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Abstract

Product Entity Matching (PEM) is a challenging subfield of record linkage that in-

volves linking records referring to the same real-world product. Despite recent trans-

former models showing near-perfect performance scores on various datasets, they

struggle the most when dealing with PEM datasets. In this thesis, we study PEM

under the common setting where the information is spread over text and tables. To

facilitate our research, we introduce a new dataset based on existing Amazon, Wal-

mart and Google datasets, where each product contains a mix of both textual and

tabular details. Our hypothesis is that leveraging detail tables alongside textual data

can effectively tackle complex entity matching tasks where textual information alone

falls short. However, existing models have proven to be inefficient and ineffective

in utilizing such tabular data. We propose TATEM and TATTOO models, which

offer an effective solution by harnessing pre-trained language models along with a

novel serialization technique to encode tabular product data. Our models incorpo-

rate a novel attribute ranking module to make our model more data-efficient. Our

experiments on both current benchmark datasets and our proposed datasets show sig-

nificant improvements compared to state-of-the-art methods, including large language

models in zero-shot and few-shot settings. Moreover, in out-of-domain and few-shot

experiments, the TATTOO model showcases its superiority by outperforming strong

baselines by a substantial margin.
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Chapter 1

Introduction

1.1 Motivation

Entity Matching (EM) refers to the procedure of recognizing and connecting identi-

cal entities from multiple databases into a unified representation [1]. EM entails the

identification of records that pertain to the same real-world entity, like a person, orga-

nization, product, or location, and merging these records into unified representations,

even if variations exist among different databases [2].

The process of linking entities from structured and unstructured sources is cru-

cial in various fields and applications, such as healthcare, human resources and e-

commerce [3]. For instance, accurately linking highly similar patients based on their

textual medical case summaries and tabular diagnosis code data helps us create a

well-informed, user-friendly clinical decision support system. In addition, the pre-

cise matching of resumes to particular job postings and the linkage of job seekers

to matching organizations is essential for HR systems. Similarly, creating relation-

ships between clients and companies, such hotels and restaurants, is of paramount

importance in the world of web-based services.

An effective high-performance EM solution can benefit both business owners and

their clients. From the consumer’s perspective, making it easier to identify prod-

ucts listed for sale improves their ability to find items in niche markets. Moreover, it

empowers systems that collect product information from diverse sources to provide re-
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liable data, ultimately saving customers both time and money. For retailers, utilizing

this product information allows them to elevate the customer experience by employ-

ing targeted advertisements, comprehensive product listings, improved content-based

recommendation systems for newly launched items, and other enhancements. Com-

paring PEM with content-based recommendation systems, PEM models recognize

if two entities are referring to the same real-world product; however, content-based

recommendation systems aim to find and recommend items similar to the profiles of

users. PEM and content-based recommendation systems are similar in the sense that

both of them excel at finding highly similar items.

Moreover, the retail sector heavily depends on entity matching to achieve various

goals efficiently. For instance, in online tools designed for facilitating price compari-

son, product matching is employed. This process involves comparing different product

records to identify advertisements related to the same products offered by multiple

vendors. Additionally, the compilation of product data from various sources allows

the generation of comprehensive product catalogs and in-depth listings. Therefore,

the main objective of this thesis is to develop a cost-efficient and highly effective

solution for creating links between records in the domain of product matching.

The problem of entity matching has been extensively studied using various datasets

[4–6], and recent techniques, such as injecting domain knowledge [7, 8], improving se-

rialization [9], and utilizing LLMs [10], have been deployed. Here, we focus on Product

Entity Matching (PEM) for two important reasons: Firstly, the PEM datasets, such as

Amazon-Google [4] and Walmart-Amazon [11], remain challenging compared to many

other datasets on which EM models have demonstrated near-perfect performance [10].

Secondly, enhanced PEM solutions can offer substantial benefits to numerous real-

world e-commerce applications. However, we have identified some major challenges

in product entity matching manifested in popular PEM benchmarks:
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Is there hard negative examples in the real world?

SONY WH1000XM5 
Wireless Industry 
Leading Noise Cancelling  
Overhead Headphones 
with Auto Noise 
Cancelling Optimizer 
Black, Crystal Clear 
Hands-Free Calling With 
Alexa Voice Control

SONY Wireless Industry 
Leading Noise 
Cancelling Overhead 
Headphones With Mic 
for Phone-Call and 
Alexa Voice Control, 
Black

1

Figure 1.1: A hard negative example between two Sony headphones. Despite their
highly similar titles, the products are totally different.

Hard Negative Examples Certain product titles share a high degree of similar-

ity but are labeled as non-matching pairs, termed “hard negative examples”. Even

human annotators face challenges in distinguishing these non-matching examples us-

ing the information available in the dataset. As a result, State-Of-The-Art (SOTA)

models struggle to disambiguate them. Figure 1.1 illustrates one such hard negative

example involving two Sony headphones listed on Amazon.com. Although these ex-

amples are considered non-matching pairs, all the words in the title of the product

shown on the right are found in the title of the product shown on the left, making it

intricate for the models to differentiate between them.

Attribute Identification Nowadays product titles play a pivotal role in encoding

the distinctive attributes of products. Nevertheless, specific segments within a title,

such as the model, year introduced, functionalities, etc., bear critical significance in

the process of making matching decisions. The placement of this essential information

may vary across different products. Therefore, the model may not have direct access

to the encoded attributes. For instance, in the examples shown in Figure 1.1, the

color “Black” appears in the middle of the left product title and at the end of the
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right one. An EM model should be capable of recognizing the importance of such

information and accurately recognizing the attribute it describes.

Fixed Attributes In all popular EM datasets [6, 12, 13], a fixed number of at-

tributes is given for all samples (e.g., title, manufacturer, and price for the Amazon-

Google dataset [4]). However, different products can have different number of charac-

teristics and key attributes, Posing a limitation on the number of attributes is prone

to neglecting pivotal product attributes.

Generalization to Unseen Domain Entities While current prominent EM mod-

els [7, 9, 14] achieve high performance for matching entities within the domain of the

training data, our experiments involving entities from unseen domains—those not

covered by the training data—indicate that the methods perform significantly worse

for such entities. Our experiments in Section 4.5.2 confirm that all the existing EM

models demonstrate a significant decline in performance when evaluated on an unseen

domain. For example, new products frequently appear in e-commerce scenarios, and

new books and articles are central to bibliographic data management.

Low-Resource EM In order to meet the requirements of various applications,

there is a need for a solution that can operate effectively under low-resource condi-

tions [15], meaning it should be capable of functioning with only a limited number of

labeled examples. Typically, current EM approaches [7, 9] employ supervised learning

methods that make use of Pre-trained Language Models (PLM). However, these ap-

proaches heavily rely on having a substantial quantity of high-quality domain-specific

labeled training data. Our experiments in Section 4.5.1 show that existing EM models

encounter difficulties when challenged with low-resource conditions.

Lack of Domain Knowledge To implement an informed model for disambiguating

hard negative examples, it is essential to have an additional source of product domain
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knowledge to supplement the model. KAER [8] employs Wikidata as a knowledge

graph for the purpose of integrating external knowledge at both the schema and entity

levels. Nevertheless, this approach is inclined to exhibit reduced efficacy when dealing

with challenging hard negative examples, since such instances generally pertain to

the same category within the schema level. Furthermore, newly introduced and less

widely recognized products are less likely to be discovered within the knowledge graph.

DITTO [7] highlights the importance of extra domain knowledge for EM by adding

Named Entity Recognition (NER) tags from spaCy [16] and rewriting text spans

with developer-specified rules (e.g., replacing 5 % and 5.00 % with 5.0%). However,

these measures are not domain specific, and the same technique is deployed for every

domain (dataset).

1.2 Thesis Objectives

Provide Product Specific Domain Knowledge We want to enrich existing

PEM benchmarks (e.g., from [12]) by introducing product detail tables as an ad-

ditional source of product domain knowledge. These tables serve as crucial links,

facilitating the connection between two entities of interest, thus potentially enhanc-

ing the accuracy of matching decisions. Within the datasets, each product exhibits a

varying number of attributes. By integrating the detail table, we are able to directly

capture all the characteristic features of products, contributing to a more compre-

hensive and informed matching process. Consider the example shown in Figure 1.2,

where a model number is provided for the left product; however, this specific model

number is not given in the title of the right product. The presence of the model

number in the detail table serves as a connecting element that fills the gap between

the two product descriptions.

However, including detail tables introduces new challenges to entity matching. For

instance, as shown in our dataset analysis in Section 4.2, one of our enriched datasets

includes 826 unique features and tables with up to 81 attributes. Therefore, it imposes
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SONY WH1000XM5 
Wireless Industry 
Leading Noise Cancelling  
Overhead Headphones 
with Auto Noise 
Cancelling Optimizer 
Black, Crystal Clear 
Hands-Free Calling With 
Alexa Voice Control

SONY Wireless Industry 
Leading Noise 
Cancelling Overhead 
Headphones With Mic 
for Phone-Call and 
Alexa Voice Control, 
Black

1

Item model number WH1000XM4

Product Dimensions 7.27 x 3.03 x 9.94 inches

Item Weight 9 ounces

ASIN B0863TXGM3

Batteries 1 Lithium Polymer batteries

non-match

Figure 1.2: A hard negative example disambiguated using an Amazon product detail
table, that it is challenging to reject a match based only on the information given in
titles because there are many overlapping words. An EM model can disambiguate
this by forming a connection between the left product and the table (if exists). Here,
the Product model number field helps the EM model to fill the information gap and
reach a Non-Match decision.

new challenges for table serialization using PLMs and a data-efficient solution for long

product detail tables.

Design Attribute Ranking Module (ARM) Enriched datasets have many at-

tributes per product, making it hard to determine key indicators for matches or

non-matches. To address this challenge, we want to develop techniques dedicated to

retrieving and ranking the most essential attribute-value pairs. These methods are

vital for improving the matching process and increasing the accuracy of our entity

matching system, especially in difficult scenarios.

Develop A Model for Semi-structured Data Prominent EM models [7, 9,

10, 12, 14] are implemented for existing EM benchmarks [4, 6, 11–13] which are

structured with a preset number of features. We want to introduce an enriched

dataset with a varying number of attributes and a varying schema for products.

Our experimental findings (§3.4, §4.4.1) confirm that converting our semi-structured

data to a structured format leads to a sparse and unnecessarily wide dataset. This
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structured dataset suppresses the PLM-based model capabilities and the potential

of the enriched data. Therefore, we need to devise an EM model and serialization

technique specially devised for the semi-structured format of our dataset.

1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 reviews the background and related work about EM. Scientists have

referred to entity linkage since 1959 [17], and have utilized different approaches for it.

We discuss EM solutions by leveraging probabilistic, rule-based, traditional machine

learning, active learning, deep learning, and PLMs.

Chapter 3 includes product entity matching via tabular data using our TAble &

Text for Entity Matching (TATEM) model. We introduce two enriched datasets

(Amazon*-Google and Walmart-Amazon*) with Amazon product detail tables (§3.2).

The PLM-based model employs a new serialization technique (§3.3.1) devised for our

semi-structured enriched datasets. Additionally, to find the top n most essential

detail table attributes, we develop an Attribute Ranking Module (ARM) (§3.3.2). In

fact, ARM has the potential to substantially decrease the number of tokens sent to

a PLM. A proficient ARM should bring matching pairs closer together and create

greater separation among non-matching pairs using only a few attributes. Thanks

to its effective serialization technique and informative product detail tables, TATEM

obtains new SOTA results for both Amazon-Google and Walmart-Amazon datasets

(§3.4).

Chapter 4 introduces TATTOO (TAble & Text Entity Matching as TOpology

COonstruction): product entity matching as a topology construction. We create

Walmart*-Amazon* dataset benefiting from product detail tables for both Walmart
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and Amazon items. TATTOO reaches new SOTA results for Walmart-Amazon

and Amazon-Google datasets. Integrating ARM into TATTOO results in a high-

performance, data-efficient entity matching system. We develop two versions of ARM

(plain ARM and cross ARM) to optimize product table utilization on both sides

(§4.3.2). TATTOO exhibits outstanding robust behavior when faced with reduced

training size (§4.5.1). Trained on 5% of Walmart*-Amazon* dataset, TATTOO is

leading with 39.9% enhancement over DITTO (77.14 vs 37.24). Additionally, our

model exhibits promising out-of-domain robust behavior (§4.5.2) in zero-shot setting.

In our experiment settings, TATTOO can outperform zero-shot GPT3 and few-shot

GPT3(K=10) on Amazon-Google dataset, and our model achieves 31.60% improve-

ment compared with DITTO.
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Chapter 2

Related Work

Canadian researchers [17] in 1959 introduced the term record linkage in a paper

published in the journal of Science. Since then, Entity Matching (EM) has been an

important research problem with different solutions developed in the literature, such

as rule-based (§2.2), traditional Machine Learning (ML) (§2.3), Deep Learning (DL)

(§2.4), and Pre-trained Language Model (PLM) (§2.4.2). This chapter reviews the

related work on entity matching with a focus on Product Entity Matching (PEM).

Our review includes not only traditional and modern approaches based on machine

learning but also some of the work that attempt to use Domain Knowledge (DK)(§2.5)

as well as some of the models developed for tabular data (§2.6). Finally, we discuss

the gap in EM research (§2.7) and suggest a source of product-specific DK to build a

more effective solution for product entity matching.

2.1 Probabilistic Entity Matching

Newcombe, Kennedy, Axford, and James [17] were the first to identify record linkage

as a Bayesian inference problem. Later, Fellegi and Sunter [18] formalized this intu-

ition and introduced the notations that have been frequently used in the literature.

Jaro suggests an expectation maximization algorithm [20] to compute the probabil-

ities. Later, Winkler [21] propose a general expectation maximization algorithm to

estimate conditional probabilities when conditional independence is not a reasonable

9



assumption.

Interestingly Fellegi and Sunter [18] introduce a “reject” class in addition to “match”

(M) and “nonmatch” (U) classes for a pair of records. The reject class contains pairs

of entities for which it is not possible to make a definitive decision and a “clerical

review” is required by an expert.

Often, only focusing on the minimization of the probability of error is not the best

metric for generating decision rules because the misclassification of each class may

have different consequences. Tepping [22] was the first to suggest a solution for the

cost of decisions. Later Verykios, Moustakides, and Elfeky [23] developed a formal

framework to compute thresholds for the three decision areas, i.e. M, U, and Reject.

2.2 Rule-based Entity Matching

A well-known EM technique is defining a set of rules that determines the conditions

under which two entities are considered matching. For instance, a rule may indicate

that two records will be considered matching if they fully match the name field and

the similarities between the fields of street name and city are higher than 0.8. This

may be written as

(name, Jaccard,=, 1) ∧ (street name, Jaccard,>, 0.8) ∧ (city, Jaccard,>, 0.8)

where the second argument in each condition gives the distance or similarity function

being used. In this case, the similarity measure between the attributes is Jaccard

index.

For early rule-based models [24, 25], an expert has to get into the intricate process

of manually defining the rules and deciding on what attributes should be considered,

what similarity function should be used between those attributes, what parameters

and thresholds the similarity functions should run, which rules are of greater impor-

tance, and which configuration of rules works best for a specific domain. A new line

of studies tries to address the above challenges and design an ML model to find the

attributes, similarity functions, and rule configuration [26–29] using a given set of
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examples. However, they study the challenges only in isolation.

Recently Paganelli, Sottovia, Guerra, and Velegrakis, 2019 [30] introduce a model

which optimizes the similarity function, the variables and thresholds of the similarity

function, and the weights of the rules, and obtains promising results.

2.3 Traditional Machine Learning Approaches for

Entity Matching

Supervised Machine Learning (ML) approaches rely on training data in the form

of pairs, labeled as matching or non-matching to learn an EM model. Cochinwala,

Kurien, Lalk, and Shasha [31] utilize well-known Classification And Regression Tree

(CART) [32] to create classification trees. However, they consider record pairs inde-

pendently, similar to probabilistic approaches. Bilenko, Mooney, Cohen, Ravikumar,

and Fienberg [33] employ an SVM classifier [34] to train a model for merging match-

ing results for the individual attributes of records. The SVM model can beat other

techniques that process the whole entity as one large attribute.

One group of studies constructs a graph with the entities as nodes and trains a

model to cluster the matching nodes. Bansal, Blum, and Chawla [35] take advantage

of a polynomial approximation algorithm to partition the graph, and find the clus-

ters and the number of clusters in the dataset. Cohen and Richman [36] suggest a

supervised clustering model which learns an adaptive distance function from a given

set of training examples. Singla and Domingos [37] prove that by using attribute

values as the nodes in the graph, you can propagate information across nodes, and

this improves the performance of duplicate record detection.

The necessity for a large training set is a major problem for supervised ML models.

To create a dataset for EM, it is straightforward to find a large number of training data

that is clearly a match or non-match. However, it is very difficult to add ambiguous

cases which enhance the model generalization to real-world situations. Some duplicate

detection systems use active learning [38] to automatically identify such ambiguous
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pairs. Unlike an “ordinary learner” that is trained by a static training set, an “active”

learner actively selects subsets of unlabeled data which, when labeled, will give the

model the most information gain.

Sarawagi and Bhamidipaty [39] introduce ALIAS, a duplicate detection model

based on active learning, using the idea of “reject region” assigned to pairs with high

uncertainty. The main idea behind ALIAS is that most duplicate and non-duplicate

pairs are easy to distinguish. The model automatically categorizes such pairs into

the U (Unmatched) and M (Matched) classes without the need for human manual

labeling. However, ALIAS asks for manual labeling only when the uncertainty is

high. The model can rapidly detect duplicates by leveraging only a small number

of training data. Tejada, Knoblock, and Minton [40] implement Active Atlas, a

record matching model, by a similar strategy using decision trees. They show that

it is possible to identify ambiguous pairs by generating multiple classifiers that are

trained using slightly different data or parameters.

2.4 Deep Learning Approaches

Deep Learning (DL) models and in particular Pretrained Language Models (PLMs)

have revolutionized NLP and IR tasks including EM. Here deep learning models are

divided into two sections: EM prior to PLM and PLM-based EM.

2.4.1 Entity Matching prior to Pre-trained Language Models

The first attempts and successes to apply DL to EM tasks are DeepER [41] and

DeepMatcher [12]. DeepER utilizes an LSTM-based RNN with Siamese architecture

[42], which contains two identical sub-networks with the same configuration, param-

eters, and weights. DeepER first tokenizes each entity, and then converts it to a

vector representation using word embedding models, such as Glove [43] and fastText

[44]. For each entity, the model generates a representation by aggregating token-

level distributed representations. Given a pair of entity representations, they use a
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dense fully-connected NN layer to calculate the similarity between the pair of entities,

followed by an output layer to predict the matching (0/1).

DeepMatcher [12] formulates EM as a binary classificatoin problem and experi-

ments with different DL architectures from a simple one, similar to DeepER [41], to

attention-based models. It is reported that the attention-based model outperforms

other non-DL models. The attention-based networks allow DeepMatcher [12] to take

into account the attribute similarity individually. Thus, DeepMatcher [12] is capa-

ble of capturing attribute-level similarity better than DeepER [41] because DeepER

[41] only utilizes aggregate and coarser-grained entity representations to calculate the

similarity between pairs of entities.

As one of the main limitations of DeepMatcher [12] and DeepER [41], both tech-

niques treat an attribute as a sequence of tokens and use word embedding models;

however, it is known that these models are not good at numerical comparisons. To

address this issue, Fu, Han, Sun, Chen, Zhang, Wu, and Kong [45] introduce a multi-

perspective matching model which considers multiple inputs individually (numeric,

string, and text) and adaptively switches the similarity measures.

Another limitation of DeepMatcher [12] is that the attention mechanism only at-

tends to the same attribute. It distracts the EM model when handling data from

heterogeneous resources. To address this issue, Seq2SeqMatcher [46] extends the

attention-based model of DeepMatcher [12] and lets it attend to other attributes. In

other words, Seq2SeqMatcher [46] relaxes DeepMatcher’s [12] soft alignment condi-

tion (from the same attribute) to any attribute pairs. The more general attention

model improves Seq2SeqMatcher [46] performance not only on heterogeneous but also

on homogeneous ER-Magellan datasets [5]. To further enhance the performance on

heterogeneous data, HierMatcher [47] designs three alignment layers for token-level,

attribute-level, and entity-level similarity calculation.

In the era of DL, many EM models use RNN architectures and attention mecha-

nisms. However, at a high level, how DL networks are designed differ in important
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ways. Attribute comparator models apply cross attention only within the same at-

tribute to make a matching decision, e.g., MPM [45], DeepMatcher [12], and Hi-EM

[48] models. On the other hand, record comparator models use cross-attention at

a record level considering all the attributes and the relation between them, e.g.,

Seq2SeqMatcher model [46].

Another important property of DL networks is the choice of independent or in-

terdependent representation of entities. If a DL network sees a pair of entities to

be compared, it generates interdependent representations of the entities, e.g., Deep-

Matcher [12], Hi-EM [48], and Seq2SeqMatcher [46] models. Otherwise, each entity

is assigned a representation independent of other entities, e.g., DeepER [41] and Au-

toBlock [49] models.

2.4.2 Pre-trained-language-models-based EM

Recent high-performance models benefit from a fine-tuned PLM to tackle the EM

problem. Transformer-based EM solutions employ interdependent representations,

and they are categorized as record comparator models. DITTO [7], a prominent EM

model, concatenates a pair of records to form a sequence, and fine-tunes a PLM to

solve a sequence-pair classification problem. To improve its performance, DITTO

has modules for Domain Knowledge (DK), data augmentation and summarization.

About the summarization module, although the name implies a sophisticated neural

network model, it just removes stop words in practice. In fact, it can be considered

a pre-processing technique.

DITTO [7] serializes each data entry (e = {(attri, vali)}1≤i≤k) as follows:

serialize(e) ::= [COL]attr1[V AL]val1...[COL]attrk[V AL]valk,

where [COL] and [V AL] are special tokens for indicating the start of attribute names

(attri) and attribute values (vali), respectively. Brunner and Stockinger [50] introduce

a similar transformer-based solution.

ROBEM [9] is inspired by DITTO, and it achieves promising results thanks to an
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improved serialization technique, weighted cross-entropy loss function designed for

imbalanced dataset, and a higher degree of non-linearity in the classification head.

Structured data may be collected from heterogeneous resources and may lack at-

tribute names. Thus, EM models are likely to become impaired when faced with

circumstances where attribute name are not present, negatively affecting the model

robustness. To alleviate this issue when serializing data entries, ROBEM does not

consider attribute names and uses [ATTR] as the special token between attribute

values as follows:

serialize(e) ::= [ATTR]val1...[ATTR]valk,

Recently, SupCon [14] extends the idea of pre-trained transformers for EM us-

ing supervised contrastive learning [51], achieving SOTA results for Amazon-Google

dataset. More recently, Narayan, Chami, Orr, and Ré [10] utilize LLMs such as

GPT3 [52] to push the SOTA results for EM benchmarks (e.g. Walmart-Amazon)

in zero-shot and few-shot settings.

2.5 EM Models Leveraging Domain Knowledge

Although high-performance PLM-based EM models (e.g., DITTO [7], ROBEM [9],

JointBERT [53]) reach near-perfect accuracy for most EM datasets (e.g., DBLP-

Scholar and BeerAdvo-RateBeer [13]), these models are still lagging behind for prod-

uct entity matching (PEM) datasets such as Amazon-Google [4] andWalmart-Amazon

[11]. Some studies suggest using additional Domain Knowledge (DK) to improve EM

model’s performance.

KAER [8] resorts to Wikidata as a knowledge graph to inject external DK at both

schema and entity levels. However, this method is less likely to be effective for hard

negative examples, as they typically belong to the same category at the schema level,

and new and less popular products are less likely to be found in the knowledge graph.

DITTO [7] highlights the importance of the existence of DK for EM and creates a
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module for DK. However, what it does in practice is not consistent with what the

name suggests and what the paper claims. The paper claims that it can inject DK

into DITTO. However, in practice, (1) the authors use the Name Entity Recognition

(NER) model of an off-the-shelf library (spaCy [16]) to assign tags to entities; (2)

they rewrite text spans with developer-specified rules (e.g., replacing 5 % and 5.00 %

with 5.0%). In fact, it is not domain-specific, they do the same for any domain, and

the rewriting rules do not add any extra DK.

KAER [8] argues that external knowledge can help with the heterogeneity of data

sources, but the reported results are only on the EM benchmarks that share the same

schema. These recent studies have not focused on or addressed the aforementioned

issues due to the lack of a relevant dataset.

2.6 Tabular Data as A Source of Knowledge

In the last section (§2.5), we discussed the EM solutions that resort to product Domain

Knowledge (DK) to enhance EMmodel performance, although the suggested solutions

weren’t effective or product-specific. Product tables can be a reliable source of DK,

and they are accessible from product pages on e-commerce platforms (e.g., Walmart,

Amazon, BestBuy, etc.). Here we review studies that utilized tabular data as a

source of DK. With the widespread use of electronic devices, tables have become

the mainstream way to store facts, product characteristics, and enterprise data from

various resources (e.g., webpages, databases, and spreadsheets), which represent the

data as a grid-like format of rows and columns so that users can easily inquire about

and discover patterns and insights from the data. Thus, tabular data is considered a

rich source of knowledge and has been used for fact-based Question Answering (QA).

The research on table QA has been increasing over the past few years, and the scholars

have released different Text-to-SQL datasets such as Spider [54] and WikiSQL [55]

and table QA datasets such as WTQ [56], SQA [57], and HiTab [58]. Recently, tabular

and textual QA datasets have attracted the attention of the academic community,
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and new datasets have been made available: TAT-QA [59], OTT-QA [60], HybridQA

[61], FinQA [62], etc.

2.7 Gap in Research

Although Large Language Models (LLM) possess extensive language understanding

capability which enables them to achieve near-perfect results for most entity matching

datasets, the LLM-based models are still struggling with product entity matching

(PEM) datasets (i.e., Amazon-Google [4] and Walmart-Amazon [11]). KAER [8]

and DITTO [7] attempt to address this problem by providing additional Domain

Knowledge (DK) information. However, their proposed solutions cannot help the

model with PEM datasets and do not lead to new state-of-the-art results, when

properly compared with strong baselines.

Tabular data has been proven to be an excellent source of DK for question answer-

ing models. However, it has not been applied for entity matching. Here we propose

leveraging product-specific tabular data to improve the accuracy of entity matching

models for PEM datasets.
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Chapter 3

Product Entity Matching via
Tabular Data

3.1 Introduction

In this chapter, we focus on improving Product Entity Matching (PEM) models by

leveraging tabular data. Despite the importance of PEM for real-world e-commerce

applications, the current prominent Pre-trained Language Model (PLM)-based Entity

Matching (EM) models [7, 9, 10] are still lagging behind for these PEM datasets

(§2.4.2, §2.5). As extensively discussed in Section 1.1, popular PEM datasets such

as Amazon-Google [4] and Walmart-Amazon [11] suffer from intrinsic shortcomings:

hard negative examples, lack of attribute identification, fixed attributes, and lack of

domain knowledge. Table 3.1 shows three hard negative examples (highly similar titles

but labeled as non-matching pairs) from the Amazon-Google dataset [4]. Certain

parts of a title are more useful for reaching a matching decision (e.g., model, year

introduced, functionalities, etc.), but those pieces of information may be located in

different places for different products, and the model may not have direct access to the

encoded attributes. For instance, in the first example in Table 3.1, the manufacturer

“mcafee” is written at the beginning of the Amazon product title and in the middle

of the Google one. An EM model should recognize if it is an important piece of

information and the attribute it describes. In this chapter, we attempt to address

these shortcomings of the PEM datasets by adding tabular data, a new serialization

18



Amazon Product Title Google Product Title

“mcafee total protection

2007 3 users”

“mtp07emb3rua mcafee total

protection 2007 complete package

3 users cd mini-box”

“britannica deluxe” “britannica deluxe 2008”

“nero 7 ultra edition enhanced”
“70009 nero ultra edition enhanced

v.7 complete package 1 user cd win”

Table 3.1: A few hard negative examples from Amazon-Google dataset [4]. Despite
their highly similar titles, product pairs are not the same.

technique, and a new EM model.

We enrich PEM benchmarks from [12] to offer a product detail table as a source of

additional knowledge for every Amazon product, serving as a bridge to connect two

entities of interest and potentially improving the accuracy of matching decisions. The

datasets include a varying number of attributes for each product, and the introduction

of the detail table allows all characteristic features to be captured. The supplementary

data is anticipated to reveal distinguishing features that may not be present in the

product title, which can help the model to disambiguate hard negative examples.

Consider the example shown in Figure 3.1, where a model number is given for the

Google product but this model number is not mentioned in the title of the Amazon

product. The presence of the model number in the detail table provides this missing

link between the two product descriptions.

We also present TAble & Text for Entity Matching (TATEM), an entity match-

ing approach based on PLMs. TATEM reaches new SOTA results for PEM bench-

marks by incorporating the complementary tabular data. We further introduce an

Attribute Ranking Module (ARM) to rank the Amazon table attributes based on

their relevance to Google products. Our evaluation shows that ARM is capable of

finding the most effective attributes for EM.
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e1: Amazon Entity

Title nero 7 ultra edition
enhanced

Manufacturer nero inc.

Price 99.99

e2: Google Entity

Title
70009 nero ultra edition
enhanced v.7 complete
package 1 user cd win

Manufacturer NULL

Price 87.76

table1: Amazon Detail Table

Model number 70115

Language English

Package dimensions 7.4 x 5.3 x 1.3
inches; 5.6 ounces

Date first available July 19, 2006

Non-Match

.

.
.
..

.
.
.

Figure 3.1: A hard negative example disambiguated using an Amazon product detail
table, showing that relying on the information given in titles alone is hard to vote
against a match because of the large number of overlapping tokens. Our model
TATEM disambiguates this by establishing a relationship between e2 and table1 (if
exists). Here, the Model Number field helps TATEM to reach a Non-Match decision.

Our contributions are summarized as follows: (1) We enrich popular and challeng-

ing PEM benchmarks [12] with complementary product tables. (2) We propose a

new serialization technique to encode semi-structured tables in our PEM datasets for

PLM-based models. (3) We develop TATEM, a model which employs both tabular

and textual information for EM, reaching a new SOTA for challenging PEM bench-

marks. (4) We design ARM to select important product-specific attributes and to

make the model data-efficient.

3.2 Dataset

Many structured EM datasets have a fixed schema for their records, with a prede-

termined number of attributes for each sample. For instance, every product in the

original Amazon-Google dataset introduced by Köpcke, Thor, and Rahm [4] has four

attributes: title, manufacturer, price, and description. Based on the original Amazon-

Google [4] and Walmart-Amazon datasets [11], Mudgal, Li, Rekatsinas, Doan, Park,
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Amazon-Google

[4]

Walmart-Amazon

[11]

#Train samples (N./P.) 6175/699 5568/579

#Test samples (N./P.) 2059/234 1856/193

#Attrs (fixed) 3 5

Amazon*-Google

(ours)

Walmart-Amazon*

(ours)

#Tables (Amazon) 909 16264

Table coverage 66% 73%

#Unique attrs 84 695

Avg. #attrs 10.2 19.97

Max #attrs 28 81

Table 3.2: Stats. of Amazon-Google [4], Walmart-Amazon [11], Amazon*-Google
(ours), and Walmart-Amazon* (ours).

Krishnan, Deep, Arcaute, and Raghavendra [12] released structured Amazon-Google

and Walmart-Amazon datasets with only three and five attributes, respectively. Cur-

rently, high-performance EM models utilize the later version of the datasets. Our

proposed enriched Amazon*-Google and Walmart-Amazon* datasets are based on

the original datasets. To improve the effectiveness of EM models in disambiguating

hard negative examples (see Figure 3.1) and to provide them with new challenges,

we have added product-specific tables with varying numbers of attributes and many

distinct schemas. Those detail tables are acquired in a two-step process: First, retriev-

ing product pages using ASIN [63] of Amazon products, given in the original datasets;

Second, extracting the relevant tabular data sections using the HTML structure of

product webpages (e.g., tags, ids, class names, etc.).

Our enriched Amazon*-Google and Walmart-Amazon* datasets capture all the key

features of Amazon products, such as model number, language, compatible OS, genre,

and more. However, detail tables are product specific, and the schema and attributes
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vary between products. Table 3.2 provides some statistics of the structured Amazon-

Google [4], structured Walmart-Amazon [11], our Amazon*-Google and our Walmart-

Amazon* datasets. The Amazon*-Google dataset provides product detail tables for

909 Amazon products through 84 unique attributes. Interestingly, our Walmart-

Amazon* dataset includes more intricate product tables for a total of 16,264 Amazon

items using 695 different unique attributes. Consequently, the EM task becomes

challenging in (1) serialization of tables using PLMs (§3.3.1) and (2) data-efficient

solutions for long tables (§3.3.2).

Our extended datasets (Amazon*-Google and Walmart*-Amazon) carry the same

labels as the original datasets (Amazon-Google [4] and Walmart-Amazon [11]). The

original Walmart-Amazon dataset [11] was created via hands-off crowd-sourcing, us-

ing only a crowd of ordinary workers (such as those on Amazon Mechanical Turk).

The labeling was done in 3 stages: (1) blocking to reduce the sets of pairs, (2) select-

ing a limited number of rules for a matching decision by the crowd, and (3) evaluating

the matching decision by the crowd using the product title and product page. For

the original Amazon-Google dataset [4], two attributes (title and product description)

were taken into account for each product. In order to recognize perfect match prod-

ucts, they utilized the UPC (Universal Product Code) [64] which allowed a unique

identification of a product.

3.3 TATEM Model

We build our model TATEM atop ROBEM [9], a high-performance EM model that

uses PLMs for recognizing matching product pairs. To this end, we modify the

serialization technique to be compatible with the dataset structure, as discussed in

the following section (§3.3.1), and we also develop ARM (§3.3.2) to make our model

more data-efficient.
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3.3.1 TATEM Serialization

High-performance PEM models utilize PLMs to generate a dense high-dimensional

representations encoding structured data about product entities. However, these

PLMs are designed to encode textual content. Thus, we need serialization techniques

to convert this structured data into a proper format for the PLMs. DITTO [7] and

ROBEM [9] utilize serialization techniques for structured datasets with a fixed num-

ber of attributes. However, TATEM especially designs and utilizes a serialization

technique for semi-structured product-specific data. Although ROBEM and DITTO

serialization techniques have the potential to be applied to semi-structured data,

they are not as effective as TATEM serialization as it is shown in Table 3.3. Here

TATEM serialization is explained for Amazon*-Google although the same procedure

is applied to Walmart-Amazon*. For every example of Amazon*-Google dataset,

there exist three fixed attributes: title, manufacturer, and price; and k′ additional

attributes from the product detail table, with k′ varied for each product:

e = (title, valtitle), (manufac, valmanufac), (price, valprice),

{(attri, vali)}1≤i≤k′ .

To serialize an entity e, for the first three attributes, only the attribute value is

considered because they always appear in the same position, but for the other k′

attributes, the attribute name is concatenated with the attribute value because the

attributes are different for every product. Similar to ROBEM, a special token appears

between the attributes:

serialize(e) ::= valtitle [ATTR] valmanufac [ATTR] valprice [ATTR]

(attri, vali) . . . [ATTR] (attrk′ , valk′)).

For example, the Amazon entity given in Figure 3.1 is serialized as: nero 7 ultra

edition enhanced [ATTR] nero inc. [ATTR] 99.99 [ATTR] model number
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ARM

Ranked table1
- 
- 
...

table1: Product
Detail Table

- 
- 
- 
...

e1: Amazon Entity
 - Title
 - Manufacturer
 - Price

Phase 1: Apply ARM to rank table attributes Phase 2: Apply TATEM using the ranked table

TATEM

e2: Google Entity
 - Title
 - Manufacturer
 - Price

   Match (1) 
 OR

   Non-Match (0)

Figure 3.2: Our TATEM model coupled with ARM for PEM.

70115 [ATTR] ...[ATTR] date first available July 19, 2006.

3.3.2 Attribute Ranking Module (ARM)

In both of our datasets, each product entity is associated with a large number of

attributes, making it challenging to determine which attributes are the most indicative

of a true match or non-match. The goal of ARM is to generate the top n attribute-

value pairs for a given product entity (e.g., from Amazon) in response to a pair

of entities (e.g., Amazon-Google) for EM. This is important for two main reasons.

Firstly, transformer-based PLMs [65, 66] have a limitation on the maximum length of

input sequences they can handle [67]. The most common solution to this problem is

to trim the input sequences to a certain length (e.g., 512). However, trimming a long

input sequence is tricky for EM in general because important information for matching

decisions may be located towards the bottom of the tables. Secondly, employing

TATEM equipped with ARM can improve the overall efficiency and effectiveness of the

EM task. For instance, reducing the number of input tokens can save computational

resources, quicken the inference time, and save financial resources in particular when

using pay-as-you-go services such as GPT PLMs [68].
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Here ARM is described for Amazon*-Google although the same procedure is ap-

plied to Walmart-Amazon* dataset to select the most influential attributes. Inspired

by unsupervised text ranking [69], ARM calculates the relevance of Amazon detail

table attributes, attri, with respect to a Google product context, and it returns the

top n attributes based on these estimates of relevance.

P (Relevence = 1 | attri, cntx) ≜ ϕ(ηattr(attri), ηcntx(cntx))

where ϕ is a comparison function and ηcntx and ηattr give encodings of a context from

one source and a table attribute from another source, respectively. Our design choice

for both encoders is Sentence-BERT (SBERT) [70], and we utilize cosine similarity as

the comparison function and title as the Google product context. Important Amazon

attributes for EM should contain information about features that are mentioned in a

Google record, but not in an Amazon record. Consequently, an effective ARM should

make matching records closer and non-matching records farther by adding just a few

high-ranking attributes without a big drop in performance.

Figure 3.2 illustrates the operations of TATEM on an Amazon entity (t1) with 3

attributes (title, manufacturer, price) and a product detail table, compared to

a Google product (t2). In phase 1, ARM outputs a ranked list of attribute-value

pairs. Interestingly, the ranked table attributes are different for each pair of records.

In phase 2, TATEM is applied to the Amazon-Google pair enriched with the ranked

Amazon attributes and it outputs a matching decision (0, 1).

3.4 EXPERIMENTAL Evaluation

We implemented our models using PyTorch [71] and Huggingface transformers library

[72]. We utilized RoBERTabase [66] as our PLM because it has been found effective for

the EM tasks [7, 73]. For training the models, we followed the parameter configuration

of DITTO [7].
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3.4.1 Results

Here, we aim to evaluate the importance of auxiliary tabular data about product key

features, the effectiveness of TATEM serialization methodology, and the effect of ARM

on the model’s data efficiency. As a base for comparison, Table 3.3 shows the perfor-

mance, in terms of F1-score, of DeepMatcher+ (DM+), DITTO, ROBEM, KAER,

SupCon, and GPT3 on structured Amazon-Google dataset [4]. To demonstrate how

competitive models (DITTO, ROBEM, and SupCon) perform if they have access to

our enriched Amazon*-Google dataset, we design two sets of experiments: (1) We

convert our semi-structured Amazon*-Google and Walmart-Amazon* datasets into a

structured format with a column allocated to each unique attribute. The results are

denoted as Amazon*-Google and Walmart-Amazon* (ours) [structured] in Table 3.3.

(2)We modify the implementation of DITTO and ROBEM to be compatible with our

semi-structured data using their respective serializations described in Section 3.3.1.

For the modified models, denoted as DITTO-m and ROBEM-m, we take the attribute

name and attribute value directly from our Amazon*-Google and Walmart-Amazon*

datasets to serialize each entry.

Figure 3.3 shows product detail tables for two sample products, containing different

features of a laptop. It includes tables in the original semi-structured (a) and struc-

tured format (b). ROBEM [9] and DITTO [7] are designed for structured datasets

with fixed schemas. To use our product detail tables for not modified ROBEM [9] and

DITTO [7], we need to convert them into a structured format before serialization.

We serialize Table1 for DITTO as:

serialize(Table1): [COL] Screen Type [VAL] IPS [COL] Screen Size [VAL]

15.6 [COL] Refresh Rate [VAL] 144Hz [COL] Processor Brand [VAL] ‘‘ ’’ [COL]

Processor Model [VAL] ‘‘ ’’ [COL] Processor Model Number [VAL] ‘‘ ’’ [COL]

Hard Drive [VAL] ‘‘ ’’,

Here we serialize Table1 for ROBEM in structured format as:

26



Table1

Screen Type IPS

Screen Size 15.6

Refresh Rate 144Hz

Table2

Processor Brand Intel

Processor Model Intel 12th Generation Core
i5 

Processor Model
Number

Intel 12th Generation Core
i5-12500H

Hard Drive 512 SSD

Table1

Screen Type IPS

Screen Size 15.6

Refresh Rate 144Hz

Processor Brand

Processor Model

Processor Model
Number

Hard Drive

Table2

Screen Type

Screen Size

Refresh Rate

Processor Brand Intel

Processor Model Intel 12th Generation Core
i5 

Processor Model
Number

Intel 12th Generation Core
i5-12500H

Hard Drive 512 SSD

(a) Product Detail Tables (b) Product Detail Tables [Structured]

Figure 3.3: Detail tables for two products in semi-structured and structured formats.

serialize(Table1): [ATTR] IPS [ATTR] 15.6 [ATTR] 144Hz [ATTR] ‘‘ ’’ [ATTR]

‘‘ ’’ [ATTR] ‘‘ ’’ [ATTR] ‘‘ ’’ [ATTR],

DITTO-m and ROBEM-m models can directly serialize the semi-structured detail

tables. We serialize Table1 for DITTO-m as:

serialize(Table1): [COL] Screen Type [VAL] IPS [COL] Screen Size [VAL]

15.6 [COL] Refresh Rate [VAL] 144Hz,

Similarly, we serialize Table1 for ROBEM-m as:

serialize(Table1): [ATTR] IPS [ATTR] 15.6 [ATTR] 144Hz [ATTR],

Obviously, DITTO-m and ROBEM-m are significantly more efficient for serializing

our semi-structured detail tables and avoiding PLM confusion.

As reported in Table 3.3, once DITTO has access to the structured format of

Amazon-Goole-Tab dataset, it outperforms the current SOTA model (SupCon) and

presents a better performance than ROBEM, underscoring the importance of hav-

ing additional product knowledge for EM. On the contrary, when DITTO-m and

ROBEM-m are utilized for Amazon-Goole-Tab dataset, ROBEM-m outperforms DITTO-

m. This disparity in performance is rooted in the serialization techniques employed

by each model, highlighting the need for a serialization technique that is tailored

to the structure of data. Adding complementary information to Walmart-Amazon
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Models F1 Score

Amazon-Google [4] Walmart-Amazon [11]

DM+ (2018) 70.7 73.6

DITTO (2020) 75.58 86.76

KAER (2023) 76.52 -

ROBEM (2022) 79.06 86.68

SupCon (2022) 79.28 -

GPT3(k=0) (2022) 54.3 60.6

GPT3(k=10) (2022) 63.5 87.0

Amazon*-Google

(ours) [structured]

Walmart-Amazon*

(ours) [structured]

DITTO 80.56 86.85

ROBEM 78.50 85.74

SupCon 78.58 -

Amazon*-Google

(ours)

Walmart-Amazon*

(ours)

DITTO-m 79.35 86.42

ROBEM-m 80.92 88.31

TATEM (ours)

+ w/ all tuples 82.2 90.56

+ w/ ARM (n=1) 80.12 88.52

+ w/ ARM (n=3) 81.28 89.24

+ w/ ARM (n=5) 81.83 89.77

Table 3.3: Performance of our proposed model TATEM compared to different base-
lines.
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in a structured format doesn’t help and even leads to a decrease in F1 score. This

unintentional behavior is rooted in the difference between our two enriched datasets.

In fact, Walmart-Amazon* includes far more unique features (695 compared to 84

unique features) as noted in Table 3.2, and this leads to wider, more sparse tables

in a structured format, which confuses the PLM-based EM. In contrast, employ-

ing Walmart-Amazon* in a semi-structured format for DITTO-m and ROBEM-m

significantly enhances the performance and outperforms the last SOTA results. It

emphasizes the advantages of directly serializing semi-structured data, particularly

for lengthy, complex product tables.

Our proposed model, TATEM, reaches new SOTA results (F1 score of 82.2 and

90.56 for Amazon*-Google and Walmart-Amazon*, respectively) as it benefits from

a serialization technique that is specially designed for the product-specific tabular

structure of our enriched datasets. Based on our findings, the best serialization for

the three fixed attributes (i.e., title, manufacturer, price) is to exclude the attribute

names. On the other hand, for k′ varying attributes from the product detail table,

including both the attribute name and value is the best strategy as it provides the

EM model with information about the attribute type. The KAER model [8], despite

having access to additional entity information from WikiData, fails to outperform

ROBEM and reaches an F1 score of 76.25 on Amazon-Google dataset [4], demon-

strating that accessing extra information does not essentially guarantee an increase

in performance.

In our dataset, a typical entity can have up to 28 attributes. However, ARM can

significantly reduce the number of tokens fed to a PLM. An effective ARM should

identify the most important Amazon attributes for EM to make matching pairs closer

and non-matching pairs further apart with just a few attributes. To evaluate the effect

of ARM on EM results, ARM is applied to Amazon*-Google dataset, and from the

ranked list, only the top n attributes are selected. Just adding the top one attribute

can beat the current SOTA results (see Table 3.3), and the top five attributes are
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responsible for most of the performance gain. Here it is demonstrated the effectiveness

of ARM for improving the PEM model performance when only a few attributes are

added. Additionally, as a baseline ARM can be compared with a dataset when n

random table attributes are added.

3.5 Summary

In this paper, we introduced two new datasets, the Amazon*-Google and Walmart-

Amazon* datasets, and developed a new solution called TATEM that uses Pre-

trained Language Models (PLMs) with a novel serialization technique to encode semi-

structured tables for Product Entity Matching (PEM). The experiments conducted

on both existing benchmark datasets and the proposed datasets show significant im-

provements compared to current state-of-the-art methods. Additionally, we have

designed an unsupervised attribute ranking module that enhances the model’s data-

efficiency and cost-effectiveness for commercial services. For future work, we will test

the robustness of TATEM model against distribution shift and input perturbation.
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Chapter 4

TATTOO: Product Entity
Matching as a Topology
Construction

4.1 Introduction

In this chapter, our primary attention is directed toward enhancing Entity Matching

(EM) model using tabular data. In Chapter 3, we proposed using product detail tables

as a reliable source of product domain knowledge and introduced two new enriched

datasets (Walmart-Amazon* and Amazon*-Google) in which Amazon detail tables

were given for the Amazon items (refer to §3.2 for the extended analysis). However,

in this chapter, we release a new enriched Walmart*-Amazon* as a Product Entity

Matching (PEM) dataset in which there are product-specific tabular data for both

Walmart and Amazon products.

As extensively discussed in Section 1.1 and exemplified in Figure 1.2 and Figure 3.1,

popular PEM datasets such as Amazon-Google [4] and Walmart-Amazon [11] exhibit

inherent limitations: hard negative examples, lack of attribute identification, fixed

attributes, and lack of domain knowledge. To address these limitations in Chapter 3,

we suggested leveraging tabular data (§3.2) as a crucial link between two entities, and

our experimental results (§3.4) showed that this approach was successful in enhancing

Pre-trained Language Models (PLM)-based EM models, and it reached new State-
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Table1

Screen Type IPS

Screen Size 15.6

Refresh Rate 144Hz

Processor Brand Intel

Processor Model Intel 12th Generation Core i5 

Processor Model
Number

Intel 12th Generation Core i5-
12450H (8-core)

Hard Drive 512 SSD

Graphic Coprocessor NVIDIA GeForce RTX3050-Ti

Model Number AN515-58-57QW

Year of release 2023

System Memory
(RAM) 16 GB

Type of Memory DDR4

Keyboard Red Backlit 

Table2

Screen Type IPS

Screen Size 15.6

Refresh Rate 144Hz

Processor Brand Intel

Processor Model Intel 12th Generation Core i5 

Processor Model
Number

Intel 12th Generation Core i5-
12500H

Hard Drive 512 SSD

Graphic Coprocessor NVIDIA GeForce RTX3050-Ti

Model Number AN515-58-5046

Year of release 2022

System Memory
(RAM) 16 GB

Type of Memory DDR4

Keyboard 4-Zone RGB Backlit 

Entity1

Title1

Acer - Nitro 5 15.6"
Gaming Laptop FHD-Intel
12th Gen Core i5-AMD
Ryzen 7 6800H 8-Core-
NVIDIA GeForce
RTX3050 Ti- 16GB DDR4-
512GB SSD

Manufacturer1

Acer

Price1

949.99

Entity2

Title2

Acer Nitro 5 | 15.6" FHD
Gaming Laptop | Black |
NVIDIA GeForce RTX
3050 Ti | Intel Core i5 |
16GB DDR4 | 512GB Gen
4 SSD

Manufacturer2

Acer

Price2

999.99

Figure 4.1: A hard negative example disambiguated using product detail tables, indi-
cating that depending only on the information provided in titles makes it challenging
to confidently reject a match due to substantial missing key features and the presence
of misleading and overlapping tokens. Our model TATTOO disambiguates this by es-
tablishing a relationship between entities and tables (if exists). Here, the highlighted
fields help TATTOO to reach a Non-Match decision.

Of-The-Art (SOTA) results for both Amazon-Google and Walmart-Amazon datasets

(refer to Table 3.3). In this Chapter, we extend this idea, release a new enriched

PEM dataset (Walmart*-Amazon*) which provides detail tables for both entities.

Figure 4.1 shows an example in which you face the above shortcomings in the

real world: Key product features are located in titles without any order; The titles

are missing some key attributes; Different separators are utilized between features;

Some misleading information is included in the titles to improve search visibility (e.g.,

AMD Ryzon 7 6800 8-Core in Title1 ); Only attribute values are included, and the

PLM should figure out which attribute name they belong to. In these complicated

examples, only product detail tables can help the EM model to disambiguate and

correctly vote for a Non-Match decision. In Figure 4.1, the fields of the tables that

contribute to the decision are highlighted.

Utilizing these tabular data for entity matching presents several challenges, which
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"Digital Sports Watch" "Elegant Watch: GOLD"

"Sporty Sneakers: ON SALE""Trendy Platform Sneakers"

"Professional DSLR Camera""Compact Digital Camera"

Binary (2-ary)
Topology

Ternary (3-ary)
Topology

Quaternary (4-ary)
Topology

(a)

(b)

(c)

Figure 4.2: Topology Illustration.

we elaborate on below:

Binary (2-ary) Topology In most of the current entity matching models, the

setup involves using title information to perform entity matching (Figure 4.2 (a)).

However, product titles often pose challenges as they are often messy, SEO-optimized,

incomplete, and sometimes encoded as a single string without proper separation or

clear labeling of fields such as the product name, brand, price, etc. These complexities

introduce significant challenges for existing product entity matching models, particu-

larly when dealing with ambiguous negative examples (refer to the example in Figure

4.1).
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Ternary (3-ary) Topology In the context of products that are new to the market

or lack a sales history, product matching serves as a valuable tool to identify simi-

lar products. As the number of both new product releases and online retail vendors

continue to grow, product records are becoming increasingly abundant and complex.

However, the level of detail in these records can vary significantly among retailers,

ranging from highly detailed information to more concise descriptions. These quanti-

tative and qualitative differences in product information prompt us to explore various

linkage techniques that are best suited for specific matching tasks. On one end of the

spectrum, we encounter new or unpopular items, commonly referred to as “cold-start

items.” On the other end, we have items with more comprehensive information and

detailed records (refer to Figure 4.2 (b)).

Quaternary (4-ary) Topology In our latest setup, we dive into product enti-

ties that have a substantial amount of information, ranging from textual data (e.g.,

product titles) to semi-structured data (e.g., attribute-value pairs). This presents

a challenge in determining the most crucial aspects of the information that signify

a genuine match or non-match (refer to Figure 4.2 (c)). To address this challenge,

we have developed techniques dedicated to retrieving essential attribute-value pairs.

These techniques play a crucial role in refining the matching process and enhancing

the accuracy of our entity matching system under some settings.

We approach PEM as a topology construction problem and propose a novel tech-

nique calledTATTOO (TAble &Text Entity Matching asTOpology COnstruction).

Our contributions are summarized as follows:

• We enhance well-established PEM benchmarks [12] by incorporating comple-

mentary product detail tables for both items, which opens up new research av-

enues for PEM in general. In Chapter 3, we explained the effect of 3-ary datasets

(Amazon*-Google and Walmart-Amazon*) on the performance of PLM-based

EM models. In this chapter, we introduce a 4-ary PEM dataset with detail
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tables for both entities.

• We develop TATTOO, a model which employs both tabular and textual in-

formation for EM, reaching a new SOTA for challenging PEM benchmarks.

TATTOO is applied for 3-ary and 4-ary datasets.

• We devise Attribute Ranking Modules (ARM) to identify the most essential

attributes of product-specific tables within a given topology. These modules

facilitate an efficient utilization of commercial services. In this chapter, we

implement two versions of this module for 4-ary datasets: Plain ARM and

Cross ARM.

• To assess the robustness of TATTOO in few-shot training and out-of-domain

generalization scenarios, we conduct comparative evaluation against popular

baselines. The results reveal that our model exhibits greater robustness in the

face of these changes.

4.2 Dataset

We explained our 3-ary enriched datasets (Amazon*-Google and Walmart-Amazon*)

in Section 3.2. In this chapter, we aim to introduce our 4-ary enriched dataset

(Walmart*-Amazon*). To enhance the ability of EM models, disambiguate hard

negative examples, address the limitations of PEM datasets (§1.1) and provide them

with new challenges, we present Walmart*-Amazon* dataset with detail tables for

both Amazon and Walmart entities. Our proposed enriched Walmart*-Amazon*

dataset is derived from the original Walmart-Amazon dataset. The product-specific

detail tables are acquired following the same two-step process explained in Section

3.2. Although a large number of EM datasets are structured [4, 6, 11–13] with a

pre-defined schema and a fixed number of attributes, our enriched PEM datasets are

semi-structured with varying number of attributes for each product.
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Original Dataset Amazon-Google Walmart-Amazon

#Train samples (N./P.) 6175/699 5568/579

#Test samples (N./P.) 2059/234 1856/193

#Attrs (fixed) 3 5

Walmart*-Amazon*

(ours, 4-ary)
Enriched Dataset

Amazon*-Google

(ours, 3-ary) [Walmart] [Amazon]

#Tables 909 1,863 16,264

Table coverage 66% 73% 73%

#Unique attrs 84 131 695

Avg. #attrs 10.2 12.31 19.97

Max #attrs 28 28 81

Table 4.1: Stats. of Amazon-Google [4], Walmart-Amazon [11], Amazon*-Google
(ours) and Walmart*-Amazon*(ours). #Train & #Test denote the number of train
and test samples for the datasets. #attrs denotes the number of attribute-value pairs
for the tables. (N./P.) ⇔ (Num of Negative Pairs / Num of Positive Pairs).

Table 4.1 provides some statistics of the structured Amazon-Google [4], struc-

tured Walmart-Amazon [11], our enriched Amazon*-Google and Walmart*-Amazon*

datasets. The Amazon*-Google dataset provides product detail tables for 909 Ama-

zon products through 84 unique attributes. Interestingly, our Walmart*-Amazon*

dataset includes more intricate tabular product data for a total of 16,264 tables with

695 different unique attributes and 1863 tables with 131 unique attributes for Amazon

and Walmart items, respectively. Consequently, the EM task becomes more challeng-

ing in (1) serialization of tables using PLM-based models (§4.3) and (2) data-efficient

solutions for long tables (§4.3.2).
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4.3 TATTOO Model

4.3.1 TATTOO serialization

Both DITTO [7] and ROBEM [9] rely on serialization techniques for managing struc-

tured datasets featuring a fixed number of attributes. In contrast, TATTOO is specif-

ically designed for handling semi-structured product-specific data with varying num-

ber of attributes. TATTOO serialization technique is adapted from our TATEM

serialization method explained in Section 3.3.1.

4.3.2 Attribute Ranking Module (ARM)

It is difficult to identify which features of detail tables are the most indicative of a

true match or non-match because each product entity is linked to a large number

of attributes. In Section 3.3.2, we extensively studied the concept of ARM as an

unsupervised module to identify the top n most decisive attributes for a matching

decision. Our module in Chapter 3 was applied to 3-ary datasets and assumed Google

product titles as the context to select the most informative attributes from Amazon

detail tables of Amazon*-Google dataset. Here, in this chapter, we extend the idea

of ARM for our 4-ary datasets.

Nowadays product characteristic features are encoded into product titles to en-

hance product discoverability (e.g., “Acer - Nitro 5 15.6" Gaming Laptop FHD -

Intel 12th Gen Core i5 - NVIDIA GeForce RTX3050 Ti - 16GB DDR4 - 512GB

SSD”). Therefore, here we utilize those informative titles to filter out table attributes.

For matching entities A and B in our 4-ary setting when the model has access to

detail tables, we design two variants of ARM: Plain ARM and Cross ARM. Figure

4.3 shows applying Plain ARM and Cross ARM to product detail tables to generate

ranked key-value pairs for each table. This is done in Plain ARM by using the title

of Entity A to select the most relevant attributes from the detail table of Entity A

and returning a ranked list of those attributes. In practice, this filters out those at-
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Generate Ranked Tables via Plain ARM

Table-A

-

-

...

Table-B

-

-

...

Cross ARM

Generate Ranked Tables
via Cross ARM

Plain ARM

Plain ARM

 Ranked-Table-A

-

...

 Ranked-Table-B

-

...

TATTOO    Match (1) 
 OR

   Non-Match (0)

Phase 1: Apply ARM to Rank Table Attributes Phase 2: Apply TATTOO Using the
 Ranked Tables

Entity-A

- Title-A
- Manufacturer-A
- Price-A

Entity-B

- Title-B
- Manufacturer-B
- Price-B

Figure 4.3: Our TATTOO equipped with Plain ARM and Cross ARM to select top
n attributes.

tributes that are very different from the title of Entity A, and focuses more on the

attributes similar to the features included in the title. In fact, Plain ARM makes

product descriptions more complete independent of the entity on the other side that

is being compared.

In contrast, Cross ARM looks at the other side to choose the top n attributes (refer

to Figure 4.3). It extracts attributes from the detail table of Entity A based on their

relevance to the title of Entity B. These extracted attributes may contain features not

mentioned in the title of Entity A although there are corresponding features encoded

in the title of Entity B. Thus, these top n attributes can play an important role in
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identifying the differences and similarities between the records.

Figure 4.3 illustrates the operations of TATTOO on Entity-A with 3 attributes

(title, manufacturer, price) accompanied by a product detail table (Table-A),

compared to a Entity-B and Table-B. In Phase 1, ARM outputs ranked tables com-

prising ranked attribute-value pairs. Interestingly, the ranked table attributes are

different for each pair of records. In Phase 2, TATTOO is applied to the pair of

Entity-A and Entity-B enriched with the ranked tables, and it outputs a matching

decision (i.e. either 0 or 1).

4.4 EXPERIMENTAL EVALUATION

We implemented our models using Huggingface transformers library [72]. We utilized

RoBERTabase [66] as our PLM because it has been found effective for the EM tasks

[7, 73]. For training the models, we followed the parameter configuration of DITTO

[7].

4.4.1 Accuracy of PEM Models

We examined the impact of our 3-ary enriched datasets on the performance of PEM

tasks in Section 3.4. Here, we attempt to evaluate the effectiveness of our comple-

mentary tabular data in 4-ary settings for PEM tasks. As a base for comparison,

Table 4.2 shows the performance, in terms of F1-score, of DeepMatcher+ (DM+),

DITTO, ROBEM, KAER, SupCon, and GPT3 on structured PEM datasets [12].

To evaluate the performance of TATTOO against strong baseline models (DITTO,

ROBEM, and SupCon) when they have access to our enriched datasets, we design

two sets of experiments (the same design as the Experimental Section of Chapter

3 (§3.4)): (1) We convert our semi-structured enriched datasets (Amazon*-Google,

Walmart-Amazon*) into a structured format with a column assigned to each unique

feature. The results are denoted as Amazon*-Google (ours) [structured] and and

Walmart-Amazon* (ours) [structured] in Table 4.2. (2) We modify the implementa-
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tion of DITTO and ROBEM to be compatible with our semi-structured data using

their respective serializations (§4.3.1). For the modified models, denoted as DITTO-

m and ROBEM-m, we use the attribute name and attribute value directly from our

enriched datasets to serialize each entry.

As reported in Table 4.2, upon obtaining access to the structured format of the

Amazon*-Google dataset, DITTO demonstrates superior performance compared to

the current SOTA model (SupCon) and exhibits enhanced efficacy when compared

to ROBEM. This highlights the significance of incorporating supplementary product

domain knowledge into the EM process. In contrast, the utilization of DITTO-m

and ROBEM-m on the Amazon*-Google dataset reveals superior performance by

ROBEM-m over DITTO-m. This difference in performance stems from the serializa-

tion methods employed by each model, underscoring the necessity for a serialization

approach tailored to the specific dataset structure.

Adding complementary tabular data to Walmart-Amazon in a structured format

(Walmart-Amazon* (ours) [structured]) does not help and even leads to a decrease in

F1 score. The difference between our two enriched datasets is the source of this un-

intended behavior. In fact, as seen in Table 4.1, Walmart*-Amazon has significantly

more unique features than Amazon*-Google (695 vs. 84), resulting in broader, more

sparse tables in a structured format, confusing the PLM-based EM. This finding

underscores the significance of a serialization method devised specifically for semi-

structured data. For DITTO-m and ROBEM-m, however, using Walmart-Amazon*

in a semi-structured format avoids sparse structured representation, significantly

boosts performance, and outperforms the last SOTA results. In, fact, ROBEM-m

outperforms GPT3 (K=10) (latest SOTA) (88.81 vs. 87.00). This highlights the

benefits of directly serializing semi-structured data, especially for lengthy, complex

product tables.

Our proposed model, TATTOO, achieves new SOTA results (F1 score of 92.41

for Walmart*-Amazon*). The performance gain of TATTOO can be attributed to
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two factors: (1) complementary product tables acting as effective product domain

knowledge which help the model with hard negative examples; (2) the optimized

serialization technique that is specifically designed for the structure of our enriched

datasets. Based on our findings in this chapter and Chapter 3.4, the best serialization

for the fixed attributes (e.g., title, manufacturer, price for Amazon*-Google) is to

exclude the attribute names. On the other hand, for k′ varying attributes from the

product detail table, including both the attribute name and value is the best strategy

as it provides the EM model with information about the attribute type. TATTOO

achieves new SOTA with a large improvement (refer to Table 4.2), and we aim to

compare TATTOO with DITTO [7] as a popular and strong baseline. Here, we use a

paired t-test to find out if there is a significant difference between the two models.

Utilizing product domain knowledge to enhance EM accuracy has been referred

to in the literature before (refer to Section 2.5 for more details). The KAER model

[8] and DITTO [7] implementation, despite their claims, are not successful in em-

powering EM models with domain knowledge, and their solutions do not lead to an

improvement. This study proves that product detail tables are a reliable source of

domain knowledge, and they are specific for each product.

4.4.2 Effects of ARM Modules

A typical entity from the Walmart*-Amazon* and Amazon*-Google datasets can

have up to 836 and 81 attributes (§4.2), respectively, using product detail tables as

the source of domain knowledge for PEM. However, ARM can dramatically lower the

number of tokens sent to a PLM. An efficient ARM for EM should determine the most

essential Amazon properties that bring together matching pairs and push apart non-

matching pairs with just a few attributes. ARM is applied on our enriched datasets

in order to evaluate the impact of attribute ranking on PEM results. Only the top

n attributes are then chosen from the ranked list. Table 4.3 summarizes the perfor-

mance of our TATTOO model when equipped with ARM. Highlighting the effect of
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Models F1 Score

Amazon-Google (2-ary) Walmart-Amazon (2-ary) —

DM+ (2018) 70.70 73.60 —

DITTO (2020) 75.58 86.76 —

KAER (2023) 76.25 — —

ROBEM (2022) 79.06 86.68 —

SupCon (2022) 79.28 — —

GPT3 (k=0) (2022) 54.30 60.60 —

GPT3 (k=10) (2022) 63.50 87.00 —

Amazon*-Google

(ours, 3-ary) [structured]

Walmart-Amazon*

(ours, 3-ary) [structured]

Walmart*-Amazon*

(ours, 4-ary) [structured]

DITTO 80.56 86.85 81.24

ROBEM 78.50 85.74 84.34

SupCon 78.58 — —

Amazon*-Google

(ours, 3-ary)

Walmart-Amazon*

(ours, 3-ary)

Walmart*-Amazon*

(ours, 4-ary)

DITTO-m 79.35 86.42 87.68

ROBEM-m 80.92 88.32 88.81

TATTOO (ours) 82.20 90.56 92.41

Table 4.2: Performance of TATTOO compared to different baselines. All reported
results for TATTOO (ours) are statistically significant in paired t-test by taking
DITTO (2020) as a reference with the confidence of 95% (p-value < 0.05).

complementary detail tables, only entities with tables are selected. Interestingly, just

adding the top one attribute can beat the current SOTA results, and the top five

attributes are responsible for most of the performance gain. Our additional experi-

ments show adding more than 5 attributes leads to fluctuating results and decreases

the performance for n = 7.

We design two variants of ARM: Plain ARM and Cross ARM (refer to Figure 4.3)

in two modes: 3-ary and 4-ary topology (refer to Figure 4.2). Plain ARM finds top-n

attributes of Amazon product detail tables by considering the title of the Amazon

entities as the context. In contrast, Cross ARM identifies the top-n attributes of

Amazon product detail tables by taking into account the title of Walmart entities.

Unanimously, Cross ARM leads to higher performance because it is more powerful

to identify the missing links between entities, helping our TATTOO model recognize

similarities/differences between pairs of products.
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F1 ScoreModels

W-A (2-ary) A-G (2-ary)

DITTO (2020) 84.41 73.24

ROBEM (2022) 83.32 78.25

W-A* (ours, 3-ary) A*-G (ours, 3-ary)

TATTOO (ours)

+ w/ all tuples 92.51 86.27

+ w/ ARM (n=1) 90.17 80.34

+ w/ ARM (n=3) 91.36 81.21

+ w/ ARM (n=5) 92.11 82.12

W*-A* (ours, 4-ary) —

TATTOO (ours)

+ w/ all tuples 93.70 —

+ w/ ARM (n=1) 90.76 —

+ w/ ARM (n=3) 92.05 —

+ w/ ARM (n=5) 92.56 —

Table 4.3: EM results of TATTOO equipped with ARM, considering top n product
table attributes from our enriched datasets. Only examples with tables are considered.
Best results in each setting are marked bold.

4.5 Evaluating Robustness

Since PEM data is typically sparse and noisy, it is challenging to train DL-based EM

models using large, high-quality training data. Thus, there is a growing demand for

robust models that excel in few-shot and out-of-domain settings.

4.5.1 Few-Shot Setting

We examine the data generalization of EM models to unseen test data from the same

domain as the training data with limited access to the training dataset. For our

in-domain generalization experiments, we compare TATTOO with two prominent

PLM-based EM models: DITTO [7] and ROBEM [9] when they are trained only on a
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portion (50%, 20%, 10%, 5%) of the training dataset and tested on the whole test set.

Figure 4.4 and Figure 4.5 illustrate the results for the reduced training dataset size

setting of Amazon*-Google and Walmart*-Amazon* datasets, respectively. Focused

on the effect of product-specific tabular data, we only run the experiments on products

with tables. This boosts the performance and increases F1 score from 92.41 to 93.7

and from 82.2 to 86.27 for Walmart*-Amazon* and Amazon*-Google, respectively.

As we expect, F1 score of EM models drops when they are trained on a smaller

dataset set. TATTOO exhibits incredibly robust behavior for the Amazon*-Google

dataset. The F1 score of TATTOO is 95.15% larger than that of DITTO (66.84 vs.

34.25), provided only 5% of the training data. The TATTOO model trained on 50%

of training data still outperforms the current SOTA model for Amazon*-Google.

Similarly, TATTOO trained on Walmart*-Amazon* reveals to be significantly more

robust compared to the baselines. TATTOO trained on 5% of the training set achieves

an F1 score of 76.43 which is 118.12% (+41.39) better than DITTO. As a result, the

TATTOO model which employs product detail tables as the source of product domain

knowledge is significantly more robust to training set size.

Ternary (3-ary)
Topology

Figure 4.4: Few-Shot Setting Amazon*-Google.

4.5.2 Out-of-domain Generalization

We set up Out-Of-Domain (OOD) experiments between DITTO [7], ROBEM [9],

GPT3 [10], and our TATTOO in which a fine-tuned model is confronted with an

OOD dataset at test time. For example, we fine-tune a model on Walmart-Amazon*

dataset, then repurpose the model for Amazon*-Google dataset (W −A∗ ⇒ A∗ −G)
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Quaternary (4-ary)
Topology

Figure 4.5: Few-Shot Setting performance of TATTOO (ours) compared to DITTO
[7] and ROBEM [9] on our enriched Walmart*-Amazon* [Quaternary (4-ary) Topol-
ogy]. Bold-faced numbers on top of the bars indicate the F1 Score, while green and
red colored numbers represent the percentage point increase or decrease, respectively,
compared to the baseline DITTO [7].

at zero-shot setting. Table 4.4 summarizes the performance of the baselines and our

TATTOO model in two different domain shift settings. Then, to evaluate the drop in

performance in a domain-shift setting, a comparison is made between in-domain and

OOD results, summarized in Table 4.4. In (W −A∗ ⇒ A∗−G) setting, our TATTOO

model displays far more robust OOD behavior (F1=66.12) than other baselines, it

even beats GPT3(K=0) and GPT3(K=10) on Amazon-Google dataset. In fact, the

drop in performance of TATTOO is way smaller than DITTO (16.08% vs. 46.04%).

The difference between TATTOO and the baselines becomes more pronounced in

OOD, and TATTOO achieves 31.60% higher F1 compared to DITTO. The promising

OOD behavior of TATTOO is rooted in its serialization technique in which our model

faces a varying number of distinct features for every product during training. Thus,

TATTOO is inherently trained to generalize to products with different features, and it

enables the model to be adaptive to a new domain with unseen attributes. In contrast,

ROBEM and DITTO using structured datasets encounter the same features for all

the samples during training, and they don’t expect to see a new feature. Thus, testing

the model on a test set with a different set of unseen attributes drops the performance.

Similarly for the (A∗−G ⇒ W −A∗) setting, TATTOO is leading in OOD tests by

F1 of 60.27 in comparison with DITTO and ROBEM (32.21 and 34.67, respectively).

This OOD robust performance is accomplished with a considerably smaller drop in
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performance when compared with DITTO (30.29% vs. 54.64%) (see Table 4.4).

Amazon*-Google (ours, 3-ary)

F1 Score

Models In-domain

(A*-G ⇒ A*-G)

Out-of-domain

(W-A* ⇒ A*-G)

∆

DITTO 80.56 34.52 (↓ 46.04%) [↑ 0.00%]

ROBEM 78.50 36.76 (↓ 41.74%) [↑ 2.24%]

GPT3 (k=0) — 54.30 (↓ 00.00%) [↑ 19.78%]

TATTOO (ours) 82.20 66.12 (↓ 16.08%) [↑ 31.60%]

Walmart-Amazon* (ours, 3-ary)

F1 Score

Models In-domain

(W-A* ⇒ W-A*)

Out-of-domain

(A*-G ⇒ W-A*)

∆

DITTO 86.85 32.21 (↓ 54.64%) [↑ 0.00%]

ROBEM 85.74 34.67 (↓ 51.07%) [↑ 2.46%]

GPT3 (k=0) — 60.60 (↓ 00.00%) [↑ 28.06%]

TATTOO (ours) 90.56 60.27 (↓ 30.29%) [↑ 27.36%]

Table 4.4: Out-of-domain results when a PLM-based EM model is fine-tuned on A
and tested on B (A ⇒ B). Drop in performance compared to in-domain settings are
presented in round brackets. ∆ is the % change compared to baselineDITTO.GPT3
(k=0) in zero-shot setting is considered as out-of-domain. All training examples are
considered. Best results in each setting are marked bold.

4.6 Summary

We have introduced a new enriched dataset, Walmart*-Amazon*, with unique prod-

uct detail tables for the task of product entity matching (PEM), and a new effective

PEM solution that uses Pre-trained Language Models (PLM) with a novel serializa-

tion technique to encode semi-structured product-specific tables. The experiments

performed on the proposed datasets and the existing benchmarks demonstrate signif-

icant enhancements over SOTA techniques. To enhance the model’s data-efficiency
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and cost-effectiveness, we devised an unsupervised Attribute Ranking Module (ARM)

in two versions (Plain ARM and Cross ARM) to select the top n most informative

product attributes. Our TATTOO model equipped with ARM can outperform the

SOTA models even with one attribute for both Amazon-Google and Walmart-Amazon

datasets.

TATTOO displays much more robust in-domain generalization behavior when it

has access only to a small portion of the training set (5%-50%). Trained on 5%

of Walmart*-Amazon* dataset, TATTOO is leading with 39.9% improvement over

DITTO (77.14 vs 37.24). Additionally, our model demonstrates notable out-of-

domain robustness. In (W − A∗ ⇒ A∗ − G) setting, TATTOO can outperform

GPT3(K=0) and GPT3(K=10) on Amazon-Google dataset, and our model achieves

31.60% enhancement compared with DITTO.
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Chapter 5

Conclusions, & Future Work

5.1 Conclusions

Our goal is to enhance Entity Matching (EM) approaches that are based on Pre-

trained Language Models (PLM) with product domain knowledge. To achieve this, we

utilize product detail tables extracted from product web pages as a reliable source of

domain knowledge to enrich two Product Entity Matching (PEM) datasets: Amazon-

Google and Walmart-Amazon.

We introduce our enriched Amazon*-Google and Walmart-Amazon* datasets con-

taining Amazon product detail tables, and we develop TATEM, a high-performance

TAble & Text for Entity Matching model using PLM and tabular data, to effectively

serialize our semi-structured enriched datasets. Our experimental results on both the

existing benchmark datasets and the newly created datasets indicate considerable

enhancements in comparison to the current State-Of-The-Art (SOTA) techniques.

TATEM improves the SOTA results from 87.0 to 90.56 and from 79.28 to 82.2 for

Walmart-Amazon and Amazon-Google datasets, respectively. Additionally, we design

an unsupervised Attribute Ranking Module (ARM) to identify the most decisive ta-

ble attributes. Adding even top one attribute outperforms the current SOTA model

for both Amazon-Google and Walmart-Amazon datasets.

We create Walmart*-Amazon* dataset benefiting from product-specific detail ta-

bles for both Walmart and Amazon items. Our enriched Walmart*-Amazon* includes
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779 unique attributes and tables with up to 81 attributes. To take advantage of the

product detail tables, we especially devise TATTOO, TAble & Text Entity Matching

as TOpology COnstruction). TATTOO beats current SOTA models and achieves

an F1 score of 92.41 for Walmart*-Amazon* by leveraging PLMs, effective serializa-

tion techniques, and product detail tables. Here we develop two versions of ARM:

Cross ARM and Plain ARM. We evaluate the robustness of TATTOO when faced

low-resource scenarios and trained only on a portion of the training set. Trained

on 5% of Walmart*-Amazon* dataset, TATTOO displays 41.39% improvement over

DITTO (76.43 vs. 35.04). Additionally, our TATTOO shows a robust out-of-domain

generalization behavior. For example, in (W − A∗ ⇒ A∗ − G) setting, TATTOO

outperforms both zero-shot GPT3 and few-shot GPT3(K=10) on Amazon-Google

dataset, achieving a remarkable 31.60% enhancement compared to DITTO.

5.2 Future Work

In this thesis, we built unsupervised Attribute Ranking Module (ARM) modules

to recognize the top n most decisive attributes, although we observed inconsistent

behavior when adding more than 5 attributes. Designing a supervised ARM module

coupled with the PEM model trained on our enriched dataset based on one loss

function is a possible future direction. This loss function helps us fine-tune the PLM,

classification head of PEM model, and the ARM module. Additionally, ARM is

capable of detecting product attributes that lead to a match or non-match decision.

Thus, ARM may be repurposed to add a layer of explainability to our PEM model.

Exploring this is a possible future direction.

We plan to investigate the performance of TATTOO equipped with ARM when

tested on recent products with longer detail tables which is more challenging. Also,

we plan to examine EM model robustness against unit perturbation by comparing

enriched/traditional EM datasets. Lastly, we plan to identify the most important

piece of information for EM decisions using explainable AI tools.
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