
...When someone asks about applications in my talks, I usually tell a

story about how I was on a boat one day watching dolphins, and they

were jumping out of the water, allowing people to nearly touch them.

Everyone was mesmerized by these magnificent creatures. It was an

extraordinary romantic moment – well, until a little boy shouted out,

”Mom, can we eat them?” It’s a similar matter here – as in, okay, we

just found this extraordinary material, so we’re enjoying this romantic

moment, and now people are asking if we can eat it or not. Probably

we can, but you have to step back and enjoy the moment first.

A. Geim (Nobel Prize in Physics, 2010)
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Abstract

Graphene is a recently created truly two-dimensional carbon material with

promising properties. It is a prospective candidate for the next generation of mi-

croelectronics. Current carriers in graphene have relativistic properties, its lattice

is very strong and yet flexible, granting graphene’s ballistic conductivity on the

submicron scale at the room temperatures.

Midgap bound state induced by a single impurity in graphene does not cause

essential changes in the electronic liquid distribution at all reasonable values of the

coupling strength. Thus there are no unusual screening effects predicted for the

graphene with long-range Coulomb impurity. This result holds in case of multiple

impurities localized in the finite area on the lattice. Exact expressions for the

lattice Green functions are derived.

The absence of critical screening for the short-range impurities in graphene is

a main result of the work. Another outcome is the observation of the limitations

on the Dirac approximation applicability.



Preface

Graphene is a two dimensional allotrope of carbon (2). In this thesis electronic

properties of gapped graphene are discussed, i.e the properties of graphene modified

in a such way that there is a non-zero gap in the energy spectrum between the

valence and conductance band. Presence of this gap might be critical for the

industrial applications of newly discovered material. Graphene is already attracted

lots of attention from both scientific and industrial communities as a prospective

substitute for the silicon in computer microchips. Its physical properties are very

unusual and due to this fact graphene is often called in literature ”playground”

for two-dimensional Quantum Physics, especially Quantum Electrodynamics and

Particle Physics.

Electronic structure of graphene was investigated a for long time. Back in 1947

([2]), it was pointed out that electrons in honeycomb lattice have the relativistic

properties. The term ”graphene” was introduced in 1994 [4]. Before graphene’s

successful synthesis in 2004, it was believed that 2D crystals can not exist in the

suspended state because of heat fluctuations, as it was stated by the theoretical

works by L. Landau and R. Peierles. Discovery of graphene by A. Geim and K.

Novoselov, proved that 2D crystals can be created in a suspended state and will not

collapse in nanotubes or any 3D-structures (1). The reason is that naturally ever-

present corrugations prevent heat excitations from destroying the crystal. Since the

discovery of graphene there was constantly growing interest to this new material.

It has fascinating physical properties. Graphene is an exceptional electric current

conductor, with the bulk conductivity of the order of conductivity of copper, and

its thermal conductivity is about 10 times better than that of copper. Graphene



Figure 1: Image from [1], on insets a,b,c — samples of graphene visualized by
atomic force microscope, d,e - first field effect transistor on graphene crystal.

exhibits properties of the quantum 2D systems even at room temperatures, as it

was demonstrated K. Novoselov et al in their Quantum Hall Effect experiments [1] .

This effect makes graphene a suitable material to built a high precision resistance

standard. Graphene is also flexible and very strong material and as such is a

prospective material for an electronic equipment designated to work under intense

mechanical stresses.

As a promising material for microelectronics, graphene has one important fea-

ture — it is a semimetal or a zero-gap semiconductor, rather than a semiconductor.

Without a gap it is impossible to control conductivity in graphene in the usual

manner as it is done in silicon microelectronics with the high degree of integration.

There are essentially two methods of introducing the gap in otherwise gapless en-

ergy spectrum of graphene. It is known [6], that energy gap arises as a result of

geometric effect, or quantum confinement of an electron in the potential well with

infinite depth. Such a scenario is realized in the graphene nanoribbons, strips cut

from graphene. Despite being a very natural and most obvious way to create a



gap, quantum confinement has a disadvantage - the gap width depends on the size

and shape of the ribbon and affected by the edge geometry. This complicates the

design of the electronic devices and limits their possible sizes. Another set of meth-

ods is based on the idea breaking the various kinds symmetries in the honeycomb

lattice. Functionalization of the π-electron bonds by chemisorption of hydrogen

on the graphene surface changes sp2 hybridized graphene into sp2 graphane. This

material receives most of the attention from researchers now among all semicon-

ducting graphene modifications. Another way to break the symmetry and make

graphene a semiconductor is a modification of the energies of the constituting

carbon atoms which can be achieved chemically, by the attachment to it its sur-

face atoms or molecules or by spatial modulation of potential in the plane of the

graphene sheet. Examples are epitaxial graphene, chemically modified graphene,

fully hydrogenated graphene or graphane. In the article [5] authors report experi-

ments with hydrogenation of the quasi-freestanding graphene leading to formation

of the gap of the order of 1 eV, which is dependent on the ratio between numbers

of carbon and hydrogen atoms. In graphane where the hydrogenation ratio is close

to unity, the band is as wide as 3.5 eV.

Charge carriers in gapped graphene have interesting physical properties. Elec-

tron transport similarly to the case of gapless graphene is governed by the relativis-

tic Dirac equation but with massive electrons. This makes graphene a showcase

for Two-Dimensional Quantum Electrodynamics (2D QED). The major difference

between the 2D quasi-particles in graphene and usual electrons in 3D or 2D in

vacuum is the value of the fine structure constant responsible for the intensity

of electromagnetic interactions. This so cold strong-field electrodynamics makes

possible to model processes yet unavailable in High Energy Physics’ experiments.



One can mention, as an example, the hypothetical ”vacuum charging” due to the

particle-antiparticle pairs creation in the strong electric fields of heavy ions. The

obstacle to observe this effect in conventional QED is that the charge of the ions

must be so high that there are no stable elements with such atomic numbers. In

graphene, however, these effects can be observed at charges of the order of proton

charge.

Another example, Klein paradox, the ability of ultra-relativistic fermions to

penetrate the potential barriers without being bounced back. This effect has not

been experimentally observed either. While in graphene P. Kim group [8] was able

to device an experimental set up and perform experiments which are believed to

be an experimental evidence of Klein scattering of the electrons.

What is important for the applications is the graphene electronic properties

in the presence of impurities and other defects, such as functional groups. Ob-

viously, defects significantly modify conductivity of the material. Regulating the

concentration of impurities, for example, one can observe the metal-insulator tran-

sition. Among the experimentally confirmed defects in graphene one can mention

vacancies and noble gases ion impurities [9]. Important functional groups are

carbon-based groups, hydrogen, oxygen, fluorine [10], as they turn graphene into

an insulator. Fluorine, for example, has 3 eV energy gap between conductance

and valence bands.

Understanding how impurities and defects modify the electronic structure near

the Fermi level is critical for understanding the scattering of the conductance

electrons and thus crucial for transport properties [12]. Pereira et al. [11] have

shown that long—range Coulomb potential, confines the electronic density at the

top of the valence band in a small bump several inter-atomic distances wide, and



this local negative induced charge screens the Coulomb potential in such a way

that the observed potential of the Coulomb impurities is rendered as effectively a

short-range one.

In our present theoretical work we consider the gapped graphene and specif-

ically a short-range potential inducing an midgap bound states in it. Potential

can be imposed by some special set up of external electric field or impurities and

functional groups attached to the surface of the material. Those functional groups

or impurities change energy on-site, and sufficiently large numbers of those can

effectively mimic a potential in which the electrons move. Here one of the impor-

tant questions arise: to what extent long-wave Dirac approximation is sufficient to

describe scattering processes in the short-range potential? Thus, we consider those

processes from two points of view. The first one is tight-binding approximation

on the lattice, and second one is the Dirac approximation in the case of circular

potential which models short-range potential on the lattice. The comparison of

results derived using those two approaches shows that while it is sufficient to de-

fine the long-range behavior of the wave functions at the energies around the Dirac

point, essential details of the energy level structure are better seen from the tight

binding computations.

The first chapter contains the descriptions of methods used in our research. In

the second chapter we present the results obtained in the thesis. A summary of

the results derived and their status in the context of current research in the field

are outlined in the Conclusion. The results presented in this thesis were obtained

during the course of the author’s MSc. program at the University of Alberta under

the supervision of Prof. J. Chen in the collaboration with Prof F. Marsiglio, Zhou

Li. The results are published in the paper ”Absence of Supercritical Behavior in



Figure 2: Graphene allotropes [7], clockwise: graphene, graphite, fullerene, nan-
otube

Gapped Graphene with Short-range Impurity Scattering”, submitted to ”Physi-

cal Review B”. and presented at the conference ”APS March Meeting 2010” in

Portland, US.
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Chapter 1

Theoretical methods

This chapter contains short description of analytical methods our research group

used.

1.1 Tight-binding approximation

This section describes the most important method we applied to our object of

study. Tight binding approximation is a very popular model for studying the

electronic band structure of crystals. The method reduces the problem of electron

motion in the periodic potential to a matrix problem defined by the limited number,

usually below ten, of scalar parameters. Despite its simplicity, the tight-binding

approximation is known to give correct predictions for the electronic structures of

various dielectrics and semiconductors. It is well known that for the electrons in

periodic potential only exactly solvable model is one-dimensional Kronig – Penney

model with a sequence of rectangular potential barriers and thus, numeric methods

to derive the band structure of the materials are very useful. The tight-binding
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model allows analytical derivation of electronic spectra. It is also convenient for

numerical computations, as it reduces Schrodinger equation to the eigenvalue prob-

lem with sparse matrix.

The discussion of this section is mainly based on books [14] and [13]. The

assumptions made to derive the tight-binding model are:

1. Electrons are tightly bound to the atoms composing the crystal lattice.

As a result, a linear combination of isolated atomic orbitals should be a good

approximation to the single electron wave function.

2. Number of neighbors for each atom should not be too big.

3. Bands of single electronic states are not too wide.

These requirements are interrelated and the meaning of each of them will be-

come clear from the rest of this section.

The description of tight-binding model in terms of Hamilton operator is as

follows. Let H0 be a sum of Hamilton operators Ha of the single atoms, located in

the nodes of the lattice:

H0(r) =
∑
rn

Ha(r− rn), (1.1)

where rn are the nodes of the crystal. We ignore spin everywhere, as we do not

consider the effects of magnetic fields in our work. The full Hamiltonian H must

differ from H0 by not very big periodic potential U : H = H0 + U . For simplicity

let us consider atoms with only one orbital per atom, then wave function can be

written as:

Ψ(r) =
∑
rn

a(rn)φ(r− rn), (1.2)

where φ(r) is a wave function of an electron on the isolated atom, a(rn) is an
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”envelop” function, introducing the influence of atoms on each other inside the

lattice. We need to solve (with certain approximation) the Schrodinger equation:

HΨ = EkΨ, (1.3)

Ek is a Bloch energy of single electron, k is a Bloch momentum of electron. Here

and everywhere else in this section the index k on the wave function is omitted.

Bloch theorem states that the wave function in the periodic potential must satisfy

the condition Ψ(r + rn) = exp(ikrn)Ψ(r), which after substitution into (1.2) gives

a(rn) = exp(ikrn)a(0). (1.4)

Now we multiply left and right sides of (1.3) by the single atomic wave function

and integrate over the lattice:

E

∫
φ∗Ψdr +

∫
φ∗U(r)Ψdr = Ek

∫
φ∗Ψdr (1.5)

(Ek − E)

∫
φ∗Ψdr =

∫
φ∗U(r)Ψdr, (1.6)

where E is the energy. From (1.2 and 1.4) we obtain:

Ψ(r) =
∑
rn

exp(ikrn)a(0)φ(r− rn) = a(0)
∑
rn

exp(ikrn)φ(r− rn), (1.7)

and substituting this into (1.5) gives:
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(Ek − E)

∫
φ∗

∑
rn

exp(ikrn)φ(r− rn)dr = (1.8)

=

∫
φ∗U(r)

∑
rn

exp(ikrn)φ(r− rn)dr. (1.9)

This is a secular equation we wanted to obtain. However, left in this state it is not

very useful for numerical or analytical computations as it contains infinite sums of

integrals. To simplify it further we neglect all terms with atomic wave functions

which are not centered on the same node or at next closest atoms. This is called

”next-neighbor approximation”:

(Ek − E)(
∑
n.n.

α(R) exp(ikR) + 1) =
∑
n.n.

γ(R) exp(ikR) + β, (1.10)

we also made an assumption that the potential U is circularly symmetric. The

notations introduced are:

α(R) =

∫
φ∗(r)φ(r−R)dr (1.11)

β = −
∫

φ∗(r)U(r)φ(r)dr (1.12)

γ(R) = −
∫

φ∗(r)U(r)φ(r−R)dr, (1.13)

n.n. stands for ”next closest neighbor” and we arrive to the dispersion expression:

Ek = E +
β +

∑
n.n. γ(R)

1−∑
n.n. α(R) exp(ikR)

(1.14)
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Now we can comment on the meaning of the Greek coefficients. The coefficient

α should be small as it is an overlap integral between single atomic functions. The

magnitude of γ determines the band width. This overlap integral is small by the

assumption potential U and henceforth tight-binding bands should be narrow, β

is a shift of the isolated atomic energy level caused by the potential U .

1.2 Dispersion law and Dirac formalism deriva-

tion

Suspended graphene has quasi-relativistic electronic spectrum, an attribute of zero-

mass fermions. As it will be shown below the electrons remain relativistic even

upon the introduction of the gap. Quasi-particles become similar to relativistic

massive electrons confined in 2D. In this section we give a simplified introduction

into pseudo-relativistic physics in honeycomb lattice with a gap.

We use tight-binding model introduced in the pervious section. This time,

though, reasoning is different as graphene has two sublattices (1.1), A and B or,

in the other words, its unit cell is diatomic. Thus we write the wave function as a

sum [2]:

Ψ(r)A =
∑
rA

exp(ikrA)φ(r− rA), (1.15)

Ψ(r)B =
∑
rB

exp(ikrB)φ(r− rB), (1.16)

here Ψ(r)A and Ψ(r)B are the electron wave function on the sublattices A and B
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Figure 1.1: Two sublattices in graphene. Inner circle includes ”closest neighbors”
atoms.

correspondingly. The full wave function is

Ψ(r) = Ψ(r)A + λΨ(r)B, (1.17)

λ is a constant parameter to be eliminated later. The Hamiltonian of the system is

the one that was defined in previous section with addition of periodic M -operator:

H0(rC) = H0 + U + M(rC), (1.18)

the M -operator is defined as follows:

M(rC) =





+m if C = A

−m if C = B.

(1.19)
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This operator introduces effect of the underlying lattice or external periodic field

opening the gap with the width of 2m. After multiplication of the Hamiltonian

operator (1.18) by the atomic wave function φA, centered at one of the A-sites

from the left side and by the full wave function Ψ from the right side we obtain:

Ek − E −m = λ
∑
n.n.

γ(RB) exp(ikRB) + β, (1.20)

we assumed that overlap between the neighboring atomic functions is negligible,

i.e α(rC) = 0. Let us repeat this procedure with an atomic orbital φB, centered at

the one of the sites on B-sublattice:

λ(Ek − E −m) =
∑
n.n.

γ(RB) exp(ikRB) + λβ, (1.21)

Due to the symmetry of the lattice γ(RC) = γ(|RC |). We kept in the sums only

RC which connects the nearest neighbors, hence the notation ”n.n.”. We arrive to

the system of equations:

Ek − E −m = λγSB + β (1.22)

λ(Ek − E −m) = γSA + λβ, (1.23)

where γ is the value of γ(RC) at the next closest neighbour,

SA = eiaky + eia(−kx

√
3/2−ky/2) + eia(kx

√
3/2−ky/2), (1.24)

SB = e−iaky + eia(−kx

√
3/2+ky/2) + eia(kx

√
3/2+ky/2), (1.25)

a is a lattice constant. Solving system (1.22) we get the dispersion law with a gap
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of 2m centered at the energy β: Ek = β ±
√

γ2SBSA + m2. One can shift the

energy spectrum, so that center of the gap is at the zero energy:

Ek = ±
√

γ2SBSA + m2. (1.26)

In what follows we choose a ≡ 1 to keep notation simple and restore the

dimensionality where it is necessary. Performing straightforward algebraic and

trigonometric simplification we obtain:

Ek = ±
√

γ2(1 + 4 cos2
√

3ky/2 + 4 cos 3/2kx cos
√

3/2ky) + m2. (1.27)

Tight-binding approximation introduced in the previous section can be represented

in the single-particle formalism of creation and annihilation operators. Starting

with Bloch states |ψk >A,B one can define basis functions called Wannier states

|ψR >A,B as:

|ψR >A≡ 1√
N

∑

k

exp(−ikRA)|ψk >A, (1.28)

|ψR >B≡ 1√
N

∑

k

exp(−ikRB)|ψk >B, (1.29)

|ψk >A≡ 1√
N

∑
RA

exp(ikRA)|ψR >A, (1.30)

|ψk >B≡ 1√
N

∑
RB

exp(ikRB)|ψR >B . (1.31)
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Figure 1.2: Dispersion for the gapped graphene, ratio (gap width) / t is taken to
be 0.1

It is convenient to use spinor notation here, as we deal with bipartite lattice.

Index A corresponds to the A-sublattice, B - to the B-sublattice, correspondingly.

Thus {|ψR >A, |ψR >B} and {|ψk >A, |ψR >B} are bi-component spinors in real

and k-space. Convenience of Wannier basis is in its orthogonality. In the limit of

zero periodic potential in U these states become atomic orbitals of isolated atoms

placed at the lattice sites. In this basis one can write Hamiltonian in the form:

H = −t
∑

j,δ

(a†jbj+δ + b†j+δaj) + m
∑

i

(a†iai − b†i bi). (1.32)

In this representation it is usual to denote hopping parameter γ as t, δ are vectors

connecting next closest sites. As usual, we introduce Fourier-transformed operators
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as:

a(rj) =
1√
N

∑

k

exp(−ikrj)a(k), (1.33)

b(rj) =
1√
N

∑

k

exp(−ikrj)b(k), (1.34)

here a(rj) ≡ aj, b(rj) ≡ bj, summation is done in the first Brillouin zone. As a

result of this transformation the Hamiltonian (1.32) is represented in the following

form:

H =
∑

k

(
a(k)†b(k)†

)



m −tSA

−tSB −m







a(k)

b(k)


 (1.35)

This Hamiltonian operator is diagonal in k−spase but not diagonal in spinor in-

dices. Diagonalizing this matrix one can get the dispersion law (2.12). On the fig-

ures 1.2 and 1.2 one can see two sets of equivalent Fermi points at the half-filling.

On the Fig. 1.2 equivalent Fermi points (called Dirac points in the literature about

graphene), connected by the vectors of the reciprocal lattice, are denoted by the

white and black circles. To describe physics approximately at the half-filling it

is enough to make an expansion of the Hamiltonian at any two of non-equivalent

points in the Brillouin zone, say K1 and K2 on the Fig. 1.2. Therefore, we double

the number of creation and annihilation operators, which is a reasonable thing

to do as the states in the k-space are doubly degenerated. Here, we introduce



CHAPTER 1. THEORETICAL METHODS 11

following notation:

a1(k) = a(K1 + k) (1.36)

a2(k) = a(K2 + k) (1.37)

b1(k) = b(K1 + k) (1.38)

b2(k) = b(K2 + k). (1.39)

Performing expansion of the Hamiltonian and keeping terms linear in k we

obtain:

H(k) =

(
a1(k)†b1(k)†a2(k)†b2(k)†

)



H1 0

0 H2







a1(k)

b1(k)

a2(k)

b2(k),




(1.40)

where 0 is a two by two matrix of zeros and H1,2 are

H1,2 = t




m/t 3
2
(ikx ± ky)

3
2
(−ikx ± ky) −m/t


 , (1.41)

or

H1,2 = ~vf (−σ2kx ± σ1ky) + mσ3, (1.42)

where vf = 3ta/(2~), is a Fermi speed of the electrons, σi are the Pauli matrices:

σ1 =




0 1

1 0


 σ2 =




0 −i

i 0


 σ3 =




1 0

0 1


 . (1.43)
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Figure 1.3: On the left picture: first Brillouin zone with equivalent points con-
nected by reciprocal lattice vectors. On the right picture: two non-equivalent
points of the Brillouin zone used for long-wave approximation described in the
text, K1 and K2 are the two inequivalent Dirac points used to linearize Hamilto-
nian in their vicinity.

The next step, which is usually taken in literature, is to use bi-spinor notation

[33]. We use four by four matrices:

αx = −




σ2 0

0 σ2


 αy =




σ1 0

0 −σ1


 αz =




σ3 0

0 σ3


 , (1.44)

now the Hamiltonian can be written as:

H(k) = ~vf (αxkx + αyky) + mαz, (1.45)

and Fourier-transform back to the real space gives us long-wave approximation,

which has the form of relativistic equation for an electron in two spatial dimensions

(Dirac-Weyl equation):

H(x) = −i~vf (αx∂x + αy∂y) + mαz, (1.46)
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here vf ' 1000 km/s, which is about 3000 times lesser than speed of light in the

original equations derived for the relativistic electrons in vacuum. One can prove

that symmetric properties of the solutions of the equation

H(x)Ψ = EΨ (1.47)

allows to classify them as true bispinors. The sign of their wave function changes if

the phase gains 2π increment. Henceforth, two ”upper” components of the bispinor

are related to the two ”lower” ones by the time reversal transformation. Because of

this in the Dirac approximation it is enough to solve the problem for just ”upper”

two-component spinor [34]. This approach is used in the present work as well. It is

important to understand that similarity with relativistic equations is limited [35]:

1. The domain of applicability of this equation is limited to small values of

‖k‖ and slowly changing potentials. When steep potentials and/or high energies

are involved, the Dirac approximation may fail. One of the main conclusions we

made in the present research is that short range-potential on the graphene lattice

can not be correctly approximated by the Dirac equation.

2. Equation (1.47) is only applicable in the static coordinate system and it

is not invariant neither under Galilean nor Lorentz transformation. It is not

Galilean-invariant as in case with any other effective mass approximation, even

if original Schrödinger equation is Galilean invariant. Obviously, it can not be

Lorentz-invariant as vf is not equal to the speed of light present in the relativistic

equations [35].
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1.3 Density of States and Green functions

In this thesis we use Green functions for a single electron propagating on the

graphene lattice in the tight-binding approximation. The general definition of the

quantum-mechanical Green function can be written as [24]:

Ĝ(E) = (E − Ĥ)−1. (1.48)

Let us present this operator in the basis of energy states |ω >, inserting the unity

operators in the above expression:

Ĝ(E) =
∑
i,j

|ωi >< ωi|(E − Ĥ)−1|ωj >< ωj|, (1.49)

noting that Ĥ|ωi >= ωi|ωi > and < ωi|ωj >= δij this transforms into:

Ĝ(E) =
∑

i

|ωi > (E − ωi)
−1 < ωi|. (1.50)

To derive spatial density of states we project this operator on the basis of localized

Wannier states:

G(E,x,y) =
∑

i

< x|ωi > (E − ωi)
−1 < ωi|y >=

∑
i

φ∗i (x)φi(y)

E − ωi

, (1.51)

here. φi(x) =< x|ωi > are single electron wave functions in coordinate represen-

tation. Now we notice that sum of all φ∗i (x)φi(x) with the same i can be defined

as a probability density of the discrete state at the energy ωi, ρ(ωi,x). Integrating
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over the energy instead of summation and using the functional identity

lim
δ→+0

1

x + iδ
= −iπδ(x) + P

(
1

x

)
(1.52)

we obtain the following expression which relates imaginary part of the Green func-

tion and the density of states:

Im(G(E,x,x)) = Im

∫
ρ(ω,x)

E + iδ − ω
dω = −π

∫
δ(E − ω)ρ(ω,x)dω = −πρ(E,x),

(1.53)

or

ρ(E,x) = − 1

π
ImG(E,x,x). (1.54)

When related to the multiple impurities scattering the T-matrix formalism used

in the previous section to describe scattering on two impurities in is basically a

reformulation of the expression (2.23) in a way suitable for iterative computations.

Here is a short description of the method.

Let us consider the following Hamiltonian (we omit hats over the operators):

H = H0 + Hl (1.55)

Hl = |l > V < l|, (1.56)

here V is the on-site potential induced by external field or impurity, |l > is a ket-

vector for a Wannier state localized at the site with the multi-index coordinate l.

We assume that the Green function for H0, G0(E) is known. The Green function
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operator is then written as [25]:

G(E) = (E −H0 −H1)
−1. (1.57)

Performing straightforward linear algebra manipulations we obtain:

G = (E −H0 −H1)
−1 = [(E −H0)(1−G0H1)]

−1 (1.58)

= (1−G0H1)
−1G0, (1.59)

where G0 ≡ G0(E), the first cofactor in the last expression can be expanded in

series of G0H1 (we consider H1 as a perturbation):

G = G0 + G0H1G0 + G0H1G0H1G0 + ..., (1.60)

at this point one can define a T - matrix:

T = H1 + H1G0H1 + H1G0H1G0H1..., (1.61)

G = G0 + G0TG0 (1.62)

in our case T is

Tl = |l > V < l|+|l > V < l|G0|l > V < l|+|l > V < l|G0|l > V < l|G0|l > V < l|...,
(1.63)

noting that < l|G0|l >= G0(l, l):

Tl = |l > V (1 + V G0(l, l) + (V G0(l, l))
2 + ...) < l|, (1.64)
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summing up terms in the parenthesizes we obtain compact expression for T -matrix:

Tl = |l >
V

1− V G0(l, l)
< l|. (1.65)

This concludes derivation of the T -matrix in the single impurity case. One can start

the next iteration from this point — using G as an unperturbed Green function

derive the Green function Gm for the new system containing one more impurity at

the site m:

Gm = G + GTmG, (1.66)

Tm = |m >
V

1− V G(m,m)
< m|. (1.67)
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Chapter 2

Numerical and analytical results 1

2.1 Formulation of the problem

Graphene can be used as an effective playground to study relativistic phenomena in

super-heavy atoms with nucleus charge more than 150e because the critical charge

for the Dirac fermions in graphene is of the order of unity.[11] Once one places

an impurity with single elementary charge into pristine graphene lattice, a bound

state splits from the bottom of the conductance band within the mass gap that sep-

arates the original Dirac cones.[15, 16] The increase of the coupling strength or the

electrical charge on the impurity will drive the quantum state of the system to the

critical point at which the midgap state joins the lower continuum. In heavy atoms

this condition signifies a electrodynamic vacuum state stability breakdown. For

the gapped graphene this means that the screening charge reshapes significantly in

the vicinity of the Coulomb centre.[11] The amplitude of the merging bound state

decays exponentially with the distance from the charge. When the charge is at

1A version of this chapter has been submitted for publication.
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the supercritical value, the screening effect is rather strong, the observed effective

charge is reduced by almost 4e due to double spin and valley degeneration.[11]

The similar phenomenon occurs in atomic physics is unreachable at the modern

experimental level charge of 170 elementary units.[17] On the Fig.() one can see

corresponding energy diagrams from [17]. Left one shows that point-like charge

as a center of the potential in the Dirac equation cannot exceed 137 elementary

units; on the second one 1s orbital of the atom with finite size nucleus dives into

the ”Dirac see” at the charge 172e. Complex of QED phenomena develops and

as a result the nucleus charge becomes lesser by 2 elementary units. Very similar

situation is shown on (2.1) for graphene with the difference that critical charge is of

the order of unity instead of 172. Important for the current research in graphene

is the fact that the shape of the cloud of screening charge is very close to the

shape of the “critical state” on the verge of diving from the gap into the band of

continuous levels. In this chapter we will try to answer two questions important

for the physics of critical phenomena in graphene: i)How does the range of the

potential affect the electronic structure in the part of the valence band closest to

its upper edge? This is an interesting problem, as the energy levels closest to the

gap control the screening properties of the electronic liquid. ii) How strong should

be the potential to create critical state on graphene lattice? There is already a sig-

nificant number of research papers on this subject. These problems have attracted

significant research attention and the gapless graphene case has already been ex-

haustively studied [18]. In particular, several articles were published on exploring

the properties of the midgap states. In Ref. [20], the authors studied the midgap

states induced by vacancies in the long wave limit. In Ref. [21], authors considered

mostly the Coulomb potential case in the Dirac approximation, and presented the
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solutions of the midgap states in the presence of short-range impurities. In the

presented work, we deal with the midgap states that are about to merge into the

continuum both in the Dirac approximation and on a lattice where the approxi-

mation of a linear dispersion is not assumed. Unexpected at the beginning of the

work, it was found that the Dirac approximation alone gives different prediction

about impurity strength required for the energy level inside the gap to dive into

the continuum.

Figure 2.1: Picture from the one of the pioneering articles [17](1972). Energy
diagram on the left demonstrates the breakdown of the Dirac equation with the
point source of Coulomb field with the charge 137e. On the right side: in the
model with finite size of the nucleus 1s level joins the lower continuum

The chapter is organized as follows. In the next section we obtain the pre-

dictions of the long-wavelength Dirac formalism in the case of the short range

impurity potential. The third section contains short description of the Green func-

tion formalism extensively used in our study, derive general expression for the

gapped graphene Green functions. In the fourth section, the results for single—
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and two—impurities cases are generalized to some extent on the case with multiple

impurities.

Figure 2.2: Picture from [11]. Mid-gap state joins the valence band in the field
of Coulomb impurity. Results were obtained in tight-binding approximation on
graphene lattice.

2.2 Dirac equation with spherical well

The equation of motion of an electron with a fixed full (pseudo-spin plus orbital)

angular momentum in a circularly symmetric potential U(r) is described by the

spinor equations

(E − U(r)−m)A(r)− (∂r +
j

r
)B(r) = 0,

(∂r − j

r
)A(r) + (E − U(r) + m)B(r) = 0, (2.1)

where U(r) = V θ(a− r), where θ(x) is a Heaviside step function, a is the radius of

the well, and V is negative (positive) for a well (barrier). Spinor field describing the
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full wave function has a meaning of two probability densities, i.e. upper component

of the spinor is a probability density on the A-sublattice, and the lower component

corresponds to a probability density on the B-sublattice correspondingly [11]:

ΨC(r, φ) =
1√
r





e−i(j−1/2)φA(r)

ie−i(j+1/2)φB(r)





. (2.2)

Here j is an eigenvalue of full momentum Jz = Lz + 1
2
σz, and C can refer to either

the A or B sublattice. To solve Eq. (2.1), one can express B(r) in terms of A(r):

B(r) =
j
r
A(r)− A′(r)

E − V + m
. (2.3)

In what follows, we consider the situation when the energy level is at either

gap edge; for negative (positive) V this is the lower (upper) edge. The solutions

inside the well are:

A(r) = C1

√
r

√
E + m− V

E −m− V
Jj−1/2(

√
(E − V )2 −m2r),

B(r) = C1

√
rJj+1/2(

√
(E − V )2 −m2r). (2.4)

The solutions outside the well are:

A(r) = C2

√
r

√
E + m

E −m
Kj−1/2(

√
m2 − E2r),

B(r) = −iC2

√
rKj+1/2(

√
m2 − E2r), (2.5)

where Jα(x) is a Bessel function of the first kind, and Kα(x) is a modified Bessel

function of the second kind chosen to satisfy the boundary condition at infinity.
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The equation for the energy levels is:

√
E+m−V
E−m−V

Jj−1/2(
√

(E − V )2 −m2a)

Jj+1/2(
√

(E − V )2 −m2a)
=

i

√
E+m
E−m

Kj−1/2(
√

m2 − E2a)

Kj+1/2(
√

m2 − E2a)
. (2.6)

For a solution to exist, the terms on the left-hand side and on the right-hand

side must be either pure imaginary or pure real numbers. This means, that for

−m ≤ E ≤ 0, and with V < 0, we require that (E − V )2 > m2 for a solution. We

are primarily interested in negative values of V . The solution for the j = 1/2, for

example, is:

V = −m−
√

m2 + b2
1/a

2, (2.7)

where b1 is the first root of the Bessel function J0.

We are interested also in what sequence the levels will merge into the contin-

uum, depending on their angular momentum. One can numerically analyze Eq.

(2.6) but for the sake of clarity we will analyze the effective Schrodinger equation

for A(r), obtained from the system (2.1):

−A′′(r) + [
j2 − j

r2
− (E − V )2 + m2]A(r) = 0. (2.8)

This is a wave equation for a particle in a potential with functional form j2−j
r2 −

(E−V )2+m2 at zero energy. Obviously, for states with a higher value of j2−j, the

potential curve is higher, particularly near the origin; states with a higher value

of j will merge into the continuum for larger values of |V |. It is important for our

study to analyze the properties of the wave function as these solutions merge into
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Figure 2.3: Asymptotic behavior of wave function (solid line) with energy close
to the band edge for quantum well potential obtained in Dirac approximation
(2.9), with an normalization constant adjusted for clarity. The exponential decay
observed on the picture is in a good agreement with the results calculated in tight-
binding approximation (dashed Line). The wave function becomes less localized
(or more extended) as the energy approaches the top of the valence band (E=-0.1).
This trend is quite different from what is known about long-range potentials. It is
known that in the presence of Coulomb potential the critical wave function near
the band edge is localized [11].
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the continuum away from the potential wave. In fact, screening properties of the

supercritical electronic liquid are controlled by the solutions’ asymptotic outside

the well when E → −m + 0:

|ΨA|2 = |A(r)|2/r ' C2
2

r

E + m

(E −m)
√

m2 − E2
e−2

√
m2−E2r

|ΨB|2 = |B(r)|2/r ' −C2
2

r

1√
m2 − E2

e−2
√

m2−E2r, (2.9)

We see, that spacial distribution of electronic density is independent of the value

of j. The integral of |ΨB|2 over the plane r, φ diverges as 1√
m2−E2 . This means

that the state at the moment of merging into the continuum becomes extended

and is not localized in the potential well. Following the discussion of section VI in

paper [11] (see also 2.4), we conclude that the merging state does not significantly

alter the valence band and there will be no abrupt increase of electronic density

near the impurity. Therefore, no supercritical phenomena occur in the presence of

a short-range potential. This does not mean that there are no levels at the energy

E = −m in Dirac approximation, but states with j = 1/2,−1/2,−3/2, which are

the lowest, are non-normalizable (or extendable) so that they do not cause critical

screening. This is one the main results of my studies and we will prove this finding

with computations on the lattice, as described in the subsequent sections.

The Dirac approximation for graphene gives correct predictions for electronic

properties far from impurities when the coupling strength is such that the level in

the gap is about to dive into the lower continuum. However, for sufficiently large

coupling strength the Dirac approximation incorrectly predicts that the impurity

level passes into the continuum. While we show that there is a solution in the
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Figure 2.4: The sequence of figures illustrates midgap state merging with the
lower continuum. Midgap state and states in the continuum are represented by
the squares of their wave functions along some line X crossing the potential well.
Top: Midgap state is far from the band edge. Middle: The midgap state just
before it merges with the continuum. Probability density in the top of the valence
band closely follows the shape of the merging wave function. Bottom: Even after
the merging the electronic density of the continuum keeps the shape of the merged
level. Thus, if the merging state is localized at the moment of diving, then the
resonance consisting of quasilocalized states in the top of the valence band forms
and the supercritical screening takes place.
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gap for a single impurity on the lattice in a subsequent section, computations

with the Dirac approximation and a delta-function potential well [22] show that

the problem becomes ill-defined. If we try to find the approximate solution of the

single impurity with a potential well of finite radius as we did in this section, we find

that the midgap state dives into the lower continuum at the finite potential value

(2.7). On contrary, in the case of the single impurity on the lattice, it is required

that coupling strength is infinite. This discrepancy is due to the limitations of

the Dirac approximation as it breaks down at short distances. In the following

sections, we will show that requirement to have an infinite coupling strength in

order to make midgap states dive also holds, if two or more impurities of the same

kind are localized in the finite area on the infinite lattice.

2.3 Analytical results for one and two impurities

on the lattice

2.3.1 Lattice Green function

The Hamiltonian of a free electron on the two-dimensional gapped graphene lattice,

using the tight binding model is,

H0 = −t
∑

j,δ

(a†jbj+δ + b†j+δaj) + m
∑

i

(a†iai − b†i bi), (2.10)

where a†j is the creation operator of an electron on the A-atom site labeled j in

the honeycomb lattice, and bj+δ represents the annihilation of an electron on the

neighboring B-atom site labeled j+δ. Here δ denotes the three vectors that connect
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an A-atom site to its three nearest neighboring B-atom sites. The parameters t and

m represent the nearest neighbor hopping probability and the mass differentiating

the A and B sublattices, respectively. The Hamiltonian in k-space can be written

as:

Ĥ0 =




m φk

φ∗k −m


 , (2.11)

where we have adopted the standard spinor notation for the A and B sublattice

components of the wave function. Here, φk = −te−ikxa(1+2 cos(ky

√
3a/2)eikxa3/2),

where a is the distance between neighboring atoms. The eigenvalues are

εk,± = ±
√

t2(1 + 4c2
y + 4cxcy) + m2, (2.12)

where cx ≡ cos 3kxa/2 and cy ≡ cos
√

3kya/2. The Green functions in k-space can

be obtained straightforwardly as

G0(k, ω) =




G0
AA(k, ω) G0

AB(k, ω)

G0
BA(k, ω) G0

BB(k, ω)


 , (2.13)

where ω is the energy, and each component is given by

G0
AA(k, ω) =

ω + µ + m

(ω + µ)2 − ε2
k

G0
BB(k, ω) =

ω + µ−m

(ω + µ)2 − ε2
k

G0
AB(k, ω) =

φ∗k
(ω + µ)2 − ε2

k

G0
BA(k, ω) =

φk

(ω + µ)2 − ε2
k

. (2.14)
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We have added µ, the chemical potential, for completeness, and the superscript ‘0’

serves to remind us that these Green functions are applicable to the clean lattice,

i.e. without impurity scattering. The lattice Green functions in real space can be

obtained by Fourier transform from the above Green’s functions:

G0(l, j, ω) =




G0
AA(l, j, ω) G0

AB(l, j, ω)

G0
BA(l, j, ω) G0

BB(l, j, ω)


 ,

where

G0
AA(l, j, iωn)

=
(ω + µ + m)

8π2/3
√

3

∫ 2π/3a

−2π/3a

dkx

∫ 4π/3
√

3a−|kx|/
√

3

−4π/3
√

3a+|kx|/
√

3

dky

× ei3kx(lx−jx)/2ei
√

3ky(ly−jy)/2

(ω + µ)2 −m2 − t2(1 + 4c2
y + 4cxcy)

, (2.15)

Figure 2.5: Imaginary (solid line) and real (dashed line) parts of the G0
AA(l, l, ω)

computed by the numerical integration of (2.15).
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G0
AB(l, j, iωn)

=
1

8π2/3
√

3

∫ 2π/3a

−2π/3a

dkx

∫ 4π/3
√

3a−|kx|/
√

3

−4π/3
√

3a+|kx|/
√

3

dky

× φ∗ke
i3kx(lx−jx)/2+ikxa/2ei

√
3ky(ly−jy)/2

(ω + µ)2 −m2 − t2(1 + 4c2
y + 4cxcy)

. (2.16)

The remaining components are readily obtained through the relations G0
BB(l, j, ω) =

G0
AA(l, j, ω,m → −m) and, for the off-diagonal components,

G0
BA(l, j, ω) = [G0

AB(l, j, ω)]∗. (2.17)

Using the traditional trick in Green functions theory , ω → ω + iδ, we obtain

the Green functions slightly above the real axis, corresponding to the retarded

Green function. For the particular case of l = j (an on-site Green function), we

can obtain the diagonal components analytically. From now on we set t=1, which

means that all energies are measured in units of the hopping energy. The result

for G0
AA is (we set µ = 0 for simplicity, and use the definition E2 = |ω2 −m2|):

(i) For 0 < E < 1, ω2 −m2 < 0,

Re[G0
AA(l, l, ω)] = −(ω + m)

π

2√(√
E2 + 1

)3√
E2 + 9

×F (
π

2
,
1
2

√√√√ −(E4 + 12E2 − 6)(√
E2 + 1

)3√
E2 + 9

+ 2),

Im[G0
AA(l, l, ω)] = 0.



CHAPTER 2. NUMERICAL AND ANALYTICAL RESULTS 31

(ii) For 0 < E < 1, ω2 −m2 > 0

Re[G0
AA(l, l, ω)] = −(ω + m)

π

4
√

3− E
[√

(E + 1)
]3

×F (
π

2
,

√
[3 + E] (1−E)3

[3−E] (E + 1)3
),

Im[G0
AA(l, l, ω)] = −2(ω + m)

π

1
√

3−E
[√

(E + 1)
]3

×F (
π

2
,

√
16E

[3−E] (E + 1)3
).

(iii) for 1 < E < 3

Re[G0
AA(l, l, ω)] =

(ω + m)
2π

1√
E
× F (

π

2
,

√
(E + 3) (E − 1)3

16E
),

Im[G0
AA(l, l, ω)] = −(ω + m)

2π

1√
E

F (
π

2
,

√
[3−E] (E + 1)3

16E
).

(iv) for E > 3

Re[G0
AA(l, l, ω)] =

2(ω + m)
π

1√
(E + 3) (E − 1)3

×F (
π

2
,

√
16E

(E + 3) (E − 1)3
),

Im[G0
AA(l, l, ω)] = 0.

In these expressions we have used F (π
2
, x) ≡ ∫ π/2

0
(1− x sin2 θ)−1/2 dθ, which is a

complete elliptic integral of the first kind (also denoted as K(x)).[23]
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2.3.2 Analytical formalism

We start with the equation

Ĝ = (Î − Ĝ0V̂ )−1Ĝ0, (2.18)

where Ĝ denotes a matrix where different rows (and columns) correspond to dif-

ferent lattice sites (an explicit example below will make this clearer, see also Ref.

[24]).

As an example, we consider the specific case with two on-site impurities located

at the sites labeled 0 and 1 (without loss of generality, we number the first atom

on the A sublattice as 0, and we number the first atom on the B sublattice as 1;

since the lattice is bi-partite, A-atoms are denoted by even numbers, and B-atoms

are denoted by odd numbers). The Î − Ĝ0V̂ matrix is then written explicitly as

Î − Ĝ0V̂ =




1− V G0
00 −V G0

01 0 0 . . .

−V G0
10 1− V G0

11 0 0 . . .

−V G0
20 −V G0

21 1 0 . . .

−V G0
30 −V G0

31 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . .




, (2.19)

where now the subscripts refer to the two site indices (previously written as argu-

ments in, say, Eq. (2.15)), and V is the strength of the impurity potential at both

sites. Then

Gjj =
∑

k

(I −G0V )−1
jk G0

kj = CkjG
0
kj/∆, (2.20)

where C is a cofactor in the matrix (2.19), and ∆ is the determinant of Î − Ĝ0V̂ .
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The factor Ckj is (−1)k+j times the determinant of the original matrix excluding

the k-th row and j-th column. Eq. (2.20) can be expressed as:

Gjj = CkjG
0
kj/∆ (2.21)

=


∑

k

CjjG
0
jj +

∑

k≤l,k 6=j

CkjG
0
kj +

∑

k>l,k 6=j

CkjG
0
kj


 /∆.

Here the number l is given by the number of sites occupied by an impurity.

For j > l (away from the impurities),
∑

k>l,k 6=j CkjG
0
kj = 0 in Eq. (2.21). In

this case Eq. (2.21) becomes:

Gjj =
∑

k

CkjG
0
kj/∆ =


CjjG

0
jj +

∑

k≤l,k 6=j

CkjG
0
kj


 /∆. (2.22)

The cofactor Cjj is equal to ∆, and therefore

Gjj = G0
jj +


 ∑

k≤l,k 6=j

CkjG
0
kj


 /∆. (2.23)

Note that when ω = −m, G0
00(ω + iδ) ∼ 0.

2.3.3 Single impurity scattering

Single impurity on the lattice is the simplest situation possible and we consider

it first. We need to estimate values of G0
ij to be able to compare them with each

other (in what following ω = −m + iε is suggested).
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G0
BB(0) =

∫
(−2m + iε)eikR/(−2m)

‖εk‖2
2m

+ iε
kdkdφ =

− 1

4m

∫
(−2m + iε)eikR

‖εk‖2
2m

+ iε
d(k2)dφ, (2.24)

where R is the radius-vector between two points on the lattice. We make substi-

tution, which at least locally near K-point should work. Remembering that we

need quite rough estimates for our purposes, such that we know that Gs are either

infinite or finite or zero, and that is defined by the behavior near K-points:

‖εk‖2

2m
= y, dy =

1

2m

d‖εk‖2

d(k2)
d(k2) (2.25)

Now we use Sokhatsky-Weierstrass theorem, but on the half of the real axis as

y > 0, so we will have a half of delta-function and Lebesgue integral instead

Cauchy principal value. We also move the center of coordinates to the one of the

K-points (K′) and limit the integration region by the circle of some finite radius:

G0
BB(R) = m

∫ eikR
[

d‖εk‖2
d(k2)

]−1

y + iε
dydφ =

m

2π∫

0




−i

π

2
eiK′R +

r0∫

0

eikR
[

d‖εk‖2
d(k2)

]−1

y
dy





dφ (2.26)

We know that d‖εk‖2
d(k2)

∼ 1 as y → 0, that means that second integral diverges

logarithmically. The question is if this logarithmical divergency has both real

and imaginary part. It appears that it has not. Indeed, d‖εk(φ)‖2
d(k2)

= d‖εk(φ+π)‖2
d(k2)

;

eikR cos(φ) = (eikR cos(φ+π))∗, after integration over φ imaginary part of logarithmic
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divergency cancels, hence G0
BB has finite imaginary and divergent real part at

ω = −m

Estimation of G0
AB is done in analogous way:

G0
AB(R) = − ∫ eikR/(−2m)ε∗k

‖εk‖2
2m

+iε
kdkdφ =

1
2

∫ eikR

[
d‖εk‖2
d(k2)

]−1

ε∗k
y+iε

dydφ =

1
2

2π∫
0



−iπ

2
eiK′R × 0 +

r0∫
0

eikR

[
d‖εk‖2
d(k2)

]−1

ε∗k
y

dy



 dφ (2.27)

As |εk‖2 ∼ √
y if y → 0 the last integral converges and it is real for the same

reasons as in case of G0
BB.

G0
AA(0) =

∫
(ω + m)

ω2 −m2 − ε2
k

kdkdφ (2.28)

We need an asymptotic form of this at ω → −m + 0, using the same substitution

(2.25) and defining ω1 = −m + ω we obtain:

G0
AA =

1

2

∫
ω1

−2mω1 + ω2
1 − ε2

k

kdkdφ ' − 1

4m

∫ ω1

[
d‖εk‖2
d(k2)

]−1

ω1 + y
dydφ, (2.29)

where we neglected ω2
1, and we obtain the leading term at ω1 → 0:

Kω1 ln ω1, (2.30)

where K = π
2m

. The results above will be extensively used throughout this chapter.
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2.3.4 Impurity-induced inter-gap states strength

Using asymptotes obtained, let us compute the spectral weight of the inter-gap

bound state near the band edge. When there is only one impurity at any A-atom

site, the Hamiltonian is given by Ĥ = Ĥ0 + Ĥ1, where Ĥ1 = V̂ . The corresponding

Green functions corresponding to the two Hamiltonians are Ĝ0(z) = (z − Ĥ0)
−1

and Ĝ(z) = (z − Ĥ)−1. By using the T-matrix expansion, we obtain the Green

function in the presence of a single impurity:

Gij = G0
ij +

G0
i0V G0

0j

1− V G0
00

. (2.31)

The local density of states (LDOS) at any position on the graphene lattice is

defined by the imaginary part of the Green function:

ρ(j, j, ω) = − 1

π
ImGjj(ω + iδ), (2.32)

and we have restored the explicit frequency dependence for clarity.

The local density of states at the impurity site is ρ(0, 0, ω) = − 1
π
Im

(
G0

00(ω+iδ)

1−V G0
00(ω+iδ)

)
.

The position of the bound state in the gap is determined by the solution of

the equation 1 − V G0
00(ω + iδ) = 0. At the lower band edge where ω → −m,

G0
00(ω + iδ) ∼ ω + m = 0. Therefore, inspection of the above equation suggests

that no solution exists, unless V → −∞. This observation implies that for any

V the bound state will not merge into the lower continuum, i.e. no bound state

energy crosses the edge at ω = −m. For a single impurity on a B-atom site, the

same remarks apply for a positive impurity potential, and the upper band edge

plays the role previously played by the lower band edge.
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To understand how the bound state approaches the continuum band edge, we

use the asymptotic expansion of the complete elliptic integral of the first kind [23]

to get

G00(ω + iδ) ' K(ω + m) ln |ω + m|
1− V K(ω + m) ln |ω + m| ; (2.33)

where K = 1√
3π

By expanding the Green function near ω = −m we obtain a pole

with spectral weight a0 = −Kω2
1 ln ω1, where ω1 ≡ ω + m is the solution of

1− V Kω1 ln ω1 = 0. (2.34)

It is clear that as ω1 → 0 a solution will only occur as V → −∞, and the residue

corresponding to that solution approaches zero.

At the other extreme, for a very weak (negative) impurity potential, a similar

expansion near ω ∼ m gives a bound state energy asymptotically approaching the

upper band edge (let ω2 ≡ m− ω):

ω2 ≈ exp
−1

2mK|V | . (2.35)

The spectral weight approaches zero here as well, as a0 = 2mKω2 ln2 ω2, which

also goes to zero as the upper band edge is approached.

To summarize the results of this section, we showed that, as the (negative)

impurity potential decreases from zero towards negative infinity, the frequency of

the pole migrates from +m (upper band edge) to −m (lower band edge). As this

occurs, the spectral weight first starts from zero, grows to some maximum, and

then decreases again to zero, as the strength of the potential varies from zero to

negative infinity.
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2.4 Two or more impurity scattering

2.4.1 Exact solution for two impurities

We now consider the two-impurity case, with one on an A-site, (0, 0), and the

second on a B-site i(ix,iy). The Hamiltonian is

Ĥ = Ĥ0 + V̂ + V̂2 = Ĥ1 + Ĥ2,

where Ĥ1 = Ĥ0 + V̂ as in the single impurity case. The Green functions G0, G1

and G correspond to Ĥ0, Ĥ1 and Ĥ, respectively. The T-matrix for this case is

T̂ = Ĥ2 + Ĥ2Ĝ
1Ĥ2 + ...

Therefore, the Green function becomes

Gjk = G1
jk +

G1
jiV2G

1
ik

1− V2G1
i,i

.

In fact, for the many-impurity case, the T-matrix method can be used in a

recursive way,

Ĝn = Ĝn−1 + Ĝn−1T̂nĜ
n−1,

where

(Tn)i,i =
Vn

1− Vn(Gn−1)i,i
.

To compute the local density of states at site (0, 0), we need G00(ω) (for sim-
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plicity we suppress the iδ):

G00(ω) = G1
00(ω) +

G1
01(ω)V2G

1
10(ω)

1− V2G1
11(ω)

=
G0

00(ω) [1− V2G
0
11(ω)] + V2|G0

01(ω)|2
[1− V2G0

11(ω)] [1− V G0
00(ω)]− V V2|G0

01(ω)|2

=
F (ω)

(ω − ω0) + iδ
, (2.36)

where ω0 is the energy of the pole, and F (ω) accounts for the remaining (non-

singular) frequency dependence and we used (2.31) to express G1 in terms of G0.

The actual pole position is the solution of

[
1− V2G

0
11(ω0)

] [
1− V G0

00(ω0)
]

= V V2|G0
01(ω0)|2, (2.37)

and the spectral weight is given by F (ω0).

Then the Green function in the case V2 = V is given by

G00(ω) =
G0

00(1− V G0
11) + V |G0

01|2
(1− V G0

00)(1− V G0
11)− V 2|G0

01|2
. (2.38)

Keeping the leading term for G0
11, we find

G0
11(ω) ' −2mK ln ω, (2.39)

a0 =
Cω1

2mK
, (2.40)

where the quantity C = |G0
01|2 is finite near ω = −m, and we get the result near
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Figure 2.6: The behavior of LDOS near the valence band edge for two impurities.
As the strength of the attractive impurity potential increases, the bound state
inside the gap moves towards the top of the valence band, but never merges with
it. The spectral weight associated with the bound state decreases to zero as the
bound state approaches the band edge. This behavior is quite different from the
one of a long-range impurity potential such as the Coulomb potential.
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the bottom of the upper band:

a0 = 2mKω2 ln2 ω2, (2.41)

The definitions of ω1, ω2 are the same as in the case of single impurity scattering

discussed in the previous section. The conclusion is the same: as the strength of

the impurity interaction increases, the pole moves towards the top of the bottom

band, but never crosses it. Instead, the residue associated with the pole decreases

to zero, see Fig.2.6. The key difference with the Coulomb case is that these are

short range impurities, and this leads to qualitatively different behavior.

2.4.2 Long-range asymptotes of the Green functions for a

large number of impurities

In this subsection we generalize to some extent the results obtained in the previous

sections. We find in the thermodynamic limit the long-range asymptotic behavior

of the Green function in the case of multiple impurities located inside a finite

area of the graphene sheet. We also discuss the quantity of the on-site potential

required for midgap energy states to join the valence band. As a particular case

this discussion includes the circular well, discussed in the Dirac approximation,

at the beginning of the chapter in Section II. Knowing these Green functions’

asymptotes, we show that the spectral weight of the state near the band edge (on

the verge of entering into the lower continuum) is zero and the screening charge is

not significantly reshaped by this state.[11]
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We rewrite Eq. (2.23):

GRR = G0
RR +

[∑
r≤a

CrRG0
rR

]
/∆. (2.42)

Here we introduced the following notation: R is the distance from the center of

the area in which the impurities are confined; we will call this area the “potential

well”; R corresponds to the site index outside the well; a is the radius of the well;

r and r′ are the distances inside the circle of radius a, and r is the index of the

site inside the well.

The second term in Eq. (2.42) represents the change induced by the impurity

and is responsible for the spectral weight of the bound state. Assuming R À a,

the following conclusions can be made about the second term. ∆ does not depend

on R, but CrR depends on R, and CrR ∼ G0
rR, as the determinant CrR contains

only one row with G0
rR.

Considering the sum over r in
∑

r≤a CrRG0
rR we see that the r dependency

comes only from the phase
−→
k · (−→R −−→r ) in the exponent of the integrands (2.15,

2.16). At the energies near the band edge ω → −m, the part
−→
k · −→r can be

neglected, as the small k’s produce most of the integral value and
−→
k · −→r does not

vary significantly near the Dirac point. Therefore,

∑
r≤a

CrRG0
rR ∼ (G0

0R)2. (2.43)

The spatial dependance of the second term in GRR is determined by the (G0
0R)2,

where 0 denotes some (arbitrary chosen) site in the impurity-occupied area. To

determine the asymptotic behavior of G0
0R, we use the method of stationary phase
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(see problem 5.2 in [25]), and get

G0
0R(ω → −m) ∼ exp(−R

√
δE)

(δE)1/4
√

R
, (2.44)

where δE = m2− ω2. Thus GRR ∼ exp(−2R
√

δE)

(δE)1/2R
, in qualitative agreement with the

asymptotic behavior predicted by the Dirac equation (2.9). As we can see from

the standard definition of the Green function [25]:

GRR′(ω) =
∑

n

ψn(R)ψn(R′)∗

ω − ωn

+

∫
dc

ψc(R)ψc(R
′)∗

ω − ωc

(2.45)

when ω → ωn the r-dependency of GRR(ω) coincides with ψn(R)ψn(R)∗. There-

fore, we can judge if the state that is potentially crossing the band edge into the

continuum is normalizable. In our case as δE → 0 the sum of GRR over R in the

plane diverges, and so does the sum ψn(R)ψn(R)∗ in the infinite lattice for any fi-

nite normalizing factor. Hence the state merging into the continuum can be called

non-normalizable or extended and as such has zero spectral weight (in the thermo-

dynamic limit). This confirms our conclusion that there is no such phenomenon

like supercritical screening in the case of a localized potential (as opposed to a

Coulomb potential) in graphene.

Another question to address is whether the energy of the state penetrates into

the continuum at reasonable values of the on-site potential or not. To answer

this question, we rearrange terms in the matrix (2.19) in the following way (this

example includes two impurities on sublattice A and two impurities on sublattice
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B, all with strength V ):

Î − Ĝ0V̂ =



1− V G0
A1A1

−V G0
A1A2

−V G0
A1B1

−V G0
A1B2

−V G0
A2A1

1− V G0
A2A2

−V G0
A2B1

−V G0
A2B2

−V G0
B1A1

−V G0
B1A2

1− V G0
B1B1

−V G0
B1B2

−V G0
B2A1

−V G0
B1A1

−V G0
B2B1

1− V G0
B2B2

.. .. .. .. ..




(2.46)

A and B here correspond to indices on the A and B sublattice, respectively. We

ignore all other terms of the matrix (Î − Ĝ0V̂ ) because they do not influence the

determinant, whose roots define the allowed energies. To estimate the value of the

required potential V when the root of the secular equation ω1 → 0, we assume

that the value of potential V is finite (negative). We will show that if this is true

then there is no solution for this secular equation in the limit ω1 → 0. We use the

formula: 


W X

Y Z


 = det(W )det(Z − Y W−1X). (2.47)

With reference to Eq. (2.46), the AA elements correspond to the matrix W , BB to

the matrix Z, and AB and BA to the X and Y matrices, respectively. Therefore,

we can factorize our secular equation:

∆ = det(W )det(Z − Y W−1X) = 0. (2.48)

Let us check if there are any roots of the equation in the factor det(W ). It is

easy to see that there are no roots because det(W ) → 1 when G0
AA → 0. In the
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second cofactor the Z-term is dominating, as G0
BB ∼ ln(ω1), det(Z − Y W−1X) ∼

det({ln(ω1)}), where {ln(ω1)} denotes the matrix of the entries with the leading

term of the order of ln(ω1). Equation det({ln(ω1)}) = 0 can be expanded as

det({ln(ω1)}) ∼ ON (1) ln(ω1)N+

+ ON−1(1) ln(ω1)N−1 + ON−2(1) ln(ω1)N−2 + .., (2.49)

here Oi(x) denotes terms of the order of x, N is a number of impurities on B-sites.

Therefore, all Oi(1) = 0 if det({ln(ω1)}) = 0. This scenario is highly improbable

in case of multiple impurities because Oi(1) are constants and are equal to the

determinants of matrices consisting of coefficients near the ln(ω1) leading term.

Each of Oi(1) should be equal to zero simultaneously, as each consecutive term in

(2.49) is lesser by the order of the magnitude than the previous one at ω1 → 0. We

conclude that the bound state energy does not penetrate into the valence band at

a non-infinite value of the potential.

On the other hand, if the potential diverges as ω1 → 0, a solution to the secular

equation can exist. It is easy to see, for example, that in the dilute case, when

impurities sit far from each other, ω1 is the same as in the case of a single impurity

on an A site, which has been considered in the previous sections.

Another question to address is whether the energy of the state penetrates into

the continuum at finite values of the on-site potential or at infinite ones. As we

have seen in Section II, Dirac approximation predicts diving at the finite value of

V . Opposite to that, analytical results for single and two impurities on the lattice

predict infinite value of the on-site potential. Therefore, one might expect that

on-site potentials required for the level to dive in the tight-binding model with
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multiple impurities might be significantly different from those computed within

Dirac approximation. Analytical computations with many impurities involved are

cumbersome, henceforth we use two numerical methods to tackle the problem.

This should ensure a credibility of the results. We apply Lanczos algorithm to

find energy states inside the gap and see how they move with the increase of the

absolute value of the on-site potential V 2. Another method is to use the equation

[24]:

det(Î − Ĝ0
EV̂ ) = 0. (2.50)

Numerical procedure designed to solve the latter equation for E uses pre-tabulated

values of G0
E. Simulations are performed in case of six impurities sitting in the

nodes of a hexagon and in the case of twelve impurities, where we placed six

impurities in the nodes of the hexagon and another six at the next closest sites.

Our results show that at finite values of V no levels descending through the gap

penetrate into the valence band. Result for the well containing twelve sites are

presented on the Fig.2.7.

In this subsection we make two important points about the effects induced by

multiple impurities. First, we found that the lower continuum in graphene is not

perturbed by the diving midgap state, which is opposite to the case of supercritical

impurities with a Coulomb potential. Second, we conclude that diving of this state

can only happen at very large values of the short-range potential, which can be

seen from Fig.2.7.

2We perform computations keeping numbers of nodes in A and B sublattices equal. In the
case when those numbers are not equal picture can be different, possibly due to the influence of
”zero modes”, localized states induced by the sublattices imbalance.
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Figure 2.7: The graphs on this picture show the results of the numerical diagonal-
ization of the Hamiltonian with Lanczos algorithm (solid lines) and matched with
results from determinant method (2.50). The lattice of the 4000 atoms contains
12 impurities. Curves on the graph show the energy levels separating from the
conductance band (E = 0.1) and descending to the valence band (E = −0.1 in the
units of t) while −V increases. Both methods confirm that midgap states do not
dive into the valence band, opposite to the predictions of the long wave (Dirac)
approximation.
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2.5 Discussion

Let us try to match our results with common intuition developed in physics of

shallow states in semiconductors. In particular, it is not only a feature peculiar

to gapped graphene that properties of the states near the band edge are strongly

dependent on the long range “tail” of the impurity potential.[26] In general, the

effective mass approach (mostly determined by long-range properties of a system)

is in good agreement with exact numerical methods for the energies near the band

edge. It is exactly near the band edge where the Coulomb tail becomes important

while it is negligible in computations related to deep levels.[27] As it was illustrated

in [11], in the continuum limit a potential barrier emerges in the effective potential

at large distances, due to the squaring of the Coulomb potential. Because of the

two sublattices, a similar ‘squaring’ occurs when the problem is solved on a lattice,

and lattice Green functions are utilized.[28]. Long wave approximation provided

results which were in qualitative agreement with lattice computations in [11].

On the other hand, though the Dirac approximation is useful to describe phe-

nomena at long distances (2.3), providing correct long wave asymptotic for the

wave functions of shallow levels, it has its limitations for the short-range poten-

tials. We showed that the Dirac approximation gives incorrect predictions about

the strength of on-site potential at which diving takes place.
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Conclusion

I outline the main results and conclusions presented in this thesis and discuss the

novelty of results.

There are a plenty of publications discussing scattering on various impurities

and potentials. In the article [18] authors discussed gapless graphene and perform

computations using the Dirac approximation. They considered short-range scat-

tering in order to estimate the conductivity at low impurities concentrations. In

[20] researchers suggested and showed that the mid-gap states (induced by vacan-

cies) at the Dirac point are the source of the enhanced scattering. This group used

only Dirac approximation, however we discussed that, more reliable results should

be obtained within the tight-binding approximation, which takes into account the

full proper band structure for the gapped graphene. The author of [21] used the

Dirac approximation to describe the physical properties of graphene with massive

fermions. In this article the author mostly pays attention to the Coulomb poten-

tial, contrary to our set-up where we use short-range impurities in gapped case.

In [19] the massless case is discussed and Green functions on the graphene lattice

are addressed in the thermodynamic limit. Authors of papers [29] discussed the

Coulomb potential in gapless graphene using the Dirac approximation.

In the present work we considered gapped graphene in both the Dirac approx-
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imation and in the framework of tight-binding model. Our group modeled several

various short-range-potentials on graphene lattice. This physical situation has

never been investigated before in tight-binding approximation, and as our results

reveal, Dirac formalism gives wrong predictions. It fails in case of short-range

potentials.

One of the main results of our investigations of bound states in gapped graphene

with localized impurities is the claim that the bound state’s energy asymptotically

approaches −m (the lower continuum edge) as the impurity potential V tends to

the negative infinity. We take the impurity potential in the form of a spherical well

V θ(a−r). In the Dirac approximation we shown that there are energy levels merg-

ing lower continuum at the finite potential. In realistic lattice computations we

found that the bound state’s energy never crosses the lower continuum edge. Since

the long-wave Dirac approximation and lattice approaches give different results,

we performed detailed investigation of these discrepancies.

The existence of the solutions for Dirac equation with circular potential well

was already known in the literature [21]. Our aim was to investigate their physical

properties. The solution on the verge of merging with lower continuum is not

normalizable which resembles the situation in three dimensions. The solution

in 3D joins the continuum at the finite potential too, but this does not render

the situation as critical. The solution should be localized or normalizable at the

moment when it dives into the lower continuum, which does not happen in that

case. In Akhiezer and Berestetsky’s book [36], where the solution for a spherical

well is described, the critical field corresponds to the coupling strength at which

the 1s state dives into the continuum and positron-electron pairs are emitted. This

state is delocalized [17], and thus does not introduce the supercritical screening
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after 1s state merges with the continuum. As mentioned in the first chapter, under

the supercritical screening we understand the abrupt increase of electronic density

around the impurity after the state of the discrete spectrum joins the continuum

and the merging state must be localized. According to this description, the field

in which the lowest bound state joins the continuum is not a critical field. The

similar situation is described in the thesis in 2D: state ”dives” into the continuum

at the finite negative potential, but there is no criticality as the merging state is

delocalized.

Our analysis on the lattice shows that diving states’ probability density is non-

normalizable as well, but diving happens only at nonphysical, infinite negative

potentials. The numerical computations were performed for only several impurity

configurations and, due to the limitations imposed by computers available, do not

cover potential wells with number of impurities higher than 20. Thus, the case of

potential wells with the bigger radii is out of the scope of this work and we do not

know the potential value midgap state to join the lower continuum. One statement

holds, though, even in this ”big radius” case, as it was proved analytically: there

is no critical screening as well.

The difference between the results obtained on the lattice and those derived

using the Dirac approximation is a consequence of the limited applicability of the

Dirac equation. The potential is of the order of m, or the width of the gap,

while the Dirac approximation only works at low energies. In other words, in

the problems with short-range potentials even at the energies close to the top of

valence band one needs to take into account the exact dispersion law for quasi-

particles. This is a quite unusual result, as the effective mass approximation or,

as it called in graphene physics, Dirac approximation is derived by expanding
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the Hamiltonian near the Dirac point. We suggest that the explanation to this

is that for the Dirac formalism to be applicable the potential should not change

abruptly on the lengths comparable to the inter-atomic distance. This is one of

the assumptions made before one starts to derive effective-mass equations and in

the physical situations with short-range potentials on a lattice this assumption is

not fulfilled.

The absence of critical screening in gapped graphene may have important im-

plications for technology. Contrary to the case with Coulomb impurities where the

critical screening takes place, the areas with short-range potential do not induce

significant concentration of electronic density around them. The induced charge

is spread around the much larger area. Hence, the scattering of the propagating

electrons is much lower than in Coulomb case and, hence, the conductivity is not

affected as much as in the presence of long-range potentials.
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