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Abstract

Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been in-

ferred to exist in Earth’s fluid core on the basis of magnetic field observations and changes

in the length-of-day. These accelerations have a typical timescale of decades. However,

the physical mechanism causing the accelerations is not well understood. Scaling argu-

ments suggest that the leading order torque averaged over cylindrical surfaces should arise

from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven

by convective flows, could then force decadal changes in the Lorentz torque and generate

zonal accelerations. This hypothesis is tested by constructing a quasi-geostrophic model of

magnetoconvection, with thermally-driven flows perturbing a steady, imposed background

magnetic field. It is found that when the Alfvén number is similar to that estimated for

Earth’s fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz

torque, with the latter generating mean zonal accelerations. The model reproduces both

fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and

relative timescale similar to those inferred for the Earth’s core. The temporal changes in

the magnetic field which drive the time-varying Lorentz torque are produced by the under-

lying convective flows, which shear and advect the magnetic field on timescales associated

with convective eddies. These results support the hypothesis that temporal changes in the

magnetic field deep inside Earth’s fluid core drive the observed decadal zonal accelerations

of cylindrical surfaces through the Lorentz torque.
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Physics is the science of what you can throw away.

- Keith Cuff
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Chapter 1

Introduction

The remote setting and extreme environment of Earth’s core make it a very difficult struc-

ture to study. Only in the past century has such basic information as its size, composition,

and phase been rigorously established. Analysis of Earth’s orientation in space, its elastic-

ity, and its seismological properties show its deep interior to be composed of two distinct

regions. The innermost region is a solid, metallic core extending to a radius of 1220 km. The

outer region is a spherical shell surrounding the inner core, extending from the surface of the

latter (the inner core boundary, or ICB) to the core-mantle boundary (CMB) at a radius of

3480 km (Jeffreys, 1926; Brush, 1980; Souriau and Calvet, 2015; Stixrude and Jeanloz, 2015).

The outer core is known to be a self-sustaining dynamo which generates the dominant part

of Earth’s magnetic field (Jones, 2015). However, the mechanism driving the dynamo is

largely unknown. Tidal forcing (e.g. Kerswell and Malkus, 1998; Le Bars et al., 2015) and

convection due to radiogenic heating of core fluid (e.g. Kutzner and Christensen, 2000) have

been shown to be capable of forcing other planetary dynamos. However, in Earth’s core, the

most likely candidate is turbulent convection driven by a combination of chemical buoyancy

and secular cooling (Nataf and Schaeffer, 2015). Chemical buoyancy results from light ele-

ments, such as carbon and sulphur, being rejected as material freezes onto the inner core.
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Since this lowers the density of the fluid in the neighbourhood where freezing is occurring,

the fluid experiences a buoyant force. Secular cooling, on the other hand, relies on a supera-

diabatic temperature gradient between the ICB and the CMB. Conduction and convection

then work together to transport the excess heat out of the core, with convection dominating

if the temperature gradient is large enough.

Both chemical buoyancy and secular cooling are strongly affected by the thermal and me-

chanical properties of the outer core material. The material’s melting point is of particular

interest since the temperature at the ICB plays a key role in estimating the core’s mean

temperature and density profiles (Nimmo, 2015). However, before the melting point can be

found, the chemical composition of the outer core material must be determined. Doing so is

a rather interdisciplinary science (Ringwood, 1984; McDonough, 2014). It generally involves

using the chemical composition of meteorites and theories of planetary formation to esti-

mate the relative abundance of elements in Earth as a whole (e.g. Wänke and Dreibus, 1988;

Wasson and Kallemeyn, 1988; Palme et al., 2014), then applying geochemistry to determine

how each chemical component would separate as Earth evolved (Allègre et al., 1995; Li and

Agee, 1996; Li and Fei, 2014, e.g.). While this is still a very active field of research, and

while there remains considerable debate about the precise recipe, it has been established

with some certainty that an iron/nickel alloy is the dominant ingredient, with trace amounts

of oxygen, silicon, and sulphur1. However, the trace elements likely contribute roughly 10%

of the outer core’s total mass (Allègre et al., 1995; Hirose et al., 2013; McDonough, 2014).

Assuming the composition of the outer core was known precisely, measuring the melting

point of that material (along with other key parameters, like the the viscosity, thermal and

1Because of different freezing points for different elements, the different ways elements can or cannot
form solid crystal structures, and other geochemical considerations, the proportion of trace elements probably
differs between the outer and inner cores. If the density jump between the two bodies were accurately known,
geochemists could use these differences to constrain the recipes somewhat. Unfortunately, the density jump
is not well known.
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chemical expansivities, and electrical conductivity) at the temperatures and pressures found

in the core would remain challenging. Only recently have laser-heated diamond anvil cell

and shock experiments enabled the most modest of the expected conditions to be reached

experimentally (e.g. Alfè, 2015; Souriau and Calvet, 2015). Instead, most estimates rely on

quantum mechanical calculations based on first principles. These ab initio calculations sug-

gest a temperature at the ICB of about 5650±600 K (e.g. Nimmo, 2015). If the outer core is

assumed to be undergoing vigorous convection, its mean radial temperature profile should be

close to adiabatic. This means the temperature at the CMB can be calculated from that at

the ICB, assuming one uses the correct adiabat. This, like the composition of the outer core,

is the subject of vigorous debate (see e.g. Alfè, 2015; Souriau and Calvet, 2015). However,

Nimmo (2015) estimates the CMB temperature to be in the range of 4180 ± 400 K.

It is likely that compositional buoyancy is the dominant driver of convection in the outer

core (Lister and Buffett, 1995), with secular cooling and other mechanisms playing secondary

roles (e.g. Jones, 2015). Despite this, many successful self-sustaining dynamo models have

been constructed using only thermal forcing, and it remains one of the simplest ways to drive

a realistic numerical dynamo (Glatzmaier and Roberts, 1995; Olson, 2015). The credibility

of such models, however, relies on the degree to which they can be verified with observa-

tions from nature. While it remains impossible to directly observe core flows, we are able

to directly observe the geomagnetic field at Earth’s surface. Because changes in the field’s

spatial and temporal structures are strongly associated with patterns of flow near the CMB,

the magnetic field can provide valuable insight into the dynamics of the core, and provide

constraints on any model of core dynamics we may care to construct.
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1.1 Geomagnetic Inversions

The notion that changes in the magnetic field at Earth’s surface were caused by motions

within the planet itself was first proposed by Halley (1692). At the time, electromagnetic

induction was unknown; as Halley himself put it, “we know [of no fluids] that are any ways

Magnetical”. Instead, Halley hypothesized that Earth’s interior could be a series of solid,

concentric, spherical shells, separated from one another by a “fluid medium between”. If

each shell were magnetized with a dipole field of independent strength and orientation2, and

the shells were allowed to rotate independently of one another, very complex changes in the

observed magnetic field could be explained3.

Developments in the understanding of electrodynamics soon demonstrated that flows of liquid

metals were capable of amplifying and maintaining magnetic fields, thus in effect providing

Halley’s missing magnetical fluid. Work by Henry Cavendish, Emil Wiechert, Richard Old-

ham, Beno Gutenberg, Harold Jeffreys, and others (Brush, 1980) had by the 1920’s revealed

Earth’s basic structure, and shown in particular an outer core composed of just such a liquid

metal. Larmor (1919) proposed that Earth’s main magnetic field (the part not associated

with magnetization of the crust, or induced by the magnetosphere’s interactions with the

solar wind) could be generated by convection occurring within this liquid metal, while El-

sasser formalized this idea in a series of three papers in the late 1940’s (Elsasser, 1946a,b,

1947). Since then, the idea that the main field is generated by a convectively-driven dynamo

in the outer core has been broadly accepted (e.g. Olson, 2015).

Figure 1.1 shows three snapshots corresponding to the estimated configuration of the spheri-

cally radial magnetic field at the CMB in 1905, 1950, and 2000. Magnetic field lines pointing

2Strictly speaking, Halley did not propose a true dipole, but merely that each shell has two magnetic
poles.

3It is largely thanks to Halley that the world was given Newton’s Principia Mathematica. After the Royal
Society of London nearly went bankrupt publishing Francis Willughby’s De Historia Piscium, Halley himself
stepped in to bankroll the Principia’s publication.
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Figure 1.1: Snapshots of the spherically radial (Br) component of the magnetic field at the core-
mantle boundary. Blue and red regions indicate magnetic field lines pointing into and out of the
core, respectively. From an extended version of the gufm1 geomagnetic model (Jackson et al.,
2000).

out of the core are marked in red, while those pointing into the core are marked in blue.

The configuration clearly evolves between snapshots. This time-variability of the main field

is termed the “secular variation”.

One particularly consistent feature of the global secular variation has been a westward drift

of flux patches along the equator (Dumberry and Finlay, 2007). Vestine (1953) assumed

the flux patches were being advected by flows at the CMB, enabling him to calculate the

azimuthal velocity structure there. He then used that structure to estimate the outer core’s

total angular momentum. As will be discussed in section 1.3, Earth as a whole must conserve

angular momentum. Thus, changes in the outer core’s angular momentum must correspond

to an equal and opposite change in the angular momentum of the crust and mantle, measur-

able as a change in the length-of-day (LOD). Vestine’s predictions turned out to “correspond

reasonably well” with the unexplained changes in LOD observed by Brouwer (1952), linking

flow velocities at the CMB to the core’s angular momentum for the first time4.

Vestine’s work was the beginning of modern geomagnetic core flow inversion. Such inversions

rely on the induction equation. For flow velocity u, magnetic field B, magnetic diffusivity

4Munk and Revelle (1952) presented theoretical arguments for this at the same May 1952 meeting of the
AGU as Vestine presented his work. Munk and Revelle cite the idea as originally coming from Louis Slichter,
the director of the Institute of Geophysics at UCLA at the time.
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η, time t, and gradient operator ∇,

∂B

∂t
= ∇× (u×B) + η∇2B . (1.1)

While at first glance Eq.(1.1) appears to allow the recovery of all three velocity field com-

ponents, several considerations limit the amount of velocity information which can be prac-

tically extracted from the observed magnetic field.

First, because B’s radial derivatives are not known at the CMB, not enough information

exists to calculate the diffusion term of Eq.(1.1). This difficulty is generally overcome,

however, by invoking the “frozen flux” approximation (Alfvén, 1943)5. It assumes that

conductivity is very high, causing the magnitude of the diffusion term to be dominated by the

other terms in Eq.(1.1). With L as the length scale, T as the magnetic variation’s timescale,

and U as the typical flow velocity, the ratio between the diffusion and time variation terms

is ηT L−2, and the ratio between the diffusion and production terms is η (UL)−1. Thus, the

frozen flux approximation holds if

ηT
L2
� 1 and

η

UL
� 1 . (1.2)

The magnetic diffusivity of the outer core is thought to be around 0.5 m2s−1 (Pozzo et al.,

2012). Typical core flow velocities are about 10 km yr−1, or 3 × 10−4 m s−1 (e.g. Holme,

2015). Generally, core flow inversions are done for periods spanning years to decades. A

reasonable upper bound for the timescale of changes in the magnetic field used by them

could be a century, or about 3 × 109 s. This leaves only the minimum length scale of the

inversions to be determined.

The geomagnetic field is often expanded in spherical harmonics. If such an expansion is

5At the end of the same six-page paper, Alfvén invented the term “magnetohydrodynamic wave”. He
also considered “hydromagnetic wave”, but dismissed it as “shorter but not quite adequate”.
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performed on the radial part of the total main field outside the CMB (at radial distance

r = r2 from Earth’s centre), the magnitude of each degree ` depends on a factor
(
r2
r

)`+2
.

For example, that the dipole part of the main field drops off as 1
r3 , and the quadrupole by

1
r4 . Thus, the higher the spherical harmonic degree, the more strongly it is attenuated with

distance.

At Earth’s surface, where the observations used to construct models of the geomagnetic field

are taken, the full field is a composition of the main field, a contribution from magnetic

bodies embedded in the crust, and sources from the upper atmosphere and space. While

the magnitude of the main field is much greater than that of other sources at low degrees,

its contribution to higher degrees is masked by non-core sources. This is illustrated by Fig-

ure 1.2. The curved, increasing red line shows the theoretical contribution of the crustal

magnetic field, while the straight, decreasing red line shows the theoretical contribution of

the core. Red circles show measurements. At about degree 13, the power of the field from

the core drops below that from crustal sources (e.g. Maus, 2008; Holme, 2015) Thus, the

magnetic structure at the CMB can only be resolved up to degree 13, corresponding to a

length scale of about L ≈ 840 km.

With these values of η, U , T , and L,

ηT
L2
≈ η

UL
≈ 2× 10−3 . (1.3)

Thus, the frozen flux approximation is valid for the outer core on timescales of centuries or

less.

The second consideration limiting the usefulness of Eq.(1.1) is that, as pointed out by Roberts

and Scott (1965) and Backus (1968), the flow field is non-unique. Most core flow inversions

use only the radial component of the magnetic field, since this is the component most well-
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Figure 1.2: Spherical harmonic power spectrum, often called a Mauersberger-Lowes spectrum,
for the internally-generated geomagnetic field at Earth’s surface. Red dots show measurements.
The straight, decreasing red line shows the theoretical power of spectrum from the core, while the
curved, increasing red line shows the theoretical spectrum from sources in the crust. Modified from
Figure 14 of Hulot et al. (2010).
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determined at the CMB. In the usual (r, θ, φ) spherical coordinates, the radial component

of the induction equation is

∂Br

∂t
= −∇H · (uBr) , (1.4)

where ∇H means only the (θ, φ) components of the gradient operator. Backus (1968) shows

how uBr may be written in terms of two scalar potential functions Φ and Ψ as

uBr = ∇HΦ− r̂×∇HΨ , (1.5)

where r̂ is the spherically radial unit vector. Since ∇H ·(r̂×∇HΨ) = 0, substituting Eq.(1.5)

into Eq.(1.4) results in

∂Br

∂t
= −∇2

HΦ . (1.6)

Thus, the flow information carried by Ψ plays no role in the radial magnetic field’s time

variability, and therefore cannot be calculated using magnetic field observations. This lim-

itation is generally overcome by placing some physical constraint on the flow at the CMB,

such as assuming a purely toroidal (∇H · uH = 0, where uH = uθθ̂ + uφφ̂) or tangentially

geostrophic (∇H · (u cos θ) = 0) flow (Holme, 2015). However, neither of these assumptions

fully eliminates the non-uniqueness.

Solutions to Eq.(1.4) are often expanded in spherical harmonics (Whaler, 1986). Such an ap-

proach allows the construction of models which match data to arbitrary accuracy, provided

the expansion extends to a high enough degree. However, such solutions are unattractive:

small-scale flows are not required to explain large-scale magnetic features, and are there-

fore not uniquely recoverable from those magnetic features. Instead, techniques have been

adopted to bias solutions towards large-scale, smooth flows (Holme, 2015). Differences in

the choice and implementation of such constraints, along with differences in how the original
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Figure 1.3: Snapshot of flow velocities at the core-mantle boundary, as inverted from the secular
variation of the geomagnetic field. The root-mean-square velocity is 15.2 km yr−1. Modified from
Figure 3 of Holme (2015), originally in Holme and Olsen (2006).

magnetic field model was constructed and projected onto the CMB, leads to the considerable

differences found between various core flow models (e.g. Bloxham and Jackson, 1991).

A final consideration when building a core flow model is the conductivity of the mantle. If

it is not a perfect insulator, projecting the magnetic field observed at the surface through it

to the CMB will induce very large uncertainties. Therefore it is generally assumed to be a

perfect insulator when building such models (Holme, 2015).

A wide variety of core flow models have been inverted from geomagnetic data over the years.

A snapshot of the velocity field from a typical one is shown in Figure 1.3. However, such

snapshots show only the velocity field in a very thin layer near the CMB – electromagnetic

screening prevents a view of any flow information beneath this layer. Fortunately for studies

of core dynamics, scaling arguments and model results (e.g. Gillet et al., 2012) show that the

dominant force balance on decadal timescales for relatively large length scales is geostrophic:

a balance between pressure gradients and the Coriolis force.
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Ω

Figure 1.4: The geometry of the mean zonal flows, or geostrophic cylinders, which carry angular
momentum in Earth’s outer core.

1.2 Geostrophy and Angular Momentum

As discussed mathematically in Section 2.2, a geostrophic balance in the outer core has two

key consequences. First, the flow field tends to be invariant, or rigid, in the direction parallel

with the axis of rotation (in cylindrical (s, φ, z) coordinates, ∂
∂z

u = 0). Second, because of

this axial rigidity, the core’s total axial angular momentum is contained within the azimuthal

velocities of rigid cylindrical surfaces aligned with the rotation axis. The latter surfaces are

termed “geostrophic cylinders”, and are illustrated by Figure 1.4.

Because geostrophic cylinders are rigid and intersect the CMB, their notion can be used

to calculate the outer core’s total angular momentum using the core flow maps built from

geomagnetic inversions. In one end of a geostrophic cylinder intersects the CMB at a lati-

tude θ, its other end intersects the CMB at the equatorially opposite latitude π − θ. The

azimuthal velocity of the geostrophic cylinder, or its “zonal velocity”, can then be calculated

by averaging the azimuthal velocities on the CMB at θ and π − θ. This is the procedure

followed to generate Figure 1.5.

Figure 1.5 clearly shows exchanges of angular momentum between adjacent cylinders over

the one-century period it spans. These exchanges manifest themselves in wave-like structures

with periods of perhaps sixty years. This raises a new question: are these truly large-scale
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Figure 1.5: Time-varying component of the axisymmetric, equatorially symmetric, azimuthal ve-
locity (uφ) extracted from a core flow model. Adapted from Figure 1(a) of Zatman and Bloxham
(1997).

fluctuations in the zonal velocity structure, or are they merely artifacts of the assumptions

made in generating the figure? One approach to answering this question is to use informa-

tion from models like that shown in Figure 1.5 to build a prediction of the core’s total axial

angular momentum through time, and compare the resulting timeseries to observed LOD

variations. This is similar to the procedure followed by Vestine in 1953. First, however, it is

instructive to discuss the mechanisms behind LOD variations in general.

1.3 Length-of-Day Variability

The LOD variation is a measure of the difference between the length of one mean solar day,

defined as 86,400 seconds, and how long it takes a fixed point on Earth’s surface to actually

complete one revolution (e.g. Dehant and Mathews, 2015). Because relative motions in

and between the individual bodies occur on geological timescales, for the purposes of this

discussion Earth’s surface, the remainder of the crust, and the mantle can be viewed as
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forming a single solid body. “Mantle” will refer to this unified body for the remainder of

this thesis. The mantle is subject to a variety of external torques ΓMi , including those from

astronomical bodies like the moon, the sun, and Jupiter, but also including those from the

atmosphere, ocean, and core-mantle interactions. The mantle is also subject to changes in its

moment of inertia CM . The relationship between ΓMi , CM , time t, and the mantle’s angular

velocity ΩM is

∂

∂t
(CMΩM) =

∑
i

ΓMi . (1.7)

Both external torques and changes in CM occur at a variety of amplitudes, over a variety of

timescales. The most consistent influence over the longest timescales, from tens of thousands

to billions of years, is the moon’s gravitational field. The latter induces a tidal bulge in the

Earth which, in the absence of any viscous forces in the planet, would be aligned with the

sublunar point. Since viscous forces are present inside Earth, the tidal bulge is swept slightly

ahead of the sublunar point by Earth’s rotation. The resulting misalignment of mass exerts a

retrograde torque on Earth, and a prograde torque on the moon. The rotation of the former

is slowed, while orbit of the latter is enlarged. Optical retroflectors, left on the moon along

with the Apollo Lunar Module descent stages, enabled Dickey et al. (1994) to estimate the

moon’s drift rate to be 3.8 cm yr−1. Based on this drift rate, the corresponding lengthening

in Earth’s LOD should be 2.3 ms per century (Morrison and Ward, 1975; Christodoulidis

et al., 1988; Stephenson and Morrison, 1995).

On medium timescales of thousands to tens of thousands of years, the most notable influence

on LOD variability has been the result of glaciation. Kilometre-thick ice sheets extending

from the polar regions during the latest glacial period deformed the crust and mantle be-

neath them. Since the glaciers began to recede some 11,700 years ago (Walker et al., 2009),

both crust and mantle in the polar regions have been allowed to viscously relax back to-

ward isostatic equilibrium. This process makes Earth less oblate, decreasing its moment of
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inertia and increasing its rate of rotation (Dickey et al., 2002). The relaxation continues

into the present day; Mitrovica et al. (2015) estimates its effect is a decrease in the LOD

of about 1.1 ms per century. However, coupling between the core and mantle modulates

this speedup, decreasing it by 0.6 ms per century (Mitrovica et al., 2015). Thus, allowing

for feedback from core-mantle coupling, long-term lunar tides and medium-term glacial iso-

static adjustment have combined to effect a relatively steady slowing of 1.8 ms per century

for the past several thousand years (Morrison and Stephenson, 2001). Other effects, such

as long-term climatological shifts, plate tectonics, and mantle convection likely influence the

LOD on medium and long timescales as well, though to a much smaller degree (Gross, 2015).

The moon’s influence also plays a leading role on the shortest timescales. The misalignment

between its orbital axis and Earth’s rotation axis causes a strong monthly signal, and the

differing viscous properties of water and rock change Earth’s moment of inertia throughout

a single day as regions dominated by one or the other rotate through the moon’s tidal influ-

ence. In addition, the moon’s orbit precesses about the ecliptic every 18.6 years, contributing

a decadal signal as well (Dehant and Mathews, 2015). Meanwhile, seasonal LOD variability

is dominated by changes in atmospheric angular momentum (Rosen and Salstein, 1991) and

ocean currents (Marcus et al., 1998).

Clearly, there are many ways in which the LOD can be influenced; only a few of them have

been discussed here. The unexplained signal described by Brouwer (1952) was the result of

removing the known effects – at that time, mainly the effect of the moon and atmosphere

– from the raw LOD signal. What was left over must be the signature of changes in the

core’s axial angular momentum. A more sophisticated version of this procedure was used to

generate the solid black line of Figure 1.6, showing the remnant of the LOD signal left over

once all other effects are removed.
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Figure 1.6: Predicted change in the length of day based on geostrophic core flows. Coloured lines:
predictions from models. Black line: observation of actual LOD change. Data from Jault et al.
(1988) (pink dots), Jackson (1997) (blue line), Pais and Hulot (2000) (red line), and Hide et al.
(2000) (green line). Modified from Figure 9 in Finlay et al. (2010).

1.4 Agreement of Observation and Prediction

The core’s total axial angular momentum may be calculated from geomagnetic core flow

inversions simply by integrating the zonal velocities of geostrophic cylinders (see section

2.2.2). The resulting timeseries can then be transformed into a prediction of the variation in

LOD using the relative moments of inertia of the core and mantle6. This produces the LOD

predictions shown by the coloured dots and lines of Figure 1.6.

LOD predictions and the observations of LOD are remarkably well-correlated in Figure 1.6,

especially over the past several decades when both the quality and quantity of geomagnetic

data has increased. This correlation strongly indicates that the assumptions upon which

LOD predictions are based are valid. In particular, it demonstrates that, to leading order,

6This ignores the slight modification the higher density of the solid inner core provides to the moment of
inertia. However, while the entire core’s axial moment of inertia is about 9 × 1036 km m2, that of the inner
core is only about 6× 1034 kg m2, or 0.7% that of the outer core (e.g. Mathews et al., 1991). Therefore, the
denser inner core is insignificant in the angular momentum budget of the core as a whole.
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core flows are indeed geostrophic on timescales of decades to centuries.

1.5 Unexplained Variability

While many of the features in the LOD observations are well-characterized, some features

lack a clear mechanisms by which they are generated by the outer core. In particular, there

are variations with characteristic timescales of 6 years (Holme and de Viron, 2013; Chao

et al., 2014) and 60 years (e.g. Vestine and Kahle, 1968) in both uφ (Figure 1.5) and in the

length-of-day signal (Figure 1.6).

Scale analysis shows that zonal accelerations of geostrophic cylinders (called simply “zonal

accelerations” for the remainder of this thesis) must be driven by magnetic, rather than

inertial or viscous, forces. However, integration of the momentum equation (see Eq.(B.12))

over the surface of a geostrophic cylinder causes the pressure, buoyancy, and Coriolis terms

to vanish. If to first order inertia and viscosity are neglected, it is implied that a steady-state

solution is possible only if the averaged Lorentz force also vanishes. In other words, the mean

Lorentz torque on any given geostrophic cylinder must be zero. This is known as Taylor’s

condition (Taylor, 1963), with systems obeying it said to be in a Taylor state. Reinstating

inertia, perturbations in the magnetic field – and, therefore, in the Lorentz torque – can be

accommodated by zonal accelerations of the geostrophic cylinder.

Taylor’s condition enables the generation of waves by differential rotation of geostrophic

cylinders. Such rotation shears radial magnetic field lines, as shown in Figure 1.7. By Lenz’s

law, Lorentz forces are induced to oppose this shear and brake the differential rotation. How-

ever, because geostrophic cylinders have mass, inertial accelerations cause them to overshoot

their equilibrium point. The wave motion resulting from this balance between inertial and
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Figure 1.7: Concentric geostrophic cylinders threaded with a radial magnetic field Bs, viewed from
above in the ez-direction. Top left: unperturbed system. Top right: differential rotation uφ between
cylinders. Bottom left: differential rotation shears the original Bs field, creating a perturbation
bφ field in the eφ-direction. Bottom right: Curvature in the magnetic field induces ez-currents,
causing a Lorentz force to oppose the original differential rotation of the cylinders. Modified from
Figure 3 of Dumberry (2008).

Lorentz forces is called an Alfvén wave. Free Alfvén waves propagate radially across the set

of geostrophic cylinders at the Alfvén velocity

uA =
|B|
√
ρ0µ0

, (1.8)

where |B| is the average of the cylindrically radial magnetic field over the surface of a

geostrophic cylinder, ρ0 is the fluid density, and µ0 is the permeability of free space. In

Earth’s core, this type of free Alfvén wave is termed a torsional oscillation.

Torsional oscillations were proposed by Braginsky (1970) as the mechanism responsible for

the 60-year LOD variations. In order to have the correct characteristic timescale, he found

that the radial magnetic field within the outer core would have to be about equal to the
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0.3 mT observed at the CMB. However, more recent work has suggested that the internal

magnetic field strength is closer to ten times that observed at the CMB (e.g. Christensen,

2006; Gillet et al., 2010). Since this corresponds to free Alfvén waves with a six-year period,

it is now thought that torsional oscillations are responsible for the 6-yr LOD variability. This

leaves the mechanism responsible for the 60-year variability in uφ shown by Figure 1.5, and

the 60-year variability in LOD shown by Figure 1.6, unexplained.

One possibility is that the decadal zonal accelerations may not reflect deep seated rigid flows

at all, but are instead free Magnetic-Archemedian-Coriolis (MAC) waves in a stratified layer

at the top of the core (Buffett, 2014; Buffett et al., 2016). The zonal flows of such MAC

waves are characterized by a shear in the axial direction: flow at the CMB does not reflect

flow deeper in the core. Despite it being more difficult to build a prediction of LOD changes

based only on the flows at the CMB, it is nevertheless possible that, when properly taking

into account the coupling of flows in the bulk of the core with these MAC waves, a prediction

of core angular momentum change may be constructed so as to match the observed LOD

variations (Buffett et al., 2016). However, the very fact that a very good match between the

observed changes in the LOD and those predicted on the basis of purely rigid zonal flows

suggests that deviations from rigidity are limited.

A alternative explanation is that the zonal accelerations are not free oscillations at all, but

are forced by an underlying, dynamical mechanism. If convection were to continually induce

perturbations of the internal magnetic field, the magnetic perturbations would be balanced

by continually excited zonal accelerations. Assuming this is the case, the forcing must occur

on timescales longer than the propagation time of free Alfvén waves. In other words, the

typical convective velocity uC must be smaller than uA, such that the Alfvén number

A =
uC
uA

(1.9)
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is � 1. Typical flow velocities in Earth’s core are of the order of uC = 10 km yr−1 (e.g.

Holme and Olsen, 2006), while a typical radial magnetic field of about 3 mT (e.g. Gillet et al.,

2010; Buffett, 2010), an outer core density of 104 kg m−3 (e.g. Dziewonski and Anderson,

1981), and µ0 = 4π× 10−7 N A−2 produces an Alfvén velocity (using Eq.(1.8)) of about 840

km yr−1. Thus, the Alfvén number of the outer core is about A ≈ 0.01.

While such a low Alfvén number implies a significant separation between the eddy and

Alfvén timescales, it does not say anything about the relative strength of magnetic and

inertial forces. However, inspection of the relevant terms in the Navier-Stokes equation

shows that the magnetic force strength is proportional to the square of the magnetic field,

and that the inertial force strength is proportional to the square of velocity (see Section 2.3).

The ratio of their strengths is therefore the square of the ratio between magnetic and velocity

field strengths. As will be shown in Section 3.4.4, this ratio turns out to be equivalent to

the Lundquist number, Lu. Formally, Lu is the ratio of how quickly magnetic information

can be transmitted compared to how quickly it is dissipated. With τdb as the timescale of

magnetic diffusion and τa as the timescale needed for a free Alfvén wave to cross a distance

`, the Lundquist number is defined as

Lu =
τdb
τa
≈ `uA

η
. (1.10)

Using ` ≈ 106 m, corresponding to the typical eddy size in the outer core, and a magnetic

diffusivity of 0.5 m2s−1 implies an Lu in excess of 5 × 104. Clearly, magnetic forces play a

dominant role in large-scale dynamics.

Given the low A and high Lu of the outer core, it is likely that the decadal-timescale zonal

accelerations observed in it are driven by time-dependent Lorentz torques, with the time

dependency stemming from the continual evolution of the underlying convective flow struc-

ture. Exploring the viability of this mechanism using a numerical model is the overarching
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goal of this thesis.

1.6 Strategy

One approach to numerically demonstrate this mechanism would be to tune an existing

three-dimensional, self-sustaining dynamo model to produce the expected eddy-induced,

magnetically-forced waves. However, existing models are capable of achieving only rela-

tively high Alfvén numbers of approximately 1, meaning the dynamics of free and forced

magnetically-driven zonal accelerations are not well separated. Some recent 3D models have

been able to achieve lower values of A ≈ 0.1 (e.g. Aubert et al., 2017; Schaeffer et al., 2017),

though at the disadvantage of being very numerically demanding.

An alternative approach is to build a highly idealized model of geostrophically-dominated

magnetoconvection within the existing framework of quasi-geostrophic (QG) convection mod-

els (e.g. Busse and Or, 1986; Cardin and Olson, 1994; Aubert et al., 2003). The QG ap-

proximation assumes the flow is to first order in a geostrophic balance, allowing the full

three-dimensional magnetohydrodynamic equations to be collapsed onto a two-dimensional

domain. We modify a QG model of thermally-driven convection by adding an induction

equation to track the evolution of the magnetic field as it is sheared and advected by the

flow. Because a self-sustaining dynamo cannot be sustained in only two dimensions (e.g.

Cowling, 1957; Roberts, 2015), a steady background magnetic field is imposed on the model.

The induction equation serves to track perturbations to this background field. The magnetic

field is then allowed to feed back on the flow field via the Lorentz force, although in practice

we limit its effect to only the zonal velocity field (see Section 4.1).

We are thus able to conduct a magnetoconvection experiment at comparatively modest nu-
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merical cost. Previous studies have shown that Boussinesq QG models with thermal forcing

are capable of reproducing flow patterns similar in scale and behaviour to the ones we expect

in planetary cores (e.g. Aubert et al., 2003; Gillet and Jones, 2006). However, these models

have not been used to investigate the generation of magnetically-forced zonal flows.

Our strategy to do so is to tune the model to produce an Earth-like A ≈ 0.01. Convec-

tive velocities are then smaller than Alfvén velocities by a factor of about 100, implying a

large temporal separation between free and forced magnetically-induced zonal accelerations.

We track the zonal accelerations along with the azimuthally averaged viscous, Reynolds,

and magnetic torques, finding particularly strong correlations between magnetic torques

and zonal accelerations. Furthermore, the timescales associated with convective eddies are

found to be similar to the timescales of longer-period zonal accelerations. We therefore

demonstrate that convective eddies are capable of perturbing a magnetic field such that

magnetically-forced zonal accelerations are produced on timescales much longer than those

of free Alfvén waves.

1.7 Scientific Advancements Contained in this Thesis

There were several key scientific advancements involved in the production of this work.

First, a QG version of the induction equation was derived and used to augment the govern-

ing equations of an existing thermally-driven QG model (see Appendix D.4 and Eq.(2.41)

for the non-axisymmetric version, and Appendix D.5 and Eq.(2.42) for the axisymmetric

version). Second, QG versions of the magnetic torques feeding back on the flow field were

derived (see Term 5© in Appendix D.1 for the non-axisymmetric expression, and Term 3© in

Appendix D.2 for the axisymmetric expression), and incorporated into the non-axisymmetric

vorticity equation (first term on the right-hand side of Eq.(2.35)) and the zonal flow equation
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(Eqs.(2.39) and (2.40)).

In order to derive and implement the equations above, it was found that the form of how the

magnetic perturbation field b was written in terms of the magnetic potential a (Eq.(2.18),

or the second equation of Eq.(2.16)) had to be the same as the form of how the velocity

field u was written in terms of the streamfunction ψ (Eq.(2.17), or the first equation of

Eq.(2.16)). If it did not take the same form, the total axial angular momentum of the model

would not be conserved. In fact, where the form of the velocity definition is dictated by

the no-penetration boundary condition, writing the magnetic perturbation field in the same

form implies a magnetic equivalent of the no-penetration boundary condition. Allowing for

magnetic coupling at the boundaries would necessitate a change in the form of Eq.(2.18).

Once the model was implemented, it was found that in order to produce magnetically-forced,

slow-timescale zonal accelerations, model parameters which produced Alfvén numbers much

less than 1 and Lundquist numbers much greater than 1 had to be used. In addition, we found

that the non-axisymmetric Lorentz torque had to be neglected from the non-axisymmetric

vorticity equation in order to produce realistic, large-scale convective eddies (see Section

4.1). The latter was the final ingredient needed to demonstrate that convective eddies can

perturb the magnetic field in such a way as to force slow zonal accelerations.

The substantial scientific contributions and interpretations of this work are presented in

Chapters 4 and 5. These chapters are based directly on content submitted for publication

in More and Dumberry (2017).
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Chapter 2

Theory

2.1 Geometry

The three-dimensional volume of the outer core lends itself naturally to the use of the spher-

ical coordinates (r, θ, φ). Figure 2.1 illustrates how two concentric spheres can be used to

approximate the outer core’s geometry: the inner sphere of radius r1 represents the inner core

boundary, while the outer sphere of radius r2 represents the core-mantle boundary (CMB).

A quasi-geostrophic (QG) model takes advantage of a rapidly rotating fluid’s axial rigidity

(see Section 2.2) to collapse the fully three-dimensional problem onto a two-dimensional

plane. This plane, equivalent to a slice through the core’s equator, is represented by the

grey annulus of Figure 2.1. Position on such an annular surface is easily described with the

cylindrical coordinates (s, φ, z), where the ez-axis is aligned with the axis of rotation and

the z = 0 plane is the equatorial plane. The model domain then extends from the “tangent

cylinder”, or the cylinder tangent to the r = r1 surface, at s = s1 to the “equator” at

s = s2. Despite the final QG model being two-dimensional, the z-coordinate is needed for

axial averaging when deriving the QG equations. The region inside the tangent cylinder is

not modelled1.

1Unlike the 2D geometry proposed by Pratchett (1986), ours does not require four giant elephants and
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Figure 2.1: Geometry of our QG model. The domain of integration is the shaded 2D annulus
between s1 and s2.

The half-column height L between the equatorial plane and the upper (+) and lower (−)

boundaries is a function of s:

L =
√

1− s2 . (2.1)

The slope of the upper and lower boundaries plays a key role in the model’s behaviour. The

β parameter, equivalent to the same parameter used in the β-plane approximation common

in meteorology and oceanography, describes this slope as a function of s:

β =
1

L

∂L

∂s
= − s

L2
. (2.2)

a space turtle to support itself. It does, however, have a hole in the middle, which could be thought of as
either a feature or a glitch, depending on one’s point of view.
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2.2 Axial Rigidity

2.2.1 Axial Invariance

The dynamics of a system in geostrophic balance are dominated by pressure gradients and

the Coriolis force. For rotation rate Ω = Ωez relative to an inertial frame, velocity u relative

to the rotating frame, constant density ρ0, reduced pressure P , and gradient operator ∇,

the geostrophic balance under the Boussinesq approximation (Rayleigh, 1916) is written

2Ω× u = − 1

ρ0

∇P . (2.3)

Taking the curl of Eq.(2.3) causes the pressure term to vanish. Since the axis of rotation is

aligned with the ez-axis, the left-hand side can be expanded to show that velocities do not

vary in the axial direction:

(ez ·∇) u =
∂

∂z
u = 0 . (2.4)

This is the Taylor-Proudman theorem, named for its independent discovery by Taylor (1917)

and Proudman (1916)2. It is absolute only in systems which are perfectly geostrophic. When

geostrophy is violated, Eq.(2.4) is also violated as fast inertial waves transmit information

axially (Jault and Finlay, 2015). However, if only small perturbations are allowed about a

first-order geostrophic balance, axial variations remain small. This is the core assumption

of the QG framework.

2It was first published twenty years earlier by Hough (1897).
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2.2.2 Geostrophic Cylinders

Because of axial rigidity, the total axial angular momentum of a geostrophically-dominated

system is organized in a very simple way. The total axial angular momentum Lz of a fluid

under the Boussinesq approximation (Rayleigh, 1916) is

Lz = ez ·
∫∫∫
V

ρr× u dV ≈ ρ0

∫
s

2π∮
0

L∫
−L

(suφ) s ds dφ dz . (2.5)

Because uφ is axially rigid (that is, ∂
∂z
uφ = 0), its axial average 〈uφ〉 (see Appendix A.4)

is equal to its free-stream value uφ. Using the definition of the azimuthal average given by

Eq.(A.17), Eq.(2.5) reduces to

Lz = 4πρ0L

∫
s

s2uφ ds , (2.6)

where uφ is the azimuthally averaged azimuthal velocity, or the zonal velocity. Thus, angu-

lar momentum is stored by the zonal velocities of cylindrical surfaces at each radial position s.

2.3 The Quasi-Geostrophic Model

2.3.1 Basic Equations

The governing equations for thermal convection of a conducting fluid under the Boussinesq

approximation are derived in Appendix B. With primes (′) denoting dimensional variables

which will later be nondimensionalized,

∂u′

∂t′
+ (u′ ·∇′) u′+ 2Ω′×u′ = − 1

ρ0

∇′P ′+ ν∇′2u′+αg0Θ′
r′

r′2
+

1

ρ0µ0

(∇′ ×B′)×B′ , (2.7)
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Parameter Description Outer Core Value
r1 radius of inner core 1220 km
r2 radius of outer core 3480 km
µ0 permeability of free space 4π × 10−7 H m−1

Ω rotation rate 7.3× 10−5 s−1

g0 gravitational acceleration at CMB 10 m s−2

ρ0 reference density 104 kg m3

α thermal expansivity 1.5× 10−5 K−1

θ local temperature perturbation 10−4 K
B magnetic field strength 3 mT
ν kinematic viscosity 1.5× 10−6 m2 s−1

κ thermal diffusivity 2× 10−5 m2 s−1

η magnetic diffusivity 0.5 m2 s−1

Table 2.1: Typical values of some key core parameters. Sources: Radius of inner and outer cores,
gravity, and density from Dziewonski and Anderson (1981). Thermal expansion coefficient from
Jones (2015), itself derived from Anufriev et al. (2005), which comes from Braginsky and Roberts
(1995). Local temperature perturbation from Anufriev et al. (2005). Magnetic field strength
from Gillet et al. (2010) and Buffett (2010). Kinematic viscosity from de Wijs et al. (1998).
Thermal diffusivity calculated from the thermal conductivity of (Pozzo et al., 2012), the density
of Dziewonski and Anderson (1981), and the heat capacity of Anufriev et al. (2005). Magnetic
diffusivity calculated from the electrical conductivity of Pozzo et al. (2012).

∂T ′

∂t′
= − (u′ ·∇′)T ′ + κ∇′2T ′ , (2.8)

∂B′

∂t′
= ∇′ × (u′ ×B′) + η∇′2B′ , (2.9)

∇′ · u′ = 0, ∇′ ·B′ = 0 . (2.10)

Here, the thermal expansivity α, gravitational acceleration at the CMB g0, kinematic viscos-

ity ν, thermal diffusivity κ, permeability of free space µ0, magnetic diffusivity η, magnetic

field B, and time t join the already-defined quantities u, Ω, P , r, r2, and ρ0. Representative

values in the outer core for the physical parameters are given in Table 2.1.

Eqs.(2.7) - (2.10) are nondimensionalized using the scalings shown in Table 2.2: length by

27



Dimension Scale Choice Approximate Value
L (length) r2 3× 106 m
T (time) Ω−1 7× 10−5 s−1

U (velocity) LT −1 = r2Ω 250 m s−1

∆T (temperature) T1 − T2 10−4 K
B (magnetic field) r2Ω

√
ρ0µ0 30 T

P (pressure) ρ0U2 = ρ0r
2
2Ω2 0.6 GPa

Table 2.2: Definition of the scalings used in nondimensionalizing the basic equations. Typical
values are calculated using the the data in Table 2.1. As per Jones (2015), ∆T is assumed
to be of the same order as local temperature perturbations.

the radius of the outer sphere r2, time by the reciprocal rotation rate Ω−1, velocity by r2Ω,

temperature by the superadiabatic temperature difference between outer and inner spheres

∆T , the magnetic field by r2Ω
√
ρ0µ0, and pressure by ρ0r

2
2Ω2. As shown in Appendix C,

Eqs.(2.7) - (2.10) then become

∂u

∂t
+ (u ·∇) u + 2ez × u = −∇P + E∇2u +Ra∗Θr + (∇×B)×B , (2.11)

∂T

∂t
= − (u ·∇)T +

E

Pr
∇2T , (2.12)

∂B

∂t
= ∇× (u×B) +

E

Pm
∇2B , (2.13)

∇ · u = 0, ∇ ·B = 0 . (2.14)

Notice that the primes have now been dropped – all variables are now nondimensional.

The information previously contained by the physical parameters (e.g. ρ0, g0, etc.) is now

contained in the nondimensional parameters E (Ekman number), Ra∗ (modified Rayleigh

number), Pr (Prandtl number), and Pm (magnetic Prandtl number). Typical values in the

outer core for each nondimensional parameter are given in Table 2.3.
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Constant Name Outer Core Value
E = ν

Ωr2
2

Ekman number 10−15

Pr = ν
κ

Prandtl number 0.1

Ra =
αg0∆Tr3

2

νκ
Rayleigh number 1022

Ra∗ = E2RaP−1
r Modified Rayleigh number 10−6

Pm = ν
η

Magnetic Prandtl number 10−6

Table 2.3: Nondimensional parameter definitions. Values for the outer core calculated from
data in Table 2.1.

2.3.2 Representation of Fields

The magnetic and temperature fields are each decomposed into background (T0,B0) and per-

turbation (Θ,b) components. The background fields are fixed in time, while the perturbation

fields vary in time. Thus, for an arbitrary position x,

T (t,x) = T0(x) + Θ(t,x) , B(t,x) = B0(x) + b(t,x) . (2.15)

The horizontal components of a vector field or operator are specified by an H subscript. For

example, the horizontal components of the gradient operator in cylindrical coordinates are

∇H = es
∂
∂s

+ eφ
1
s
∂
∂φ

. In their final QG form, the horizontal, nonaxisymmetric components

of the velocity (uH = (us, uφ)) and magnetic perturbation (bH = (bs, bφ)) fields are assumed

to be rigid. In addition, according to Eq.(2.14), both u and b are solenoidal, allowing them

to be written in terms of the toroidal scalar functions ψ and a, respectively. The QG u and

b fields are then defined as

u = uφeφ +
1

L
∇× (Lψez) + uzez , b = bφeφ +

1

L
∇× (Laez) + bzez . (2.16)

Overbars denote an azimuthal average (see Appendix A.3). Thus, uφ and bφ are the zonal

flow and zonal magnetic fields, respectively, and are assumed to be rigid. Note that, due to

mass conservation and magnetic flux conservation, there are no us or bs components.
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With ∇2
H = ∂2

∂s2
+ 1

s
∂
∂s

+ 1
s
∂
∂φ

(see Eq.(A.13) in Appendix A.1), the components of uH , along

with the axial vorticity field ωzez = ∇× uH , may be explicitly written

us =
1

s

∂ψ

∂φ
, uφ = uφ−

(
∂

∂s
+ β

)
ψ , ωz =

(
2
uφ
s

+
∂

∂s
uφ

)
−∇2

Hψ−
1

s

∂

∂s
(sβψ) . (2.17)

Similarly, the components of bH , along with the the axial current density field jzez = ∇×bH ,

may be written

bs =
1

s

∂a

∂φ
, bφ = bφ −

(
∂

∂s
+ β

)
a , jz =

(
2
bφ
s

+
∂

∂s
bφ

)
−∇2

Ha−
1

s

∂

∂s
(sβa) . (2.18)

The presence of β in both Eq.(2.17) and Eq.(2.18) shows the influence of the upper and

lower boundary geometry on the velocity and magnetic fields. The forms of us, uφ, and ωz

used in this model are similar to those used in traditional QG models (e.g. Schaeffer and

Cardin, 2005). Choosing similar forms for bs, bφ, and jz follows the strategy employed by,

for example, Labbé et al. (2015).

2.3.3 Assumptions

The fundamental assumption needed to transform Eqs.(2.11)-(2.14) into their QG form is

that the QG approximation itself holds. In practice, this implies (1) that horizontal velocities

are rigid (and therefore the scalar potential ψ from which they are calculated is also rigid);

(2) that the axial component of vorticity is rigid; and (3) that the horizontal components

of vorticity are insignificant compared to the axial component. However, because of the

no-penetration condition on the upper and lower spherical boundaries, an axial dependence

in uz is needed if nonzero values of us are to be allowed. Defining the unit vector normal to

the upper and lower boundaries as n̂ = ses ± Lez, the no-penetration boundary condition
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holds that

u · n̂|z=±L = 0 , (2.19)

implying that

uz|z=±L = ∓ s
L
us . (2.20)

Eq.(2.20) shows that, since us is assumed to be perfectly rigid, the axial velocity has the

same magnitude but opposite sign at the upper and lower boundaries. The simplest profile

of uz which produces this relationship is linear and antisymmetric about the equator:

uz = − s
L

z

L
us = βusz . (2.21)

Unlike the velocity field, the magnetic perturbation field is not dynamically constrained to

remain rigid. However, because the horizontal velocity field which causes magnetic per-

turbations is rigid, we make the assumption that the horizontal magnetic perturbations

(along with the scalar potential a from which they are calculated) are also rigid. This sig-

nificantly simplifies the model, while still allowing the interactions between the convective

and magnetic fields needed to magnetically force zonal accelerations. Also in analogy with

the velocity field, it is assumed that the horizontal components (js, jφ) of the perturbation

current density are insignificant compared to the dominant, rigid jz component.

Again on grounds of simplicity, we assume the upper and lower spherical boundaries have

zero resistivity. This imposes the magnetic version of the no-penetration boundary condition

on b. An axial variation in bz must therefore exist to allow nonzero values of bs. Using the

same technique which produced the axial profile of uz (Eq.(2.21)), we take this profile to be

bz = βbsz . (2.22)
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A mantle with zero resistivity is likely nonphysical in the case of Earth: it implies a lack

of electromagnetic core-mantle coupling, and is inconsistent with the perfectly insulating

(i.e. infinitely resisting) mantle needed for geomagnetic core flow inversions (Section 1.1).

However, our model is intended to study the interplay of mechanical and magnetic forces

in a conducting fluid dominated by rotation, not to serve as a perfect analog to the outer

core. In this idealized context, it is convenient to choose the simplest boundary conditions,

rather than the most realistic. While assuming zero resistivity on the spherical boundaries

produces a model less capable of producing realistic behaviour near those boundaries, the

effects most of interest to this project occur in the bulk of the fluid, away from the bound-

aries. In addition, as shown in Appendix F, assuming the bz profile of Eq.(2.22) is required

for the model is to conserve angular momentum.

The magnetic background field is subject to a number of restrictions. Being a magnetic

field, it is assumed to be divergence-free (∇ · B0 = 0). It is also assumed to be curl-free

(J0 = ∇ × B0 = 0) and harmonic (∇2B0 = 0) so as not to impart a Lorentz force or a

magnetic perturbation in the absence of convection.

In practice, while assuming the above for the purposes of deriving the QG equations, the

background field actually used in the model is somewhat simplified. In particular, while the

time-averaged toroidal component of the outer core’s magnetic field is likely very significant,

we assume B0φ = 0. B0s and B0z are taken to be axisymmetric, with the former assumed

to be rigid and the latter chosen so as to obey the magnetic no-penetration boundary con-

dition. The latter is decidedly incorrect in the case of Earth: a steady component of the

core-induced magnetic field is observed at Earth’s surface on timescales of centuries, so the

“background” field in the outer core must also steadily penetrate the CMB. However, adopt-

ing a no-penetration condition on the background field makes the equations slightly simpler.

Therefore, in analogy with the axial profile of bz, we take B0z = βB0sz.
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The governing equations are significantly simplified by making use of the Boussinesq approx-

imation (Rayleigh, 1916). This assumes density-dependent differences in inertia are small

compared to density-dependent differences in buoyancy. The key outcome of this assumption

is that all densities (ρ) in the governing equations are replaced with a single reference density

(ρ0), except in the buoyancy term. In addition to filtering sound waves out of the model, the

assumption of constant density allows the full continuity equation (the left-hand equation of

Eqs.(B.2)) to be simplified to the ∇ · u = 0 of Eq.(2.14). The Boussinesq approximation is

generally applicable only to fluids whose densities are relatively constant throughout, while

densities in the outer core differ significantly between the inner core boundary and the CMB.

Nevertheless, previous QG models have shown a Boussinesq approach to work reasonably

well for the outer core (e.g. Aubert et al., 2003; Gillet and Jones, 2006).

The model assumes convection to be driven purely by a superadiabatic temperature differ-

ence between the inner core boundary and the CMB – that is, there is no compositional

buoyancy, and no heat sources (i.e. radioactive elements) contained in the fluid itself. Since

the Boussinesq approximation implies the heat capacity of the fluid is the same everywhere,

the usual heat equation may be replaced with the simpler temperature equation of Eq.(2.12).

Density for calculating the buoyancy term of Eq.(2.11) is assumed to depend linearly on the

temperature perturbation, with the same thermal expansion coefficient everywhere3. To

prevent such temperature perturbations from occurring in the absence of convection, the

background (conducting) temperature profile T0 of Eq.(2.15) is assumed to be harmonic

(∇2T0 = 0). Finally, the strength of gravity, which multiplies the density perturbation to

give the total buoyancy force, is assumed to vary linearly with the spherically radial distance

r.

3In fact, this coefficient (α) is estimated to vary by roughly a factor of two between the inner core
boundary and the CMB (e.g. Braginsky and Roberts, 1995).
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2.3.4 Boundary Conditions

Two conditions are needed on each of the inner (s = s1) and outer (s = s2) boundaries

for the velocity streamfunction ψ. The first is provided by the no-slip boundary condition,

requiring that ∂ψ
∂s

= 0. The second is provided by the no-penetration boundary condition,

requiring ψ be constant. For convenience, we choose the constant to be zero (ψ = 0), which

also ensures that no mean zonal flow is contained within ψ. Instead, as shown by Eq.(2.17),

the zonal flow is explicitly represented by uφ.

A single condition in needed on each boundary for uφ. We choose the stress-free condition

∂
∂s

(
uφ
s

)
= 0. The zonal magnetic field bφ also requires a single condition on each boundary;

we choose to use the magnetic equivalent of the stress-free condition, ∂
∂s

(
bφ
s

)
= 0.

A single condition is needed on each boundary for the magnetic potential function a. For

simplicity, we choose to set a = 0 at both s = s1 and s = s2. Since bs = 1
s
∂
∂φ
a (Eq.(2.18)),

this is equivalent to a no-penetration boundary condition on bs.

The temperature equation requires a single condition on each boundary. We demand Θ = 0

on both. In addition, we set the superadiabatic temperature on the inner boundary to T1 = 1,

and the superadiabatic temperature on the outer boundary to T2 = 0. ∆T is therefore 1.

2.3.5 Transformation to QG

The QG equivalent of the momentum equation (Eq.(2.11)) is the axial vorticity equation. It

is derived in Appendix D.1 by taking the curl of Eq.(2.11), keeping only the axial component.
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The latter is then axially averaged to produce the QG vorticity equation4:

∂ωz
∂t

+

(
us
∂

∂s
+
uφ
s

∂

∂φ

)
ωz−(2 + ωz) βus =

(
Bs

(
∂

∂s
− β

)
+
Bφ

s

∂

∂φ

)
jz+E∇2

Hωz−Ra∗
∂

∂φ
〈Θ〉 .

(2.23)

Notably, uz is not explicitly tracked, as it depends only on us via Eq.(2.21). Because all

quantities in Eq.(2.23) have been axially averaged, they depend only on s and φ. The tem-

perature perturbation is kept within angled brackets simply to emphasize this point.

While in principle Eq.(2.23) contains all of the velocity field’s information, we are construct-

ing this model to study the zonal accelerations of geostrophic cylinders. It is therefore con-

venient to derive a separate equation for the zonal velocity. As shown in Appendix D.2, this

is done by taking the eφ-component of Eq.(2.11), then averaging it axially and azimuthally.

The result is

∂

∂t

(
uφ
s

)
= ΓV + ΓR + ΓL1 + ΓL2 , (2.24)

where ΓV, ΓR, ΓL1 , and ΓL2 are, respectively torques from viscous drag, Reynolds stresses,

the axisymmetric Lorentz force5, and Maxwell stresses:

ΓV =
E

s3L

∂

∂s

(
s3L

∂

∂s

(
uφ
s

))
(2.25)

ΓR = −us
s2

∂

∂s
(suφ) (2.26)

ΓL1 =
1

s3L

∂

∂s

(
s3LB0s

(
bφ
s

))
(2.27)

ΓL2 =
bs
s2

∂

∂s
(sbφ) . (2.28)

4The linearly-varying uz specified by Eq.(2.21) produces significant horizontal vorticity, but those com-
ponents are antisymmetric across the equatorial plane. Their axial averages therefore vanish.

5For want of a better term.
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It should be noted that the total Lorentz torque is the sum of the axisymmetric Lorentz

torque and the Maxwell stresses, such that ΓL = ΓL1 + ΓL2 . In practice, Eq.(2.24) is used to

calculate the zonal flow, and Eq.(2.23) is used to calculate non-axisymmetric vorticity.

The QG induction equation is derived in Appendix D.4 from the es-component of the full

induction equation, Eq.(2.13). By recasting b in terms of its potential function a, each side

of the resulting equation is operated upon by 1
s
∂
∂φ

. Since the quantities being operated upon

must then be equal to one another, the 1
s
∂
∂φ

term vanishes to produce

∂

∂t
a = (usBφ − uφBs) +

E

Pm

(
∇2
Ha+

2βa

s

)
. (2.29)

Similar to the QG vorticity equation, Eq.(2.29) contains, in principle, all magnetic pertur-

bation field information. However, it is again convenient to use a separate, explicit equation

for the zonal magnetic field. In Appendix D.5, the azimuthal component of Eq.(2.13) is

extracted, then azimuthally and axially averaged to produce

∂

∂t

(
bφ
s

)
= −1

s

(
∂

∂s
+ β

)(
usBφ − uφBs

)
+

1

s3

E

Pm

∂

∂s

(
s3 ∂

∂s

(
bφ
s

))
. (2.30)

If the operator which converts the magnetic potential field a to the azimuthal perturbation

field bφ is (from Eq.(2.18)) H = −
(
∂
∂s

+ β
)
, the first term on the right-hand side of Eq.(2.30)

is equivalent to applyingH to the first term of Eq.(2.29), azimuthally averaging, and dividing

by s, precisely as may be expected. Eq.(2.30) may be written more compactly with reference

to Eq.(A.14) as

∂

∂t

(
bφ
s

)
=

1

sL

∂

∂s

(
L
(
uφBs − usBφ

))
+

1

s3

E

Pm

∂

∂s

(
s3 ∂

∂s

(
bφ
s

))
. (2.31)

In practice, Eq.(2.31) is used to evolve the zonal magnetic perturbation field, while Eq.(2.29)

is used to evolve the non-axisymmetric magnetic potential.
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The temperature field is fully three-dimensional and is not subject to the Taylor-Proudman

theorem. However, the temperature perturbation only enters the vorticity Eq.(2.23) as

an axially averaged quantity. It is therefore acceptable to track only the axially-averaged

quantity itself. As shown in Appendix D.3, the axial average of Eq.(2.12) is

∂

∂t
〈Θ〉 = −us

∂

∂s
〈T0〉 − uH · (∇H 〈Θ〉) +

E

Pr
∇2
H 〈Θ〉 . (2.32)

For the remainder of this thesis, Θ will be assumed to have been axially averaged, and

therefore the angled brackets around it will be neglected. The background profile 〈T0〉 is

calculated from the Laplace equation. In spherical coordinates, if the inner sphere is held at

temperature T1 and the outer sphere at T2 (so ∆T = T1 − T2),

∇2T0 =
1

r2

∂

∂r

(
r2 ∂

∂r
T0

)
= 0 ⇒ T0 = T2 + ∆T

(
1− 1

r

1− 1
r1

)
. (2.33)

However, only the cylindrically radial derivative of the axially averaged background field is

needed in Eq.(2.32). If ∆T = 1, Appendix D.3 shows that this derivative may be calculated

from Eq.(2.33) as

∂

∂s
〈T0〉 = − r1

1− r1

β

(
1

L
sinh−1

(
L

s

)
− 1

s2

)
. (2.34)

2.4 Summary of Quasi-Geostrophic Equations

∂ωz
∂t

+

(
us
∂

∂s
+
uφ
s

∂

∂φ

)
ωz−(2 + ωz) βus =

(
Bs

(
∂

∂s
− β

)
+
Bφ

s

∂

∂φ

)
jz+E∇2

Hωz−Ra∗
∂Θ

∂φ
,

(2.35)

∂

∂t

(
uφ
s

)
= ΓV + ΓR + ΓL1 + ΓL2 , where (2.36)
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ΓV =
E

s3L

∂

∂s

(
s3L

∂

∂s

(
uφ
s

))
(2.37)

ΓR = −us
s2

∂

∂s
(suφ) (2.38)

ΓL1 =
1

s3L

∂

∂s

(
s3LB0s

(
bφ
s

))
(2.39)

ΓL2 =
bs
s2

∂

∂s
(sbφ) , (2.40)

∂

∂t
a = (usBφ − uφBs) +

E

Pm

(
∇2
Ha+

2βa

s

)
, (2.41)

∂

∂t

(
bφ
s

)
=

1

sL

∂

∂s

(
L
(
uφBs − usBφ

))
+

1

s3

E

Pm

∂

∂s

(
s3 ∂

∂s

(
bφ
s

))
, (2.42)

∂Θ

∂t
= −us

∂

∂s
〈T0〉 − uH · (∇HΘ) +

E

Pr
∇2
HΘ , where (2.43)

∂

∂s
〈T0〉 = − r1

1− r1

β

(
1

L
sinh−1

(
L

s

)
− 1

s2

)
(2.44)

For the remainder of this thesis, Eq.(2.35) will be called the “axial vorticity equation”,

Eq.(2.36) will be called the “zonal flow equation”, Eq.(2.37) will be called the “viscous

torque”, Eq.(2.38) will be called the “Reynolds torque”, Eq.(2.39) will be called the “ax-

isymmetric Lorentz torque”, Eq.(2.40) will be called the “Maxwell torque”, Eq.(2.41) will

be called the “induction equation”, Eq.(2.42) will be called the “zonal induction equation”,

Eq.(2.43) will be called the “temperature equation”, and Eq.(2.44) will be called the “back-

ground temperature gradient”.
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Chapter 3

Implementation

3.1 Solution Scheme

As discussed in Section 2.3.2, the nonaxisymmetric horizontal velocity and nonaxisymmetric

horizontal magnetic perturbation fields are represented in terms of the potential functions ψ

and a, respectively. The nonaxisymmetric vorticity Eq.(2.35) is therefore recast in terms of

ψ – the nonaxisymmetric induction Eq.(2.41) is already written in terms of a.

The potential functions (ψ, a) and the temperature perturbation (Θ) are solved using a

semi-spectral method. Second-order finite differences are used on a radial Chebyshev grid,

while a Fourier decomposition is used in azimuth. To implement this, the full potential

functions are written

ψ(t, s, φ) =
Mmax∑
m=1

ψm(t, s)eimφ , (3.1)

a(t, s, φ) =
Mmax∑
m=1

am(t, s)eimφ , (3.2)
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and

Θ(t, s, φ) =
Mmax∑
m=1

Θm(t, s)eimφ , (3.3)

where i is the imaginary unit and the (ψm, am,Θm) are complex. Use of a Chebyshev grid

ensures fine enough spacing to resolve boundary layers (proportional in thickness to E1/2 for

the flow field,
(

E
Pm

)1/2

for the magnetic field, and
(
E
Pr

)1/2

for the temperature perturbation),

while maintaining reasonable computation times via coarser spacing away from the bound-

aries. The axisymmetric uφ and bφ are calculated on the same radial grid as the potential

functions, but do not require the use of an azimuthal Fourier decomposition.

The inner boundary of the model is set to s1 = 0.35, mimicking the thickness ratio of Earth’s

core, while the outer boundary is set to s2 = 0.98 in order to maintain numerical stability

(β →∞ as s→ 1).

3.2 Numerical Scheme

A typical differential equation of the function y and independent variable t may be written

∂y

∂t
= f(t, y) , (3.4)

where f is an arbitrary function. One way of integrating such an equation in t is to use one

of a class of techniques known as linear multistep methods. For time indices i and j, and

dummy index k, the value of y may be approximated as

yi+j +

j∑
k=1

aj−k yi+j−k = ∆t

j∑
k=0

bj−k f (ti+j−k, yi+j−k) . (3.5)
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The choice of coefficients a and b determine the specific method being used. In particular,

techniques with bj = 0 are “explicit” since they do not require (notional) knowledge of the

system’s state at yi+j to be used, while those with bj 6= 0 are “implicit”.

The (implicit) first-order Adams-Moulton scheme (sometimes called the Crank-Nicolson

scheme) sets j = 1, a0 = −1, and b0 = b1 = 1/2. Eq.(3.5) then becomes

yi+1 − yi
∆t

=
1

2
(f(ti+1, yi+1) + f(ti, yi)) . (3.6)

The (explicit) second-order Adams-Bashforth scheme sets j = 2, a1 = −1, a0 = 0, b2 = 0,

b1 = 3/2, and b0 = −1/2. Relabeling i→ i− 1, Eq.(3.5) then becomes

yi+1 − yi
∆t

=
3

2
f(ti, yi) +

1

2
f(ti−1, yi−1) . (3.7)

The QG differential equations may be written in the general form

A · ∂y

∂t
= B · y + N . (3.8)

Here, y is a column vector describing the state of the system, A and B are linear operators,

and N is a column vector containing nonlinear terms. The right-hand side of Eq.(3.8) is

therefore a linear combination of linear contributions (A · y) and nonlinear contribution

(N). These contributions can be integrated separately, using the Adams-Moulton method

for the linear portion and the Adams-Bashforth for the nonlinear:

1

∆t
A · (yi+1 − yi)|linear =

1

2
B · yi+1 +

1

2
B · yi , (3.9)

1

∆t
A · (yi+1 − yi)|nonlinear =

3

2
Ni −

1

2
Ni−1 . (3.10)

The two contributions can then be added to arrive at the final approximation for yi+1:
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1

∆t
A · (yi+1 − yi) =

1

∆t
A · ((yi+1 − yi)|linear + (yi+1 − yi)|nonlinear) (3.11)

=
1

2
B · yi+1 +

1

2
B · yi +

3

2
Ni −

1

2
Ni−1 . (3.12)

⇒
(

1

∆t
A− 1

2
B

)
· yi+1 =

(
1

∆t
A +

1

2
B

)
· yi +

3

2
Ni −

1

2
Ni−1 . (3.13)

So, the final expression to be solved is

C · yi+1 = D · yi +
3

2
Ni −

1

2
Ni−1 , where C =

1

∆t
A− 1

2
B , (3.14)

D =
2

∆t
A−C .

This Adams-Bashforth-Moulton scheme has been shown (e.g. He and Sun, 2007) to be both

stable and convergent in the context of the Navier-Stokes equations. In the case of the axial

vorticity equation, C has five entries across the diagonal, so the resulting matrix equation is

solved with LU decomposition (e.g. Press et al., 1992). For all other governing equations, C

is tridiagonal, and the resulting matrix equations are solved using the tridiagonal algorithm

from Press et al. (1992). In both cases, a fixed timestep ∆t is used.

3.2.1 Velocity Equations

For a functional W which maps ψ to ωz, the matrices for solving the axial vorticity equation

(2.35) are
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A : W (ψ) : ψ → ωz = −∇2
Hψ −

1

s

∂

∂s
(sβψ) (3.15)

Bm :

(
E∇2

H (W ) +
2β

s
im

)
ψm (3.16)

N :

(
Bs

(
∂

∂s
− β

)
+
Bφ

s

∂

∂φ

)
jz −

(
us

(
∂

∂s
− β

)
+
uφ
s

∂

∂φ

)
ωz −Ra∗

∂Θ

∂φ
. (3.17)

However, as discussed in Section 4.1, the influence of the magnetic field will be ignored in

the vorticity equation in the majority of models run. In such cases, the nonlinear vector

becomes

N = −
(
us

(
∂

∂s
− β

)
+
uφ
s

∂

∂φ

)
ωz −Ra∗

∂Θ

∂φ
. (3.18)

With I denoting the identity matrix, the zonal flow equation (2.36) becomes

A : I (3.19)

B : ΓV = E

(
∂2

∂s2
+

(
3

s
+ β

)
∂

∂s

)(
bφ
s

)
(3.20)

N : ΓR + ΓL1 + ΓL2 = −1

s

(
us
s

∂

∂s
suφ

)
+

1

s3L

∂

∂s

(
s3LB0s

(
bφ
s

))
+

1

s

(
bs
s

∂

∂s
sbφ

)
.

(3.21)

3.2.2 Magnetic Equations

For the induction equation (2.41),
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A : I (3.22)

B :
E

Pm

(
∇2
H +

2β

s

)
a (3.23)

N : usBφ − uφBs . (3.24)

Note here that, since B0φ = 0, Bφ → bφ. For the zonal induction equation (2.42),

A : I (3.25)

B :
1

s3

E

Pm

∂

∂s

(
s3 ∂

∂s

)(
bφ
s

)
(3.26)

N : B0s
∂

∂s

(
uφ
s

)
+

1

sL

∂

∂s

(
L
(
uφbs − usbφ

))
. (3.27)

3.2.3 Temperature Equation

For the temperature equation (2.43),

A : I (3.28)

B :
E

Pr
∇2
HΘ (3.29)

N : − us
∂

∂s
〈T0〉 − uH · (∇HΘ) . (3.30)

3.3 Axisymmetric Nonlinear Averages

Normally, calculation of the nonlinear products contained within the N vectors must be

performed in real space. For example, to calculate the usBφ term in Eq.(3.24), both the uφ

and bφ fields are transformed from Fourier space to real space, multiplied with one another,
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and the result transformed back to Fourier space for time integration. Because the forward

and inverse Fourier transforms are computationally expensive, and must be performed at

each timestep, techniques have been developed to avoid them where possible.

One such technique is used when the azimuthal average of a nonlinear product is needed:

Appendix A.5 demonstrates that the entire operation may be performed in Fourier space,

avoiding the need to transform to and from real space. Appendix E uses the final result of

Appendix A.5, Eq.(A.79), to calculate the ΓR and ΓL2 terms in Eq.(3.21) and the uφbs−usbφ

term of Eq.(3.27) as

ΓR =
2

s2

∞∑
m=1

m (< (ψm)= (αm)−= (ψm)< (αm))

where αm =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
ψm , (3.31)

ΓL2 =
2

s2

∞∑
m=1

m (= (am)< (γm)−< (am)= (γm))

where γm =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
am , (3.32)

and

1

sL

∂

∂s

(
L
(
uφbs − usbφ

))
=

2

s2

3∑
n=1

∞∑
m=1

m [= (αmn )< (γmn )−< (αmn )= (γmn )] , (3.33)

with
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n αmn γmn

1 am
(
∂2

∂s2
+
(
β − 1

s

)
∂
∂s

+
(
∂β
∂s
− β

s

))
ψm

2 −ψm
(
∂2

∂s2
− 1

s
∂
∂s

)
am

3 2 ∂
∂s
am

(
∂
∂s

+ β
)
ψm

3.4 Parameters

3.4.1 Maintaining Model Validity

In the absence of magnetic forces, the QG model’s assumption of rigidity remains valid pro-

vided that Coriolis forces dominate inertial forces. The relative strength of each is captured

by the Rossby number Ro. For a velocity scale U and a length scale L,

Ro =
|inertial forces|
|Coriolis forces|

=
U

ΩL
� 1 . (3.34)

As shown in Table 2.2, the typical velocity scale in the core is U ≈ 3 × 10−4 m s−1, the

typical length scale is L ≈ 3×106 m, and the rotation rate is Ω ≈ 7×10−5 s−1, resulting in a

Rossby number of about 10−6. Similarly, Rossby numbers in our model must be kept much

less than 1. Because the nondimensionalization method we use implies that model velocities

u are equivalent to local Rossby numbers, this restriction amounts to ensuring that |u| � 1.

While magnetic forces are in principle capable of breaking the geostrophic assumption, in

practice flows remain rigid so long as the timescale of inertial waves remains much less than

the timescales of magnetic waves (Jault, 2008; Jault and Finlay, 2015). The ratio between

the two timescales is captured by the Lehnert (or magnetic Rossby) number λ, written in

terms of the Alfvén velocity as

λ =
uA
ΩL
� 1 . (3.35)
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Using the values in Table 2.1, Eq.(1.8) shows uA to be

uA =
|B|
√
ρ0µ0

≈ 3× 10−2 m s−1 , (3.36)

implying a Lehnert number of about 5×10−4. Clearly, rotational forces dominate in the outer

core even in the presence of the magnetic field. Much like the model’s nondimensional veloc-

ity field being equivalent to local Rossby number, the model’s magnetic perturbation field

b is nondimensionalized to be equivalent to the local Lehnert number. Thus, to maintain

rigidity (and therefore the validity of the QG approximation), the model’s control parame-

ters must be chosen such that b� 1 at all times.

Finally, the modified Rayleigh number Ra∗ represents the strength ratio of buoyancy and

rotational forces. To maintain rigidity, the Coriolis force must dominate. Indeed, Table 2.3

shows that Ra∗ in the outer core is � 1. Similarly, Ra∗ in the model must be kept � 1.

3.4.2 Control Parameters

The behaviour of the QG model constructed for this thesis is dictated by five control pa-

rameters: the Ekman number E, the modified Rayleigh number Ra∗, the background radial

magnetic field strength B0s, the Prandtl number Pr, and the magnetic Prandtl number Pm.

Section 3.4.4 will outline the procedure for selecting control parameters which both respect

the QG assumptions (discussed in Section 3.4.1) and correspond to the region of (diagnos-

tic) parameter space in which the model behaves in a somewhat Earth-like fashion (to be

discussed in Section 3.4.3). First, however, it is useful to discuss how each control parameter

affects the model’s behaviour.

The Ekman number represents the ratio in strength between viscous and Coriolis forces. It
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is linked to the thickness of the viscous boundary layer, proportional to E1/2, and to the

length scale of viscously-controlled convective eddies, proportional to E1/3. The extremely

small value of E ≈ 10−15 in the outer core implies that important convective dynamics are

likely to occur at even extremely small length scales, and extremely rapidly.

The Prandtl number is the ratio between the timescales of thermal and viscous diffusion.

The smaller Pr, the more easily heat can be conducted through a fluid and the less likely

convection is to occur for a given amount of thermal stress. Because the value of Pr in the

outer core is close to 1 (see Table 2.3), we simply set it to that value when tuning our model.

As discussed in the previous section, the modified Rayleigh number measures the strength

ratio between buoyant and Coriolis forces through a combination of the traditional Rayleigh

number (a measure of convective vigor), the Ekman number, and the Prandtl number. There

is a critical value of Ra∗ above which the primary mechanism to transport heat in the system

switches from conduction to convection. Higher values of supercritical Ra∗ correspond to

more vigorous convection: heat is transported more rapidly, and root-mean-square (RMS)

velocities increase.

The magnetic Prandtl number is the ratio of magnetic to viscous diffusion timescales. It

controls the rate of magnetic diffusion: smaller values of Pm correspond to enhanced mag-

netic diffusion. Thus, the lower the value of Pm, the less tightly the magnetic field is bound

to the flow and the smaller the amount of magnetic induction occurs. Put another way,

smaller values of Pm result in weaker and larger magnetic structures.

Our nondimensionalization of the magnetic field means uA = |B| = |B0 + b|. In practice,

the strength of b is proportional to the strength of B0s, implying uA ∝ |B0s|. Thus, |B0s|

controls both the speed of free Alfvén waves and, through its influence on the magnitude of
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b, the strength of magnetic forces.

In summary, larger values of Ra∗ correspond to larger RMS velocities, while larger mag-

nitudes of B0s correspond to larger RMS magnetic perturbation fields. Meanwhile, smaller

values of E correspond to smaller convective length scales and weaker viscous diffusion, while

smaller values of Pm correspond to larger magnetic length scales and enhanced magnetic dif-

fusion.

3.4.3 Earth-Like Regime

While the QG model constructed for this thesis is highly idealized and has been optimized

for investigating a very specific problem, the control parameters we choose should still reflect

the conditions of Earth’s core if we hope for our results to be meaningful.

Section 1.5 shows that convective velocities (uC) must be smaller than the Alfvén velocity

(uA) if the zonal accelerations are to be forced by the underlying convective structure. This

relationship is captured by the Alfvén number, A = uC
uA

. As shown in Section 1.5, A in the

core is thought to be about 0.01. Since Ra∗ controls our model’s convective velocities and

|B0s| controls its Alfvén velocity, Ra∗ and B0s must then be picked such that A � 1 if we

expect to reproduce the force regime of the outer core.

While this constrains the modified Rayleigh number and the background magnetic field

strength for any given Ekman number, it does not provide any guidance on choosing a mag-

netic Prandtl number. However, if the Maxwell torque of Eq.(2.40) dominates the torque

balance responsible for zonal accelerations, as we hypothesize, it must also dominate the

Reynolds torque of Eq.(2.38). Because the value of |b| is controlled by the values of |B0s|

and Pm, and because |B0s| is already constrained by the Alfvén number, this suggests a way

49



to constrain Pm.

Maxwell torques are proportional to |b|2; Reynolds torques, to |u|2. Using the root-mean-

square values brms =
∣∣b− bφeφ∣∣ and urms = |u− uφeφ| as proxies for the field strengths, the

requirement that Maxwell torques be greater than Reynolds torques implies brms � urms.

The induction equation (2.41) provides an avenue to find how the ratio of brms and urms

scales. When the model has achieved statistical equilibrium, the magnitude of its source and

diffusion terms must be in balance:

|∇× ((B0 + b)× u)| =
∣∣∣∣ EPm∇2

Hb

∣∣∣∣ . (3.37)

Using local flow length scale `c and local magnetic field length scale `b, and assuming |B| ≈

B0s (for a uniform B0s), this scales as

|B| |u|
`c

=
E

Pm

|b|
`2
b

⇒ B0surms
`c

=
E

Pm

brms
`2
b

. (3.38)

Rearranging, and recalling that we need brms � urms,

brms
urms

=
B0s

`c

Pm`
2
b

E
� 1 . (3.39)

While local magnetic length scales are typically longer than local viscous length scales, the

difference in the model is generally somewhat less than an order of magnitude. Eq.(3.39)

therefore places a constraint on which values of Pm may be chosen against a given B0s

E
ratio if

brms � urms is to be maintained. In practice, numerical constraints limit both the minimum

size of E and the maximum size of B0s, while the latter value is further constrained by the

requirement that, according to the QG assumption, uA ≈ B0s < 1 (that is, magnetic waves

travel more slowly than inertial waves). Thus, while Table 2.3 shows that Pm ≈ 10−6 in

the outer core, a model with B0s = 0.1 and E = 10−6 (so that B0s

E
= 105) would require

Pm ≈ 10−2 to ensure brms � urms.
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As a side note, it may be seen that the structure of Eq.(3.39) is not a mere mathematical

curiosity. By defining a local magnetic diffusion timescale, τdb = PmE
−1`2

b , and a local Alfvén

timescale, τa = `cB
−1
0s (since B0s ≈ uA), Eq.(3.39) may be expressed in terms of the ratio of

the two timescales. This ratio is the Lundquist number, Lu:

Lu =
τdb
τa

=
B0s

`c

Pm`
2
b

E
� 1 . (3.40)

Requiring a Lundquist number much greater than one implies information may be transmit-

ted via magnetic waves with minimal distortion by magnetic diffusion. Clearly this must be

the case if decadal-timescale, magnetically-forced accelerations are to occur in the core.

In summary, to ensure convective and magnetic conditions comparable to those found in the

outer core, (1) Ra∗ (corresponding to convective velocities) and B0s (corresponding to the

Alfvén velocity) must be chosen such that A � 1, and (2) Pm must be chosen such that, for

a given B0s and E, a Lundquist number Lu� 1 is maintained.

3.4.4 Selection Procedure

The first parameter to be chosen is the Ekman number. Since the Ekman number sets the

minimum length scale of the model, its value also determines the number of radial grid points

and the number of azimuthal Fourier modes. While lower Ekman numbers are generally de-

sirable, they are limited by the computational resources available.

Rational values for the magnetic control parameters depend largely upon the typical flow ve-

locities in any given model. However, the flow velocities themselves depend upon the control

parameters. Fortunately, the parameter they depend upon most is Ra∗. Therefore, lacking

prior knowledge of Ra∗’s critical value, various values are tried and the model is run without
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magnetic feedback on the velocity equations1. Acceptable values are much less than 1, in

keeping with the QG assumptions, and produce fully turbulent convection with velocities

much less than 1, also in keeping with the QG assumptions.

With length scales set by the Ekman number and velocity scales set (for the nonmagnetic

case) by the modified Rayleigh number, the magnetic control parameters may then be cho-

sen. First, the Alfvén number is used as a guide for selecting the strength of the magnetic

background field. While

A =
uC
uA
≈ uC
B0s

(3.41)

is about 0.01 in Earth’s core, in the models we generally use a less numerically aggressive

target of A ≈ 0.1. In other words, we typically set B0s to about 0.1 uC .

Finally, Pm is chosen so as to balance the conflicting demands of a strong magnetic diffusiv-

ity (corresponding to low Pm), and a high Lundquist number (corresponding to high Pm).

While in the core Pm ≈ 10−6, we find that in our models values of 10−1−10−3 produce better

results. As will be seen in Chapter 4, values of B0s and/or Pm which are too high result

in flows which are locked to the background magnetic field, unable to form the large-scale,

time-dependent eddies necessary to distort the magnetic field on convective timescales. Se-

lecting the proper values of each is the crux of this project.

While not strictly a control parameter, the choice of timestep is critical for model perfor-

mance. Too high, and the model will be numerically unstable. Too low, and computation

times can become unreasonable. In our model, lower Ekman numbers, higher velocities,

and higher magnetic background field strengths tend to require smaller timesteps, though

1Since the magnetic field is not needed for calculation of the flow field in these experiments, the induction
equations are also not calculated, significantly speeding the process.
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lower magnetic Prandtl numbers can somewhat ease the effects of a strong B0s. Because the

model’s timestep is static and set at runtime, choosing it is largely a matter of trial and error.

When a timestep is found that results in a somewhat stable model, it is generally halved

to ensure stability. The timestep, number of radial grid points, and number of azimuthal

Fourier modes are collectively referred to as the “grid parameters”.
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Chapter 4

Results

4.1 The Non-Axisymmetric Lorentz Torque

In a fully dynamical, Earth-like system, both the flow and magnetic fields tend to align

themselves so as to limit induction by shear (e.g. Moffatt, 1978; Schaeffer et al., 2017). How-

ever, because the background magnetic field we impose on our model is constant in time,

such a dynamic reorganization of the magnetic field is not possible . This means the non-

axisymmetric Lorentz torque in the axial vorticity equation strongly opposes any shearing of

the magnetic field, causing the flow to become “locked” onto the radial magnetic field lines

of the imposed magnetic background field. Such a configuration was common in many of the

early experiments we ran, with a snapshot of the vorticity and current fields from a typical

experiment (#11) shown in Figure 4.1.

The long, thin, stationary convection cells which form in such a configuration span nearly

the entire radial domain of the model, and do not much resemble the large-scale flows found

in the outer core. With time-varying eddy structures unable to form in the flow field, sim-

ilar structures are not induced in the magnetic perturbation field. As a result, free Alfvén

waves, excited as the zonal flow adjusts to small perturbations in the magnetic field, are the
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Figure 4.1: Snapshots in time of (a) the nonaxisymmetric vorticity ωz and (b) the nonaxisymmetric
axial current jz for Experiment #11, which includes the non-axisymmetric Lorentz torque in the
non-axisymmetric vorticity equation. The view is downwards from the north pole.

dominant magnetically-forced zonal accelerations which occur. The regular zonal acceler-

ations shown in Figure 4.2 are magnetically-controlled in this way, with the period of the

accelerations matching very closely with the fundamental Alfvén timescale1

Recognizing that the flow field was being unduly constrained by the magnetic field, some

attempt was made to allow the former to “slip” through the latter by lowering Pm. In theory,

this would enhance the rate of magnetic diffusion, allowing larger velocity shears to develop

before being braked by magnetic forces. In practice, values of Pm which allowed sufficient

velocity shears enhanced magnetic diffusion so much that the scale of magnetic perturba-

tions became comparable to, or smaller than, the scale of the velocity field. In other words,

the Lundquist number dropped below 1, and magnetically-dominated zonal accelerations

1In fact, the period of the accelerations is slightly greater than τA. This is not surprising given that the
speed of a free Alfvén wave depends on the local magnetic field strength, |B| = |B0s + b|. Since we define
uA and τA globally in terms of B0s, however, the true Alfvén velocity and timescale will generally be larger
and smaller than uA and τA, respectively.
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Figure 4.2: The zonal angular acceleration from Experiment #11, which includes the non-
axisymmetric Lorentz torque in the non-axisymmetric vorticity equation. The Alfvén timescale
τA is that of the fundamental Alfvén wave mode, τA = 2(s2 − s1)/uA.

became impossible. Attempts to magnify what perturbations were induced by increasing

B0s were unsuccessful.

Because we wish to demonstrate the mechanism by which large-scale flows can interact with

the magnetic field to generate slow zonal accelerations, our models must exhibit some degree

of large-scale, time-dependent convection – structures which are consistent in form with

those found in the outer core, if not in their governing force balances. One way to force our

model to form such structures is to exclude the non-axisymmetric Lorentz torque from the

axial vorticity equation. In other words, the first term on the right-hand side of Eq.(2.35) is

set to zero, reducing the equation to

∂ωz
∂t

+

(
us
∂

∂s
+
uφ
s

∂

∂φ

)
ωz − (2 + ωz) βus = E∇2

Hωz −Ra∗
∂Θ

∂φ
. (4.1)

In effect, convective eddies are allowed to distort the magnetic field, but the magnetic field is

not allowed to feed back on the convective eddies. However, because the primary objective

of this thesis is to show that the sum of small-scale magnetic torques can be the dominant

driver of large-scale zonal accelerations, the axisymmetric Lorentz torque ΓL = ΓL1 + ΓL2 is

retained in the zonal flow equation.
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4.2 Overview of Results

4.2.1 Model Initialization

To initialize a model from scratch, the vectors for ψ, a, and the nonlinear terms used for

timestepping (see Section 3.2) were set to zero. The entries in the ψ vector corresponding to

Fourier modes 20 to 25 were then perturbed according to ψ(i,m) = 10−7si sin (πsi) e
−400(si−0.65)2

,

where si is the radial position of the i-th radial grid point and m is the Fourier mode.

To reduce spinup times for subsequent models, however, a basic model was first run from

scratch until it reached statistical equilibrium (see Section 4.3). The final output values

from this basic model were then used as the synthetic initial state for the daughter models

catalogued in Table 4.1. The basic model had the following control and grid parameters:

E = 5.0× 10−6, Ra∗ = 0.0125, B0s = 0.001, Pm = 1.0, 601 radial grid points, 767 azimuthal

Fourier modes2, timestep ∆t = 0.001, and the non-axisymmetric Lorentz torque included in

the non-axisymmetric vorticity equation.

4.2.2 Exploration of Parameter Space

As illustrated by the “family tree” in Figure 4.3, many of the experiments shown in Table

4.1 are daughters of other experiments, rather than the basic initial model. In either case,

one or more of the control or grid parameters are generally changed in the from one model

to the next3. As our understanding of the problem grew, more intelligent parameter choices

2This seemingly unusual choice is made because our model uses the FFTW (Fastest Fourier Transform in
the West) library to perform forward and inverse Fourier transforms. FFTW is most efficient with 2n3m− 1
nonzero Fourier modes, where n and m are non-negative integers (Frigo and Johnson, 2005); 767 = 2831−1.

3In cases where the previous model had crashed, one of the output files it generated before it crashed was
used as the initial state of the subsequent model, with the latter usually having higher resolution in space
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could be made (see Section 3.4.4).

All models used an Ekman number E = 5.0×10−6 and Prandtl number Pr = 1.0. The mod-

ified Rayleigh number was varied by only a factor of two across all experiments, as values of

0.0125 − 0.0250 were clearly above the critical value while also producing velocities � 1 as

required by the QG approximation.

Most modifications of the model’s behaviour were therefore made by adjusting the back-

ground magnetic field strength B0s, the magnetic Prandtl number Pm, and whether or not

the non-axisymmetric Lorentz torque was included in the axial vorticity equation (that is,

whether Eq.(2.35) or Eq.(4.1) was used). Most of the models which excluded the non-

axisymmetric Lorentz torque exhibited slow zonal accelerations (compared to the Alfvén

timescale) controlled to a greater (higher Lundquist number) or lesser (lower Lundquist

number) extent by the zonal Lorentz torque.

For ease of discussion, I have focused the remainder of this thesis on one model which pro-

duces particularly good, though not atypical, results: Experiment #52 in Table 4.1. With

control parameters of E = 5.0 × 10−6, Pr = 1, Ra∗ = 0.0125, B0s = 0.15, and Pm = 0.1, it

uses 901 radial grid points, 768 azimuthal Fourier modes, and a timestep of 5 × 10−4. The

relatively high number of radial points results in points near the boundary being separated

by about 2× 10−6. With the thickness of the viscous boundary layer being proportional to

E1/2 ≈ 0.002, such a small grid size gives us confidence that the model’s spatial resolution

near the boundaries is adequate. At the same time, with points in the centre of the model

domain separated by about 1× 10−3, reasonable computational efficiency is maintained.

and/or time in an attempt to stabilize the instability.
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Figure 4.4: Evolution of the mechanical energy in a version of Experiment #52 which was initialized
from scratch (that is, was not restarted from a previous experiment; see Section 4.2.1). Time has
been scaled by the Alfvén timescale τA = 2(s2 − s1)/uA, with uA = B0s.

4.3 General features of Experiment #52

Because all of the models listed in Table 4.1 were started from previous models, not from

scratch, it is not possible to determine how long it takes a typical model to reach statistical

equilibrium. In an effort to constrain the time required, however, a model using the same

control and grid parameters as Experiment #52 was started “from scratch”, as specified in

Section 4.2.1. Figure 4.4 shows the evolution of the mechanical energy in this model, while

Figure 4.5 shows the evolution of its thermal energy.

Both energy plots clearly illustrate the different regimes a model passes through when it

is started. Initially, the small-scale, small-amplitude features introduced in the ψ vector

experience unstable, exponential growth in size and strength. When energy peaks, nonlinear
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Figure 4.5: Evolution of the thermal energy in a version of Experiment #52 which was initialized
from scratch (that is, was not restarted from a previous experiment; see Section 4.2.1). Time has
been scaled by the Alfvén timescale τA = 2(s2 − s1)/uA, with uA = B0s.
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effects begin to dominate the model’s dynamics – flows become turbulent and thermal energy

is transported from the inner to the outer boundary more efficiently. As the built-up thermal

energy is expunged, the model settles around a statistical equilibrium, with energies fluctu-

ating about a mean value. Transient dynamics have at this point died away, and the model

has entered a state which may be sensibly analyzed. Figures 4.4 and 4.5 show this regime to

be entered after about 100 Alfvén timescales, or around 130 rotations of the system. For the

remainder of this thesis, is is assumed that the models being discussed are in this statistical

equilibrium.

Figure 4.6 shows how the magnetic and mechanical components of the zonal energy in the

same experiment vary with time. Again, both fluctuate about a mean energy level after about

70 Alfvén timescales. Of greater note is how changes in the mechanical energy lead changes

in the magnetic energy. This is because much of the zonal magnetic field is induced by shear

in the zonal flow. As zonal flow velocities increase, so will the amount of zonal induction,

which after a period of time leads to an increase in the magnitude of the zonal magnetic field.

Figure 4.7 shows a snapshot in time of the non-axisymmetric vorticity, ωz, and the non-

axisymmetric current, jz, after Experiment #52 has reached statistical equilibrium. The

presence of eddies in both the flow and in the magnetic perturbation field are clearly visible.

The magnetic perturbation field exhibits structures with larger wavelengths than those in

the flow field, and with smoother features. This is a consequence of setting Pm = 0.1, causing

magnetic diffusion to be stronger than viscous diffusion.

Figure 4.8 illustrates the radial and azimuthal components of the non-axisymmetric velocity

field at the same time point as that shown in Figure 4.7, and Figure 4.9 does the same for

the non-axisymmetric magnetic perturbation field. While both uφ and bφ exhibit similar

spiral patterns as does jz, us and bs do not appear very similar to either ωz or jz. Despite
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Figure 4.6: Evolution of the magnetic (blue) and mechanical (red) zonal energy in a version of
Experiment #52 which was initialized from scratch (that is, was not restarted from a previous
experiment; see Section 4.2.1). Time has been scaled by the Alfvén timescale τA = 2(s2 − s1)/uA,
with uA = B0s.
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Figure 4.7: Snapshots of Experiment #52 at time equivalent to 44τA on Figure 4.12, showing (a)
the non-axisymmetric vorticity ωz and (b) the non-axisymmetric axial current jz, as seen looking
downward from the north pole. Root-mean-square values are RMS(ωz) = 0.12, RMS(jz) = 5.19.

this, the overall structures of the velocity and magnetic perturbation fields are clearly very

strongly related to one another, as is expected from the equations coupling them together.

Typical urms and brms values after equilibration are 0.003 and 0.15, respectively. Because

|u| is equivalent to the local Rossby number, and |b| to the local Lehnert number, we have

Ro � 1 and λ < 1. The QG approximation is therefore valid, if only just in the case of the

magnetic field.

Defining the experimental Alfvén and Lundquist numbers as

A =
urms
B0s

and Lu =
brms
urms

, (4.2)

Experiment #52 has a typical A ≈ 0.02 and Lu ≈ 56. This is within the region of parameter

space where we expect a clear separation of magnetic and eddy timescales, and where we
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Figure 4.8: Snapshots of Experiment #52 at time equivalent to 44τA on Figure 4.12, showing (a)
the non-axisymmetric radial velocity us and (b) the non-axisymmetric azimuthal velocity uφ, as
seen looking downward from the north pole. Root-mean-square values are RMS(us) ≈ 1.64× 10−3

and RMS(uφ) ≈ 2.12× 10−3 (urms ≈ 2.68× 10−3).

Figure 4.9: Snapshots of Experiment #52 at time equivalent to 44τA on Figure 4.12, showing (a)
the non-axisymmetric radial magnetic perturbation field bs and (b) the non-axisymmetric azimuthal
magnetic perturbation field bφ, as seen looking downward from the north pole. Root-mean-square
values are RMS(bs) ≈ 0.071 and RMS(bφ) ≈ 0.131 (brms ≈ 0.150).
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Figure 4.10: Time-averaged mean axial torques (solid lines) and time-averaged zonal angular
velocity (dashed line) as a function of radius for Experiment #52.

expect the Lorentz torque (ΓL = ΓL1 +ΓL2) to dominate the Reynolds torque (ΓR). In short,

this is a regime where long-timescale, magnetically-forced zonal accelerations similar to those

in Earth’s core should reside.

4.4 Time-averaged axisymmetric torque balance

The dashed black line of Figure 4.10 shows the time-averaged zonal angular velocity. Its

profile is dominated by a shear flow spanning the whole of the modelled region, retrograde

at the outer boundary and prograde at the inner boundary. The amplitude of this shear flow

is of the same order of magnitude as the amplitude of typical convective eddies.

The mean zonal flow of Figure 4.10 differs from the one typically observed in the absence

of a magnetic field. In non-magnetic convection with stress-free boundaries, the direction
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of the mean zonal flow is reversed – it is prograde at the equator – and its characteristic

velocity is much larger than the velocities associated with convective eddies. It results from

time-averaged Reynolds stresses, themselves being the product of the topographic beta ef-

fect acting on convective eddies (e.g. Cardin and Olson, 1994; Christensen, 2001). In such

experiments, zonal mechanical energies typically dominate non-zonal mechanical energies.

In the presence of an axisymmetric radial magnetic field, the same shear flow induces an

axisymmetric Lorentz torque (ΓL1) opposing the shear which limits the growth of the zonal

flow. In three-dimensional models, this zonal flow is not z-invariant (e.g. Aubert, 2005). In

our QG model, because the magnetic perturbation is defined with a built-in topographic beta

effect identical to that of the flow, a time-averaged Maxwell torque (ΓL2) is maintained in the

same way as the time-averaged Reynolds stress. Since ΓL2 has the same form, but opposite

sign, as ΓR, and since the former typically dominates the latter in our model, the direction

of the driven mean zonal flow is reversed to that produced in non-magnetic convection. The

effective braking of the zonal wind results in zonal mechanical energies in magnetoconvection

experiments to be comparable to the nonzonal mechanical energies, as shown in Figure 4.4.

The time-averaged
uφ
s

profile is, then, the result of a balance between the time-averaged

Lorentz torque and the time-averaged Reynolds torque. Figure 4.10 illustrates this, show-

ing the time-averaged part of the Reynolds (orange), Lorentz (blue), and viscous (green)

torques as functions of radius. ΓV plays a secondary role in the balance near the bound-

aries, especially the outer one where the β effect amplifies all three torques. Away from

the boundaries, the Reynolds and Lorentz torques largely balance one another. Note that

both ΓL1 and ΓL2 are individually much larger than ΓR, as shown by Figure 4.11. However,

they tend to cancel one another, leaving a net Lorentz torque several orders of magnitude

smaller than either one individually. This self-cancellation will be re-examined in Section 4.6.
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Figure 4.11: Time-averaged components of the mean axial Lorentz torque as a function of radius
for Experiment #52.

4.5 Zonal accelerations

Fluctuations in time with respect to this mean torque balance are the main focus of our

study. Figure 4.12 shows the zonal angular accelerations (top panel) and the time-varying

parts of ΓL, ΓR, and ΓV (bottom three panels) after the system has equilibrated. Fluctua-

tions in ΓL have a typical amplitude five times larger than those of ΓR: ∼ 6.6× 10−5 versus

∼ 1.2 × 10−5. ΓV is afforded a tertiary role in the time-dependent dynamics, with RMS

fluctuations of the order of ∼ 0.3× 10−5.

Thus, fluctuations in our model’s mean zonal accelerations are mainly controlled by the

Lorentz torque. Indeed, the upper two panels of Figure 4.12 suggest a strong correlation at

all times and radii between ∂
∂t

(
uφ
s

)
and ΓL. Time on Figure 4.12 has been scaled to the

timescale of the fundamental Alfvén wave mode, τA = 2(s2 − s1)/uA. An estimate of the

characteristic timescale of the slow zonal flow fluctuations is τslow ≈ 10 τA. Scaling τslow to
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Figure 4.12: The zonal angular acceleration (top panel), and the time-dependent parts of the
Lorentz (second panel), Reynolds (third panel) and viscous (bottom panel) torques, as functions
of cylindrical radius and time from Experiment #52. The time-averaged contribution to each
torque (shown in Fig.4.10) has been removed. Time has been scaled by the Alfvén timescale
τA = 2(s2 − s1)/uA, with uA = B0s.
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Figure 4.13: Characteristic (a) wave numbers, (b) length scales, and (c) time scales as a function
of radius for Experiment #52, calculated at time 44τA in Figure 4.12.

Earth’s core, taking τA ≈ 6 yr, gives a timescale of 60 yr for these slow zonal accelerations

– a similar timescale to the zonal accelerations inferred to exist within Earth’s core. As

would be expected for a parameter regime in which A < 1, the fluctuations in b which lead

to these slow zonal accelerations must therefore occur on timescales longer than the Alfvén

wave propagation timescale.

To further demonstrate that the slow magnetic field fluctuations originate from the under-

lying convective dynamics, the characteristic wave number (e.g. Takahashi et al., 2008) is

computed at each radius s from the convective speed u = |u|:

k∗(s) =

∫
k′u(k′) dk′∫
u(k′) dk′

. (4.3)

The result of this calculation as a function of radius, for a typical snapshot of the model, is

shown in panel (a) of Figure 4.13. The characteristic convective length scale `C(s) is then

calculated from the characteristic wavenumber as

`C(s) =
2πs

k∗(s)
. (4.4)

The characteristic convective length scale for all radial positions is shown in panel (b) of
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Figure 4.13. Dividing these length scales by the RMS velocities at each radius yields the

characteristic convective timescales:

τC(s) =
`c
urms

≈ 6τA . (4.5)

As shown in panel (c) of Figure 4.13, these timescales vary somewhat with radius, and they

also vary slightly with time. However, in the bulk of the fluid, τC – which represents the time

required for the flow to create significant changes in the magnetic field – is typically 5− 8τA

for this experiment, which is of the same order as τslow. Thus, the results shown on Figure

4.12 demonstrate that it is possible to drive decadal zonal accelerations in Earth’s core by

fluctuating Lorentz torques, themselves driven by underlying convective flows shearing and

advecting the magnetic field.

In addition to the slow fluctuations of Figure 4.12, the convective dynamics also generate

free Alfvén waves. Figure 4.14 shows the second half of the zonal acceleration and Lorentz

torque panels of Figure 4.12 after applying a highpass filter to remove fluctuations with pe-

riods longer than 1.19 τA. This reveals the presence of periodic fluctuations with a period of

approximately 1 τA. The correlation between the acceleration and Lorentz torque shows that

these are indeed Alfvén waves. (Applying the same highpass filter to ΓR and ΓV produces

only low-amplitude noise.)

Left on their own, free Alfvén oscillations should decay away because of ohmic dissipation. In

our model, they are continuously re-excited by the underlying convective dynamics, though

resonant amplification remains modest and their amplitude does not rise much higher than

that resulting from the forced background accelerations. Their typical RMS velocities of

1 × 10−4 are approximately 7 times smaller than the RMS velocities of 7 × 10−4 found for

the slower zonal flow fluctuations. This is the reason why Alfvén waves, though present, are

not apparent on Figure 4.12.
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Figure 4.14: Output of a highpass filter applied to the second half of the zonal angular accelerations
(top panel) and Lorentz torques (bottom panel) of Fig.4.12. In our nondimensional time units, the
8th-order digital Butterworth filter’s -3 dB frequency is 1/10.

The Alfvén waves on Figure 4.14 which we observe in our model are also observed in the

Earth’s core, with a typical amplitude of ∼ 0.2 km yr−1 and a typical period of 6 yr (Gillet

et al., 2010, 2015). The typical amplitude of the observed decadal zonal flows is of the order

of 2 km yr−1, or 10 times greater – the same difference of an order of magnitude achieved

by our model. Furthermore, our model also reproduces the amplitude ratio between the

decadal zonal flows and typical large scale flow eddy velocities. At the top of Earth’s core,

the flow amplitude is approximately 10 km yr−1, or 5 times greater than that of the decadal

oscillations. In our model, the RMS amplitude of zonal flows is 2.4×10−3, or 3 times that of

the slow fluctuations. Thus, the approximate ratios between both the amplitudes of the total

zonal flow and decadal fluctuations and between the decadal fluctuations and free Alfvén

waves are captured by our model. This gives us confidence that our model is a good analogy

for the zonal flow dynamics of Earth’s core.
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4.6 Taylorization

As discussed in Section 1.5, Taylor (1963) showed that in the absence of inertia and viscos-

ity, magnetic torques must vanish when integrated over the surface of a geostrophic cylinder

in order to maintain a steady-state solution. This does not imply that the local magnetic

torque at any individual point on the geostrophic cylinder is zero. Instead, there is perfect

cancellation: local magnetic torques, possibly quite large, cancel one another out when av-

eraged over the entire surface.

In a more dynamic system, local magnetic torques averaged over geostrophic cylinders may

not exhibit perfect cancellation, resulting in azimuthal accelerations of those cylinders. The

“Taylorization” of such a system is simply a measure of how much the local magnetic torques

cancel when averaged. In our model, where the magnetic field (and therefore the magnetic

torque) is assumed to be axially invariant, the Taylorization is measured by the factor T :

T (s) ≡
∣∣∮Mφ(s, φ) dφ

∣∣∮
|Mφ(s, φ)| dφ

=
|ΓL(s)|∮

|Mφ(s, φ)| dφ
, (4.6)

whereMφ(s, φ) represents the azimuthal component of the local magnetic torque. A system

with low Taylorization has T . 1, while a system with a high Taylorization has T � 1.

Typical geodynamo simulations achieve T ≈ 10−1−10−3 (e.g. Rotvig and Jones, 2002; Wicht

and Christensen, 2010; Teed et al., 2014).

Figure 4.15 shows the Taylorization factor of our model as a function of cylindrical radius

and time. Typical RMS values of T are approximately 3.2 × 10−4, with peak values of

2.6 × 10−3. As shown in the previous section, temporal fluctuations of the magnetic field

lead to temporal fluctuations of the Lorentz torque. Thus, Taylor’s constraint is continually

broken, with the Lorentz torque fluctuations being accommodated by rigid zonal accelera-

tions. This can be observed in Figure 4.12, where the times and radii of the largest zonal
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Figure 4.15: Taylorization factor T as a function of radius and time for Experiment #52. With
our choice of boundary conditions, the Taylorization factor equals 1 at the boundaries. Only
s ∈ [0.36, 0.97] is shown.

accelerations often coincide with the largest values of T in Figure 4.15.

Therefore, our model is not in a perfect Taylor state at any given moment, but instead

fluctuates about a state characterized by a low Taylorization factor. A part of the large can-

cellation of the Lorentz torque over any given geostrophic cylinder is inherent to the form of

the Maxwell torque (ΓL2), as it involves products of the magnetic field vectors which change

direction at different azimuthal points. Much of the remaining cancellation results from the

sum of ΓL1 and ΓL2 , as shown by Figure 4.11.

If our model is to conserve angular momentum in the absence of inertia (ΓR) and viscosity

(ΓV), the time-averaged Lorentz torque {ΓL} = {ΓL1 + ΓL2} must be zero. However, Figure

4.10 shows that {ΓL} 6= 0. This is because ΓR and ΓV are included: angular momentum

is conserved by balancing {ΓL} against the next-largest time-averaged torque. Figure 4.10

shows this next-largest torque to be {ΓR}.
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Chapter 5

Discussion

5.1 Slow Zonal Accelerations

Our model shows that in an Earth-like parameter regime characterized by A � 1 and

Lu � 1, convective flows can drive fluctuations in the magnetic field which then lead to

temporal fluctuations in the magnetic torque. The latter generates zonal accelerations in

the form of free Alfvén waves, but also slower forced zonal accelerations on a timescale

related to the convective flows. Our results suggest that the inferred decadal zonal accelera-

tions of geostrophic cylinders in the Earth’s core can be explained by forced fluctuations of

the Lorentz torque, themselves driven by the underlying convection.

Although our dynamical model is in the correct parameter regime in terms of A � 1 and

Lu� 1, other parameters remain far from Earth-like, notably the Ekman number (5.0×10−6,

vs. ∼ 10−15 in the outer core) and magnetic Prandtl number (0.1, vs. ∼ 10−5 in the outer

core). Care must then be taken when extrapolating our results to Earth’s core. To further

confirm that our results appropriately capture the decadal timescale dynamics of zonal flows

in the core, it would be desirable to conduct many more numerical experiments, systemat-

ically varying some of the input parameters in order to develop scaling properties for our
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model. An alternative approach would be to attempt the tuning of a 3D self-sustaining

dynamo model to produce the magnetically-forced zonal accelerations we argue are respon-

sible for decadal fluctuations in the length of day. Some existing geodynamo models are

approaching the parameter regime of A � 1 and Lu � 1 already (e.g. Aubert et al., 2017;

Schaeffer et al., 2017). Short of doing this, some speculation may be made as to how the

use of more Earth-like Ekman and magnetic Prandtl numbers would affect the dynamics of

zonal flows.

For the relatively large Ekman numbers of our numerical experiments, viscous forces remain

important in the establishment of the large-scale, core-size eddies visible on Figure 4.7 (e.g

Aurnou et al., 2015). However, at E ∼ 10−15, as inferred for Earth’s core, the E1/3 scaling

law suggests that the typical size of viscously-controlled eddies should be much smaller, at

about 10−5 times the size of the core or roughly of the order of 10-100 m. These are much

smaller than those shown in Figure 4.7. Such small eddies would be inefficient at generating

the core-size changes in the magnetic field required to drive large-scale zonal accelerations.

However, the geomagnetic secular variation allows the presence of large-scale eddies in

Earth’s core to be inferred. The length scale of such eddies must necessarily be set by

something other than viscous forces. Two mechanisms may play a role. First, sufficiently

low Ekman numbers, small-scale structures feed their energy to larger scales via an inverse

energy cascade driven by geostrophic turbulence (e.g. Guervilly et al., 2014; Stellmach et al.,

2014). Second, the influence of the Lorentz force should lead to larger convective length

scales (e.g. Roberts and King, 2013). In fact, this effect is starting to be seen in numerical

models (e.g. Matsui et al., 2014; Yadav et al., 2016; Schaeffer et al., 2017). While both of

these efects are likely present in Earth’s core, both are absent in our models.

However, the mechanism we demonstrate for driving decadal-timescale zonal accelerations
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depends only on the presence of such large-scale eddies, not the dynamics governing them.

While those of our model are not formed in the same way as in the core, they nevertheless

serve the same purpose, stretching and shearing the magnetic field on convective timescales.

The magnetic Prandtl number in the core is much lower than the one we have chosen in

our numerical experiment. Since a lower Pm corresponds to enhanced magnetic diffusion,

temporal changes in the magnetic field would be dominantly controlled by the largest length

scales of the underlying convective flow. Thus, while small-scale eddies certainly exist in

the core, changes in the magnetic field should still preferentially occur at the largest length

scale. We therefore expect that temporal changes in the Lorentz torque can drive decadal

zonal accelerations at core-size wavelength in the radial direction, just as we observe in our

numerical experiment of limited spatial resolution.

5.2 Free Alfvén waves

As shown in Fig. 4.14, our dynamical model excites free Alfvén waves. The ratio between

the amplitudes of the slow zonal acceleration and the free Alfvén waves is of the order of 10,

as is the case in Earth’s core. Although we capture this ratio correctly, the spatio-temporal

properties of Alfvén waves in our model differ from those detected in Earth’s core. In our

model, they are dominated by a standing wave oscillation of the fundamental mode. In

Earth’s core, they take the form of outward travelling waves (Gillet et al., 2010, 2015).

The reason why Alfvén waves in Earth’s core travel outward, as well as their excitation

mechanism, remain unclear. Outward travelling Alfvén waves resulting from a quasi-periodic

triggering near the tangent cylinder are observed in some numerical models (Teed et al., 2014,

2015; Schaeffer et al., 2017). When approaching an Earth-like regime, Lorentz forces are re-

sponsible for this torque, but the precise physical mechanism has not been clearly identified.
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It would be a valuable effort to investigate where and how Alfvén waves are excited in our

model. Since we do not see a preferential propagation direction, excitation appears to be

distributed evenly within the domain of integration. The region close to the tangent cylinder

does not appear to be the seat of of any form of recurrent instability, although this may be

because we have not modelled the dynamics inside the tangent cylinder.

Given that convective flows in our model induce changes the magnetic field on a broad range

of timescales, Alfvén waves on Fig. 4.14 may simply represent the resonant response to fluc-

tuations of the Lorentz torque that occur in the vicinity of their free period range. Indeed,

correlations between Figs. 4.14 and 4.15 suggest that this is the case: notable increases in the

Taylorization factor are often, though not always, associated with an amplitude enhancement

of free Alfvén waves. This argues along the same line of a recent study which has shown that

applying a stochastic forcing in the volume of the core readily excites Alfvén waves (Gillet

et al., 2017). Moreover, the study of Gillet et al. (2017) has also shown that electromagnetic

dissipation at the CMB transforms standing Alfvén waves into outward travelling waves,

with similar characteristics as those detected in the Earth’s core. Our model constitutes a

dynamical realization of such a stochastic forcing and supports the idea that Alfvén waves

in Earth’s core are simply the response to sub-decadal changes in the Lorentz torque within

the bulk of the core. Our model does not include dissipation at the CMB, but we believe

(though this should be tested) that adding it would also transform our standing Alfvén waves

into outwardly propagating waves.
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5.3 Taylorization

Taylor’s constraint is continuously being broken in our model, generating zonal accelerations

in response. The numerical value of the Taylorization factor associated with these fluctu-

ations is of the order of 10−3, similar to that extrapolated for the outer core using recent

geodynamo models (Aubert et al., 2017). The time-average state about which these fluctu-

ations occur is characterized by a higher degree of Taylorization, though it is not a perfect

Taylor state. The degree to which Taylor’s constraint is broken depends on the strength of

the largest of the non-magnetic torques (ΓR,ΓV). In our model, the torque from Reynolds

stresses dominates the viscous torque and acts as the main balance to the time-averaged

Lorentz torque.

The results of our model suggest that, as was pointed out by Dumberry and Bloxham

(2003), the torque from Reynolds stresses in Earth’s core likely also provides the leading

order departure from a time-averaged Taylor state. Because the Alfvén number in our

model is similar to that in Earth’s core, the baseline Taylorization factor of approximately

10−4 in Fig. 4.15 may also be representative of that expected in Earth’s core. As our model

is two-dimensional, extrapolation of our results to the three-dimensional magnetic field of

Earth is clearly not straightforward. Nevertheless, with such a high Taylorization, large

cancellations in Lorentz torque over a cylinder must still occur. It this sense, exploring

dynamo solutions in the limit of a vanishing Lorentz torque remains a worthy goal (e.g.

Livermore et al., 2008; Wu and Roberts, 2015). This being said, one must keep in mind that

the correct Taylorization factor in Earth’s core may not be asymptotically close to zero, but

may instead be closer to 10−4.
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Chapter 6

Conclusion

For this thesis, a two-dimensional reduced model of rotationally-dominated magnetoconvec-

tion was constructed. This model is capable of producing distinct accelerations in the mean

zonal flow on both short and long timescales. The short-timescale accelerations are the sig-

nature of free Alfvén waves, while the long-timescale accelerations are magnetically forced

by the Maxwell torque. The temporal changes in the magnetic field which drive the time-

varying Maxwell torque are produced by the underlying convective flows, which shear and

advect the magnetic field on a timescales associated with convective eddies. These results

provide a dynamical explanation for the rigid decadal zonal accelerations that are inferred

to exist in Earth’s core on the basis of changes in the observed magnetic field and changes

in the length of day (LOD).

This explanation offers an alternative to the suggestion that the decadal zonal accelerations

are the signature of free MAC waves propagating through a stably-stratified layer at the

top of the outer core (Buffett, 2014; Buffett et al., 2016). While such MAC waves may well

exist, they must coexist with the deep-seated, convectively-driven zonal flows predicted by

our model. In fact, the reverse of the effect proposed by Buffett et al. (2016) may be true:

instead of deep zonal flows resulting from MAC waves in a stratified layer coupling with the
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deeper core, zonal flows in the deep core may couple to the stratified layer and induce MAC

waves. However, because of the strong match between the observed LOD and predictions

based on purely rigid flows, we speculate that any non-rigid MAC waves make up only a

fraction of the total zonal flow.

6.1 Future Directions

The modest computational resources required by our model make it well-suited to simulating

dynamics which conventional three-dimensional models may find too numerically demanding,

especially at lower Ekman numbers. While recent 3D models have reached Ekman numbers

of ∼ 10−7 (e.g. Schaeffer et al., 2017), they remain far from the 10−14−10−15 estimated for the

outer core. Previous studies have found that, as the Ekman number decreases, the length

scale of the magnetic field does not decrease as quickly as the length scale of convection

(e.g. Takahashi et al., 2008). In the context of zonal accelerations, this suggests the nature

of interaction between the convective and magnetic fields may also change as the Ekman

number is decreased. For example, if magnetic features remain relatively constant in size as

convective features shrink, the separation in timescale between free and forced oscillations

may decrease if convective velocities remain the same. As the Ekman number is decreased

further and convective length scales become small enough to start an inverse energy cascade,

the magnetic perturbations responsible for the forced zonal accelerations may switch from

being driven by small-scale convection to large-scale vortices arising from the cascade (e.g.

Guervilly et al., 2014).

Future work should note that the magnetic background field used for this thesis is not con-

sistent with the assumptions made in the derivation of the QG equations. In particular,

while it is assumed that ∇ · B0 = 0, the use of B0z = βB0sz with a uniform B0s produces
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a background field with a true divergence of ∇ · B0 = B0s

(
1
s

+ β
)
. A divergence-free field

could be achieved with the same B0z profile by instead taking B0s = C
sL

, were C is an arbi-

trary constant. Such a field is stronger near the boundaries than in the bulk of the modelled

region, which would likely have a significant impact on the behaviour of free Alfvén waves.

In particular, since uA = |B|, the radial gradient in B would lead to a radially-dependent

Alfvén velocity with a minimum at s =
√

1
2
≈ 0.707. This could cause either the breaking or

the excitation of Alfvén waves, whose propagation direction likely depends on the magnetic

boundary conditions (Gillet et al., 2017).

Beyond zonal accelerations, our model could be adapted to study the coupling mechanisms

which transfer angular momentum between the core and the mantle. There are several

such mechanisms, including viscous forces, the flow field pushing against mantle topography,

electromagnetic coupling, and gravitational coupling involving the inner core (e.g. Buffett,

2015). The second two in particular could be explored with our model.

If a radial magnetic field is allowed to penetrate the core-mantle boundary, the advection of

the magnetic field by the flow at the top of the core will cause eddy currents to be induced

in the lower mantle. The resulting Lorentz forces tend to brake the flow, and impart a net

torque on the mantle itself (e.g. Stix and Roberts, 1984). This mechanism has been shown

to be strong enough to potentially explain the observed LOD variations (e.g. Holme, 1998),

though there remains some debate over the conductivity structure required at the bottom

of the mantle to account not only for the LOD variations, but also for Earth’s nutations

(Buffett, 2015). At present, all boundaries in our model are assumed to have zero resistivity,

or infinite conductivity. This implies that the spherically radial magnetic field must drop to

zero at the spherical boundaries, precluding any electromagnetic coupling. Our model could

be adapted to include electromagnetic coupling by allowing a radial magnetic field on the

boundaries. This would amount to implementing a finite, nonzero conductivity at s = s1
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and s = s2, as well as on the upper and lower spherical boundaries. In addition, the assumed

B0z and bz profiles would need to be adjusted since the no-penetration boundary condition

would no longer apply. The relatively modest computational requirements of our model

would make this a more efficient (if also a slightly less realistic) way of studying various

forms of electromagnetic coupling compared to a fully three-dimensional model.

If processes in the mantle deform the shape of the core-mantle boundary, the structure of

the gravitational potential within the core will also change. If, for example, the core-mantle

boundary is deformed such that its projection onto the equatorial plane is elliptical, the

inner core will be deformed by gravity into a similar elliptical shape (e.g. Mound and Buf-

fett, 2003). If the inner core is then rotated by couplings with process in the outer core

(e.g. Glatzmaier and Roberts, 1996; Buffett and Glatzmaier, 2000), a gravitational restoring

torque will be induced between the inner core and the mantle. This is gravitational coupling

(e.g. Buffett, 1996a,b). Such a coupling could be incorporated into our model by tracking

an additional parameter: the azimuthal displacement between the inner and outer annu-

lar boundaries caused by viscous or electromagnetic torques. An additional, gravitational,

torque could then be calculated on the boundaries in proportion to the offset angle, possibly

dependent on time to account for viscous relaxation of the inner core’s shape. In conjunction

with the electromagnetic core-mantle coupling described above, a study could then be made

of the relative importance of the two types of coupling in the case of Earth.

Finally, the dynamics of a model never precisely match those of the real-life system being

modelled, and over time the model tends to drift even further from the system’s “true” state.

For example, Hu and Skaggs (2009) report that precipitation levels in 6-10 day weather fore-

casts of the continental United States are accurate about 40% of the time. Data assimilation

techniques use observations from the system’s “true” state to nudge the model towards the

“true” dynamics. These techniques have been well established in meteorology (e.g. Ghil
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et al., 1991; Kalnay, 2003) and oceanography (e.g. Bertino et al., 2003), where they are used

both in forward modelling (forecasting) and reanalyses (hindcasting) (e.g. Carton et al.,

2000). Similar techniques could be applied to recover more accurate dynamics from ap-

propriately modified core flow models (e.g. Fournier et al., 2010). Since the numerical cost

of processing geodynamic and geomagnetic observations into model corrections tends to be

quite high (Fournier et al., 2010), such techniques may be more easily adapted to reduced

models such as ours than to fully three-dimensional models.
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Appendix A

Useful Mathematical Relations

This appendix assumes a cylindrical coordinate system (s, φ, z), with its ez-axis aligned with

the axis of rotation. In a spherical container, the distance in the axial direction from the

equatorial plane to either the upper or lower boundary is the same, being

L =
√

1− s2 , (A.1)

with

β =
1

L

∂L

∂s
= − s

L2
. (A.2)

The radial derivatives of L and β are

∂L

∂s
= − s

L
= Lβ,

∂2L

∂s2
= − 1

L3
, (A.3)

∂β

∂s
= −1 + s2

L4
. (A.4)
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A.1 Gradient Operator

The gradient operator in cylindrical (s, φ, z) coordinates is

∇ = es
∂

∂s
+

eφ
s

∂

∂φ
+ ez

∂

∂z
. (A.5)

So, for a scalar function f and vector functions F and G,

∇f =

(
es
∂

∂s
+ eφ

1

s

∂

∂φ
+ ez

∂

∂z

)
f (A.6)

∇ · F =
1

s

∂

∂s
(sFs) +

1

s

∂

∂φ
Fφ +

∂

∂z
Fz (A.7)

∇× F = es

(
1

s

∂

∂φ
Fz −

∂

∂z
Fφ

)
+ eφ

(
∂

∂z
Fs −

∂

∂s
Fz

)
+ ez

1

s

(
∂

∂s
(sFφ)− ∂

∂φ
Fs

)
(A.8)

∇2f =

(
∂2

∂s2
+

1

s

∂

∂s
+

1

s2

∂2

∂φ2
+

∂2

∂z2

)
f (A.9)

∇2F = es

(
∇2Fs −

Fs
s2
− 2

s2

∂

∂φ
Fφ

)
+ eφ

(
∇2Fφ −

Fφ
s2

+
2

s2

∂

∂φ
Fs

)
+ ez∇2Fz (A.10)

(F ·∇) G = es

(
Fs

∂

∂s
Gs +

Aφ
s

∂

∂φ
Gs + Fz

∂

∂z
Gs −

FφGφ

s

)
+ eφ

(
Fs

∂

∂s
Gφ +

Aφ
s

∂

∂φ
Gφ + Fz

∂

∂z
Gφ +

FφGs

s

)
+ ez

(
Fs

∂

∂s
Gz +

Fφ
s

∂

∂φ
Fz + Fz

∂

∂z
Gz

)
(A.11)

It will often be the case that only the horizontal (s, φ) components of these operators will

be needed. In particular, if ∇H ≡∇s,φ,
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∇Hf =

(
es
∂

∂s
+ eφ

1

s

∂

∂φ

)
f (A.12)

∇2
Hf =

(
∂2

∂s2
+

1

s

∂

∂s
+

1

s2

∂2

∂φ2

)
f (A.13)

A.2 Cylindrically Radial Derivatives

For an arbitrary function f and integers (m,n), the following may be shown to be equivalent.

The conversion of linear (f) to angular
(
f
s

)
derivatives is inferred from calculating the n =

1, 2, 3, 4 cases, and inferring that the pattern will continue.

1

snLm
∂

∂s
(snLmf) =

(
∂

∂s
+
n

s
+mβ

)
f (A.14)

1

sn
∂2

∂s2
(snf) =

(
∂2

∂s2
+

2n

s

∂

∂s
+
n (n− 1)

s2

)
f (A.15)

∂n

∂sn
f = s

(
∂n

∂sn
+
n

s

∂n−1

∂sn−1

)(
f

s

)
. (A.16)

A.3 Azimuthal Averaging

The average of a function f in the eφ-direction is denoted with an overbar:

f =
1

2πs

∫ 2π

0

f(t, s, φ, z)s dφ =
1

2π

∫ 2π

0

f(t, s, φ, z) dφ (A.17)

Because all the fields we deal with are continuous in φ, azimuthally averaging the Laplace

operator removes the eφ-component:
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∇2f = ∇2
sf +∇2

zf +∇2
φf (A.18)

=
(
∇2
s +∇2

z

)
f +

1

s2

∂2

∂φ2
f (A.19)

= ∇2
s,zf +

1

2πs2

∂

∂φ
f

∣∣∣∣2π
0

(A.20)

⇒ ∇2f = ∇2
s,zf (A.21)

The azimuthal average of the vector Laplacian operator is slightly more complicated:

∇2f = ∇2
sf + ∇2

zf + ∇2
φf (A.22)

=

(
∇2fs −

fs
s2
− 2

s2

∂fφ
∂φ

)
es +

(
∇2fφ −

fφ
s2

+
2

s2

∂fs
∂φ

)
eφ +

(
∇2fz

)
ez (A.23)

=

(
∇2
s,zfs −

fs
s2
− 1

πs2
fφ|2π0

)
es +

(
∇2
s,zfφ −

fφ
s2

+
1

πs2
fs|2π0

)
eφ +

(
∇2
s,zfz

)
ez

(A.24)

⇒∇2f = es

(
∇2
s,z −

1

s2

)
fs + eφ

(
∇2
s,z −

1

s2

)
fφ + ez∇2

s,zfz (A.25)

A.4 Axial Averaging

The average of a function f in the ez-direction between boundaries at z = a and z = b is

denoted with angled brackets:

〈f〉 =
1

b− a

∫ b

a

f(t, s, φ, z) dz . (A.26)

The spherical container which defines the boundaries of our system is symmetric across the

equatorial plane. Therefore, with L ≡
√

1− s2, b = −a = L:

〈f〉spherical =
1

2L

∫ L

−L
f(t, s, φ, z) dz . (A.27)
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If f(t, s, φ, z) is also symmetric across the equator, Eq.(A.27) simplifies to

〈f〉fully symmetric =
1

L

∫ L

0

f(t, s, φ, z) dz . (A.28)

A.4.1 First Radial Derivative

Because the position of the boundaries a and b may change with radius, care must be taken

when taking the axial average of a function involving a radial derivative. According to the

Leibniz integral rule,

∂

∂s

∫ b

a

f dz =

∫ b

a

∂

∂s
f dz + f |z=b

∂b

∂s
− f |z=a

∂a

∂s
. (A.29)

Applying this theorem to the radial derivative of a function’s axial average,

∂

∂s
〈f〉 =

∂

∂s

(
1

b− a

∫ b

a

f dz

)
(A.30)

=
∂

∂s

(
1

b− a

)(∫ b

a

f dz

)
+

(
1

b− a

)(
∂

∂s

∫ b

a

f dz

)
(A.31)

= −
∂
∂s

(b− a)

(b− a)2

∫ b

a

f dz +

(
1

b− a

)(∫ b

a

∂

∂s
f dz +

∂b

∂s
f |z=b −

∂a

∂s
f |z=a

)
(A.32)

= −
∂
∂s

(b− a)

b− a
〈f〉+

〈
∂

∂s
f

〉
+

1

b− a

(
∂b

∂s
f |z=b −

∂a

∂s
f |z=a

)
(A.33)

�
�

�

⇒

〈
∂

∂s
f

〉
=

∂

∂s
〈f〉+

1

b− a

(
∂b

∂s
(〈f〉 − f |z=b)−

∂a

∂s
(〈f〉 − f |z=a)

)
. (A.34)

Eq.(A.34) can be simplified by placing various assumptions on the form of f , a, and b:
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Spherical Geometry, b = −a = L:〈
∂

∂s
f

〉
=

∂

∂s
〈f〉+ β

(
〈f〉 − 1

2

(
f |z=L + f |z=−L

))

Symmetric, f |z=L = f |z=−L :

=
∂

∂s
〈f〉+ β (〈f〉 − f |z=L)

Antisymmetric, f |z=L = − f |z=−L :

=

(
∂

∂s
+ β

)
〈f〉

Rigid, f |z=L = f |z=−L = 〈f〉 :

=
∂

∂s
〈f〉

(A.35)

(A.36)

(A.37)

(A.38)

Axial Average of the First Radial Derivative

Second Radial Derivative

Using the same approach as for the axial average of the first derivative,

∂2

∂s2
〈f〉 =

∂

∂s

(
∂

∂s
〈f〉
)

=
∂

∂s

(
∂

∂s

(
1

b− a

∫ b

a

f dz

))
(A.39)

=
∂

∂s

(
∂

∂s

(
1

b− a

)∫ b

a

f dz +
1

b− a
∂

∂s

∫ b

a

f dz

)
(A.40)

=
∂2

∂s2

(
1

b− a

)∫ b

a

f dz︸ ︷︷ ︸
1©

+ 2
∂

∂s

(
1

b− a

)
∂

∂s

∫ b

a

f dz︸ ︷︷ ︸
2©

+
1

b− a
∂

∂s

(
∂

∂s

∫ b

a

f dz

)
︸ ︷︷ ︸

3©

.

(A.41)
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The first term becomes

1© = − 1

b− a

(
∂2

∂s2
(b− a)− 2

(
∂
∂s

(b− a)
)2

b− a

)
〈f〉 . (A.42)

The second term becomes

2© = 2

(
∂

∂s

(
1

b− a

))
∂

∂s

∫ b

a

f dz (A.43)

= 2

(
− 1

(b− a)2

∂

∂s
(b− a)

)
∂

∂s

(
b− a
b− a

∫ b

a

f dz

)
(A.44)

= −
(

2

(b− a)2

∂

∂s
(b− a)

)
∂

∂s
((b− a) 〈f〉) (A.45)

= −
(

2

(b− a)2

∂

∂s
(b− a)

)(
∂

∂s
(b− a) 〈f〉+ (b− a)

∂

∂s
〈f〉
)

(A.46)

2© = − 1

b− a

(
2

(
∂
∂s

(b− a)
)2

b− a
+ 2

∂

∂s
(b− a)

∂

∂s

)
〈f〉 . (A.47)

We now have

1©+ 2© = − 1

b− a

 ∂2

∂s2
(b− a)− 2

(
∂
∂s

(b− a)
)2

b− a︸ ︷︷ ︸
1©

+ 2

(
∂
∂s

(b− a)
)2

b− a
+ 2

∂

∂s
(b− a)

∂

∂s︸ ︷︷ ︸
2©

 〈f〉
(A.48)

1©+ 2© = − 1

b− a

(
∂2

∂s2
(b− a) + 2

∂

∂s
(b− a)

∂

∂s

)
〈f〉 . (A.49)

Finally, term 3© becomes
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3© =
1

b− a
∂

∂s

(∫ b

a

∂f

∂s
dz +

∂b

∂s
f |z=b −

∂a

∂s
f |z=a

)
(A.50)

=
1

b− a

∫ b

a

∂2f

∂s2
dz

+
1

b− a

(
∂b

∂s

∂f

∂s

∣∣∣∣
z=b

− ∂a

∂s

∂f

∂s

∣∣∣∣
z=a

+
∂b

∂s

∂

∂s
(f |z=b)−

∂a

∂s

(
∂

∂s
f |z=a

))
+

1

b− a

(
∂2b

∂s2
f |z=b −

∂2a

∂s2
f |z=a

)
. (A.51)

Combining Eqs.(A.41), A.49 and A.51, factoring terms of similar boundary derivative order,

and solving for
〈
∂2f
∂s2

〉
, I get

'

&

$

%

〈
∂2f

∂s2

〉
=

∂2

∂s2
〈f〉

+
1

b− a

(
∂2b

∂s2
(〈f〉 − f |z=b)−

∂2a

∂s2
(〈f〉 − f |z=a)

)
+

1

b− a

(
∂b

∂s

(
2
∂

∂s
〈f〉 − ∂

∂s
(f |z=b)−

∂f

∂s

∣∣∣∣
z=b

))
− 1

b− a

(
∂a

∂s

(
2
∂

∂s
〈f〉 − ∂

∂s
(f |z=a)−

∂f

∂s

∣∣∣∣
z=a

))
(A.52)

Similar to the case of the single radial derivative, Eq.(A.52) can be simplified with various

assumptions on the system’s geometry and the symmetry of the field being averaged:
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Spherical Geometry, b = −a = L:〈
∂2f

∂s2

〉
=

∂2

∂s2
〈f〉 − 1

2L4

(
2 〈f〉 − f |z=L − f |z=−L

)
+
β

2

(
4
∂

∂s
〈f〉 − ∂

∂s
(f |z=L)− ∂

∂s

(
f |z=−L

)
− ∂f

∂s

∣∣∣∣
z=L

− ∂f

∂s

∣∣∣∣
z=−L

)

Symmetric, f |z=L = f |z=−L ,
∂f

∂s

∣∣∣∣
z=L

=
∂f

∂s

∣∣∣∣
z=−L

:

=
∂2

∂s2
〈f〉 − 1

L4
(〈f〉 − f |z=L) + β

(
2
∂

∂s
〈f〉 − ∂

∂s
(f |z=L)− ∂f

∂s

∣∣∣∣
z=L

)

Antisymmetric, f |z=L = − f |z=−L ,
∂f

∂s

∣∣∣∣
z=L

= − ∂f

∂s

∣∣∣∣
z=−L

:

=
∂2

∂s2
〈f〉 −

(
1

L4
− 2β

∂

∂s

)
〈f〉

Rigid, f |z=L = f |z=−L = 〈f〉 , ∂f
∂s

∣∣∣∣
z=L

=
∂f

∂s

∣∣∣∣
z=−L

=
∂ 〈f〉
∂s

:

=
∂2

∂s2
〈f〉

(A.53)

(A.54)

(A.55)

(A.56)

Axial Average of the Second Radial Derivative

Scalar Laplace Operator

Using the axial averaging operators derived in the previous section allows us to calculate the

form of the axially-averaged Laplace operator. Assuming the case of spherical geometry, but

with no assumptions on the form of the function f being operated on,
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〈
∇2f

〉
=

1

2L

∫ L

−L
∇2f dz (A.57)

=
1

2L

∫ L

−L

(
∂2f

∂s2
+

1

s

∂f

∂s
+

1

s2

∂2f

∂φ2
+
∂2f

∂z

)
dz (A.58)

=

〈
∂2f

∂s2

〉
+

1

s

〈
∂f

∂s

〉
+

1

s2

∂2

∂φ2
〈f〉+

1

2L

∂f

∂z

∣∣∣∣L
−L

(A.59)

In general, f = f(t, s, φ, z). However, to save space, I shall use f(a) ≡ f |z=a and F |a ≡ F |z=a

(for some function or operator F ) for the rest of this section. Substituting the expansions of〈
∂f
∂s

〉
and

〈
∂2f
∂s2

〉
from Eqs.(A.35) and (A.53), respectively, results in

〈
∇2f

〉
=

[
∂2

∂s2
〈f〉 − 1

2L4
(2 〈f〉 − f(L)− f(−L))

+
β

2

(
4
∂

∂s
〈f〉 − ∂

∂s
f(L)− ∂

∂s
f(−L)− ∂f

∂s

∣∣∣∣
L

− ∂f

∂s

∣∣∣∣
−L

)]
+

1

s

[
∂

∂s
〈f〉+ β

(
〈f〉 − 1

2
(f(L) + f(−L))

)]
+

1

s2

∂2

∂φ2
〈f〉+

1

2L

∂f

∂z

∣∣∣∣L
−L

(A.60)

=

((
∂2

∂s2
+

1

s

∂

∂s
+

1

s2

∂2

∂φ2

)
〈f〉+

1

2L

∂f

∂z

∣∣∣∣L
−L

)

+

(
β
∂

∂s
+
β

s
− 1

L4

)(
〈f〉 − 1

2
(f(L) + f(−L))

)
+ β

(
∂

∂s
〈f〉 − 1

2

(
∂f

∂s

∣∣∣∣
L

+
∂f

∂s

∣∣∣∣
−L

))
(A.61)
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%

〈
∇2f

〉
=

(
∇2
s,φ 〈f〉+

1

2L

∂f

∂z

∣∣∣∣L
−L

)

+ β

(
∂

∂s
+

1

s
+

1

sL2

)(
〈f〉 − 1

2
(f(L) + f(−L))

)
+ β

(
∂

∂s
〈f〉 − 1

2

(
∂f

∂s

∣∣∣∣
L

+
∂f

∂s

∣∣∣∣
−L

))
(A.62)
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As usual, this can be simplified for various symmetries:

Symmetric, f(L) = f(−L),
∂f

∂s

∣∣∣∣
L

=
∂f

∂s

∣∣∣∣
−L
,

∂f

∂z

∣∣∣∣
L

= − ∂f

∂z

∣∣∣∣
−L

:

〈
∇2f

〉
=∇2

s,φ 〈f〉+ β

(
∂

∂s
+

1

s
+

1

sL2

)
(〈f〉 − f(L))

+ β

(
∂

∂s
〈f〉 − ∂f

∂s

∣∣∣∣
L

)
+

1

L

∂f

∂z

∣∣∣∣
L

Antisymmetric, f(L) = −f(−L),
∂f

∂s

∣∣∣∣
L

= − ∂f

∂s

∣∣∣∣
−L
,
∂f

∂z

∣∣∣∣
L

=
∂f

∂z

∣∣∣∣
−L

:

=∇2
s,φ 〈f〉+ β

(
2
∂

∂s
+

1

s
+

1

sL2

)
〈f〉

Rigid, f(L) = f(−L) = 〈f〉 , ∂f

∂s

∣∣∣∣
L

=
∂f

∂s

∣∣∣∣
−L

=
∂

∂s
〈f〉 , ∂f

∂z
= 0:

=∇2
s,φ 〈f〉

(A.63)

(A.64)

(A.65)

Axial Average of the Laplacian Operator

The vector Laplace operator only contains radial derivatives within scalar Laplace operators,

so it is easily adapted to a vertically averaged form.

A.5 Azimuthal Average of Two Real-Valued Functions

If f can be represented by a Fourier series, complex-valued constants am may be chosen such

that

f =
+∞∑

m=−∞

ame
imφ . (A.66)
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However, if f is purely real, f = f ∗ (where f ∗ is the complex conjugate of f),

∞∑
−∞

ame
imφ =

∞∑
−∞

a∗me
−imφ =

∞∑
−∞

a∗−me
imφ , (A.67)

and therefore

am = a∗−m . (A.68)

The azimuthally averaged product of two such purely real functions, f and g (with constants

am and bn, respectively), is

fg =
1

2πs

∮ 2π

0

[(
∞∑
−∞

ame
imφ

)(
∞∑
−∞

bne
inφ

)]
s dφ (A.69)

=
∞∑
−∞

∞∑
−∞

ambn
2πs

∮ 2π

0

e(m+n)φ dφ =
∞∑
−∞

∞∑
−∞

ambnδ−nm (A.70)

=
∞∑
−∞

amb−m . (A.71)

Relabelling, and using Eq.(A.68),

fg =
∞∑
−∞

amb−m =
−1∑
−∞

amb−m + a0b0 +
∞∑
m=1

amb−m (A.72)

= a0b0 +
∞∑
m=1

(a−mbm + amb−m) (A.73)

= a0b0 +
∞∑
m=1

(a∗mbm + amb
∗
m) (A.74)

Letting am = a+ bi and bm = c+ di, for {a, b, c, d} ∈ R,
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a∗mbm + amb
∗
m = (a− bi) (c+ di) + (a+ bi) (c− di) (A.75)

= (ac+ bd) + (ad− bc) i+ (ac+ bd)− (ad− bc) i (A.76)

= 2 (ac+ bd) (A.77)

= 2 [< (am)< (bm) + = (am)= (bm)] . (A.78)

This allows Eq.(A.74) to be written in terms of the real and imaginary parts of the Fourier

coefficients:

fg = a0b0 + 2
∞∑
m=1

[< (am)< (bm) + = (am)= (bm)] if {f, g} ∈ R . (A.79)
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Appendix B

Dimensional Governing Equations

B.1 Governing Equations

The motions of fluids in which density variations only matter for buoyancy forces can be

approximated by the Navier-Stokes equation under the Boussinesq approximation:

∂u′

∂t′
+ (u′ ·∇′) u′ + 2Ω′ × u′ = − 1

ρ0

∇′P ′ + ν∇′2u′ + 1

ρ0

F′A +
1

ρ0

F′L . (B.1)

Here, ρ0 is the reference density, u′ is the fluid velocity relative to the rotating frame, t′ is

time, Ω′ is the container’s rotation vector, P ′ is the modified pressure, ν is the kinematic

viscosity, buoyancy forces are represented by F′A, and magnetic (Lorentz) forces by F′L. ∇′

is the gradient operator (see Appendix A.1), while primes indicate that a quantity is dimen-

sional, but is to be nondimensionalized later.

The Navier-Stokes equation must be solved simultaneously with a continuity, or mass con-

servation, equation. In general this is written in terms of the density ρ, which can vary

in space and time. However, under the Boussinesq approximation, ρ is replaced with the

(constant in space and time) ρ0. Thus, the continuity equation is transformed from its full
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form (on the left) to its Boussinesq form (on the right):

∂ρ

∂t′
+ ∇′ · (ρu′) = 0 → ∇′ · u′ = 0 . (B.2)

The buoyancy forces F′A can arise from either thermal or chemical variations in the fluid.

In the interest of simplicity, the model currently being constructed assumes there is no

chemical buoyancy, and also that there are no heat sources, such as radioactive elements,

within the fluid itself. The only sources of heat in the model are then thermal fluxes through

its boundaries, with the temperature at any point in the fluid governed by the temperature

equation. With κ as the thermal diffusivity and T ′ as temperature,

∂T ′

∂t′
= − (u′ ·∇′)T ′ + κ∇′2T ′ . (B.3)

The magnetic field B′ is governed by Maxwell’s equations, in which η = 1/σµ0 is the magnetic

diffusivity, σ is the electrical conductivity, and µ0 is the permeability of free space. In

particular, B′ obeys both the induction equation

∂B′

∂t′
= ∇′ × (u′ ×B′) + η∇′2B′ , (B.4)

as well as Gauss’ law for magnetism, written here in its differential form:

∇′ ·B′ = 0 . (B.5)

B.2 Buoyancy Force

As discussed in the previous section, the model being constructed here assumes, for reasons of

simplicity, no chemical or radioactive sources of buoyancy. The absence of chemical buoyancy

implies that the only buoyant forces are due to temperature variations. The full temperature

T ′ can be decomposed into a steady, conducting temperature profile T ′0 and a perturbation
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component Θ′ (see Eq.(2.15), in Section 2.3.5), such that for a position x,

T ′(t,x) = T ′0(x) + Θ′(t,x) . (B.6)

It is simplest to assume that the density varies with temperature in proportion to its current

value. With α as the thermal expansion coefficient, this relationship is

∂ρ

∂T ′
=

∂ρ

∂Θ′
= −αρ , (B.7)

Defining ρ0 = ρ(T ′0) and ∆ρ = ρ(T ′) − ρ0, the full density ρ may be expanded about the

background temperature T ′0 as

∆ρ =
∂ρ

∂Θ′

∣∣∣∣
Θ′=0

Θ′ +O(Θ′2) = −αρ0Θ′ +O(Θ′2) . (B.8)

The buoyancy force is simply the density anomaly ∆ρ multiplied by the local gravitational

acceleration. Ignoring the higher-order terms of Eq.(B.8), defining g0 as the strength of

gravitational acceleration at the CMB, and assuming gravitational strength increases linearly

between the inner and outer core, F′A can be approximated as

F′A = ∆ρg = −αρ0Θ′g , g = −g0
r′

r2

, (B.9)

where r′ is the radial position of the point in question.

B.3 Magnetic Force

Because current density J′ is defined as

J′ =
1

µ0

∇′ ×B , (B.10)
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the Lorentz force experienced by a liquid metal in the presence of a magnetic field is

F′L = J′ ×B′ =

(
1

µ0

∇′ ×B′
)
×B′ . (B.11)

B.4 Summary of Dimensional Equations

The combined set of Eqs.(B.1), (B.2), (B.3), (B.4), (B.5), (B.9), and (B.11) can be summa-

rized as

∂u′

∂t′
+(u′ ·∇′) u′+2Ω′×u′ = − 1

ρ0

∇′P ′+ν∇′2u′+αg0Θ′
r′

r2

+
1

ρ0µ0

(∇′ ×B′)×B′ , (B.12)

∂T ′

∂t′
= − (u′ ·∇′)T ′ + κ∇′2T ′ , (B.13)

∂B′

∂t′
= ∇′ × (u′ ×B′) + η∇′2B′ , (B.14)

∇′ · u′ = 0 , ∇′ ·B′ = 0 . (B.15)
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Appendix C

Nondimensionalization

Eqs.(B.12) through (B.15) from Appendix B are nondimensionalized using the scalings shown

in Table 2.2.

C.1 Navier-Stokes Equation

Plugging in the appropriate scales, the Navier-Stokes equation of Eq.(B.12) becomes

U
T
∂u

∂t
+
U2

L
(u ·∇) u + 2ΩUez × u

= − 1

ρ0

P
L
∇P + ν

U
L2
∇2u + αg0∆TLΘ

r

r2

+
1

ρ0µ0

B2

L
(∇×B)×B . (C.1)

Replacing U with L
T ,

L
T 2

∂u

∂t
+
L
T 2

(u ·∇) u + 2
L
T 2

(ez × u)

= − 1

ρ0

P
L
∇P + ν

1

LT
∇2u + ∆TLαg0Θ

r

r2

+
1

ρ0µ0

B2

L
(∇×B)×B . (C.2)
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Multiplying by T
2

L ,

∂u

∂t
+ (u ·∇) u + 2ez × u

= − 1

ρ0

PT 2

L2
∇P + ν

T
L2
∇2u + T 2∆Tαg0Θ

r

r2

+
1

ρ0µ0

B2T 2

L2
(∇×B)×B . (C.3)

Replacing L, T , P , and B with the quantities they represent,

∂u

∂t
+ (u ·∇) u + 2ez × u

= −∇P +
ν

Ωr2
2︸︷︷︸

E

∇2u +
αg0∆T

r2Ω2︸ ︷︷ ︸
Ra∗=E2Ra

Pr

Θr + (∇×B)×B . (C.4)

Then, in terms of the Ekman number E and modified Rayleigh number Ra∗(summarized in

Table 2.3), the nondimensional Navier-Stokes equation is

∂u

∂t
+ (u ·∇) u + 2ez × u = −∇P + E∇2u +Ra∗Θr + (∇×B)×B . (C.5)

C.2 Temperature Equation

Plugging the appropriate scalings into the the temperature equation of Eq.(B.13),

∆T

T
∂T

∂t
= −U∆T

L
(u ·∇)T + κ

∆T

L2
∇2T . (C.6)

Replacing U with L
T , and multiplying by T

∆T
, gives

∂T

∂t
= − (u ·∇)T + κ

T
L2
∇2T . (C.7)
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Replacing T and L with the quantities they represent,

∂T

∂t
= − (u ·∇)T +

κ

Ωr2
2︸︷︷︸

E/Pr

∇2T . (C.8)

So, in terms of the Ekman number E and Prandtl number Pr (summarized in Table 2.3),

the nondimensional temperature equation is

∂T

∂t
= − (u ·∇)T +

E

Pr
∇2T . (C.9)

C.3 Induction Equation

Plugging the appropriate scalings into the the induction equation of Eq.(B.14),

B
T
∂B

∂t
=
UB
L

∇× (u×B) + η
B
L2
∇2B . (C.10)

Replacing U with L
T , and multiplying by TB , gives

∂B

∂t
= ∇× (u×B) + η

T
L2
∇2B . (C.11)

Replacing T and L with the quantities they represent,

∂B

∂t
= ∇× (u×B) +

η

Ωr2
2︸︷︷︸

E/Pm

∇2B . (C.12)

So, in terms of the Ekman number E and magnetic Prandtl number Pm (summarized in

Table 2.3), the nondimensional induction equation is

∂B

∂t
= ∇× (u×B) +

E

Pm
∇2B . (C.13)
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C.4 Auxiliary Equations

Nondimensionalizing Eqs.(B.15) is a trivial exercise, since they contain only one term each.

Using the appropriate scales from Table 2.2,

U
L
∇ · u = 0 ,

B
L
∇ ·B = 0 . (C.14)

Because both equations are equal to zero, the scale terms may be dropped, leaving only

∇ · u = 0 , ∇ ·B = 0 . (C.15)

C.5 Summary of Nondimensional Equations

The nondimensionalized Eqs.(C.5), (C.9), (C.13), and (C.15) can be summarized as

∂u

∂t
+ (u ·∇) u + 2ez × u = −∇P + E∇2u +Ra∗Θr + (∇×B)×B , (C.16)

∂T

∂t
= − (u ·∇)T +

E

Pr
∇2T , (C.17)

∂B

∂t
= ∇× (u×B) +

E

Pm
∇2B , (C.18)

∇ · u = 0, ∇ ·B = 0 . (C.19)
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Appendix D

Constructing a QG Model

This appendix transforms the nondimensionalized governing Eqs.(C.16)-(C.19) of Appendix

C into their Quasi-Geostrophic, or QG, forms. The geometry used is shown in Figure 2.1,

while the assumptions made in performing the transformations are discussed in Section 2.3.3.

The mathematical results of Appendix A will be used extensively throughout.

D.1 Axial Vorticity Equation

Letting the current density J = ∇ × B, where B is the magnetic field, the curl of the

nondimensional Navier-Stokes equation (Eq.(C.16)) is

∇×
(
∂u

∂t

)
+ ∇× ((u ·∇) u) + 2∇× (ez × u)

= −∇× (∇P ) + E∇×
(
∇2u

)
+Ra∗∇× (Θr) + ∇× (J×B) , (D.1)

where u is velocity relative to the rotating frame, P is the modified pressure, E is the Ekman

number, Ra∗ is the modified Rayleigh number, Θ is the local temperature perturbation, t is

time, and ∇ is the gradient operator.
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Because the curl of a gradient is identically zero, the pressure term vanishes immediately.

In addition, the time derivative can be written in terms of vorticity. Dotting the resulting

vorticity equation with ez discards the ωs and ωφ vorticity components, which the QG

approximation assumes to be negligible compared to ωz:

∂ωz
∂t

+ ez · (∇× ((u ·∇) u))︸ ︷︷ ︸
1©

+ 2 ez · (∇× (ez × u))︸ ︷︷ ︸
2©

= +E ez ·
(
∇×

(
∇2u

))︸ ︷︷ ︸
3©

+Ra∗ ez · (∇× (Θr))︸ ︷︷ ︸
4©

+ ez · (∇× (J×B))︸ ︷︷ ︸
5©

. (D.2)

D.1.1 Simplification

The inertial term ( 1©) of Eq.(D.2) can be expanded with a vector identity:

1© = ez ·
(
∇×

(
1

2
∇ (u · u)− u× (∇× u)

))
(D.3)

The first term inside the brackets disappears, again because the curl of a gradient is zero.

The second term becomes u× ω. A vector identity is used to expand the curl of it:

1© = −ez · (u (∇ · ω)− ω (∇ · u) + (ω ·∇) u− (u ·∇)ω) (D.4)

Because both ω and u are solenoidal, the first two terms are zero. The axial component of

the remaining terms is

1© = (u ·∇)ωz − (ω ·∇) uz . (D.5)

However, ωz is assumed rigid, so its z-derivative is zero. Meanwhile, ωs and ωφ are assumed
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to be negligible next to ωz, so terms involving them are discarded. This leaves

1© = us
∂

∂s
ωz +

uφ
s

∂

∂φ
ωz − ωz

∂

∂z
uz . (D.6)

The Coriolis term ( 2©) of Eq.(D.2) is also expanded by a vector identity:

2© = 2 ez · (ez (∇ · u)− u (∇ · ez) + (u ·∇) ez − (ez ·∇) u) . (D.7)

Because u is solenoidal, and ez is constant, the first three terms within the brackets vanish.

This leaves

2© = −2
∂uz
∂z

. (D.8)

The diffusion term ( 3©) of Eq.(D.2) is, as usual, expanded by a vector identity:

3© = ez · E∇× (∇ (∇ · u)−∇× (∇× u)) . (D.9)

The first term within the brackets vanishes, because u is solenoidal. The second term may

be rewritten in terms of ω. The result may be expanded with yet another vector identity:

3© = −ez · E
(
∇ (∇ · ω)−∇2ω

)
. (D.10)

The vorticity field is also solenoidal, so

3© = E∇2ωz . (D.11)

The buoyancy term ( 4©) of Eq.(D.2) is simplified by translating the spherically radial vector

(r) to its in its cylindrical equivalent (ses + zez):

4© = Ra∗ ez ·∇× [Θ (ses + zez)] = −Ra
∗

s

∂

∂φ
(sΘ) = −Ra∗∂Θ

∂φ
. (D.12)
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The Lorentz term ( 5©) of Eq.(D.2) is expanded using the same vector identity as was used

for term 2©:

5© = ez · (J (∇ ·B)−B (∇ · J) + (B ·∇) J− (J ·∇) B) . (D.13)

Both B and J are solenoidal, causing the first two terms within the brackets to vanish. The

second two become

5© = (B ·∇) Jz − (J ·∇)Bz . (D.14)

However, similar to the vorticity in Eq.(D.5), the s and φ components of the current density

are assumed to be small relative to Jz, and are therefore ignored. Because the background

field is assumed to be curl-free (J0 = 0), so Jz → jz. Like ωz, jz is assumed to be rigid,

causing its z-derivative to vanish. So,

5© = Bs
∂

∂s
jz +

Bφ

s

∂

∂φ
jz − jz

∂

∂z
Bz . (D.15)

With the simplifications calculated for terms 1© - 5©, Eq.(D.2) becomes

∂ωz
∂t

+

(
us
∂

∂s
ωz +

uφ
s

∂

∂φ
ωz − ωz

∂

∂z
uz

)
− 2

∂uz
∂z

= E∇2ωz −Ra∗
∂Θ

∂φ
+

(
Bs

∂

∂s
jz +

Bφ

s

∂

∂φ
jz − jz

∂

∂z
Bz

)
(D.16)

D.1.2 Axial Averaging

Axially averaging Eq.(D.16),
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〈
∂ωz
∂t

〉
+

〈
us
∂

∂s
ωz +

uφ
s

∂

∂φ
ωz − ωz

∂

∂z
uz

〉
−
〈

2
∂

∂z
uz

〉
=E

〈
∇2ωz

〉
−Ra∗

〈
∂Θ

∂φ

〉
+

〈
Bs

∂

∂s
jz +

Bφ

s

∂

∂φ
jz − jz

∂

∂z
Bz

〉
. (D.17)

As discussed in Chapter 2, uH , BH , ωz, and jz are all assumed to be rigid, with values at

the upper and lower boundaries equal to their axial averages1. Thus, the axial averages of

terms with time, radial, and azimuthal derivatives are equal to the functions being averaged

over. The axial average of the diffusion term can be calculated with Eq.(A.65). This leaves

only the axial averages of the axial derivatives. With the understanding that a term without

angled brackets has been axially averaged, Eq.(D.17) becomes

∂ωz
∂t

+

(
us
∂

∂s
+
uφ
s

∂

∂φ

)
ωz − (2 + ωz)

〈
∂

∂z
uz

〉
=

(
Bs

∂

∂s
+
Bφ

s

∂

∂φ

)
jz − jz

〈
∂

∂z
Bz

〉
+ E∇2

Hωz −Ra∗
∂

∂φ
Θ . (D.18)

The remaining axial averages may be evaluated only if some form is assumed for the axial

profiles of uz and Bz. The no-penetration boundary condition hold that, for a vector normal

to the upper (+) or lower (−) boundary n̂ = ses ± Lez,

u · n̂ = 0 ⇒ uz = ∓ s
L
us . (D.19)

The axial flow must be zero at z = 0, and increase/decrease to the value specified in Eq.(D.19)

1Such an assumption is not strictly consistent with no-slip boundary conditions, though the two can be
reconciled if the limits of the axial averaging integral are interpreted as lying just outside the upper and lower
boundary layers. Unfortunately, this interpretation implies that u · n̂ 6= 0, meaning that the axial profiles
of uz would need to be altered by the addition of an Ekman pumping term (see, for example, Greenspan

(1968)). However, such a term is proportional to E
1
2 , and is therefore generally small compared to the

contribution from the no-penetration condition, proportional to β. Therefore, Ekman pumping is not likely
to significantly alter the mechanisms responsible for magnetically-forced mean zonal flows in this highly
idealized model, and is therefore ignored for simplicity.
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at z = ±L. The simplest relation between uz and z which meets these criteria is a linear

one:

uz = − s
L

z

L
us = βusz . (D.20)

Appendix F shows that, in order for the model to conserve angular momentum, a similar

axial profile must be assumed for the magnetic field. This is compatible with the a = 0

boundary condition assumed in Chapter 2. Thus,

Bz = − s
L

z

L
Bs = βBsz . (D.21)

With the profiles specified by Eqs.(D.20) and (D.21), Eq.(D.19) becomes

∂ωz
∂t

+

(
us
∂

∂s
+
uφ
s

∂

∂φ

)
ωz − (2 + ωz) βus =

(
Bs

(
∂

∂s
− β

)
+
Bφ

s

∂

∂φ

)
jz + E∇2

Hωz −Ra∗
∂Θ

∂φ
.

(D.22)

D.2 Zonal Flow Equation

In principle, Eq.(D.22) contains the zonal flow. However, it is convenient to have a separate

equation which explicitly describes the zonal part of the flow, if only to simplify analysis.

This equation is derived by azimuthally averaging the azimuthal component of Eq.(C.16):

eφ ·
(
∂u

∂t

)
+eφ · ((u ·∇) u)+2 eφ · (ez × u) = −eφ · (∇P )+E

(
eφ · (∇2u)

)
+eφ · ((∇×B)×B) .

(D.23)

The first term immediately becomes the time derivative of uφ. The pressure term vanishes,
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since pressure must be periodic in azimuth:

eφ · (∇P ) =
1

s

∂P

∂φ
= 0 . (D.24)

With these two adjustments, Eq.(D.23) becomes

∂uφ
∂t

+ eφ · ((u ·∇) u) + 2 eφ · (ez × u)︸ ︷︷ ︸
1©

= E
(
eφ · (∇2u)

)
︸ ︷︷ ︸

2©

+ eφ · ((∇×B)×B)︸ ︷︷ ︸
3©

. (D.25)

D.2.1 Simplification

Term 1© may be expanded as

1© =

(
us
∂

∂s
uφ +

uφ
s

∂

∂φ
uφ + uz

∂

∂z
uφ +

usuφ
s

)
+ 2 us . (D.26)

Because of mass conservation, us lacks an axisymmetric component. uφ is rigid, so its z-

derivative is zero. The azimuthal derivative may be rewritten
uφ
s

∂
∂φ
uφ = 1

2s
∂
∂φ
u2
φ, which is

zero since uφ is periodic in azimuth. So,

1© = us
∂

∂s
uφ +

usuφ
s

=
us
s

∂

∂s
(suφ) . (D.27)

The viscosity term ( 2©) may be expanded as

2© =

(
∇2uφ −

uφ
s2

+
2

s2

∂us
∂φ

)
=
∂2uφ
∂s2

+
1

s

∂uφ
∂s

+
1

s2

∂2uφ
∂φ2

+
∂2uφ
∂z2

− uφ
s2

+
2

s2

∂us
∂φ

. (D.28)

Because both us and uφ are periodic in azimuth, both azimuthal derivatives vanish. Since

derivatives in s and z do not affect azimuthal averaging operations, the latter can be brought
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inside the derivatives and applied directly to uφ itself:

2© =

(
∂2

∂s2
+

1

s

∂

∂s
− 1

s2
+

∂2

∂z2

)
uφ . (D.29)

The Lorentz term ( 3©) may be rewritten using a vector identity as

3© = eφ ·
(

(B ·∇) B− 1

2
∇ (B ·B)

)
. (D.30)

Expanding this,

3© = Bs
∂

∂s
Bφ +

Bs

s

∂

∂φ
Bφ +Bz

∂

∂z
Bφ +

BsBφ

s
− 1

2s

∂

∂φ
(B ·B) . (D.31)

B is periodic in azimuth, so both terms with φ-derivatives vanish. Of the remaining three

terms, the two not involving ∂
∂z

are combined to form

3© =
Bs

s

∂

∂s
(sBφ) + Bz

∂

∂z
Bφ . (D.32)

The full magnetic field is decomposed into a steady, imposed background field B0, and a

time-dependent perturbation field b, such that B = B0 + b. The B0φ component of the

background field is assumed to be zero, while the background field as a whole is assumed to

be axisymmetric. So,

3© =

(
B0s

s

∂

∂s

(
sbφ
)

+B0z
∂

∂z
bφ

)
︸ ︷︷ ︸

A©

+

(
bs
s

∂

∂s
(sbφ) + bz

∂

∂z
bφ

)
︸ ︷︷ ︸

B©

. (D.33)

The linear terms ( A©) can be rewritten as

A© =

(
1

s

∂

∂s

(
sB0sbφ

)
− bφ

∂

∂s
B0s

)
+

(
∂

∂z

(
B0zbφ

)
− bφ

∂

∂z
B0z

)
. (D.34)
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Rearranging,

A© =
1

s

∂

∂s

(
sB0sbφ

)
− bφ

(
∂

∂s
B0s +

∂

∂z
B0z

)
+

∂

∂z

(
B0zbφ

)
. (D.35)

Recalling the assumption that B0φ = 0

∇ ·B0 =
1

s

∂

∂s
(sB0s) +

∂

∂z
B0z = 0 ⇒ ∂

∂s
B0s +

∂

∂z
B0z = −B0s

s
. (D.36)

Substituting this expression into Eq.(D.35),

A© =
1

s

∂

∂s

(
sB0sbφ

)
+
B0sbφ
s

+
∂

∂z

(
B0zbφ

)
. (D.37)

Using Eq.(A.14) to combine the first two terms on the right-hand side, this becomes

A© =
1

s2

∂

∂s

(
s2B0sbφ

)
+

∂

∂z

(
B0zbφ

)
. (D.38)

A similar procedure to that followed for A© is now applied to the nonlinear terms ( B©). They

can be rewritten (similar to Eq.(D.34) and rearranged (similar to Eq.(D.35) to produce

B© =
1

s

∂

∂s

(
sbsbφ

)
− bφ

(
∂

∂s
bs +

∂

∂z
bz

)
+

∂

∂z

(
bφbz

)
. (D.39)

Using the continuity equation ∇ · b = 0,

∂

∂s
bs +

∂

∂z
bz = −1

s

(
bs +

∂

∂φ
bφ

)
, (D.40)

which causes

B© =
1

s

∂

∂s

(
sbsbφ

)
+
bsbφ
s
− bφ

s

∂

∂φ
bφ +

∂

∂z

(
bφbz

)
. (D.41)

The first two terms on the right-hand side can be combined with one another, while the

azimuthal derivative can be rewritten as
bφ
s

∂
∂φ
bφ = 1

2s
∂
∂φ
b2
φ. Because bφ is periodic in azimuth,
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the entire term vanishes:

B© =
1

s2

∂

∂s

(
s2bsbφ

)
+

∂

∂z

(
bφbz

)
. (D.42)

Combining the expressions for A© and B©, 3© becomes

3© =

(
1

s2

∂

∂s

(
s2B0sbφ

)
+

∂

∂z

(
B0zbφ

))
+

(
1

s2

∂

∂s

(
s2bsbφ

)
+

∂

∂z

(
bφbz

))
. (D.43)

Using the expressions for 1©, 2©, and 3© from Eqs.(D.27), (D.29), and (D.43), Eq.(D.25)

becomes

∂uφ
∂t

+
us
s

∂

∂s
(suφ) =E

(
∂2

∂s2
+

1

s

∂

∂s
− 1

s2
+

∂2

∂z2

)
uφ

+

(
1

s2

∂

∂s

(
s2B0sbφ

)
+

∂

∂z

(
B0zbφ

))
+

(
1

s2

∂

∂s

(
s2bsbφ

)
+

∂

∂z

(
bφbz

))
.

(D.44)

D.2.2 Axial Averaging

As in the non-axisymmetric case, axial averaging of the flow field is notionally done between

boundary layers. Since the bulk of the horizontal flow field does not depend on z, the

axial averages of the two terms on the left-hand side of Eq.(D.44) are unchanged by the

axial averaging operation. Again using the convention that, in this section, quantities not

contained within angled brackets are assumed to have been axially averaged, this means
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∂uφ
∂t

+
us
s

∂

∂s
(suφ) =E

1©︷ ︸︸ ︷(〈
∂2

∂s2
uφ

〉
+

〈
1

s

∂

∂s
uφ

〉
−
〈

1

s2
uφ

〉
+

〈
∂2

∂z2
uφ

〉)
+

〈(
1

s2

∂

∂s

(
s2B0sbφ

)
+

∂

∂z

(
B0zbφ

))〉
︸ ︷︷ ︸

2©

+

〈(
1

s2

∂

∂s

(
s2bsbφ

)
+

∂

∂z

(
bφbz

))〉
︸ ︷︷ ︸

3©

.

(D.45)

A rigid horizontal flow field implies 〈uφ〉 = uφ|z=±L. Because of this, the
〈
∂2

∂s2
uφ

〉
part of the

viscosity term ( 1©) can be expanded according to Eq.(A.56). In addition, the
〈
∂
∂s
uφ
〉

part

can be expanded according to Eq.(A.38):

1© =

(
∂2

∂s2
〈uφ〉+ β

(
∂

∂s
〈uφ〉 −

∂

∂s
uφ

∣∣∣∣
z=L

))
+

(
1

s

∂

∂s
〈uφ〉

)
+

(
1

s2
〈uφ〉

)
+

(
1

2L

(
∂

∂z
uφ

∣∣∣∣
z=L

− ∂

∂z
uφ

∣∣∣∣
z=−L

))
. (D.46)

Rearranging terms, and recognizing that, because of uφ’s rigidity, ∂
∂s
uφ
∣∣
z=L

= 1
2

(
∂
∂s
uφ
∣∣
z=L

+ ∂
∂s
uφ
∣∣
z=−L

)
,

1© =

(
∂2

∂s2
+

(
1

s
+ β

)
∂

∂s
− 1

s2

)
〈uφ〉

− β

2

(
∂

∂s
uφ

∣∣∣∣
z=L

− ∂

∂s
uφ

∣∣∣∣
z=−L

)
+

1

2L

(
∂

∂z
uφ

∣∣∣∣
z=L

− ∂

∂z
uφ

∣∣∣∣
z=−L

)
. (D.47)

The boundary derivative terms depend on the boundary conditions being used. This model

uses a free-slip boundary condition on the zonal velocity field, which can be expressed in

spherical coordinates as

∂

∂r

(
uφ
r

)∣∣∣∣
r=r2

=

(
1

r

∂uφ
∂r
− uφ
r2

)∣∣∣∣
r=r2

= 0 ⇒ uφ|r=r2 = r
∂uφ
∂r

∣∣∣∣
r=r2

. . (D.48)
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Transforming this to cylindrical coordinates,

uφ|z=±L =
√
s2 + z2

(
∂s

∂r

∂

∂s
+
∂z

∂r

∂

∂z

)
uφ

∣∣∣∣
z=±L

. (D.49)

Because L =
√

1− s2, the leading factor is just 1. Meanwhile, ∂s
∂r

∣∣
z=±L = s, and ∂z

∂r

∣∣
z=±L =

±L. So,

∂uφ
∂s

∣∣∣∣
z=±L

=
uφ
s

∣∣∣∣
z=±L

∓ L

s

∂uφ
∂z

∣∣∣∣
z=±L

. (D.50)

Using the relation in (D.50) to transform the radial boundary derivatives of Eq.(D.47) into

axial boundary derivatives,

1© =

(
∂2

∂s2
+

(
1

s
+ β

)
∂

∂s
− 1

s2

)
〈uφ〉

− β

2

(
uφ
s

∣∣∣∣
z=L

− L

s

∂

∂z
uφ

∣∣∣∣
z=L

+
uφ
s

∣∣∣∣
z=−L

+
L

s

∂

∂z
uφ

∣∣∣∣
z=−L

)
+

1

2L

(
∂

∂z
uφ

∣∣∣∣
z=L

− ∂

∂z
uφ

∣∣∣∣
z=−L

)
.

(D.51)

Again taking advantage of uφ’s rigidity, and substituting β = − s
L2 ,

1© =

(
∂2

∂s2
+

(
1

s
+ β

)
∂

∂s
− 1

s2
− β

s

)
〈uφ〉

− 1

2L

(
∂

∂z
uφ

∣∣∣∣
z=L

− ∂

∂z
uφ

∣∣∣∣
z=−L

)
+

1

2L

(
∂

∂z
uφ

∣∣∣∣
z=L

− ∂

∂z
uφ

∣∣∣∣
z=−L

)
. (D.52)

The axial boundary derivatives thus cancel one another out. Taking advantage of Eqs.(A.16)

to cause the remaining radial derivatives to act upon
〈uφ〉
s

, instead of just 〈uφ〉:

1© =

(
s

(
∂2

∂s2
+

2

s

∂

∂s

)
+

(
1

s
+ β

)
(s)

(
∂

∂s
+

1

s

)
−
(

1

s
+ β

))(
〈uφ〉
s

)
. (D.53)
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Expanding the first set of brackets, cancelling terms, and rearranging gives

1© = s

(
∂

∂s
+

3

s
+ β

)(
∂

∂s

(
〈uφ〉
s

))
. (D.54)

Using the identity (A.14), this can be written

1© =
1

s2L

∂

∂s

(
s3L

∂

∂s

(
〈uφ〉
s

))
. (D.55)

The axial average of the radial derivative in the linear magnetic force term ( 2©) is evalu-

ated according to Eq.(A.35), while the axial average of the z-derivative is evaluated by the

definition of the operation (Eq.(A.27)). Thus,

2© =
1

s2

(
∂

∂s

〈
s2B0sbφ

〉
+ β

(〈
s2B0sbφ

〉
− 1

2

(
s2B0s bφ

∣∣
z=L

+ s2B0s bφ
∣∣
z=−L

)))
+

(
1

2L

(
B0zbφ

)∣∣z=L
z=−L

)
. (D.56)

This can be rearranged into

2© =
1

s2

(
∂

∂s

(
s2 〈B0s〉

〈
bφ
〉)

+ β
(
s2 〈B0s〉

〈
bφ
〉))

+
1

2L2

(
(sB0s + LB0z) bφ

)∣∣
z=L

+
1

2L2

(
(sB0s − LB0z) bφ

)∣∣
z=−L . (D.57)

Because at the boundaries the spherically radial magnetic field Br|z=L = (sB0s + LB0z)|z=L

and Br|z=−L = (sB0s − LB0z)|z=−L,

2© =
1

s2

(
∂

∂s

(
s2 〈B0s〉

〈
bφ
〉)

+ β
(
s2 〈B0s〉

〈
bφ
〉))

+
1

2L2

((
Brbφ

)∣∣
z=L

+
(
Brbφ

)∣∣
z=−L

)
.

(D.58)
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However, it is assumed that B0z|z=±L = ±βB0sL at the boundaries, so on them Br = 0.

Thus, the boundary terms to vanish. In fact, they must vanish if, as is done in this model,

the outer core and mantle are assumed to not be electromagnetically coupled. Then, using

the identity given in Eq.(A.14), the terms within in the first set of brackets on the right-hand

side may be combined to form

2© =
1

s2L

∂

∂s

(
s2LB0sbφ

)
. (D.59)

Evaluating axial average of the nonlinear force ( 3©) is done in a similar way as for the linear

terms. Again using Eq.(A.35) to evaluate the axial average of the radial derivatives,

3© =
1

s2

(
∂

∂s

〈
s2bsbφ

〉
+ β

(〈
s2bsbφ

〉
− 1

2

(
s2 bsbφ

∣∣
z=L

+ s2 bsbφ
∣∣
z=−L

)))
+

(
1

2L

(
bφbz

)∣∣L
z=−L

)
. (D.60)

This can be rearranged into

3© =
1

s2

(
∂

∂s

(
s2
〈
bsbφ

〉)
+ β

(
s2
〈
bsbφ

〉))
+

1

2L2

(
(sbs + Lbz) bφ

∣∣∣
z=L

+ (sbs − Lbz) bφ
∣∣∣
z=−L

)
. (D.61)

As before, sbs ± Lbz = br at the upper and lower boundaries, so

3© =
1

s2

(
∂

∂s

(
s2
〈
bsbφ

〉)
+ β

(
s2
〈
bsbφ

〉))
+

1

2L2

(
brbφ

∣∣
z=L

+ brbφ
∣∣
z=−L

)
. (D.62)

Also as before, since bz|z=±L = ±βbsL, br = 0 on the upper and lower boundaries. This

causes the boundary terms to vanish. Then, using Eq.(A.14) to combine the remaining
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terms,

3© =
1

s2L

∂

∂s

(
s2Lbsbφ

)
. (D.63)

This may be expanded as

3© =
1

s2L

∂

∂s

(
(sbφ) (sLbs)

)
=
bs
s

∂

∂s
(sbφ) +

bφ
sL

∂

∂s
(sLbs) . (D.64)

Using the continuity equation, it can be shown that the second term on the right-hand side

vanishes if the bz profile from Eq.(D.21) is assumed. Thus,

3© =
bs
s

∂

∂s
(sbφ) . (D.65)

Inserting the expressions given in Eqs.(D.55), (D.59), and (D.65) into Eq.(D.45), dividing

through by s, and moving the Reynolds stress term to the right-hand side gives the final

expression for time evolution of the zonal angular acceleration
uφ
s

. In terms of the individual

torques,

∂

∂t

(
uφ
s

)
= ΓV + ΓR + ΓL1 + ΓL2 , (D.66)

where

ΓV =
E

s3L

∂

∂s

(
s3L

∂

∂s

(
uφ
s

))
, ΓR = −us

s2

∂

∂s
(suφ)

ΓL1 =
1

s3L

∂

∂s

(
s3LB0s

(
bφ
s

))
, ΓL2 =

bs
s2

∂

∂s
(sbφ) .

(D.67)
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D.3 Temperature Equation

D.3.1 Background Profile

As discussed in Section 2.3.5, the temperature field T is decomposed into a steady, conducting

profile T0 and an axially-averaged perturbation Θ. Since it will be shown that 〈T0〉 depends

only on s (see Eq.(D.83)),

T (t, s, φ) = 〈T0〉 (s) + Θ(t, s, φ) . (D.68)

T0 is calculated from the temperature equation itself, Eq.(C.17). Because T0 does not depend

on time, the temperature equation reduces to Laplace’s equation in the absence of a velocity

field. In spherical coordinates,

E

Pr
∇2T0 =

1

r2

E

Pr

∂

∂r

(
r2∂T0

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ
T0

)
+

1

r2 sin2 θ

∂2T0

∂φ2
= 0 . (D.69)

This equation can be solved by separation of variables. It turns out that the solution is

spherically symmetric: the θ- and φ-components must be equal to arbitrary constants for

the solution to remain periodic in azimuth and bounded in latitude. The radial component

is

1

r2

E

Pr

∂

∂r

(
r2∂T0

∂r

)
= 0 ⇒ T0 = C2 −

C1

r
= C2 −

C1√
s2 + z2

, (D.70)

where C1 and C2 are constants dependent upon the boundary conditions, with the constants

from the θ and φ components being contained within C2. If the inner and outer spheres are

held at constant temperatures,
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T0(r1) = T1 = C2 −
C1

r1

, (D.71)

T0(r2) = T2 = C2 −
C1

r2

. (D.72)

Since ∆T = T1 − T2,

∆T = C1

(
1

r2

− 1

r1

)
⇒ C1 = ∆T

r1r2

r1 − r2

(D.73)

and

T2 = C2 −
C1

r2

⇒ C2 = T2 +
C1

r2

. (D.74)

D.3.2 Axial Averaging

The temperature field only enters the momentum equations through an axially-averaged

azimuthal derivative of Θ in Eq.(D.22). This means that adapting the temperature equation

to the QG framework is a (relatively) simple matter of calculating its axial average. That

is, we calculate the axial average of Eq.(C.17):

〈
∂

∂t
T

〉
=

〈
−u · (∇T ) +

E

Pr
∇2T

〉
. (D.75)

T is decomposed into T = T0 + Θ, as discussed previously. T0 is time-independent, so it

disappears from the time derivative. ∇2T0 = 0, so the T0 contribution also disappears from

the diffusion term:

∂

∂t
Θ = −〈(u ·∇) (T0 + Θ)〉+

〈
E

Pr
∇2Θ

〉
(D.76)

The horizontal (s, φ) components of the velocity field are assumed to be rigid, so they can be

brought outside the axial averages. Because temperature perturbations are caused by rigid
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flows, Θ itself is assumed to be rigid2, so its z-derivative is zero. Its rigidity also causes the

axial average of the diffusion term to become a transform into a simple horizontal Laplace

operator (Eq.(A.65)). T0 does not depend on φ, causing its derivative in that direction to

disappear:

∂

∂t
Θ = −us

〈
∂

∂s
T0

〉
−
〈
uz

∂

∂z
T0

〉
− us

〈
∂

∂s
Θ

〉
− uφ

s

〈
∂

∂φ
Θ

〉
+
E

Pr
∇2
HΘ . (D.77)

From Eq.(D.20), uz = βusz, allowing the second term on the right-hand-side to be rewritten

in terms of us, with both us and β coming outside the axial-averaging operator because of

their lack of dependence on z. Θ’s rigidity causes both its radial and azimuthal terms to

remain unchanged upon axial averaging:

∂

∂t
Θ = −us

〈
∂

∂s
T0

〉
− usβ

〈
z
∂

∂z
T0

〉
− us

∂

∂s
Θ− uφ

s

∂

∂φ
Θ +

E

Pr
∇2
HΘ . (D.78)

Because T0 is symmetric across the equator, the first term on the right-hand side may be

evaluated with Eq.(A.36). The second may be integrated by parts:

∂

∂t
Θ = −us

(
∂

∂s
〈T0〉+ β (〈T0〉 − T0|z=L)

)
−βus

2L

(
(zT0)|Lz=−L −

∫ L

−L
T0 dz

)
−uH ·(∇HΘ)+

E

Pr
∇2
HΘ .

(D.79)

The z = L surface is, in practice, the r = r2 surface upon which the temperature is held at

T2. The z-integral of T0, meanwhile, can be rewritten as 〈T0〉:

∂

∂t
Θ = −us

(
∂

∂s
〈T0〉+ β (〈T0〉 − T1)

)
− βus (T1 − 〈T0〉)− uH · (∇HΘ) +

E

Pr
∇2
HΘ . (D.80)

2This is not quite compatible with the boundary condition that Θ = 0 on the inner and outer boundaries,
since the outer boundary in three dimensions is the r = r2 surface. It is reasonable, however, if the axial
averaging is done between the bottom of thermal boundary layers at z = ±L, above which Θ rapidly drops
to zero.
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The β-terms cancel, leaving

∂Θ

∂t
= −us

∂

∂s
〈T0〉 − uH · (∇HΘ) +

E

Pr
∇2
HΘ . (D.81)

The ∂
∂s
T0 term of Eq.(D.81) may be calculated a priori from Eq.(D.70). First, 〈T0〉 is

〈T0〉 =
1

2L

∫ L

z=−L

(
C2 −

C1√
s2 + z2

)
dz = C2 −

C1

2L

∫ L

z=−L

1√
s2 + z2

dz . (D.82)

Taking advantage of T0’s equatorial symmetry,

〈T0〉 = C2 −
C1

L
ln
(√

s2 + z2 + z
)∣∣∣L

z=0
⇒ 〈T0〉 = C2 −

C1

L
sinh−1

(
L

s

)
. (D.83)

The s-derivative of 〈T0〉 is then

∂

∂s
〈T0〉 = −C1

s

L2

(
1

L
sinh−1

(
L

s

)
− 1

s2

)
. (D.84)

Using the definition of C1 from Eq.(D.74),

∂

∂s
〈T0〉 = ∆T

r1r2

r1 − r2

β

(
1

L
sinh−1

(
L

s

)
− 1

s2

)
. (D.85)

The value of this expression is always negative, which may be emphasized by factoring out a

negative sign on the right-hand side. Since this model uses r2 to nondimensionalize lengths,

the radial derivative of the background temperature field is

∂

∂s
〈T0〉 = −∆T

r1

1− r1

β

(
1

L
sinh−1

(
L

s

)
− 1

s2

)
. (D.86)
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D.4 Induction Equation

As outlined in Section 2.3.2, the nonaxisymmetric magnetic perturbation field b is written

in terms of a magnetic potential a, so that

b = bφeφ +
1

L
∇× (Laez) . (D.87)

The induction equation may therefore also be written in terms of a. To begin, the radial com-

ponent of Eq.(C.18) is extracted. Since only the perturbation (b) part of the full magnetic

field (B = B0 + b) changes with time,

∂bs
∂t

=
1

s

∂

∂φ
(usBφ − uφBs)−

∂

∂z
(uzBs − usBz) +

E

Pm

(
∇2bs −

bs
s2
− 2

s2

∂bφ
∂φ

)
. (D.88)

In terms of a, bs and bφ are

bs =
1

s

∂a

∂φ
, bφ = −

(
∂

∂s
+ β

)
a . (D.89)

Using these definitions in the diffusion term of Eq.(D.88),

∇2bs −
bs
s2
− 2

s2

∂bφ
∂φ

=

(
∂2

∂s2
+

1

s

∂

∂s
+

1

s2

∂2

∂φ2
+

∂2

∂z2

)(
1

s

∂a

∂φ

)
(D.90)

− 1

s2

(
1

s

∂a

∂φ

)
− 2

s2

∂

∂φ

(
−∂a
∂s
− βa

)
. (D.91)

With the recognition that φ-derivatives commute with all other derivatives and with factors

of s, this simplifies to
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∇2bs −
bs
s2
− 2

s2

∂bφ
∂φ

=
1

s

∂

∂φ

((
∂2

∂s2
+

1

s

∂

∂s
+

1

s2

∂2

∂φ2
+

∂2

∂z2

)
a+

2βa

s

)
(D.92)

=
1

s

∂

∂φ

(
∇2a+

2βa

s

)
. (D.93)

Substituting this into Eq.(D.88) and writing the time derivative in terms of a results in

1

s

∂

∂φ

(
∂a

∂t

)
=

1

s

∂

∂φ
(usBφ − uφBs)−

∂

∂z
(uzBs − usBz) +

1

s

∂

∂φ

(
E

Pm

(
∇2a+

2βa

s

))
.

(D.94)

Next, the axial average of Eq.(D.94) is calculated. The average of the axial derivative term

is

〈
∂

∂z
(uzBs − usBz)

〉
=

1

2L
(uzBs − usBz)|Lz=−L . (D.95)

As shown in Eqs.(D.20) and (D.21), the no-penetration boundary condition and the assump-

tion of a = 0 on the boundaries justifies the assumption of an axial velocity field and total

axial magnetic field with forms uz = βusz and Bz = βBsz, respectively. Substituting these

profiles into Eq.(D.95),

〈
∂

∂z
(uzBs − usBz)

〉
=

1

2L
((βusz)Bs − us (βBsz))|Lz=−L = 0 . (D.96)

The axial average of Eq.(D.94) is therefore

1

s

∂

∂φ

〈
∂a

∂t

〉
=

1

s

∂

∂φ
〈usBφ − uφBs〉+

1

s

∂

∂φ

〈
E

Pm

(
∇2a+

2βa

s

)〉
. (D.97)

Because the magnetic potential function must be periodic in azimuth, and Eq.(D.97) will

only be used to calculate the non-axisymmetric a (see Chapter 2), the φ-derivatives may be
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dropped from Eq.(D.97). Then, assuming us, uφ, Bs, Bφ, and a are rigid,

∂a

∂t
= (usBφ − uφBs) +

E

Pm

(〈
∇2a

〉
+

2βa

s

)
, (D.98)

where variables without angled braces are assumed to be axial averages. The value of 〈∇2a〉,

however, depends on the behaviour of a at the upper and lower boundaries. If a is assumed

to be symmetric across the equator, and if axial averaging is performed only between the

electromagnetic skin layers present at the boundaries (so that a|z=L = a|z=−L = 〈a〉),

Eq.(A.65) shows that 〈∇2a〉 = ∇2
H 〈a〉. Substituting this into Eq.(D.98) results in the QG

induction equation:

∂

∂t
a = (usBφ − uφBs) +

E

Pm

(
∇2
Ha+

2βa

s

)
. (D.99)

D.5 Zonal Induction Equation

The zonal induction equation is derived from the eφ component of the full induction equation

(Eq.(C.18)). Again, the full magnetic field is decomposed into a steady background field, B0,

and a time-dependent perturbation, b. It is assumed that ∇2B0 = 0. Because
∂Bφ
∂t

=
∂bφ
∂t

,

the eφ component of Eq.(C.18) is

∂bφ
∂t

=
∂

∂s
(ez · (u×B)) +

∂

∂z
(es · (u×B))︸ ︷︷ ︸

1©

+
E

Pm

(
∇2bφ −

bφ
s2

+
2

s2

∂bs
∂φ

)
. (D.100)

1© expands into

1© = − ∂

∂s
(usBφ − uφBs) +

∂

∂z
(uφBz − uzBφ) . (D.101)
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The z-derivative of the second term may be distributed:

1© =
∂

∂s
(uφBs − usBφ) + uφ

∂

∂z
Bz − Bφ

∂

∂z
uz +Bz

∂

∂z
uφ − uz

∂

∂z
Bφ . (D.102)

The final two terms vanish, since uφ and Bφ are assumed to be rigid – that is, z-invariant. The

remaining z-derivatives may be replaced with functions based on the axial profiles assumed

for uz (Eq.(2.21)) and Bz (Bz = βBsz):

1© =
∂

∂s
(uφBs − usBφ) + uφ (βBs)− Bφ (βus) . (D.103)

Thus, with some rearranging,

1© = −
(
∂

∂s
+ β

)
(usBφ − uφBs) . (D.104)

Substituting this expression into Eq.(D.100),

∂bφ
∂t

= −
(
∂

∂s
+ β

)
(usBφ − uφBs) +

E

Pm

(
∇2bφ −

bφ
s2

+
2

s2

∂bs
∂φ

)
. (D.105)

Azimuthally averaging,

∂bφ
∂t

= −
(
∂

∂s
+ β

)(
usBφ − uφBs

)
+

E

Pm

(
∇2bφ −

bφ
s2

+
2

s2

∂bs
∂φ

)
. (D.106)

Both bs and bφ are periodic in azimuth, so terms involving their azimuthal derivatives vanish:

∂bφ
∂t

= −
(
∂

∂s
+ β

)(
usBφ − uφBs

)
+

E

Pm

(
∇2
s,zbφ −

bφ
s2

)
, (D.107)

where ∇2
s,z are the s- and z-derivative terms of the gradient operator. As in the previous

section, the axial average of Eq.(D.107) is taken to occur between the boundary layers

and electromagnetic skin layers at the top and bottom boundaries, so that the magnetic

and velocity fields there are the same as their rigid values. Under this assumption, and
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understanding that variables not within angled brackets have been axially averaged,

∂bφ
∂t

=
∂bφ
∂t

= −
(
∂

∂s
+ β

)(
usBφ − uφBs

)
+

E

Pm

(
∇2
sbφ −

bφ
s2

)
︸ ︷︷ ︸

2©

, (D.108)

where ∇2
s are the radial derivative terms of the gradient operator. The viscous term ( 2©)

may be expanded as

2© =

(
∇2
s −

1

s2

)
bφ =

(
∂2

∂s2
+

1

s

∂

∂s
− 1

s2

)
bφ . (D.109)

Using Eq.(A.16), this can be written in terms of
bφ
s

as

2© =

(
s

(
∂2

∂s2
+

2

s

∂

∂s

)
+

∂

∂s

)(
bφ
s

)
= s

(
∂

∂s
+

3

s

)
∂

∂s

(
bφ
s

)
. (D.110)

Finally, invoking Eq.(A.14),

2© =
1

s2

∂

∂s

(
s3 ∂

∂s

(
bφ
s

))
. (D.111)

Substituting this back into Eq.(D.108) and dividing through by s gives the final zonal in-

duction equation:

∂

∂t

(
bφ
s

)
= −1

s

(
∂

∂s
+ β

)(
usBφ − uφBs

)
+

1

s3

E

Pm

∂

∂s

(
s3 ∂

∂s

(
bφ
s

))
. (D.112)
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Appendix E

Axisymmetric Multiplication in

Fourier Space

Eq.(A.79) (Appendix A.5) shows how the azimuthally averaged product of two functions

represented by Fourier series may be calculated in Fourier space. There are three terms in

the model’s governing equations which require such a calculation: the ΓR and ΓL2 torques

in the zonal flow equation (2.36), and the nonlinear terms of the induction equation (2.42).

They will be handled individually in this appendix.

E.1 ΓR - Reynolds Torque

Because the streamfunction ψ is decomposed into azimuthal Fourier modes within the model,

for a particular Fourier mode m the radial (us,m) and azimuthal (uφ,m) components of the

nonaxisymmetric velocity field may be written in terms of the corresponding streamfunction

component ψm:
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us,m =
1

s

∂ψm
∂φ

=
im

s
ψm , (E.1)

uφ,m = −
(
∂

∂s
+ β

)
ψm , (E.2)

where i is the imaginary unit. The Reynolds torque ΓR is given in Eq.(2.38) as

ΓR = − 1

s2

(
us
∂

∂s
(suφ)

)
, (E.3)

where the overbar indicates an azimuthal average. Using Eq.(A.79), the azimuthal average

is

(us)

(
∂

∂s
(suφ)

)
= (us)

(
∂

∂s
(suφ)

)
+ 2

∞∑
m=1

(
< (us,m)<

(
∂

∂s
(suφ,m)

)
+ = (us,m)=

(
∂

∂s
(suφ,m)

))
,

(E.4)

where < and = are the real and imaginary operators, respectively. Because us does not have

an axisymmetric part, the first term on the right-hand side vanishes. Writing us,m in terms

of ψm, the azimuthal average becomes

(us)

(
∂

∂s
(suφ)

)
= 2

∞∑
m=1

(
<
(
im

s
ψm

)
<
(
∂

∂s
(suφ,m)

)
+ =

(
im

s
ψm

)
=
(
∂

∂s
(suφ,m)

))
(E.5)

=
2

s

∞∑
m=1

m

(
−= (ψm)<

(
∂

∂s
(suφ,m)

)
+ < (ψm)=

(
∂

∂s
(suφ,m)

))
. (E.6)
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Defining

αm = −1

s

∂

∂s
(suφ,m) =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
ψm , (E.7)

Eq.(E.6) becomes

(us)

(
∂

∂s
(suφ)

)
=

2

s

∞∑
m=1

m (−= (ψm)< (−sαm) + < (ψm)= (−sαm)) (E.8)

= 2
∞∑
m=1

m (= (ψm)< (αm)−< (ψm)= (αm)) . (E.9)

Then, absorbing the Reynolds torque’s negative sign into Eq.(E.9),

ΓR =
2

s2

∞∑
m=1

m (< (ψm)= (αm)−= (ψm)< (αm)) ,

where αm =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
ψm . (E.10)

E.2 ΓL2 - Maxwell Torque

The Maxwell torque term is very similar in form to the Reynolds torque. Like the stream-

function ψ, the magnetic potential function a is decomposed within the model in terms of

azimuthal Fourier modes. Thus, for a given Fourier mode m, the radial (bs,m) and azimuthal

(bφ,m) components of the nonaxisymmetric magnetic perturbation field may be written in

terms of the corresponding potential function component am as

bs,m =
1

s

∂am
∂φ

=
im

s
am , (E.11)

bφ,m = −
(
∂

∂s
+ β

)
am . (E.12)
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The Maxwell torque ΓL2 is given in Eq.(2.40) as

ΓL2 =
1

s2

(
bs
∂

∂s
(sbφ)

)
. (E.13)

Using Eq.(A.79), the azimuthal average is

(bs)

(
∂

∂s
(sbφ)

)
=
(
bs
)( ∂

∂s
(sbφ)

)
+ 2

∞∑
m=1

(
< (bs,m)<

(
∂

∂s
(sbφ,m)

)
+ = (bs,m)=

(
∂

∂s
(sbφ,m)

))
.

(E.14)

Like us, bs does not have an axisymmetric component, causing the first term on the right-

hand side to vanish. Writing bs,m in terms of am, the azimuthal average becomes

(bs)

(
∂

∂s
(sbφ)

)
= 2

∞∑
m=1

(
<
(
im

s
am

)
<
(
∂

∂s
(sbφ,m)

)
+ =

(
im

s
am

)
=
(
∂

∂s
(sbφ,m)

))
(E.15)

=
2

s

∞∑
m=1

m

(
−= (am)<

(
∂

∂s
(sbφ,m)

)
+ < (am)=

(
∂

∂s
(sbφ,m)

))
. (E.16)

Defining

γm = −1

s

∂

∂s
(sbφ,m) =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
am , (E.17)

Eq.(E.16) becomes

(bs)

(
∂

∂s
(sbφ)

)
=

2

s

∞∑
m=1

m (−= (am)< (−sγm) + < (am)= (−sγm)) (E.18)

= 2
∞∑
m=1

m (= (am)< (γm)−< (am)= (γm)) . (E.19)
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Thus, the Maxwell torque is

ΓL2 =
2

s2

∞∑
m=1

m (= (am)< (γm)−< (am)= (γm)) ,

where γm =

(
∂2

∂s2
+

(
β +

1

s

)
∂

∂s
+

(
β

s
+
∂β

∂s

))
am . (E.20)

E.3 Zonal Induction Equation

The azimuthally-averaged product G of the nonaxisymmetric velocity and magnetic pertur-

bation fields in the zonal induction equation (Eq.(2.42)) is

G =
1

sL

∂

∂s

(
uφ (Lbs)− us (Lbφ)

)
. (E.21)

Expanding the radial derivatives and rearranging,

G =
1

s

(
bs
∂

∂s
uφ −

bφ
L

∂

∂s
(Lus)− us

∂

∂s
bφ +

uφ
L

∂

∂s
(Lbs)

)
. (E.22)

For a function f , 1
s
∂
∂s

(sf) = ∂
∂s
f + f

s
. So,

G =
1

s

(
bs
∂

∂s
uφ −

bφ
L

(
∂

∂s
(Lus) +

Lus
s

)
+
bφus
s

− us
∂

∂s
bφ +

uφ
L

(
∂

∂s
(Lbs) +

Lbs
s

)
− uφbs

s

)
(E.23)

⇒ G =
1

s

(
bs
∂

∂s
uφ −

bφ
sL

∂

∂s
(sLus) +

bφus
s

− us
∂

∂s
bφ +

uφ
sL

∂

∂s
(sLbs)−

uφbs
s

)
. (E.24)
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From continuity,

∇ · b =
1

s

∂

∂s
(sbs) +

1

s

∂

∂φ
bφ +

∂

∂z
bz = 0 and ∇ · u =

1

s

∂

∂s
(sus) +

1

s

∂

∂φ
uφ +

∂

∂z
uz = 0 .

(E.25)

Since it is assumed that bz = βbsz and uz = βusz, rearranging the above gives

1

s

∂

∂φ
bφ = −1

s

∂

∂s
(sbs)− βbs and

1

s

∂

∂φ
uφ = −1

s

∂

∂s
(sus)− βus . (E.26)

Combining the terms on each right-hand side,

1

s

∂

∂φ
bφ = − 1

sL

∂

∂s
(sLbs) and

1

s

∂

∂φ
uφ = − 1

sL

∂

∂s
(sLus) . (E.27)

Using these expressions, Eq.(E.24) becomes

G =
1

s

(
bs
∂

∂s
uφ +

bφ
s

∂

∂φ
uφ +

bφus
s
− us

∂

∂s
bφ −

uφ
s

∂

∂φ
bφ −

uφbs
s

)
. (E.28)

So,

G =
1

s

(
bs
∂

∂s
uφ −

bsuφ
s

)
︸ ︷︷ ︸

1©

− 1

s

(
us
∂

∂s
bφ −

usbφ
s

)
︸ ︷︷ ︸

2©

+
1

s2

(
bφ
∂

∂φ
uφ − uφ

∂

∂φ
bφ

)
︸ ︷︷ ︸

3©

. (E.29)

First Term

Writing the variables in 1© in terms of the stream and magnetic potential functions,
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bms ≡ 1

s

∂am

∂φ
= im

am

s
,

umφ ≡ −
(
∂

∂s
+ β

)
ψm ,

∂

∂s
umφ = −

(
∂2

∂s2
+ β

∂

∂s
+
∂β

∂s

)
ψm .

Thus, using Eq.(A.79), 1© may be expanded as a sum. Because the radial perturbation field

has no axisymmetric mode, the first term of the sum disappears:

1© =
2

s

∞∑
m=1

{
< (bms )<

(
∂

∂s
umφ −

umφ
s

)
+ = (bms )=

(
∂

∂s
umφ −

umφ
s

)}
=

2

s

∞∑
m=1

{
<
(
im

am

s

)
<
(
−
(
∂2

∂s2
+ β

∂

∂s
+
∂β

∂s

)
ψm +

1

s

(
∂

∂s
+ β

)
ψm
)

+ =
(
im

am

s

)
=
(
−
(
∂2

∂s2
+ β

∂

∂s
+
∂β

∂s

)
ψm +

1

s

(
∂

∂s
+ β

)
ψm
)}

=
2

s2

∞∑
m=1

m

{
= (am)<

((
∂2

∂s2
+

(
β − 1

s

)
∂

∂s
+

(
∂β

∂s
− β

s

))
ψm
)

−< (am)=
((

∂2

∂s2
+

(
β − 1

s

)
∂

∂s
+

(
∂β

∂s
− β

s

))
ψm
)}

Defining two dummy functions, α1 and γ1,

1© =
2

s2

∞∑
m=1

m [= (αm1 )< (γm1 )−< (αm1 )= (γm1 )] ,αm1 = am, (E.30)

γm1 =

(
∂2

∂s2
+

(
β − 1

s

)
∂

∂s
+

(
∂β

∂s
− β

s

))
ψm

(E.31)
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Second Term

This term is similar to 1©:

ums ≡ 1

s

∂ψm

∂φ
= im

ψm

s

bmφ ≡ −∂a
m

∂s
∂

∂s
bmφ = − ∂2

∂s2
am

This time, the nonexistence of the axisymmetric radial velocity field is what causes the first

term in equation A.79 to disappear when 2© is written in terms of it:

2© = −2

s

∞∑
m=1

{
< (ums )<

(
∂

∂s
bmφ −

bmφ
s

)
+ = (ums )=

(
∂

∂s
bmφ −

bmφ
s

)}
= −2

s

∞∑
m=1

{
<
(
im

ψm

s

)
<
(
− ∂2

∂s2
am +

1

s

∂

∂s
am
)

+ =
(
im

ψm

s

)
=
(
− ∂2

∂s2
am +

1

s

∂

∂s
am
)}

= − 2

s2

∞∑
m=1

m

{
= (ψm)<

((
∂2

∂s2
− 1

s

∂

∂s

)
am
)
−< (ψm)=

((
∂2

∂s2
− 1

s

∂

∂s

)
am
)}

With two more dummy functions, I have

2© =
2

s2

∞∑
m=1

m [= (αm2 )< (γm2 )−< (αm2 )= (γm2 )] , αm2 ≡ −ψm, (E.32)

γm2 ≡
(
∂2

∂s2
− 1

s

∂

∂s

)
am (E.33)

Third Term

This one is a bit different! For it, I need

umφ ≡ −
(
∂

∂s
+ β

)
ψm,

∂

∂φ
umφ = imumφ

bmφ ≡ −
∂

∂s
am,

∂bmφ
∂φ

= imbmφ
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Both derivatives are zero for the axisymmetric mode, so again the leading term in equation

A.79 disappears. Writing 3© in terms of that series gives

3© =
2

s2

∞∑
m=1

{(
<
(
bmφ
)
<
(
∂

∂φ
umφ

)
+ =

(
bmφ
)
=
(
∂

∂φ
umφ

))
−
(
<
(
umφ
)
<
(
∂

∂φ
bmφ

)
+ =

(
umφ
)
=
(
∂

∂φ
bmφ

))}
=

2

s2

∞∑
m=1

{
<
(
bmφ
)
<
(
imumφ

)
+ =

(
bmφ
)
=
(
imumφ

)
−<

(
umφ
)
<
(
imbmφ

)
−=

(
umφ
)
=
(
imbmφ

)}
=

2

s2

∞∑
m=1

m
{
−<

(
bmφ
)
=
(
umφ
)

+ =
(
bmφ
)
<
(
umφ
)

+ =
(
bmφ
)
<
(
umφ
)
−<

(
bmφ
)
=
(
umφ
)}

=
2

s2

∞∑
m=1

m

{
2=
(
∂

∂s
am
)
<
((

∂

∂s
+ β

)
ψm
)
− 2<

(
∂

∂s
am
)
<
((

∂

∂s
+ β

)
ψm
)}

So, using two final dummy functions,

3© =
2

s2

∞∑
m=1

m [= (αm3 )< (γm3 )−< (αm3 )= (γm3 )] , αm3 ≡ 2
∂

∂s
am, (E.34)

γm3 ≡
(
∂

∂s
+ β

)
ψm (E.35)

Everything

So, the nonlinear terms of the axisymmetric induction equation may be written as:

G =
2

s2

3∑
n=1

∞∑
m=1

m [= (αmn )< (γmn )−< (αmn )= (γmn )] (E.36)

n αmn γmn

1 am
(
∂2

∂s2
+
(
β − 1

s

)
∂
∂s

+
(
∂β
∂s
− β

s

))
ψm

2 −ψm
(
∂2

∂s2
− 1

s
∂
∂s

)
am

3 2 ∂
∂s
am

(
∂
∂s

+ β
)
ψm
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Appendix F

Conservation of Axial Angular

Momentum

The total axial angular momentum Lz of the outer core is contained in the concentric cylin-

ders rotating with axisymmetric angular velocity
uφ
s

. Assuming a constant density ρ0 (set

to 1 for convenience), the time variation of Lz is then

1

4π

∂

∂t
Lz =

∫ s2

s1

s3L
∂

∂t

(
uφ
s

)
ds , (F.1)

where s is the cylindrically radial position, L is the distance between the equatorial plane

and the upper boundary in the axial direction, and t is time. As shown by Eq.(2.36), ∂
∂t

(
uφ
s

)
can be decomposed into four component torques. For a function f , the linear operator G(f)

is defined as G(f) =
∫ s2
s1
s3Lf ds. Using this operator, Eq.(F.1) may be rewritten as a sum:

1

4π

∂

∂t
Lz = G (ΓV) + G (ΓL1) + G (ΓL2) + G (ΓR) . (F.2)

With the input torques
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ΓV =
E

s3L

∂

∂s

(
s3L

∂

∂s

(
uφ
s

))
, (F.3)

ΓL1 =
1

s3L

∂

∂s

(
s3LB0s

bφ
s

)
, (F.4)

ΓL2 =
1

s

(
bs
s

∂

∂s
(sbφ)

)
, (F.5)

ΓR = −1

s

(
us
s

∂

∂s
(suφ)

)
, (F.6)

the first two terms on the right-hand side of Eq.(F.2) reduce to G(ΓV) = s3L ∂
∂s

(
uφ
s

)∣∣∣s2
s1

and

G(ΓL1) = s3LB0s
bφ
s

∣∣∣s2
s1

. Since we assume stress-free boundaries upon which bφ = 0, both

terms are zero, reducing Eq.(F.2) to

1

4π

∂

∂t
Lz = G (ΓL2) + G (ΓR) . (F.7)

Since both u and b are solenoidal and periodic in azimuth, Eqs.(F.5) and (F.6) may be

rewritten as

ΓL2 =
1

s

(
1

s2L

∂

∂s

(
s2L bsbφ

)
−
(
βbs −

∂

∂z
bz

)
bφ

)
, (F.8)

ΓR = −1

s

(
1

s2L

∂

∂s

(
s2Lusuφ

)
−
(
βus −

∂

∂z
uz

)
uφ

)
. (F.9)

Application of the G operator to the first term on the right-hand side of each equation again

produces terms which depend only on boundary values: s2L bsbφ
∣∣s2
s1

and s2L usuφ|s2s1 . Because

we use no-penetration (ψ = 0 → us = 0) and a = 0 (→ bs = 0) boundary conditions, both
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are zero. This leaves

1

4π

∂

∂t
Lz = G

((
βus −

∂

∂z
uz

)
uφ

)
− G

((
βbs −

∂

∂z
bz

)
bφ

)
. (F.10)

An axial profile must be assumed for both the u and b fields. The no-penetration boundary

condition at the spherical top and bottom boundaries dictates that, where the boundary’s

normal vector is n̂,

u · n̂ = 0 ⇒ uz(L) = − s
L
us . (F.11)

Assuming that the uz velocity profile varies linearly with z, and is zero in the equatorial

plane,

∂

∂z
uz = βus , (F.12)

which is consistent with mass conservation (∇ · u = 0), and the definition of the flow used

in Eqs.(2.16) and (2.17). This causes the first term on the right-hand side of Eq.(F.10) to

vanish. Our definition of the magnetic field perturbation b in Eqs.(2.16) and (2.18) follows

the same form as that of u:

∂

∂z
bz = βbs . (F.13)

Substituting Eqs.(F.12) and (F.13) into Eq.(F.10) causes the remaining terms on the right-

hand side to vanish. Thus, the angular momentum is conserved:

∂

∂t
Lz = 0 . (F.14)
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