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Abstract

Evaluating the resource contained in a precious metals deposit is a challenging

task because they are often characterized by heavily-skewed grade distributions

and outlier values. Traditional geostatistical modelling methods are difficult

to apply in the presence of outlier values because they can lead to overestima-

tion and bias. The economic viability of these deposits often depend on the

upper few percent of samples. These outlier samples are important and should

be retained; however, their influence should be reduced to prevent potential

overestimation and bias.

This thesis examines the implications of modelling heavy-tailed, precious

metals deposits. The limitations of traditional geostatistical modelling tech-

niques are discussed in the context of heavy-tailed deposits and the use of a

spatial point process to model grade is presented. An overview of the geologic

processes that create gold deposits is presented in order to understand the

nature of gold mineralization as well as provide justification for the proposed

modelling technique.

A spatial point process is used to model the tail of the distribution as

discrete events. A particle size distribution is given to the simulated points

to calculate grade. Following that, a discrete fracture network is adapted to

model mineralized quartz veins in the deposit. High-grade gold is spatially

restricted to the simulated vein structures. The automatic processing of drill

core photos generates the necessary input distributions for a fracture network.

Finally, a thorough case study demonstrates the application of grade modelling

with a spatial point process and discrete fracture network. The results are

compared to traditional geostatistical techniques and limitations are discussed.

The proposed methodology presents a geologically realistic method of sim-
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ulation which reduces the effect of outlier values by spatially limiting their

influence. Capping or other subjective ad-hoc manipulation of assay data

is not required. Final models of grade have the correct mean, variance and

spatial continuity.
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Chapter 1

Introduction

An important step in the development of a mine is the assessment of the value

of the ore body. Exploration samples are collected early on in the project and

used to create an estimate of the mineral resource which is the amount and

concentration of the mineral of interest, and a geological model that describes

the extents of the ore body. Mining and economic considerations are applied to

the mineral resource estimate to create a mineral reserve which is the amount

of calculated mineral which can be economically extracted (Rossi and Deutsch,

2014). Many geostatistical techniques have been developed over the years to

provide accurate and unbiased measures of the mineral of interest. All of these

techniques rely on a careful constructed sampling program to ensure reliable

data collection. An accurate interpretation of the deposit geology is needed to

construct statistically stationary mineralized domains. There are entire works

concerning sampling protocol and geologic modelling both of which are outside

the scope of this thesis. The interested reader is referred to Francois-Bongarcon

and Gy (2001).

1.1 Background

Metal deposits, particularly precious metal deposits such as gold deposits,

often display highly skewed grade distributions with assay values spanning

four or five orders of magnitude. A small number of samples in the tail of the

distribution have a disproportionately large effect on the total contained metal

of a deposit when assessed by typical estimation techniques; failure to properly
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deal with outlier values can lead to overestimation of the recoverable resource

(Rossi and Deutsch, 2014). These heavy-tailed distributions have a number

of well-documented problems, such as obtaining a representative distribution,

accurately accounting for change of support and smearing of grade (Dominy

et al., 2000; Maleki, Madani and Emery, 2014).

1.1.1 Heavy-Tailed Distributions

The definition of a heavy-tailed distribution varies among disciplines. In prob-

ability theory, a heavy-tailed distribution is one in which the tail is not expo-

nentially bounded; they have heavier tails than the exponential distribution

(Asmussen, 2003) (Figure 1.1). Other definitions in use include any distribu-

tion which does not have finite variance or, in some cases, any distribution

which has tails heavier than a Normal distribution. In general terms, the tail

can be considered heavy if the distribution of a random variable X with a

distribution function F satisifies the following (Asmussen, 2003):

lim
x→∞

eλ Pr[X > x] = ∞, ∀λ > 0 (1.1)
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Figure 1.1: The log-normal distribution is classified as heavy-tailed when compared
to the exponential distribution.

The definition of a heavy-tailed distribution means that there is a larger

probability of getting very large values. These large values, often termed

outlier values, can be real in the case of deposits characterized by heavy-tailed

distributions. The implications of this can be seen when calculating summary

statistics; a small number of samples will have a very strong affect on the

mean, variance and measures of spatial continuity (Rossi and Deutsch, 2014).

Mandelbrot (1997) defines seven states of randomness; ranging from proper

mild randomness (normal distribution) to extreme randomness where all mo-

ments are infinite and a single observation can impact the total in a very

disproportionate way. In the context of heavy-tailed, precious metal deposits,

the state of randomness falls somewhere to the right of center because they

are often characterized by distributions which have heavier tails than a log-

normal distribution. This implies that precious metals deposits characterized

by heavy tails have an inherent randomness which cannot be ignored.
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For this work, the exact definition of a heavy-tailed deposit is not overly

important. The important points are i) to recognize that there is an increased

level of inherent randomness in the statistical population, ii) accept the ex-

istance of high outlier values as real, and iii) understand that these samples

have a strong effect on the overall distribution.

1.1.2 Outlier Values

Observations which stand out from the general population have been recog-

nized for over one-hundred years in the statistical literature. These observa-

tions, often termed outlier values, must be examined and understood in the

context of the problem at hand before proceeding. There is no strict mathe-

matical definition of what constitutes an outlier value. Grubbs (1969) simply

defines an outlier as: “an observation point that is distant from the rest”. He

then subdivides outliers into two types: i) a value which is an extreme mani-

festation of the random variability inherent in the data, and ii) a value which

is the result of gross deviation from the prescribed experimental procedure or

an error in calculating or recording the numberical value. In the case of the

former, the value should be retained and processed in the same manner as

other observations. In the case of the latter, the value should be discarded.

In a mining context, outlier assay values must be carefully observed to ensure

that they are in fact a result of the underlying heavy-tailed distribution and

not an error from the assay lab.

Deciding whether or not an observation is an outlier value is a highly sub-

jective exercise; however, there are many methods of detection. One common

method is to examine the values on a lognormal cumulative frequency plot

and look for breaks or changes in slope. Figure 1.2 illustrates an example of

using a probability plot to detect outliers. A clear inflection point in the grade

frequency distribution indicates the presence of a small outlier population.
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Figure 1.2: Probability plot of gold grade in an epithermal vein deposit. Samples
in the upper percentiles depart significantly from log-normality.

Another common method is to define outliers as values that fall outside

a specified interval, such as plus or minus two or three standard deviations

from the mean or median (Rossi and Deutsch, 2014). Another statistical

method proposed by Parker (1991) involves plotting the cumulative coefficient

of variation and looking for inflection points. Points above the inflection point

could be considered outlier values.

In a mining context, a single high value surrounded by low values will

have a more severe consequence on grade estimation than a single high value

surrounded by moderately high values. Babakhani and Deutsch (2013) em-

ploys a method of detecting spatial outliers by rank transforming the true

values and their cross-validated estimation values to the uniform distribution

between zero and one and then projecting them on the 135 degree line on a

cross plot. Data points that fall on the extreme ends of the 135 degree line are

classified as spatial outliers. Finally, the breakdown of variogram structure at
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increasing grade thresholds can also indicate an outlier population (Goovaerts,

1997). Figure 1.3 shows a schematic example of the breakdown of variogram

structure with increasing grade capping thresholds.

Figure 1.3: The breakdown in variogram structure with increasing capping thresh-
olds.

Outlier values can have a strong effect on commonly used summary statis-

tics. Non-robust statistics such as the mean and standard deviation are

strongly effected by even a few outlier values. In a mining context, a sin-

gle high assay value can significantly inflate the mean and variance of the

reference distribution. In addition, the variogram is calculated with a squared

statistic and is extremely sensitive to influence from outlier values.

If outlier data are left untreated, estimates may suffer from bias, which can

lead to overestimation of the recoverable resources (Rossi and Deutsch, 2014).

Figure 1.4 shows the influence that a single outlier value can have. In the left

hand side of the diagram, an estimated model is created using a drill string

with no outlier values. In the right hand side of the diagram, the same model

is created using the same drill string but with a single, high outlier value. In

this schematic example, a single outlier value nearly doubles the sample mean

(Figure ??c). If the outlier value represents a chance encounter, such as a drill

string hitting a coarse gold nugget, the effect is smeared well beyond the true

spatial range of the sample. The single outlier value increases the estimate

for all blocks within the variogram range (Figure 1.4e). If the outlier value

represents a spatially restricted population (such as a gold nugget) then it

6



is “smeared” throughout the blocks and can lead to overestimation of grade

(Figure 1.4f).

Here, the term outlier will be used to refer to valid, assayed samples which

are extreme manifestations of the inherent variability in the distribution, not

samples which are a consequence of measurement or labratory error.
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Figure 1.4: Left: a) drill string with no outlier values, b) estimated model from
the drill string and c) distribution of block values. Right: d) drill string with a
single outlier value, e) estimated model using the outlier value and f) distribution
of block values.

8



1.1.3 Capping Values

Currently, the most common practice in the mining industry for dealing with

outlier values during resource and reserve estimation is to cap or topcut out-

lier values to a predetermined threshold, then proceed with estimation (Rossi

and Deutsch, 2014; Sinclair, 2002). To cap assays, all values greater than a

threshold are set to equal that threshold. The choice of capping threshold

varies among methods and among practitioners. Some simply regard the out-

lier values as erroneous and do not use them; however, Srivastava (2001) warns

that, while these values should be checked, they should not be discarded as

they may represent a previously unseen statistical population. Commonly, a

fixed top cut value is chosen for the last few percentiles of the distribution

and is used in the calculation of resouces (Dagbert, 2005; David, 1988; Krige,

1999). While capping outlier values may be less extreme than removing them

all together, using capped data omits some of the information contained in

the data and may invoke a bias in the results. In the case of precious metals

deposits or other economically challenged deposits, overly aggressive capping

may result in a sub-economic resource calculation (Rossi and Deutsch, 2014).

Capping assay values is accepted in current international codes for mineral

resources (JORC, 2012; SAMREC, 2007) but it is often difficult to select the

‘correct’ capping threshold.

In this thesis, no top cutting or capping of assay values is done; the data

are presented in their original form.

1.1.4 Mixed Statistical Populations

Mineralizing systems responsible for the formation of precious metals deposits

are complex and dynamic systems which evolve over time (Sillitoe, 2010). For

example, a gold deposit might contain a pervasive, low-grade, background

mineralization deposited by circulating meteroic fluids and a separate, vein-

hosted, high-grade population caused by the boiling of rising mineralizing flu-

ids. Parker (1991) recognizes that these dynamic geologic processes result in

complex grade frequency distributions. His work involves separating the low-
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and high-grade populations, modelling them separately then recombining them

in a probabilistic framework. The method involves fitting the high-grade pop-

ulation with a log-normal model and produces unbiased results; although, he

notes that errors are still large locally and large amounts of data are required

to obtain a good model fit.

This work relies on the assumption that coarse gold mineralization occurs

as a separate and distinct statistical population compared to the low-grade,

background mineralization. For the majority of grade modelling, the low and

high-grade populations are treated separately. The novel contribution here is

that the high-grade population is modelled using a spatial point process.

1.2 Limitations of Traditional Geostatistics

Heavy-tailed distributions and high outlier values cause a number of problems

in geostatistical modelling. Non-robust statistical measures, such as variogram

calculation, are difficult because experimental variograms often appear very

noisy. Outlier values can lead to bias and overestimation. A single high value,

surrounded by low values, if left untreated will cause overestimation of nearby

blocks. If the value is simply capped, the total metal content of nearby blocks

could be reduced to the point where it is no longer classified as ore (Costa,

2003). Finally, accurately accounting for change of support is impaired when

dealing with heavy-tailed distributions.

1.2.1 Variograms

The geologic processes that lead to the formation of a mineral deposit are

not random because they follow physical laws. As such, these processes im-

part patterns of spatial correlation that must be understood. In geostatistics,

the most common measure of spatial correlation is the variogram (Equation

1.2); the expected squared difference between two data values separated by a

distance vector h.

γ(h) = E [Z(u)− Z(u+ h)2] (1.2)
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When calculating experimental variograms, care must be taken to ensure

that data comes from the same statistical population. Geologically distinct

or intermingled populations must be treated carefully because the variability

between the two populations could vary significantly (Armstrong, 1984). Ex-

perimental variograms of heavy-tailed distributions are often noisy and display

very little spatial structure; in the extreme case, the variogram is pure nugget

effect (Figure 1.5a) (Krige and Margi, 1982). Highly variable minerals, such

as gold and uranium, can have values which vary over several orders of mag-

nitude, making it very difficult to get a reasonable estimate of the variogram.

Several robust solutions have been proposed as an alternative to the tra-

ditional variogram including the use of scale transformation (eg. by taking

logarithms or normal scores) or by simply capping the extreme values. One

of the most commonly used of these robust measures of spatial continutity is

the pairwise relative variogram (Equation 1.3) (Srivastava and Parker, 1989).

Similar to the traditional variogram, the pairwise relative variogram is a mea-

sure of the semivariance; however, it is normalized by the squared average of

the tail and head values. This measure of spatial continuity is remarkably

robust in the presence of outlier values (Figure 1.5b).

γ(h) =

⎧⎨
⎩E [Z(u)− Z(u+ h)2][

E [Z(u)−Z(u+h)2]
2

]
⎫⎬
⎭ (1.3)
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Figure 1.5: Experimental variograms calculated using a) standard method, and
b) pairwise relative method

1.2.2 Estimation Methods

Most common modelling techniques such as simple kriging (SK), ordinary

kriging (OK) and indicator kriging (IK) produce poor results in the presence

of outliers. These techniques linearily average variables to produce a best

estimate at a location in space. The smoothing effect of kriging can be seen

in Figure 1.6. The standard deviation of the estimated distribution is much

smaller than that of the original distribution. In addition, the smearing effect

can be seen in the gridded estimates surrounding the outlier values.
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Figure 1.6: The smoothing effect of kriging. a) the original grade distribution, b)
the estimated grade distribution, c) location map of original samples and d) gridded
map of kriged estimates.

Due to the smoothing effect of all linear estimation techniques, kriging

included, estimates offen suffer from conditional bias. Conditional bias occurs

when the the expected value of the true grade, conditional on the estimated

grade, is not equal to the estimated grade (McLennan and Deutsch, 2004). In

high grade areas, the true grade is typically less than the estimated grade. In

low grade areas, the estimated grade is typically higher than the true grade.

In the case of heavy-tailed, precious metals deposits, this can have serious

implications including overestimation of recoverable reserves. The penalty for

over-estimating grade is typically more severe than under-estimating an area.
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A number of solutions have been proposed to reduce the smoothing and

conditional bias caused by heavy-tailed distributions: lognormal kriging (Jour-

nel, 1980); three-parameter lognormal kriging (Hawkins, 1979); indicator krig-

ing (Journel, 1982); multi-Gaussian kriging (Verly, 1983); restricted kriging

(Pan, 1994). Costa (2003) provides a thorough overview of the advantages

and disadvantages of estimation techniques used to account for the effect of

outliers when estimating a mineral resource. Lognormal kriging is shown to be

sensitive to the sill of the variogram and deviations from the permanence of log-

normality. Indicator kriging is commonly used to model heavy-tailed deposits;

however, final estimates depend strongly on the choice of grade thresholds

used for each indicator class as well as the extrapolation of the upper tail of

the cumulative frequency distribution (CDF). Multi-Gaussian kriging assumes

that the mean value of normal scores data is perfectly known.

1.3 Thesis Statement and Outline

The primary motivation of this thesis is two fold: i) to understand the limi-

ations of traditional geostatistical methods in the context of heavy-tailed de-

posits, and ii) examine the use of a spatial point process to model grade as

a discrete event. The described contributions should cumulatively achieve

the objective of this dissertation, which is summarized in the following thesis

statement.

The use of a spatial point process to model a coarse gold population as a discrete

event reduces the influence of outlier values without resorting to subjective, ad-

hoc manipulation of assays.

This thesis consists of seven chapters and one appendix. Chapter Two is a

brief geologic review of gold mineralizing systems. The modelling techniques

developed in this thesis are developed with coarse gold deposits in mind and,

as such, it is important to understand the geologic background of these sys-

tems. The chapter covers gold mineralization, gold deposit types and briefly
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summarizes the regional and local geologic setting of the case study area.

Chatper Three discusses spatial point processes and their application to

grade modelling. A brief overview and literature review on spatial point pro-

cesses is presented. Following that, the methodology is discussed and demon-

strated on a small, synthetic dataset.

Chapter Four discusses discrete fracture networks and their application

to modelling mineralized veins in a deposit. A short review of discrete frac-

ture networks is presented before discussing the required input distributions

necessary to generate a fracture model. Following that, the methodology is

demonstrated schematically.

Chapter Five is a slight departure from grade modelling to discuss the

automatic processing of drill core photos. Point location intersections and the

thickness distribution of vein sets can be automatically measured from the core

photo database and used directly as inputs to the discrete fracture network.

An image processing algorithm is presented along with parameter optimization

and a comparison to manually measured vein locations.

Chapter Six is a detailed case study which is divided into two parts. The

first models a dense vein stockwork system with an identified coarse gold pop-

ulation using a spatial point process. The high-grade population is separated

from the background mineralization and modelled as a discrete event using

Poisson and Cox processes. Following that, a vein-hosted system is modelled

using a discrete fracture network to sptially limit the extents of the discrete

gold population.

Chapter Seven concludes the work and discusses the results and limitations

of the proposed methodologies. Future work is set out.

The appendix contains descriptions of the programs used and their associ-

ated parameter files.
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Chapter 2

Geologic Overview

The following section is a brief overview of the geologic processes that give rise

to gold deposits. Gold mineralizing systems are covered first. Following that

is an overview of the gold deposit types which are relevant to this work; free-

gold deposits and vein-hosted deposits. Finally, regional- and property-scale

geologic descriptions are provided for the case study area.

The research presented in this work focuses primarily on coarse gold de-

posits. In addition, the case studies presented in Chapter Six are done on

an epithermal gold deposit in north-western British Columbia. The following

chapter is intended to give a geological motivation for the techniques devel-

oped.

2.1 Epithermal Gold Mineralization

Mineralizing systems are complex combinations of multiple dynamic processes

which may lead to an economic concentration of metal. The geologic processes

responsible for epithermal gold deposits are partially responsible for the na-

ture of the grade distribution. Sillitoe (2010) provides a thorough review of

porphyry systems and their related mesothermal and epithermal systems. Of

particular note is how these systems evolve both spatially and temporally. Ini-

tial magmatic fluids are oxidized, aqueous solutions saturated with metal and

sulfur-complexes. As the fluids rise through the rock column, they undergo

temperature, pressure and phase changes from a high-temperature, two phase

hypersaline liquid and vapour to a lower temperature, single phase, moderately
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saline fluid. The high-temperature solution is responsible for potassic alter-

ation and early, overlying advanced argillic alteration with associated early-

stage mineralization. Thermal pertubations and reinjection of fresh magmas

result in an overlapping succession of alteration and mineralization imprints.

In addition, this dynamic process leads to the remobilization and concentration

of existing mineralization in the form of discrete nuggets of gold throughout

the system.

2.2 Gold Deposit Types

Economic concentrations of gold occur across a wide variety of geologic set-

tings. Classification of deposit types is difficult and an area of on-going work.

Robert et al. (2007) provides a thorough work on the classification of gold de-

posit types. Their work identifies thirteen major gold deposit types belonging

to three main types which correspond to the underlying genetic model respon-

sible for forming the deposit. The three main types are: i) orogenic, ii) reduced

intrusion-related, and iii) oxidized intrusion-related (Figure 2.1). This work

is not concerned with the subtleties of classification. Instead, gold deposits

will be classified based on the spatial nature gold mineralization. Two cases

are considered here: i) free or nugget-y gold deposits, and ii) vein-hosted gold

deposits.
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Figure 2.1: Schematic cross-section showing the three clans of gold deposits.
Source: Robert et al. (2007)

Free-gold or nugget-y gold deposit types include placer deposits and mod-

ified paleo-placer deposits. These deposits are characterized by a coarse gold

population with very little to no spatial structure. Also considered here are

porphyry-style gold deposits. While porphyry-style deposits are technically

vein-hosted, they are considered separately here because the density of the

vein stockwork allows the mineralization to be thought of as random points in

space with very little spatial structure. In this work, deposits of this type will

employ a spatial point process to model the discrete nature of the high-grade

gold population.

Vein-hosted gold deposits are the most common type of gold deposit with

over one half of worldwide deposits having some form of vein-hosted gold

mineralization (Poulsen, Robert and Dube, 2000). They are characterized

by gold mineralization which is spatially restricted to narrow vein structures

(Taylor, 2007). Often, vein-hosted deposits are characterized by nugget-y gold.

Grade is localized and erratic within the veins (Johansen, 1998; Pelham, 1991,
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1992). In this work, deposits of this type will use a discrete fracture network

to spatially restrict the influence of the high-grade population.

2.3 Fractures, Veins and Veinlets

This work deals with the modelling of fracturs, veins and veinlets. Quartz veins

are modelled as a discrete fracture network. Rock fractures are broadly divided

into two classes: i) joints and ii) faults. The international Society of Rock

Mechanics defines a joint as “a break of geological origin in the continuity of a

block of rock occuring either single, or more frequently, in a set or system but

not attended by a visible movement parallel to the surface of discontinuity”.

Faults are defined as “a fracture or fracture zone along which there has been

displacement of the two sides relative to one another parallel to the fracture”

(Mandl, 2005). While faults are important geological features in understanding

mineralization, they are not suited to modelling with a DFN and are outside

the scope of this work. In this work, the term fracture will refer to a set of

breaks in a block of rock.

Fractures form in response to tectonic or hydrothermal stresses that exceed

the strength of the rock. They form in predictable ways which can be modelled.

Fractures tend to form in a regularly spaced and predictable manner. Fractures

form first in the plane of parallel in the plane parallel to the maximum principal

stress and second in the perpendicular plane of minimum stress. This leads to

the development of sub-parallel sets of joints and conjugate sets at 90 degrees.

Fracture spacing is regular because once a fracture is formed, stress is locally

relieved so another fracture will not form immediately next to it (Mandl, 2005).

Geologic veins form in a variety of ways. This paper deals with veins

formed by the hydrothermal fluids responsible for deposition of an epithermal

gold deposit. These types of veins are recognized to be the consequence of the

release of water from sedimentary-volcanic rock sequences as they pass through

the orogenic cycle of burial, metamorphism and subsequent uplift and erosion,

sometimes with evidence of associated magmatism. During metamorphism,

devolatilization occurs on the scale of individual mineral grains, extracting
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H20, CO2 and S. Gold readily enters this solution by complexing with re-

duced S and by H2CO3 acid buffering near the optimal fluid pH for gold

solubility (Phillips and Powell, 2010). Average crustal abundance of gold is

approximately 1 - 4 ppb. These systems are capable of enrichment to 10,000

times background concentration (Kerrich and Hodder, 1981).

This gold enriched fluid then migrates upwards from the source area to

the sink area via shear zones and/or hydraulic fracture zones. Cox (2005)

suggests that without tectonic strain, there is exceptionally low permeability

in the rock mass. With relatively minor tectonic strain, permeability may rise

sharply and allow fluid movement. As the gold-bearing hydrothermal fluid

rises, gold deposition occurs from the breakdown of the complexes that carry

it in solution. This occurs by two main processes: i) reaction of the fluid will

surrounding wallrock and ii) boiling of the fluid as the pressure drops from

decreasing lithostatic pressure. Evidence of deposition by wallrock interaction

is given by the presence of alteration minerals such as muscovite and biotite.

Evidence of boiling can often times been seen as ‘vugs’ or open spaces in the

vein (Phillips and Powell, 2010).

In summary, fractures typically form in rock masses as a result from tec-

tonic stresses. They form in predictable ways which can be modelled statis-

tically. The hydrothermal fluid responsible for vein formation are the result

of geologic processes which are independent of fracture formation; however,

the these fluids exploit pre-existing weaknesses, such as fractures, in the rock

mass. As a result, veins form from the repeated sealing and cracking of frac-

tures by rising hydrothermal fluids. The term veinlet is often used to describe

veins which are smaller than 10 mm in thickness. This distinction has no

implications on this work. The term vein is used to describe both veins and

veinlets.

2.4 Case Study Area

Two case studies are presented in this work. Data from both case studies

comes from the Brucejack deposit in north-western British Columbia. The de-
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posit is best described as a transitional to intermediate sulfidation epithermal

stockwork vein system. A significant coarse gold population has been identi-

fied on the property. The information in this section has been excerpted and

summarized from Board and McNaughton (2013).

2.4.1 Regional Geologic Setting

The Brucejack property is located in the western Stikinia terrane in the In-

termontane Belt of the Canadian Cordillera. It is interpreted to be an intrao-

ceanic island arc terrane which formed during the mid-Palaeozoic to Mid-

dle Jurassic time by accretion to the North American continental margin

(Evenchick et al., 2007; Gagnon et al., 2012; Nelson and Colpron, 2007).

Western Stikina was subsequently deformed by the accretion of the outboard

Insular terranes during the early-Cretaceous period (Kirkham and Margolis,

1995). The volcano-sedimentary rocks and associated Early Jurassic plutons

in Stikina host an exceptionally metal-rich assemblage. The area includes de-

posit types such as volcanogenic massive sulphide (VMS), alkaline porphyry

copper-gold deposits and transitional epithermal intursion related precious

metal deposits (Nelson, Colpron and Israel, 2013) (Figure 2.2).
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Figure 2.2: Location of the Brucejack deposit relative to the regional geologic
setting. Figure includes past producing mines in the area. Source: Ghaffari et al.
(2012)

Fold-and-thrust belt deformation in the Cretaceous period resulted in the

formation of a major northwest trending structural culmination in western

Stikina. This folding helped bring the older, mineralized volcano-sedimentary
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rocks close to surface in this region. The Brucejack property is located on the

eastern limb of this structural culmination. As a result, rocks on the property

are strongly deformed and tilted and display a progressive younging to the

east. The core of the deposit is comprised of volcanic, arc-related rocks of the

Triassic Stuhini Group which are successively replaced outwards by volcanic

rocks of the Lower Jurassic Hazelton Group and clastic, basin-fill sedimentary

rocks of the Middle to Upper Jurassic Bowser Lake Group (Gagnon et al.,

2012).

Immediately to the northwest of the Brucejack property are the plutonic

rocks of the Mitchell Intrusions which host porphyry-style, copper-gold-molybdenum

mineralization. The intrusive complexes are surrounded by large hydrother-

mal alteration halos. The inner core of the deposit is characterized by potassic

alteration which is overprinted by propylitic and chlorite-sericite alteration.

Associated quartz-sericite-pyrite alteration is widely developed in the region

(Kirkham and Margolis, 1995). The multiple stages of overpinted alteration

indicate a telescoping porphyry system (Sillitoe, 2010) (Figure 2.3).

Figure 2.3: Location of the Brucejack deposit relative to the local area geology.
Source: Pretium Resources
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2.4.2 Deposit Geology

The information in this section has been excerpted and summarized from Jones

(2013).

The Brucejack propertry is comprised of volcano-sedimentary rocks of the

Lower Jurassic Hazelton Group which unconformably overie volcanic arc sedi-

mentary rocks of the Upper Triassic Stuhini Group. Hazelton Group rocks on

the property include volcanic flows, pyroclastic fragmental rocks, heterolithic

volcanic pebble conglomerate, volcanic sandstone, siltstone and mudstone.

The rocks are interpreted as having been deposited in an extensional setting.

Alteration on the property is characterized by generally intense quartz-sericite-

pyrite altered rocks that define a continous north-south band that measures

approximately 5 km along strike and 0.5 km across strike (Figure 2.4).

Gold (and silver) mineralization on the property is hosted predominatly in

sub-vertical veins and vein stockworks throughout the alteration band. The

vein systems are relatively continuous along strike and are characterized by

the presence of millimeter- to decimeter-scale transitional to epithermal veins

of pyrite, quartz, quartz-carbonate and quartz-adularia. Mineralization rec-

ognized in different stockwork vein generations includes: pyrite, tetrahedrite,

chalcopyrite, galena, sphalerite, arsenopyrite, pyrargyrite, native silver, native

gold and electrum. Alteration, mineralization and vein texture variation sug-

gest a spatial and/or temporal down-temperature gradient towards the east.

Several mineralized zones have been identified on the property. The case stud-

ies in this work focus on the two largest mineralized zones: The VOK Zone

and the West Zone (Figure 2.5).
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Figure 2.4: Geologic map of the Brucejack property showing the defined mineral-
ized zones. Source: Pretium Resources
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Figure 2.5: General cross section (south-north) showing two mineralized zones.
Source: Pretium Resources
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Chapter 3

Spatial Point Processes

3.1 Background

In statistics and probability theory, point processes are used to model discrete

events or points in time. A spatial point process (SPP) is the multidimen-

sional generalization of a point process and extends the counting process to

an interval of space. In a mining context, the discrete events represent gold

nuggets within a block or selective mining unit (SMU) and are modelled as

a Poisson process. Kroese and Botev (2013) provides an overview of spatial

process generation. The relavant aspects are summarized here.

Let E represent a subset of Rd and let ε be the collection of sets on E. Let

X represent a random counting measure X(A), A ∈ ε, defined by:

X(A) =
n∑

i=1

I{Xi∈A}, A ∈ ε (3.1)

The mean measure, denoted by μ(A) = E {X(A)} , A ∈ ε, has a density,

λ, referred to as the intensity.

μ(A) = E {X(A)} =

∫
A

λ(u)du (3.2)

A random counting variable, X, is said to be a Poisson random variable

with mean measure, μ, if two conditions are met. First, the sets A1, ...AN ∈ ε

and the random variables X(A1, ...X(AN)) are independent. Second, any set

A ∈ ε of the random variable X(A) has a Poisson distribution given by:
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Prob(X = x) =
λke−λ

k!
(3.3)

If the intensity function is constant, the Poisson process is said to be

homogeneous. If the intensity function varies over A, it is said to be non-

homogeneous. An extension of this is the Cox process, where the intensity

function itself is also a random function (Cox, 1955). The Cox process is best

described as a doubly stochastic Poisson process where the intensity param-

eter, (λ), is itself a stochastic process. In a mining context, suppose that

the propensity for the coarse grade population to exist is a random intensity

function, Λ. The random variable X is a Cox process driven by the random

intensity function Λ if the conditional point process X is a Poisson process

with intensity function λ. The random intensity function is described by:

Λ(A) =

∫
A

λ(u)du, A ∈ ε (3.4)

Thus in this case, the Cox process is carried out in two steps: First, simulate

a realization of λ = λ(x), x ∈ ε of the random intensity function Λ; second,

given that Λ = λ, simulate X as a non-homogeneous Poisson process with

intensity λ.

The Poisson and Cox processes have been used extensively in modelling

diamond deposits. Rombouts (1995, 2003) discusses the problems associated

with sampling diamonds. Because the exploration samples are small com-

pared to the SMU, a Poisson or chance effect is introduced when hitting (or

not hitting) a diamond. This leads to an overrepresentation of barren areas

of the deposit. He identifies that the chance effect appears in the variogram

as an increased nugget effect. Lantuejoul and Millad (2008) explore modelling

a diamond deposit using a Cox process which draws from a size frequency

distribution. Kleingeld et al. (1996) explore modelling deposits where miner-

alization takes place as discrete particles with a conditionally simulated Cox

process. The authors discuss placer deposits with a known size frequency dis-

tribution and model the random intensity function based on geological traps

for the particles. They do not consider in-situ deposits where size and intensity
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parameters must be inferred from core data. Monestiez et al. (2006) discuss

the difficulty in obtaining accurate maps of relative abundance on the basis

of spatially heterogeneous sampling efforts and infrequent encounters with a

sparse population. Although this work uses an ecological example, many corol-

laries can be drawn to the mining industry. Sampling (drill holes) are spatially

heterogeneous and there is a random element involved when hitting or missing

a coarse gold nugget.

3.2 Methodology

The proposed methodology is demonstrated on a small, synthetic example

to describe the steps involved. First, the samples are separated into high-

and low-grade populations, and the low-grade population is modelled with

standard geostatistical techniques, such as kriging. This methodology also

requires a high-grade population that exhibits very little spatial structure (high

nugget effect). In this case, the high-grade population approximates random

points in space and is modelled independently using a Poisson or Cox process.

The high-grade assays are fit with a particle size distribution (PSD) from which

the point process will draw.

Specifically, the steps involved are:

Step 1: Determine the high-grade threshold and separate the populations into

high and low grades.

Step 2: Estimate or simulate the background mineralization with OK.

Step 3: Model the intensity map for the Poisson (estimation) or Cox (simu-

lation) process.

Step 4: Model the PSD and apply the Poisson or Cox process to locate the

gold nuggets.

Step 5: Combine the low- and high-grade models to obtain the final grade

model.
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The details of each step are described below. The synthetic example demon-

strates only the Poisson process. The case study considers both the Poisson

and Cox processes.

3.2.1 Step 1: Separate statistical populations

The data for the synthetic example is obtained by simulating the drilling of an

exhaustive dataset with properties mimicking an epithermal gold deposit; the

synthetic deposit contains a significant coarse gold population. The exhaustive

dataset is created on a 1m x 1m x 1m grid by combining a realization of low-

grade, background mineralization (generated using Sequential Gaussian Simu-

lation [SGS]) with a realization of discrete particles (generated using a Poisson

process with a known intensity map). Simulated drilling is conducted on a reg-

ularly spaced grid (Figure 3.1). The grade distribution collected from drilling

the synthetic dataset exhibits a heavy-tailed, skewed distribution commonly

seen in precious metal deposits (Figure 3.2). Of the 2,800 samples collected,

132 samples (or 4.94%) are classified as high grade, using a cutoff threshold

of 5.0 g/t Au. Note that the selection of a threshold is an important practical

consideration but here the focus is on the demonstration of the methodology.

Figure 3.1: Drill assay locations collected by drilling the synthetic truth model.

30



Figure 3.2: Histograms showing the a) entire, b) low-grade only, and c) high-grade
only grade distributions of the synthetic model.

3.2.2 Step 2: Model the low grade

The background mineralization is estimated from the low-grade samples of the

synthetic dataset using OK with no top cut (Figure 3.3) and the variogram

model (Figure 3.4). The assumption inherent in independently modelling the

high- and low-grade populations is that the low-grade mineralization is perva-

sive and each block of the model comprises an (unknown) proportion of high-

and low-grade mineralization.
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Figure 3.3: OK model of the a) background mineralization, and b) associated
histogram.

Figure 3.4: a) Major, b) minor, and c) vertical semivariogram models used to
estimate the low-grade population. The major direction of continuity is 240 degrees.

3.2.3 Step 3: Model the intensity map

An input map of intensity, λ(u), is required to build the conditional Poisson

distribution at each location. Given the highly selective nature of sampling

coarse gold deposits and the fact that drilling campaigns often over sample

high-grade zones, the high-grade assays are unreliable for directly modelling

the intensity function. Instead, the local proportion of high-grade assays rel-

ative to all samples is used. Each assay location is visited and a local search,

using the variogram range of the high-grade population, counts the proportion

of coarse gold samples in the local area. This new proportion information is

used as conditioning data and the intensity, λ, can be estimated or simulated

32



in the domain (Figure 3.5). A non-homogeneous Poisson process uses a single

value of λ at each location (Figure 3.5) but a Cox process requires multiple

realizations of the intensity map. In this case, multiple realizations of the

intensity map can be generated using SGS.

Figure 3.5: a) estimated intensity map for the synthetic example using OK and
b) the true intensity map

3.2.4 Step 4: Model the particle size distribution (PSD)

A conditional Poisson distribution is built at each location in space with the

intensity map as an input. For each realization, a random number is drawn

from the Poisson distribution that determines the number of particles in each

block. Once the nuggets are located in the model, the quantity of gold in each

nugget is required to obtain the final grade model. The coarse gold population

is fit with a PSD, which could come from a number of sources. If available,

metallurgical data should be used. These are not available for the synthetic

example or the case study: Each nugget is assumed to be a sphere of pure gold

and the particle size that would generate a sample of that grade is calculated

for each high-grade sample in the drill holes. For a nugget simulated in the

Poisson or Cox process, a particle size is drawn randomly from the PSD of

the high-grade assays. A single global PSD is assumed, but it would be trivial
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to modify the methodology to use locally varying PSDs if that information is

available. For this synthetic example, the PSD of the case study is used. The

grade of each block can be calculated knowing the location and size of each

particle in the model (Figure 3.6).

The Poisson process is continued until there are sufficient particles simu-

lated to match the target mean of the high-grade population (this is equivalent

to scaling the intensity map by a constant). The nature of drilling coarse gold

nuggets results in extremely inflated assay values when a nugget is encoun-

tered and barren results when that nugget is missed. With the background

mineralization removed, the global average of the high-grade population can be

determined with traditional declustering or debiasing techniques. In this small

synthetic example, more than 71 million discrete points were simulated to ob-

tain the desired high-grade global mean (Figure 3.6). The program SPPSIM is

provided for this step of the methodology. Details of SPPSIM are discussed in

the appendix of this work.

Figure 3.6: a) Grade map from the Poisson process and b) associated block-scale
histogram.

3.2.5 Step 5: Combine low and high grade

Once both populations have been estimated, the two models can be combined

into a final grade model. The mean of the data is reproduced but the maximum

value is significantly lower than that of the input data because this is the

distribution of blocks (Figure 3.7), rather than point data (Figure 3.2). The
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modelled grade distribution is compared to the true grade distribution (from

the exhaustive synthetic dataset) in Figure 3.8.

Figure 3.7: a) Grade map from the combined low- and high-grade models, and b)
associated block-scale histogram.

Figure 3.8: Histograms showing the a) modelled grade distribution and b) the true
grade distribution

3.3 Discussion

The proposed workflow uses a spatial point process to model the coarse gold

population as a series of discrete points with a known volume. This method-

ology assumes that the true, under-lying coarse gold population exhibits very
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little spatial structure and can reasonably modelled as random points in space.

The spatial structure that is present in the coarse-gold population is captured

in the input intensity map. The goal of this workflow is to limit the influence of

high-grade assays by spatially restricting them to a simulated discrete volume

of gold.

When applying this methodology to a real dataset, care must be taken

to ensure that a coarse gold population exists and there is an accompanying

lack of spatial structure. The variogram of the high-grade population should

exhibit a very high nugget effect. A spatial point process simulates points

randomly within each modelling cell so care must be taken to ensure that this

assumption is realistic. The nature of gold mineralization should be visually

confirmed in drill core.
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Chapter 4

Discrete Fracture Networks

4.1 Background

The assumption that coarse gold mineralization takes place as random points

in space is unrealistic. In some geological settings, mineralization is spatially

restricted to vein structures. Veins are planar structures which form in frac-

tured rock from hydrothemal fluids which are often associated with mineraliz-

ing systems. Fracture formation, and associated vein formation, are the result

of large, regional-scale tectonic stresses and they form in predicatable ways

which can be modelled.

A common technique for modelling fractures is to simulate them as a Dis-

crete Fracture Network (DFN). In a DFN, fracture centroids are simulated

randomly conditional to an input intensity map of vein density using a Pois-

son process. Other fracture statistics, such as bearing, dip, length, height,

thickness etc are randomly drawn from user-defined input distributions. In

this chapter, a methodology is presented to model mineralized veins using a

DFN.

4.1.1 Natural fractures

Observations of natural fractures indicate that it is possible to describe fracture

attributes with a variety of statistical distributions. Fracture pole trend and

pole dip tend to follow normal distributions. Fracture length, height and

thickness tend to follow a log-normal distribution (Niven, 2010). Other studies

have suggested that fracture properties are best described with a power-law
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or fractal distribution (Bonnet et al., 2001). Work by Narr, Schechter and

Thompson (2006) suggests that fracture spacing is log-normally distributed.

Johnston and McCaffrey (1996) and Roberts et al. (1999) suggest that

there is an empirical relationship between vein length and vein thickness using

fractal statistics. Their work noted that veins appear to have consistent axial

ratios in parallel sections and are approximate ellipsoids in shape. Veins grow

concurrently in thickness and length. They examined five vein sets across a

variety of tectonic regimes and geologic settings and concluded that vein thick-

ness can be used to approximate vein length. Renard et al. (2005) examined

the statistical properties of three different vein sets, including a mineralized

vein set from the Val d’Or region in the Abitibi region of Canada. They con-

cluded that all three datasets show similar statistical properties. He concludes

that the thickness of fractures is best described by an exponential distribution.

4.2 Discrete Fracture Network Simulation Algorithm

In order to generate a DFN, a number of input distributions are required. A

gridded map of vein density controls the number of simulated fractures. Frac-

ture density can be estimated from drill core data. The fracture orientation is

described by the trend and plunge of a pole normal to the plane of the frac-

ture. This information comes from surface and underground mapping of veins.

Vein thickness can be measured directly from drill core data. Vein length and

height can be measured by surface or underground mapping, or infered from

a relationship to vein thickness.

DFNs created solely using a Poisson process do not have realistic spatial

properties. These codes simulate fracture orientation independent of location

resulting in fracture sets which do not honor spatial correlation (Cacas, Daniel

and Letouzey, 2001; Gauthier, Garcia and Daniel, 2002; Hitchmough et al.,

2007). Fractures generated solely with a Poisson process result in two unde-

sirable features. First, due to the random nature of a Poisson process, it is

possible generate fractures which are extremely close or extremely far apart;

they do not honor the correct spatial relationship. Natural fractures form as
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a response to stress in the rock. Once a fracture is formed, stress is locally

relieved and another fracture will not form immediately next to it. Second, if

the distribution of fracture orientation is wide enough, it is possible for two

fractures in the same set to cross at extremely low angles by random chance.

Fractures form first in the plane parallel to the maximum principal stress and

second in the perpendicular plane of minimum stress. This leads to the devel-

opment of sub-parallel sets of joints and conjugate sets at 90 degrees. Fractures

intersecting at extremely low angles are unrealistic (Mandl, 2005).

The DFNSIM algorithm of Niven (2010) aims to correct these problems by

simulating a pool of fractures three to five times greater than necessary then

iteratively removing them until the target statistics are reached. An overview

of the steps used in the algorithm is provided. For further details, see Niven

(2010).

Step 1: Visit a grid cell and randomly simulate fracture centroids

Step 2: For each simulated centroid, draw fracture statistics randomly from

user-defined distributions

Step 3: Repeat until the entire pool of fractures is simulated (target number

* multiplication factor)

Step 4: The target number of fractures are actived and the fracture spacing

and intersection angle are calculated as an objective function

Step 5: A fracture from the entire pool is selected and its activation state is

changed. If the objective function decreases, that change is kept.

Step 6: The process is repeated until the desired number of iterations are

complete.

As a result of the optimization process, the DFNSIM algorithm simulates a

fracture network which better honors the spatial correlation of natural fracture

spacing as well as prevents unrealistic fracture intersection angles.
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4.3 Methodology

The proposed methodology is demonstrated on a small, synthetic example to

describe the steps involved. The data for the synthetic example were obtained

by simulating the drilling of an exhaustive model with properties mimicking

a vein-hosted gold deposit. The sampling was conducted on a regular grid

(Figure 4.1). The exhaustive dataset is created on a 1 m x 1 m x 1 m grid by

combining a realization of low-grade, background mineralization (generated

with SGS) with a realization of high-grade mineralization. The high-grade

model is created by simulating a DFN using a known intensity function. The

grade distribution collected from drilling the synthetic data exhibits a heavy-

tailed, skewed distribution commonly seen in precious metals deposits (Figure

4.2).

Figure 4.1: Drill assay locations collected by drilling the synthetic truth model
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Figure 4.2: Histogram showing the gold grade distribution of samples from simu-
lated drilling

The statistical populations are separated and treated separately. The high-

grade population is modelled with a DFN; so the required input distributions

must be inferred prior to generating the DFN. Specifically, the steps involved

are:

Step 1: Separate statistical populations and model background mineraliza-

tion separately

Step 2: Infer DFN input distributions and vein intensity from drill core data

plus external sources

Step 3: Model the intensity map of vein density

Step 4: Simulate mineralized veins using the DFNSIM program

Step 5: Combine background mineralization and mineralized veins into final

grade model

The details of each step are described below.
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4.3.1 Step 1: Model low grade

This methodology relies on the assumption that background mineralization

and coarse gold mineralization belong to separate statistical populations. The

background mineralization is estimated from the low-grade samples of the

dataset using standard geostatistical techniques such as OK or SGS. The as-

sumption inherent in independently modelling the high- and low-grade popu-

lations is that the low-grade mineralization is pervasive and each block of the

model comprises an (unknown) proportion of high- and low-grade mineraliza-

tion (Figure 4.3).

Figure 4.3: Slices through the block model of low-grade, background mineralization

4.3.2 Step 2: Infer DFN distributions

The next step in modelling a DFN is obtaining the representative distribu-

tions of input statistics from which DFNSIM (2010) will draw while creating

fractures. The program DFNSIM (Niven, 2010) requires input distributions

for vein orientation (pole trend and pole plunge), vein size (length, height and
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thickness), and vein density. Vein orientation and thickness can be measured

reliably from drill core. Vein size cannot be measured from core data and

requires information from geological mapping or expert knowledge. Three di-

mensional vein density cannot be measured from core data; however, it can

be infered from the one dimensional fracture spacing which can be measured

from core.

In order to condition the fracture model, the point location interesection for

each drilled vein is needed. These are obtained from drill core logs and drill core

photos. The vein thickness distribution also comes from core logging. The pole

trend and pole plunge of the veins are recorded from a mixture of underground

and surface mapping and fit with a Normal distribution. Since the length and

width of veins cannot be measured directly, the fractal relationship suggested

by Johnston and McCaffrey (1996) is used:

L = k ∗ T a (4.1)

The length of veins, L, (measured in meters) is related to thickness, T,

(measured in mm) by the constant, k, and the exponent, a. The k and a

parameters were borrowed from an epithermal gold deposit cited in Johnston

and McCaffrey (1996) which is similar to the study area of interest. For the

synthetic example, known input distributions of vein statistics are used. They

are summarized in table 4.1 below.

Table 4.1: Summary of DFN input distributions

Statistic Thickness (mm) Length (m) Trend (deg) Plunge (deg)

Distribution Log-Normal Fractal Normal Normal
Mean 6.17 1.27 000 90
Variance 103.9 1.91 3.0 3.0
Max 368.4 20.6 - -

4.3.3 Step 3: Model intensity

The DFNSIM program uses a Poisson process to generate the initial fracture

network and requires an intensity model, λ(u), of fracture count at each loca-

tion. Fracture intensity is often measured in one dimension along a borehole;
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however, to simulate a DFN, a three dimensional count of fractures is needed.

There is a multivariate relationship between the number of intersections along

a borehole, the length of fractures and the 3D density of fractures (Dershowitz

and Herda, 1992; Zhang and Einstein, 2000).

To convert between 1D fracture count and 3D fracture density, a conversion

factor is needed. This can be obtained either analytically or through simu-

lation. Analytical methods include Terzaghi-weighting (Terzhagi, 1965) or

Wang approximation (Wang, 2005) but they are difficult to implement. This

work uses Monte Carlo Simulation (MCS) to solve for the conversion factor.

Niven (2010) presents a methodology and a series of programs necessary for

computing the conversion. In summary:

Step 1: Define a small DFN with known input distributions

Step 2: Simulate a series of these DFNs with incrementing 3D vein density

and fracture size

Step 3: Project a series of scan lines, normal to the mean vein orientation,

through each DFN (Figure 4.4a)

Step 4: Measure the average vein spacing along each scan line and compile

the results

Figure 4.4b shows a contour plot with the results of the simulation study.

The color values indicate average 1D spacing. To create conditioning data,

the average fracture spacing is measured along intervals down each drill hole

and then compared with the contour map to obtain a value of 3D fracture

density. Intensity over the domain can then be estimated with OK or simulated

using SGS. Figure 4.5 shows the distribution of intensity values from simulated

drilling as well as variogram models showing the range of continuity.
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Figure 4.4: a) Random scan line through fracture model and measured spacing;
b) contour map showing the relationship between lineal spacing and 3D density

Figure 4.5: a) Distribution of 3D vein density after conversion and variograms
showing a) the major direction of continuity, b) the minor direction of continuity,
and c) the vertical direction of continuity

4.3.4 Step 4: Simulate mineralized veins

To simulate mineralized veins, the input distributions of vein orientation, vein

size and vein thickness are used in DFNSIM. Additionally, an initial DFN
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comprised of the intersection point locations from drillhole data are also in-

put. The intensity map of 3D vein density is the final input into the program.

DFNSIM generates realizations of DFNs consisting of vein centroids, with cor-

responding pole trend, pole plunge, thickness, height and length. A realization

of a simulated DFN is shown in Figure 4.6. For purposes of plotting, the DFN

has been thinned by a factor of 100.

With a conditioned map of mineralized veins in the study area, the high-

grade gold population is simulated within the vein structures in two ways:

i) each vein is given a constant gold grade and total gold is proportional to

the volume of the vein

ii) gold is simulated as discrete particles (with a spatial point process) which

are spatially restricted to the veins (Figure 4.7)

In this example, the first case is used to simulate the high-grade population;

mineralization is assumed to be constant across each vein. The input intensity

function (which controls the number of simulated veins) is scaled until the

desired mean of the population is reached. Figure 4.8 shows slices through the

model of high-grade mineralization. The program DFNSPP is provided for this

section of the methodology. Details of DFNSPP are discussed in the appendix

of this work.
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Figure 4.6: A realization of quartz veins simulated as a DFN

Figure 4.7: Schematic showing discrete particles of gold (generated with a spatial
point process) placed along the plane of a simulated vein
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Figure 4.8: Slices through the model of high-grade mineralization

4.3.5 Step 5: Combine low- and high-grade models

Once both populations have been estimated, the two models can be combined

into a final grade model. The background mineralization is pervasive whereas

the high-grade population is spatially restricted to simulated veins. Slices

through the final model of grade are presented in Figure 4.9.

48



Figure 4.9: Slices through the final grade model after combining low- and high-
grade models

4.4 Discussion

The proposed workflow uses a discrete fracture network to model mineralized

veins in the study area of interest. Vein-hosted gold deposits are characterized

by a coarse gold population which is spatially restricted to veins. The goal

of this workflow is to prevent smearing of grade by only allowing coarse gold

mineralization to exist where a vein exists. It is assumed that all veins are

mineralized in this synthetic example. It is also assumed that gold grade is, on

average, constant across each vein. These assumptions lead to the high-grade

population being proportional to the volume of simulated veins.

In order to test the methodology, a synthetic dataset was created using

completely known properties. One of the assumptions used in creating this

synthetic dataset is that, on average, grade is constant across each vein. There

is a constant proportion of gold to vein across each vein. This assumption

is not realistic in practice; however, for the purposes of demonstrating the
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methodology, it is justified. In reality, grade is highly variable throughout

each vein because gold mineralization is localized, erratic and nugget-y. It

is suggested to model grade within each simulated vein using a spatial point

process. This will honor the inherent variability of gold mineralization within

quartz veins.

When applying this methodology to a real dataset, care must be taken to

ensure that the assumptions are realistic. As best as possible, only mineralized

veins should be modelled. In addition, if mineralization takes place as discrete

particles within the vein, a spatial point process should be used to model grade

within the veins rather than making the assumption that grade is constant

across each vein.
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Chapter 5

Image Processing

5.1 Background

As discussed in Chapter Four, modelling quartz veins as a DFN requires a

number of input distributions and conditioning data. Some of these distribu-

tions can be measured from drill core data. Specifically, the point location

intersections, apparent dip and vein thickness can be measured from drill core

data. During an exploration drill campaign, veins may not be logged in suffi-

cient detail to generate the conditioning data and input distributions needed

to model veins with a DFN.

Drill core is typically logged by geologists during the exploration phase of a

project. Often, vein density is too great to log each vein individually. In some

cases, it is determined at the time of logging that only a rough estimation of

vein density is needed. It is typically not possible to go back and re-log all veins

from historic drill core because of the time and cost constraints. An automatic

method of processing core photos for information is desirable because it saves

time and helps remove the inherent subjectiveness from having multiple people

collecting the data.

This chapter presents a practical application of existing work in image pro-

cessing. Plataniotis and Venetsanopoulos (2000) provide an excellent overview

of color image processing and image segmentation.
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5.1.1 Core Photo Dataset

The dataset for this workflow is a set of core photos from an underground drill

program. There are photos of 408 drill holes with a total of over four thousand

photos. The photos were taken with a Canon G12 camera on a tripod with

flourescent overhead lighting. A typical photo comprises three boxes of HQ

core, approximately 10 meters of down hole depth. The core is sprayed with

water before being photographed to enhance contrast.

The quality of the photos is highly variable because several people were

involved in collection of the photos. Lighting conditions vary across the photos

and not all photos are taken exactly square. This has implications for the

image processing workflow. A pre-processing step can help eliminate some of

these irregularities by making the photos as similar as possible. Examples of

core photos can be seen in Figure 5.1.

Figure 5.1: Example photos of drill core from the photo library. Photos are in
their original form.
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5.1.2 Challenges

There are a number of challenges to implementing an automatic image pro-

cessing workflow. First, the quality of core photos is highly variable. In blurry

photos, edges and features are not well defined. If the photos are rotated, it is

more difficult to automatically locate features because it is assumed that rows

of core occur as straight lines across the photo. Second, there can be very

poor separation between color groups in the photos. Figure 5.2a shows an

example core photo with each pixel mapped in three different color spaces: b)

red-green-blue (RGB), c) lightness-scaled (Lab) and d) hue-saturation-value

(HSV). In the core photo, there appears to be fairly well defined color groups

(grey stone and brown core box); however, when looking at the distribution

of pixels in each color space, there are no clearly defined boundaries between

color groups. Instead, grey pixels of stone gradually change into brown pixels

of core box. This makes defining the boundary of each color class difficult.

Figure 5.2: a) example core photo and the distribution of pixels in three different
colour spaces: b) RGB, c) Lab and d) HSV.
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5.2 Methodology

Each image is processed in a number of steps in order to isolate the individual

veins from the overall photo. The pixels of rock must be isolated from back-

ground pixels such as the core box, floor, sample tags etc. Each set of photos

provides a downhole record of the geology with each subsequent row of core

being deeper down the drill hole. Individual rows of core must be identified

in order to provide down hole depth information. Finally, the individual veins

must be isolated from the rows of drill core. Specifically, the steps involved in

the image processing workflow are the following:

Step 1: Pre-process core photos

Step 2: Isolate pixels of stone from boxes and other photo features

Step 3: Identify rows and create a row mask

Step 4: Isolate veins from core

Step 5: Locate and count veins

Step 6: Optimize parameters to obtain best fit

The details of each step are described below.

5.2.1 Step 1: Pre-Process core photos

The first step in the image processing workflow is to pre-process each photo to

be as similar as possible. Image pre-processing techniques fall into two broad

classes: i) image corrections, and ii) image enhancements. Image corrections

include correcting for lens distortion, fixing dead sensor pixels and reducing

noise. Image enhancements include color histogram equalization, illumination

(brightness, contrast and saturation) and sharpening. Additionally, this step

should include cropping photos to the area of interest.

In this work, each photo in the library is corrected in the following ways

using pre-existing MATLAB functions:

1. Corrected for lens distortion using the default settings
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2. Noise reduction by linear filtering

3. Histogram equalization to enhance contrast

4. Consistent illumination across all photos

The above techniques can be applied automatically to each photo in the

library. Images are not cropped because this must be done manually and it

was determined to be too time consuming for the purposes of this exercise.

5.2.2 Step 2: Isolate pixels of stone

The next step is to isolate the pixels of stone from the background pixels.

Plataniotis and Venetsanopoulos (2000) cover nine different classes of image

segmentation techniques. Three classes were explored: i) region-based, ii)

edge-based, and iii) pixel-based techniques. Region-based techniques work by

merging neighbouring pixels into homogeneous regions if their attributes (eg.

color) are sufficiently similar. Edge-based techniques work by computing the

gradient of color change then looking for rapid slope changes in the gradient’s

first derivate. Pixel-based techniques work by grouping like pixels into groups

based on their position in color space. Discontinuities and breaks in the core

cause the region-based and edge-based techniques to over segment the image

into far too many classes so these methods were abandonded in favour of a

pixel-based segmentation technique.

One of the most commonly used pixel-based segmentation techniques is

clustering, the process of partitioning an image in subsets of similar colors. As

shown in Figure 5.2, there are no clearly defined clusters of pixel color; there

is a smooth transition among the different colors groups in the photo. Despite

the lack of well-defined color groups, this segmentation method out-performed

the other tested methods.

One of the most popular and fastest clustering method is k-means, which

is also the technique recommended by Plataniotis and Venetsanopoulos. The

original k-means algorithm was developed by MacQueen (1967) as an unsuper-

vised method of classifying multivariate data. It is commonly used in image
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processing to automatically partition an image into k initial color groups then

iteratively refining the groups as follows:

1. Each pixel pi is assigned to the nearest colour group center, Cj

2. Each color group is updated to the mean of its constituent pixels

The algorithm converges when there is no further change of pixels to color

groups. The initial algorithm has undergone many refinements and the current

MATLAB implementation is used in this work.

Figure 5.3 shows the result from clustering with three classes. Despite a

lack of clear separation between pixel colors, the clustering algorithm is able

to separate the predominantly grey pixels of the core from everything else.

The clustering algorithm is applied to the pre-processed, original core photo

(Figure 5.3a) to create the clipping mask (Figure 5.3b) which is then applied

to obtain the isolated core (Figure 5.3c). There are three clusters in the mask:

i) white pixels isolate the core, ii) grey pixels isolate the core box, and iii)

black pixels isolate shadows and darker spots on the core.
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Figure 5.3: a) original image, b) Image mask created from k-means clustering, and
c) the core photo after the mask has been applied

5.2.3 Step 3: Identify individual rows of core

The clustering algorithm is effective in isolating pixels of rock from everything

else; however, the rows must be further defined before veins can be located

in space. Drill core is laid out sequentially from the top of the drill hole to

the bottom before photographing. Additionally, each box is marked with a

start and end depth. In order to use this information, each individual row of

core needs to be further isolated with a mask. Figure 5.4a shows a core photo

after being processed with k-means. To isolate the rows, the following steps

are applied to each photo:

1. Count non-black pixels for each row of pixels in the photo and normalize

to 1

2. Plot the normalized count for each row of pixels (Figure 5.4b)

3. Select a threshold which is just low enough to capture each row of drill
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core

4. Keep each row of pixels with a count greater than the selected threshold

to create the mask (Figure 5.4c)

5. Apply the mask to further isolate each row of drill core (Figure 5.4d)

With each row of core isolated in this manner, the start and end depth of

each row can be approximated from the start and end depth of the box and

the number of rows of core. This assumes that each row of core is the same

length which is not true; however, each box begins at the correct depth so

the slight shift in true vein location is considered negligible. On a block-scale,

these minor differences will not effect vein count.

Figure 5.4: a) isolated core from clustering, b) row-by-row threshold of non-black
pixels, c) row mask, and d) isolated rows of core

5.2.4 Step 4: Isolate Veins

The next step is to isolate each vein from the drill core. The International

Commission on Illumination (CIE) defines a standard for detecting colour
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difference. The latest iteration of the formula is called CIEDE2000. For details

of the colour difference formula, see Luo, Cui and Rigg (2001). The MATLAB

implementation by Sharma, Wu and Dalal (2004) is used in this thesis.

ΔE00 =

√(
ΔL

kLSL

)2

+

(
ΔC

kCSC

)
+

(
ΔH

khSH

)
+RT

ΔCΔH

kCSCkHSH

(5.1)

The steps are summarized as follows:

1. Each photo is converted to Lab color space

2. Colorfulness (Luminosity) of each pixel is calculated

3. The colorfulness of each pixel in the image is compared to the mean

colorfulness of veins in the image

4. The perceptual difference (ΔE ) for each pixel is calculated using equation

5.1

5. A range of perceptual differences around the mean value of the veins is

selected

Figure 5.5 shows the results of isolating veins with the above method. Most

veins in the image are isolated; however, there is some noise. In particular,

glare from the overhead lights causes reflections on the core that are similar in

colour value to the veins. This can be seen in the horizontal lines across some

rows.
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Figure 5.5: a) isolated core from clustering, and b) isolated pixels after colour
segmentation

5.2.5 Step 5: Locate and Count Veins

To count and locate each vein, each row of core (as defined by the mask in

5.4c) is treated separately. For each row of pixels, a vein is recorded as a

transition from black to white to black pixels. In addition, the pixel thickness

of each vein is recorded and converted into milimeters.

One common problem in many of the photos is reflective glare from over-

head lighting. It causes high-frequency, horizontal noise to be isolated by the

color difference algorithm. The highlighted section of drill core in Figure 5.6a

shows an example of this. In the drill core, there is just a single vein. In the

vein mask, there is a single vein identified plus horizontal noise from the over-

head glare. The count of transitions from black to white to black is counted

for each row of pixels and a CDF of count is constructed (Figure 5.6b). Since

the vein crosses the piece of core, the noise only occurs in the upper part of the

distribution. By selecting a modest quantile, the noise is essentially ignored.
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Figure 5.6: a) Highlighted noise from vein segmentation and b) cumulative distri-
bution of vein counts

5.2.6 Step 6: Optimization

The above workflow has many of user-selectable parameters. In order to obtain

the best results, the parameters of the automatic workflow are optimized and

compared to a set of manually logged core photos. 200 photos were manually

logged using a GUI to click on the locations of each vein (Figure 5.7).

A bounded minimization algorithm was implemented using MATLAB. For

more information on the minimization algorithm, see Lagarias et al. (1998).

The parameters to be optimized are as follows:

1. Size and strength of sharpening filter

2. Row intensity threshold

3. Color difference range

4. CDF quantile to keep

After 10,000 iterations using a derivative-free, bounded minimization search,

a correlation of 0.710 is acheived between the manually logged and automati-

cally logged photos (Figure 5.8).
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Figure 5.7: GUI used to manually record point location intersections.

Figure 5.8: Correlation of vein count between automatically measured photos and
manually measured photos.

5.3 Results

After optimizing on a random subset of 100 photos, the optimized parameters

are used for each photo in the global core photo dataset. A total of 4,107

photos are processed and over 68,000 vein intersections are recorded in the

study area. The distribution of measured vein thickness is shown in Figure 5.9.
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The mean vein thickness is 6.32 mm with a variance of 147 mm and a maximum

thickness of 981 mm. This is consistent with veins which have been measured

during underground mapping. Work by Roberts et al. (1999) suggests that

vein thickness is best described with a log-normal distribution. The resulting

empirical distribution is fit with a log-normal distribution (Figure 5.9).

Figure 5.10 shows the results of locating the veins. The original core photo

is compared to the isolated veins with their recorded location plotted in red.

Some of the small, fine veins have been missed. This is likely not a problem

because these veins are typically not mineralized. Additionally, some of the

broken veins have been identified as two separate veins. This could be more

of an issue because it will create two conditioning points which are very close

together.

Figure 5.9: Thickness distribution of automatically measured veins fit with a log-
normal distribution.
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Figure 5.10: a) Original core photo and b) isolated and located veins

5.4 Discussion

Overall, the image processing workflow described above worked sufficiently

well for the intended purpose in this work, to create conditioning data for

use in a DFN. K-means is sufficiently effective at isolating pixels of stone

from everything else in the image. The row identification method also works

sufficiently well for its purpose. Identifying invididual veins from the rows

of core is an area that could use improvement. The veins are not uniform in

color and many are very close to the color of their host rock. Many small veins

were missed by the locating step and some broken veins were measured twice.

To get around this, photos were quickly checked at each processing step and

where the processing step failed, the photos were discarded. The mean vein

count of the drill hole was used in place.

64



Chapter 6

Case Study

This chapter presents a thorough case study implementing the previously de-

scribed techniques in the case of an epithermal gold deposit. Models of block

grade are constructed using a spatial point process and a discrete fracture net-

work. In addition, models of block grade are constructed using the standard

geostatistical techniques OK and MIK for comparison. The dataset includes

a minor but still significant amount of silver. For simplicity, only gold has

been modelled. The silver population is also characterized by a heavy-tailed

distribution; although, not as pronounced as that of the gold population. The

modelling techniques presented here could be extended to the silver popula-

tion. For further information on the deposit, see Ireland et al. (2014).

6.1 Case Study A: Spatial Point Process

The spatial point process methodology is demonstrated on an epithermal gold

project from north-western British Columbia. The project consists of multiple

mineralized domains but this portion of the case study focuses on a single do-

main. The domain measures approximately 590 m along its northwest strike,

560 m across strike and down to 650 m in depth. The domain is best described

as a transitional to intermediate sulphidation epithermal stockwork vein sys-

tem. While this is technically a vein-hosted deposit, mineralization takes place

within a dense vein stockwork with quartz veins representing up to 50% of the

rock volume. A significant coarse gold population with a distinct lack of spa-

tial structure has been identified. For the purposes of modelling, the coarse
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gold population can be considered as randomly distributed in space.

6.1.1 Data

The area of interest comprises more than 30,000 samples collected via surface

and underground drilling and represents one mineralized domain. The gold

distribution is characterized by highly skewed grade values with assay values

over one percent gold (Figure 6.1). Using a high-grade threshold of 5.0 g/t

Au, 1,702 of 36,626 samples (4.6%) are classified as coarse gold. The locations

of the drill assays with their associated variograms can be seen in Figure 6.2.

The lack of spatial structure in the upper tail can be clearly seen in Figure

6.2c which shows only the high-grade assays. The discrete nature of coarse

gold mineralization can also been seen in the associated variograms in Figure

6.2d. The nugget effect of the population is approximately 0.75, indicating

a high chance effect and degree of inherent randomness in the population.

This justifies the use of a spatial point process for modelling the high-grade

population.
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Figure 6.1: Histograms showing the a) entire grade distribution, b) low-grade
distribution, and c) high-grade distribution
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Figure 6.2: a) Drill assays in the mineralized domain and, b) variogram of all
samples; c) high-grade assays only and, d) variogram of high-grade samples

6.1.2 Steps

First, low-grade background mineralization is estimated independently from

the high-grade population with OK using only the low-grade subset of the

data. Next, the local proportion of high-grade assays is modelled to obtain

the required intensity fields for the Poisson and Cox processes. The variogram

range of the high-grade population is used as the search ellipsoid parameteri-

zation when calculating local proportion data. The proportion data are used

as conditioning data to generate a single estimated map of the intensity field

(OK) and realizations of the intensity field (SGS) (Figure 6.3).
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Figure 6.3: a) Ordinary kriged map of intensity for the Poisson process input and
b) realization of intensity (SGS)for the Cox process input

The high-grade population is modelled in two ways. First, an estimated

model is created using a non-homogeneous Poisson process with a single esti-

mated intensity map. Second, 100 realizations of the high-grade population are

created using a Cox process with realizations of the intensity map generated

by SGS and the proprtions previously generated. Figure 6.4 shows models for

the low- and high-grade populations using the Poisson and Cox processes.
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Figure 6.4: Slices through the grade model: a) background mineralization, b) high-
grade mineralization from the Poisson process, and c) high-grade mineralization
from a single realization of the Cox process

It is important to account for the uncertainy in the input parameters of

the modelling methodology, particularly when considering simulation. The

most critical input parameter is the global distribution of gold grade. The

spatial bootstrap (Leuangthong, Khan and Deutsch, 2008) is used to access

the uncertainty in the global mean (Figure 6.5). The global distribution of

mean values is slightly skewed due to the presence of high-valued outliers.

Each realization of the high-grade population from the Cox process is scaled

to a realization of the global mean determined from the spatial bootstrap by

scaling the intensity map. The full methodology is described in Chapter Three.
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Figure 6.5: Global uncertainty in the mean generated from the spatial bootstrap

6.1.3 Results and Discussion

Final maps from the Poisson and Cox processes show that the resulting final

grade model (which includes the low-grade population) is smooth (Figure 6.6)

and analogous to an estimated grade model created using OK. The realizations

resulting from the Cox process have the correct spatial variability and the

correct mean and variance.

Although the Poisson process is a stochastic process in itself, the results

approximate an estimation map because of the very large number of points

simulated per block. The process could be repeated n-times resulting in very

similar maps; thus, it is reasonable to consider the results of the Poisson process

to be an estimated map that could be used for mine planning, in the same

way an OK map would be used. The global distribution of the model can be

tuned much like traditional estimation techniques. Rather than controlling

the variance with search and data parameters, as is commonly done with OK

(Rossi and Deutsch, 2014), the variance of the global distribution is tuned
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by controlling the smoothness of the intensity field. Increasing the variability

of the intensity field increases the variability in the final grade distribution.

A change of support study can be undertaken to determine the appropriate

level of smoothing when upscaling from point- to SMU-scale data. Here, the

histogram is rescaled using the discrete Gaussian model (DGM) to a 10 meter

block support (Figure 6.7). Change of support is not the focus of this work;

the interested reader is referred to Machuca, Babak and Deutsch (2007) for

specific DGM considerations.

This workflow does not lead to the reproduction of the assay data because

block grades in the final model do not reproduce the input assay data. One

of the difficulties of working in a coarse gold environment is obtaining a rep-

resentative histogram of grade values. Hitting or missing a coarse gold nugget

involves a high chance factor due to the extremely high nugget effect of the

population. This is not viewed as a drawback of the methodology. Rather,

it is argued that when nuggets are hit by a drillhole in a given block, us-

ing that assay value to represent the block grade is inappropriate (likely the

block grade should be lower, in fact, this is the short-scale effect of smearing).

When the drillhole does not strike a nugget, the block grade is also inappro-

priate (likely the block grade should be higher, nuggets probably exist that

drilling did not hit). Realizations of the block grade are compared to the DGM

support-corrected input distribution (Figure 6.8) and show good reproduction.
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Figure 6.6: Slices through: a) an estimated intensity field, b) the corresponding
grade model generated with a Poisson process, c) a single realization of a simulated
intensity field, and d) a realization of grade generated from a Cox process
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Figure 6.7: a) Point-scale grade distribution and b) selective mining unit (SMU)-
corrected grade distribution

Figure 6.8: Block-grade distribution from 100 realizations (red) and the support-
corrected input distribution (black)

74



6.1.4 Comparison to other techniques

The proposed methodology is compared to more traditional workflows, includ-

ing capped models at different thresholds and an MIK workflow. Three models

are created using OK, uncapped, capped to the P99.5 and capped to the P99.9

grade thresholds. Recall, the support-correct mean of the grade distribution

is 1.13 g/t Au.

Table 6.1 summarizes the results of the models. The uncapped results over-

state the mean and do not control the smearing of outliers. Capped OK is

effective in reducing the variance but results in severe underestimation of the

mean (the global declustered mean is 1.13 g/t Au). MIK is an improvement

over uncapped OK because the mean is better reproduced and smearing is

better controlled. The Poisson approach also reproduces the mean (by con-

struction) but results in lower variance when compared to upcapped OK or

MIK.

Table 6.1: Comparison of estimation results (all numbers reported in g/t Au)

Statistic OK-1 (no cut) OK-2 (P99.5) OK-3 (P99.9) MIK Poisson

Mean 1.18 0.84 0.95 1.16 1.13
Std. Dev. 3.06 0.93 0.93 1.47 1.17
Min 0.01 0.01 0.01 0.01 0.12
Max 193.94 9.18 25.31 92.29 14.99

Slices through the block models of methodologies can be seen in Figure

6.9. Results from OK with no top cut assays are plotted on the left. Results

from the MIK model are plotted on the right. The MIK model is smoother

compared to the OK model and the spatial influence from outlier values is

reduced.

A further comparison of the modelling techniques is given in Figure 6.10.

The average grade above a 3.0 g/t Au cut-off is shown in Figure 6.10a; the

proportion of material above cutoff grade is shown in Figure 6.10b and sum-

marized in Table 6.2. Each estimated model provides a single value, whereas

the simulated models provide a distribution of values. The smearing effect of

the outlier assay values in the MIK workflow is clearly seen in Figure 6.10a.

The MIK model reports a significantly higher average grade above cutoff when
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compared to top-cut OK and the proposed Poisson and Cox methodologies.

In Figure 6.10b, the proportion of blocks above the cut-off grade is higher

with the Poisson and Cox methodologies compared to those of OK and MIK

because the distribution is less influenced by high outlier values in the tail.

Table 6.2: Proportion of blocks above cut off with different modelling techniques

Technique Proportion Above Cutoff

Cox 0.070
Poisson 0.068
MIK 0.053
Topcut OK 0.031

Estimated grade models use linear combinations of available data and have

an unavoidable smoothing effect due to the averaging of values. Although an

estimated model is appropriate for visualizing trends, it is not appropriate

for heavy-tailed deposits. The high-valued assays end up having a dispro-

portionately strong effect on the block being estimated and are “smeared”

throughout the model (Figure 6.11). Geostatistical conditional simulations

provide the same information as an estimated model. In addition, simulations

also provide histogram reproduction and a model of uncertainty. For more

information on estimation versus simulation, see Rossi and Deutsch (2014).

Figure 6.11 shows a side-by-side comparison of block models generated

from the Poisson process, a single realization of the Cox process, and MIK.

The cross-sectional slices are plotted alongside the locations of high-grade com-

posites. Visual inspection shows that the same overall features are reproduced

in the Poisson and Cox models, whereas the spatial variability is the distin-

guishing feature between the estimation and simulation models. The effect of

the outliers has a more dramatic effect in the MIK model and the visual effect

of smearing is clear.
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Figure 6.9: Slices through the block model of grade, estimated using a) OK and
b) MIK
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Figure 6.10: a) average grade above a 3.0 g/t Au cut off for each workflow, and
b) proportion above cut off for each workflow

Figure 6.11: Cross sections through the block model highlighting the smearing
effect in a) Poisson model, b) Cox model, and c) MIK model
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6.2 Case Study B: DFN Grade Modelling

The DFN grade modelling methodology is demonstrated on another mineral-

ized domain from the same epithermal gold project in north-western British

Columbia. The entire zone consists of over twenty mineralized domains span-

ning an area 1,200 m along an east-west strike, 600 m across strike and down

to 650 m in depth. The DFN methodology is presented on a single domain

which measures 200 m along an east-west strike, 100 m across strike and 50 m

in the vertical direction. Gold mineralization occurs as both pervasive back-

ground mineralization and discrete, coarse gold mineralization. Coarse gold is

visible and restricted to quartz veins. Overall vein density in this domain is

much lower compared to case study A, ranging from 5 to 20% volume.

6.2.1 Data

The proposed DFN grade modelling methodology is demonstrated on a subset

of data from a vein-hosted, epithermal gold deposit. The grades are altered

from their original values and the locations shifted for confidentiality reasons;

however, the statistical properties remain representative of the deposit type.

The cumulative distribution of of grades (Figure 6.12) show a highly skewed

distribution; the locations of the samples are shown in Figure 6.13. The mean

grade of the dataset is 1.55 grams per tonne gold and the maximum assay grade

is over 9,000 grams per tonne Au. Several assumptions are made regarding

the nature of mineralization to demonstrate this methodology:

• All veins in the deposit are mineralized

• Coarse gold occurs as random discrete particles (nuggets) within the veins

• Background mineralization is pervasive across the domain

The information required to generate the DFN is generated by processing

core photos using the methodology presented in Chapter Five of this thesis.

In summary, over 4,000 drill core photos are processed and the point location

intersection and thickness are recorded for each vein. Approximately 68,000

79



vein intersections were recorded from the image processing workflow. These

intersections are used as conditioning data in the DFN. In addition, the thick-

ness of each vein was recorded and fit with a log-Normal distribution (Figure

6.14).

DFN input distributions which cannot be collected from drill core come

from different sources. In this case study, the distributions of length and

height are inferred from the thickness using the relationship given in Chapter

4 (Johnston and McCaffrey, 1996). The distributions of fracture trend and

plunge come from both underground and surface mapping and are fit with a

Normal distribution. The input statistics used to generate the fracture network

are summarized in Table 6.3.

Table 6.3: Summary of DFN input distributions

Statistic Thickness (mm) Length (m) Trend (deg) Plunge (deg)

Distribution Log-Normal Fractal Normal Normal
Mean 6.32 1.26 030 88
Variance 147.1 18,340 3.0 3.0
Max 981.6 22.1 999 999

The grade distribution and the required DFN input distributions are col-

lected from drill core. The next step in the workflow is to model the vein

density which is required to control the number of simulated veins in each

modelling cell.
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Figure 6.12: Cumulative distribution of assay grades used for modelling

Figure 6.13: Locations of drilled assays
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Figure 6.14: Distribution of vein thickness

6.2.2 Quartz vein modelling

Once the distributions of representative vein statistics are gathered, the veins

in the domain are modelled using DFNSIM. The program uses a Poisson pro-

cess to generate the initial fracture network and requires an intensity model

of fracture count at each location. Lineal fracture intensity is measured along

each drill hole then converted to 3D fracture density using the methods out-

lined in Chapter Four. Figure 6.15 shows the distribution of intensity values

and the variograms. Using these results as conditioning data, the vein density

over the entire domain is estimated using SGS (Figure 6.16). Uncertainty in

the distribution of intensity can be seen in Figure 6.17.

With the input distributions and intensity map, realizations of a conditional

fracture model are simulated. In total, approximately 1.5 million veins were

simulated over the study area. An example of a simulated DFN is presented

in Figure 6.18.
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Figure 6.15: a) Distribution of vein intensity values with variograms of the b)
major direction of continuity, c) the minor direction of continuity and d) the vertical
direction of continuity
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Figure 6.16: Slices through the model of vein intensity

Figure 6.17: Distribution reproduction from simulated models of intensity
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Figure 6.18: A realization of a simulated DFN; plotted only at the drill hole
locations

6.2.3 Gold grade modelling

First, low-grade background mineralization is estimated independently from

the high-grade population with SGS using only the low-grade subset of the

data. Background mineralization is pervasive and smooth across the domain

(Figure 6.20). Uncertainty in the low-grade realizations can be seen in Figure

6.19.

Next, high-grade gold is modelled using the DFN workflow outlined in

Chapter Four. Gold is simulated as a spatial point process which is spatially

restricted to the simulated veins. This work makes the assumption that grade

is related to vein intensity. The intensity distribution is transformed on a

quantile-by-quantile basis to match the support-corrected grade distribution

(Figure 6.21). In this case, areas with more quartz veins will have higher gold

grade. The transform approach is implemented using ‘trans trend’ Deutsch

(2005).
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Figure 6.19: Background mineralization distribution reproduction
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Figure 6.20: Slices through the model of background mineralization

Figure 6.21: Schematic showing the quantile transform of intensity to grade

6.2.4 Results and Discussion

The coarse gold population is assumed to be spatially restricted to only the

simulated veins in the discrete fracture network. Coarse gold mineralization
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is proportional to the intensity of the simulated veins in the DFN. The spa-

tial location of the discrete gold particles is controlled by the location of the

simulated quartz veins; however, the density of gold nuggets in each vein can

be changed. In general, this should be scaled until simulated realizations of

grade match the support-corrected grade distribution.

Like the spatial point process workflow outlined above, the global distribu-

tion of the model can be tuned by controlling the smoothness of the intensity

field. Increasing the variability of the intensity field increases the variability of

the final grade distribution. A change of support study can be undertaken to

determine the appropriate level of smoothing when upscaling from point- to

SMU-scale data. Here, the histogram is scaled to a 2 m block support using

the discrete Gaussian model (Figure 6.22).

Like the results in Case Study A, this workflow does not lead to the re-

production of the assay data because block grades in the final model do not

reproduce input assay data. In a coarse gold setting, it is argued that using

the assay grade to represent the block grade is inappropriate. Outlier val-

ues represent a chance encounter with a spatially restricted population and

their influence should not be spread across the entire block. On the other

hand, there are cases where a drill hole does not encounter an outlier value in

an area where there is a higher proportion of the coarse gold population ie.

where there is greater vein density. In this case, the block grade is likely higher

than the input assays. Realizations of the block grade are compared to the

support-corrected input distribution (Figure 6.23). The mean and standard

deviation of the distribution are reproduced; although, the shape of the dis-

tribution is not matched completely. Slices through the final grade model are

presented in Figure 6.24. The high-grade population is related to vein density.

Areas with more simulated veins have a higher proportion of the high-grade

population and a higher final grade value.
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Figure 6.22: Histograms showing the a) point-scale grade distribution and b)
support-corrected histogram

Figure 6.23: Distribution reproduction in the high-grade population
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Figure 6.24: Slices through the model of coarse gold mineralization
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Chapter 7

Conclusions

Assessment of the value of an ore body is an essential step in any mining

project. Exploration samples represent less than one trillionth of the volume

of the deposit. Distributions characterized by heavy-tails have an element

of inherent randomness that cannot be ignored. This small amount of data,

combined with the chance effect of hitting outlier values, means that the scale

of variability of the values in the tail of the distribution cannot be ignored.

Outlier values should have their influence reduced in order to prevent poten-

tial bias and overestimation of grades. Traditional geostatistical methods often

employ subjective, ad-hoc manipulations of the data such as capping assays.

This work presents two techniques to reduce the influence of outlier values

by spatially restricting their volume of influence. Both techniques attempt to

honor the geologic reality of the processes that make up the underlying grade

distribution.

7.1 Topics Covered and Contributions

Precious metal deposits are often characterized by heavy-tailed grade distri-

butions. Inherent in these distributions are outlier values. Care must be taken

when dealing with these values because they are often the result of an extreme

manifestation of the random variability inherent in the data. The economic vi-

ability of many precious metals deposits relies on the presence of a few outlier

values in the upper tail of the grade distribution. The upper few percentiles

of samples may represent ten or more percent of the contained metal in the
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deposit. The most common method of dealing with outlier values is to cap

them to a pre-determined threshold. This is a subjective practice and overly

aggressive capping risks making a deposit subeconomic. Undercapping assays

risks overstating the grade. This work provides methods for the inclusion of

outlier values and make use of the full grade distribution in the modelling

workflow.

The implications of geostatistical modelling in the presence of outlier values

is discussed in Chapter One. Outlier values should be examined to determine

their validity as assayed samples which represent extreme variability in the

grade distribution. It also must be determined if outlier values belong to a

separte statistical population. If outlier data are left untreated, estimates

may suffer from bias and overestimation when assed by typical geostatistical

techniques. Estimation techniques linearly average values and a single outlier

value can cause large modelling volumes to have an unrealistically high value.

The influence of outlier values is typically restricted by capping assays. The

methods presented in this work do not resort to capping or any other sub-

jective, ad-hoc manipulation of the grade distribution. Here, the influence of

outlier values is reduced by restricting their volume of influence. Each sample

in the high-grade population of the dataset is modelled as an idealized sphere,

or nugget, of gold to make up the particle size distribution.

The high-grade population is characterized by a high nugget effect which

implies a lack of spatial structure and an element of inherent randomness.

There is a chance effect involved when hitting or missing a high-grade sample.

This is dealt with in this work by modelling the local proportion of high to

low grade samples. The limited range of spatial correlation of the high-grade

population is captured here by using a search window which is restricted to

the variogram range of the high-grade population. The local proportion data

is the intensity parameter in the spatial point process. The high-grade pop-

ulation is modelled (separately from the low-grade population) by simulating

discrete volumes of gold using a spatial point process. Each simulated point

draws randomly from the particle size distribution. This way, the entirety

of the grade distribution is used. The influence of the values is restricted
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by limiting their volume of influence. The intensity parameter is scaled until

the mean of the modelled high-grade population matches that of the global

reference distribution. Uncertainty in the global mean was accounted for by

generating realizations of the global mean using the spatial bootstrap. This

was incorporated into the point process by scaling each realization of intensity

to a realization of the global mean.

The variability of the grade distribution is captured by controlling the

variability of the intensity map. In this work, the intensity map was tuned

until the variability of the final grade distribution matched that of the support-

corrected histogram. By modelling the high-grade population with a spatial

point process, the final grade models can be tuned to have the correct mean,

variance and spatial variability. In the comparison to ordinary kriging and

multiple indicator kriging, the results from using a spatial point process better

match the support-correct global grade distribution.

Gold mineralization often takes place as discrete events; however, they are

not typically distributed as random points in space but instead are spatially re-

stricted to vein structures. In this work, veins were simulated using a discrete

fracture network. The distribution of vein thickness and a set of intersection

locations are necessary inputs to model a discrete fracture network. In this

work, an image processing workflow was presented to automatically measure

this information from a core photo database. The methodology was effective

at isolating isolating rows of core. In this step of the processing workflow,

over 95 percent of photos were correctly classified. The CIEDE2000 percep-

tual difference formula was effective at isolating veins from the rows of core;

however, it also produced noisy results under some lighting conditions. The

methodology presented here for isolating veins from noise was effective and,

after optimization, achieved a correlation of 0.710 against a manually logged

subset of photos. The locations and thickness of over 68,000 veins were mea-

sured from over 4,000 core photos. The measured thickness distribution was

approximately log-normal.

The results from the image processing workflow were used to calculate vein

density and estimate it over the case study domain. Over 1.5 million quartz
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veins in the study area were simulated as a discrete fracture network. The

high-grade population was modelled using a spatial point process; however,

the the nuggets were only simulated within simulated veins. The high-grade

population was assumed to be proportional to the vein density and was scaled,

proportional to the vein density, until the mean of the high-grade population

matched that of the global distribution. The final models of grade have the

correct mean and variance and their spatial continuity is the same as the input

DFN.

7.2 Future Work

The techniques outlined in this work show are effective in reducing the influ-

ence of outlier values; however, further refinement is needed and future work

in this direction remains.

In the spatial point process modelling workflow, two areas that could use

refinement are the generation of the intensity field and the selection of the

particle size distribution. The intensity field controls the amount of simulated

points and is a very important parameter. This work uses the local proportion

of high and low grade assays to generate proportion conditioning data. Perhaps

other indicator approaches such as sequential indicator simulation (SIS) or

truncated pluri-Gaussian (TPG) techniques could be employed. The particle

size distribution is generated using the high-grade subset of the original data.

The use of metallurgical data could be employed here to find a more realistic

size distribution of gold particles.

Using a discrete fracture network is effective in spatially reducing the influ-

ence of outlier values; however, one area that needs refinement is the assump-

tion that grade is proportional to vein density. The workflow assumes that

grade is greater in areas with more vein density. This may not be a realistic

assumption for all deposits.

The image processing workflow worked sufficiently well for the intended

purpose in this work; however, refinements are needed before it could be im-

plemented on a larger scale. Specifically, improvements in pre-processing and
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reducing noise are needed. The methodology failed to locate veins most com-

monly on photos with excess noise which was often the result of poor initial

photo quality. In addition, further testing on a variety of drill core photo

datasets is needed.

For the case study, more care should be taken to model only mineralized

veins. This will improve the accuracy of the final models of grade.
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Chapter 8

Appendix - Software

A number of GSLIB style software programs have been developed to support

the research presented in this thesis. The conventions used and software devel-

oped build upon those set out by Deutsch and Journel (1998). This appendix

provides a description of the purpose and parameters for each of the programs

developed.

8.1 Spatial Point Process Simulation

The program SPPSIM generates a model of discrete gold nuggets using a spatial

point process. The two main requirements for the program are a gridded file

of intensity and a particle size distribution. The gridded intensity file can be

generated using OK or SGS (recommended GSLIB software: sgsim or kt3d

(Deutsch and Journel, 1998)). The size distribution can either come from prior

sources or is calculated from assay data. Size must be input in milimeters. The

program requires either a single value for the high-grade mean or a file of means

if wanting to consider mean uncertainty. The output file contains a conditional

count of nuggets per block and the associated block grade. The parameter file

is listed below:
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1 Parameters for SPPSIM

2 *********************

3
4 START OF PARAMETERS:

5 intensity.dat -file with gridded intensity

6 1 - column

7 -1e21 1e21 -trimming limits

8 0 -size distribution (see note 1)

9 size_dist.out -if 0, provide file , 1 provide grade

10 1 - column

11 clipping.dat -file with clipping data (see note 2)

12 1 - column

13 1 0.83 -high -grade mean (see note 3)

14 bootstrap.out -file with means (see note 4)

15 1 - column

16 0.0 0.0 0.0 -search for LVSD (see note 5)

17 0.0 0.0 0.0 -angles for search ellipsoid

18 100 -number of realizations

19 50 0.5 1.0 - nx,xmn ,xsiz

20 50 0.5 1.0 - ny,ymn ,ysiz

21 50 0.5 1.0 - nz,zmn ,zsiz

22 nuggets.out -output file name

23
24 ******

25 NOTES:

26 ******

27 1. For the size distribution , provide either a file with

28 nugget radius in mm or provide a file with high -grade assays

29 to be converted to size

30 2. If no clipping file is used , change to nofile

31 3. For single mean , set to 0 and input mean. For multiple

32 means set to 1 and enter the file of means from spatial

33 bootstrap

34 4. If not considering different means , change to nofile

35 5. Set to 0 0 0 if using a global size distribution

Figure 8.1: Input paramters for SPPSIM
.

8.2 DFN Grade Modelling Programs

The program DFNSPP is similar to SPPSIM except it requires an input DFN. To

generate a DFN, this work used the GSLIB-style program DFNSIM (Niven,

2010). If using another program to generate a DFN, care must be taken

to ensure that the input DFN file follows the same format. This program

simulates discrete events along the simulated fracture planes. The locations

of the nuggets can be output; however, the output file can be extremely large.
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1 Parameters for DFNSPP

2 *********************

3
4 START OF PARAMETERS:

5 dfn.dat file with DFN (see note 1)

6 1 - column

7 -1e21 1e21 -trimming limits

8 0 -size distribution (see note 2)

9 size_dist.out -if 0, provide file , if 1 provide grade

10 1 - column

11 count.dat -gridded file with nugget counts

12 1 - column

13 clipping.dat -file with clipping data (see note 3)

14 1 - column

15 1 1.13 -high -grade mean (see note 4)

16 bootstrap.out -file with means (see note 5)

17 1 - column

18 50 0.5 1.0 - nx,xmn ,xsiz

19 50 0.5 1.0 - ny,ymn ,ysiz

20 50 0.5 1.0 - nz,zmn ,zsiz

21 highgrade.out -file for output grade

22 1 -1, print nugget locations

23 nuggets.out -file with nugget location (note 6)

24
25 ******

26 NOTES:

27 ******

28 1. This program is designed to work with standard output

29 files from DFNSIM. If using another program , please

30 convert to the same format

31 2. For the size distribution , provide either a file with

32 nugget radius in mm or provide a file with high -grade assays

33 to be converted to size

34 3. If no clipping file is used , change to nofile

35 4. For single mean , set to 0 and input mean. For multiple

36 means set to 1 and enter the file of means from

37 spatial bootstrap

38 5. If not considering different means , change to nofile

39 6. This file can be extremely large

Figure 8.2: Input paramters for DFNSPP
.
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