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Abstract

Internal gravity waves grow in amplitude as they propagate upwards in a

non-Boussinesq fluid and weakly nonlinear effects develop due to interactions

with an induced horizontal mean flow. In this work, a new derivation for

this wave-induced mean flow is presented and nonlinear Schrödinger equations

are derived describing the weakly nonlinear evolution of these waves in an

anelastic gas and non-Boussinesq liquid. The results of these equations are

compared with fully nonlinear numerical simulations. It is found that interac-

tions with the wave-induced mean flow are the dominant mechanism for wave

evolution. This causes modulational stability for hydrostatic waves, resulting

in propagation above the overturning level predicted by linear theory for a

non-Boussinesq liquid. Due to high-order dispersion terms in the Schrödinger

equation for an anelastic gas, hydrostatic waves become unstable and break at

lower levels. Non-hydrostatic waves are modulationally unstable, overturning

at lower levels than predicted by linear theory.
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Chapter 1

Introduction

1.1 Motivation

Vertically propagating internal gravity waves exist in stably stratified fluids,

in which the effective density decreases continuously with height. Examples of

such fluids include a liquid such as the ocean, where salinity and temperature

vary, or a gas such as the atmosphere, where the effective density is determined

by the temperature and thermodynamics of the fluid. For a fluid in which the

density does not change significantly over the total depth, it is typical to apply

the Boussinesq approximation. In this approximation, the background density

is taken to be constant in the momentum equations, with the exception of the

buoyancy term (Kundu, 1990). The approximation also requires incompress-

ibility, which has the effect of filtering sound waves from the fluid. Typically,

the Boussinesq approximation is used for the ocean, because the change in

background density over its total depth is small.

For the atmosphere, waves propagating upward over a significant height ex-

perience a large background density decrease, so their evolution is influenced

by non-Boussinesq processes. In particular, due to momentum conservation

(Eliassen and Palm, 1961), small amplitude waves launched near the ground

increase in amplitude as they propagate upwards, eventually reaching such

large amplitudes that linear theory no longer adequately models their evolu-
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tion. Thus nonlinear effects play an important role in the evolution of internal

gravity waves in the atmosphere. In order to capture correctly the effect these

waves have on the circulation of the atmosphere, it will eventually become nec-

essary to incorporate their nonlinear dynamics into general circulation models.

However, because internal gravity waves are typically too small in scale to be

resolved in a global numerical model, their dynamics presently must be in-

cluded through parameterization schemes that rely on observations and linear

theory heuristics.

Internal gravity waves can propagate in both the vertical and the horizontal

direction. In the atmosphere, the vertical propagation of these waves is usually

of more concern, since they transport momentum upwards, then overturn and

break, resulting in the deposition of their momentum into the environment.

Generation mechanisms for internal gravity waves in the atmosphere include

wind flow over mountain ranges, which launches topographic internal waves,

and convective storms in the troposphere, which launch waves into the strato-

sphere. Internal gravity waves generated by these mechanisms generally take

the form of vertically propagating quasi-monochromatic wavepackets.

Due to the decrease in background density with increasing height in the

atmosphere, a small-amplitude internal gravity wave will grow to large am-

plitude as it propagates in order to conserve momentum (Bretherton, 1966).

As the waves break and deposit their momentum at the breaking level, there

is an energy cascade to ever-smaller scales eventually resulting in dissipation

by molecular viscosity and heat diffusion (Hamilton, 1996). The deposition of

momentum by breaking internal gravity waves is often referred to as gravity

wave drag, which has the effect of accelerating local winds in the direction

of the horizontal phase speed of the waves relative to the background wind

(Hartmann, 2007).

Inclusion of the momentum source of breaking internal gravity waves in
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general circulation models induces a steady meridional wind that acts to re-

duce the temperature gradient between the poles. It also produces strato-

spheric zonal jets and a wind reversal in the mesosphere which are closer to

observations (McLandress, 1998). Accounting for these effects is important

in determining the spread of chemicals such as ozone and pollutants that are

carried by meridional winds.

One of the current challenges of internal gravity wave parameterization is

to understand the processes that lead to so-called “wave saturation”, which

refers to waves reaching overturning amplitudes. Many schemes use the model

proposed by Lindzen (1981) in which waves passing above a breaking level, the

location of which is estimated using linear theory, generate turbulence that

limits their amplitude growth as they continue to propagate vertically. The

location of breaking levels is in reality determined by many factors, including

the nonlinear effects of wave-wave interactions and interactions between waves

and the mean flow they induce. The motivation behind this research is to

determine the dominant nonlinear effects that impact wavepacket dynamics

and breaking height. This will be done through the development of weakly

nonlinear equations whose results will be compared with the results of fully

nonlinear numerical simulations.

1.2 Background

Despite the importance of nonlinear effects upon the evolution and ultimately

the breaking of waves, developing a weakly nonlinear theory for moderately

large amplitude waves has been challenging because internal gravity plane

waves provide an exact solution to the fully nonlinear equations of fluid mo-

tion. Recently, however, a new approach that examines wavepackets was suc-

cessfully employed to predict the evolution of weakly nonlinear Boussinesq

waves (Sutherland, 2006b). One purpose of this research is to extend these
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results to non-Boussinesq waves and, together with fully nonlinear numerical

simulations, test the range of validity of linear theory and explore the impact

of nonlinear effects.

Most previous studies which considered the amplitude growth of verti-

cally propagating internal gravity waves focused on wave interactions with an

existing background mean flow. It was found that transient internal waves

could modify this zonal mean flow, changing the breaking height of the waves,

as demonstrated by Dunkerton (1981) through quasi-linear numerical simula-

tions. As a large amplitude wave approached a critical level (defined as the

location where the horizontal phase speed of a wave is equal to the speed of the

background flow), its phase lines became tilted and its vertical group veloc-

ity decreased. Thus, waves interacting nonlinearly with the mean flow near a

critical level caused the position of the critical level to change over time as the

location of the mean flow descended. Numerical simulations by Fritts (1978)

supported this observation.

Fully nonlinear simulations by Grimshaw (1975) displayed differences in

the evolution of small and large amplitude Boussinesq internal waves due to

interactions with a wind shear and Doppler-shifting of the waves by the mean

flow. He observed that small amplitude wavepackets grew and narrowed prior

to dissipating, while large amplitude wavepackets remained broad, peaked at

a lower level and decayed more slowly.

Later studies confirmed that large amplitude wavepackets behaved qualita-

tively differently than the predictions of linear theory (Fritts and Dunkerton,

1984) due to nonlinear interactions with the mean flow near a critical level.

These interactions resulted in the phase speed, vertical wavenumber and group

velocity increasing at the leading edge of a wavepacket and decreasing at the

trailing edge, which caused vertical spreading. This modified the wavepacket

to such a degree that it could propagate beyond its original critical level.
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Even in the absence of any background shear or mean flow created by

wave breaking events, there can still be interactions between the waves and

the transient horizontal mean flow created by the waves themselves. Within

a wavepacket that is horizontally periodic and vertically localized, the wave

components interact with each other in such a way that a horizontal mean

flow is induced during propagation. This “wave-induced mean flow”, which is

present as soon as the waves are generated, is analogous to the Stokes Drift for

surface waves. The Stokes Drift is a second-order amplitude effect that causes

the mean Lagrangian velocity of a fluid parcel to be non-zero (Kundu, 1990).

Using Hamiltonian fluid mechanics, a form for the wave-induced mean flow

of internal waves was determined by identifying the wave-induced mean flow

as the pseudomomentum per unit mass (Scinocca and Shepherd, 1992). Just

as Noether’s theorem predicts momentum conservation in a classical system

which is invariant to horizontal translations, so pseudomomentum is a con-

served quantity for waves in a fluid system which is invariant to horizontal

translations (McIntyre, 1981). This connection with the pseudomomentum

resulted in an explicit formula for the wave-induced mean flow, given at lead-

ing order by

U(z, t) ≡ −〈ξζ〉 . (1.1)

Here ξ is the vertical displacement of the fluid caused by the waves, ζ is the

spanwise component of the vorticity, and the average is taken over one hori-

zontal wavelength. This form for the wave-induced mean flow is accurate for

small amplitude waves, and has previously been shown to be a good approxi-

mation for Boussinesq waves of even moderately large amplitude (Sutherland,

1996).

The wave-induced mean flow for Boussinesq waves was previously derived

using energy conservation relations. Bretherton (1969) used the polarization

relations to relate the mean vertical flux of horizontal momentum per unit
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mass to the mean wave energy density 〈E〉 by

〈uw〉 =

(

〈E〉

ω − kŪ

)

kcgz. (1.2)

Here u and w are the horizontal and vertical components respectively of the

fluctuation velocity, cgz is the vertical group velocity of the wave, k is the

horizontal wavenumber, and Ū(z) is the prescribed horizontal background ve-

locity. The term in parentheses in equation (1.2) is 〈A〉, the mean wave-action

density (Gill, 1982).

Separately, Acheson (1976) derived an equation relating the wave energy

density to the wave-induced mean flow:

U =
〈E〉

ω − kŪ
k = Ak. (1.3)

The derivation of this equation takes advantage of the conservation of wave

action and a heuristic comparison of terms resulting from the polarization

relations. In combination, equation (1.2) and (1.3) result in a succinct implicit

formula for the wave-induced mean flow U(z, t):

〈uw〉 = cgzU(z, t). (1.4)

Indeed, using the polarization relations for Boussinesq waves in a stationary

ambient medium, one can confirm that (1.1) and (1.4) give identical expres-

sions for U in terms of the wave amplitude. However, equations (1.1) and (1.4)

are not necessarily valid for internal gravity waves in a non-Boussinesq fluid.

In part, this thesis will develop a more intuitive method to derive a formula

for the wave-induced mean flow based upon momentum rather than energy or

wave action conservation laws.

Although the Stokes Drift does not significantly impact the evolution of

surface waves, interactions between internal waves and their wave-induced

mean flow have been shown to dominate the evolution of Boussinesq internal
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gravity wavepackets for amplitudes below breaking (Sutherland (2006a); Aky-

las and Tabaei (2005)). The nature of the interaction has been referred to

as “self-acceleration” (Fritts and Dunkerton, 1984). The wave-induced mean

flow acts to Doppler-shift the frequency of the waves significantly from linear

theory values if the waves are of moderately large amplitude. This effect can

cause the waves to overturn and break (Sutherland, 2001) if the amplitude is

so large that the wave-induced mean flow is greater than the horizontal group

velocity of the waves.

The physics that dictates how weak nonlinearity affects internal gravity

wavepackets is given by the nonlinear Schrödinger equation. This partial dif-

ferential equation describes the spatial and temporal evolution of the ampli-

tude envelope of moderately large amplitude waves. The linear Schrödinger

equation that explicitly includes the effect of translation at the group velocity

has the form

∂tA+ cgz∂zA = ı
1

2
ωmm∂zzA, (1.5)

in which A is the amplitude of the wavepacket envelope, m is the vertical

wavenumber, cgz ≡ ωm is the vertical group velocity and ωmm = ∂2ω/∂m2 is a

constant coefficient determined from the dispersion relation ω ≡ ω(m, k). The

linear equation captures only the vertical translation of the wavepacket at the

group velocity and the effects of leading-order linear dispersion upon small

amplitude waves. Nonlinearity is introduced by including the effects of self-

acceleration and higher order nonlinear dispersion. Using our formula for the

wave-induced mean flow of non-Boussinesq waves, we derive the correspond-

ing nonlinear Schrödinger equation describing the evolution of non-Boussinesq

internal gravity wavepackets.

The coefficients of the nonlinear Schrödinger equation allow us to assess

the modulational stability of the waves (Whitham (1974); Phillips (1981)).

Modulational stability and instability are weakly nonlinear effects occurring for
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moderately large amplitude dispersive wavepackets. The amplitude envelope

of modulationally unstable waves initially grows faster than expected from

linear theory, whereas the amplitude envelope of modulationally stable waves

decreases faster than predicted by linear dispersion. Thus in the latter case

modulationally stable waves are anticipated to break at levels higher than those

predicted by linear theory. Conversely, modulationally unstable waves are

expected to break at lower levels than predicted by linear theory. It is possible

for a modulationally unstable wavepacket to avoid breaking through the Fermi-

Pasta-Ulam recurrence phenomenon (Fermi et al., 1974), in which a periodic

transfer of energy among the wavenumber components is followed by a return

to the initial state. This phenomenon has been captured by numerical solutions

of the nonlinear Schrödinger equation for a deep water wave train experiencing

the Benjamin-Feir instability (Lake et al. (1977); Benjamin and Feir (1967)).

Through the inclusion of third order terms in our weakly nonlinear Schrödinger

equation, we will show that higher order linear and nonlinear dispersion breaks

the symmetry associated with Fermi-Pasta-Ulam recurrence.

Though not captured by the nonlinear Schrödinger equation, internal waves

may also transfer energy to waves of shorter wavelength and higher wavenum-

ber through parametric subharmonic instability (Klostermeyer (1991); Lom-

bard and Riley (1996)). This instability results from an interaction between

three waves, in which energy is transferred from the primary wave to two other

secondary waves of fractional frequency (Gill, 1982). It can lead to wave steep-

ening and overturning as energy cascades to smaller scales (Bouruet-Aubertot

et al., 1995). However, because the time scale for this instability is much

longer than that for weakly nonlinear modulations of a wavepacket (Suther-

land, 2006a) it is anticipated that modulational instability will emerge as the

primary mechanism determining the evolution of a wavepacket moving upward

through a non-Boussinesq fluid. We confirm this hypothesis by comparing the
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solutions of the weakly nonlinear equation with the results of fully nonlinear

numerical simulations.

In §2 we derive the wave equations appropriate for a non-Boussinesq liquid

and a non-Boussinesq gas, the latter of which is more commonly referred to as

an anelastic gas. Considering a liquid as well as a gas is useful for the following

reasons: modelling a liquid avoids the need to incorporate the thermodynamics

of a gas while still retaining many of the features of non-Boussinesq wave evo-

lution; the extension of the weakly nonlinear theory developed for Boussinesq

fluids to non-Boussinesq liquids is more direct; and non-Boussinesq internal

waves in a liquid can be examined in a laboratory setting using salt-stratified

solutions, thus providing a valuable comparison between experiments and the-

ory (Clark and Sutherland, 2009). In §3, the fully nonlinear numerical models

for the non-Boussinesq liquid and the anelastic gas equations are described.

This is followed in §4 by a comparison of the weakly and fully nonlinear dy-

namics of internal gravity waves in a non-Boussinesq liquid and an anelastic

gas. Finally, in §5 we discuss the impact of these nonlinear dynamics on the

breaking heights of the waves and we consider the discrepancies between the

breaking levels given by the fully nonlinear simulations and the predictions of

linear theory.1

1A version of chapters 2, 3, 4, and 5 regarding internal waves in a non-Boussinesq liquid

has been submitted for publication, and is currently under review. Dosser, H. V. and

Sutherland, B. R., “Weakly Nonlinear Non-Boussinesq Internal Gravity Wavepackets”, 2009.

Physica D: Nonlinear Phenomena. The work regarding waves in an anelastic gas is in

preparation for submission to the Journal of the Atmospheric Sciences. In writing this

thesis, the discussion of both papers has been combined to avoid repetition and to provide

clarity in the comparison of results.
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Chapter 2

Theory

2.1 Governing equations

This work considers the dynamics of internal gravity waves in both a non-

Boussinesq liquid and an anelastic gas. In order to arrive at the governing

equations for these waves, we begin with the fully nonlinear Euler equations

for conservation of momentum:

ρT
D~uT
Dt

= −∇PT + ~gρT . (2.1)

Here ρT is the total density and PT is the total pressure. The subscript T de-

notes a ‘total’ field and does not indicate a partial derivative. The total velocity

of a fluid parcel is given in terms of the total horizontal and vertical veloci-

ties respectively by ~uT = (uT , wT ). Restricting ourselves to two-dimensional

Cartesian co-ordinates, the material derivative is D/Dt = ∂t + uT∂x + wT∂z.

Equation (2.1) states that the acceleration of a fluid parcel depends upon the

pressure gradient and buoyancy forces that act on it. We have neglected Cori-

olis forces because our study focuses on waves with periods of a few hours or

less.

In a fluid whose total density varies little over the domain height the equa-

tions are further simplified by making the Boussinesq approximation, in which

the density is assumed to be constant except where it appears in the buoyancy

term. However, for internal waves propagating in a non-Boussinesq fluid such
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as the atmosphere, the density changes substantially with height. Thus on the

left-hand side of (2.1) we assume that ρT ≈ ρ̄(z); the influence of the density

perturbations due to the waves upon the fluid’s momentum is negligibly small

compared to that of the background density. This leads to the fully nonlinear

non-Boussinesq momentum equations for inviscid internal gravity waves:

ρ̄
D ~uT
Dt

= −∇P − gρẑ. (2.2)

Here ρT and PT have been written respectively as the sum of the background

density and pressure, ρ̄(z) and P̄ (z), and the fluctuation density and pressure,

ρ(~x, t) and P (~x, t). We have invoked background hydrostatic balance, dP̄ /dz =

−ρ̄g, in which the gravitational term in the momentum conservation equation

(2.2) is balanced by the background pressure gradient term (Vallis, 2006), so

that only the fluctuation density and pressure appear on the right-hand side

of (2.2).

The full evolution equations of the waves also include the laws for conser-

vation of internal energy and mass. These differ for waves in a liquid and in a

gas. For an incompressible liquid, neglecting diffusion of heat and salinity, we

have

∇ · ~uT = 0, (2.3)

DρT
Dt

= 0. (2.4)

These, together with (2.2), are the wave equations for a non-Boussinesq liquid.

They differ from the Boussinesq equations only in the appearance of ρ̄, rather

than a characteristic density ρ0, multiplying the acceleration terms in (2.2).

Equation (2.3) has the effect of filtering sound waves in a liquid. It results

from the need for self-consistency between the internal energy equation and

the incompressibility condition for a liquid, both of which have the form of

equation (2.4). It follows from the continuity equation in its general form

DρT
Dt

= ρT∇ · ~uT (2.5)

11



that (2.3) is satisfied.

For an anelastic gas, internal energy conservation and, consequently, buoy-

ancy forces are more conveniently cast in terms of potential temperature as

opposed to density. The fully nonlinear equations for inviscid, two-dimensional

internal gravity waves in an ideal anelastic gas are given by

D ~uT
Dt

= −∇
P

ρ̄
+
g

θ̄
θẑ, (2.6)

∇ · (ρ̄ ~uT ) = 0, (2.7)

DθT
Dt

= 0. (2.8)

Here the total potential temperature is given by

θT = TT (P0/PT )κ, (2.9)

where TT is the total temperature field, P0 is a reference pressure, and κ ≃

2/7. The potential temperature is written on the right-hand side of (2.6) as

the sum of the background potential temperature, θ̄(z), and the perturbation

potential temperature, θ(~x, t). The potential temperature is defined to be the

temperature that a parcel of air would have if brought adiabatically down to

the reference level at which PT = P0 (Kundu, 1990).

The conservation of mass for an anelastic gas is given by equation (2.7).

This is an approximation to the continuity equation (2.5), and has the same

effect as (2.3) in that it filters sound waves from the equations of motion. An

anelastic gas is sometimes described as compressible, however, this compres-

sion is caused by the passage of an internal wave, and not by sound waves.

Equations (2.6) - (2.8) represent only one of a number of versions of the so-

called anelastic approximation, known as the Ogura-Phillips anelastic model.

This model requires that the potential temperature stratification be sufficiently

weak (Klein, 2008), accomplished through the choice of a sufficiently large
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potential temperature scale height, Hθ, as compared with the density scale

height, Hρ.

In the derivation of the anelastic gas equations, an approximation is made

to relate the background and perturbation densities to the potential temper-

ature. Using the ideal gas law and the definition of potential temperature we

have:

ρT
ρ0

=
θ0

θT

(

PT
P0

)(1/γ)

. (2.10)

Here γ = 1/(1−κ) ≃ 7/5, and θ0 ≡ T0, the characteristic value of the tempera-

ture at the ground where PT = P0. If we assume that the perturbation density

and potential temperature variations are small compared to the background,

then θ can be related to ρ via

θ ≃ θ̄

(

−
ρ

ρ̄
+

1

γ

P

P̄

)

. (2.11)

The complicated relationship between these fields means that the anelastic gas

equations can not be collapsed to the equations for a non-Boussinesq liquid.

Furthermore, the background potential temperature, θ̄(z), and the back-

ground density, ρ̄(z), cannot be specified independently. Once the θ̄ profile

has been specified, the background density is (Nault and Sutherland, 2008):

ρ̄ =
ρ0T0

θ̄

[

1 − Γd

∫ z 1

θ̄(z)
dz

]
1−κ

κ

. (2.12)

Here ρ0 is the density at the reference level, and κ ≃ 2/7. The adiabatic lapse

rate, Γd, is the rate of temperature decrease with height of a dry parcel of air

moving upwards in an adiabatic atmosphere.

Apart from the use of θ rather than ρ in the conservation of momentum

and internal energy equations, (2.6) and (2.8), there are two main differences

between the anelastic gas and the non-Boussinesq liquid equations. While

both sets of equations filter sound waves, the anelastic equations allow for

expansion and contraction of the gas due to changes in pressure, while the
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non-Boussinesq liquid is incompressible. The anelastic gas equations (2.6) -

(2.8) also differ from their counterparts for a non-Boussinesq liquid (2.2) -

(2.4) because they involve both the background density and the background

potential temperature, which are related by (2.12). The lack of gas thermody-

namics in the non-Boussinesq liquid equations is advantageous in that it allows

us to study a system involving only the background density while nonetheless

capturing many key features of anelastic wave development.

2.2 Dispersion Relations

The behaviour of small amplitude internal gravity waves is described by the

dispersion relation and the polarization relations. This is done here for both

an anelastic gas and a non-Boussinesq liquid. We begin by linearizing the

equations of motion for an anelastic gas (this is done in standard textbooks,

for an example see Gill (1982)):

∂~uT
∂t

= −∇

(

P

ρ̄

)

+
g

θ̄
θẑ, (2.13)

∇ · (ρ̄~uT ) = 0, (2.14)

∂θ

∂t
= −wT

dθ̄

dz
. (2.15)

The total horizontal and vertical velocity fields are related to the total mass-

streamfunction, ΨT , by uT = −1
ρ̄
∂ΨT

∂z
and wT = 1

ρ̄
∂ΨT

∂x
. The total spanwise

vorticity field, ζT ≡ ∇× ~uT , is given in terms of the mass-streamfunction by

ζT =
1

ρ̄

[

−∇2ΨT +
1

ρ̄

dρ̄

dz

∂ΨT

∂z

]

. (2.16)

We now recast (2.13) as a single equation for the total mass-streamfunction

and fluctuation potential temperature:

1

ρ̄

∂

∂t
∇2ΨT =

g

θ̄

∂θ

∂x
+

1

ρ̄2

dρ̄

dz

∂2ΨT

∂t∂z
. (2.17)
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Using (2.15) to eliminate θ gives

∂2

∂t2
∇2Ψ = −

g

Hθ

∂2Ψ

∂x2
−

1

Hρ

∂3Ψ

∂t2∂z
, (2.18)

where Hρ is the density scale height in the fluid, defined by

Hρ ≡ −

(

1

ρ̄

dρ̄

dz

)

−1

, (2.19)

and Hθ is the potential temperature scale height,

Hθ ≡

(

1

θ̄

dθ̄

dz

)

−1

. (2.20)

Since we are concerned only with the wave dynamics in a stationary ambient,

we have neglected any background motion so that in (2.18) the fluctuation

mass-streamfunction is equal to the total mass-streamfunction Ψ = ΨT .

We assume that the background potential temperature is increasing ex-

ponentially, θ̄(z) = θ0 exp(z/Hθ), so that the stratification is uniform. This

leads to a constant squared buoyancy frequency of N2 ≡ (g/θ̄)dθ̄/dz = g/Hθ.

The buoyancy frequency, also referred to as the Brunt-Väisälä frequency, rep-

resents the natural frequency of oscillation of a vertically displaced fluid par-

cel (Kundu, 1990). The definition of the buoyancy frequency implies that

Hθ = Hθ0 , and based on equation (2.12) we will also set Hρ ≈ Hρ0 . Thus

(2.18) becomes

∂2

∂t2
∇2Ψ = −N2∂

2Ψ

∂x2
−

1

Hρ

∂3Ψ

∂t2∂z
, (2.21)

in which we now have constant coefficients on the right-hand side of the equa-

tion.

We assume a plane wave solution of the form

f = Af exp
[

ı(k̃x+ m̃z − ωt)
]

+ c.c., (2.22)

in which f can represent any of the basic state fields, and c.c. denotes the

complex conjugate. Af describes the one quarter peak-to-peak amplitude and

phase of the wave, and k̃ and m̃ are constants.
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Defining Formula Relationship to Ψ
Ψ AΨ

u = −1
ρ̄
∂zΨ Au = −1

ρ̄

(

ım− 1
2Hρ

)

AΨ

w = 1
ρ̄
∂xΨ Aw = −1

ρ̄
ıkAΨ

ζ = −1
ρ̄
[∇2Ψ + 1

Hρ
∂zΨ] Aζ = 1

ρ̄
N2 k2

ω2AΨ

w = ∂ξ
∂t

Aξ = −1
ρ̄
k
ω
AΨ

ξ ≈ −θ
(

∂θ̄
dz

)

−1

Aθ ≈
1
ρ̄
∂θ̄
dz

k
ω
AΨ

ρ ∼ ρ̄
θ̄
θ Aρ ∼ − 1

Hθ

k
ω
AΨ

Table 2.1: Polarization relations for small amplitude waves in an anelastic gas.

Substituting (2.22) into (2.21) with f = Ψ we see that internal waves in

an anelastic gas satisfy

ω2 = N2 k̃2

k̃2 + m̃2 − ı m̃
Hρ

. (2.23)

Since the background mean flow is assumed constant, we have that ω and

k̃ = k must be real-valued. This implies that the imaginary part of m̃2 + ı m̃
Hρ

must be zero. This condition requires that m̃i = 1
2Hρ

. Setting the real part

of m̃ equal to the vertical wavenumber m, we conclude that the frequency

of small amplitude anelastic internal gravity waves is given by the dispersion

relation,

ω = N
k

(

k2 +m2 + 1
4H2

ρ

)1/2
. (2.24)

in which k and m are the horizontal and vertical wavenumbers respectively.

This corresponds to a plane wave whose mass-streamfunction has the form

Ψ = AΨ exp [ı(kx+mz − ωt) − z/2Hρ] + c.c. (2.25)

The polarization relations of other fields are listed in Table 2.1. Although the

mass-streamfunction is predicted to decrease in amplitude exponentially over

an e-folding distance 2Hρ, most other wave fields are related to Ψ through

a factor proportional to 1/ρ̄, given by (2.12), which increases exponentially
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with height faster than the exponential decrease described by exp(−z/2Hρ).

Note that (2.25) combined with the polarization relations for u and w predict

exponential growth of velocity fluctuations with height. This is referred to as

anelastic growth.

We now repeat the above procedure for internal gravity waves in a non-

Boussinesq liquid (this is done for the first time in this thesis). We first linearize

the equations of motion (2.2) - (2.4) as follows:

ρ̄
∂ ~uT
∂t

= −∇P − gρẑ, (2.26)

∇ · ~uT = 0, (2.27)

∂ρ

∂t
= −wT

dρ̄

dz
. (2.28)

As a consequence of (2.27), the components of the total horizontal and vertical

velocity fields are given in terms of a scalar function, the total streamfunction

ψT , by uT = −∂zψT and wT = ∂xψT , respectively. This is different from the

mass-streamfunction used in the anelastic case, as it does not include the back-

ground density. The total vorticity field corresponding to the streamfunction

is ζT ≡ ∂zuT − ∂xwT = −∇2ψT . Thus, the linearized momentum conserva-

tion equations can be recast as one equation for the total streamfunction and

fluctuation density

∂2

∂t2
∇2ψT = −

g

ρ̄

∂ρ

∂x
−

1

ρ̄

dρ̄

dz

∂2ψT
∂t∂z

. (2.29)

Using (2.28) to eliminate ρ leads to the equation

∂2

∂t2
∇2ψ = −

g

Hρ

∂2ψ

∂x2
+

1

Hρ

∂3ψ

∂t2∂z
. (2.30)

In (2.30) we have neglected any background motion independent of the waves,

so that the fluctuation streamfunction is equal to the total streamfunction,

ψ = ψT .
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Defining Formula Relationship to ψ
ψ Aψ

u = −∂zψ Au = −
(

ım+ 1
2Hρ

)

Aψ

w = ∂xψ Aw = −ıkAψ

ζ = −∇2ψ Aζ =
(

k2 +m2 − 1
4H2

ρ
− ı m

Hρ

)

Aψ

w = ∂ξ
∂t

Aξ = − k
ω
Aψ

ξ ≈ Hρ
ρ
ρ̄

Aρ ≈ −ρ̄ k
Hρω

Aψ

Table 2.2: Polarization relations for small amplitude waves in a non-Boussinesq
liquid.

We assume the liquid is uniformly stratified so that ρ̄ = ρ0 exp(−z/Hρ).

In contrast to the anelastic case, it is the background density that is changing

exponentially, rather than the potential temperature. The squared buoyancy

frequency, given for a non-Boussinesq liquid by N2 ≡ −(g/ρ̄)dρ̄/dz = g/Hρ,

is therefore constant. Substituting this form into (2.30) results in an equation

that is identical to (2.21) for an anelastic gas, with Ψ replaced by ψ.

The frequency of small amplitude non-Boussinesq internal waves is there-

fore given by a dispersion relation identical to that for small amplitude in-

ternal waves in an anelastic gas; equation (2.24). The streamfunction of a

non-Boussinesq plane wave has the form

ψ = Aψ exp [ı(kx+mz − ωt) + z/2Hρ] + c.c. (2.31)

This increases exponentially with height, in contrast to the behaviour of the

mass-streamfunction for an anelastic gas (2.25). The polarization relations of

other fields for a non-Boussinesq liquid are listed in Table 2.2.

2.3 Wave-induced mean flow

The form for the wave-induced mean flow of internal gravity waves in an anelas-

tic gas was rigorously derived using Hamiltonian fluid dynamics (Scinocca and

Shepherd, 1992), and is given by equation (1.1). It is possible to gain an un-
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derstanding of the physical meaning the wave-induced mean flow in this form

by using Stokes’ Theorem, as described in Appendix A.

The wave-induced mean flow as given by equation (1.1) can be recast in

terms of the mass-streamfunction amplitude, AΨ, via the polarization relations

for anelastic internal gravity waves:

U =
1

2
N2 k

3

ω3

1

ρ̄2
|AΨ|

2 exp(−z/Hρ). (2.32)

Note that U increases with height as a direct consequence of momentum con-

servation, which requires ρ̄U to be constant with height. We can also express

U in terms of the initial vertical displacement of the waves, Aξ, as:

U =
1

2
N2 k

ω

1

ρ̄2
|Aξ|

2 exp(−z/Hρ). (2.33)

While (1.1) describes the wave-induced mean flow for Boussinesq waves and for

anelastic waves in a gas, the corresponding form for non-Boussinesq waves in a

liquid has not previously been determined. We will do so based on momentum

conservation arguments.

This task is non-trivial because plane internal gravity waves are an exact

solution to the fully nonlinear equations. To see this, consider the advective

terms in the governing equations. If we evaluate the fluctuation quantities

using the polarization relations we see that the advective operator becomes

~u · ∇ → u(ık) + w(ım+
1

2Hρ

) = ıku+ ımw +
w

2Hρ

. (2.34)

However, equation (2.3) gives ıku + ımw + w/2Hρ = 0. Therefore, the non-

linear advective terms in the fully nonlinear equations evaluate to zero. As a

consequence, the standard procedure first developed by Stokes to derive the

formula for the drift associated with surface waves (Whitham, 1974) cannot

be applied to internal waves.

Instead we develop a formula for the drift associated with internal waves

based upon the evolution of wavepackets. Assuming the waves are horizontally
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periodic but have localized structure in the vertical, we write a wavepacket in

the form:

f = Af (z, t) exp [ı(kx+mz − ωt) + z/2Hρ] + c.c., (2.35)

where f can represent any of the basic state fields and Af (z, t) specifies the

shape of the wavepacket envelope. Following the typical approach, detailed

for example by Bretherton (1966), we require that our wavepacket experience

slow enough amplitude modulation that the packet is quasi-monochromatic

and propagates vertically at the group velocity, cgz = ∂ω/∂m.

The total velocity field ~uT (x, z, t) is separated into the mean horizontal flow

induced by the waves, U(z, t), and the fluctuation velocities (u,w). In order

to derive an equation for U , we begin by writing the horizontal momentum

equation from (2.2) in flux-form using (2.3):

∂tuT = −

[

∂x(uTuT ) + ∂z(uTwT ) +
1

ρ̄
∂xP

]

. (2.36)

To determine the wave-induced mean flow at leading order, we then extract

terms independent of x on the right-hand side of (2.36). For example, for two

fields f and g, each of the form (2.35), the x-independent part of the product

fg is (Af (Ag)
⋆ + (Af )

⋆Ag) exp(z/Hρ), in which the star denotes the complex

conjugate. This operation is equivalent to computing the horizontal average.

Expanding uT = U + u and wT = w, for which 〈u〉 = 〈w〉 = 0, and identifying

the left-hand side of (2.36) as the time rate of change of the wave-induced

mean flow gives

∂tU = −∂z 〈uw〉 . (2.37)

In order to implement perturbation theory, we shift into a reference frame

moving at the vertical group speed of the wavepacket, cgz, so that the new

vertical co-ordinate is given by Z ≡ ǫ(z−cgzt) and the new time co-ordinate is

T ≡ ǫ2t. Here ǫ ≡ 1/(kσ) is a non-dimensional measure of the vertical extent,

σ, of the wavepacket amplitude envelope. Our time co-ordinate measures the
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slow evolution of the wavepacket envelope due to linear dispersion. This scales

as ǫ2 according to the terms on the right-hand side of equation (1.5).

Thus to order ǫ we have ∂tU ≈ −cgz∂ZU and ∂z 〈uw〉 ≈ ∂Z 〈uw〉 in (2.37).

Provided the wavepacket is so broad that ǫ ≪ 1, perturbation theory at first

order leads to

cgz∂ZU = ∂Z 〈uw〉 . (2.38)

Integrating both sides with respect to Z leads to the final form for the wave-

induced mean flow

U =
1

cgz
〈uw〉 , (2.39)

which is identical to (1.4), although that formula was derived heuristically

from wave action conservation for plane waves. Equation (2.39) represents

the wave-induced mean flow for a wavepacket in a Boussinesq fluid or a non-

Boussinesq liquid. In the former case, the polarization relations can be used

to show that (2.39) is equivalent to (1.1).

The derivation of (2.39) shows that the wave-induced mean flow of a

wavepacket is essentially the result of momentum being transported upward

at the vertical group velocity: ρ̄ 〈uw〉 = cgz(ρ̄U). That is, the vertical flux of

horizontal momentum is equal to the transport of the momentum associated

with the wave-induced mean flow moving upwards at the group velocity. This

is analogous to the vertical flux of energy, which is well known to equal the

transport of energy upwards at the vertical group velocity.

The wave-induced mean flow can be related to the vertical displacement

amplitude of the wavepacket, Aξ, at leading order through the use of polariza-

tion relations for non-Boussinesq internal gravity waves. Then (2.39) becomes

U =
1

2
N2 k

ω
|Aξ|

2 exp (z/Hρ) . (2.40)

This is given in terms of the stationary co-ordinate z. The time evolution of

U is given by shifting to the translating co-ordinate Z.
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2.4 Anelastic Schrödinger equation

Now that the forms for the wave-induced mean flow in both a non-Boussinesq

liquid and an anelastic gas have been determined, it is possible to derive the

nonlinear Schrödinger equations describing the weakly nonlinear evolution of

the waves. We will begin with the case of an anelastic gas. The derivation

of the weakly nonlinear Schrödinger equation for internal gravity waves in an

anelastic gas combines the vertical and horizontal conservation of momentum

equations from (2.6) with the energy conservation equation (2.8) and the in-

compressibility condition (2.7). Note that in the development of the weakly

nonlinear equations viscosity will be neglected. We assume an approximately

constant density scale height, Hρ ≈ Hρ0 , and a constant background buoyancy

frequency, N , over the width of the wavepacket, as was done in the derivation

of the dispersion relation.

The first step in the derivation is to take the cross-product of the momen-

tum equation so that the pressure gradient terms are eliminated:

∂

∂z

[

DuT
Dt

= −
∂

∂x

(

P

ρ̄

)]

−
∂

∂x

[

DwT
Dt

= −
∂

∂z

(

P

ρ̄

)

+
g

θ̄
θ

]

The resulting equation, once the derivatives of each term in the material deriva-

tive have been evaluated, becomes

D

Dt
[∂zuT − ∂xwT ] = −

g

θ̄
∂xθ − [∂xuT + ∂zwT ] [∂zuT − ∂xwT ] ,

in which partial derivatives have now been denoted by subscripts on ∂ for

convenience. In order to simplify the last term on the right hand side, we use

(2.7):

∇ · (ρ̄~uT ) = ρ̄ (∂xuT + ∂zwT ) +
dρ̄

dz
wT = 0.

Combining this with the definition of the vorticity, ζT ≡ ∂zuT − ∂xwT , results

in the following equation for the total vorticity and the perturbation potential
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temperature fields:

D

Dt
ζT = −

g

θ̄

∂θ

∂x
−

1

Hρ

wT ζT . (2.41)

We replace ζ with the mass-streamfunction Ψ via (2.16) and (2.19), to give

D

Dt

{

−
1

ρ̄

[

∇2ΨT +
1

Hρ

∂ΨT

∂z

]}

= −
g

θ̄

∂θ

∂x
−
wT
Hρ

{

−
1

ρ̄

[

∇2ΨT +
1

Hρ

∂ΨT

∂z

]}

.

In order to put this equation into a more tractable form, it is first neces-

sary to expand the terms and then simplify. The primary steps are as follows:

expand the material derivative, multiply out all the terms, and bring every-

thing except the term involving the perturbation potential temperature onto

the left-hand side of the equation. At this stage in the derivation, the following

substitutions are made:

ΨT (x, z, t) = Ψ(x, z, t) + Ψ̄(z, t),

uT (x, z, t) = u(x, z, t) + U(z, t) = −
1

ρ̄

∂Ψ

∂z
−

1

ρ̄

∂Ψ̄

∂z
,

wT (x, z, t) = w(x, z, t) =
1

ρ̄

∂Ψ

∂x
.

The resulting equation will contain only the perturbation mass-streamfunction,

Ψ, the wave-induced mean flow, U = −1
ρ̄
∂zΨ̄, the background density, ρ̄, and

the perturbation potential temperature, θ, as variables.

If we replace the acceleration due to gravity by HθN
2, and simplify terms

involving the background potential temperature using the definition of the

potential temperature scale height (2.20), we have

∂txxΨ + ∂tzzΨ +
1

Hρ

∂tzΨ + U∂xxxΨ + U∂xzzΨ +

1

Hρ

U∂xzΨ −
1

Hρ

∂zU∂xΨ − ∂zzU∂xΨ

= N2ρ̄

(

dθ̄

dz

)

−1

∂xθ. (2.42)

We are looking for an equation that will capture the evolution of the waves

due only to their interactions with the wave-induced mean flow. If the mass-

streamfunction and potential temperature of the wavepackets are expressed
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as

Ψ = AΨ(z, t) exp(ıkx+ ımz − ıωt− z/2Hρ) + c.c.,

θ = Aθ(z, t) exp(ıkx+ ımz − ıωt− z/2Hρ) + c.c.,

then only the exp(ıkx + ımz − ıωt − z/2Hρ) terms represent the wave-like

behaviour we are trying to capture. Any other terms will be neglected.

Now we convert (2.42) into an equation for AΨ and Aθ, keeping in mind

that the amplitude of the wavepacket can change with time, t, and height,

z. Thus, derivatives with respect to x will introduce factors of ık, derivatives

with respect to t will introduce factors of [∂t − ıω], and z-derivatives will intro-

duce factors of
(

∂z + ım− 1
2Hρ

)

, in which the derivatives now act only on the

envelope functions AΨ and Aθ. Following some simplification of terms, (2.42)

becomes a differential equation for the evolution of the amplitude envelope:

{

(∂t − ı [ω − kU ])

[

−k2 −m2 −
1

4H2
ρ

+ ∂zz + 2ım∂z

]

−

ık

[

1

Hρ

∂zU + ∂zzU

]}

AΨ = ıkN2ρ̄

(

dθ̄

dz

)

−1

Aθ. (2.43)

So far, we have combined three out of the four governing equations. If we

apply a similar procedure to (2.8), we arrive at a second differential equation

for the perturbation mass-streamfunction and potential temperature ampli-

tude envelopes:

(∂t − ı [ω − kU ])Aθ = −ık
1

ρ̄

dθ̄

dz
AΨ. (2.44)

We combine this equation with (2.43) to eliminate the potential temperature,

by multiplying both the LHS and RHS of that equation by (∂t − ı [ω − kU ]).

This results in a single differential equation describing the evolution of AΨ:

(∂t − ı [ω − kU ]) ×
{

(∂t − ı [ω − kU ])
[

∂zz + 2ım∂z − κ2 − 1
4H2

ρ

]

− ık
[

∂zzU + 1
Hρ
∂zU

]}

AΨ

= k2N2AΨ (2.45)
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in which κ2 ≡ k2 +m2.

To arrive at the nonlinear Schrödinger equation, we use a perturbation

expansion retaining terms up to third order. First we shift into a frame moving

at the initial vertical group velocity of the wave. Our new vertical co-ordinate

is given by Z = ǫ(z − cgzt) so that ∂z = ǫ∂Z , and our new time co-ordinate is

T = ǫ2t so that ∂t = ǫ2∂T − ǫcgz∂Z . Here ǫ is a small parameter, defined as

ǫ ≡ 1/(kσ) ≪ 1, with σ being the vertical width of the wavepacket’s amplitude

envelope. Furthermore, for leading order dispersion to balance nonlinearity, we

require that the maximum amplitude of the initial mass-streamfunction field

be large enough such that β ≡ ‖AΨ0
‖(k2/ρ0N

2) is of order ǫ. This also implies

that the wave-induced mean flow U , which is proportional to the amplitude

squared, will scale as ǫ2. We apply this transformation to equation (2.45),

multiply out the terms, and then group according to their order in ǫ. It is

important to note that Z-derivatives act on U as well as on AΨ, meaning that

the order of multiplication is crucial.

The resulting equation contains terms up to order ǫ6. The order ǫ0 terms

reproduce the dispersion relation (2.24). Since we have shifted into a frame of

reference moving at the vertical group velocity, the order ǫ1 terms give 0 = 0.

The second result justifies our use of the polarization relations from linear

theory in the derivation of (2.45). At order ǫ2, the equation is

{

2ω [ı∂t − kU ]

[

κ2 +
1

4H2
ρ

]

+ ω2

[

3m2

κ2 + 1
4H2

ρ

− 1

]

∂ZZ

}

AΨ = 0,

and at order ǫ3 we have:

{

2ωm∂T∂Z + 2ıωmkU∂Z − ωk
[

ım+ 1
Hρ

]

∂ZU + 2ıω2m
κ2+ 1

4H2
ρ

[

m2

κ2+ 1

4H2
ρ

− 1

]

∂ZZZ

}

AΨ = 0.

In order to combine these two equations, we expand our amplitude envelope

function as a power series in ǫ so that AΨ = A0 + ǫ1A1 + ǫ2A2 + ..., and then
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add the order ǫ2 equation to the order ǫ3 equation. We once again extract the

order ǫ2 and ǫ3 pieces, and use the ǫ2 equation to eliminate the ∂T∂Z term

in the ǫ3 equation. Recasting the resulting equation in terms of AΨ and our

original co-ordinates z and t gives the weakly nonlinear Schrödinger equation

for waves in an anelastic gas:

∂tAΨ + cgz∂zAΨ = (2.46)

ı1
2
ωmm∂zzAΨ + 1

6
ωmmm∂zzzAΨ − ıkUAΨ + 1

2
ω2

N2k

(

3m− ı
Hρ

)

(∂zU)AΨ.

The coefficients of the terms on the right-hand side are

ωmm = ∂2ω
∂m2 = w

κ2+ 1

4H2
ρ

[

3m2

κ2+ 1

4H2
ρ

− 1

]

,

ωmmm = ∂3ω
∂m3 = −3ωm

„

κ2+ 1

4H2
ρ

«

2

[

5m2

κ2+ 1

4H2
ρ

− 3

]

. (2.47)

The wave-induced mean flow, U , which is proportional to |AΨ|
2, is given by

(2.32).

Comparing (2.46) to (1.5), we see it includes terms describing the trans-

lation of the wavepacket at the vertical group velocity (second term on the

LHS) as well as second and third order linear dispersion terms (first and sec-

ond terms on the RHS). Note that the ‘leading-order’ linear dispersion term is

actually second order in ǫ. The second term on the right hand side of (2.46),

which is third-order in ǫ, is necessary to capture the linear dispersion of waves

moving close to the fastest vertical group velocity, for which ωmm ≈ 0.

The nonlinear third term on the right hand side of (2.46) represents the

Doppler shifting of the waves by the wave-induced mean flow. This is a type of

nonlinear dispersion in which the extrinsic frequency of the waves, Ω = ω−kU ,

is modified by their interactions with the induced mean flow. The last term on

the right hand side of (2.46) is also a third-order term accounting for nonlinear

dispersion resulting from the shear associated with the wave-induced mean

flow. This term captures effects unique to waves in an anelastic fluid. We
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will show that including the third-order linear and nonlinear dispersion terms

is necessary to capture the symmetry breaking observed for modulationally

unstable waves.

With the inclusion of only the first three terms on the right-hand side of

(2.46), in the limit Hρ → ∞, the equation becomes that derived for Boussinesq

waves (Sutherland, 2006b). If we also neglect the third-order term, we are left

with a special case of the formula derived by Akylas and Tabaei (2005).

2.5 Non-Boussinesq Schrödinger equation

We now turn our attention to the derivation of the corresponding weakly

nonlinear Schrödinger equation for internal waves in a non-Boussinesq liquid.

Our approach is a continuation of the procedure used to find the wave-induced

mean flow, (2.39). Returning to the governing equations, we take the curl of

the momentum conservation equations given by (2.2) and, using (2.3), get two

coupled nonlinear equations for the total streamfunction and the fluctuation

density:

D

Dt
∇2ψT = −

g

ρ̄

∂ρ

∂x
−

1

ρ̄

dρ̄

dz

D

Dt
∂zψT , (2.48)

Dρ

Dt
= −

dρ̄

dz

∂ψ

∂x
. (2.49)

In the case of uniform stratification, for which we have an exponentially

decreasing background density profile, the vertical displacement of the waves,

ξ, is related to the fluctuation density by

ξ = −Hρ ln

[

1 −
ρ

ρ̄

]

≈ Hρ
ρ

ρ̄
, (2.50)

the approximation being valid if |ρ/ρ̄| ≪ 1. Using the polarization relations,

we can also relate ξ to the streamfunction through Aξ = −(k/ω)Aψ.

Our goal is to derive an approximate equation for the weakly nonlinear

evolution of the wavepacket in terms of the vertical displacement amplitude
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envelope Aξ(z, t). We will assume that initial weakly nonlinear effects result

only from interactions between the waves and the wave-induced mean flow.

Thus we write ψT = ψ̄ + ψ with U = −∂zψ̄ and U given by equation (2.39).

Following the approach of Sutherland (2006b), (2.48) and (2.35) are combined

and the coefficients of the exp [ı(kx+mz − ωt) + z/2Hρ] terms are extracted

to give a differential equation for the streamfunction and vertical displacement

amplitude envelopes, Aψ and Aξ:

{

[∂t − ı(ω − kU)]

[

∂zz + 2ım∂z − κ2 −
1

4H2
ρ

]

−ık

[

∂zzU −
1

Hρ

∂zU

]}

Aψ = −ıkN2Aξ. (2.51)

Independently, (2.50) and (2.49) are combined with (2.35) to give a second

equation for Aψ and Aξ:

[∂t − ı(ω − kU)]Aξ = ıkAψ, (2.52)

in which we have once again extracted only the coefficients of the wave-like

terms occurring in combination with exp [ı(kx+mz − ωt) + z/2Hρ].

Equation (2.52) is used to eliminate Aψ from (2.51), resulting in a single

differential equation for the evolution of Aξ:

{

[∂t − ı(ω − kU)][∂zz + 2ım∂z − κ2 − 1
4H2

ρ
] − ık[∂zzU − 1

Hρ
∂zU ]

}

×

[∂t − ı(ω − kU)]Aξ = k2N2Aξ, (2.53)

in which U is given by (2.39). This equation differs from the anelastic equa-

tion (2.45) in the sign of the ∂zU term, the location of the [∂t − ı (ω − kU)]

operator, and in the use of Aξ rather than AΨ.

We transform into a frame of reference with vertical co-ordinate Z ≡ ǫ(z−

cgzt) and time co-ordinate T ≡ ǫ2t and we apply perturbation theory requiring

that the vertical width of the wavepacket be sufficiently large such that ǫ ≡

1/(kσ) ≪ 1. For leading order dispersion to balance nonlinearity we require
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that the maximum vertical displacement Aξ0 be large enough such that α ≡

‖Aξ0‖k is of order ǫ. Keeping terms up to third order in ǫ and recasting the

result in terms of z and t gives the weakly nonlinear Schrödinger equation for

Aξ:

∂tAξ + cgz∂zAξ = (2.54)

ı1
2
ωmm∂zzAξ + 1

6
ωmmm∂zzzAξ − ıkUAξ + 1

2
ω2

N2k

(

m+ ı
Hρ

)

(∂zU)Aξ.

Here the left-hand side explicitly includes the advective derivative describing

the vertical translation of the wavepacket at the group velocity. The coeffi-

cients of the linear terms on the right-hand side are given by (2.47), as in the

anelastic case. A comparison of this equation with its anelastic counterpart

(2.46) reveals a surprising similarity. The only differences are the choice of

Aξ instead of AΨ, and the coefficient of the (∂zU)Aξ term. This similarity in

the weakly nonlinear equations re-emphasizes the potential usefulness of the

equations for a non-Boussinesq liquid as a proxy for the more complicated case

of an anelastic gas.
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Chapter 3

Numerics

In order to determine how accurately the nonlinear Schrödinger equations

(2.46) and (2.54) capture the evolution of a two dimensional, vertically lo-

calized, horizontally periodic wavepacket, numerically integrated solutions of

these equations will be compared with the results of fully nonlinear numerical

simulations of wavepacket propagation in uniformly stratified fluid with no

background shear save that due to the wave-induced mean flow.

3.1 Non-dimensionalization

We non-dimensionalize the equations used in both the weakly and the fully

nonlinear numerical simulations so that the relative space and time scales are

set by N and k. We choose the characteristic length scale to be L = k−1

and the time scale to be T = N−1, in which N2 = g/Hθ for an anelastic

gas and N2 = g/Hρ for a non-Boussinesq liquid. The results given here will

be normalized by these parameters or, where conceptually convenient, by the

horizontal wavelength λx = 2π/k and the buoyancy period TB = 2π/N .

In the atmosphere, a typical value of Hθ is 100km and a typical value of Hρ

is 10km. With g ≈ 10m/s2, this gives N ≈ 0.01s−1 for an anelastic gas or N ≈

0.03s−1 for a non-Boussinesq liquid. Internal waves in the atmosphere have

a wide range of spatial scales, which depend on their generation mechanism.
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m/k ω/N cgz
k
N

ωmm
k2

N
ωmmm

k3

N

−0.4 0.93 0.32 −0.470 −1.91
−0.7 0.82 0.38 −0.008 −1.05
−1.4 0.58 0.27 0.193 0.09

Table 3.1: Relevant parameters and coefficients of (2.46) & (2.54) for the
anelastic gas and non-Boussinesq liquid simulations presented herein.

For the waves considered herein, typical values of the horizontal wavenumber

range from k = 0.1km−1 to 10km−1, which correspond to characteristic length

scales from L = 10km to 0.1km.

The background potential temperature will be normalized by a constant

characteristic value θ0, and the background density by ρ0. Typical atmospheric

values are θ0 ≈ 300K and ρ0 ≈ 1kg/m3. The perturbation potential temper-

ature and density are normalized by Hθ/θ0 and Hρ/ρ0 respectively, reflecting

the relatively small scale of the perturbations fields compared to background

variations.

The normalized parameters for the simulations examined in detail are pro-

vided in Table 3.1. The corresponding initial wavepacket amplitudes, α and β,

as well as the initial and maximum values of the wave-induced mean flow, U0

and UMax, are given in Table 3.2. These values are used in the normalization

of the wave-induced mean flow field for the figures presented in §4. In all cases

the waves start with a relatively small amplitude and are allowed to propagate

vertically upward. An initial exponential increase in amplitude as predicted

by linear theory followed by the development of weakly nonlinear effects is

anticipated.

We will begin by describing the numerical solution of the fully nonlinear

anelastic equations in detail. The solution method for the non-Boussinesq

simulations is similar, and the discrepancies between the two methods are

detailed in section 3.3.
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Anelastic Non-Boussinesq
m/k β U0

k
N

UMax

k
N

α U0
k
N

UMax

k
N

−0.4 0.001 0.00006 0.00029 0.03 0.00051 0.031
−0.7 0.001 0.00008 0.00072 0.03 0.00057 0.066
−1.4 0.001 0.00024 0.00076 0.03 0.00081 0.015
−0.4 0.015 0.020 0.15 0.07 0.0026 0.19
−0.7 0.015 0.023 0.21 0.07 0.0029 0.22
−1.4 0.015 0.032 0.11 0.07 0.0041 0.06

Table 3.2: Relevant initial wavepacket amplitudes and initial and maximum
values of the wave-induced mean flow for the anelastic gas and the non-
Boussinesq liquid simulations.

3.2 Fully Nonlinear Anelastic Code

The fully nonlinear anelastic code solves the coupled equations for spanwise

vorticity and potential temperature with the effects of viscosity and thermal

diffusion included to damp small-scale noise and ensure numerical stability.

Explicitly, the vorticity equation is

DζT
Dt

= −
1

Hρ

wζT −
g

θ̄

∂θ

∂x
+ ν∇2ζT , (3.1)

where ν is the kinematic viscosity, defined as the ratio of the viscous and the

inertial forces. Cast in non-dimensional form, this becomes

DζT
Dt

= −
L

Hρ

wζT −
1

θ̄

∂θ

∂x
+

1

Re
∇2ζT . (3.2)

Here the Reynolds number is defined as Re ≡ νk2

N
. The bulk Richardson

number, which is the ratio of the buoyancy and the inertial forces (Kundu,

1990), has been set to J = 1.

The internal energy equation (2.8) is modified by the addition of the dif-

fusion term κ∇2θ, in which κ is the thermal diffusivity. In non-dimensional

form this is

Dθ

Dt
= −w

dθ̄

dz
+

1

RePr
∇2θ, (3.3)

in which the Prandtl number is given by Pr ≡ ν/κ.
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Both the Reynolds number and the Prandtl number are chosen to be suf-

ficiently large that diffusion negligibly affects the wave evolution. To ensure

this, Pr is set equal to 1 and Re is set to be 10000. No significant changes in

the wave dynamics were found by decreasing the Reynolds number to 5000.

Generally the code is designed to allow for the specification of arbitrary

background potential temperature profiles, θ̄(z), and arbitrary background

mean wind profiles, Ū(z). For the runs presented herein, however, we assume

the gas is uniformly stratified so that θ̄ = θ0 exp(z/Hθ) and we assume the

ambient flow is uniform so that Ū(z) = U00, in which U00 is a constant value,

typically zero.

In the code, the background density profile, ρ̄(z), is calculated using the

non-dimensional form of (2.12):

ρ̄ =
1

θ̄

[

1 − Γd

∫ z 1

θ̄(z)
dz

]
5

2

, (3.4)

in which the non-dimensional adiabatic lapse rate is

Γd ≡
g

cp

Hθ

θ0

, (3.5)

and cp is the specific heat capacity at constant pressure. In the code, this

indefinite integral is evaluated numerically at each vertical level. The constant

of integration is implicitly determined by the choice of Hρ and Hθ. Due to the

presence of a 5
2

power, we have the requirement on θ̄(z) that

Γd

∫ z 1

θ̄(z)
dz ≤ 1.0 (3.6)

This places a restriction on the choice of domain height for a given Hθ. For

typical atmospheric values of Hθ = 1000k−1 and Γd = 3.3, with k = 0.1km−1,

an acceptable domain height is zmax − zmin = 300k−1. This corresponds to

about 30km, approximately the vertical extent of the stratosphere.
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3.2.1 Discretization and Resolution

For both the anelastic gas and non-Boussinesq liquid, the simulations are spec-

tral in the horizontal and use a second-order finite-difference scheme to perform

vertical spatial derivatives. The upper and lower boundary conditions are free

slip. However, the vertical domain is chosen to be large enough that the waves

are of negligibly small amplitude at the boundaries over the duration of each

simulation.

In the vertical the domain resolution is 1024 grid points, spanning −150k−1 ≤

z ≤ 150k−1. In the horizontal, wavenumbers between 0 and 8k are resolved

so that the equivalent horizontal resolution is λx/8 over a domain of length

λx. The simulations were allowed to run from t = 0 with a timestep of

∆t = 0.025N−1. The timestep and the vertical resolution were determined

to be sufficiently small using the Courant-Friedrichs-Levy (CFL) condition,

which specifies that the timestep ∆t must be small enough that the flow can-

not advect a fluid parcel as far as one grid point, ∆z, during time ∆t. Doubling

the resolution was found to have no significant qualitative or quantitative effect

on the wave dynamics.

3.2.2 Initialization

The initial wavepacket is horizontally periodic but with a Gaussian amplitude

envelope in the vertical, centered at z = 0, and with a normalized initial max-

imum amplitude of β ≡ AΨ0
(k2/ρ0N

2) = 0.015 unless otherwise specified. We

simulate wavepackets with vertical wavenumber, m, chosen to be either −0.4k,

−0.7k or −1.4k. This range of vertical wavenumbers encompasses nearly hy-

drostatic waves, for which ω ≪ N , as well as non-hydrostatic waves for which

ω is moderately smaller than N . These limits correspond to large and small ra-

tios of |m/k|, respectively. The vertical extent of the wavepacket is σ = 10k−1,

corresponding to the perturbation parameter ǫ = 0.1. Doubling the vertical
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extent of the wavepacket (hence, halving ǫ) did not have a significant qualita-

tive effect on the dominant characteristics of the weakly nonlinear evolution

of the wavepacket although, as expected from the Schrödinger equation, it did

increase the time scale for the development of linear dispersion and nonlinear

effects.

For the purposes of initialization, we assume that the wavepacket is of

sufficiently small amplitude and sufficiently broad width such that it is quasi-

monochromatic with the dispersion relation given by (2.24). We assume the

following form for the normalized mass-streamfunction:

Ψ(x, z, 0) = AΨ(z, 0) exp(ıkx+ ımz − z/2Hθ) + c.c. (3.7)

in which c.c. denotes the complex conjugate and AΨ(z, 0) = β exp(−z2/2σ2)

is the envelope at time t = 0.

The code is spectral in the horizontal, and so represents (3.7) in terms

of the number of waves, n, in a horizontal domain of length Lx. Typically

we only allow one horizontal wavelength to span Lx so that kLx = 1. The

mass-streamfunction is thus represented by

Ψ(n, z) = 2AΨe
(ımz−z/2Hθ)δ(n− kLx)

in which δ is the Kronecker-Delta function. The code returns a peak of height

β at the dominant wavenumber k in Fourier space.

Given Ψ, the perturbation vorticity and potential temperature fields are

initialized by way of equation (2.16) and the polarization relation for the poten-

tial temperature and mass-streamfunction: Aθ0 = θ̄
ρ̄

k
Hθω

β. We then compute

the initial wave-induced mean flow using equation (2.32). The z-derivative of

this flow is added to the initial background vorticity field. Subsequently, the

wave-induced mean flow field U(z, t) is determined by the time-development

of the vorticity and mass-streamfunction fields. At any time, however, the in-
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stantaneous value of the horizontally averaged horizontal flow can be compared

with the wave-induced mean flow predicted by (2.32).

3.2.3 Advection and Advancement in Time

The details of the tri-diagonal matrix-inversion used by the code to calculate

the mass-streamfunction field from the vorticity field are provided in Appendix

B. Once we have acquired the correct values for the mass-streamfunction,

the code computes the horizontal and vertical velocity fields and, from these,

evaluates the advective terms in the material derivative. This is done using

fast Fourier transforms to convert the horizontal spectral fields to real fields,

which are then multiplied together and inverse transformed.

The equations are advanced in time using the ‘leap-frog’ method, in which

the vorticity and the potential temperature fields are advanced in time by

ζt+1 = ζt +
Dζ

Dt t+1/2
dt,

and

θt+1 = θt +
Dθ

Dt t+1/2
dt.

This approach is necessary because, as we see in the governing equations,

Dζ/Dt will depend on the potential temperature field θ, and Dθ/Dt will

depend on the mass-streamfunction, which is calculated from the vorticity field

ζ. For computational stability, the advection terms are calculated using fields

at centered timesteps while the dissipation terms are calculated using fields

at a half timestep earlier. Every 20 timesteps, there is an Euler backstep in

which the fields from the current and from the previous timestep are averaged

in order to minimize numerical “splitting” errors.
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3.3 Fully Nonlinear Non-Boussinesq Code

The fully nonlinear non-Boussinesq numerical simulation solves the following

non-dimensional coupled equations for the fluctuation density, ρ(x, z, t), and

the total ‘mass-weighted’ vorticity, ηT (x, z, t) ≡ ∇× (ρ̄~uT ):

DηT
Dt

=
∂ρ

∂x
+ w

L

Hρ

dρ̄

dz
ζT + wuT

(

L

Hρ

)2
d2ρ̄

dz2
+

1

Re
∇2ζ, (3.8)

and

Dρ

Dt
= −w

dρ̄

dz
+

1

RePr
∇2ρ, (3.9)

where ζT = ∇ × ~uT = −∇2ψT is the spanwise vorticity field. Equation (3.8)

is derived by taking the curl of equation (2.2), and casting the result in terms

of ηT for numerical convenience. Explicitly in terms of ψT , the mass-weighted

vorticity is

ηT = −ρ̄∇2ψT −
dρ̄

dz

∂ψT
∂z

. (3.10)

As with the anelastic equations, the Prandtl number is set to be Pr ≡ ν/κ = 1,

the Reynolds number is set to be Re ≡ νk2

N
= 10000, and the bulk Richardson

number is J = 1.

The initial Gaussian wavepackets take the form of (2.35) with Aξ(z, 0) =

α exp (−z2/2σ2) in which the initial maximum vertical displacement amplitude

is α ≡ Aξ0k = 0.07 unless otherwise indicated. The initial wave-induced mean

flow is calculated from (2.39). The vertical displacement field is given approx-

imately in terms of ρ using (2.50), with the condition |ρ/ρ̄| ≪ 1 continually

being verified numerically at each timestep during the code’s operation.

Note that in the fully nonlinear anelastic code no such condition appears

because the vertical displacement is related to the potential temperature rather

than the density:

θ ≈ −
dθ̄

dz
ξ. (3.11)
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Given Hθ ≫ Hρ, the background potential temperature varies much more

slowly than the background density, so that equation (3.11) will be valid over

the width of the wavepacket.
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Chapter 4

Results

A wave is modulationally unstable (Whitham, 1974) if ωmmω2 < 0, where

ωmm denotes the second derivative of frequency with respect to the vertical

wavenumber, and ω2 is the coefficient of the −ı|A|2A term in the nonlinear

Schrödinger equations. In both (2.46) and (2.54), this is

ω2 =
kU

|A|2
=

1

2
N2 k

2

ω0

. (4.1)

Because ω2 > 0 for internal gravity waves, modulational stability is determined

by the sign of ωmm. This term is negative if |m| < 2−1/2
(

k2 + 1
4H2

ρ

)1/2

, and

is positive otherwise. The critical point between modulational stability and

instability occurs for waves with fixed k moving at the fastest vertical group

velocity. For the density scale heights considered here, for which kHρ ≫ 1,

this corresponds to |m/k| ≃ 2−1/2 ≈ 0.71.

4.1 Fully Nonlinear Evolution: Anelastic Gas

We begin by considering the results from the fully nonlinear simulations of

an internal gravity wavepacket in an anelastic gas, using parameters similar

to those in the atmosphere. The domain size corresponds to a 30km height

of the atmosphere, and the horizontal extent of the domain contains one hor-

izontal wavelength of the wavepacket with λx ≈ 628m. The density scale

height is Hρ = 10km ≈ 15.9λx and the potential temperature scale height
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Figure 4.1: Left-hand panels show contour plots of the normalized potential
temperature field, θ(x, z, t)/ θ0

Hθk
, and right-hand panels show the correspond-

ing normalized wavepacket amplitude envelope, |Aθ|
Hθk
θ0

, from fully nonlinear
simulations with Hρ = 15.9λx, Hθ = 159λx, β = 0.015 and m = −0.4k. The
wavepacket evolution is shown for (a) t = 50N−1, (b) t = 100N−1, and (c)
t = 200N−1. The horizontal red line indicates the breaking level predicted by
linear theory.
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is Hθ = 100km ≈ 159λx. The initial maximum amplitude of the normalized

mass-streamfunction of the wavepacket is β = 0.015, which corresponds to an

initial maximum vertical displacement of about 13m, or roughly 2% of the

horizontal wavelength. This amplitude is small enough that the wavepacket

should obey linear theory at early times, following which the development of

weakly nonlinear effects should be observed.

Figure 4.1 shows the evolution of a non-hydrostatic wavepacket, initially

centered at z = 0, with a Gaussian envelope of width σ = 10k−1 and a vertical

wavenumber of m = −0.4k. The evolution is shown at early, late and very

late times during the wavepacket’s development. The left-hand panels show

contour plots of the normalized potential temperature field, θ(x, z, t)(Hθk/θ0),

which is related to the vertical displacement via θ ≈ −(dθ̄/dz)ξ, and the

right-hand panels give the corresponding shape of the wavepacket envelope,

‖Aθ‖(Hθk/θ0). The wavepacket evolution is shown for (a) t = 50N−1, (b)

t = 100N−1, and (c) t = 200N−1. The red horizontal line indicates the

level at which linear theory predicts the wave should overturn, as detailed in

Appendix C.

Figure 4.1a shows the wavepacket at t = 50N−1, early on in its evolution.

There is some evidence of weak nonlinearity in the narrowing of the amplitude

envelope and in the increase in the maximum amplitude to ‖Aθ‖ = 0.30θ0/Hθk,

which is slightly larger than ‖Aθ‖ = 0.27θ0/Hθk, the value predicted from

linear theory when accounting only for anelastic growth.

In Figure 4.1b, we see the wavepacket at a later time, t = 100N−1, when

weakly nonlinear effects have significantly changed its shape. The ampli-

tude envelope is narrower and more sharply peaked. The amplitude ‖Aθ‖ =

0.60θ0/Hθk is substantially larger than the linear theory prediction of 0.33θ0/Hθk.

This is consistent with the development of modulational instability. We also

see that the wavepacket envelope has lost its vertical symmetry.
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Figure 4.1c shows the wavepacket at t = 200N−1, close to overturning.

Due to the effect of modulational instability, the wavepacket has continued

to narrow and the amplitude has increased to ‖Aθ‖ = 0.84θ0/Hθk, over 50%

larger than the linear theory prediction of 0.52θ0/Hθk. Due to the weakly

nonlinear dynamics of the wave, we see that it overturns at a much lower level

than expected from linear theory. Wave breaking at z = 8.0λx is 60% lower

than the predicted breaking level of 20.8λx.

Figure 4.2 shows the potential temperature field and corresponding ampli-

tude envelope during the early, late and very late stages of the evolution of

a wavepacket with m = −0.7k. Such a wavepacket is expected to be on the

marginal boundary between modulational stability and instability. It corre-

sponds to waves travelling at close to the fastest initial vertical group velocity

cgz = 0.38Nk−1.

At early times, t = 50N−1, shown in Figure 4.2a, the wavepacket is evolving

as expected from linear theory. In Figure 4.2b, weakly nonlinear dynamics

are apparent, with the wavepacket envelope dividing into two peaks. The

amplitude is ‖Aθ‖ = 0.51θ0/Hθk, about 20% larger than the linear theory

prediction of 0.41θ0/Hθk.

Figure 4.2c shows the wavepacket at t = 200N−1, close to the point of wave-

breaking, which occurs at a height of z = 7.3λx. Because it propagates at the

fastest initial vertical group velocity, it overturns more quickly than wavepack-

ets with other vertical wavenumbers. The amplitude envelope has divided into

a series of individual peaks, with a maximum amplitude of ‖Aθ‖ = 0.70θ0/Hθk,

about 5% larger than the value predicted by linear theory, 0.67θ0/Hθk. So we

see that the amplitude is consistently larger than expected and varies due to

the presence of multiple peaks. We also see that the wavepacket breaks far

below the overturning level given by linear theory, which is indicated in the

figure by the thick red line at z = 19.4λx. The relative increase in ampli-
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Figure 4.2: As in Figure 4.1 but with m = −0.7k. The value of β is 0.015.
The wavepacket evolution is shown for (a) t = 50N−1, (b) t = 100N−1, and
(c) t = 200N−1. The breaking level predicted by linear theory is indicated by
the red line, and is moderately lower in this simulation than for m = −0.4k.
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tude suggests modulational instability. However, the development of multiple

distinct peaks differs from the structure observed in the m = −0.4k case.

Figure 4.3 shows the evolution of a more hydrostatic wavepacket with

m = −1.4k. It is expected to be modulationally stable, and so one might

expect propagation beyond the overturning level predicted by linear theory

due to the slower rate of amplitude growth. What is observed is qualitatively

different. At early times, shown in Figure 4.3a, the wavepacket envelope be-

gins to broaden, while the amplitude has not changed from its initial value

of ‖Aθ‖ = 0.35θ0/Hθk. Linear theory predicts an increase in amplitude to

0.41θ0/Hθk. This is characteristic of modulational stability. Figure 4.3b shows

the wavepacket at a later time during its development at t = 100N−1. The

amplitude envelope has continued to broaden, but does so asymmetrically.

The peak amplitude is around 20% lower than predicted by linear theory.

Linear theory predicts wave overturning at z = 15.3λx. Because this

wavepacket is modulationally stable we might expect it to break above this

level, but find that it breaks at z = 9.6λx, 37% lower. The reason for this low

breaking level is the development of many distinct peaks in the wavepacket

envelope as seen in Figure 4.3c, similar to what was observed for m = −0.7k.

The amplitude of these peaks has grown rapidly, to a maximum value of

‖Aθ‖ = 0.79θ0/Hθk, 25% larger than the amplitude predicted by linear theory.

4.1.1 Anelastic Gas: Wave-Induced Mean Flow Field

We now consider the evolution of the wave-induced mean flow associated with

wavepackets of different initial amplitudes and vertical wavenumbers. The

wave-induced mean flow field U is calculated from (2.32) at each time step.

Because U ∝ ‖AΨ‖
2 the evolution of the wave-induced mean flow field also

reflects the evolution of the wavepacket amplitude envelope.

As a control case, we first consider a wavepacket of very small amplitude,
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Figure 4.3: As in Figure 4.1, but with m = −1.4k. The wavepacket evolution
is shown for (a) t = 50N−1, (b) t = 100N−1, and (c) t = 200N−1. The
breaking level predicted by linear theory is at z ≈ 15λx.
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β = 0.001, shown in Figure 4.4. Here Hθ = 159λx and Hρ = 15.9λx. It is

not expected that such a wave will exhibit weakly nonlinear effects until it has

propagated a significant vertical distance and grown substantially in ampli-

tude. As such, it provides a test as to whether or not the simulation correctly

captures the evolution of a small-amplitude wavepacket as predicted by linear

theory. The vertical wavenumbers considered are m = −0.4k, m = −0.7k, and

m = −1.4k, which encompass non-hydrostatic and more hydrostatic waves. At

early times, some small oscillations are visible in the time series. These are a

result of the approximations used to initialize the wavepacket. They do not

impact its evolution either qualitatively or quantitatively at later times.

The top row of plots, Figure 4.4a, b, and c, depicts contours of the nor-

malized wave-induced mean flow field as the wavepacket propagates upward

over time. Values for the normalization parameter UMax are given in Table 3.2.

It is clear that each wavepacket is experiencing exponential amplitude growth

with height, as expected from linear theory.

The second row of plots, Figure 4.4d, e, and f, also show vertical time series

of the wave-induced mean flow, however it is now given in a frame of reference

moving upwards with the wavepacket at the initial value of the vertical group

velocity, given in Table 3.1. The peak value of the wave-induced mean flow

field remains at Z = 0 confirming that each wavepacket propagates at constant

speed cgz.

In the third row of plots, Figure 4.4g, h, and i, we have essentially removed

the anelastic growth of the wave amplitude by multiplying U(z, t) by the back-

ground density profile ρ̄(z). This result is then normalized by the maximum

initial value of U at time t = 0, denoted U0, and the vertical time series is

plotted against Z to give: ρ̄(Z)U(Z, t)/ρ0U0.

For all three vertical wavenumbers shown in Figure 4.4, the relative am-

plitude remains nearly constant until at least t = 150N−1, at which point
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Figure 4.4: Time series of the normalized wave-induced mean flow field, from
fully nonlinear simulations with β = 0.001 and m = −0.4k, m = −0.7k, or
m = −1.4k. The top row, (a), (b), (c), gives the wave-induced mean flow
normalized by half of its maximum value: U(z, t)/0.5UMax. The second row,
(d), (e), (f), shows the same thing, but in a frame of reference moving at
the vertical group velocity of the wave so that Z = z − cgzt, with Nt as the
normalized time co-ordinate. The third row, (g), (h), (i), shows the wave-
induced mean flow multiplied by the background density profile: ρ̄U/ρ0U0.
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there is a slight increase in the amplitude of the m = −0.7k wavepacket. This

occurs because it moves vertically most rapidly, resulting in more rapid am-

plitude growth, and thus an earlier onset of weakly nonlinear effects. Prior to

this time, there is some slight broadening in the amplitude envelopes of the

wavepackets, caused by linear dispersion.

We will now consider the wave-induced mean flow for wavepackets with

parameters identical to those for the simulations shown in Figures 4.1, 4.2,

and 4.3. Figure 4.5 shows vertical time series for three vertical wavenumbers;

m = −0.4k, shown in the first column of plots, m = −0.7k, shown in the

second column, and m = −1.4k, shown in the third column. Each row of plots

contains the same fields as in Figure 4.4, but computed from simulations with

a larger initial wavepacket amplitude.

The early evolution of each wavepacket obeys linear theory, as with the

small amplitude case shown in Figure 4.4. However, weakly nonlinear dynam-

ics develop quite rapidly after t ≈ 50N−1. For the non-hydrostatic wavepacket,

m = −0.4k, the amplitude envelope narrows and the relative amplitude in-

creases rapidly due to modulational instability. Also clearly visible is a de-

crease in the vertical group velocity of the wavepacket from cgz = 0.32Nk−1 to

cgz = 0.24Nk−1 and the development of asymmetry in the vertical structure of

its envelope. At later times, the relative amplitude decreases somewhat, and

then increases again. This repeating pattern is consistent with the modula-

tional instability of the wavepacket being accompanied by Fermi-Pasta-Ulam

recurrence.

For the wavepacket with m = −0.7k, we observe a number of interesting

features. In Figure 4.5h, the wavepacket broadens slightly before narrowing

and increasing in relative amplitude. Thus it first demonstrates features of

modulational stability but then rapidly becomes unstable. Its evolution is

strongly asymmetric, with the development of a number of distinct peaks that
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Figure 4.5: As in Figure 4.4, but with β = 0.015. UMax is the maximum value
of the wave-induced mean flow between t = 0 and 200N−1.
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persist over many timesteps. The vertical group velocity of the peak with the

highest amplitude is cgz = 0.29Nk−1, a decrease in velocity of almost 25%.

The evolution of the more hydrostatic wavepacket, m = −1.4k, shown in

Figure 4.5i, is perhaps the most surprising. As weakly nonlinear dynamics

begin to emerge, we observe the expected broadening and reduction in rel-

ative amplitude of the envelope due to modulational stability. However, at

later times we see the development of a number of distinct peaks, similar to

those seen in Figure 4.5h. These beautiful small-scale structures become so

large in amplitude that they lead to wave-breaking at a much lower level than

expected for a modulationally stable wavepacket. The beginnings of similar

features were observed for Boussinesq wavepackets (Sutherland, 2006b) but

were considered in that work to be evidence of parameteric subharmonic in-

stability.

4.2 Weakly Nonlinear Evolution: Anelastic Gas

We now turn to the weakly nonlinear numerical simulations, which solve the

anelastic Schrödinger equation (2.46). These are compared with the fully non-

linear results in Figure 4.6. The leftmost set of plots, Figure 4.6a, b, and c,

are identical to Figure 4.5g, h, and i, for the fully nonlinear simulations. The

integrated solutions of the weakly nonlinear equation are given in plots d, e,

and f, on the right. The agreement between them is good at early times, both

qualitatively and quantitatively. The non-hydrostatic wave shows the same

narrowing and increase in amplitude characteristic of modulational instabil-

ity, while the more hydrostatic wave broadens and the amplitude decreases

due to modulational stability. The decreasing vertical group velocity is visi-

ble as well, as is the symmetry breaking for all three vertical wavenumbers.

These dynamics are captured due to the inclusion of third order linear and

nonlinear terms in the Schrödinger equation. They become significant when
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Figure 4.6: Contours of the normalized wave-induced mean flow field mul-
tiplied by the background density profile, ρ̄U/ρ0U0, with β = 0.015, Hρ =
15.9λx, Hθ = 159λx, and m = −0.4k, m = −0.7k, or m = −1.4k. The first
column, (a), (b), (c), repeats the results of the fully nonlinear simulation from
Figure 4.5(g), (h), and (i). The second column, (d), (e), (f), shows the same
thing, but for solutions of the weakly nonlinear anelastic Schrödinger equation.
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the wavepacket narrows and the amplitude increases such that the third and

second order terms become comparable.

At late times, there is still good agreement for wavepackets withm = −0.4k

and m = −0.7k. However, the more hydrostatic wavepacket with m = −1.4k

separates unexpectedly into distinct peaks, which are only partially captured

by the weakly nonlinear equation. While the Schrödinger equation does not

accurately capture the width, location, or number of these peaks, the fact

that it produces them at all indicates that they are not necessarily a result

of parameteric subharmonic instability, which results from the wave-wave in-

teractions that are filtered by the Schrödinger equation. At very late times

during the development of the wavepackets, there are some other quantitative

differences in the weakly nonlinear simulations, most notably that the ampli-

tude of the wave-induced mean flow field is overly high. This is most evident

for m = −0.4k and m = −0.7k. However, the overall good agreement between

the results of the fully and weakly nonlinear numerical simulations at early

times indicates that the interaction of the wavepacket with the wave-induced

mean flow is the primary mechanism for the initial development of weakly

nonlinear effects, including modulational stability or instability.

4.2.1 Effect of Changing Hθ and Hρ

In order to determine which parameters affect the stability of the wavepackets

and thus influence the breaking heights, the evolution of wavepackets prop-

agating in backgrounds with various values of Hρ and Hθ were considered.

Due to the definition of the background density profile, ρ̄(z), in terms of the

background potential temperature field, θ̄(z), as given by (2.12), it appears at

first that the value of Hρ should be dependent on the choice of Hθ. However,

it is possible to specify both Hρ and Hθ independently. Doing so sets the con-

stant of integration in equation (2.12), which implicitly determines the values
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Figure 4.7: Anelastic fully and weakly nonlinear numerical simulations for the
ρ̄U/ρ0U0 field of a wavepacket, with β = 0.015, Hθ = 159λx and Hρ = 15.9λx
or Hρ = 159λx, for vertical wavenumber m = −1.4k.
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of the density and pressure at the reference level, ρ0 and P0. It is important

to note that the approximation of Hρ(z) as a constant characteristic value,

Hρ0 , becomes less accurate as the ratio Hρ/Hθ approaches a value of 1.0. In

this thesis, the majority of the simulations use values for Hρ and Hθ that are

characteristic of the atmosphere, for which Hρ/Hθ ≈ 0.1.

Changing the value of Hρ did not significantly impact the wave dynam-

ics nor did it substantially increase or decrease the timescale for the initial

development of weakly nonlinear effects. While this may at first seem coun-

terintuitive, it is most likely a result of the definition of ρ̄ in terms of θ̄, as

given by equation (2.12). For this reason, the background through which the

wavepacket is travelling is more directly affected by the value of Hθ. However,

Hρ is seen to play a role in determining the relative amplitudes of the strongly

nonlinear wavepackets at late times.

In order to illustrate more clearly what is causing the development of mul-

tiple distinct peaks in the late time evolution of anelastic wavepackets with

m = −1.4k, Figure 4.7 shows results from the fully and the weakly nonlinear

simulations. Here β = 0.015 and Hθ = 159λx. In Figure 4.7a, we see the

weakly nonlinear evolution of the hydrostatic wavepacket with Hρ = 15.9λx.

This replicates Figure 4.6f. In Figure 4.7b, we have removed the (∂zU)AΨ

term from the anelastic Schrödinger equation (2.46) whose coefficient is

1

2

ω2

N2k

(

3m−
ı

Hρ

)

. (4.2)

It is clear that the development of multiple distinct peaks has been sharply

delayed. Thus we conclude that this weakly nonlinear effect results at least in

part from third order nonlinear dispersion.

Figure 4.7c is identical to Figure 4.7a, except that Hρ has been increased

ten-fold to 159λx, reducing the effect of the imaginary part of (4.2). As a

result, the separation into peaks is more pronounced, with the peaks having
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Figure 4.8: As in Fig. 4.6, but for potential temperature scale height Hθ =
318λx. Wavenumbers shown are m = −0.4k, m = −0.7k, and m = −1.4k.
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much larger amplitudes at late times. The corresponding plot from the fully

nonlinear simulation with Hρ = 159λx is shown in Figure 4.7d. The amplitude

of the peaks is comparable to the weakly nonlinear case, however the peaks

themselves are qualitatively different from that case, and develop later during

the wave evolution. It may be that the inclusion of fourth-order terms in the

weakly nonlinear equation would capture this feature more accurately, however

such an investigation is beyond the scope of this thesis. Despite the differences

between the fully and weakly nonlinear simulations, we can conclude that the

real part of the (∂zU)AΨ term strongly affects the development of this weakly

nonlinear feature for hydrostatic anelastic waves.

In Figure 4.8, the potential temperature scale height has been doubled from

that used in Figure 4.6 to Hθ = 318λx. All other parameters are unchanged.

A larger value of the scale height is used since any value much below Hθ =

159λx is unphysical based on the criterion given by (3.6). Comparing the

plots, we see that increasing Hθ increases the timescale for the onset of weakly

nonlinear dynamics. Note that the time axis in this figure extends to t =

250N−1, as compared to t = 200N−1 in Figure 4.6. Other differences include a

larger discrepancy between the maximum amplitudes predicted by the weakly

nonlinear simulation at late times and the appearance of small scale structures

in the weakly nonlinear plots after t = 200N−1, most noticeably for m =

−0.7k. The dominant features are otherwise similar to Figure 4.6.

4.3 Fully Nonlinear Non-Boussinesq Liquid

The results from the fully nonlinear numerical simulations of wavepackets in a

non-Boussinesq liquid will be considered first. Figure 4.9 shows the evolution

of the vertical displacement field of the waves at early, late, and very late

times for a non-hydrostatic wavepacket with vertical wavenumber m = −0.4k.

For each time, the left-hand panel contains a contour plot of the normalized
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Figure 4.9: Left-hand panels show contour plots of the normalized vertical
displacement field, ξ(x, z, t) k, and right-hand panels show the corresponding
normalized wavepacket amplitude envelope, |Aξ|k, from fully nonlinear simu-
lations with Hρ = 3.2λx, α = 0.07 and m = −0.4k. The wavepacket evolution
is shown for (a) t = 100N−1, (b) t = 175N−1, and (c) t = 300N−1. The
horizontal red line indicates the breaking level predicted by linear theory.
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vertical displacement, ξk, and the right-hand panel shows the corresponding

shape of the normalized vertical displacement amplitude envelope, ‖Aξ‖k. The

packet is initially of small amplitude with α ≡ ‖Aξ0‖k = 0.07. The density

scale height is Hρ = 3.2λx.

Figure 4.9a shows the wavepacket at t = 100N−1, before the onset of

weakly nonlinear effects. The amplitude has increased as predicted by linear

theory, growing exponentially with height to ‖Aξ‖ = 0.15k−1. In Figure 4.9b,

we see the wavepacket during the onset of weakly nonlinear effects at t =

175N−1. The wavepacket envelope has narrowed, become more sharply peaked

and is no longer symmetrical. This is consistent with the wavepacket being

modulationally unstable. The amplitude has increased to ‖Aξ‖ = 0.35k−1,

substantially larger than the value predicted by linear theory, 0.28k−1.

Figure 4.9c shows the evolution of the wavepacket at very late times, t =

300N−1, when the wave is beginning to overturn (the condition for overturning

is given in Appendix C). Its maximum is now ‖Aξ‖ = 0.85k−1, about 10%

larger than the value of 0.77k−1 predicted by linear theory. Due to these

weakly nonlinear effects, the wavepacket begins to overturn at a lower height

than predicted by linear theory, indicated in the figure by the thick red line at

z = 22.7λx. Wave breaking actually occurs about 50% lower at z = 11.4λx.

Figure 4.10 is identical to Figure 4.9, except that it shows the vertical

displacement field of a wavepacket on the marginal boundary between mod-

ulational stability and instability, with vertical wavenumber m = −0.7k. In

Figure 4.10a, the amplitude of the envelope at t = 100N−1 has increased as

predicted by linear theory. In Figure 4.10b, weakly nonlinear effects have de-

veloped at t = 175N−1: the amplitude envelope has narrowed and lost its

vertical symmetry. However, the maximum amplitude shows an increase con-

sistent with linear theory.

Figure 4.10c shows the wavepacket development at t = 250N−1, which is
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Figure 4.10: As in Fig. 4.9, but for m = −0.7k. Times shown are (a) t =
100N−1, (b) t = 175N−1, and (c) t = 250N−1. The red line indicates the
breaking level predicted by linear theory.
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during wave breaking. Because this wavepacket propagates with the largest

vertical group velocity, it reaches its breaking level most rapidly. The am-

plitude envelope has divided into several distinct peaks with a maximum of

‖Aξ‖ = 0.78k−1. This is close to the value given by linear theory, ‖Aξ‖ =

0.75k−1. The wavepacket first breaks at z = 12.8λx, much lower than the

predicted height of z = 19.2λx indicated by the red line. This is a decrease in

breaking height of about 30%.

Figure 4.11 contains a more hydrostatic wavepacket with vertical wavenum-

berm = −1.4k, which is predicted to be modulationally stable. The wavepacket

is shown at early times in Figure 4.11a, with t = 100N−1. The amplitude

of the wavepacket envelope is slightly lower than predicted by linear theory,

with a value of ‖Aξ‖ = 0.13k−1 as compared to 0.14k−1. Figure 4.11b shows

the modulationally stable wavepacket at a later time during its development,

t = 175N−1, at which point it has broadened significantly, and become slightly

asymmetrical. The amplitude has increased to ‖Aξ‖ = 0.18k−1, which is much

smaller than the value of 0.23k−1 predicted by linear theory.

Figure 4.11c shows the wavepacket at time t = 325N−1. The wavepacket

is not overturning. The maximum amplitude is ‖Aξ‖ = 0.46k−1, much smaller

than the predicted value of 0.63k−1. In a fully nonlinear simulation with a

larger vertical domain, wave breaking was seen to occur at a height of z =

19.5λx, almost 25% higher than the overturning level given by linear theory,

z = 14.8λx. This increase in the height of the initial overturning event is the

expected consequence of the modulational stability of the wavepacket. The

amplitude envelope has lost its vertical symmetry with a large peak at the

leading edge followed by several smaller peaks. This is similar to the distinct

peaks observed for a wavepacket with m = −1.4k in an anelastic gas, however

the peaks do not increase significantly in amplitude prior to wave breaking.
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Figure 4.11: As in Fig. 4.9 and 4.10, but for m = −1.4k. Times shown are
(a) t = 100N−1, (b) t = 175N−1, and (c) t = 325N−1. The horizontal red line
indicates the breaking level predicted by linear theory.
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4.3.1 Non-Boussinesq Liquid: Wave-Induced Mean Flow

We now consider the wave-induced mean flow field from the fully nonlinear

numerical simulations. We begin with a wavepacket of small initial amplitude,

with α = 0.03 and Hρ = 3.2λx. The wave-induced mean flow is calculated

from (2.39) at successive times. The wavepacket has been initialized with

sufficiently small amplitude that we do not expect to see the development of

weakly nonlinear effects until very late times in the wavepacket’s evolution.

Figure 4.12 shows time series of the normalized wave-induced mean flow field

for vertical wavenumbers of m = −0.4k, m = −0.7k, and m = −1.4k. There

are some small superimposed oscillations visible at early times that occur due

to the approximations used to initialize the wavepacket but which have no

effect upon the evolution of the wavepacket at later times.

The top row of three plots, Figure 4.12a, b, and c, gives the wave-induced

mean flow normalized by half of its maximum value: U(z, t)/0.5UMax. The ex-

ponential growth of the wavepacket amplitude with increasing height is clearly

evident. In the second row, Figure 4.12d, e, and f, we have the same field,

but shifted into a frame of reference moving at cgz. Symmetry about Z = 0

confirms that the waves translate at the initial group velocity. The plots in

the third row, Figure 4.12g, h, and i, show the wave-induced mean flow mul-

tiplied by the background density profile, ρ̄(Z)U(Z, t)/ρ0U0. Here U0 is the

maximum value of the wave-induced mean flow field at time t = 0. Mul-

tiplication by ρ̄ ≡ ρ0 exp(−z/Hρ) essentially removes the exponential growth

associated with a non-Boussinesq wavepacket and serves to emphasize that the

momentum associated with the wave-induced mean flow is conserved. The rel-

ative amplitude of each wavepacket remains constant, confirming exponential

growth.

These wavepackets obey linear theory until at least t ≈ 100N−1, at which
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Figure 4.12: Time series of the normalized wave-induced mean flow field, from
fully nonlinear simulations with α = 0.03 and m = −0.4k, m = −0.7k, or m =
−1.4k. The top row, (a), (b), (c), gives the wave-induced mean flow normalized
by half of its maximum value: U(z, t)/0.5UMax. The second row, (d), (e), (f),
shows the same thing, but in a frame of reference moving at the vertical group
velocity of the wave so that Z = z − cgzt, with Nt as the normalized time
co-ordinate. The third row, (g), (h), (i), shows the wave-induced mean flow
multiplied by the background density profile: ρ̄(Z)U(Z, t)/ρ0U0.

63



point weak nonlinearity becomes apparent. A slight decrease in the relative

amplitude of the wavepacket is visible in all three plots as a result of linear

dispersion. In Figure 4.12i, the relative amplitude decreases rapidly after

t = 100N−1, while Figure 4.12g shows a narrowing of the wavepacket at t ≈

150N−1. Finally, in Figure 4.12h, there is some symmetry breaking evident

after t ≈ 200N−1.

Figure 4.13 shows time series of the normalized wave-induced mean flow

for a wavepacket initialized at amplitude α = 0.07 and allowed to propagate

upwards in a non-Boussinesq background with Hρ = 3.2λx. The three columns

of plots correspond to vertical wavenumbers of m = −0.4k, −0.7k and −1.4k.

The exponential increase in wave amplitude with height is immediately visible

and dominates the wave evolution in Figure 4.13a, b, and c.

For each of the three wavenumbers presented, the evolution of the wavepacket

shown in Figure 4.13 is qualitatively different. During the first part of each

wavepacket’s upward propagation, it moves at a near constant speed equal

to the initial vertical group velocity and remains of small enough amplitude

that it can be treated as being in the linear regime, as discussed for Fig-

ure 4.12. However, between times t = 100N−1 and 150N−1 the influence of

weakly nonlinear effects becomes apparent. For a non-hydrostatic wavepacket

with vertical wavenumber of m = −0.4k, (Figure 4.13g), the envelope of the

wave-induced mean flow field narrows while the relative amplitude increases

significantly as a result of modulational instability. At late times, the vertical

group velocity of the wave decreases from its initial value of cgz = 0.32Nk−1

to approximately cgz = 0.26Nk−1 and symmetry breaking is observed.

For a vertical wavenumber of m = −1.4k, (Figure 4.13i), the wave-induced

mean flow profile broadens while the peak amplitude decreases due to disper-

sion. These weakly nonlinear effects were also seen to occur in Figure 4.11b

and 4.11c, as a result of modulational stability. At late times, there is some
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Figure 4.13: As in Figure 4.12, but with α = 0.07. UMax is the maximum value
of the wave-induced mean flow between t = 0 and 250N−1.
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Figure 4.14: Results from fully nonlinear numerical simulations for the
ρ̄U/ρ0U0 field of a wavepacket with σ = 20k−1, α = 0.07, and Hρ = 3.2λx, for
vertical wavenumbers m = −0.4k, m = −0.7k, and m = −1.4k.

slight symmetry breaking and little change in the group velocity. For a vertical

wavenumber ofm = −0.7k, Figure 4.13h shows the near-marginal case between

modulational stability and instability. The wavepacket broadens slightly be-

fore narrowing and increasing in amplitude. At late times, the group velocity

of the wavepacket decreases by an amount comparable with its initial vertical

group velocity. Thus it demonstrates characteristics of both modulationally

stable and unstable wavepackets.

4.3.2 Effect of Changing σ

Figure 4.14 shows the result of fully nonlinear simulations in which the width

of the wavepacket has been doubled to σ = 20k−1. The non-hydrostatic

wavepacket displays modulational instability through a narrowed wavepacket

envelope and increase in relative amplitude. The more hydrostatic wave is

modulationally stable and shows a decrease in relative amplitude at late times,

however it does not broaden significantly. As expected, increasing σ has length-

ened the timescale for the development of weakly nonlinear effects. The same

is true for the wavepacket of wavenumber m = −0.7k, which begins to show

signs of symmetry breaking at t = 200N−1. However, doubling the width of

the wavepacket does not otherwise affect the weakly nonlinear dynamics.
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Figure 4.15: Comparison of fully nonlinear (left column) and weakly non-
linear (right column) numerical simulations for the ρ̄U/ρ0U0 ≈ U/U0 field
of a wavepacket with α = 0.3, and Hρ = 16λx, for vertical wavenumbers
m = −0.4k, m = −0.7k, and m = −1.4k. These are essentially large ampli-
tude Boussinesq wavepackets.
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4.4 Weakly Nonlinear Non-Boussinesq Liquid

While the evolution of non-Boussinesq wavepackets is qualitatively similar to

that of large amplitude Boussinesq waves, it differs in some important and re-

lated respects. As a wavepacket propagates upwards through a non-Boussinesq

fluid it grows in amplitude due to the decreasing background density, as demon-

strated in Figure 4.12. This is not the case for waves initialized at small ampli-

tude in a Boussinesq fluid, which decrease slightly in amplitude due to linear

dispersion but remain otherwise unchanged. Thus, in order to observe the de-

velopment of weakly nonlinear effects in a Boussinesq fluid, a wavepacket must

be initially of large amplitude, an example of which is presented in Figure 4.15.

This figure considers wavepackets propagating in a fluid with a large den-

sity scale height Hρ = 16λx, initialized at relatively large amplitude α = 0.3.

This mimics a Boussinesq fluid. Figure 4.15 reproduces the results of Suther-

land (2006b) both qualitatively and quantitatively. Modulational stability

and instability are clearly observable for the hydrostatic (m = −1.4k) and

non-hydrostatic (m = −0.4k) wavepacket respectively, as is symmetry break-

ing due to the inclusion of third order linear and nonlinear terms in the

Schrödinger equation. This confirms that both the fully and weakly non-

linear codes are functioning as expected, and emphasizes that the theory for

non-Boussinesq waves in a liquid is equivalent to that for Boussinesq waves in

the limit Hρ → ∞.

The results from integrating the solutions of the weakly nonlinear Schrödinger

equation for a non-Boussinesq liquid are compared with the fully nonlinear re-

sults in Figure 4.16. As in Figure 4.13, α = 0.07 and Hρ = 3.2λx. Figure 4.16a,

b, and c, repeat plots g, h, and i from Figure 4.13. Figure 4.16d, e, and f,

show the solutions of the weakly nonlinear equation, which clearly captures

the dominant qualitative and quantitative features of the weakly nonlinear
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Figure 4.16: Contours of the normalized wave-induced mean flow field multi-
plied by the background density profile, ρ̄U/ρ0U0, with α = 0.07, Hρ = 3.2λx
and m = −0.4k, m = −0.7k, or m = −1.4k. The first column, (a), (b),
(c), repeats the results of the fully nonlinear simulation from Figure 4.13(g),
(h), and (i). The second column, (d), (e), (f), shows the same thing, but for
solutions of the weakly nonlinear non-Boussinesq Schrödinger equation.
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wavepacket evolution, for all three vertical wavenumbers. As with the fully

nonlinear simulations, the non-hydrostatic wave (Figure 4.16d) narrows and

increases in amplitude due to modulational instability. The more hydrostatic

wave (Figure 4.16f) broadens and decreases in amplitude indicating that it is

modulationally stable. The symmetry breaking and decrease in vertical group

velocity is also captured. Due to the relatively small value of the density scale

height, the fourth term in the weakly nonlinear equation, which captures ef-

fects unique to waves in a non-Boussinesq fluid, contributes non-negligibly to

the nonlinear evolution of the wavepacket.

At very late times, discrepancies arise due to what was thought to be the

appearance of parametric subharmonic instability in the fully nonlinear results.

Such dynamics are not captured by the weakly nonlinear equation. However,

based on the results for anelastic waves, these discrepancies are most likely

the beginning of multiple distinct peaks caused at least in part by high-order

dispersion. The non-Boussinesq wavepackets overturn prior to the full devel-

opment of these features. Other discrepancies between the fully and weakly

nonlinear simulations include the over-prediction of the wave-induced mean

flow field by the weakly nonlinear equation at late times. These quantitative

differences are visible for all three wavenumbers and are particularly clear in

Figure 4.16e, which shows up to a 30% increase in amplitude over Figure 4.16b.

4.4.1 Effect of Changing Hρ and α

Figure 4.17 compares the results of the fully and weakly nonlinear simulations

for α = 0.07 and Hρ = 1.6λx. This 50% decrease in Hρ compared to the

value used for Figure 4.16 doubles the importance of the fourth term in the

weakly nonlinear equation. Note that the time axis on this plot stops at

t = 150N−1, rather than t = 250N−1 as in the previous figure. The onset of

weakly nonlinear effects occurs between t = 50N−1 and t = 100N−1, slightly
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Figure 4.17: As in Fig. 4.16, but for density scale height Hρ = 1.6λx.
Wavenumbers shown are m = −0.4k, m = −0.7k, and m = −1.4k.
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sooner than forHρ = 3.2λx. The subsequent weakly nonlinear evolution occurs

on a more rapid timescale due to the enhanced amplitude growth associated

with a smaller Hρ. The appearance of modulational stability and instability is

similar to Figure 4.16, and we see relatively good agreement between the fully

and the weakly nonlinear simulations.

The largest discrepancy is the significant overestimation of the relative

amplitudes in the weakly nonlinear case, visible in all three plots. We see

increased symmetry breaking, particularly form = −0.4k andm = −1.4k. For

m = −0.7k, we no longer observe the wavepacket narrowing and peaking prior

to the onset of symmetry breaking, while the more hydrostatic wavepacket has

broadened less rapidly. This is a result of the shorter timescale over which the

weakly nonlinear effects caused by the third order terms in the Schrödinger

equation develop.

In order to separate the effects of a decrease in density scale height from

the effects of a larger initial wavepacket amplitude, Figure 4.18 compares the

wave-induced mean flow from fully and weakly nonlinear simulations of waves

with α = 0.2 and Hρ = 3.2λx. Note that the time axis on this plot ends

at t = 150N−1. In Figure 4.18 we see that the Schrödinger equation cor-

rectly estimating the relative amplitudes even at late times, an improvement

over the α = 0.07 case. We conclude that the weakly nonlinear equation

is unable to capture nonlinear effects that cause a reduction in the relative

wavepacket amplitude and that are more dominant in a more rapidly de-

creasing background density field. This is not surprising because the weakly

nonlinear equation neglects wave-wave interactions. For physically reasonable

values of the density scale height and initial wavepacket amplitude, however,

this nonlinear effect plays a relatively minor role. Comparing Figure 4.18

to Figure 4.17 also reveals that a decrease in Hρ causes decreased broaden-

ing of the m = −1.4k wavepacket and inhibits the narrowing and peaking of
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Figure 4.18: As in Fig. 4.16, but for initial wavepacket amplitude α = 0.2.
Wavenumbers shown are m = −0.4k, m = −0.7k, and m = −1.4k.
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the m = −0.7k wavepacket. The symmetry breaking for a wavepacket with

α = 0.2 differs from that for α = 0.07 primarily for the m = −0.4k case in

which a second peak in the amplitude envelope develops at late times.

4.4.2 Linear to Weakly Nonlinear Dynamics

Figure 4.19 shows the wave-induced mean flow field in a stationary frame

for waves with parameters identical to those used in Figure 4.12. The vertical

propagation of the wavepackets at the initial group velocity is clearly visible at

early times, during which the relative amplitude of the waves does not change.

Unlike Figure 4.12, this figure’s time-axis extends to t = 375N−1, allowing

the waves to propagate sufficiently high for exponential amplitude growth to

result in weakly nonlinear developments. We observe the transition from linear

dynamics to modulational stability or instability beginning at t ≈ 225N−1.

This confirms that the Schrödinger equation for non-Boussinesq waves is able

to capture both weakly nonlinear evolution and the transition of a wavepacket

from the linear to the nonlinear regime.

The agreement between the results of the fully nonlinear simulations and

the solutions of the weakly nonlinear Schrödinger equation demonstrates the

importance of the wave-induced mean flow to wavepacket evolution. This

analysis clearly indicates that interactions between the waves and the wave-

induced mean flow are the principle mechanism for the development of the

weakly nonlinear effects that determine the dynamics of the wavepacket at

late times, including its modulational stability or instability. In fact, the

weakly nonlinear equation is a reasonable approximation to the fully nonlinear

simulation for a wide range of amplitudes and density scale heights, even at

very late times, capturing many of the qualitative, if not the quantitative,

dynamics of the waves.
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Figure 4.19: Time series of the normalized wave-induced mean flow field, from
fully and weakly nonlinear simulations with α = 0.03, Hρ = 3.2λx and m =
−0.4k, m = −0.7k, or m = −1.4k. The plots show the wave-induced mean
flow multiplied by the background density profile: ρ̄(z)U(z, t)/ρ0U0, where z
is the stationary vertical co-ordinate.
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4.5 Breaking Heights

In order to gain further insight into the influence of nonlinear effects on wave

evolution at late times, fully nonlinear numerical simulations were performed

in which the wavepackets were allowed to propagate vertically towards the

overturning level predicted by linear theory. The conditions used to calculate

the height of wave overturning in the fully nonlinear simulations, as well as

the determination of the predicted overturning heights from linear theory, are

detailed in Appendix C.

4.5.1 Wave Breaking: Anelastic Gas

Figure 4.20 presents the breaking heights calculated using linear theory, zB0,

compared with those determined from the fully nonlinear numerics, zB. The

value of Hθ is varied, while Hρ is kept fixed at 15.9λx. For wavepackets which

are non-hydrostatic, with m = −0.4k, the breaking level is always signifi-

cantly over-predicted by linear theory. In fact, for the highest values of λx/Hθ

the breaking height from linear theory is over 5 times higher than the actual

breaking level. These waves are most likely overturning so much lower than

predicted due to the rapid amplitude increase associated with modulational

instability. Waves of vertical wavenumber m = −0.7k also break consistently

lower than the predictions of linear theory.

More hydrostatic waves, which might be expected to propagate above the

predicted levels from linear theory due to the relative amplitude decrease as-

sociated with modulational stability, are found to break consistently below the

location given by linear theory. The closest agreement with linear theory is

found at λx/Hθ = 0.001, in other words for the most weakly stratified fluid.

Investigation of a wider range of Hθ values was not undertaken since smaller

values result in breaking immediately upon initialization.
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Figure 4.20: Results from anelastic fully nonlinear numerical simulations for
the normalized breaking height zB/λx of a wavepacket with β = 0.015, plotted
against the horizontal wavelength normalized by the potential temperature
scale height λx/Hθ. The vertical wavenumbers shown are m = −0.4k, m =
−0.7k, and m = −1.4k. The solid lines are theoretical predictions from linear
theory.
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As expected, overturning occurs at lower levels for smaller values of Hθ,

corresponding to a more rapid exponential increase in amplitude. For all

three vertical wavenumbers, linear theory does a better job of predicting the

breaking levels for less anelastic fluids with weaker temperature stratification.

This is problematic for the prediction of internal gravity wave breaking in the

atmosphere, which has a typical value of λx/Hθ = 0.006 for the parameters

considered in this analysis.

Figure 4.21 presents the breaking heights calculated using linear theory

compared with those determined from the fully nonlinear numerics for varying

values of Hρ. Here Hθ is held constant at 159λx. Smaller values of Hρ were not

considered, since both the linear theory and the nonlinear simulations converge

to a constant value of zB0 and zB in the limit Hρ → 0. There is very little

variation in the breaking levels determined from the fully nonlinear numerics,

confirming that Hρ does not have a large impact on the breaking height of

wavepackets with any of the three vertical wavenumbers considered.

Wavepackets which are non-hydrostatic, with m = −0.4k, experience a

negligible change in breaking height as Hρ is increased, and break consistently

below the levels predicted using linear theory. Waves of vertical wavenum-

ber m = −0.7k also break lower than predicted by linear theory, with a slight

increase in the nonlinear breaking height zB for larger values of Hρ. Linear the-

ory predicts that the breaking height will decrease for larger Hρ, which results

in better agreement as the fluid becomes more Boussinesq. More hydrostatic

waves, which in Figure 4.20 break consistently below the levels predicted by

linear theory, are now seen to break above the predicted breaking height zB0

for very large values of Hρ. In this limit, the nonlinear breaking heights in-

crease slightly, while the predicted overturning levels based on linear theory

become significantly lower. Such a situation corresponds to a fluid with either

a very small potential temperature scale height or a very large density scale
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Figure 4.21: Results from anelastic fully nonlinear numerical simulations for
the normalized breaking height zB/λx of a wavepacket with β = 0.015, plot-
ted against the horizontal wavelength normalized by the density scale height
λx/Hρ. The vertical wavenumbers shown are m = −0.4k, m = −0.7k, and
m = −1.4k. The solid lines are theoretical predictions from linear theory.
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height, so that Hρ ≈ Hθ. This is not realistic for atmospheric stratifications.

4.5.2 Wave Breaking: Non-Boussinesq Liquid

Figure 4.22 compares the predicted breaking heights based on linear theory zB0

with the breaking heights determined from fully nonlinear numerical simula-

tions zB for α = 0.07 and for a range of λx/Hρ. The extension of these results

to waves of other sufficiently small initial amplitudes is given in Appendix D.

For waves of wavenumber m = −0.4k, breaking occurs consistently below

the levels predicted by linear theory. This is expected based on the rapid am-

plitude growth caused by modulational instability. Conversely, modulationally

stable waves of wavenumber m = −1.4k, whose relative amplitude decreases,

break well above the predicted levels from linear theory. Waves with vertical

wavenumber m = −0.7k break both above and below the heights predicted by

linear theory, depending upon λx/Hρ.

If we consider λx to be fixed, and allow Hρ to vary, we see that for the range

of density scale heights considered, agreement with linear theory improves

for waves in increasingly non-Boussinesq fluids. There is some indication in

Figure 4.22b that this trend may reverse as Hρ becomes increasingly small.

We were unable to confirm this using the numerical model, however, as the

wavepackets became unstable and began to overturn almost immediately upon

initialization. It is also clear from Figure 4.22 that waves in more Boussinesq

fluids are able to propagate further before breaking, which is consistent with

our expectations of decreased amplitude growth for larger density scale heights.

4.6 Anelastic/Non-Boussinesq Comparison

A direct comparison of internal gravity waves in an anelastic gas and a non-

Boussinesq liquid is not really possible in the sense that the weakly and fully

nonlinear anelastic gas equations do not collapse to the non-Boussinesq equa-
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Figure 4.22: Results from non-Boussinesq fully nonlinear numerical simula-
tions for the normalized breaking height zB/λx of a wavepacket with α = 0.07,
plotted against the horizontal wavelength normalized by the density scale
height λx/Hρ. The vertical wavenumbers shown are m = −0.4k, m = −0.7k,
and m = −1.4k. The solid lines are theoretical predictions from linear theory.
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tions in the limit Hθ → ∞. Furthermore, while ρ̄ in a uniformly stratified

non-Boussinesq liquid is a decreasing exponential, ρ̄ ≡ ρ0 exp(−z/Hρ), it is

given in terms of θ̄ in an anelastic gas. However, a general comparison can

be made, as shown in Figure 4.23. In this figure, we see the non-Boussinesq

wavepackets from Figure 4.16 (in the leftmost plots) compared with wavepack-

ets in an anelastic gas for which the potential temperature scale height is so

large as to be effectively approaching infinity. For both the non-Boussinesq

and anelastic fluid Hρ = 3.2λx, however the amplitudes of the wavepackets

are not the same. Since we deal with a streamfunction in the non-Boussinesq

liquid and a mass-streamfunction in the anelastic gas, it is difficult to compare

amplitudes at all. In this figure, ‖AΨ‖ is about half the value of ‖Aψ‖, chosen

to create a similar initial value of the wave-induced mean flow field.

Qualitatively, there is a surprising amount of similarity between the two

sets of plots. In both, we see the same characteristics of modulational sta-

bility or instability, development of asymmetry and decrease in cgz at late

times. The anelastic waves have larger maximum amplitude at late times,

and the weakly nonlinear dynamics develop more rapidly. Non-hydrostatic

wavepackets exhibit modulational instability and break below the levels pre-

dicted by linear theory, while modulational stability is observed for hydrostatic

wavepackets. In the non-Boussinesq liquid, these wavepackets were observed

to propagate well above the overturning levels predicted by linear theory. In

the anelastic gas, however, they developed a distinctive pattern of multiple

narrow, large-amplitude peaks at late times, which resulted in wave breaking

below the predicted level. This feature is at least partially a result of the

interactions between the waves and the wave-induced mean flow, and is cap-

tured to some degree by the third order ∂zU term in the anelastic Schrödinger

equation. With the exception of this feature, the weakly nonlinear equation

was found to be effective at capturing the wave dynamics in all cases over the

82



Figure 4.23: Comparison of anelastic and non-Boussinesq fully nonlinear nu-
merical simulations for the ρ̄U/ρ0U0 field of a wavepacket, with β = 0.015,
α = 0.07, Hθ = 1.6 × 107λx and Hρ = 3.2λx, for vertical wavenumbers
m = −0.4k, m = −0.7k, and m = −1.4k.
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course of each wavepacket’s evolution. The biggest discrepancy in both the

anelastic gas and the non-Boussinesq liquid is the moderate overestimation of

the amplitude of the wave-induced mean flow field by the weakly nonlinear

equation at very late times.

In terms of breaking height, it was found that the density scale height was

the primary parameter, apart from the initial amplitude of the wave, that

affected wave breaking in a non-Boussinesq liquid. In an anelastic gas, it

was the potential temperature scale height, and not Hρ, that was the most

important parameter. This is a result of defining the background density in

terms of θ̄. As seen in Figure 4.20, 4.21 and 4.22, the discrepancies between

the heights at which linear theory predicts wave overturning and the locations

of wave breaking given by the fully nonlinear simulation are larger for the

anelastic gas than for the non-Boussinesq liquid.

We conclude that the study of non-Boussinesq waves in a liquid is a valid

means to observe and analyze modulationally stable and unstable wavepack-

ets, as well as the interaction of waves with the wave-induced mean flow. It

allows us to determine, through comparison with the corresponding anelastic

results, which dynamics are a consequence of the thermodynamics of the at-

mosphere. However, it cannot provide quantitative results that are applicable

to the atmosphere, nor can it capture all the nonlinear dynamics that have an

impact upon wave breaking heights.

Laboratory experiments involving a non-Boussinesq liquid are worthwhile,

particularly since they are simpler to perform than a corresponding experimen-

tal study in an anelastic gas. In particular, if the primary focus is the exponen-

tial amplitude growth of a vertically propagating internal gravity wavepacket

with height, then a non-Boussinesq liquid is an ideal proxy for an anelastic

gas for a range of amplitudes and vertical wavenumbers.
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Chapter 5

Discussion and Conclusion

In this thesis, I have determined the form for the wave-induced mean flow of

internal gravity waves in a non-Boussinesq liquid, derived the weakly nonlinear

Schrödinger equations for the evolution of wavepackets in both an anelastic

gas and a non-Boussinesq liquid and described two fully nonlinear numerical

simulations that I developed to model these waves. I have compared the results

of the fully nonlinear numerical simulations to those from the weakly nonlinear

equations for a variety of wavepacket parameters, and determined the impact of

weakly nonlinear dynamics on wave breaking height. Finally, I have compared

the breaking heights determined from the fully nonlinear simulations with the

overturning heights I determined through the use of linear theory.

It has been shown that the dominant characteristics of the evolution of a

horizontally periodic, vertically localized wavepacket are well captured in both

the linear and nonlinear regimes by a weakly nonlinear Schrödinger equation

describing only the interactions of the waves with the wave-induced mean

flow. The Schrödinger equation is a reasonably good approximation even as

the waves approach breaking amplitudes. This holds true for a wavepacket

propagating in an anelastic gas and in a non-Boussinesq liquid. If Hρk ≫

1, waves of frequency ω > (2/3)1/2N (|m/k| < 2−1/2) are modulationally

unstable, experiencing growth and narrowing of the amplitude envelope and
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a decrease in vertical group velocity. This is more pronounced in an anelastic

gas, for which weakly nonlinear dynamics develop more rapidly prior to wave

overturning. In particular, there is a larger decrease in the vertical group

velocity and a more rapid increase in the relative amplitude of the envelope.

Symmetry breaking is also seen for waves of frequency ω ≈ (2/3)1/2N , which

propagate at the fastest vertical group velocity and represent the critical point

between modulational stability and instability. Modulationally stable waves

with ω < (2/3)1/2N experience rapid broadening and a decreasing relative

amplitude. At late times, the broadened amplitude envelope evolves to form

a series of distinct peaks that persist and increase sharply in amplitude for

modulationally stable waves in an anelastic gas.

In order to capture the observed symmetry breaking and decrease in verti-

cal group velocity, it was necessary to include third order terms in the weakly

nonlinear Schrödinger equations. At late times, it was seen that these equa-

tions, while still capturing many of the qualitative features of the wavepacket

evolution, were unable to accurately predict some of the quantitative features

of the waves. In particular, the maximum amplitude of the wave-induced

mean flow field was too large when compared to the results of the fully non-

linear numerical simulations. Overall, it was found that the weakly nonlinear

dynamics of internal gravity waves in both a non-Boussinesq liquid and an

anelastic gas were primarily determined by the interaction of the waves with

the wave-induced mean flow, with discrepancies appearing only at late times.

Non-hydrostatic waves in a non-Boussinesq liquid or an anelastic gas consis-

tently break at lower levels than predicted by linear theory. Hydrostatic waves

in a non-Boussinesq liquid break at heights greater than those predicted by lin-

ear theory, so that for a given density scale height Hρ, the predicted breaking

height will be inaccurate in most circumstances. As an illustration, consider

hydrostatic internal waves having a horizontal wavelength on the order of 1km.
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Figure 4.22 indicates that such waves will break at least 30% higher than ex-

pected from the predictions of linear theory. If the horizontal wavelength is

closer to 10km, the wave will break on the order of 11
2

times higher than

predicted by linear theory.

If hydrostatic waves in an anelastic gas are considered, however, Figure 4.20

indicates that breaking will occur at heights lower than those predicted by

linear theory, for a range of potential temperature scale heights Hθ. As an

example, consider a wave with horizontal wavelength of about 1km, which

breaks roughly 50% lower than the predicted breaking height calculated using

linear theory. This occurs in part due to third-order nonlinear dispersion

resulting from the interaction of the waves with the wave-induced mean flow.

For realistic atmospheric parameters, with Hρ ≈ 10km and Hθ ≈ 100km, a

hydrostatic wavepacket of wavelength λx = 628m and initial amplitude Aξ ≈

13m launched near the ground might propagate to a height of about 6km (at

mid depth in the troposphere) before breaking. A general circulation model

using linear theory would predict a breaking height of around 10km, in the

lower stratosphere, nearly twice as high. This analysis indicates that general

circulation models that use linear theory to parameterize internal gravity wave

breaking deposit momentum at inaccurate heights in the atmosphere.

In order to understand fully the implications of this analysis for internal

gravity wave breaking in the atmosphere, much work remains to be done.

In particular, it would be advantageous to perform fully nonlinear numerical

simulations in which a changing background shear was included, or in which

the stratification was non-uniform. Such studies would be better suited to

replicating all the physical features present in the actual atmosphere, and are

necessary before suggestions can be made on how to improve the parameter-

izations schemes used to model internal gravity waves in general circulation

models of the atmosphere.
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Appendix A

Wave-Induced Mean Flow

The following derivation uses Stokes’ Theorem in a 2D vertical plane (also

known as Green’s Theorem) to arrive at the form for the wave-induced mean

flow of internal gravity waves in an anelastic gas derived by Scinocca and

Shepherd (1992) and given by equation (1.1). Consider

∫ ∫

S

(∇× ~F ) · n̂ dS =

∮

C

~F · d~r

in which S is an open surface and C is a closed curve around the surface. If

we consider the velocity vector in two-dimensions, this becomes:

∫ ∫

S

(∇× ~u) · ŷ dS =

∮

C

~u · d~r (A.1)

in which the S is the area between upwardly displaced fluid and the original

position of the fluid for the first half-period of wave oscillation, and C is a

counter-clockwise curve around this area. Provided that the vertical displace-

ment of the wave ξ is small enough that the vorticity does not vary over S,

ζ 6= ζ(z), equation (A.1) becomes

−

∫

ζ

∫

S

dA =

∮

C

~u · d~r

⇒ −

∫ λx/2

0

ζ(ξ)dx =
1

2
λx〈u〉

⇒ −〈ζξ〉 ≃ U

in which U is the wave-induced mean flow.
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Appendix B

Fully Nonlinear Anelastic
Model: Determination of Ψ

During the operation of the fully nonlinear anelastic model, a tri-diagonal

matrix inversion is used to calculate the mass-streamfunction from the vor-

ticity (2.16). Represented in terms of its horizontal spectral components, the

horizontal discrete Fourier transform of the vorticity equation gives

ζn(z, t) =
1

ρ̄
eiknx

[

k2
n − ∂zz −

1

Hρ

∂z

]

AΨn,

in which kn = nk is the horizontal wavenumber in question for which Ψn is

being determined.

Using centered finite differences to approximate the vertical derivatives, we

have:

ζnm(t) =
n2

ρ̄m
AΨnm −

1

ρ̄m

[

AΨn(m+1) − 2AΨnm + AΨn(m−1)

(∆z)2

]

−
1

ρ̄mHρm

[

AΨn(m+1) − AΨn(m−1)

2∆z

]

. (B.1)

This represents the vorticity amplitude with horizontal wavenumber kn situ-

ated at z = zmin+m∆z. This can be expressed as ζnm = − 1
(∆z)2

MΨnm, where

M is the coefficient matrix
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1 0 0 0 · · ·
a1 b1 c1 0 · · ·
0 a2 b2 c2 · · ·
...

...
...

...
. . .

· · · amm bmm cmm
· · · 0 0 1



















and

am =
1

ρ̄m
−

∆z

2ρ̄mHρm

,

bm = −
2

ρ̄m
−

(n∆z)2

ρ̄m
,

cm =
1

ρ̄m
+

∆z

2ρ̄mHρm

.

The code inverts this tridiagonal matrix using the Thomas algorithm (Conte

and deBoor, 1972). The inversion proceeds as follows; in the forward elim-

ination phase, we loop over the m index from 1 until mm, modifying the

coefficients of the matrix and the ζ array to:

p =
am
bm−1

,

bm = bm − pcm−1,

ζm = ζm − pζm−1.

In the backward substitution phase, we loop over m from m − 1 to 1, to

determine our new values for the mass-streamfunction:

Ψmm =
ζmm
bmm

,

Ψm =
ζm − cmΨm+1

bm
.

We get our final values for the mass-streamfunction by multiplying by −(∆z)2.

Lastly, the values of Ψ at the top and bottom of the domain are forced to zero,

to reflect our choice of boundary condition.
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The numerical simulation has free-slip boundary conditions in the vertical,

which require no normal flow (w = 0) at the upper and lower boundaries. In

terms of Ψ

1

ρ̄

∂Ψ

∂x

∣

∣

∣

∣

z=zmin,zmax

= 0.

Free-slip boundary conditions essentially ensure that there is no ‘friction’ be-

tween the fluid and the domain boundary. In order to ensure further that the

boundaries have no effect on the wave dynamics, the domain size is chosen to

be large enough that the wavepacket remains far from the boundaries over the

duration of the entire simulation.

There is one subtle issue in the calculation of Ψ near the boundaries. If

we simply force the mass-streamfunction to be zero at the top and bottom

boundary, we will have a sharp jump from zero to whatever the value of Ψ

is just off these boundaries. This will create problems when taking numerical

derivatives, and must be corrected for. In order to do this, we first determine

the formula for Ψ in terms of ζ near the boundaries. We assume that the

wavepacket is not present in this region, so that uT = Ū and wT = 0. Then

ζT = ∂zŪ , and we add some small factor δ to account for any numerical noise:

ζT = ∂zŪ + δ. The equation we want to solve for Ψ is thus

∂2Ψ

∂z2
−

1

ρ̄

dρ̄

dz

∂Ψ

∂z
= −ρ̄

∂Ū

∂z
− ρ̄δ. (B.2)

If we make the substitution f = ∂zΨ, we arrive at a simpler equation,

which can be solved easily. The solution for the mass-streamfunction near the

boundaries is

Ψ = −

∫ zmax

zmin

ρ̄Ūdz − δ

∫ zmax

zmin

ρ̄zdz + c0

∫ zmax

zmin

ρ̄dz + c1, (B.3)

where c0 and c1 are unknown constants. The constant c1 can be ignored, but

we need to determine c0 and δ. These constants must be zero if we want uT
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to be zero at the boundaries, so we need to subtract the corresponding terms

from the mass-streamfunction at all heights in the domain. This will result in

a smooth transition from Ψ in the interior to the zero value at the boundary.

As it turns out, c0 and δ can be expressed in terms of derivatives of the

mass-streamfunction as

c0 =
1

ρ̄

∂Ψmm

∂z
+ Ū + δz,

δ = −
1

ρ̄

∂2Ψmm

∂z2
+

1

ρ̄2

dρ̄

dz

∂Ψ

∂z
−
∂Ū

∂z
.

The derivatives of Ψ are numerically evaluated near the upper boundary:

∂Ψmm

∂z
=

1

2∆z
(3Ψmm − 4Ψmm−1 + Ψmm−2) ,

∂2Ψmm

∂z2
=

1

(∆z)2
(2Ψmm − 5Ψmm−1 + 4Ψmm−2 − Ψmm−3) .

Finally, the terms c0
∫

ρ̄dz and −δ
∫

ρ̄zdz are subtracted from all values of

the mass-streamfunction over the height of the domain.
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Appendix C

Overturning Criterion and
Linear Theory Predictions

The condition for an overturning wave in an anelastic gas is

∂θ

∂z
+
dθ̄

dz
< 0. (C.1)

In the fully nonlinear numerical simulation, the left-hand side of this equa-

tion is calculated at each timestep, and the lowest height in the vertical at

which wave overturning occurs is denoted by zB for the breaking height of the

wavepacket. The corresponding overturning level predicted through the use of

linear theory is denoted by zB0. It is assumed that wave breaking occurs at

the overturning level.

For an internal gravity plane wave in an anelastic gas, the overturning

height from linear theory is implicitly defined through

2
k

ω

1

ρ̄
AΨ0

exp(−z/2Hρ) max

[

m sinφ+

(

1

Hρ

−
1

Hθ

)

cosφ

]

> 1, (C.2)

where ρ̄ is given by (2.12), φ = kx+mz−ωt, and AΨ0
is the initial maximum

amplitude of the mass-streamfunction field. It is not possible to solve this

equation explicitly for zB0, but it can be calculated numerically for each verti-

cal wavenumber and value of Hθ and Hρ. It is acceptable to assess the breaking

height of wavepackets using the overturning condition for plane waves because

97



the width of the wavepackets considered was large enough that any correc-

tion to this formula would be negligible. Test cases (not shown) in which the

width of the wavepackets was doubled demonstrated slightly increased break-

ing heights to those presented herein. However, the overall trends in relation

to linear theory were not significantly affected.

The condition for wave overturning in a non-Boussinesq liquid is given by

∂ρ

∂z
+
dρ̄

dz
> 0. (C.3)

The left-hand side of this expression was calculated at each vertical level in

the domain at each timestep. The lowest vertical level at which overturning

occurred was denoted as the breaking height zB. This height can be compared

with the breaking height zB0 predicted by linear theory.

For an internal gravity plane wave in an exponentially decreasing non-

Boussinesq background stratification this condition is given in terms of the

initial maximum vertical displacement amplitude of the wave Aξ0 by:

−Aξ0 exp [z/2Hρ] max

[

m sinφ+
1

2Hρ

cosφ

]

> 1. (C.4)

The predicted linear theory breaking height, zB0, can be calculated from this

expression for a given density scale height, Hρ, and vertical wavenumber, m.
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Appendix D

Breaking Heights & Amplitude

The non-Boussinesq liquid results presented in Figure 4.22 are for one partic-

ular wavepacket amplitude, α = 0.07. It is possible to extend these results to

any wavepacket of small initial amplitude, which in practice means α less than

∼ 0.2. Assuming that at early times the wavepacket evolves linearly, growing

only as a result of the exponential decrease in ρ̄(z), a new breaking height zB⋆

can be predicted from the known data for zB. For a wavepacket of amplitude

α⋆, the new breaking height is given approximately by

zB⋆ = zB − 2Hρ ln

(

α⋆

α

)

, (D.1)

in which zB is the breaking height determined from a fully nonlinear numerical

simulation of a wave with initial amplitude α. For example, for a wavepacket

with α⋆ = 0.10, m = −1.4k and λx/Hρ = 0.3, equation (D.1) predicts zB⋆ =

17.2λx. A nonlinear simulation gives zB⋆ = 16.9λx while linear theory predicts

zB0⋆ = 12.5λx. Thus, even approximating the breaking height from available

nonlinear data represents a significant improvement over linear theory.

It is not possible to arrive at a similar approximation for waves in an

anelastic gas, since the amplitude growth is related to the background density

profile, (2.12), which is defined in terms of the potential temperature. Thus,

an explicit formula for zB⋆ cannot be derived, as was the case for the linear

breaking height prediction in an anelastic gas, equation (C.2).
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