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ABSTRACT

“Form” of an object consists of “size” and “shape”. The form of an object is the 

characteristic that remains invariant under a group of transformations comprising 

of translation, rotation, and/or reflection. Landmarks are commonly used to 

quantitatively represent form of an object. Estimation of the mean form and 

variability around it is important in fields such as evolutionary quantitative 

genetics, surgery, protein science, etc. Due to the presence of nuisance parameters 

of rotation and translation, general covariance matrix is known to be not 

identifiable. But certain structured covariance matrices can be shown to be 

identifiable. In this thesis, we provide conditions under which the covariance 

matrix of landmarks data is identifiable. Furthermore, we provide a 

computationally simple approach based on Euclidean Distance Matrix Analysis 

(EDMA) to estimate the mean form and covariance matrix. It is shown that this 

estimator is consistent, i.e., as sample size increases, it converges to the true 

covariance matrix. We use simulations to check the validity of the theoretical 

results. Further we use the method to estimate variability in the mouse mandibles 

using landmark data.
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C hapter 1

Introduction

“Form” consists of “size” and “shape”. The analysis of the form of an object is 

important in biological sciences and is useful in many fields such as medical 

statistics, surgery, genetics, protein science (Godzik 1996) and evolutionary 

biology (Gould 1977; Lele and Ritchersmeier, 2001). Practical analysis of 

biological form is hindered by the complexity of quantifying an entire form. One 

approach to reducing this complexity is to consider a few biologically important 

points on the form under consideration and assume that the configuration of these 

points approximates the underlying form adequately for the problem at hand 

(Dryden and Mardia, 1998; Lele and Ritchersmeier, 2001; Lele and McCulloch, 

2002). Such points are called “landmarks”. With current imaging technology, 

landmark data can be easily and accurately recorded. For example, suppose we 

want to calculate landmark coordinates on a mouse mandible. A few landmarks 

on the mouse mandible such as: Coronoid tip, Inferior incisor alveolus and 

Superior incisor alveolus may be chosen to represent the form of the mouse 

mandible (Cheverud, et al., 1997). The loci of landmarks on the mandible of one 

mouse are shown in Figure 1.1. The description of these landmarks is in Table 4.1. 

We fix an object on a digitizer and the coordinate of each landmark with respect 

to the chosen coordinate system is computed using the digital video data 

collection system. In this way, we can get the landmarks data matrix. Suppose we

1
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selected n landmarks on the form of the mouse mandible, then the landmarks data 

matrix for one subject may look like:

\  yi
*2 y  2

3  y*_

where x,y  denote the 2 coordinates. 

1

Figure 1.1: Diagram of a mouse mandible indicating the locations of 16
landmarks.

Assuming the configuration of these landmarks represents the form of mouse 

mandible adequately, the question is how to measure the variability among 

individuals that are represented by these 2D landmark data. In statistical studies, 

when analyzing landmarks data, variability is particularly difficult to characterize, 

because data on an individual is collected in a coordinate system specific to the 

orientation of that individual during data collection. This makes the problem 

statistically challenging. It is known that the general variance parameter is non-

2
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identifiable (Lele, 1993; Lele, 2002). In this thesis, we provide conditions under 

which a structured matrix variance is identifiable, further we provide a simple 

approach based on Euclidean Distance Matrix Analysis (EDMA) to estimate these 

parameters consistently. Other statistical methods have been developed to solve 

this particular question. One of the most widely used methods is that of 

Generalized Procrustes Analysis (GPA). Another recently developed method is 

Hierarchical Generalized Procrustes Analysis (HGPA) (Theobald and Wuttke, 

2006). We compare EDMA based estimators with these two methods in Chapter 5.

The outline of the thesis is as follows. Chapter 2 gives a brief introduction to 

landmark coordinate data, the perturbation model and the algorithm for estimating 

mean form and covariance matrix. Chapter 3 evaluates the performance of EDMA 

with simulated data. In Chapter 4 we present an analysis of the mouse mandible 

data. In Chapter 5, we compare the performance of EDMA to that of HGPA with 

simulated data. Chapter 6 concludes the thesis.
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C hapter 2

The perturbation model and EDMA

Suppose we have K  landmarks on a D -dimensional objects, then we construct a 

K x D  matrix whose y'th row consists of the D coordinates of the y'th landmark.

Usually D is either 2 or 3 and AT is assumed to be larger than D . We use X i to

denote the K x D  matrix of coordinates for the z'th individual.

2.1 Perturbation Model

Landmarks data are commonly modeled using the perturbation model. (Goodall, 

1991 and Lele, 1993). The perturbation model may be thought of as representing 

the following process. To generate a random geometrical object or equivalently, a 

K  point configuration in D -dimensional Euclidean space, nature first chooses a 

mean form (represented by matrix M ) and perturbs the elements of this matrix by 

adding noise to this mean form according to a matrix-valued Gaussian distribution. 

The K  point configuration so obtained is then rotated and/or reflected by an 

unknown angle and translated by an unknown amount. Such perturbed, translated, 

rotated, and/or reflected K  point configurations constitute our data.

The above description can be put in a mathematical form as follows. Let 

M  denote the K x D  landmark coordinate matrix corresponding to the mean form. 

Let Ei be the K x D  matrix representing the error for the z'th individual and we

assume Ei is Gaussian with mean matrix 0 and variance-covariance

4
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matrix ~Lk ® Z0 where Ẑ . is a K x K  positive definite matrix representing the 

variance among elements within the same column of Ei and ZD is a 

D x D positive definite matrix representing the variance among elements within 

the row of Et . Let F( be an D x D orthogonal matrix representing rotation and/or

reflection of ( M  + E{), and tt a K  x D matrix with identical rows representing 

translation. Then the landmark coordinate matrix corresponding to the 

r'th individual may be represented as X t =(M + Ej)Tj + ti . It then follows that

X i - M N KxD(MTi +ti,XK, T ^ DTi) 

for 2=1,2 , ..., n. Here “MN  ” stands for “matrix normal” (Gupta, A.K. and 

Nagar, D.K., 1999). Parameters of interest are (M ,Z ^ ,Z fl) and ( F;, tt) are the 

nuisance parameters.

2.2 Eliminating the nuisance parameters

To estimate the mean form M  and the variance-covariance matrix andZD, we

need to eliminate the nuisance parameters first. So we consider transforming the 

data in such a way that the distribution of the transformed data is independent of 

the nuisance parameters. Lele (1993) and Lele & McCulloch (2002) use a 

maximal invariant statistics T(-) to eliminate nuisance parameters. They define the 

maximal invariant as follows. Let S denote the space of all K x D  matrices and let 

T(-) be a function defined on this space such that for X  and X* in S  , 

T ( X ) - T ( X * )  if and only if  X*is just a rotation, translation, and/or reflection

5
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o f X .  Then T( ) is called a maximal invariant defined on the space S under the 

group of rotation, translation and reflection o i X .

1 rLet H  -  I ----- (1 1) where 1 = (1,1,- • -1) a 1 x  K  row vector
K

be a K x K  centering matrix. Let X c = H X , then the columns of X c sum to zero. 

The following theorem gives a maximal invariant of X  , a K x D  matrix of 

landmark coordinates.

Theorem 2.1. T(X)  -  HXXTH T is a maximal invariant statistic, where X  is a 

K x D  matrix.

Proof:

1) T(X)  is invariant.

T(XT  + 1) = H(XT + t){YTX T + tT) H T = HXTTtH t = T ( X ) 

since thas identical rows and then Ht = 0.

2) T (X ) is maximal invariant.

To show that it is a maximal invariant, we need to show that, given T ( X ) , it 

can be mapped back to a unique orbit in the original space. This can be proved 

using the fact that T(X)  is a centered inner product matrix and so there exists 

a unique (up to rotation, translation, reflection) mapping from the centered 

inner product matrix to a coordinate matrix (Lele 1991; Lele 1993; Lele and 

McCulloch, 2002).
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Furthermore, it follows from standard multivariate normal distribution theory 

(Arnold, 1981, Chap. 17, Sect. 3) that if  SD = /

B, = T(X,)  = X f ( X f ) T ~ Wishartk( D X k , M M t ) 

that is, the random variables Bi s are K x K  matrices and have a Wishart 

distribution independent of nuisance parameters, whereE^ = HI,KH Tis a K x K  

non-negative definite matrix of rank K - 1 corresponding to the variance of the 

columns of X f . Lele (1993) shows that E^ and M C( M C)T are identifiable and 

provides a consistent estimator of E^and M C( M C)T based on the method of 

moments. Note that T(M)  = M C( M C)T =HM MTH  is a centered inner product 

matrix corresponding to the mean form M . The second point of the proof of 

Theorem 1 establishes that estimation of M C( M C)T are equivalent to estimating 

the mean form. In other words, given M C( M C)T one can construct M  (up to 

translation, rotation, and reflection).

2.2.1 The Estimation of M c( M c)r and 2K 

We use the following notation (Lele, 1993):

(i) F( X)  = [Flm] ^  where Flm is the Euclidean distance between

landmarks I and m . Euclidean distance is the straight line distance between two 

points that can be measured by a ruler.

(ii) E u(X ) = [F^] = [elm] denotes the matrix of squared distances.

(iii) B ( X ) = X C( X C)T denotes the centered inner product matrix.

7
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(iv) Let Zjj. = [cr/JB]/=u ^ be the variance-covariance matrix and,

Eu(M) = [8lm]l=u jr be the Euclidean distance matrix corresponding to 

the mean form M .

The following theorems lead to the consistent moment estimator for 8lm’s. The

proof follows from the consistency of the sample moments and the consistency of 

a continuous function of sample moments (Chung, 1974). See also Johnson and 

Kotz (1970, Chap.28) for properties of noncentral j 2 distribution.

Theorem 2.2. eljn ~ (f>lm%2D(8lm/<f>lm) that is, squared Euclidean distances between 

pairs of landmarks have a non-central %2 distribution with D degrees of freedom, 

noncentrality parameter and scaling parameter <j)lm ,where

4m = CT// + ~ 2cr/m.

Theorem 2.3. For a two-dimensional object,

E(eljn) = 2fi„ + Sl„ = a i 

Var(el/ti) = 4 ^  + 48, = a2

and

a 2x - a 2 =(8ljnf  (1)

We can then equate the sample moments to the population moments to obtain a 

moment estimator for Slm .

8
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Theorem 2.4. Let e'lm denote the squared Euclidean distance between landmarks 

I and m in the i th object.

Let e/,m= ~ 2 X
n i=i

S \ e LJ = l- ± ( e l m- e LJ  
n i

and

(2)

Then as n —> <x>,

in probability

We can also obtain the moment estimator of Slm for three-dimensional objects. 

Theorem 2.5.

E (eijn) = l</>l/n+Sl„ =P\
V ar(e,J = 6 f a  + 4 5 ,J ljn =  p 2

and

j2 3

Theorem 2.6. Using the same notation as in Theorem 4, and

K m- m J - \ . 5 S \ e , m) f 2 (4)

It follows that as n -» oo ,
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Îjtl in probability

Next theorem utilizes the estimators of Slm to obtain a consistent estimator of the 

variance-covariance parameter X  ̂ . The proof follows from Arnold (1981,

Theorem 17.6) and consistency of moments and consistency of continuous 

function of moments (Chung, 1974).

Theorem 2.7. E ( B (X )) = DH*K + B(M)  and

^  = T t I - X A X > > -  in Probability
D n m

Following the theorems, the algorithm of obtaining M  and X  ̂can be shown as 

below:

Step 1. Calculate B(M) = ~ H { E u ( M ) } H .

Step 2. Calculate the eigenvalues and eigenvectors of B ( M ) . Let the eigenvalues 

be A] > A2 >•■•> Ak and the corresponding eigenvectors behx,h2,---,hK.

Step 3. The estimator of the centered mean form M c is given by:

For a two-dimensional object: M c = ,y[A^h2 ]

For a three-dimensional object: M c = ,y[A^h2 ,sjj^h3 ]

Step 4. Caluculate B(X)  = ~ H { E u ( X ) } H .

*  1 1 «
Step 5. The estimator of 1lk is given by X^ = —[—̂ 5 ( A ;) -  B(M)]  -» X’̂  .

D n i=l

10
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This shows that = H'LKH T is identifiable and estimable.

2.2.2 Conditions for Identifiability o fIA

However, biologically is of interest. Unfortunately, mapping from EA to is 

non-unique because the centering matrix H is  singular and hence is not invertible 

(recall that = HY,KH ). To make this mapping unique, we need to impose 

conditions onEA. In the following, we provide such conditions.

Since the identifiability of the parameters is independent of the choice of the 

centering matrix (Lele and McCulloch, 2002), we define another centering 

matrix L of rank K  -1  for the sake of mathematical convenience. Let L be a 

( K - \ ) x K  matrix whose first column consists of -Is and the rest of the matrix is

an identity matrix of dimension (K -1 )  x (K -1 ) .  Let = LLKl I .

Note that EA is a symmetric K x K  matrix of full rank K  while EA is a 

{K - 1) x (K - 1) matrix of rank K - 1. One can not go from EA to in a unique 

fashion. For example, if

<Ti2 <Ti 3

M *
II £T2 i a 22 <t 23

1 ° 3 2 ^ 3 3

and,

11
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I*  = l l kl  =
-1 1 0
-1 0 1

(Til + CT22 2(Tj2

° " l l  +  ^ 2 3  _  ° 1 2  ~  ^ 1 3

° i l °12 ° i 3 - 1 - 1

(T2i cr22 °2 3 1 0

^31 °3 2 (T33 0 1

°11 °2 3 (T jj - - (7,3

° i i +  cr33 - 2 c 7 i 3

2 * : <t u 5 ^22  > (7.'3 3  ’ 12 — 21

<t13 = cr31 and ct23 = cr32, but only three equations in 1tK :

(Tjj + (T22 — 2cru — Cl

° 1 1  +  ° 2 3  &12 ~  ° 1 3  =  ^

(Til 3̂3 ~ ̂ CT13 — C

where a,b,c are some known constant. We can not identify these unknown 

elements from a system of the three linear equations. Hence *LK is non identifiable.

Generally, there are K (K  +1)/2 unknown elements in while we can only 

get K (K  - 1)/2 linear equations from ZK , so is not identifiable. In order to 

identify l .K, we need to put constrains on the structure of it: at least K  covariance 

elements in are zero so that the number of unknown elements in XK is reduced 

to at most K (K  - 1)/2 .

For such constructed I.K , there is a unique transformation function of X)K such 

that Y.k = f { t K) . We use the following notation:

vec(X ) : a column vector formed by stringing out the columns of matrix X , one 

after the other (Magnus, J.R and Neudecker, H., 1999, Chap. 2, Sect. 4).

12
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For example,

X  =
ax a2

k  b2

then vec(X ) =

Since and 1tK are symmetric, stringing out the columns is equivalent 

stringing out the rows. Then generally,

(Xu °12

22

<T,IK

' 2  K

( K x K )

vec(T,K)  (c T n ,-  • •,(JXK,o ’2x,- • '&2K,  ^ kk) ( K l x 1)

C \ i +  ( j 22 2 (7 i2 (Tj i +  ( J23 o"i2 (7,13

° i l  +  ° 3 3  2 (T i 3

O i l + 0 - 2  a : ^ 1 2  ° ia:

° i i  +  & i k  ~  ° i 3  — ^ i a :

<t i i + 0 "a x  ° ia: ° i / i : ( K-

to

■l)x(AT-l)
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vec(ZK) =

^ l l  +  CT23

12

' CT12 CT13
Cri l + C r 24 ( J 12 °" l4

CT11 +  G 2K G U IX
°n  + CT32 °12 G\3
^ l l  + C r 33 ~ ^ <7U

G U + ( T 3K  ° " l3  ° l j f

° n +crx2 CT12 °"ix

^ 1 1  +  CTX3 _  ° 1 3  _  G \ K

V°11 +  <7k k  g \ k  g \k  J  (A r-i)2xi

Let A denote a matrix such that Avec(LK)= vecfl^ . 4̂ then has such a form:
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(\ -2 0 •••

oo

1 ••• 0 \

1 -1 _1 ... •• o :
1 -1 0 -1 •• o ; ©
1 -1 0 .......... -1 0 0 ••• •.......... 1
1 -1 _1 ... oo

1 .......... ... 0

1 0 -2 ••• •• o ; 0
1 0 -1 ••• •• 0 i 0

1 0 _1 ... •• -1 0 0 ••• ........ 1

1 -1 0 ••• .. _ i 0 1 .........  0
1 0 _1 ... .. _ i • t

1 0 0 -1 .. _ i 0

,1 0 0 ••• •• -2 0 0 .........  1,

There are ( X - l ) x ^  sub-matrices of dimension (K -1 ) x K  in A , where 

1   0

denotes a (K -1 ) x K  submatrix, and

0   1

0 denotes a (K  -1 ) x K  submatrix comprising of all 0 elements. 

Since both 2,x and ltK are symmetric matrix, we can string out only the upper 

triangle of the matrices 1 K and 1 K to get revised vec(ZK) and vec( tx ) of

15
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dimension + x  ̂ ancj —— x 1 respectively. One can reduce A by

removing the rows and columns correspondingly. The reduced matrix A is then of 

dimension —— x . Thus Avec(ZK) = vec( tK) gives a system of

 1 \ Zf / ^  1 \
— — -equations in — — -unknowns. This system does not have a unique

solution. We need to put constrains on 'LK in order to get a unique solution of the 

equation Avec(LK) = vec(%K) . Suppose we impose constrains onS^ such that at

least K  covariance elements of are zero. Then we can reduce the size of the 

system by at least K .

Theorem 2.8.

If (i) A is a known m x n  matrix and has full rank n , m > n

(ii) x is a n x 1 vector containing n unknown non zero elements,

(iii) b is a known m x l vector,

Then the equation Ax -  b has a unique least square solution x = (ArA f 1Arb . 

Proof: It follows from the generalized inverse of matrices theorem (Rao and Mitra, 

1971, Chapter 2 or C.W.Groetsch, 1977, 113-116).

Theorem 2.9. Y.K is identifiable if the corresponding reduced matrix A of

dimension -—— x q has full rank and —— > q .
2 2

Proof:

16
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In constrains imposed 'LK , there are at least K  zero covariance elements. We 

delete all zero elements m.vec(LK) , and then delete the corresponding columns in

matrix A . Then the reduced matrix A is full rank and the number of columns in it 

K( K  — 1̂
is at most— — -.  From now on, we refer the final version of A ,vec(LK) and

vec( iK) as A , vec(I.K) and vec(ZK) . vec(ZK) contains q non-zero elements.

Matrix A is of d im ension^——— x  q .
2

K( K  — 1̂
(1) I f   — - = q , then A is a full ranked square matrix, the equation

Avec(ZK) = vec(%K) has a unique exact solution: vec(LK) = A~yvec( tK) . 

K( K — 1 ̂
(2) I f   -----> q , then following Theorem 2.8, Avec(ZK) = vec(E^) has a

unique least square solution vec(ZK) = (ATA)~x ATvec(Y.K) .

Hence, vec(ZK) is identifiable. And since it is simply a stacking of , HK is 

identifiable.

We now illustrate the result for two different model structures: diagonal structure 

assuming the landmarks are independent and off-diagonal structure with some 0 

covariance assuming correlation exists between some landmarks.

(1) Diagonal: K  = 3 and D = 2

17
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Let *K =

CTu

'12
' 3 3

Then y,k = l l kl  =
O '

’ ° i l ' - 1 - 1 "

1
cr22 1 0

CT33_ 0 1

(7n +  <j22 crn

°11 + O33

"oil" <Tn + <J22
and vec(ZK) = (T2 2 II On

. CT3 3 . cru + rr33

A =
1 1 0 
1 0 0 
1 0 1

A is square and has full rank 3, then Avec(ZK) = vec(Z^) has a unique solution

vec(ZK) = A xvec(ZK) . Hence XK is identifiable.

(2) Off-diagonal’. K  = 4 and D -  3

o n 0 0 0 '
0 <r22 <723 0
0 °32 O33 0
0 0 0 044,

Then

18
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1lk = LLkL =

and

0 0 0  N ' - 1 - 1 - 1 "
' - 1 1 0 0 "

0 < r22 ° 2 3 0 1 0 0
- 1 0 1 0

0 ( T , , 0 0 1 0
- 1 0 0 1 b l 33

, 0
0 0 O 4 4 , _ 0 0 1 _

vec(ZK) =

°n  + 1722 <rn + cr23
= °11 + CT33

V

<Tn + (J22
~°u

CT11 + CT23cr22
<r23 5 vec(%K) = Oil

crn + cr33
CT33

°ii
_Cr44_ _cru + cr44_

&\ 1 + CT44 J

A =

1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
1 0 0 1 0
1 0 0 0 0
1 0 0 0 1

6x5

Matrix A has full rank 5 and its row dimension 6 is greater than its column 

dimension 5, and then Avec(ZK) = vec(ZK) has a unique least square solution:

vec(LK) = (AtA)'1 ATvec(tK) .

Hence is identifiable.
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2.3 The Algorithm to Estimate 2K

Section 2.2.2 gives the conditions under which YK is a unique transformation

of Z* : vec(ZK) = (AT A)~l ATvec(ZK) . Thus if YK is estimable, then 2^ which

satisfies the condition in Theorem 2.9 is estimable.

Following theorems give a consistent estimator of YK.

Theorem 2.10. There exists a one-one transformation function such that 

Z ,= /(2 * r )  •

Proof:

Recall that T,*K = TTZKH  and YK = LLKLT . There exists a matrix Y such 

that YH = L ,  by solving equation YH = L , we can get the structure of matrix Y :

'- 1  1 0 •••
-1 !

-1 0 ..........
,-2  -1 -1 -

and hence 2^ = LLKLT = YHZKH Y T = Y ^ KY T.

Theorem 2.11. t K = Y±*KY T and i K — p-̂ > £ , .

Proof:

We give a consistent estimator of2^ in section 2.2.1. That is,

20
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Since 2^ = YT,*kY t , then

i K = y ±*ky t — °-^y £ky t = ±K

This follows from the consistency of moments and the consistency of continuous 

function of moments (Chung, 1974).

Theorem 2.12. For constrains imposed which satisfies the conditions in 

Theorem 2.9, 'Zk-^>Yjk .

Proof:

(1) If A is a full rank square matrix, thenvec(YK) -  A~xvec(LK) . It follows from

the consistency of moments and the consistency of continuous function of 

moments (Chung, 1974) that

vec(LK) = A~lvec(?LK)—->A~lvec(ZK) = vec(ZK)

since vec(ftK)—-+vec(%K) from theorem 2.11. Note that vec()is simply a 

stacking operation of a matrix.

(2) If the row dimension of A is greater than the column dimension of A , i.e.

K ( K - \ )  , ^ , . .
  -----> q , then the unique least square solution is

v ec(S J = (ATA y 'A rvec(±K).

Again, following (Chung, 1974), vec(ZK)—-+vec(I,K) .
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Given the model structure ofZ^. and considering the way of forming vec(HK) , one

can simply transform vec{%K) back to Y,K and t,K—̂+'LK . Hence we get a 

consistent estimator of the covariance matrix of landmarks data.
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Chapter 3

Perform ance Study of EDMA using Simulated Data

In this chapter, we study the performance of the estimators derived in Chapter 2 

by using simulation.

3.1 Simulation Design

We consider two different model structures of ZK and two different

dimensions!) = 2 and!) = 3. First we consider the diagonal model structure with 2 

dimensional data. Then we consider the diagonal model structure with 3 

dimensional data. We then move on to off-diagonal model structure first with 2 

dimensional data and later with 3 dimensional data.

For each case, we randomly generate 5,000 matrix normal random variables X]s

with known mean form and known variance-covariance matrix. Following are the 

steps of generating landmarks data.

Step 1: generate a K x D  standard normal matrix Z ~ MN(0,I)

Step 2: find cholesky decomposition C such that ZK = CCT 

Step 3: X  = (CZ + M ) I ,X  ~M N (M ,C C r = ZK,I)

Step 4: estimate ZK

Step 5: repeat step 4 100 times and hence get 100 t Kj’s, where i = 1,2,- • -100
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3.2 Simulation Results

(1) Diagonal matrix case: K=3 D=2

The true mean form matrix is M  =
f  2.70 4.72 N

7.07 -2.36

v"-1.53 2.59 /

The true covariance matrix is 1,K

00 0 0 '
"1 0^

0 .59 0 Zn =D 0 1
vO 0 •42, V /

And the true centered inner product matrix corresponding to the mean form M  is

m c(m cy  =
^9.427 -12.512 3.085 A

34.771 -22.259

V

Mean of the 100 estimates of M C(M C)T andZ^ obtained in Step 5 are as follows:

19.173 /

"9.44 -12.50 3.06 N ".856 0 0 '
M CM TC = 34.71 - 22.21 M> >*! II 0 .569 0

V 19.15 ; 1 o 0 .422^

This shows that EDMA based estimators are consistent and asymptotically 

unbiased.

(2) Diagonal matrix case: K=4 D=3

The true mean form is M  =

2.70 4.72 7.07
-2.36 -1.53 2.59
8.62 1.10 2.63
4.98 7.43 5.21
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The true covariance matrix is 'LK =

oo -0 0 0 0  N r i 0 "0
0 .59 0 0

= 0 1 0
0 0 .42 0

Lf

0 0 1

, 0 0 0 .63 j V J

And the true centered inner product matrix corresponding to the mean form M  is

r \ 1.083 -8.206 -12.009 9.132 A
57.242 -18.737 -30.299

32.762 -2.015
23.182v

Mean of the 100 estimates of M C(M C)T andS^ obtained in Step 5 are as follows:

m c{m cy  =

"11.03 -8.16 - 12.02 9.15 N 00 0 0 0 '
57.09 -18.73 -30.20 0 .56 0 0

2 * =32.78 -2.03 A 0 0 .43 0

V 23.07 ; 1 ° 0 0 •64,

This shows that EDMA based estimators are consistent and asymptotically 

unbiased.

(3) Off-diagonal matrix case: K=4, D=3

/  2.70 4.72 7.07^
-2.36 -1.53 2.59

The true mean form is M  =
8.62 1.10 2.63
4.98 7.43 5.21

The true covariance matrix HK -

OO 0 0 o N
f l

°1
0

0 .66 .40 0
£ d = 0 i 0

0 .40 .87 0
0 0 1

v 0 0 0 .53, V J

And the true centered inner product matrix corresponding to the mean form M  is
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M c(M cf  =

'11.083 -8.206 -12.009 9.132 ^
57.242 -18.737 -30.299

32.762 -2.015
23.182

Mean of the 100 estimates ofM  (M  ) and obtained in Step 5 are as follows:

M c(M c)r =

11.086 -8.224 -11.953 
57.164 -18.663 

32.659

/ .77 0 0 0 N
0 .69 .43 0
0 .43 .88 0
0 0 0 .54

9.091 A 
-30.277 
-2.044 
23.230

This shows that EDMA based estimators are consistent and asymptotically 

unbiased.

(4) Off-diagonal matrix case: K=5, D=2

'  2.70 4.72^
7.07 6.36

The true mean form is M  = 8.53 2.59
10.62 6.70 
13.68 8.98

The true covariance matrix is ~LK -

".66 0 0 0 0 '
0 .58 0 .39 0
0 0 .47 0 0
0 .39 0 .73 0

0 0 0 •82,

* D =
1 0 
0 1

And the true centered inner product matrix corresponding to the mean form M  is
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m c(m cy  =

^35.19 7.88 3.71
2.34 -1.62 

10.76

-13.18 -33.61^ 
-2.64 -5.96
-2.70 -10.15
5.10 13.42

36.30

Mean of the 100 estimates of M C(M C)T and 2^  obtained in Step 5 are as follows:

MCMC =

*K =

7.86 3.73 -13.11 -33.63"
2.32 -1.60 -2.62 -5.96

10.87 -2.72 -10.28
5.06 13.40

36.48 ,
68 0 0

oo

0 .57 0 .38 0
0 0 .48 0 0
0 .38 0 .73 0
0 0 0

00o

This shows that EDMA based estimators are consistent and asymptotically 

unbiased.

For all of the four cases, EDMA gives fairly accurate, consistent estimators of 

both the mean form and the covariance matrix of landmarks data. How good does 

it perform on the real world data? We analyze the mouse mandible data in next 

Chapter.
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Chapter 4

Analysis of Variability in Mouse Mandibles

The evolution of morphological structures by natural selection depends on the 

availability of genetic variation for the traits in question. Particularly for 

multidimensional features such as shape, the response to selection depends 

critically on the patterns of genetic and phenotypic variation. Therefore estimation 

of those covariance matrices has long been a central part of evolutionary 

quantitative genetics (Klingenberg and Leamy, 2001).

The rodent mandible is composed of several parts that are morphologically 

recognizable and have distinct developmental origins, and it has long been used as 

a model for genetics, development, and evolution of complex morphological 

structures (Atchley and Hall, 1991; Hall 1999). Following data were provided by 

Professor Jim Cheverud of department of Anatomy and Neurobiology, 

Washington University School of Medicine, Saint Louis, Missouri (U.S.A). The 

two-dimensional data coordinates of the mandibular landmarks were obtained 

from lateral views of the right hemi-mandible using a digital video data collection 

system (Cheverud et al., 1997). Distances were measured in millimeters (mms).

The data are the positions of 16 landmarks on the mandibles of mice. Figure 1.1 

shows a diagram of a mouse mandible, where black circles indicate the locations

28

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



of 16 landmarks. Description of these landmarks is provided in Table 4.1. Figure 

4.1 shows the configuration of 16 landmarks for one subject.

Table 4.1:16 mouse mandible landmarks

Landmark Number Landmark name
1 Coronoid tip
2 Anterior condylar facet
3 Posterior condylar facet
4 Inferior condylar facet
5 Deepest point of mandibular notch
6 Posterior angular process
7 Inferior angular process
8 Anterior angular process
9 Posterior inferior corpus
10 Anterior inferior corpus
11 Inferior incisor alveolus
12 Superior incisor alveolus
13 Deepest point of incisive notch
14 Anterior molar alveolus
15 Posterior molar alveolus
16 Coronoid base

I

Figure 4.1: The configuration of 16 mandible landmarks (measured in mm)
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To estimate the mean form and variance parameter, we assume that ZD is an 

identity matrix and 2̂  is a diagonal matrix, i.e. these 16 mandible landmarks vary 

independently with each other. Following are the estimators of and M  in Table 

4.2.

ZK = diag (.042,.017,.024,.007,.004,.038,.041,.036,.056,.068,.102.105,.072,.024,.02 

4,.016)

Table 4.2: The estimated mean form matrix of the 16 landmarks data

irk number Coordinate x Coordinate

1 -2.5642147 -2.9238803
2 -4.3598175 -2.1062128
3 -5.0189366 -2.0386707
4 -5.7237441 -0.6476102
5 -3.4644795 1.1693193
6 -4.5855937 2.9159961
7 -3.3321319 3.2438449
8 0.1369185 1.7688938
9 2.4780984 2.1174301
10 4.6209991 1.6495556
11 6.0020391 0.5078821
12 6.5324078 -1.7178527
13 4.2879408 -0.3604548
14 3.0344353 -1.1350108
15 1.2218793 -1.1121225
16 0.7341997 -1.3311070

Visualizing of the estimated mean form is shown in Figure 4.2. The circles around 

the landmarks points denote the variability around them. The radiant of the circle 

is r  = 2yfd^, where*' = 1,2,-•-,16.
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15 14

13

Figure 4.2: Estimated Mean Form (measured in mm)

From Figure 4.2, we can see that the landmarks on the incisor alveolus region (the 

right part of the mandible) generally have bigger variability that the landmarks on 

the angular process region (the left part of the mandible). This may indicate that 

the tissues or organisms around the incisor alveolus region tend to vary while the 

ones around the angular process region tend to remain stable among mouse 

individuals. However, we are not equipped to provide full and proper biological 

interpretation at this time. We leave that to our biologist colleagues.
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Chapter 5

Com parison of EDMA with General P rocrustes 

Analysis Method

Aside from EDMA, there are a few other methods that have been developed to 

estimate the mean form and variability of landmarks. One of the most widely used 

methods is Generalized Procrustes Analysis (GPA) (Goodall, 1991; Theobald, 

2006).

In this chapter, we first provide a brief overview of GPA. We then compare the 

estimators of M  and ~LK based on GPA with the method developed in this thesis.

5.1 Generalized Procrustes Analysis

GPA employs superimposition to estimate form or shape difference. The 

superimposition technique involves three steps (Richtsmeier et al., 2001)

1) Fix one of the mean forms in a particular orientation and call it the reference 

object.

2) Translate and rotate the other mean form so that it matches the reference object 

according to some criterion.

3) Study the magnitude and direction of differences between forms at each 

landmark.
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Different criteria for matching provide different superimpositions. The least 

squares criterion leads to a GPA. Goodall (1991) provide an iterative algorithm to 

estimate M  , I \  , ti , and 'LK . The mean form and the vaiance-covariance 

parameters are estimated by

n m 

nK M

^  = 4 ^ ( 1 ' - M W  ~ M ) T/tr(±D) nD ^

where X. are least square superimposition matrices.

Theobald and Wuttke (2006) provide a modified version of this algorithm. They 

claim that these estimators are consistent. However, notice that the number of 

observations is n and the number of parameters is2n + 3 . Following Neyman and 

Scoff (1948), Lele (1993) showed that these estimators are in fact inconsistent.

5.2 Comparison of EDMA with GPA

We use simulations to compare the performance of EDMA estimators with the 

GPA estimators as described by Theobald and Wuttke (2006). We randomly 

generated 5,000 matrix normal random variables X\s with known mean form and 

known variance-covariance matrix. Here we only consider the diagonal model 

structure for Z) = 3. And the eigenvalues of ZK are generated from inverse gamma
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distribution to guarantee the invertibility of the estimated landmark covariance 

matrix (Theobald and Wuttke, 2006).

TrueM C(M C)T a n d a n d  the estimators of M C(M C)T and by EDMA and 

GPA are given in Table 5.1.
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Table 5.1 Comparison of estimators by EDMA and GPA with the truth.

EDMA

75.46 24.85 25.18 24.99 - 150.48

24.85 75.24 - 25.48 - 25.15 - 49.45

25.18 - 25.48 74.92 - 24.70 - 49.92
24.99 - 25.15 - 24.70 75.11 - 50.25

- 150.48 - 49.45 - 49.92 - 50.25 300.10

Truth

75 25 25 25 -150

25 75 -2 5 -25 -50

25 -25 75 -25 -50
25 -25 -25 75 -50

-150 -50 -50 -50 300

GPA

76.05 25.40 24.28 25.64 - 151.37
25.40 75.25 - 25.44 - 25.05 - 50.16
24.28 - 25.44 75.87 - 25.77 48 .94
25.64 - 25.05 - 25.77 76.02 - 50.83
- 151.3 - 50 . 1648.94 - 50.83 301.30

.496
.726

1.978
.316

.382

0.38 -0.02 -0.03 -0.05 -0.04
- 0.02 0.44 0.09 -0.09 -0.04
-0.03 0.09 1.88 0.05 -0.05
-0.05 -0.09 0.05 0.44 -0.03
-0.04 -0.04 -0.05 -0.03 @ 1



Remarks:

EDMA gives fairly accurate, consistent estimators of both the mean form and the 

covariance matrix of landmarks data. The mean form estimator given by GPA is 

OK, but the estimator of the covariance matrix is not close to the truth. Especially, 

notice that d 55 « 0 by GPA (purple circle in Table 5.1). GPA uses a singular 

matrix to estimate a non-singular matrix.

Theobald and Wuttke (2006) claim that as K  —> <x> and N  —» oo , the modified 

GPA gives consistent estimators of M  and Z = 0  ZD , but no complete

mathematical proof is provided. We feel that the condition that the number of 

landmarks converging to infinity is an unrealistic condition in practice. For small 

number of landmarks, we have shown that GPA estimators are inconsistent, 

whereas EDMA estimators are shown to be consistent.
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Chapter 6 

Sum m ary

In this thesis, we discussed the general concepts of “form” and “landmarks”, and 

explained why estimation of the variance of landmarks data is important in many 

fields such as evolution of organism and genetics, etc.

Due to the presence of nuisance parameters of rotation and translation, general 

covariance matrix is known to be not identifiable. But certain structured 

covariance matrices can be shown to be identifiable. In this thesis, we provided 

conditions under which the covariance matrix of landmarks data is identifiable. 

Furthermore, we provided a computationally simple approach based on Euclidean 

Distance Matrix Analysis (EDMA) to estimate the mean form and covariance 

matrix. It is shown that the estimators are consistent.

We studied the performance of EDMA estimators with the simulated data and the 

mouse mandibles data. We showed that EDMA gives consistent and 

asymptotically unbiased estimators of both the mean form and the covariance 

matrix. We also compared EDMA with GPA and showed that the estimator of the 

covariance matrix based on GPA is inconsistent.
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Appendix: Program  written in R

#######generate matrix normal random variables X’s 

n<-5000

Z<-matrix(nrow=n*K,ncol=D) 

for (i in 1 :n) {

Z[((i-l)*K+l):(i*K),]<-matrix(round(morm(K*D),3),nrow=K,ncol=D)}

C<-chol(SigmaK)

X<-matrix(nrow=n*K,ncol=D) 

for (iin  l:n){

X[((i-l)*K+l):(i*K),]<- crossprod(C,Z[((i-l)*K+l):(i*K),])+Meanform} 

vartest<- fimction(x,y,z,w) {

X<-read.table(x)

n<-y

K<-z

D<-w

######### estimate centered mean form and 

#stepl: calculate Euclidean distance for X 

d<-function(x,y) { 

sum((x-y)A2)}

EuX<-matrix(nrow=n*K,ncol=K) 

for (i in l:n){

for (j in ((i-l)*K+l):(i*K)){ 

for (1 in ((i-1 )*K+1 ):(i*K)) {
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EuX[j,(l-(i-l)*K)]<-d(X[j,],X[l,])}}}

#EuX

#step 2 calculate Eu(M)

EuM<-matrix(nrow=K,ncol=K) 

for (i in 1:K){ 

for(j in l:K){suml<-0 

for (1 in 1 :n) {

suml <-suml +EuX[((l-1 )*K+i),j]} 

mean. squ. eudis<-sum 1 /n 

sum2<-0 

for (1 in 1 :n) {

sum2<-sum2+(EuX[((l-l)*K+i),j]-mean.squ.eudis)A2} 

var. squ. eudis<-sum2/n 

if (D = 2 ) EuM[i,j]<-sqrt((mean.squ.eudis)A2-var.squ.eudis) 

else EuM[i,j]<-sqrt((mean.squ.eudis)A2-l .5*var.squ.eudis)}} 

EuM

#step 3 calculate B(M)

I<-diag(l,K)

ones<-array(rep(l ,K),c(l ,K))

H<-I-( 1 /K) * crossprod(ones,ones)

BM<-(-l/2)*H%* %EuM% * %H
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BM

#step 4 calculate eigenvalues and eigenvectors of B(M) 

eigen(BM)

#step 5 estimate centred mean form M 

est.M<-matrix(nrow=K,ncol=D) 

for (i in 1:D){

est.M[,i]<-sqrt(eigen(BM)$values[i])*eigen(BM)$vectors[,i]}

#step 6 estimate SigmaKstar=H*SigmaK*H

BX<-matrix(nrow=n*K,ncol=K)

for (i in 1 :n) {

BX[((i-l)*K+l):(i*K),]<-(-l/2)*H%*%EuX[((i-l)*K+l):(i*K),]%*%H}

a<-0

for (i in 1 :n) {

a<-a+BX[((i-l)*K+l):(i*K),]} 

est. SigmaKstar<-(a/n-BM)/D

# compare HM with est.M ; HMt(M)H with est.M*t(est.M); H*SigmaK*H with

est.SigmaKstar

H%*%Meanform; est.M

H%*%Meanform%*%t(Meanform)%*%H; est.M%*%t(est.M)
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H%*%SigmaK%*%H; est.SigmaKstar

fcol<-array(c(rep(-1 ,K-2),-2),c(K-1,1)) 

identity<-diag( 1 ,K-2,K-1) 

augment<-array(c(rep(-1 ,K-2),0),c( 1 ,K-1))

Y<-cbind(fcol,rbind(identity,augment))

Y

# from est.SigmaKstar to est.SigmaK~

est.SigmaKtilde<-Y%*%est.SigmaKstar%*%t(Y); est.SigmaKtilde 

L<-cbind(c(rep(-1 ,K-1 )),diag( 1 ,K-1))

#L%*%SigmaK%*%t(L)#

######### model for diagonal matrix ####// IIII II4 M###H H#

c<-as. vector(est. SigmaKtilde)

A<-matrix(nrow=(K-1 )A2,ncol=K)

iden<-diag(l,K-l)

for (i in 1:(K-1)){

A[(i-1)*K+1,]<- c(l,iden[i,])

}

for (i in l:(K-2)){
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A[((i-l)*K+2):(i*K),]<-matrix(rep(c(l,rep(0,K-l)),K-l),nrow=K-l,byrow=T)}

###A###

est.vect<- round((solve(t(A)%*%A))%*%t(A)%*%c,3) 

est. SigmaK<-diag(c(est. vect))

c<-as. vector(est. SigmaKtilde)

b.ori<-as.vector(SigmaK)

m<-0;b.dis<-rep(0,K*(K+l)/2)

for(i in 1:K){

for(j in i:K){

m=m+l;

b.dis[m]<-SigmaK[i j ] } }

#b.dis

d<-0

for (i in l:(K*(K+l)/2)){

if( b.dis[i]!=0) d<-c(d,b.dis[i])}

b<-d[-l];b

c.dis<-rep(0,K*(K-1 )/2) 

q<-0

for(i in 1:(K-1)){ 

for(j in i:(K-l)){ 

q=q+l;

case########################
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c.dis[q]<-est.SigmaKtilde[i ,j]}} 

iden<-diag( 1 ,K-1)

A<-matrix(nrow=(K-1 )A2,ncol=KA2)

A[,K+l]<-0 

for (i in 1:(K-1)){

A[,l]<-1

A[((i-1 )*(K-1)+1): (i* (K-1 )),2 :K]<-diag(-1 ,K-1)

A[((i-1) *(K-1)+1): (i * (K-1 )),i+1 ] <— 1 

A[(i-1 )*K+1 ,i+1 ]<—2

A[((i-1 )*(K-1)+1): (i* (K-1 )),(i*K+2) :((i+1 )*K)]<-iden 

A[((i-l)*(K-l)+l):(i*(K-l)),c(-(l:(K+l)),-((i*K+2):((i+l)*K)))]<-0} 

pcol<-rep(0,K*(K-1 )/2) 

t<-l

for (i in 1:(K-1)){ 

for (j in l:i){ 

pcol[t]<-i*K+j 

t<-t+l}}

B<-matrix(nrow=(K-1 )A2,ncol=K*(K+l )/2)

pcol.new<-c(pcol,0)

i=l;ColB=l

for (ColA in 1:KA2){

if (ColA==pcol.new[i]) i<-i+l else {B[,ColB]<-A[,ColA];ColB<-ColB+l}

}
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prow<-rep(0,(K-2)*(K-1 )/2) 

t<-l

for (i in l:(K-2)){ 

for Gin l:i){ 

prow[t]<-i*(K-1 )+j

t<-t+l}}

C<-matrix(nrow=K* (K-1 )/2 ,ncol=K* (K+1 )/2)

prow.new<-c(prow,0)

i=l;RowC=l

for (RowB in 1:(K-1)A2){

if (RowB==prow.new[i]) i<-i+l else {C[RowC,]<-B[RowB,];RowC<-RowC+l}

}

Q<-0

for (i in l:(K*(K+l)/2)){ 

if  (b.dis[i]!=0)

Q<-cbind(Q,C[,i])}

A.aug<-Q[,-1]

A.aug

#########calculate the rank of a matrix(by using SVD)################ 

matrix.rank <- fimction(A, eps=.Machine$double.eps){ 

sv. <- abs(svd(A)$d) 

sum((sv./max(sv.))>eps)
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}

matrix.rank(A.aug)

Kstar<-length(b);Kstar

if (nrow(A.aug)!=ncol(A.aug)) {est.vect<- solve(A.aug,c.dis)} else 

if  (ncol(A.aug)==Kstar) {est.vect<-

(solve(t(A.aug)%*%A.aug))%*%t(A.aug)%*%c.dis} else cat(" SigmaK is not

identifiable\n")

est.vect

##general case est. SigmaK##

est. SigmaK<-matrix(nrow=K,ncol=K)

t=l

for (i in 1:K){ 

for (j in i:K){

if (SigmaK[i,j]==0) {est.SigmaK[i,j]<-0;est.SigmaK[j,i]<-0} 

else{est.SigmaK[i,j]<-est.vect[t];est.SigmaK[j,i]<-est.vect[t];t<-t+l}

}}

out<-new.env()

out$MMt<-BM

out$M<-est.M

out$ SigmaK<-est. SigmaK

output<-as.list(out)}
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