduction are also obtained from NR (27 - 70%), FR (35 - 74%), TH (18 - 65%), and 493

494 BT (14 - 63%) (Fig. 4 E, F). Future examinations on concentrations and isotope compositions of 495 ammonium in the fluids may help to test this possibility.

496 It is worth noting that, based on mass balance and isotopic comparison, Silver et al. 497 (2012) also proposed that abiotic N_2 reduction could have occurred in the subsurface fracture 498 fluids in the Kaapvaal Craton. This implies that abiotic N_2 reduction might occur widely in 499 Precambrian cratons.

500

501 5.4.2. The role of radiolysis?

502 Another process that is worth briefly discussing is radiolysis. Energy released from the decay of radioactive isotopes of K, U, Th in host rocks has been shown to play an important role 503 in the long-term production of deep subsurface hydrogen (e.g., Lin et al., 2005; Sherwood Lollar 504 et al., 2014), carbon (Sherwood Lollar et al., 2021), and sulfur (Lin et al., 2006; Li et al., 2016) 505 in deep fracture fluids in the Precambrian cratons around the world. An intriguing question is 506 how much this process may contribute to the nitrogen cycle in these deep saline fracture fluids. 507 Silver et al. (2012) carried out laboratory experiments to irradiate NH₃/NH₄⁺ in anaerobic 508 solutions and observed production of nitrite and nitrate. Consequently, radiolysis has been 509 510 proposed to be part of the multiple abiotic and biotic mechanisms to drive the nitrogen cycle in the subsurface fluids in the Kaapvaal Craton (Silver et al., 2012). Radiolytic impact on fixed 511 ammonium in minerals and rocks is poorly examined by far. It is unclear whether radiolysis in 512 513 the Precambrian cratonic environments facilitate N₂ production. But laboratory experiments on the N₂-H₂-H₂O system (e.g., Etoh et al., 1987; Karasawa et al., 1991) have demonstrated that N₂ 514 can be consumed by radiolysis to form not only NH4⁺ as the dominant product (Karasawa et al., 515 516 1991) but also NO_3^- (Etoh et al., 1987), via overall reactions described in equations (2)-(3).

517
$$\begin{cases} N_2 \xrightarrow{radiation} N^{\cdot} + N^{\cdot} \\ H_2 O \xrightarrow{radiation} H^{\cdot} + O^{\cdot} \end{cases}$$
(2)

518
$$\begin{cases} N' + 3H' + H^+ \to NH_4^+ \\ 2N' + 50' + 20H^- \to 2NO_3^- + H_2 0 \end{cases}$$
(3)

This differs from the mineral catalyzed abiotic N₂ reduction process in equation (1). However, the nitrogen isotope fractionation during radiolytic decomposition of N₂ has not been constrained, although a kinetic isotopic effect likely occurs. Future studies integrating laboratory examination of nitrogen isotope fractionations during radiolysis of the N₂-H₂-H₂O system and the analyses of concentrations and isotope compositions of ammonium and nitrate (if there is any) in fracture fluids are necessary to further assess these processes in the deep subsurface of Precambrian cratons.

526

527 5.4.3. Microbial nitrogen recycling?

The samples studied here contain a set of N₂ samples from one of the long-term 528 monitoring boreholes (BH12299 at 2.4 kmbs) at the KC Observatory collected over nearly 10 529 years since the completion of the borehole drilling in May 2007. Interestingly, the $\delta^{15}N_{N2}$ values 530 531 of this set of samples (Table 1) display a trend of steady decrease (for >1%) over time (Fig. 5). Since significant addition of an air component over time can be ruled out based on the ¹⁵N¹⁵N 532 results (Labidi et al., 2020), this trend suggests that another *in-situ* source of ¹⁵N-depleted N₂ has 533 534 been progressively added into the original N₂ reservoir in this borehole over the monitoring 535 period. Although the N₂ in the deeper fracture fluids (e.g., 2.9 kmbs) at the KC Observatory is relatively ¹⁵N depleted, it cannot be the source for the 2.4 kmbs fracture fluids because current 536 evidence supports hydrogeologic isolation between these fracture systems (Warr et al., 2018, 537 2021b). One potential *in-situ* source for a ¹⁵N-depleted N₂ source in the 2.4 kmbs fracture system 538

is dissolved ammonium. The temperature and pH conditions of the KC fluids favor the

540 preservation of ammonium as the net product from abiotic N₂ reduction (Li et al., 2012). This

541 may therefore provide an ideal 15 N-depleted source for this secondary N₂.

The abiotic conversion of NH_4^+/NH_3 to N_2 requires either oxic condition and/or relatively 542 high temperature (>500 °C) without catalyst (Li et a., 2009). Even with efficient catalyst (e.g., 543 544 Fe), the conversion rate is very slow at temperatures < 300 °C (Li et al., 2021d). In addition, no evidence to show an oxic environment in the studied fracture systems. Thus, abiotic conversion 545 of NH₄⁺/NH₃ at the low-temperature environment (24 °C at 2.4 kmbs) may not contribute 546 547 detectable N₂ to BH12299 fluid at a decadal time scale. Microbially-driven anaerobic oxidation of ammonium (e.g., Van De Graaf et al., 1995; Byrne et al., 2008) is a more efficient mechanism 548 549 to convert ammonium to N_2 . Microbial recycling of nitrogen has been suggested to occur in 550 subsurface fracture fluids in the Kaapvaal Craton (Silver et al., 2012; Lau et al 2016) and elsewhere in the Canadian Shield (Sheik et al., 2021), but cannot be explored further for the KC 551 552 samples due to the lack of biogeochemical data and isotopic compositions of other nitrogen species (ammonium, nitrite or nitrate, if there is any) in these fracture fluids. It is worth 553 highlighting though that recent studies using cell counts and culture-based methods have 554 555 identified low abundance of H₂-utilizing, alkane-oxidizing sulfate-reducing bacteria in the KC fracture fluids (Lollar et al., 2019; Wilpiszeski et al., 2020). This directly supports the prevailing 556 hypothesis that microbial activities could have been sustained over geological timescale in the 557 558 long isolated KC fracture fluids based on sulfur isotopic studies (Li et al., 2016). Microbial activities related to methanogenesis and methanotrophy in the 2.4 kmbs KC fracture fluids have 559 560 been further inferred from the isotopic signatures of CH₄ (Sherwood Lollar et al., 2002; Young et 561 al., 2017, Warr et al., 2021b). In particular, a potential ongoing addition of biogenic CH₄ to the

same fracture fluid system (BH12299) has been suggested based on a temporal decrease in the mass-18 isotopologues of CH₄ over the last decade (Warr et al., 2021b). A speculation is that the KC fracture fluids could have been or is being influenced by microbial activities involving multiple metabolic pathways including H₂ oxidation, sulfate reduction, methanogenesis, anaerobic oxidation of methane, and anaerobic oxidation of ammonium. This hypothesis will need to be tested by future microbial studies with detailed constraints on metabolic pathways and their geochemical fingerprints.

569

570 **6.** Conclusions

 N_2 in the highly reducing saline fracture waters of the Canadian Shield provides a novel 571 opportunity to look into the (bio)geochemical nitrogen recycling processes in deep subsurface 572 systems that have been long investigated in the context of the deep carbon cycle and subsurface 573 574 life, but to date with very little characterization and quantification of the deep nitrogen cycle. 575 Here we observed that the N₂ in subsurface fracture waters with residence times from hundreds of million years to billions of years in the Canadian Shield were more enriched in ¹⁵N than the N₂ 576 samples from fracture waters with residence times of hundreds of thousands to tens of millions 577 578 of years in the Fennoscandian Shield and the Kaapvaal Craton. Detailed isotopic comparison between the Canadian Shield N₂ samples and their potential sources excludes air, dissolved 579 inorganic nitrogen, and organic compounds in host rocks as their sources. Instead, fixed 580 ammonium in igneous host rocks is the most likely source. Modeling of nitrogen devolatilization 581 of igneous rocks supports this interpretation, but also suggests that a second process is required 582 to account for the observed ¹⁵N enrichments in the N₂ samples from the Canadian Shield. Long-583 term abiotic N_2 reduction in the closed fracture water systems is the most likely process. The 584

data in this study imply a common occurrence of abiotic N₂ reduction in the long isolated, highly
reducing fracture water systems in the Canadian Shield, and possibly in similar environments on
the early Earth and other planets. The accumulation of the ammonium product can not only
provide a critical reagent for abiotic synthesis of amino acid (an essential building block for life)
toward the origin of life but also supply a necessary nutrient to support potential ammonium
assimilating or anaerobic ammonium oxidizing microbes in these environments.

591

592 Acknowledgements

This study was partially supported by NSERC and Canada Research Chair funding to BSL and NSERC Discovery grant to LL. BSL is a Fellow and Co-Director for the CIFAR Earth 4D program in subsurface science and exploration. We thank Thomas Eckert and Scott Mundle for field assistance and Georges Lacrampe-Couloume for lab assistance. Thanks are due to colleagues and supporters at the mines whose efforts and support for the sampling program were invaluable. This manuscript benefited from constructive comments by Dr. Eva Stüeken and an anonymous reviewer.

600

601 **References**

602	Abramov, O., Kring, D.A., 2004. Numerical modeling of an impact-induced hydrothermal
603	system at the Sudbury crater. J. Geophys. Res., 109: E10007.
604	Doi:10.1029/2003JE002213.
605	Barrie, C.T., Davis, D.W., 1990. Timing of magmatism and deformation in the Kamiskotia-Kidd
606	Creek area, western Abitibi Subprovince, Canada. Precam. Res., 46: 217-240.
607	Bebout, G.E., Fogel, M.L., 1992. Nitrogen-isotope compositions of metasedimentary rocks in the
608	Catalina Schist, California: implications for metamorphic devolatilization history.
609	Geochim. Cosmochim. Acta, 56: 2839-2849.

- Bleeker, W., Parrish, R.R., 1996. Stratigraphy and U-Pb zircon geochronology of Kidd Creek:
 implications for the formation of giant volcanogenic massive sulphide deposits and the
 tectonic history of the Abitibi greenstone belt. Can. J. Earth Sci., 33: 1213-1231.
- Brandes, J.A., Boctor, N.Z., Cody, G.D., Cooper, B.A., Hazen, R.M., Yoder Jr, H.S., 1998.
 Abiotic nitrogen reduction on the early Earth. Nature, 395: 365-367.
- Busigny, V., Cartigny, P., Philippot, P., Ader, M., Javoy, M., 2003. Massive recycling of
 nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment:
 evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western
 Alps, Europe). Earth and Planetary Science Letters, 215: 27-42.
- Busigny, V., Laverne, C., Bonifacie, M., 2005. Nitrogen content and isotopic composition of
 oceanic crust at a superfast spreading ridge: a profile in altered basalts from ODP Site
 1256, Leg 206. Geochem. Geophys. Geosyst., 6: Q12O01.
- Byre, N., Strous, M., Crépeau, V., Kartal, B., Birrien, J.-L., Schmid, M., Lesongeur, F.,
 Schouten, S., Jaeschke, A., Jetten, M., Prieur, D., Godfroy, A., 2008. Presence and
 activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. The
 ISME J., 3: 117-123.
- Chen, Y., Fleet, M.E., Pan, Y., 1993. Platinum-group minerals and gold in arsenic-rich ore at the
 Thompson Mine, Thompson Nickel Belt, Manitoba, Canada. Mineral. Petrol., 49: 127 146.
- Couëslan, C.G., Pattison, D.R.M., Dufrane, S.A., 2013. Paleoproterozoic metamorphic and
 deformation history of theThompson Nickel Belt, Superior Boundary Zone, Canada, from
 in situ U–Pb analysis of monazite. Precam. Res., 237: 13-35.
- Davis, D.W., 2008. Sub-million-year age resolution of Precambrian igneous events by thermal
 extraction-thermal ionization mass spectrometer Pb dating of zircon: Application to
 crystallization of the Sudbury impact melt sheet. Geology, 36: 383-386.
- Davis, D.W., Schandl, E.S., Wasteneys, H.A., 1994. U-Pb dating of minerals in alteration halos
 of Superior Province massive sulfide deposits: syngenesis versus metamorphism.
 Contrib. Mineral. Petrol., 115: 427-437.
- Deng, Y., Li, Y., Li, L., 2018. Experimental investigation of nitrogen isotopic effects associated
 with ammonia degassing at 0–70° C. Geochim. Cosmochim. Acta, 226: 182-191.
- Dimroth, E., Imreh, L., Goulet, N., Rocheleau, M., 1983. Evolution of the south-central part of
 the Archean Abitibi belt, Quebec. Part II: Tectonic evolution and geomechanical model.
 Can. J. Earth Sci., 20: 1355-1373.
- Doig, F., Sherwood Lollar, B., Ferris, F.G., 1995. Evidence for abundant microbial communities
 in Canadian Shield groundwaters an in situ biofilm experiment. Geomicrob. J., 13: 91 101.
- Eigenbrode, J.L., Freeman, K.H., 2006. Late Archean rise of aerobic microbial ecosystems.
 PNAS 103, 15759-15764.
- Etoh, Y., Karasawa, H., Ibe, E., Sakagami, M., Yasuda, T., 1987. Radiolysis of N₂-H₂O systems.
 J. Nuclear Sci. Techol., 24: 672-674.
- Faggart, B.E., Basu, A.R., Tatsumoto, M., 1985. Origin of the Sudbury complex by meteoritic
 impact: neodymium isotopic evidence. Science, 230: 436-439.
- Fleet, M.E., Barnett, R.L., Morris, W.A., 1987. Prograde metamorphism of the Sudbury igneous
 complex. Can. Mineral., 25: 499-514.
- Frape, S.K., Fritz, P., McNutt, R.H., 1984. Water-rock interaction and chemistry of groundwaters
 from the Canadian Shield. Geochim. Cosmochim. Acta, 48: 1617-1627.

- Freed, R.L., Peacor, D.R., 1989. Variability in temperature of the smectite/illite reaction in Gulf
 Coast sediments. Clay Minerals, 24: 171-180.
- Goodwin, A., 1996. Principles of Precambrian Geology. Academic Press, pp 327.
- Haendel, D., Mühle, K., Nitzsche, H.-M., Stiehl, G., Wand, U., 1986. Isotopic variations of the
 fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta, 50: 749-758.
- Hannington, M.D., Bleeker, W., Kjarsgaard, I., 1999. Sulfide mineralogy, geochemistry, and ore
 genesis of the Kidd Creek deposit: Part I. North, Central and South orebodies. In:
 Hannington, M.D., Barrie, C.T. (Eds.), The Giant Kidd Creek Volcanogenic Massive
 Sulfide Deposit, Western Abitibi Subprovince, Canada, pp. 163-224.
- Heard, A.W., Warr, O., Borgonie, G., Linage, B., Kuloyo, O., Fellowes, J.W., Magnabosco, C.,
 Lau, M.C.Y., Erasmus, M., Cason, E.D., van Heerden, E., Kieft, T.L., Mabry, J.C.,
 Onstott, T.C., Sherwood Lollar, B., Ballentine, C.J., 2018. South African crustal fracture
 fluids preserve paleometeoric water signatures for up to tens of millions of years. Chem.
 Geol., 493: 379-395.
- Hoffmann, P.F., 1989. Precambrian geology and tectonic history of North America. In: Bally,
 A.W., Palmer, A.R. (Eds.), The Geology of North America An Overview. The
 Geological Society of America, pp. 447-512.
- Holland, G., Sherwood Lollar, B., Li, L., Lacrampe-Couloume, G., Slater, G., Ballentine, C.J.,
 2013. Deep fracture fluids isolated in the crust since the Precambrian era. Nature, 497:
 357-360.
- Hulbert, L., Hamilton, M.A., Horan, M.F., Scoates, R.F.J., 2005. U-Pb zircon and Re-Os Isotope
 geochronology of mineralized ultramafic intrusions and associated nickel ores from the
 Thompson nickel belt, Manitoba, Canada. Econ. Geol., 100: 29-41.
- Itävaara, M., Nyyssönen, M., Kapanen, A., Ahonen, L., Kukkonen, I.T., 2011. Characterization
 of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole,
 Fennoscandian Shield. FEMS Microbiol. Ecol., 77: 295-309.
- Karasawa, H., Ibe, E., Uchida, S., Etoh, Y., Yasuda, T., 1991. Radiation induced decomposition
 of ntirogen. Int. d. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem., 37: 193-197.
- Kietäväinen, R., Ahonen, L., Kukkonen, I.T., Niedermann, S., Wiersberg, T., 2014. Noble gas
 residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole,
 Finland. Geochim. Cosmochim. Acta, 145: 159-174.
- Kipfer, R., Aeschbach-Hertig, W., Peeters, F. and Stute, M., 2002. Noble gases in lakes and
 ground waters. In: Noble Gases in Geochemistry and Cosmochemistry (eds., D. Porcelli,
 C.J. Ballentine and R. Wieler). Reviews in Mineralogy and Geo-chemistry. Mineralogical
 Society of America, pp. 615–700.
- Krogh, T.E., McNutt, R.H., Davis, G.L., 1982. Two high precision U-Pb zircon ages for the
 Sudbury nickel irruptive. Can. J. Earth Sci., 19: 723-728.
- Labidi, J., Barry, P.H., Bekaert, D.V., Broadley, M.W., B., M., Giunta, T., Warr, O., Sherwood
 Lollar, B., Fischer, T.P., Avice, G., Caracausi, A., Ballentine, C.J., Halldórsson, S.A.,
 Stefánsson, A., Kurz, M.D., Kohl, I.E., Young, E.D., 2020. Hydrothermal 15N15N
 abundances constrain the origins of mantle nitrogen. Nature, 580: 367-374.
- Lau, M.C.Y., Kieft, T.L., Kuloyo, O., Linage-Alvarez, B., van Heerden, E., Lindsay, M.R.,
 Magnabosco, C., Wang, W., Wiggins, J.B., Guo, L., Perl, am, D.H., Kyin, S., Shwe, H.H.,
 Harris, R.L., Oh, Y., Yi, M.J., Purtschert, R., Slater, G.F., Ono, S., Wei, S., Li, L.,
- 700 Sherwood Lollar, B., Onstott, T.C., 2016. An oligotrophic deep-subsurface community

701	dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. PNAS,
702	113: E7927-E7936.
703	Li, L. and Bebout, G.E., 2005. Carbon and nitrogen geochemistry of sediments in the Central
704	American convergent margin: Insights regarding subduction input fluxes, diagenesis, and
705	paleoproductivity. J. Geophys. Res., 110: B11202, doi:10.1029/2004JB003276.
706	Li, L., Bebout, G.E., Idleman, B.D., 2007. Nitrogen concentration and $\delta^{15}N$ of altered oceanic
707	crust obtained on ODP Legs 129 and 185: insights into alteration-related nitrogen
708	enrichment and the nitrogen subduction budget. Geochim. Cosmochim. Acta, 71: 2344-
709	2360.
710	Li, L., Cartigny, P., Ader, M., 2009. Kinetic nitrogen isotope fractionation associated with
711	thermal decomposition of NH ₃ : Experimental results and potential applications to trace
712	the origin of N ₂ in natural gas and hydrothermal systems. Geochim. Cosmochim. Acta,
713	73: 6282-6297.
714	Li, L., Sherwood Lollar, B., Li, H., Wortmann, U.G., Lacrampe-Couloume, G., 2012.
715	Ammonium stability and nitrogen isotope fractionations for NH_4^+ – $NH_{3(aq)}$ – $NH_{3(gas)}$
716	systems at 20–70 °C and pH of 2–13: Applications to habitability and nitrogen cycling in
717	low-temperature hydrothermal systems. Geochim. Cosmochim. Acta, 84: 280-296.
718	Li, L., Zheng, YF., Cartigny, P., Li, J., 2014. Anomalous nitrogen isotopes in ultrahigh-
719	pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen
720 721	reduction during fluid–rock interaction. Earth Planet. Sci. Lett., 403: 67-78. Li, L., Wing, B.A., Bui, T.H., McDermott, J.M., Slater, G.F., Wei, S., Lacrampe-Couloume, G.,
721	Sherwood Lollar, B., 2016. Sulfur mass-independent fractionation in subsurface fracture
723	waters indicates a long-standing sulfur cycle in Precambrian rocks. Nature
724	Communications, 7: 1325. Doi: 10.1038/ncomms13252.
725	Li, L., Li, K., Li, Y., Zhang, J., Du, Y., Labbe, M., 2021a. Recommendations for combustion-
726	based nitrogen isotope analysis for silicate minerals and rocks. Rapid Comm. Mass
727	Spectrometry, 35: e9075. Doi: 10.1002/rcm.9075.
728	Li, L., He, Y., Zhang, Z., Liu, Y., 2021b. Nitrogen isotope fractionations among gaseous and
729	aqueous NH_4^+ , NH_3 , N_2 and metal-ammine complexes: Theoretical calculations and
730	applications. Geochim. Cosmochim. Acta, 295: 80-97.
731	Li, Y., Li, L., Wu, Z., 2021c. First-principles calculations of equilibrium nitrogen isotope
732	fractionations among aqueous ammonium, silicate minerals and salts. Geochim.
733	Cosmochim. Acta, 297: 220-232.
734	Li, L., Cartigny, P., Li, K., 2021d. Experimental investigation of formation and decomposition of
735	roaldite in ammonia atmosphere at 300-700° C and associated nitrogen isotope
736	fractionations. Geochim. Cosmochim. Acta, 300: 65-78.
737	Lightfoot, P.C., Farrow, C.E.G., 2002. Geology, geochemistry, and mineralogy of the
738	Worthington Offset Dike: A genetic model for offset dike mineralization in the Sudbury
739	igneous complex. Econ. Geol., 97: 1419-1446. Lin, LH., Hall, J.A., Lippmann, J., Ward, J., Sherwood Lollar, B., DeFlaun, M., Rothmel, R.,
740 741	Moser, D.P., Gihring, T.M., Mislowack, B., Onstott, T.C., 2005. Radiolytic H ₂ in
741 742	continental crust: Nuclear power for deep subsurface microbial communities. Geochem.
742	Geophys. Geosyst., 6: Q07003.
744	Lin, LH., Wang, PL., Lippmann-Pipke, J., Boice, E., Pratt, L.M., Sherwood Lollar, B.,
745	Brodie, E.L., Hazen, T.C., Andersen, G.L., DeSantis, T.Z., Moser, D., Kershaw, D.,
	······································

746 Onstott, T.C., 2006. Long-term sustainability of a high-energy, low-diversity crustal 747 biome. Science, 314: 479-482. Lippmann-Pipke, J., Sherwood Lollar, B., Niedermann, S., Stroncik, N.A., Naumann, R., van 748 Heerden, E., Onstott, T.C., 2011. Neon identifies two billion year old fluid component in 749 Kaapvaal Craton. Chem. Geol., 283: 287-296. 750 751 Lippmann, J., Stute, M., Torgersen, T., Moser, D.P., Hall, J.A., Lin, L.-H., Borcsik, M., Bellamy, R.E.S., Onstott, T.C., 2003. Dating ultra-deep mine waters with noble gases and ³⁶Cl, 752 753 Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta, 67: 4597-4619. Lollar, G.S., Warr, O., Telling, J., Osburn, M.R., Sherwood Lollar, B., 2019. 'Follow the Water': 754 755 Hydrogeochemical constraints on microbial investigations 2.4 km below surface at the Kidd Creek Deep Fluid and Deep Life Observatory. Geomicrobiol. J., 36: 859-872. 756 Magnabosco, C., Ryan, K., Lau, C.Y.M., Kuloyo, O., Sherwood Lollar, B., Kieft, T., van 757 Heerden, E., onstott, T.C., 2015. A metagenomic window into carbon metabolism at 3 758 km depth in Precambrian Continental Crust. The ISME Journal, 10: 730-741. 759 Magnabosco, C., Timmers, P.H.A., Lau, M.C.Y., Borgonie, G., Linage-Alvarez, B., Kuloyo, O., 760 761 Alleva, R., Kieft, T.L., Slater, G.S., van Heerden, E., Sherwood Lollar, B., Onstott, T.C., 2018. Fluctuations in populations of subsurface methane oxidizers in coordination with 762 changes in electron acceptor availability. FEMS Microb. Ecol., 94: doi: 763 10.1093/femsec/fiy089. 764 765 Meldrum, A., AbdelRahman, A.F.M., Martin, R.F., Wodicka, N., 1997. The nature, age and petrogenesis of the Cartier batholith, northern flank of the Sudbury structure, Ontario, 766 Canada. Precam. Res., 82: 265-285. 767 Mercier-Langevin, P., Dubé, B., Hannington, M.D., davis, D.W., Lafrance, B., Goseelin, G., 768 2007. The LaRonde Penna Au-rich volcanogenic massive sulfide deposit, Abitibi 769 greenstone belt, Quebec: Part I. geology and geochronology. Econ. Geol., 102: 585-609. 770 771 Montgomery, J., 1994. An isotopic study of CH₄ and associated N₂ and H₂ gases in Canadian Shield mining environments. MSc Thesis. University of Toronto. 772 NASEM (National Academies of Sciences, Engineering, and Medicine), 2019. An Astrobiology 773 774 Strategy for the Search for Life in the Universe. The National Academies Press, 775 Washington, D.C. https://doi.org/10.17226/25252. Onstott, T.C., Lin, L.-H., Davidson, M., Mislowack, B., Borcsik, M., Hall, J., Slater, G.F., Ward, 776 J.A., Sherwood Lollar, B., Lippmann-Pipke, J., Boice, E., Pratt, L.M., Pfiffner, S., Moser, 777 D.P., Gihring, T.M., Kieft, T.L., Phelps, T.J., van Heerden, E., Litthaur, D., DeFlaun, M., 778 Rothmel, R., Wanger, G., Southam, G., 2006. The origin and age of biogeochemical 779 trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J., 780 23: 369-414. 781 Paktunç, A., 1984. Metamorphism of the ultramafic rocks of the Thompson mine, Thompson 782 Nickel Belt, northern Manitoba. Can. Mineral., 22: 77-91. 783 784 Powell, W.G., Carmichael, D.G., Hodgson, C.J., 2011. Conditions and timing of metamorphism in the southern Abitibi Greenstone Belt, Quebec. Can. J. Earth Sci., 32: 787-805. 785 Prior, G.J., Gibson, H.L., Watkinson, D.H., Cook, R.E., 1999. Anatomy, lithogeochemistry, and 786 emplacement mechanisms for the QP rhyolite, Kidd Creek mine, Timmins, Ontario. In: 787 Hannington, M.D., Barrie, C.T. (Eds.), Economic Geology Monograph 10: The Giant 788 Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, 789 790 Canada. the Economic Geology Publishing Co., pp. 123-142.

- Sadofsky, S. J. and Bebout, G.E., 2004. Nitrogen geochemistry of subducting sediments: New results from the Izu-Bonin-Mariana margin and insights regarding global nitrogen subduction. Geochem. Geophys. Geosyst., 5: Q03I15, doi:10.1029/2003GC000543.
- Sherwood Lollar, B., Frape, S.K., Fritz, P., Macko, S.A., Welhan, J.A., Blomqvist, R., Lahermo,
 P.W., 1993a. Evidence for bacterially generated hydrocarbon gas in Canadian Shield and
 Fennoscandian Shield rocks. Geochim. Cosmochim. Acta, 57: 5073-5085.
- Sherwood Lollar, B., Frape, S.K., Weise, S.M., Fritz, P., Macko, S.A., Welhan, J.A., 1993b.
 Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta, 57: 50875097.
- Sherwood Lollar, B., Heuer, V., McDermott, J.M., Tille, S., Warr, O., Moran, J.J., Telling, J.,
 Hinrichs, K.-U., 2021. A window into the abiotic carbon cycle Acetate and formate in
 fracture waters in 2.7 billion year-old host rocks of the Canadian Shield. Geochim.
 Cosmochim. Acta, 294: 295-314.
- Sherwood Lollar, B., Westgate, T., Ward, J., Slater, G.F., Lacrampe-Couloume, G., 2002.
 Abiogenic formation of alkanes in the Earth's crust as a minor source for global
 hydrocarbon reservoirs. Nature, 416: 522-524.
- Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G.F., Ward, J., Moser, D.P., Gihring,
 T.M., Lin, L.-H., Onstott, T.C., 2006. Unravelling abiogenic and biogenic sources of
 methane in the Earth's deep subsurface. Chem. Geol., 226: 328-339.
- Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T.C., Pratt, L.M.,
 Slater, G.F., 2008. Isotopic signatures of CH₄ and higher hydrocarbon gases from
 Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons.
 Geochim. Cosmochim. Acta, 72: 4778-4795.
- Sherwood Lollar, B., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J., 2014. The
 contribution of the Precambrian continental lithosphere to global H₂ production. Nature,
 516: 379-382.
- Sherwood Lollar, B., Voglesonger, K., Lin, L.-H., Lacrampe-Couloume, G., Telling, J.,
 Abrajano, T.A., Onstott, T.C., Pratt, L.M., 2007. Hydrogeologic controls on episodic H₂
 release from Precambrian fractured rocks Energy for deep subsurface life on Earth and
 Mars. Astrobiology, 7: 971-986.
- Sheik, C.S., Badalamenti, J.P., Telling, J., Hsu, D., Alexander, S.C., Bond, D.R., Gralnick, J.A.,
 Sherwood Lollar, B., Toner, B.M., 2021. Novel microbial groups drive productivity in an
 Archean iron formation. Front. Microbiol., 12: doi: 10.3389/fmicb.2021.627595.
- Silver, B.J., Raymond, R., Sigman, D.M., Prokopeko, M., Sherwood Lollar, B., Lacrape Coulome, Fogel, M.L., Pratt, L.M., Lefticariu, L., Onstott, T.C., 2012. The origin of NO₃⁻
 and N₂ in deep subsurface fracture water of South Africa. Chem. Geol., 294-295: 51-62.
- Slack, P.B., 1974. Variance of terrestrial heat flow between the North American Craton and the
 Canadian Shield. Geol. Soc. Amer. Bullet., 85: 519-522.
- Smirnov, A., Hausner, D., Laffers, R., Strongin, D.R., Schoonen, M., 2008. Abiotic ammonium
 formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean
 nitrogen cycle. Geochem. Trans., 9: 5. Doi: 10.1186/1467-4866-9-5.
- Smith, P.E., Schandl, E.S., York, D., 1993. Timing of metasomatic alteration of the Archean
 Kidd Creek massive sulfide deposit, Ontario, using ⁴⁰Ar-³⁹Ar laser dating of single
 crystals of fuchsite. Econ. Geol., 88: 1636-1642.

- Telling, J., Voglesonger, K., Sutcliffe, C.N., Lacrampe-Couloume, G., Edwards, E., Sherwood
 Lollar, B., 2018. Bioenergetic constraints on microbial hydrogen utilization in
 Precambrian deep crustal fracture fluids. Geomicrobiol. J., 35: 108-119.
- Thompson, L.M., Spray, J.G., Kelley, S.P., 1998. Laser probe argon-40/argon-39 dating of
 pseudotachylyte from the Sudbury Structure: Evidence for postimpact thermal
 overprinting in the North Range. Meteor. Planet. Sci., 33: 1259-1269.
- Ward, J., Slater, G., Moser, D., Lin, L.-H., Lacrampe-Couloume, G., Bonin, A.S., Davidson, M.,
 Hall, J.A., Mislowack, B., Bellamy, R.E.S., Onstott, T.C., Sherwood Lollar, B., 2004.
 Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for
 the deep biosphere. Geochim. Cosmochim. Acta, 68: 3239-3250.
- Warr, O., Sherwood Lollar, B., Fellowes, J., Sutcliffe, C.N., McDermott, J.M., Holland, G.,
 Mabry, J.C., Ballentine, C.J., 2018. Tracing ancient hydrogeological fracture network age
 and compartmentalisation using noble gases. Geochim. Cosmochim. Acta, 222: 340-362.
- Warr, O., Giunta, T., Ballentine, C.J., Sherwood Lollar, B., 2019. Mechanisms and rates of ⁴He,
 ⁴⁰Ar, and H₂ production and accumulation in fracture fluids in Precambrian Shield
 environments. Chem. Geol., 530: 119322.
- Warr, O., Giunta, T., Onstott, T.C., Kieft, T., Harris, R.L., Nisson, D.M., Sherwood Lollar, B.,
 2021a. The role of low-temperature ¹⁸O exchange in the isotopic evolution of deep
 subsurface fluids. Chem. Geol., 561: 120027.
- Warr, O., Young, E.D., Giunta, T., Kohl, I., Ash, J., Sherwood Lollar, B., 2021b. Highresolution, long-term isotopic and isotopologue variation identifies the sources and sinks
 of methane in a deep subsurface carbon cycle. Geochim. Cosmochim. Acta, 294: 315334.
- Wilpiszeski, R.L., Sherwood Lollar, B., Warr, O., House, C.H. (2020) In situ growth of
 halophilic bacteria in saline fracture fluids from 2.4 km below surface in the deep
 Canadian Shield. Life, 10: 307. Doi: 10.3390/life10120307.
- Yeung, L.Y., Li, S., Kohl, I.E., Haslun, J.A., Ostrom, N.E., Hu, H., Fischer, T.P., Schauble, E.A.,
 Young, E.D., 2017. Extreme enrichment in atmospheric 15N15N. Science Advances, 3:
 Article eaao6741.
- Young, E.D., Kohl, I.E., Sherwood Lollar, B., Etiope, G., Rumble, D., Li, S., Haghnegahdar, M.
 A., Schauble, E.A., McCain, K.A., Foustoukos, D.I., Sutcliffe, N.C., Warr, O.,
- Ballentine, C.J., Onstott, T.C., Hosgormez, H., Neubeck, A., Marques, J.M., Perez-
- 867 Rodriguez, I., Rowe, A.R., LaRowe, D.E., Magnabosco, C., Bryndzia, T., 2017. The
- relative abundances of resolved ${}^{12}CH_2D_2$ and ${}^{13}CH_3D$ and mechanisms controlling
- isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta,
 203: 235-264.
- Zwanzig, H.V., Macek, J.J., McGregor, C.R., 2007. Lithostratigraphy and geochemistry of the
 high-grade metasedimentary rocks in the Thompson nickel belt and adjacent Kisseynew
 domain, Manitoba: implications for nickel exploration. Econ. Geol., 102: 1197-1216.

Figure captions

Fig. 1. Location map of sample sites for this study together with the sites with $\delta^{15}N_{N2}$ values reported in Sherwood Lollar et al. (1993a). The general geology of the Canadian Shield is shown in the inserted panel (revised from Hoffmann, 1989; Li et al., 2016; Warr et al., 2019). BT = Birchtree; TH = Thompson; KC = Kidd Creek; FR = Fraser; NR = Nickel Rim; CCS = Copper Cliff South; LR = LaRonde; VDO = Val D'Or; NT = Norita

Fig. 2. Comparison of δ^{15} N values of N₂ with N₂/O₂ ratio (A) and N₂/Ar ratio (B, C) for subsurface fracture waters from the Canadian Shield. Error bars are smaller than data symbols. These highly reducing fracture waters produce H₂ and do not contain O₂, thus the N₂/O₂ ratio can be used as a robust index for air contamination. The vertical line (N₂/O₂ = 15) in panel A divides significantly contaminated samples to the left and less contaminated samples to the right. In contrast, the fracture waters contain various amounts of ⁴⁰Ar (and N₂/Ar ratio) from the decay of ⁴⁰K in host rocks. Thus N₂/Ar ratios cannot be used to quantify the air component. All samples with known N₂/Ar ratios δ^{15} N values are compiled in Panel B. Whereas only samples with known N₂/O₂ values of >15 are plotted in panel C. Historical samples marked by "(M)" are unpublished thesis data from Montgomery (1994); samples marked by "(BSL)" are from Sherwood Lollar et al. (1993a). Both are shown as filled grey symbols.

Fig. 3. Comparison of δ^{15} N values of N₂ in subsurface fracture waters from the Kaapvaal Craton (A), the Fennoscandian Shield (B), and the Canadian Shield (C). The Canadian Shield samples are consistently more ¹⁵N enriched than those from the other two cratons. See text for discussion.

Fig. 4. Comparison of $\Delta^{15}N_{N2-rock}$ between observed values and theoretical values of metamorphic devolatilization calculated by Rayleigh fractionation modeling (A-C), and increase in $\delta^{15}N$ of N₂ (expressed as $\Delta^{15}N_{\text{Remianing N2-initial N2}}$) after abiotic nitrogen reduction (D-F). The f in both panels denote the fraction of remaining nitrogen in the reactant. See text for discussion.

Fig. 5. Diagram showing steady decrease in the δ^{15} N value of N₂ from one single borehole at 2.4 km below surface of the Kidd Creek mine over a 10-year period.

Location	Sample ID	H2 (vol%)	He (vol%)	Ar (vol%)	O2 (vol%)	CH4 (vol%)	N2 (vol%)	N2/O2	N ₂ /Ar	δ ¹⁵ N _{N2} (‰)
Kidd	10.1.2000-KCL6900-1F	0.33	n.d.	0.23	0.66	75.05	7.93	12.0	34.5	6.8
Creek	10-1-2000-KCL6900-2D	1.95	n.d.	0.29	0.60	73.60	9.32	15.5	32.1	8.0
	10-1-2000-KCL6900-3A	2.47	n.d.	0.34	0.66	72.48	11.31	17.1	33.3	7.7
	10-1-2000-KCL6900-4D	1.32	n.d.	0.35	0.88	70.48	12.69	14.4	36.3	7.0
	10-1-2000-KCL6900-5D	2.03	n.d.	0.39	0.69	70.70	14.01	20.3	35.9	7.3
	10-1-2000-KCL6900-6B	1.40	n.d.	0.33	0.95	75.08	11.90	12.5	36.1	6.4
	12.2.2008-KC7850-12261	3.16	2.45	0.39	0.20	72.15	13.84	69.2	35.5	6.8
	10.5.2007-KC7850-12262	8.37	2.91	0.35	0.48	69.10	14.03	29.2	40.1	7.5
	22.10.2015-KC7850-12262	2.7	2.00	0.43	1.96	56.70	26.40	13.5	61.4	6.7
	27.8.2007-KC7850-12287A	10.67	2.47	0.34	1.54	72.17	16.10	10.5	47.4	5.4
	20.6.2008-KC7850-12287A	3.61	2.45	0.36	0.24	70.10	14.45	60.2	40.1	7.4
	12.2.2008-KC7850-12299	6.52	2.15	0.45	0.40	71.98	16.87	42.2	37.5	7.4
	19.6.2008-KC7850-12299	3.32	2.42	0.42	0.14	67.70	15.35	109.6	36.5	7.2
	31.3.2009-KC7850-12299	4.82	2.87	0.40	0.19	64.37	14.81	77.9	37.0	7.4
	12.01.2010-KC7850-12299	4.62	2.54	0.40	0.12	71.49	14.94	124.5	37.4	7.5
	21.10.2010-KC7850-12299	3.97	2.62	n.d.	< 0.05	70.32	15.32	> 306.4		6.9
	29.2.2012-KC7850-12299	3.19	2.39	n.d.	< 0.01	71.92	14.60	> 1460.0		7.1
	20.09.2013-KC7850-12299	5.58	2.69	0.21	0.11	70.98	13.50	122.7	64.3	6.4
	02.04.2014-KC7850-12299	2.52	1.60	0.28	0.32	74.6	9.88	30.9	35.3	5.1
	12.07.2016-KC7850-12299*	3.60	2.41	0.35	< 0.01	71.3	13.36	> 1336.0	38.2	6.5
	25.01.2017-KC7850-12299*	4.80	3.70	0.54	0.11	71.6	15.40	140.0	28.5	6.3
	08.2.2012-KC9500-13675	< 0.01	1.63	n.d.	< 0.01	78.70	4.53	> 453.0		3.2
	1.3.2012-KC9500-13684	5.30	2.10	n.d.	< 0.01	75.83	6.80	> 680.0		6.5
	29.11.2012-KC9500-BH2	16.6	0.43	0.29	0.06	71.0	10.50	175.0	36.2	5.5
	13.07.2016-KC9500-bubA	0.70	1.77	0.27	0.27	71.6	10.34	38.3	38.3	4.3
LaRonde	24.03.2016-LR6480-L2900-LR-290-	1.83	5.09	1.33	0.63	66.11	15.25	24.2	11.5	7.4
	24.03.2016-LR6480-L2900-LR-290-	3.63	7.20	0.79	0.15	72.10	8.92	59.5	11.3	6.5

Table1. Major components[§] and $\delta^{15}N_{N2}$ value of gas samples from deep subsurface fracture fluids in the Canadian Shield.

Location	Sample ID	H2 (vol%)	He (vol%)	Ar (vol%)	O2 (vol%)	CH4 (vol%)	N2 (vol%)	N ₂ /O ₂	N ₂ /Ar	δ ¹⁵ N _{N2} (‰)
Copper	CCSM-GH-11-7-2001-1E	54.00	3.46	0.07	0.40	33.15	2.87	7.2	41.0	2.3
Cliff	CCSM-GH-11-7-2001-2E	43.00	3.38	0.23	5.54	14.68	20.02	3.6	87.0	0.6
South	CCSM-GH-11-7-2001-3D	9.94	4.37	0.16	0.57	70.19	5.61	9.8	35.1	4.2
	CCSM-GH-11-7-2001-5E	57.59	2.62	0.07	0.49	23.96	2.74	5.6	39.1	1.6
	CCSM-GH-11-7-2001-6E	51.00	6.42	0.12	0.43	31.79	3.10	7.2	25.8	2.8
	CCSM-GH-11-7-2001-7E	19.7	2.52	0.28	0.49	57.97	5.41	11.0	19.3	2.7
Nickel	29.11.2013-NR1730m_NR170128	0.01	32.23	1.51	0.21	15.40	52.65	250.7	34.9	3.5
Rim	05.03.2014-NR1730m_NR170128	0.03	29.90	1.50	< 0.01	19.38	48.09	> 4809.0	32.1	3.5
	05.03.2014-NR1730m_NR170182	1.64	27.73	1.51	< 0.01	n.a.	48.87	> 4887.0	32.4	3.9
	05.03.2014-NR1730m_NR170183	2.67	26.19	1.91	< 0.01	24.29	47.35	> 4735.0	24.8	4.0
	22.10.2014-NR1730m_NR170128	0.01	24.12	1.61	< 0.01	24.34	47.73	> 4773.0	29.6	3.0
Fraser	06.03.2014_FML4700_FR47774	< 0.01	16.68	5.24	< 0.01	19.82	65.76	> 6576.0	12.5	5.0
Birchtree	28.5.2007-BT3950L-gas stopper BH	0.02	1.35	0.22	0.34	62.9	29.26	86.1	133.0	8.3
	6-11-2007-BT3900-9167N-BH (Floor#2)	< 0.005	1.38	0.23	0.35	68.7	30.92	88.3	134.4	7.8
	27-3-2008-BT3900-9167N-BT1	0.08	1.33	0.24	0.16	62.9	30.54	190.9	127.3	7.9
Thompson	1065750 13.06.06 (3-403-2)	2.75	2.40	0.51	1.92	34.7	46.26	24.1	90.7	8.3
-	1065760 14.06.06 (1-401-2)	0.79	2.70	0.42	3.63	36.5	65.51	18.0	156.0	7.4
	1163630 13.06.06 (7-399-5)	0.30	2.99	0.28	0.77	36.6	60.77	78.9	217.0	8.6
	1065800 13.06.06 (4-405-3)	0.03	2.80	0.28	0.65	45.5	51.78	79.7	184.9	8.7
		1	I	I	I	1	1	1	1	1

[§] Major Gas contents of these samples have been reported by Sherwood Lollar et al., 2006; Li et al. (2016); Telling et al. (2018); Warr et al. (2019). The contents of N₂, Ar, and O₂ reported here, if slightly different to those in the literature, were re-analyzed results on the same gas bottle used for $\delta^{15}N_{N2}$ analysis.

^{*} Labidi et al. (2020) reported δ^{15} N values of 6.6‰ for sample 12.07.2016-KC7850-12299 and 6.7‰ for sample 25.01.2017-KC7850-12299.

Location				Bulk-rock δ ¹⁵ N (‰)	Reduced carbon component $\delta^{15}N$ (‰)
	BH12612A (465.30-465.62 m)	Graphite-bearing lens	68.9	7.0	7.0
	BH12612A (470.50-470.96 m)	Graphite-bearing lens	67.6	6.7	6.7
	BH12612A (392.80-393.15 m)	Graphite-bearing lens	98.6	9.3	
	BH12612A (413.38-413.75 m)	Graphite-bearing lens	40.5	8.7	1.3
	BH12299 (369.5 m)	Graphite-bearing lens	54.9	15.6	10.4
	BH12299 (472.4 m)	Graphite-bearing lens	89.8	10.2	0.4
Kidd Creek		Average	70.1	9.6	5.2
KIUU CIEEK	BH12612A (232.10-232.26 m)	Rhyolite	30.9	7.8	
	BH12612A (243.30-243.07 m)	Rhyolite	22.7	7.3	
	BH12612A (248.80-249.35 m)	Rhyolite	34.3	6.0	
	BH12612A (292.70-293.15 m)	Silicified cherty breccia	23.0	10.3	
	BH12612A (353.20-353.38 m)	Silicified cherty breccia	11.9	10.4	
	BH12612A (475.85-476.02 m)	Quartz feldspar porphyry	19.3	6.3	
		23.7	8.0		
	Creighton Mine BH131106 (395.50-396.60 m)	Meta-gabbro	14.1	2.6	
	Creighton Mine BH131106 (395.50-396.60 m)	Breccia matrix	14.9	2.3	
		Average	14.5	2.4	
	Nickel Rim BH130075 (319.96-320.14m)	Felsic gneiss	12.7	1.3	
Sudburg	Nickel Rim BH170143 (75.87-76.07m)	Felsic norite	13.6	3.4	
Sudbury	Nickel Rim BH170143 (109.98-110.16 m)	Felsic norite	49.3	-5.6	
	Nickel Rim BH170143 (178.00-178.20 m)	Granodiorite	9.7	2.2	
	Nickel Rim BH170143 (283.91-284.04 m)	Felsic gneiss	12.3	3.1	
	Nickel Rim BH170143 (349.90-364.11)	Breccia	10.0	1.8	
		Average	17.9	1.0	
	Thompson mine assorted core	Archean gneiss	30.2	7.0	
Thompson	Thompson mine assorted core	Thompson Formation skarn	50.9	8.1	
Thompson	Thompson mine assorted core	schist	50.2	10.2	
		Average	43.8	8.4	

Table 2. $\delta^{15}N$ values of rock samples from Kidd Creek, Sudbury, and Thompson