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Abstract 

Neurological disorders are among major causes of disability in Canada. In the 

diagnostic procedure, Magnetic Resonance Imaging (MRI) is commonly used 

as it is non-invasive and can produce dramatic contrast between different brain 

tissues. Brain tissue segmentation is a fundamental step in brain MR images 

analysis. 

Corpus Callosum (CC) is an important brain tissue and is always 

adopted as the landmark of human brain. In this thesis, we propose an 

intelligent computer-aided detection (CAD) system for automatic segmentation 

of CC in T1-weighted midsagittal brain MRI slices. The proposed CAD system 

has three modules: Adaptive Mean Shift Clustering (AMS), Automated CC 

Contour Initialization (ACI), and Geometric Active Contour (GAC) based 

Segmentation. In the first module, homogenous regions in the input image are 

divided into clusters with an adaptive mean shift clustering method. In the 

second module, area analysis, template matching, shape and location analysis 

are used to identify the cluster that contains CC and extract a rough boundary of 



 

iii 

 

CC as the initial contour. In the last module, the boundary of recognized CC 

region is used as the initial contour in the GAC model, and is evolved to obtain 

the final segmentation result of CC. Experimental results demonstrate that the 

proposed AMS-ACI technique is able to provide accurate initial CC contour, 

and the proposed AMS-ACI-GAC technique overcomes the problem of user-

guided initialization in existing GAC techniques, and provides a reliable and 

accurate performance in CC segmentation. 
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Chapter 1  

Introduction 

Computer-Aided Detection or Computer-Aided Diagnosis (CAD) systems are 

procedures that may help clinicians interpret various medical images. Typically, the 

CAD system combines artificial intelligence, digital image processing techniques 

and related knowledge of disease diagnosis. In diagnostic radiology, medical image 

modalities such as X-ray, Ultrasound, MRI and histopathological images 

complement clinical diagnosis. With the help of CAD system, computer-aided image 

analysis results based on computer algorithms could potentially increase the 

sensitivity of identifying abnormal lesions and structures.   

The CAD systems are currently employed in the investigation of tuberculosis 

[1] and breast cancer [2]. The model used to segment CC can be applied to segment 

areas of subtle abnormalities in the brain, thus increasing diagnostic sensitivity and 

accuracy.  
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1.1 Status of Epilepsy in the World and in Canada 

Epilepsy is one of the most common chronic brain disorder affecting almost 50 

million people around the world. Epilepsy is the tendency to have recurrent 

unprovoked seizures. The clinical presentation is dependent on the underlying brain 

structure that is involved. Epilepsy can affect both social and mental well-being, and 

patients with epilepsy have two or three times higher risk of premature death 

compared to the general population. According to a recent report from Epilepsy 

Canada, about 15,500 people are diagnosed with epilepsy every year in Canada [3]. 

It is therefore important to study and understand epilepsy with a multidisciplinary 

approach. MRI images help to identify underlying structural abnormalities as a cause 

of seizure. CAD techniques therefore can facilitate to increase the sensitivity of such 

diagnosis.  

1.2 Diagnosis of Epilepsy 

The diagnosis of epilepsy is predominantly clinical based on the clinical history 

provided by the patient, family members and other witnesses. 

Electroencephalograms (EEGs) are useful to classify the seizures and the MRI helps 

to identify underlying structural abnormalities. If a clear epileptogenic focus is 

identified, the patient may be investigated to determine his/her candidacy for 

epilepsy surgery.  

MRI is an imaging technique that is widely used to obtain images of the brain 

structures. It uses powerful magnets to align the nuclei of atoms, primarily hydrogen, 
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in the body [4]. When additional energy (in the form of radio wave) is added to the 

magnetic field, the magnetic vector is deflected and the hydrogen nuclei resonate. 

The nuclei produce rotating magnetic files of their own. Such rotating magnetic 

fields can be detected by a scanner and used to generate an image. The brain MRI 

has no radiation exposure to the subjects, and can produce dramatic contrast between 

different brain structures. Compared with other neuroimaging techniques, brain MRI 

can produce clearer and more detailed images of the brain.  

The CC is a large white-matter structure in the human brain that connects the 

left and right cerebral hemispheres, and transfers sensory, motor and cognitive 

information between the two hemispheres.  

Corpus Callosum can be easily identified on visual inspection. We therefore 

decided to apply our CAD technique to identify this structure as a proof of principle 

and the landmark in human brain. 

Typically, the CC is examined from a midsagittal MRI slice, where the CC 

region could be best viewed. An example of the T1-weighted midsagittal brain MRI 

slice is illustrated in Fig. 1.1 (a), and a close-up example of CC region is illustrated 

in Fig. 1.1 (b). Note that the yellow contours in both figures indicate the CC region. 

It is observed that the CC region is located near the centre of the brain, and always 

presents homogeneous high intensity, and has the appearance of broad arched band. 

The location and shape features of CC region are important features that can be used 

to distinguish CC from other brain tissues.   
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(a)                                                           (b) 

Fig. 1.1. Corpus Callsoum in a T1-weighted midsagittal brain MR image. (a) 

The CC is highlighted by yellow contour. (b) A close up example of the CC, and 

the thick yellow contour indicates its area. 

1.3 Problem Statement and Motivation 

Traditionally, the neuroimages are examined by professional radiologists, and the 

brain tissue and its change are manually separated from surrounding brain tissues 

based on their observation, knowledge and experience. Major difficulties in 

segmentation of brain tissues in the subcortical regions arise from low contrast and 

filed inhomogeneity. Note that the accuracy for detection of epileptogenic regions 

using the neuroimaging techniques may be influenced by radiologist’s subjective 

bias. Because of fatigue, overlook or overloaded images, epileptogenic regions with 

subtle structural changes might be missed. In addition, the inter-reader and intra-

reader variations often occur [5]. In order to address these problems, it is of great 

value to develop an automated CAD system to perform automatic CC segmentation. 
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The intention of our work is to segment CC automatically on both patients' MR 

images and normal MR images. The automatic classification of patients' images and 

normal images using the segmented CC is not discussed in our work. Major 

difficulties in segmentation of brain tissues in the subcortical regions, however, arise 

from low contrast and field inhomogeneity. 

The objective of this thesis was to develop an efficient CAD system for 

automated detection of CC based on T1-weighted midsagittal MR images from 

patients with epilepsy, which will provide the ground work for utilizing a similar 

technique to identify abnormal brain structures with the potential of neurological 

disorders. 

1.4 Contribution and Thesis Organization 

This thesis focuses on the automatic detection and segmentation of CC in the T1-

weighted midsagittal brain MRI slice. The major contributions are listed as follows: 

 An automatic technique for CC segmentation in T1-weighted midsagittal 

brain MR images has been proposed (presented in Chapter 3). 

 A graphical user interface of the proposed CC segmentation technique has 

been developed (presented in Chapter 4). 

The rest of the thesis is organized as follows. Chapter 2 presents a review of related 

techniques. Chapter 3 introduces the details of proposed CC segmentation technique. 

Chapter 4 discusses the development of the graphical user interface of the proposed 

technique, as well as the segmentation performance evaluation. Chapter 5 presents 

the conclusion and the potential future research directions. 
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Chapter 2  

Background and Related Works 

In this chapter, we briefly introduce the structure of CC. We also present a review of 

the state-of-the-art techniques related to the brain MRI segmentation.  

2.1 Structure of CC 

The CC is the largest white matter structure in human brain, around 200 to 250 

million neural fibers are included in the CC [6]. It is the brain structure that connects 

the left and right cerebral hemispheres. [7]. The neural fibers of the CC connect the 

neural fibers of both the left and the right cerebral hemispheres, and the 

interhemispheric communications are processed through the CC [8]. The CC can be 

viewed as the network connecting two strong computer processors (left and right 

cerebral hemispheres). 

The CC is wide and flat neural fiber bundle, with the appearance of broad 

arched band [9]. It is located near the bottom of the longitudinal fissure in human 

brain [10]. The structure of CC can be divided into four portions: genu, splenium, 

https://en.wikipedia.org/wiki/Cerebral_hemisphere
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body and rostrum. To be specific, the genu is the anterior portion of the CC, the 

splenium is the posterior portion of the CC, the body is the portion between the genu 

and the splenium, and the rostrum is the portion of the CC that extends posteriorly 

and inferiorly from the anterior most genu [11]. An illustration of four portions of 

CC structure on the midsagittal image of the brain is displayed in Fig. 2.1. 

 

Fig. 2.1. Illustration of the genu, splenium, body and rostrum on the midsagittal 

image of the brain [12] 

2.2 Review of Segmentation Techniques 

Major difficulties in segmentation of brain tissues in the subcortical regions, 

however, arise from low contrast and field inhomogeneity. Several works have 

already been conducted in this area.  

Most of the techniques are based on Active Contour Model (ACM). Brejl et 

al. [13] proposed an automated model based technique for segmentation of CC in 
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sagittal brain MRIs. The technique first constructs shape model and border 

appearance model of the objects from training images. Based on these two statistical 

models representing the object of interest, a shape-variant Hough transform 

technique is applied to approximately localize the object, and then a cost function 

can be automatically designed and used in the segmentation criteria of edge-based 

segmentation methods. This technique does not need initial close-to-target 

localization. However, it is likely to fail if a large variability exhibits in shape and 

edge appearance of the objects. Ginneken et al. [14] proposed an active shape model-

based technique for the segmentation of CC. This technique is steered by optimal 

local features, chosen by statistical analysis of training images from a set of local 

image structure descriptors. After that, a non-linear K-nearest neighbours classifier 

and selected features are used to calculate the optimal displacements of landmarks. 

This technique has the limitation of model matching. It cannot detect patterns which 

are not included in the given example images. Jacob et al. [15] proposed an ACM 

based technique for CC segmentation. This technique introduces a robust gradient 

energy term which represents the gradient direction and has the advantage of being 

parameter independent, as well as a new internal energy term which forces the active 

contour to the constant arc-length parameterization. Experiments of segmenting CC 

on MRIs show good segmentation results. However, the initialization of contour is 

required. 

Sandhu et al. [16] proposed a Geometric Active Contour (GAC) technique 

for CC segmentation. The technique incorporates the image intensity probability 

density functions of the background and object into active contour framework, and 
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evolution is steered by seeking the maximum distance of above two distributions. 

Although promising segmentation results on brain MRIs has been achieved, this 

technique is highly sensitive to initial contour. Zhou et al. [17] proposed an 

automated segmentation technique for rodent brain tissues in MRIs. This technique 

applies support vector machines (SVMs) to obtain prior shape knowledge of objects 

of interest, and incorporates an automatic shape selection into existing active shape 

model framework for Cerebellum, Neocortex, CC, External Capsule, Caudate 

Putamen, Hippocampus and Ventricles in MRIs. They evaluated their method on the 

database with 5000 training images and 3250 test images, and obtained an average 

successful rate of 92.2% in classification of test images. The promising segmentation 

results of active shape model were shown at the end of their paper. However, low 

accuracies exist in CC and external capsule segmentation. El-Zehiry et al. [18] 

proposed a novel technique to segment CC from white matter on the midsagittal 

plane. The technique first extracted white matter using a hierarchical model 

combining active contour propagation and graph cut optimization to ensure that the 

global energy of the contour was minimal. The connected component analysis was 

then used to segment the CC from white matter. Finally, it investigated the difference 

between ratio of CC region on the midsagittal plane and the entire intracranial 

volume between 12 right handed dyslexic patients and 12 controls. Experimental 

results showed a large variability between these two groups. However, the 

quantitative performance evaluation of CC segmentation is not mentioned.  

Lai et al. [19] proposed an automated method to extract the boundary of CC 

on brain MRIs. Firstly, they calculated the 1
st
 nontrivial Laplace-Beltrami (LB) 
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eigenfuction on the white matter surface, and then used its zero level set curve to 

achieve the initial guess of the CC curve. Secondly, they deformed the initial curve 

to get the final curve with the geodesic curvature flow on the white matter surface. 

They validated their method based on a dataset for multiple sclerosis study with 32 

images. However, they did not compare their segmentation results with ground truth.  

2.3 Summary 

In this chapter, a brief introduction of the structure of CC has been proposed. A 

review of the brain tissue segmentation techniques has also been presented.  
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Chapter 3  

Automatic Corpus Callosum Segmentation 

In this chapter, I present an automatic Corpus Callosum segmentation technique for 

the T1-weighted midsagittal brain MR image. The goal of the technique is to provide 

an accurate segmentation of the CC region for brain magnetic resonance (MR) 

images.   

3.1 Introduction 

As mentioned in Chapter 1, the changes in size and shape of Corpus Callosum (CC) 

occur in epilepsy. Therefore, an automatic and reliable technique for segmentation of 

CC will facilitate the extraction of size and shape features of CC, and these features 

can be further used in diagnosis of epilepsy. As introduced in Chapter 2, the GAC 

based techniques [16] have been reported to provide promising performance of CC 

segmentation. However, there are still some limitations. First, initial contour is 

required as user inputs. Second, the GAC technique [16] is highly sensitive to initial 
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contour, it may fail if the initial contour is not placed appropriately. Examples of 

object segmentation results using different initial contours based on a same image 

are shown in Fig. 3.1. Fig. 3.1 (b) and (d) are the segmentation results based on 

initial contours shown on Fig. 3.1 (a) and (c) respectively. The yellow rectangles on 

Fig. 3.1 (a) and (c) indicate initial contours, and the yellow contour on Fig. 3.1 (b) 

and (d) indicate segmentation results.  

To address the limitations of GAC based segmentation technique [16], in this 

chapter, we propose a fully automatic segmentation technique of CC in the 

midsagittal slice of T1-weighted brain MR image. The proposed technique is based 

on a hybrid automatic CC contour initialization (ACI) technique and the GAC 

technique [16]. The major contribution of the proposed technique is to provide an 

accurate initialization of the CC boundary. Experimental results demonstrate that the 

proposed technique overcomes the problem of user-guided initialization in the 

existing GAC technique [16], and provides a reliable segmentation performance.  

3.2 The Proposed Technique 

The schematic of the proposed technique is shown in Fig. 3.2. It is observed that the 

proposed technique contains three modules: Adaptive Mean Shift Clustering, 

Automated CC Contour Initialization , and Geometric Active Contour based 

Segmentation. In the first module, a set of clusters are generated from an input image 

based on grayscale intensity closeness using the adaptive mean shift clustering. 
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(a)                                                        (b) 

 

(c)                                                         (d) 

Fig. 3.1. Examples of segmentation results using different initial contour in 

GAC based technique [16] 

In the second module, area analysis, template matching, shape and location analysis 

are used to identify the specific cluster that contains CC, and extract a rough 

boundary of CC as the initial contour. In the last module, a final CC boundary is 

calculated based on Active Contour Segmentation method. The details of these 

modules are presented in the following sections. 
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Fig. 3.2. Schematic of the proposed automatic CC segmentation technique. 

3.2.1 Adaptive Mean Shift Clustering (AMS) 

Based on observation in T1-weighted brain MRI (see Fig. 1.1 (a)), the appearance  

of CC is generally homogenous (i.e., similar grayscale intensity). For accurate 

segmentation, it is helpful to apply an image clustering technique as the 

preprocessing step. In this work, the AMS technique [20] is applied with gray-level 

intensities features for image clustering.  

The AMS technique [20] is an iterative technique that can be used for finding 

modes of the probability density function (pdf) of the image intensity, and 

associating their neighboring grayscale intensities to the corresponding modes, 

thereby establishing clusters. Grayscale intensities associated with the same mode 

belong to the same cluster, and the number of clusters is the same as the number of 
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modes. Prior knowledge of the clusters, e.g., the number of clusters, and the shape of 

clusters, are not required in the AMS technique [20]. In the pdf of grayscale 

intensities of a brain MR image, there would be dense regions if this image has 

homogeneous areas. In other words, homogeneous areas in the image correspond to 

various segments in the pdf of grayscale intensities. For example, if there is a large 

homogeneous area in a grayscale image, with an intensity of about 100 (in a 8-bit 

scale), it could lead to a segment in pdf of grayscale intensities, around 100. The 

peak intensity of 100 is considered as a mode of the pdf of grayscale intensities of 

this image.   

Note that in AMS clustering, we only consider the grayscale intensity 

information of the image, and do not consider the spatial information. This is 

because the grayscale intensity is good enough for the AMS technique to generate a 

rough shape of CC region. In other words, the generated clusters would be similar in 

intensity, and it is possible that a cluster may include several unconnected regions in 

the image space. 

There are seven major steps of AMS clustering, which are explained in the following.   

Step 1: For a brain MR image I , the pdf of the grayscale intensities is computed. 

Let ip  denote the 
thi  pixel in the image I , and iV  denote the grayscale intensity of 

ip , 1 i N  , where N  is the total number of pixels in the image I . Note that iV  

is a mapping point of ip  in the grayscale intensity feature space of the image.  

Example of an image and its corresponding pdf are shown in Fig. 3.3. A T1-

weighted brain MRI is shown in Fig. 3.3 (a), and its pdf of grayscale intensities is 
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shown in Fig. 3.3 (b), and its magnified pdf of grayscale intensities in the range of  

[50, 120] are shown in Fig. 3.3 (c). It is observed in Fig. 3.3 (b) that several local 

peaks are present in the pdf of the grayscale intensities. Some local peaks could be 

better observed in Fig. 3.3 (c).  

 

(a)                                                               (b) 

 

(c) 

Fig. 3.3. Example of a feature space. (a) A 512 512  brain MRI. (b) Pdf of the 

gray intensity value of the image shown in (a). (c) A blown-up version of the pdf 

shown in (b), in the range of [50 120]. 
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In other words, homogeneous areas with pixels that have similar grayscale intensities 

are present in the brain MRI. Our goal is to delineate clusters in the grayscale feature 

space, with the intention of clustering homogenous areas in the brain MRI. Denote 

the number of clusters in the image by m . Initially, m  is zero. To start with, a 

feature point curV  is initialized randomly from the feature space, and then go to step 2. 

Step 2: For the point curV  (a gray intensity value), the 1L  distance (i.e., Manhattan 

distance) between curV  and its neighbors in the feature space is calculated, and the 

neighbors of curV  are sorted by order of increasing distance magnitude to curV . Let 

,cur KV  denote the thK -nearest neighbor of curV . The adaptive bandwidth curh  for curV  

(for a given K  value, =26,214K ) is calculated as follows: 

 , ,1cur cur cur K cur cur Kh V V V V     (3.1) 

where K  is the number of neighbors that is considered in calculating the adaptive 

bandwidth curh  for curV . 

Step 3: For the point curV , a symmetric window curS  with bandwidth curh  is generated. 

Let the number of points included in curS  be denoted by curJ  (including curV ). 

Step 4: The weighted mean shift vector ( )h curM V  within the window curS  is the 

distance between the current feature point curV  and the center of mass within the 

window. ( )h curM V
 
is calculated using the following equation: 
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 (3.2) 

where d  is the dimension of feature space (we have used =1d  in this work), 
jV  is 

the 
thj  point within window curS , curJ  is the number of points included in the 

window, curh  is the bandwidth for the current feature point curV . ( )G x  is the uniform 

kernel function, which is defined as follows:  

 
1

( )
0

c x
G x

otherwise


 


 (3.3) 

where c  is a normalization constant such that ( ) =1G x dx


 . 

Step 5: Determine if the following equation is satisfied,  

 ( )h cur AMSM V T  (3.4) 

where 
AMST  is a predefined threshold used as a stopping criterion for search of a 

mode in the current neighborhood in feature space. If Eq. (3.4) is satisfied, the 

current 
curV  is stored as the converged feature point, and then algorithm goes to step 

6. Otherwise, the feature point 
curV  is updated as follows: 

and the algorithm goes to step 2.  

Step 6: The current converged point 
curV  is stored as a mode, and a new cluster by 

including 
curV  and all the points converging to 

curV (i.e., all the points visited by 

 ( )cur cur h curV V M V   (3.5) 
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AMS steps 2-5) is generated. Let the generated cluster be denoted by mC (where m  

is the cluster number).   

Step 7: In this step, we first determine if there is any pixel in the image which falls 

outside all the clusters that have been generated. Let us denote the set of image 

pixels which are not among clusters  1, , mC C  by remC . If remC  is a null set, the 

clustering stops. Otherwise, the feature point 
curV  is initialized as follows: 

where g  is a grayscale intensity, remg C , and the algorithm goes to step 2.  

An example of histogram of pixels at the modes is shown in Fig. 3.4.  

 

Fig. 3.4. Histogram of modes in AMS clustering obtained for the image shown 

in Fig. 3.3 (a). There are 10 modes with values [4, 6 41, 68, 74, 80, 100, 106, 111, 

147]. The modes at 147 is not clearly visible, as there are only 117 pixels.  
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In this example, there are 10 modes, and each mode corresponds to a cluster. The 

gray intensity of a mode corresponds to representative intensity of a cluster pixel 

values. Examples of clusters generated in the 1
st
 AMS iteration and in the 10

th
 AMS 

iteration are shown as binary images in Fig. 3.5 (a) and Fig. 3.5 (b) respectively. In 

these binary images, white pixels indicate cluster points (pixels).  

 

 (a)                                                           (b) 

Fig. 3.5. Examples of clusters (white pixels) generated in AMS iterations. (a) 

Cluster generated in the 1
st
 AMS iteration. The last bandwidth 1ih  , and the 

cluster pixel value range is [1 5]. (b) Cluster generated in the 10
th

 AMS 

iteration. The last bandwidth 108ih  , and the cluster pixel value range is [122, 

256].  

As we defined previously (see Eq. 3.1), K is the number of neighbors that is 

considered in calculating the adaptive bandwidth for a feature point. We calculate K  

using the following equation:   

 K p N   (3.7) 
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where p  is a constant, 0 1p  .  

An illustrative example of AMS clustering is shown in Fig. 3.6. In Fig. 3.6, 

the cluster maps and histograms corresponding to the image in Fig. 3.3 (a) (with 

262,144N  ) are shown. Figs. 3.6 (a), (c) and (e) show the cluster maps generated 

by the AMS, with 0.08p  , 0.10p  and 0.12p  , respectively. The cluster 

histograms corresponding to Figs. 3.6 (a), (c) and (e) are shown in Figs. 3.6 (b), (d) 

and (f), respectively. It is observed that with 0.08p  , 0.10  and 0.12 , AMS 

generates 12, 10 and 9 clusters, respectively.  

Figs. 3.7 (a), (b) and (c) show magnified CC clusters corresponding to Figs. 

3.6 (a), (c) and (e), respectively. Let CCS
 
denote the cluster that includes the CC 

region. It is observed that, with 0.08p   (see Fig. 3.6 (a)), CCS  roughly has the 

shape of the CC region, although there are some unconnected parts inside the CC 

region. With 0.10p   (see Fig. 3.7 (b)), the CCS  follows the shape of the CC region 

more closely, and also the unconnected parts inside the CC region have been 

eliminated. On the other hand, with 0.12p   (see Fig. 3.6 (c)), the CCS  cannot keep 

the rough shape of the CC region. In other words, 0.10p   provides the best 

clustering performance.  

Another example of cluster maps and histograms generated by AMS with 

0.08p  , 0.10p   and 0.12p   are shown in Fig. 3.8. For this image also, 

0.10p   provides the best performance. Based on our experimental results, we 

select 0.10p   to obtain a good initial cluster map generation for CC segmentation. 
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(a)                                                           (b) 

 
(c)                                                           (d) 

 
 (e)                                                           (f) 

Fig. 3.6. Cluster maps and histograms generated by AMS. (a)(c)(e) Cluster 

maps generated by AMS with 0.08p  , 0.10p  , 0.12p   respectively. (b)(d)(f) 

Cluster histograms corresponding to (a)(c)(e).  
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(a) 

 

(b) 

 

(c) 

Fig. 3.7. Magnified CC Clusters. (a) is for Fig. 3.6 (a), and the yellow rectangles 

indicate the unconnected parts inside the CC, (b) is for Fig. 3.6 (c), and (c) is for 

Fig. 3.6 (e), and the yellow contour indicate the boundary of connected parts 

inside the CC and around the CC.  



 

24 

 

 

(a)                                                           (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

Fig. 3.8. Cluster maps and histograms generated by AMS. (a)(c)(e) Cluster 

maps generated by AMS with 0.08p  , 0.10p  , 0.12p   respectively. 

(b)(d)(f) Cluster histograms corresponding to (a)(c)(e).  
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3.2.2 Automated CC Contour Initialization (ACI) 

Given the cluster map generated by the AMS technique, three steps are followed to 

identify the cluster that contains the CC region. The boundary of the resulting cluster 

will be extracted and used as an initial contour in the subsequent GAC Model [16]. 

The details of the hybrid initialization technique are presented below. 

3.2.2.1 Area Analysis 

The CC is the largest white matter tissue in the brain. Therefore, we perform an area 

analysis to detect the candidate CC clusters from all clusters generated by the AMS 

technique. Based on the prior knowledge, the number of pixels that are included in 

the CC cluster is larger than a predefined threshold ThrT . We set 0.10ThrT N  

experimentally, where N  is the total number of pixels in the brain MRI. The fraction 

0.10  is determined based on the domain prior and experimental results. To be 

specific, let the thi  cluster obtained from AMS clustering be denoted by iC , the 

candidate CC clusters be denoted by CandCl , and the number of pixels included in a 

cluster be denoted by CP . The parameter iC  is determined as follows: 

 
,Cand C Thr

i

Cl if P T
C

others otherwise


 


 (3.8) 

By applying the area criterion to the pre-clustered regions, we obtain some binary 

images with a few candidate regions. Denote the obtained binary image as BI . 

Examples of area analysis results corresponding to Fig. 3.6 (c) are shown in Fig. 3.9, 
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where the white regions indicate the candidate cluster regions. Based on the 

observation of CC on brain MRI, the appearance of CC is much brighter than the 

appearance of background, in other words, the intensity of CC is much higher than 

the intensity of background.  Therefore, only the cluster with higher intensity would 

be selected as a CC cluster. 

0.14CP N
                                                 

0.14CP N  

 

(a)                                                           (b) 

Fig. 3.9. Examples of area analysis results. (a) The largest cluster 10P  with 

0.14CP N  (having grayscale values in the range of [122,256] ), (b) The second 

largest cluster 2P  with 0.14CP N
 
(having grayscale values in the range of 

[6,11] ). 

3.2.2.2 Template Matching 

As shown in Fig. 3.9, besides cluster regions containing the object of interest, a few 

other cluster regions may exist. Therefore, in this step, the template matching (TM) 
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technique [21] is applied to detect the CC area. This step can be divided into several 

sub steps which are presented as follows: 

Step 1: In the first step, a set of template images is generated based on a CC 

region obtained from a healthy person. Based on the knowledge of CC, a template 

image database is generated with templates of various geometric transformations 

(scaling, shearing, rotation). The scaling parameters [ , ]x yS S , rotation angle   and 

shear transform parameters [ , ]x ySh Sh  are incorporated using the following 

coordinate substitutions: 

 
0 1' cos sin

0 1' sin cos

x y

y x

S Shx x

S Shy y

 

 

        
         

        
 (3.9) 

where x  and y  respectively denote the horizontal and vertical coordinates of a pixel. 

In our work, we have generated a template database with parameters: 

 , 0.8,0.9,1x yS S  , the clockwise rotation angles 15 ,0 ,15 ,30      
, and 

 , 0,0.05,0.1,0.15x ySh Sh  . In other words, 48 template images are generated from 

a model CC template image, and all of the generated template images are shown in 

Fig. 3.10.
 

Step 2: Given the dataset of CC templates with various sizes, orientations and 

shapes, each CC template is translated to every possible location in the binary image 

BI .  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.10. Examples of CC templates with parameters  , 0.8,0.9,1x yS S  , 

15 ,0 ,15 ,30o o o o   , (a)  , 0x ySh Sh  , (b)  , 0.05x ySh Sh  , (c)  , 0.1x ySh Sh  , 

(d)  , 0.15x ySh Sh  . 
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The similarity between a template t  and a sub-image f  is measured by 

calculating the value of normalized cross correlation (NCC) [21], which is defined as: 

 
,,

2 2

,, ,

( ( , ) )( ( , ) )
( , )

( ( , ) ) ( ( , ) )

u vx y

u vx y x y

f x y f t x u y v t
u v

f x y f t x u y v t


   


   



 
 (3.10) 

where ( , )f x y  is the pixel in the sub-image, ( , )u v  is the center of sub-image, ,u v
f  is 

the mean of sub-image, whereas ( , )t x u y v   is the pixel in the template, and t  is 

the mean of template. The value of NCC is between 0 and 1, and higher value 

indicates higher similarity. By translating each template on the image BI , we obtain 

the response in mage with NCC values. 

Step 3: A block centered at ( , )u v  is a candidate of CC, when satisfying the 

following condition: 

 ( , ) NCCu v T   (3.11) 

where NCCT  is a predefined threshold. In our work, NCCT  is empirically set to 0.7 . 

Examples of two template matching results are shown in Fig. 3.11 (a) and Fig. 

3.11 (c) respectively, and the corresponding NCC images are shown in Fig. 3.11 (b) 

and Fig. 3.11 (d) respectively. The brightest part reflects regions with 0.7  , the 

gray part reflects regions with 0.4 0.7  , and the black part reflects regions with 

0.4  . It is noticeable that a spurious candidate cluster that contains the top skull 

has been shown near the top of  Fig. 3.11 (c). The reason is that the top skull has 

similar appearance of CC, when the template matching technique is applied to the 
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cluster containing the top skull, the top skull would be easily identified as a 

candidate cluster region.  

 

(a)                                                  (b) 

 

 (c)                                                   (d) 

Fig. 3.11. Examples of template matching results. (a)(c) Two template matching 

results, and the yellow rectangles indicate the detected regions. (b)(d) The 

corresponding NCC images of (a)(c).  

3.2.2.3 Shape and Location Analysis 

As shown in Fig. 3.11(c), besides cluster regions containing the object of interest, 

spurious CC clusters may be observed. Therefore, in this step, the supplementary 
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analysis is required to further improve the initialization performance. In the proposed 

technique, location analysis of candidate regions are performed, and several sub 

steps are presented as follows: 

Step 1: Note that the CC region is usually located closer to the center of the 

brain MR images, compare with the top skull. In order to ignore the effect of image 

size, the location feature can be defined by the distance ( dl ) between candidate 

cluster region center and the image center to the image height ( hl ) ratio. 

Step 2: For a candidate cluster region, we use the location criteria based on 

the prior domain knowledge to determine whether it is a CC region or spurious CC 

region. 

 
/d h LCC if l l T

A
spuriousCC otherwise


 


 (3.12) 

Threshold LT  is set to 0.25 empirically to make sure that the CC region is 

located near the image center. Furthermore, extract the largest connected area A  

(with largest number of pixels) in the detected region. An example of shape and 

location analysis result has been shown in Fig. 3.12. It is noticeable that the spurious 

candidate cluster as shown in Fig. 3.11 (c) has been filtered out. 

Step 3: The boundary of the CC area detected in step 2 is extracted as the 

initial contour of CC. Two examples are illustrated in Fig. 3.13.  
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3.2.3 Geometric Active Contour Based Segmentation 

Geometric active contour is a curve evolution technique that implicitly represents the 

curve as the zero level set of a high dimensional surface. In the GAC  

 

(a)                                                           (b) 

Fig. 3.12. An example of shape and location analysis result, the yellow 

rectangles indicate detected regions. (b) The corresponding NCC images of (a). 

 

 (a)                                                           (b) 

Fig. 3.13. Examples of initial contour of CC, the yellow contour indicates the 

generated initial contour of CC.  
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framework, active contours are deformable curves that can be used to delineate the 

image structures. After the initialization of contour, the contour is allowed to evolve 

to minimize an image energy functional, and it has been extensively used in image 

segmentation [22-25]. Although the computation in the GAC framework is relatively 

expensive, the GAC framework can handle complex topology changes, so it would 

be appropriate to use the GAC-based technique to segment CC.  

In the GAC technique [16], the contour evolves by maximizing the distance 

between the intensity probability density functions of interior region and exterior 

region of contour. By doing this, the statistical information of image regions has 

been incorporated into the GAC framework. The schematic of the typical GAC-

based CC segmentation technique is shown in Fig. 3.14. 

 

Fig. 3.14. Simplified schematic of the typical GAC-based CC segmentation 

In section 3.2.2, the initial contour of CC area is generated using a proposed 

AMS-ACI technique, and this close-to-target initialization will facilitate the quick 
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evolution of contour in the GAC-based technique [16] for CC segmentation. In this 

section, the final segmentation result of CC area is captured by the GAC technique 

[16]. 

Let C denotes the initial contour of CC area, and C represents a set of zeros 

of a signed distance function 
2:   , let the input image be defined on the 

domain  , i.e., 

 

 

 

 

: ( ) 0

int ( ) : ( ) 0

( ) : ( ) 0

C x x

erior C x x

exterior C x x







  


  
   

 (3.13) 

The initial contour C  evolves in the hope that the interior region of C  

matches the CC region, and the exterior region of C  matches the background. In the 

GAC-based technique [16], the image intensity probability density functions of the 

background and object are incorporated into the process of contour evolution. 

Considering that the gray scale intensities of the image are modeled as the 

random variable z Z . Therefore, the pdfs ( , )inp z   and ( , )outp z   of intensities in 

the interior and exterior of the contour C  can be evaluated respectively. 

The similarity between intensity distributions in the interior and exterior of 

the contour C  is measured by the standard deviation between the log-likelihood of 

( , )inp z   and ( , )outp z  . In the GAC model [16], it is assumed that there is a distinct 

difference between the intensity distribution in the interior and exterior of the 

contour. Based on this assumption, the evolution of the contour would be driven in 

finding the maximum similarity between ( , )inp z   and ( , )outp z  . To maximize the 
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above similarity, the contour C  is evolved iteratively using the image energy 

function ( , )E z   defined as follows: 
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( , ) ( , )
( , ) log log

( , ) ( , )

in in

out out

p z p z
E z

p z p z

 
  

 

      
       
      

 (3.14) 

where [ ( )]f z  denotes the expected value of the functional ( )f z . In the GAC 

model [16], the value of z  is restricted to a set of grayscale intensity values 

 1,2, ,256 . ( , )inp z 
 
and ( , )outp z   are the pdfs defined on the variable z . The 

evolution of contour C  (or equivalent  ) is performed according to the equation, 

 ( , )E z
t










 (3.15) 

The evolution is stopped if the maximum number of iterations has been 

achieved. 

3.3 Summary 

In this chapter, a novel technique for automated segmentation of CC in T1-weighted 

misdagittal brain MRIs was proposed. In the proposed technique, the initial brain 

MRI is first clustered into various homogeneous regions using the adaptive mean 

shift technique, representing various brain tissues. Region analysis, template 

matching, combined with the shape and location analysis techniques are used to 

localize the CC region from the clusters generated by the adaptive mean shift 

technique. The boundary of obtained CC region is extracted as the initial contour of 

the subsequent deformation model. Finally, the segmentation of CC is generated 

using the GAC model. 
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Chapter 4  

Graphical User Interface Design and 

Performance Evaluation 

In this chapter, we first present a graphical user interface (GUI), which has been 

designed for the proposed CC segmentation technique (see Chapter 3). The 

performance evaluation of automated initial CC contour estimation and the 

performance of automated segmentation are then presented.    

4.1 Introduction 

The GUI is the type of user interface that helps users communicate with software and 

electronic devices in a graphical display mode. Compared with command-line 

interfaces, GUI has advantages in usability and user experience. The goal of GUI 

design is to meet the exact requirements of users, and make sure that the 

communication between users and software / electronic devices as simple and 

effective as possible. In order to facilitate doctors to use the proposed technique on 
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brain MR images, we developed a simple and effective GUI in MATLAB. The 

details of the GUI development are presented in Section 4.2.    

4.2 Design of Graphic User Interface  

In this section, we introduce the process of GUI design, that is based on MATLAB 

GUIDE (GUI development environment). Considering that the goal of our GUI 

design is simplicity, on the main panel, we only place an aexs object, that is used to 

display an image, as well as three choices, which are Load Image, Generate Initial 

Contour, and CC Seg. The designed GUI provides a clear look, that largely avoids 

screen clutter. Figure 4.1 shows the main panel of the designed MATLAB GUI. By 

clicking the "Load Image" button, we can search and load an existing brain MR 

image, and it will be displayed in the axes object on main panel, as shown in Fig. 4.2. 

After selecting an brain MR image, by clicking the "Generate Initial Contour" button, 

the input image will be processed, and the generated initial contou will be shown as 

the yellow contour on the input image. Figure 4.3 illustrates an example of the 

generated initial contour showing on the input brain MR image. By clicking the "CC 

Seg" button, the final contour of CC will be estimated and displayed as the yellow 

contour on the input image, as shown in Fig. 4.4.  
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Fig. 4.1. Main panel of the designed MATLAB GUI 

 

Fig. 4.2. Uploading of a brain MR image 
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Fig. 4.3. Generating initial contour on the input brain MR image 

 

Fig. 4.4. Final segmentation contour on the input brain MR image 
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4.3 Performance Evaluation 

In this section, we present the performance evaluation of proposed AMS-ACI 

technique, AMS-ACI-GAC segmentation technique and typical GAC technique [16] 

on brain MRI database.  

4.3.1 Database Used 

The brain MRI data were chosen from two brain MRI databases: 1) brain MRI 

(BMRI) database from the University of Alberta Hospital; 2) a publicly available 

Open Access Series of Imaging Studies (OASIS) MRI database [26]. The OASIS 

MRI database has been commonly used in the study of CC for normal people and 

patients with brain disorders [11][28]. The BMRI database contains 7 images from 

patients with neurological disorders, and the OASIS database contains 27 normal 

images from subjects in the age range 20 to 40. In Fig. 4.5, examples of images of 

BMRI database and OASIS database are shown in Fig. 4.5 (a)-(d) and Fig. 4.5 (e)-(h) 

respectively. 

4.3.2 Evaluation Metrics 

The ground truths of CC regions of images in the BMRI database are manually 

drawn by a professional neurologist from the University of Alberta Hospital. The 

ground truths of CC regions of images in the OASIS database are manually drawn 

according to medical knowledge learnt from the professional neurologist. The 

segmentation results are compared with the ground truths. 
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(a)                           (b)                           (c)                          (d) 

 

(e)                           (f)                           (g)                          (h) 

Fig. 4.5. Examples of images used in the performance evaluation. (a)-(d) Images 

of BMRI database; (e)-(h) Images of OASIS database.  

To evaluate the segmentation performance, Accuracy, Sensitivity, F1-score 

and Time-cost are considered as evaluation metrics. The calculation of Accuracy, 

Sensitivity and F1-score are defined as follows [28]: 

 
TP

Accuracy
TP FP




 (4.1) 

 
TP

Sensitivity
TP FN


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 (4.2) 

 
2 2
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  
 (4.3) 

where TP  is the number of pixels in the true positive area (image region which is 

correctly classified as CC), TN  is the number of pixels in the true negative area 

(image region which is correctly classified as background), FP  is the number of 

pixels in the false positive area (image region which is incorrectly classified as CC), 
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and FN  is the number of pixels in the false negative area (image region which is 

incorrectly classified as background). The illustration of TP (in blue), TN (in gray), 

FP (in yellow), FN (in green) is shown in Fig. 4.6. The time-cost is defined as the 

running time of generating segmentation result based on the same image. The 

experimental platform is Matlab R2011a on a computer with Intel Core i7-3667U 

CPU 2GHz and 8GB RAM.   

 

Fig. 4.6. The distribution of TP (in blue), TN (in gray), FP (in yellow), FN (in 

green). The black contour indicates the ground truth, and the red contour 

indicates the segmentation result.    

4.3.3 Experiments and Analysis 

Given the BMRI and OASIS database, we compare the segmentation performance of 

the proposed AMS-ACI technique, AMS-ACI-GAC segmentation technique, and the 

typical GAC technique [16]. The initial contour of typical GAC technique [16] is a 

quadrilateral that is manually placed on the location of CC. In the experiment, the 

principle of initial contour design is that the contour would include the CC region as 
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much as possible and include surrounding regions as less as possible. Two examples 

of initial contour of typical GAC technique [16] are shown in Fig. 4.7. 

 

 (a)                                                          (b) 

Fig. 4.7. Initial Contours of typical GAC technique [16] in the experiments 

The evaluation results are shown in Table 4.1. Accuracy, Sensitivity, F1-

score and Time-cost of different segmentation techniques using both BMRI and 

OASIS databases are compared. The values of Accuracy, Sensitivity, F1-score and 

Time-cost are represented by the average value   standard deviation. It is noticeable 

that the average accuracy of the AMS-ACI technique is higher than the other two 

segmentation techniques. For example, while the average accuracy using the AMS-

ACI technique is 98%, the accuracies of the AMS-ACI-GAC technique and typical 

GAC technique [16] are 95% and 86% respectively. In other words, the AMS-ACI is 

able to provide a close-to-target initial contour. Meanwhile, the AMS-ACI-GAC 

technique outperforms the typical GAC technique [16] in average F1-score. For 

example, while the average F1-score of CC segmentation is 85% using the typical 

GAC technique [16], the F1-score of the AMS-ACI-GAC technique is 88%, which 
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indicate that the proposed technique has higher true positive rate. As for the time-

cost, typical GAC technique [16] is about 4 times than the proposed technique, and is 

about 40 times than the AMS-ACI technique, which indicates that the AMS-ACI 

technique and the proposed segmentation technique are more efficient for real-time 

operation.  

Table 4.1. Evaluation of different segmentation techniques using the same 

database 

Segmentation 

Techniques 
Accuracy Sensitivity F1 Time Cost (s) 

AMS-ACI 0.98 0.04 0.66 0.09 0.79 0.06 2.27 0.53 

AMS-ACI-GAC 0.95 0.09 0.84 0.08 0.88 0.04 24.72 1.69 

GAC [16] 0.86 0.16 0.83 0.06 0.85 0.08 82.43 11.27 

Fig. 4.8 presents examples of comparison between ground truth and 

segmentation results based on AMS-ACI technique, AMS-ACI-GAC technique and 

typical GAC technique [16]. It can be observed that the AMS-ACI provides close-to-

target initial contour, and the AMS-ACI-GAC technique gives more accurate results 

with respect to the ground truth. 
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Ground Truth GAC [16] AMS-ACI AMS-ACI-GAC 

 

Fig. 4.8. Comparisons of segmentation results (yellow contour) between ground 

truth, typical GAC [16], proposed AMS-ACI and AMS-ACI-GAC on T1-

weighted midsagittal brain MR images.  
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4.4 Summary 

In this chapter, the development of a graphical user interface for the proposed CC 

segmentation technique has been presented. The performance evaluation results of 

AMS-ACI technique, AMS-ACI-GAC technique and typical GAC technique have 

also been provided.  
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Chapter 5  

Conclusions and Future Work 

Considering that CC region can be easily identified on visual inspection, and it is 

always adopted as the landmark of human brain. We therefore decided to develop 

and implement a CAD technique to identify this structure.  

In this thesis, we have proposed an intelligent CAD system as a tool for the 

automated segmentation of CC in T1-weighted MR images. The proposed CAD 

system can be applied to patients with epilepsy and is expected to provide useful 

information for physicians in increasing diagnosis sensitivity, and it will also provide 

the ground work for utilizing a similar technique to identify abnormal brain 

structures with epileptogenic potential. 

5.1 Conclusions 

In the proposed CAD system, we use the midsagittal plane of T1-weighted brain MR 

images, where the CC region could be best viewed. As the general schematic of the 

proposed CAD system shown in Fig. 3.1, several homogeneous regions are first 
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generated using an AMS clustering technique. A hybrid initialization technique 

including area analysis, template matching, shape and location analysis is then used 

to identify the CC region, and the boundary of CC region is extracted as the initial 

CC contour. Finally, the close-to-target initial CC contour is used in the GAC-based 

technique [16] that captures the final segmentation of the CC region. Experimental 

results show that in the proposed system, the initial contour is quite close-to-target, 

and it is extremely helpful in quick convergence of the GAC-based technique [16], 

and the GAC-based technique [16] is successful in capturing the accurate 

segmentation result of CC region. Thus, an automated system for segmentation of 

CC region in T1-weighted midsagittal brian MR images is developed.  

5.2 Future Works 

Although the proposed CAD system for the automated segmentation of CC in T1-

weighted midsagittal MR images shows promising results, there are more research 

work that could be done to improve the efficiency of the proposed CAD system. A 

few potential future research directions are as follows. 

 In the preprocessing step, only the grayscale intensity feature of the brain MR 

images is used in the AMS clustering technique as this feature has been 

demonstrated to be efficient to generate a rough shape of CC region. 

However, other features, e.g., spatial features of brain MR images, may 

provide complementary useful information for the clustering of CC region.  

 In this work, a CAD system that can segment the CC region from T1-

weighted midsagittal brain MR images has been presented. The distinction 
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between patients with epilepsy and normal people will be a more challenging 

research work. By achieving this goal, detection and analysis of abnormality 

in CC region is required.  

 In this work, the automatic segmentation of CC region has been investigated, 

which generally has clear margins. While detecting brain lesions, for example, 

brain tumors, sometimes it would be difficult to identify clear margins 

between lesions and neighboring normal brain tissues. Hybrid Fuzzy 

classification techniques could be applied to generate classes of normal and 

abnormal MRI slices [38-40].   

5.3 Publications 

The proposed technique has been published (or submitted) as follows: 

 Yue Li, Mrinal Mandal, and S. Nizam Ahmed. "Fully automated 

segmentation of corpus callosum in midsagittal brain MRIs." In Proc: The 

35th Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society (EMBC 2013). August 2013, pp. 5111-5114.  

 Yue Li, Nizam Ahmed, Mrinal Mandal. “An Efficient Technique for Corpus 

Callosum Segmentation in Midsagittal Brain MR Images,” submitted to 

ICTACT Journal on Image and Video.   
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Appendix A 

Matlab Code 

The implementation and evaluation of the algorithm developed in this thesis has 

been performed using Matlab R2011a on a computer with Intel Core i7-3667U CPU 

2GHz and 8GB RAM. In this appendix, I provide with some information about the 

MATLAB code. The list of MATLAB functions of the proposed system is shown in 

Table A.1.  

In the beginning, a user can start the segmentation by running CCSeg.m 

which will initialize the graphical user interface. The GUI provides options for 

different tasks, and it will call different Matlab functions, as the steps move forward.  
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Table A.1. List of MATLAB Functions 

No. Function Task Page 

1 CCSeg.m Graphical User Interface 55 

2 CC_AMSCluster AMS Clustering 60 

3 AMS_iter AMS iteration 64 

3 CC_Initial_Contour_Generator CC Initial Contour Generation 66 

4 template_matching Calculates matching score images 

between a template and an image 

69 

5 CC_Final_Seg Calculates a final CC boundary 72 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function varargout = CCSeg(varargin) 

% CCSeg is a function that will initialize the graphical user  

% interface of the proposed system.  

% Begin initialization code - DO NOT EDIT 

 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @CCSeg_OpeningFcn, ... 

                   'gui_OutputFcn',  @CCSeg_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 
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end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

end 

  

  

% --- Executes just before CCSeg is made visible. 

function CCSeg_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to CCSeg (see VARARGIN) 

set(handles.Btn_CCSeg,'visible','off'); 

% Choose default command line output for CCSeg 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

end 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = CCSeg_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 
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% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 % Get default command line output from handles structure 

varargout{1} = handles.output; 

end 

  

  

% --- Executes on button press in Btn_LoadIm. 

function Btn_LoadIm_Callback(hObject, eventdata, handles) 

% hObject    handle to Btn_LoadIm (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Clear Previous Result 

set(handles.Btn_CCSeg,'visible','on'); 

  

% Load Image 

% global inputimage; 

[sFileName,sPath]= uigetfile('*.jpg;*.gif','Load Image'); 

%Get Directory & Image Info. 

filename = [sPath,sFileName]; 

% ImgInfo = imfinfo(filename); 

inputimage = imread(filename); 

handles.inputimage = inputimage; 

% Update handles structure 

guidata(hObject, handles); 

% Show the original image 

handles.himg1 = imshow(inputimage,'Parent',handles.ImageWindow); 

end 

  

% --- Executes on button press in Btn_GenerateIC. 
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function Btn_GenerateIC_Callback(hObject, eventdata, handles) 

% hObject    handle to Btn_GenerateIC (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

IM = handles.inputimage; 

  

% If input RGB image, convert it to gray-scale image 

if ndims(IM) == 3 

    IM = rgb2gray(IM); 

end 

  

% Generate CC Cluster 

[CC_Cluster,Cluster_Image] = CC_AMSCluster(IM); 

  

% Load template image 

TP = rgb2gray(imread('ROI.jpg')); 

% Generate initial contour 

[CC_Initial_Contour, mask] = 

CC_Initial_Contour_Generater(IM,TP,CC_Cluster); 

  

% display the boudary with yellow contour in the original brain 

image 

% Show the original image 

handles.himg1 = imshow(IM,'Parent',handles.ImageWindow); 

hold on; 

% Plot the contour 

[A,B] = find(CC_Initial_Contour); 

row = A(1); col = B(1); 



 

59 

 

contour = bwtraceboundary(CC_Initial_Contour, [row, col], 'W', 8, 

length(A), 'counterclockwise'); 

                                

plot(contour(:,2),contour(:,1),'y','LineWidth',3);  

hold off; 

  

handles.mask = mask; 

% Update handles structure 

guidata(hObject, handles); 

end 

  

% --- Executes on button press in Btn_CCSeg. 

function Btn_CCSeg_Callback(hObject, eventdata, handles) 

% hObject    handle to Btn_CCSeg (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

IM = handles.inputimage; 

 

%% CC Seg Algorithm start here 

if ndims(IM) == 3 

    IM = rgb2gray(IM); 

end 

 

mask = handles.mask; 

 

% % Generate CC Cluster 

[Result] = CC_Final_Seg(IM,mask); 

  

% Show the Original Image 

handles.himg1 = imshow(IM,'Parent',handles.ImageWindow); 
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hold on; 

  

% Display final result  

h1 = contour(Result,[0 0],'y','linewidth',3); 

hold on; 

h2 = contour(Result,[0 0],'y','linewidth',3); 

  

hold off; 

end 

  

% --- Executes on key press with focus on Btn_LoadIm and none of its 

controls. 

function Btn_LoadIm_KeyPressFcn(hObject, eventdata, handles) 

% hObject    handle to Btn_LoadIm (see GCBO) 

% eventdata  structure with the following fields (see UICONTROL) 

%   Key: name of the key that was pressed, in lower case 

%   Character: character interpretation of the key(s) that was 

pressed 

%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) 

pressed 

% handles    structure with handles and user data (see GUIDATA) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [CC_Cluster,Cluster_Image] = CC_AMSCluster(IM) 

% CC_AMSClusternew is a function that uses the adaptive mean shift 

% (AMS) algorithm to cluster the input brain MRI based on grayscale 

% intensity. 

% 
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% Input:  

%   IM - input brain MRI 

% 

% Output: 

%   CC_Cluster - Cluster containing the CC region 

%   Cluster_Image - generated cluster map 

% 

% Copyright (c) Dr. Yakov Keselman 

% Department of Computer Science 

% Rutgers University, Piscataway 

% http:/www.yashma.org/yakovkeselman 

%  

% Changed by Yue Li, Univeristy of Alberta.  

 

IM = double(IM); 

[N,M] = size(IM); 

Image_Min_Size = 0.005*N*M;  

 

% Compute the total number of pixels in the brain MRI 

Total = numel(IM);    

  

% Selection of K (the number of neighbors that is  

% considered in calculating the adaptive bandwidth) 

numK = round(0.1*N*M); 

  

% Establish a feature space - grayscale intensity only 

gray_feature = zeros(1, max(IM(:))+1); 

pro_gray_feature = zeros(1, max(IM(:))+1); 

for i = 1:N 

   for j = 1:M 
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      gray_feature(IM(i, j)+1) = gray_feature(IM(i, j)+1)+1; 

   end 

end 

  

% Compute probability density function 

pro_gray_feature = gray_feature./Total; 

  

% Plot Grayscale Histogram 

bar(pro_gray_feature); 

set(gca,'XLim',[0 255]); 

xlabel('Range of grayscale intensities'); 

ylabel('Probability of grayscale intensities'); 

  

% Initialization 

ams_gray = gray_feature; 

k = 0; L = length(ams_gray); 

  

ColIm = reshape(IM,N*M,1); 

  

while sum(ams_gray) > Image_Min_Size 

   Non_zero_pos = find(ams_gray > 0); 

   if isempty(Non_zero_pos) == 1  

      break; 

   end 

    

   Initial = Non_zero_pos(1); 

    

   [Mode, Number_values, Mode_bandwidth] = AMS_iter (ams_gray, 

Initial,ColIm,numK); 

   Mode = round(Mode); 



 

63 

 

   k = k+1; 

   Modes(k) = Mode; 

   Mode_bandwidths(k) = Mode_bandwidth; 

   Initial_Value(k) = Non_zero_pos(1); 

   if Mode-Mode_bandwidth > 1  

       ams_gray(min(Initial, Mode-Mode_bandwidth): ... 

       min(L, Mode+Mode_bandwidth)) = ... 

       zeros(size(ams_gray(min(Initial, Mode-Mode_bandwidth): ... 

       min(L, Mode+Mode_bandwidth)))); 

      else 

          ams_gray(1:min(L, Mode+Mode_bandwidth)) = ... 

              zeros(size(ams_gray(1:min(L, Mode+Mode_bandwidth)))); 

      end 

   end 

 

Cluster_Image = zeros(N,M); 

Temp_Temp = zeros(N,M); 

Temp_Cluster_Image = zeros(N,M,k); 

B(1) = 0; C(1) = 0; 

for i = 1:k 

    To_group = find((IM >= max(1, Modes(i) - Mode_bandwidths(i)))... 

        & (IM < min(L, Modes(i) + Mode_bandwidths(i)))); 

    Cluster_Image(To_group) = i; 

     

% IM == 0 added to provide for background detection 

To_zero = find(IM == 0); 

Cluster_Image(To_zero) = 0; 

  

Segmented = Cluster_Image; 

Segments = size(Modes, 2); 
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Slices = zeros(size(IM)); 

 

CC_Cluster = zeros(size(IM)); 

count = 0; 

percentage = zeros(1,Segments); 

   for i = 1:Segments 

      Slice = (Segmented == i); 

      % some image processing - taken from morphology file 

      Slice = bwmorph(Slice, 'majority'); 

      Slice = (Slice == 0); % negation 

      Slice = bwmorph(Slice, 'majority'); 

      Slice = (Slice == 0); % negation 

      percentage = sum(Slice(:))/Total; 

      percentages(i) = percentage; 

      if (i >= Cut) && (percentage >= 0.1) 

          count = count + 1;  

          AA = ((Slice(:,:)>0)*255); 

          BB = imerode(AA, strel('rectangle', [3 3])); 

          CC_Cluster(:,:,count) = BB; 

       end 

   end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [Mode, NumberPixel,Mode_bandwidth] = AMS_iter (ams_gray, 

Initial,ColIm,numK) 

 

% AMS_iter is a function that iterates adaptive mean shift steps.  

% 

% Input:  
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%   ams_gray - Probability density function of grayscale intensity 

%   Initial - An initial point 

%   ColIm - Columnized image grayscale intensities 

%   numK - The number of neighbors that is considered in calculating 

%          the adaptive bandwidth for each data point 

% 

% Output: 

%   Mode - Generated mode 

%   NumberPixel - The number of pixels for each cluster 

%   Mode_bandwidth - The bandwidth for generated mode 

% 

% Copyright (c) Dr. Romeil Sandhu 

% Department of Electrical and Computer Engineering 

% Georgia Institute of Technology 

%   

% Changed by Yue Li, Univeristy of Alberta.  

 

NextPoint = round(Initial); 

CurrentPoint = 0; 

L = size(ams_gray, 2); 

  

    diffBetweenIterations = 10; 

    TAMS = 1; 

    while diffBetweenIterations >= TAMS 

        CurrentPoint = NextPoint; 

        pointDist = abs(CurrentPoint - ColIm); 

 

        [sortedDist,indexInOrig] = sort(pointDist); 

        Distance = sortedDist(numk); 

        bandwidth = round(Distance); 
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        Range = [max(1,CurrentPoint - bandwidth):... 

            min(L, CurrentPoint + bandwidth)]; 

        Window = ams_gray(Range); 

        numerator = full(Window * Range'); 

        NumberPixel = full(sum(Window)); 

        if numerator > 0 

            NextPoint = round(numerator/NumberPixel); 

        end 

        diffBetweenIterations = abs(CurrentPoint - NextPoint); 

end 

Mode = NextPoint; 

Mode_bandwidth = bandwidth; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

function [CC_Initial_Contour,mask] = CC_Initial_Contour_Generator 

(IM,TP,CC_Cluster) 

% CC_Initial_Contour_Generator is a function that will automatically 

% generate an initial contour using the proposed AIC technique.   

% 

% Input:  

%   IM - Input gray-scale brain MRI 

%   TP - Input CC template Image 

%   CC_Cluster - Input CC Cluster 

% 

% Output: 

%   CC_Initial_Contour - Output Generated CC Initial Contour 

%   mask - region inside the generated CC initial contour 
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% Read image and template 

ori_im = double(IM); 

tem = double(TP); 

  

[rowT,colT] = size(tem); 

row = size(CC_Cluster,1); 

col = size(CC_Cluster,2); 

im = zeros(row,col); 

  

num = size(CC_Cluster,3); 

count = 1; 

  

up = ceil(0.25*row); 

bottom = ceil(0.5*row); 

left = ceil(0.25*col); 

right = ceil(0.75*col); 

 

for i = 1 : num 

    im = CC_Cluster(:,:,i); 

     

    partim = im(up:bottom,left:right); 

     

    % Calculate SSD and NCC between Template and Image 

    [I_SSD,I_NCC] = template_matching(tem,partim); 

     

    % Find maximum correspondence in I_NCC image 

    [xa,ya] = find(I_NCC == max(I_NCC(:))); 

     

    x = up + xa;  

    y = left +ya; 
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    xx = x - ceil(rowT/2); 

    yy = y - ceil(colT/2); 

     

    % Extract the NCC region 

    NCC_region = zeros(size(tem)); 

    NCC_region = im(xx:xx + rowT, yy:yy + colT); 

  

    % Convert NCC_region into binary image 

    bg = (NCC_region<=100); 

    NCC_region(bg(:)) = 0; 

    NCC_region(~bg(:)) = 255; 

    NCC_region_bw = im2bw(NCC_region); 

  

    % Extract the largest connected area in the NCC region  

    [L, num] = bwlabel(NCC_region_bw); 

    maxarea = 0; 

    maxindex = 0; 

    for i = 1:num 

        temp = length(find(L==i)); 

        if (temp>maxarea) 

        maxarea = temp; 

        maxindex = i; 

       end 

    end 

    bw = (L == maxindex); 

  

    im = imerode(bw,strel('rectangle',[3 3])); 

  

% Extract the boundary of largestest connected area in NCC region 



 

69 

 

    bw1 = logical(zeros(row,col)); 

    bw1(xx:xx+rowT,yy:yy+colT) = bw; 

    bw2 = bwperim(bw1,8); 

    CC_Initial_Contour = bw2; 

    mask = bw1; 

    end 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [I_NCC] = template_matching(T,I) 

% template_matching is a function that calculates similarity score 

% images between a template and an image. The similarity is  

% calculated based on the normalized cross correlation (NCC)(see 

% Eq.(3.10) on page 27)  

% 

% Inputs: 

%   T - Grayscale template image 

%   I - Grayscale input image 

% Outputs: 

%   I_NCC - The similarity score image, and the calculation of  

%           similarity is based on normalized cross correlation 

% 

% Copyright (c) Dr. Dirk-Jan Kroon 

% University of Twente 

 

% Convert images to double 

T = double(T);  

I = double(I); 

[I_NCC,Idata] = template_matching_gray(T,I); 
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function [I_NCC] = template_matching_gray(T,I) 

% Calculate correlation output size  = input size + padding template 

T_size = size(T); I_size = size(I); 

outsize = I_size + T_size-1; 

  

% calculate correlation in frequency domain 

if(length(T_size) == 2) 

    FT = fft2(rot90(T,2),outsize(1),outsize(2)); 

    if(isempty(IdataIn)) 

        Idata.FI = fft2(I,outsize(1),outsize(2)); 

    else 

        Idata.FI = IdataIn.FI; 

    end 

    Icorr = real(ifft2(Idata.FI.* FT)); 

else 

    FT = fftn(rot90_3D(T),outsize); 

    FI = fftn(I,outsize); 

    Icorr = real(ifftn(FI.* FT)); 

end 

  

% Calculate Local Quadratic sum of Image and Template 

if(isempty(IdataIn)) 

    Idata.LocalQSumI = local_sum(I.*I,T_size); 

else 

    Idata.LocalQSumI = IdataIn.LocalQSumI; 

end 

  

QSumT = sum(T(:).^2); 
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if (nargout>1) 

    % Normalized cross correlation STD 

    if(isempty(IdataIn)) 

        Idata.LocalSumI = local_sum(I,T_size); 

    else 

        Idata.LocalSumI = IdataIn.LocalSumI; 

    end 

     

    % Standard deviation 

    if(isempty(IdataIn)) 

        Idata.stdI = sqrt(max(Idata.LocalQSumI- ... 

(Idata.LocalSumI.^2)/numel(T),0) ); 

    else 

        Idata.stdI = IdataIn.stdI; 

    end 

    stdT = sqrt(numel(T)-1)*std(T(:)); 

    % Mean compensation 

    meanIT = Idata.LocalSumI*sum(T(:))/numel(T); 

    I_NCC = 0.5+(Icorr-meanIT)./ (2*stdT*max(Idata.stdI,stdT/1e5)); 

  

    % Remove padding 

    I_NCC = unpadarray(I_NCC,size(I)); 

end 

  

function T = rot90_3D(T) 

T = flipdim(flipdim(flipdim(T,1),2),3); 

  

function B = unpadarray(A,Bsize) 

Bstart = ceil((size(A)-Bsize)/2)+1; 

Bend = Bstart+Bsize-1; 
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if(ndims(A)==2) 

    B = A(Bstart(1):Bend(1),Bstart(2):Bend(2)); 

elseif(ndims(A)==3) 

    B = A(Bstart(1):Bend(1),Bstart(2):Bend(2),Bstart(3):Bend(3)); 

end 

     

function local_sum_I= local_sum(I,T_size) 

% Add padding to the image 

B = padarray(I,T_size); 

  

% Calculate for each pixel the sum of the region around it, 

% with the region the size of the template. 

    s = cumsum(B,1); 

    c = s(1+T_size(1):end-1,:)-s(1:end-T_size(1)-1,:); 

    s = cumsum(c,2); 

    local_sum_I = s(:,1+T_size(2):end-1)-s(:,1:end-T_size(2)-1); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [result,pin,pout] = CC_Final_Seg(IM,mask) 

  

% CC_Final_Seg is a function that uses the Geometric Active Contour 

% (GAC)algorithm to generate the final CC contour on the input 

% brain MRI. 

% 

% Input: 

% 

% IM - input grayscale brain MR image 

% mask - Region inside the generated initial CC contour 

% 



 

73 

 

% output: 

% result - Final CC contour 

% pin - Pdf of pixel intensities in interior region of the 

% generated CC contour 

% pout - Pdf of pixel intensities in exterior region of the 

% generated CC contour 

% 

% Copyright (c) Dr. Romeil Sandhu 

% Department of Electrical and Computer Engineering 

% Georgia Institute of Technology 

% http://iss.bu.edu/tannenba/people/Romeil.Sandhu/Romeil.Sandhu.html 

% 

% Changed by Yue Li, Univeristy of Alberta. 

  

% Load an image 

IM = double(IM); 

 

% Compute sdf function 

phi = bwdist(mask) - bwdist(1-mask)+im2double(mask); 

  

% Run active contour 

[result,pin,pout] = Tryphon_NB(IM, phi); 

end 

 

 

function [phi,pin,pout] = Tryphon_NB(IM, phi) 

% Get image size dimensions 

[dimR, dimC] = size(IM); 

  

dt = 0.4; 
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alpha = 0.005; 

flag_approx = 1;  

  

% Set intensity range  

h = 1:1:256;   

  

% Run active contour 

for s = 1:150 

     

    % Find appropriate narrowband 

    index = find(phi < 2 & phi > -2);   

  

    % Index for rows/cols 

    [nrow, ncol] = ind2sub(size(phi), index); 

     

    % Initialization 

    K = zeros(size(index)); 

    d_T = zeros(size(index)); 

  

    % Set inside/outside curve points 

    in_pt = find(phi < 0) ; 

    out_pt = find(phi > 0) ; 

  

    % Compute probability density function 

    pin = create_pdf(IM(in_pt))'; 

    pout = create_pdf(IM(out_pt))'; 

      

    % Area computation 

    Ain = numel(in_pt);  

    Aout = numel(out_pt); 
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    % Compute "global" energy terms 

    T = log((pin + eps)./(pout + eps)); 

    D = sqrt(mean(T.^2) - mean(T).^2); 

 

    % Cycle through narrowband points 

    for i = 1:numel(index) 

         

        % Index properly 

        nr = nrow(i);  nc = ncol(i); ind = index(i); 

         

        % Boundary conditions 

        if((nr+1) >= nrow) nr = row-1; end 

        if((nr-1) <= 0)    nr = 2;    end 

        if((nc+1) >= ncol) nc = col-1; end 

        if((nc-1) <= 0)    nc = 2;    end 

         

        % Derivatives for kappa 

        phi_x =  phi(nr, nc+1) - phi(nr, nc-1); 

        phi_y =  phi(nr+1, nc) - phi(nr-1, nc); 

        phi_xx = phi(nr, nc+1) - 2*phi(nr, nc) + phi(nr,nc-1); 

        phi_yy = phi(nr+1, nc) - 2*phi(nr, nc) + phi(nr-1,nc); 

        phi_xy = -0.25*phi(nr-1,nc-1)- ... 

0.25*phi(nr+1,nc+1)+0.25*phi(nr-1,nc+1)+0.25*phi(nr+1,nc-1); 

                 

        % Curvature gradient flow 

        norm = sqrt(phi_x.^2 + phi_y.^2); 

        K(i) = ((phi_x.^2.*phi_yy + phi_y.^2.*phi_xx - ... 

2*phi_x.*phi_y.*phi_xy)./... 

                (phi_x.^2 + phi_y.^2 +eps).^(3/2)).*norm;        
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        % Energy to Minimize       

        delta  = Dirac2(h - (IM(ind)+1), 1); 

        delta  = delta/(sum(delta)); 

         

        % Compute curve energy 

        G = (1/Ain - 1/Aout) - delta.*(1./(Ain*pin+eps) + ... 

1./(Aout*pout+eps)); 

        d_T(i) = (1./D) * (mean(T.*G)-mean(T)*mean(G))*norm; 

        if(flag_approx); d_T(i) = .25*sign(d_T(i)); end; 

    end 

 

    % Combine energy terms 

    if(flag_approx); alpha = .125; end; 

    e = (d_T)+alpha*K; 

 

    % Find max energy 

    max_e = max(abs(e)); 

     

    % Compute update of level set function 

    phi(index) = phi(index) + (0.4/(max_e+eps))*(e); 

     

    % Redistance every 10 iterations 

    if(mod(s,10) == 0); phi = sussman(phi, .5); end 

     

% Display evolution contour  

h1 = contour(phi,[0 0],'y','linewidth',3); 

hold on; 

h2 = contour(phi,[0 0],'y','linewidth',3); 

hold off; 
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    end 

end 


