
Community Detection and Discovery in Deterministic
and Uncertain Networks

by

Mohammadmahdi Zafarmand

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mohammadmahdi Zafarmand, 2020

Abstract

Many structures in different areas of science can be modeled with graphs con-

taining nodes and edges, which represent the entities of the model and the

relationship between them, respectively. Community detection and discovery

are two important tasks in Social Network Analysis, which try to find groups of

nodes within a graph such that they are densely connected inside and loosely

connected to the rest of the network. A community detection algorithm finds

all such characterized structures altogether. In contrast, a community discov-

ery method takes an individual node in the network and finds all other network

nodes that belong to the same group as the given node.

Before, networks were graphs with deterministic nodes and edges, which

we were sure of whether they exist or not. Recently uncertainty in collected

information makes us model the problems with probabilities (different types

of uncertainty may exist in a network, but in this document, we focus only on

the probability of edges). Furthermore, networks can have nodes that belong

to more than one community. In such cases, we call them Networks with

Overlapping Communities. In this document, we try to answer two essential

questions of social network analysis, community detection and discovery, in

social networks in the presence of deterministic and uncertain edges.

A part of this work is assigned to evaluate and improve on existing methods

in order to make it possible to use them on networks that have probabilistic

edges or have overlapping communities.

ii

Preface

A part of this thesis was published under the title ”Addressing the Resolution

Limit and the Field of View Limit in Community Mining” at Symposium

on Intelligent Data Analysis (IDA) 2020 [1]. We are going to submit two

other parts of this thesis for conferences and journals in the future. The first

part contains our new proposed global and local approaches called RSIWO

and Local SIWO. The second part has our new algorithm for networks with

uncertainty called USIWO and the new uncertain network generator.

iii

Acknowledgements

I would like to thank my supervisors, Osmar Zäıane and Christine Largeron,

for their dedicated support and guidance. They continuously gave me invalu-

able insights and were always willing and enthusiastic to assist in any way

they could throughout my research. This work would not have been possi-

ble without their encouragement. I appreciate the opportunity to work with

them, which was also an excellent chance for me to develop in research and

character.

iv

Contents

1 Introduction 1
1.1 Motivation and Background 1
1.2 Problem Definition and Challenges 4

1.2.1 Global Community Detection Algorithms 5
1.2.2 Local Community Detection Algorithms 5
1.2.3 Networks with Uncertainty 6
1.2.4 Networks with Overlapping Communities 6
1.2.5 Evaluation Methods 7

1.3 Thesis Statements . 7
1.4 Thesis Contribution . 8
1.5 Thesis Organization . 9

2 Background and Related Work 11
2.1 Social Network Analysis . 11

2.1.1 Social Networks . 11
2.1.2 Social Network Analysis 12
2.1.3 Terms and Definitions 12

2.2 Community Detection in Social Networks 14
2.2.1 Global Community Detection Algorithms 15
2.2.2 Local Community Detection Algorithms 20
2.2.3 Overlapping Community Detection Algorithms 25
2.2.4 Community Detection Algorithms in Uncertain Networks 28

2.3 Overview of Evaluation Methods 31
2.3.1 External Evaluation 32
2.3.2 Internal Evaluation . 34
2.3.3 Relative Evaluation . 36

3 Global Community Detection Methods 38
3.1 Motivation . 38
3.2 Strong and Weak Edges . 40
3.3 Smart Local Move . 43
3.4 Guaranteeing Connectedness 44
3.5 Experiments . 46

3.5.1 Experiment on the Strengths of Edges 46
3.5.2 Experiment on the Smart Local Move 49
3.5.3 Experiment on the Guaranteed Connectedness 51

3.6 Conclusion . 52

4 Local Community Detection Methods 54
4.1 Motivation . 54
4.2 Initial Steps of Community Expansion 58
4.3 Local SIWO . 63
4.4 Experiments . 65

v

4.4.1 Evaluate Different Network Sizes 66
4.4.2 Evaluate Different Network densities 70
4.4.3 Evaluate Different Community Structure Quality . . . 71

4.5 Conclusion . 74

5 Community Detection in Uncertain Networks 76
5.1 Motivation . 76
5.2 Local Community Discovery for Networks with Uncertain Edges 78

5.2.1 Review of Previous Methods 78
5.2.2 Introducing the Uncertain SIWO 82

5.3 Uncertain Network Generator 85
5.3.1 Review of A Previous Method 85
5.3.2 The New Uncertain Network Generator 86

5.4 Experiments . 88
5.5 Conclusion . 92

6 Conclusion 93
6.1 Contributions . 93
6.2 Future Work . 94

References 96

vi

List of Tables

2.1 Comparison of Global Community Detection Algorithms . . . 20

3.1 Networks to test the edge strength effect on community detection 47
3.2 Experiments on Football Network for Edge Strength 47
3.3 Experiments on Karate Network for Edge Strength 47
3.4 Experiments on PolBlogs Network for Edge Strength 47
3.5 Experiments on PolBooks Network for Edge Strength 48
3.6 Experiments on Dolphins Network for Edge Strength 48
3.7 Experiments on Small Synthetic Network for Edge Strength . 48
3.8 Experiments on Medium Synthetic Network for Edge Strength 48
3.9 Experiments on Large Synthetic Network for Edge Strength . 49
3.10 Experiments on Football Network for Smart Local Move . . . 49
3.11 Experiments on Karate Network for Smart Local Move 49
3.12 Experiments on PolBlogs Network for Smart Local Move . . . 50
3.13 Experiments on PolBooks Network for Smart Local Move . . . 50
3.14 Experiments on Dolphins Network for Smart Local Move . . . 50
3.15 Experiments on Small Synthetic Network for Smart Local Move 50
3.16 Experiments on Medium Synthetic Network for Smart Local Move 51
3.17 Experiments on Large Synthetic Network for Smart Local Move 51
3.18 Experiments on Amazon Network for Guaranteed Connectedness 52
3.19 Experiments on DBLP Network for Guaranteed Connectedness 52

4.1 Performance of Different Methods for Community Search on
Karate Dataset for node 6 . 62

4.2 Real Networks in the Local Community Detection Experiments 66
4.3 Experiments on Football Network for Community Detection . 66
4.4 Experiments on Karate Network for Community Detection . . 66
4.5 Experiments on Political Books Network for Community Detec-

tion . 67
4.6 Synthetic Networks in the Local Community Detection Exper-

iments . 67
4.7 Experiments on Synthetic Network A1 for Community Detection 67
4.8 Experiments on Synthetic Network A2 for Community Detection 68
4.9 Experiments on Synthetic Network A3 for Community Detection 68
4.10 Experiments on Synthetic Network A4 for Community Detection 68
4.11 Experiments on Synthetic Network A5 for Community Detection 68
4.12 Synthetic Networks of the Second Experiments 70
4.13 Synthetic Networks of the Third Experiments 72

5.1 Performance of Different Methods for Community Search on the
Example Network in Figure 5.3 81

5.2 Parameters for Generating Synthetic Networks using LFR . . 88

vii

List of Figures

1.1 Power-Law Distribution and the Distribution of Email Network 2
1.2 A Closed (On the Left) and an Open Triplet of Nodes (On the

Right) . 2
1.3 Zachary’s Karate Club as an Undirected Unweighted Network

[10] . 4

2.1 How Leiden algorithm works in two levels of aggregation [14]. 18
2.2 Different Parts of the Network Considering Local Approaches

[28]. 22
2.3 Karate Network Represented with Overlapping Communities [35] 26
2.4 Updating the Belonging Matrix Before Normalization [40] . . . 27
2.5 An example showing the problem of only using UR to find the

local community [41]. 30

3.1 Relative Strengths of Nodes of the Graph 42
3.2 Connectivity Problem of Louvain, When Node 0 Leaves, There

Will Be Two Disconnected Parts in the Red Community [14] . 46

4.1 A Network Regarding Local Community Approaches [28] . . . 55
4.2 Community Search for Node 6 in Karate Club Network; the red

nodes are the neighbors of the starting node. 59
4.3 Different Cases Showing Drawbacks of Metric T 63
4.4 Accuracy Results of Experiment 1: Community Discovery . . 69
4.5 Accuracy Results of Experiment 2: Community Discovery . . 70
4.6 Accuracy Results of Experiment 2: Community Detection . . 71
4.7 Accuracy Results of Experiment 3: Community Discovery . . 72
4.8 Accuracy Results of Experiment 3: Community Detection . . 73

5.1 An Example to Show the Problem of Using Local SIWO for
Uncertain Networks . 77

5.2 An example showing the problem when only using UR to find
the local community [41] . 79

5.3 Am Example to Show the Problem of Using R and UR for
Uncertain Networks . 80

5.4 Experiment on Percentage of Probabilistic Edges on Karate
Dataset. We assign probabilities to up to 35 % of network’s
edges. 89

5.5 Experiment on Swapping Probabilistic Edges on Karate Dataset.
We assign up to 70 % of the generated probabilities to the edges
inside the communities. 89

5.6 Experiment on Percentage of Probabilistic Edges on Football
Dataset. We assign probabilities to up to 35 % of network’s
edges. 90

viii

5.7 Experiment on Swapping Probabilistic Edges on Football Dataset.
We assign up to 70 % of the generated probabilities to the edges
inside the communities. 90

5.8 Experiment on Percentage of Probabilistic Edges on Synthetic
Dataset.We assign probabilities to up to 35 % of network’s edges. 91

5.9 Experiment on Swapping Probabilistic Edges on Synthetic Dataset.
We assign up to 70 % of the generated probabilities to the edges
inside the communities. 91

ix

Chapter 1

Introduction

1.1 Motivation and Background

Nowadays, we use complex networks to model entities of a group or an organi-

zation and their relationships in different domains, from sociology to biology

or even computing science. In their purest form, these networks can be rep-

resented as graphs which consist of a finite number of nodes and edges that

connect them. The nodes and edges of the network are not randomly dis-

tributed inside the graph and may have different attributes. There are specific

characteristics of complex networks (or social networks) that separate them

from random networks such as the power-law distribution [2], a high clustering

coefficient [3], and the presence of community structure [4].

The distributions of a wide variety of physical and biological phenomena

approximately follow a power-law over a wide range of magnitudes; these in-

clude the foraging pattern of various species [5], the sizes of activity patterns

of neuronal populations [6], and the frequencies of words in most languages.

In complex networks, node degrees often follow a power-law distribution, such

that many nodes have low degrees, whereas few have high degree values. To

demonstrate this feature in complex real-world networks, we compare the dis-

tribution of degrees of Email network [7] (which is a popular network in the

field of social network analysis) against the power-law distribution in Fig 1.1

to show their similarity.

The clustering coefficient is a measure that shows which nodes in a graph

tend to cluster together. There are two different versions of this measure:

1

Figure 1.1: Power-Law Distribution and the Distribution of Email Network

Figure 1.2: A Closed (On the Left) and an Open Triplet of Nodes (On the
Right)

the global and the local. The global clustering coefficient is based on triplets

of nodes. As Figure 1.2 shows, a triplet is a set of three nodes that are

connected by either two (open triplet) or three (closed triplet) undirected ties

[8]. Even though the average clustering coefficient (the average value of the

clustering coefficient for all nodes in the network) can be used as a measure

for the network, there is a direct global clustering coefficient as defined in the

following:

CC =
number of closed triplets

number of all triplets (open and closed)
(1.1)

The node’s local clustering coefficient in a graph expresses how close its

neighbors are to forming a clique (complete sub-graph). For the undirected

graphs, given G = (V,E), where V is the set of nodes and E is the set of edges

between them, the local clustering coefficient of a node that has ni direct

neighbors precisely, can be defined as:

CCi =
2|{ej,k : ei,j, ei,k, ej,k ∈ E}|

ni(ni − 1)
(1.2)

2

A clique or even a group of nodes with a high CC value can be considered

as a community but this definition is too strict in practice. Moreover, it is

time-consuming to evaluate the CC for all groups of nodes that can be built

in a graph. Thus, other definitions for communities have been proposed. For

example, a community is often defined as a group of nodes in a network that

is densely connected, but their connection to the rest of the network is loose

[9]. We are usually interested in finding such structures in the network. This

definition also brings the significant benefit of discovering the nodes which

share some characteristics. Also, by detecting them and splitting the whole

network into smaller parts, any investigation could be done more efficiently.

Such studies and analyses can be done in applications including but not limited

to public health, recommendation systems, clustering users of a large service,

link prediction, etc.

Many different methods have been proposed to find community structure

in a complex network. The expected result of these methods over a graph

G = (V,E) in which V is the set of nodes and E is the set of edges, is usually

a partition P = {c1, c2, ..., cr} in which ci is a non-empty set of nodes of V

that are highly connected and is called a community where ∪ri=0ci = V . If the

detected communities are supposed to be disjoint, there should be ci ∩ cj = ∅

for every ci, cj ∈ P , if i 6= j, however, for communities with overlap, this

condition is not necessarily established for each pair of communities.

In this study, we consider three aspects of community detection algorithms:

global or local, disjoint or overlapping, and definite or uncertain graph. These

three aspects can be noted as:

• If the focus is on the availability of network information, one can divide

the community detection methods into global approaches (where all

network information is accessible) and local approaches (where only a

part of the network is required).

• In a network, nodes may be limited to belonging to only one community

or multiple communities. Networks of the first kind consist of disjoint

communities, whereas the second type of networks involves overlapping

3

Figure 1.3: Zachary’s Karate Club as an Undirected Unweighted Network [10]

communities.

• If the structure of a graph is deterministically known, in that case, the

network is considered a deterministic network. Thus, the community

detection algorithm used to reveal its community structure is regarded as

a deterministic method. Otherwise, if the network structure involves any

kind of indeterminacy, it would be analyzed using uncertain community

detection algorithms.

1.2 Problem Definition and Challenges

Given a graph of G = (V,E) where V is the set of nodes, and E is the

set of edges. The edge between node vi and vj is denoted by ei,j or ej,i as

the networks that are investigated in this study are undirected. The edges

can also be weighted where their weight is denoted by wi,j; weights are usually

positive real values. Although negative weights are possible, they are not being

investigated in this study. Edges can also be uncertain, where we represent

the probability of the existence of edge ei,j with pi,j. No nodes can have self-

loops, and multiple edges between any two nodes of the graph are not allowed.

Figure 1.3 shows the Zachary’s Karate Club network as a simple example of

deterministic unweighted networks.

4

1.2.1 Global Community Detection Algorithms

Many studies have been done concerning the community detection problem

on social networks, most of which are global approaches that presume the full

knowledge and access to the corresponding graph. The goal of such issues

is to find the community structure of the whole network if it exists. Many

algorithms have been suggested, classified into graph partitioning, hierarchical

clustering, and modularity-based algorithms [11]. Among them, the focus is

on modularity-based algorithms which have been proposed by Newman and

Girvan [12] for the first time, because it covers many important aspects and

points including the definition of community, the choice of a null model, the

expression of the ”strength” of communities, etc. [11]. However, they have

plenty of limitations, including but not limited to the resolution limit, guar-

antee of communities to be connected, the computational complexity, etc.

1.2.2 Local Community Detection Algorithms

As the amount of data gathered for a problem grows, the size of the corre-

sponding network increases as well. Because of the memory limitation, it is

sometimes not feasible to read and load the whole network to analyze it. On

the other hand, there exist problems in which we are interested in specific

nodes (or their neighborhood) in the network, so we do not need to have all of

the information regarding the entire network. In such cases, we prefer using

local community detection approaches, which can serve with much fewer data

and are often faster.

The local community detection algorithms usually have a one-node-at-one-

step discovery process. This means that one node is added to the discovered

community at each step, and the neighborhood of the detected part of the

network expands; thus, the algorithm can explore more. The expected result

consists of nodes that are highly connected to each other, even constructing

maximal cliques. We can usually perform a local algorithm multiple times,

starting with different initial nodes to cover the entire network and reveal all

communities inside it, if needed.

5

With such advantages, these methods suffer from a low performance where

they cannot grasp a community with only the nodes that should be inside

it. Another problem emerges at the beginning of the community’s expansion

in the first steps when only a limited knowledge of the network is available.

Since the early steps determines how the discovered community expands, lack

of information of the known parts of the network may mislead the true path

of community expansion.

1.2.3 Networks with Uncertainty

Most previous studies on social networks have been done in the context of

deterministic graphs, which assumes a precise knowledge about the network

structure. However, due to many causes, including but not limited to the data-

collection process and the machine-learning techniques utilized to preprocess

it, it is not always the case. Different kinds of uncertainty could exist in a

network. These include uncertainty related to the existence of nodes, uncer-

tainty in the attributes of the nodes, uncertainty with regards to the presence

of edges, and uncertainty with respect to the characteristics of the edges.

In this study, the focus is on the third type of the mentioned uncertainties,

which is highly applicable (i. e. in criminology analysis) and the uncertainty

is encoded in the edges; e.g., a node in a social network has a connection and

influences another node with some probability.

A straightforward approach to analyze probabilistic graphs, which is broadly

used, is to heuristically cast the edges’ probabilities into weights and apply ex-

isting methodologies on this weighted graph. This approach is problematic;

not only there is no meaningful way to perform such a casting, but also there

is no principled way to encode normal weights on the edges.

1.2.4 Networks with Overlapping Communities

The traditional node clustering methods have inherent drawbacks to discover

overlapping communities where nodes can participate in the formation of more

than one community. In reality, an entity can effectively belong to several

groups; for example, a university student can be a collaborator of a research

6

lab, a basketball player of their department team, and have their group of

friends, where different individuals are involved in each group. It is also possi-

ble that a node’s strength or membership value in different communities varies.

Node clustering is inadequate to capture the pervasive overlaps, so overlapping

community detection is still a difficult challenge that needs to be addressed.

1.2.5 Evaluation Methods

Community detection is a non-supervised task. How to evaluate the quality of

detected communities is still a challenging problem that needs to be addressed.

In this study, we review and assess some evaluation metrics such as internal

measures, external measures, and relative measures and indicate how we can

use them in the context of different community detection problems (global vs.

local or disjoint vs. overlapping).

1.3 Thesis Statements

This thesis is composed of four main subjects: global community detection

methods to find disjoint communities, local community detection and discovery

methods to find the community of a given node (and continuing to cover

all nodes in the network), detecting communities in uncertain networks, and

finally, investigating evaluation metrics that usually score the performance of

community detection algorithms. The thesis hypotheses are as follows:

Thesis Statement 1: The use of the local clustering coefficient of nodes in

a network can be improved compared to some previous works such as SIWO

[1]. It can be utilized to determine the strength of the edges in a neighborhood

inside the network. Using the edges’ local strength may improve the perfor-

mance of some methods that find communities in a network on a global scale

that can handle weighted edges.

Thesis Statement 2: A fast and reliable way to solve the potential discon-

nectedness of detected communities can be designed to perform in linear time

without too many iterations. Previous works either cannot guarantee that the

detected communities are composed of only connected nodes, or they need a

7

significant number of iterations to do so. Louvain [13] and Leiden [14] are two

examples of such practices.

Thesis Statement 3: A general community detection framework can be

created such that it detects the communities faster than previous methods

while maintaining accuracy. It is also able to ensure that all the identified

communities comply with the definition of community.

Thesis Statement 4: A novel local community discovery framework can be

devised to not merge the outlier nodes to the community. It is much faster

than previous algorithms due to the novel approach of using local information

and the notion of edge strength in the network.

Thesis Statement 5: A new local community discovery algorithm can be

developed that addresses the problem in the early steps of community expan-

sion and can perform without any input parameter. This process is faster

than existing methods because of the new technique to calculate the expected

number of inter-connections with the neighbors of the nodes in the discovered

community.

Thesis Statement 6: A goodness function that evaluates the quality of a

community or the entire partitioning of a network with uncertain edges. If

the edges inside a community have higher existence probability, the quality of

that community is higher. The quality of the detected partition is the average

of the quality of the communities inside it.

1.4 Thesis Contribution

There are five major contributions in this work:

• Global Community Detection We propose a novel approach to detect

community structure in a network using global information, which is

more efficient and accurate than the previous works in this area. We

also address the problem of resolution limit (a common problem in the

modularity-based algorithms) and the poor connectedness of discovered

communities that many community detection algorithms suffer from.

8

• Local Community Detection Since detecting the community using

local information starts with one single node and its neighborhood, there

are many issues with initiating the process. In this study, we address

this problem, which leads to developing a new method that discovers

more accurate communities.

• Uncertain Network Generator Due to the limited number of pub-

licly available uncertain network datasets and the drawbacks of previous

works in this area, we put forward a novel approach to generate networks

with uncertain edges.

• Community Detection for Uncertain Networks Considering pre-

vious works in this area, two main problems need to be addressed; some

approaches seem to be ad-hoc. More importantly, many algorithms con-

sider the uncertainty of edges for uncertain networks like simple weights

on graphs. These algorithms do not only indicate the probabilistic na-

ture of such networks but also make it impossible to incorporate the

probability and weight of edges to discover communities at the same

time. We propose a novel approach that deals with uncertain networks

and finds local community structure inside them.

1.5 Thesis Organization

Chapter 2 reviews different classes of community detection algorithms such

as global methods, local methods, methods used for uncertain networks, and

methods that can find overlapping communities. A set of internal, external,

and relative measures for evaluating community detection algorithms are also

provided. Chapter 3 improves several aspects used in former approaches, in-

cluding a new notion of strong and weak edges, incorporating the idea of

the smart local move when the nodes move to their neighbor communities to

optimize the quality function and address the connectedness issue many pre-

vious algorithms suffer from. Chapter 4 highlights some critical issues in local

community discovery algorithms, such as merging outliers, detections with low

9

accuracy, and slow performance. A novel method is proposed that outperforms

the previous method in terms of accuracy and speed, based on the notion of

edges’ local strength. Chapter 5 focuses on a specific and practical type of un-

certain networks which can be represented with a probabilistic graph. After

analyzing some related works, a new method is suggested to address the draw-

backs of existing methods. A new goodness measure is formulated to evaluate

the quality of the discovered communities in such networks.

10

Chapter 2

Background and Related Work

2.1 Social Network Analysis

2.1.1 Social Networks

Social Networks have been mainly studied in social and behavioral sciences

that is useful for analyzing relationships between entities of the society. It

is like a data structure made of a set of actors representing the individuals

or entities and sets of ties such that each set represents a different kind of

relation or interaction between the actors. The primary purpose of using

social networks is to find the patterns of interactions between the entities in

the structure [15]. These patterns become more visible as the network size

grows. However, social networks are analyzed at the scale relevant to the

researcher’s question.

The actors in social networks are usually persons; however, we can expand

the definition to other types of entities such as web pages, scientific documents,

proteins, etc. Then, we may call these structures information networks. The

relations inside these networks could also be in various types, such as friend-

ship, weblinks, citations, protein-protein interactions, companies with business

transactions, etc. These relations are demonstrated using links between the

actors of the network. They may have properties such as directions (for rela-

tionships in which actors play different roles like giver and receiver), weights

(for relations that need to be described by importance, frequency, etc.), and

probabilities (for relations that are not certainly known). There are many

11

exciting research topics in complex social network analysis, such as link pre-

diction, community detection, and information diffusion, which have received

considerable attention. In this study, our focus is on community detection,

which is reviewed and further investigated.

2.1.2 Social Network Analysis

Social network analysis (SNA) is not a formal theory in sociology but rather

a strategy for investigating social structures through the use of networks and

graph theory [16]. It represents a network by a graph where the nodes corre-

spond to the entities and the edges describe the relationships or interactions

of the nodes that are connected to those edges.

Although it is rooted in sociology, nowadays it is more of an interdisci-

plinary field of study, including researchers from communications, computer

science, economics, criminology, medicine, political science, and other disci-

plines [15]. For example, in communications, social network analysis is utilized

to obtain measures of safety communication [17], in medicine, it can help us

understand the progression of the spread of a contagious disease [18], in po-

litical science, it is used to effectively analyze the interdependence and flows

of influence among individuals, groups, and institutions [19]. These networks

are often visualized such that nodes are represented as points and edges are

represented as lines that connect them. The study of these structures requires

social network analysis to identify local and global patterns.

2.1.3 Terms and Definitions

Here we list the essential terms in the field of social network analysis, which we

repeatedly use in the subsequent chapters. Then we define each one of them

in a few sentences. Given a network represented by a graph G = (V,E) where

V is the set of n nodes (|V | = n) and E is the set of m edges (|E| = m) we

can define as follows:

• Adjacency Matrix is an n×n matrix, in which element ai,j is a boolean

value shows the connection between nodes vi, vj ∈ V for an unweighted

12

network or is a real value shows the weight of the edge ei,j ∈ E if the

network is weighted. However, we often use ei,j instead of ai,j in this

document, when we talk about the existence and the weight of that edge

simultaneously and use ai,j to only show the edge’s existence.

• Directed / Undirected describes if the adjacency matrix is symmetric

or not, which means ai,j is not necessarily equal to aj,i. In the second

kind, ei,j and ej,i are two different edges, whereas in the first kind they

are different representation of the same edge between nodes vi and vj.

• Distance between two vertices in a graph is the number of edges in a

shortest path (also called a path geodesic) connecting them. This is also

known as the geodesic distance [20].

• Neighbourhood of a node consist of a set of nodes directly connected

to it in an undirected graph. The neighbourhood of node vi is a set of

all nodes vj ∈ V , where ei,j ∈ E is not zero.

• Community consists of a subset of nodes that are related to each other

fairly stronger than the rest of the network. This strong relation could be

the higher frequency, strength or intensity. The communities are usually

characterized by being highly connected internally and having only a few

connections to the rest of the network.

• Degree of a node is the size of the neighbourhood of that node. In case

of directed graphs, it could be divided into indegree and outdegree, and

in case of networks with weighted edges di =
∑

j∈V ei,j.

• Density is a measure for how connected the nodes are in a network i.e.

the ratio of edges in the network divided by the total number of possible

edges. The density for undirected networks is d = 2m
n(n−1) , where n is the

number of nodes and m is the number of edges in G.

• Diameter is the largest number of nodes which must be traversed in

order to travel from one node to another when paths which backtrack,

detour, or loop are excluded from consideration.

13

• Clique is a subset of nodes in V of an undirected graph G such that

every two distinct nodes in the subset are adjacent; i.e. the induced

subgraph is complete.

• Triangle is a clique of size three. It is more often noticed rather than

cliques of other sizes, as it is the smallest and most frequent non-trivial

clique in a network.

• Maximal clique is a clique that cannot be extended by including one

more adjacent node, meaning it is not a subset of a larger clique.

• n-clique is a maximal subgraph such that the distance of each pair of

its vertices is not larger than n [21]. A normal clique that is defined

above, can be considered as a n-clique when n = 1.

• n-clan is an n-clique whose diameter is not larger than n, i.e. a subgraph

such that the distance between any two of its vertices, computed over

shortest paths within the subgraph, does not exceed n [11].

2.2 Community Detection in Social Networks

Since nowadays we have access to large datasets of information and are able

to model them in the form of information networks, community detection

becomes a popular research topic in computing science. Many different algo-

rithms have been proposed to find community structures in a complex network.

This line of research is similar to the clustering methods in data mining and

machine learning. However, clustering methods in data mining and machine

learning mainly use the attributes of data samples, whereas in social network

analysis the focus is on the relations between the data entities.

Regarding the subject of the study, we may divide the community detec-

tion approaches into different groups. For example, if we focused on how a

method finds the community structure, we could have divided the methods

into groups such as graph partitioning-based methods, hierarchical clustering-

based methods, propagation-based methods, modularity-based methods, etc

[11]. However, in this study we are interested in three subjects:

14

• How the information of the network topology is gained and used, either

the network structure is completely known or only local information is

accessible.

• The networks are being investigated are either deterministically known

or there is some kind of uncertainty about their edges.

• The community partitioning of the network which consists of disjoint

communities or some nodes that cause overlap among the communities.

Because of these concerns, we divided the previous works into four cat-

egories: global community detection algorithms, local community detection

algorithms, overlapping community detection algorithms, and community de-

tection algorithms in uncertain networks. In the following, we generally review

each class of algorithms separately.

2.2.1 Global Community Detection Algorithms

Some community detection approaches are called global because they exploit

knowledge about the whole network topology. Global approaches yield accu-

rate results but do not scale well on large networks. The time complexity of

global approaches is usually high. Thus, these methods cannot be applied on

very large networks consisting of millions of nodes and edges in a reasonable

time [22].

Given a network represented by a graph G = (V,E) where V is the set of

n nodes (|V | = n) and E is the set of m edges (|E| = m), we aim to build a

partition P = {c1, c2, ..., ck} where each ci is a subset of V , such that ci ∩ cj =

∅ for i 6= j and
⋃k

i=1 ci = V . However, for overlapping communities, the

intersection of any two communities ci and cj is not necessarily empty. We also

need a definition for the communities concerning the global scale. In general,

we expect to see such structures in networks different from a random network,

there are yet many definitions for the community. A common definition that is

used as a basic idea in many popular graph clustering methods is established

on the concept of the null model, which is a realization of a graph or subgraph

15

devoid of community structures. The most popular null model is proposed

by Newman and Girvan that is a randomized version of the original graph

having the same number of edges and the same number of nodes. In this

model edges are randomly assigned, such that the expected degree of each

node remains the same as the degree of that node in the original graph [12].

This being said, a community is a subgraph if the number of edges inside

the subgraph exceeds the expected number of internal edges that the same

subgraph would have in the null model [11]. This is also a generic description

of what is called modularity, as there exist many different null models. There

are also plenty of modularity functions, some of them are reviewed in this

study. The methods we review in this part of the study are agglomerative,

which means they follow a bottom-up approach. In each one of them, all nodes

are initially placed in their separate communities, then they iteratively merge

to maximize a quality or objective function. This procedure ends when no

further improvement on the quality function is possible. Each method has its

unique tweaks to overcome the previous methods concerning time complexity,

accuracy, connectedness, resolution limit, etc.

Many methods have been proposed respecting this idea, however, one ob-

jective function got more attention which is called Modularity Q [12] given as

follows:

Q =
1

2m

∑
vi,vj∈V

[Ai,j −
didj
2m

]δ(ci, cj) (2.1)

where A denotes the adjacency matrix, m is the number of edges, di and ci

are respectively the degree and the community of node i and δ(x, y) is the

Kronecker function equal to 1 if x = y and 0 otherwise.

Newman’s approach [23] is the first one to utilize this idea of modularity Q.

It has the computational complexity of O(m2n) or O(n3) for sparse networks

[24] which is not suitable to be used on large networks. Then, Clauset et. al.

[25] showed that it is not necessary to compute the changes of the modularity

function based on the adjacency matrix. They calculated ∆Q directly, and

could improve on Newman’s approach by achieving implementation of the same

16

idea with the computational complexity ofO(m.d. log n), where d ∼ log n is the

depth of the dendrogram. For sparse networks, the running time is O(n log2 n)

which could be considered as quasi-linear. To compute ∆Q, they initialized

the values of the community matrix as follows:

∆Qi,j =

{
1
2m
− kikj

(2m)2
, if ci, cj are connected

0, otherwise
(2.2)

Then if communities ci and cj are joined together, they label the combined

community as cj, update the jth row and column, and delete the ith row and

column altogether. The update rules are as follows:

∆Q′j,k =


∆Qi,k + ∆Qj,k, if ck is connected to both ci and cj

∆Qi,k − 2ajak, if ck is connected to ci but not to cj

∆Qj,k − 2aiak, if ck is connected to cj but not to ci

(2.3)

a′j = aj + ai (2.4)

Blondel et. al. [13] could make it even faster by proposing Louvain. This

method has two main phases that are repeated until no further improvement

on modularity Q is possible. The first phase consists of assigning a different

community to each node, then moving them in a random order to a neighboring

community that gains the greatest positive changes in the quality function. If

there is no neighbor community with an improvement on Q, then the node

remains in its community. In the second phase, a new weighted graph is

created in which each node corresponds to a community detected in the first

phase. Each edge in the new graph is assigned a weight equal to the sum

of the weights of edges between the nodes in the corresponding communities.

In this method, ∆Q is computed when a node leaves its former community

and enters the new one. The new technique to compute ∆Q and the proper

data structures in the implementation makes Louvain extremely fast with time

complexity of O(n log n) [24].

∆Q =

[
Σin + ki,in

2m
−
(

Σtot + ki
2m

)2
]
−

[
Σin

2m
−
(

Σtot

2m

)2

−
(
ki

2m

)2
]

(2.5)

17

Figure 2.1: How Leiden algorithm works in two levels of aggregation [14].

Traag et. al. [14] brought up some problems of Louvain, including discon-

nectedness or badly connectedness in the detected communities, an optimiza-

tion function leading to the resolution limit, etc. They proposed their method

called Leiden to address these issues by using a new quality function. They

had introduced this quality function in [26], which they used instead of the

well-known modularity Q. This new function is called Constant Potts Model,

or CPM, given as follows:

H =
∑
c

[ec − γ
(
nc

2

)
] (2.6)

where ec is the actual number of edges in community c, γ > 0 is the resolution

parameter, and nc is the number of nodes in community c.

They make the community detection process faster by introducing a new

way of moving nodes which is called smart local move [27], in which a node

is put forward to move only if at least one of its direct neighbors changes its

community. This new approach removes all unnecessary moves that Louvain

does in each cycle. To overcome the problem of bad connectedness, this al-

gorithm adds a refinement phase between Louvain’s two steps. This phase

18

has two steps. First, every node in the temporary community (after the first

phase) goes into a separate sub-community. Then, each node joins to a sub-

community randomly only if this makes an improvement based on the quality

function. However, the best increase is not intended in this step. Having this

new middle phase results in breaking the temporary sub-communities if nodes

have been merged too much, which amends the resolution limit and provides

more opportunities for nodes to explore in the communities that may im-

prove on the quality of the ultimately detected communities. Figure 2.1 shows

how this method works. Leiden has two major problems; it adds another

parameter to the process, required to compute the probabilities of candidate

sub-communities a node can merge into in the refinement step. The second

and more critical issue exists because of the randomness in the refinement step

and the fact that the most significant improvement is not selected all the time.

So, the algorithm may need a lot of iterations to be stable. There also is no

guarantee for stability, so we need a threshold value to use as the stopping

condition.

The last method that we inspect in this part is SIWO [1], which is an

improvement over Louvain. It adds a preprocessing step, in which the dangling

nodes (the nodes connected to precisely one other node in the network) are

removed, and new strength values are assigned to the edges of the network.

SIWO calculates these strength values based on local information of the edges

and their end-nodes’ clustering coefficients. It also exploits a new quality

function given below to overcome the well-known problem of modularity-based

approaches, the resolution limit.

SIWO =
∑

vi,vj∈V

w(i, j)δ(ci, cj)

2
(2.7)

where w(i, j) is the weight of the edge between nodes vi and vj (also denoted

by euv) and δ(ci, cj) = 1 only if nodes vi and vj belong to the same community,

otherwise it is 0. This method also guarantees the detected communities are

qualified which means both following conditions are satisfied for any detected

community ci:

19

Fast Greedy Louvain Leiden SIWO RSIWO
resolution limit free X X X X X

smart local move X X X X X
preprocessing X X X X X
connectedness X X X X X

Table 2.1: Comparison of Global Community Detection Algorithms

∑
v∈ci

|N ci
v | >

∑
v∈ci

|Nv −N ci
v | (2.8)

1

2

∑
v∈ci

|N ci
v | >

∑
v∈ci

|N cj
v |, j ∈ [1..t], j 6= i (2.9)

where Nv is the set of the neighbors of node v and N c
v is the set of the

neighbors of node v that are also in community c. This method is the only

one among the previous works that takes advantage of the local information of

the edges and its neighbourhood to assign strength values which could be use-

ful when it comes to detect strong (edges that are considered to be inside the

communities) and weak (edges that are considered to be between communities)

edges of the network. However, the empirical results show little improvement

comparing with Louvain, such that only in some cases SIWO performs better.

Table 2.1 briefly compares the previous algorithms and RSIWO, the new al-

gorithm that we suggest in the next chapter. It shows there are some features

in each method that can be improved. It is worth mentioning once again that

the time complexity of global approaches is usually high. Thus, these methods

cannot be applied on very large networks consisting of millions of nodes and

edges in a reasonable time [22]. Due to this fact, we are inclined to use the lo-

cal community detection algorithms, which can handle networks with millions

of nodes and edges.

2.2.2 Local Community Detection Algorithms

We call some clustering approaches local because they only require partial

knowledge of the network topology like the knowledge of the neighbors of each

node [22]. They scale well on large networks as their time complexity is often

20

near linear in the number of graph’s edges. However, their results are often not

as accurate as of the results of global methods. Given a network represented

by a graph G = (V,E) where V is the set of n nodes (|V | = n), and E is the

set of m edges (|E| = m), and a node vx, we aim to find all nodes of V that

belong to the same community as the given node vx does.

Like the global approaches, we need a definition for communities concern-

ing the local scale. Different criteria could be used to reach the goal included

but not limited to reachability or comparison of internal versus external con-

nections. In this type of community detection algorithms, we can observe only

the subgraph under analysis and presumably its direct neighborhood. Thus,

the final result consists of nodes that are highly connected to each other,

oftentimes constructing maximal cliques [11]. Although connectedness is a

key criterion when a subgraph is considered a community, a strong linkage

between the subgraph and the rest of the graph makes us less interested in

labeling such a group of nodes as a community. Therefore, it is essential to

compare the internal and external connections of a subgraph, which is why

definitions of community do it. Communities can also be identified by a fit-

ness measure, denoting to what extent a subgraph provides a given property

related to its connectedness, as the more established communities correspond

with more significant fitness measures [11]. In the following, we review some

of the well-known local community detection algorithms.

Most local community detection algorithms work in a one-node-at-one-

step discovery process. To gain more information from the unknown part of

the network, we first need to expand the current community and visit the

new direct neighbors of already seen nodes. We usually represent the set of

community-assigned nodes with D, the set of D’s neighborhood with S, the

nodes in D that are only connected to nodes inside it with C, and B = D−C

is the boundary set. Figure 2.2 shows these sets in a network.

Branting [29] introduced the local community detection algorithms in three

main steps; selecting the next nodes to be added to the community, when to

stop adding nodes to the community, and removing nodes from the community

if necessary. The main focus of this work is on improving the selection phase

21

Figure 2.2: Different Parts of the Network Considering Local Approaches [28].

independent of the choice of termination and filtering.

Different approaches suggest different fitness measures that can be used to

expand the community by adding new nodes from the neighbourhood of the

current state of the community. Many fitness functions are defined based on

the sum of all edge weights interior to the community C and sum of all edge

weights on the border of it, shown by KC
in and KC

out given by:

KC
in =

∑
ei,j∈E|vi∈C,vj∈C

ei,j (2.10)

KC
out =

∑
ei,j∈E|vi∈C,vj 6∈C

ei,j (2.11)

Modularity [30] compares the number of intra-community edges to the

expected number under a null model, given by:

Q(C) =
1

|E|
(KC

in −
(2KC

in +KC
out)

2

4|E|
) (2.12)

Conductance [30] is another popular fitness function which measures the

community cut, given by:

φ(C) =
KC

out

min(2KC
in +KC

out, 2K
V \C
in +K

V \C
out)

(2.13)

22

Yixuan et. al. [31] suggested a method by making two fundamental changes

to the traditional spectral clustering methods. Such methods find the first few

singular vectors of the Laplacian matrix of a graph proportional to the number

of communities in the network (for more details refer to [32]). Then an n× d

latent space matrix is formed. Vertices are clustered using some methods such

as the k-means clustering algorithm. This method is not likely to work well

if the communities are small and heavily overlapped. The first change is to

overcome the drawback of computing the singular vectors, and the second

modification is to handle the overlapping situation.

Two methods to detect local communities are modularity R [33] and mod-

ularity M [34], they focus on the sharpness of the boundary set B and the

whole community D respectively. The formulas for them are as follows:

R =
|Bin edge|

|Bin edge|+ |Bout edge|
(2.14)

M =
number of internal edges

number of external edges
(2.15)

where R measures the fraction of inside-community edges to all edges with

one or more endpoints in B. Therefore, the quality of community D is mea-

sured by the sharpness of the boundary given by B. However, M looks at both

B and D, as internal edges are the edges that have both endpoints in D, and

external edges are the ones that have only one endpoint in B. Algorithms using

these metrics can detect communities in complex networks. However, their re-

sults usually include many outliers, i.e., the discovered communities have high

recall but low accuracy, which reduces the overall community quality.

Chen et. al. [28] proposed a new measure of local community structure L

to evaluate the local community structure when we lack global information.

They also presented a community discovery process for large networks that

iteratively finds communities based on the suggested measure. In contrast to

many other approaches, the metric L is robust against outliers. The missing

feature in former metrics is the connection density as if N is a set of nodes

that does not have any outward edges, but every node in N connects only

23

one or two neighbors, then N should not be considered as a community. The

absolute number of connections does not matter, but the density should be

taken into account, which is the basic idea of modularity L is as follows:

L =
Lin

Lex

(2.16)

Lin =

∑
vi∈D IKi

|D|
(2.17)

Lex =

∑
vj∈B EKj

|B|
(2.18)

where IKi is the number of edges between node vi and nodes in D and EKj

is the number of connections between node vj and nodes in S. Since they only

considered the nodes in S that increase L value for the detected community,

three different cases may happen where L
′

is the updated measure:

1. L′in > Lin and L′ex < Lex

2. L′in < Lin and L′ex < Lex

3. L′in > Lin and L′ex > Lex

The first equation represents the nodes that strengthen the community and

weaken the external connections, so the nodes definitely belong to the com-

munity. The second equation describes the nodes that are weakly connected

to both community and the rest of the network, so they are outliers. And

finally, the third equation shows the potential hub nodes, but it is not possible

to say anything about them at this step. Since the method adds nodes that

may be outliers and hubs to the community, there is an examination step at

the end that keeps nodes in the community only if by removing them the L

value drops.

A community exists for a given node vx if it remains in D at the end of the

process (it may vanish during the examination step). We usually begin such

operations with one node vx, but the method can be initialized with multiple

nodes to allow a larger starting D, C, B, and S. We can also repeatedly run the

24

same procedure, every time with a new initial node in the remaining part of the

network, to find all communities inside it. If not all the communities are needed

in the network (but some of them), parameters as stopping criteria could be

useful that prevents exploring the whole network as it is not unnecessary or

impractical.

2.2.3 Overlapping Community Detection Algorithms

We assumed each node belongs to exactly one community that made a disjoint

partitioning in the network in previous methods. However, this is not always

the case. In real-world networks, it most surely happens when one node or

more contributes to different groups in the same society, which results in over-

lap among the network’s communities. For example, a university student is

probably a member of different social groups. These include a group of partici-

pants in a specific class, researchers in a particular lab, department basketball

team, etc. Considering a real network of entities, overlapping community

structure seems inevitable and an inherent characteristic of social networks,

so it is important to deal with this property where nodes would be able to be

a member of more than exactly one community. Given a network represented

by a graph G = (V,E) where V is the set of n nodes (|V | = n) and E is the

set of m edges (|E| = m), we aim to build a partition P = {c1, c2, ..., ck} where

each ci is a subset of V , such that
⋃k

i=1 ci = V . However, ci ∩ cj = ∅ for i 6= j

is not necessary, as ci and cj may contain same nodes. Figure 2.3 represents

a community detection with overlapping communities for the Karate network,

where the green nodes are shared between the two communities.

Many different approaches, such as hierarchical clustering and optimization-

based algorithms, have been proposed to discover community structure in net-

works. These methods restrict a node to belonging to only one community.

To overcome this limitation, overlapping community detection algorithms have

drawn lots of attention, mainly divided into two groups of node-based algo-

rithms and edge-based algorithms [36]. In this section, we offer a review of

some previous works in this domain.

Palla et. al. [37] proposed the Clique Percolation Method, also known as

25

Figure 2.3: Karate Network Represented with Overlapping Communities [35]

CPM, which is a popular approach for analyzing the overlapping community

structure of networks. This method starts by placing a clique of size k in the

community and finds other k-cliques, which are neighbors of any previously

detected clique inside the community. Finally, CPM expands the community

using such neighbor cliques. Two cliques of size k are neighbors if they have

k − 1 shared nodes. This method finishes the community detection when

no further neighboring k-clique exists. Since any node may belong to many

cliques, it provides the possibility of detection of overlapping communities.

Whang et. al [38] suggests another method which is capable of detecting

overlapping communities. This method consists of four phases: filtering, seed-

ing, seed set expansion, and propagation. In the filtering phase, some regions

of the graph that are trivially separable from the rest of the graph are removed,

and consequently, they do not participate in overlapping communities. In the

seeding phase, the seeds in the filtered graph are found, then in the seed set

expansion phase, the seed sets are expanded using a personalized PageRank

clustering scheme. Finally, in the propagation phase, the communities expand

further to the regions removed in the filtering phase.

Yakoubi et. al. [39] proposed another method being able to detect overlap-

ping communities. The basic idea underlying the proposed algorithm is that a

community is composed of two types of nodes: Leaders and Followers. First,

it searches for nodes in the network that are likely to be leaders in a commu-

nity. The list of leaders is then reduced by grouping leaders estimated to be

26

Figure 2.4: Updating the Belonging Matrix Before Normalization [40]

in the same community and set of communities C is generated. Each node in

the network (a leader or a follower) computes its membership degree to each

community in C. Finally, each node is assigned to top-ranked communities in

its final obtained membership preference list.

Elyasi et. al. [40] proposed a method that used the stochasticity of dis-

joint community detection algorithms, as by running such algorithms multiple

times, the detected disjoint communities would be different. They selected

Louvain as the disjoint community detection algorithm because it is well-

known and works fast. After the first run of Louvain, an N × C belonging

matrix is made (N is the number of nodes in the network and C is the number

of disjoint communities detected), such that the number in row i and column

j shows the number of edges inside community cj that is connected to node vi.

For any next iterations of Louvain, they also update the values of the belonging

matrix, Figure 2.4 shows how the updates occur. After all the iterations are

done, the matrix values are normalized in the range of [0, 1]. These normalized

values show how much a node belongs to a community in the network. Finally,

the belonging of a node to a community is determined based on a user-defined

threshold. Communities could merge if they share more nodes than a certain

number to increase the modularity and establish better communities. How-

ever, this step in the method is not recommended because it is highly costly

(O(n3) if n represents the number of nodes).

27

The main idea of this method is to use strong and weak components of

the network communities to find the nodes that belong to more than just one

community. It is also scalable because it is useful on networks with larger

sizes. We also can substitute Louvain with any other algorithm that produces

non-deterministic communities and has a reasonable execution time. However,

this method suffers from some ambiguities, e.g., it is not clear how many times

we need to run Louvain before normalizing the final belonging matrix. This

method also assumes that Louvain’s stochastic results always consist of the

same number of communities, whereas there is no guarantee. It is also unclear

how a specific community goes to the belonging matrix’s same column, over

different runs. The algorithm uses a threshold value to determine if a node

belongs to a community. However, there is no exact way to find an acceptable

threshold. The final step that merges the found communities is supposed to

enhance the communities’ modularity measure and quality. Although it is

computationally expensive and they prefer not to use it.

Considering the mentioned strengths and weaknesses, we learn that using

strong/weak community components is a way to find communities with over-

lap. However, the proposed method suffers from some issues (including but not

limited to ambiguity in both algorithm and parameters, high time complexity,

etc.) that make us believe there is much room in this research domain.

2.2.4 Community Detection Algorithms in Uncertain
Networks

Regardless of the network’s communities and the fact that they may intersect

or not, we always take the structure of the corresponding graph for granted.

However, in many real datasets, the network structure is not precisely and

deterministically known. There are different types of uncertainty in networks;

for example, we may not be sure about the existence of nodes, edges, attributes,

or even combinations of them. In this study, we focus on uncertainty on edges

of the network, which means we are entirely sure of the network’s node-set.

However, rather than knowing the edge set of the network exactly, we know

the connections between nodes only with a certain probability.

28

The uncertainty in the edges of the network may come from different

sources. For example, if the data is acquired using not perfect measure-

ment tools, there always is the chance of inaccuracy and noise for the network

dataset. We review some previous works concerning networks with uncertain

edges in this section.

Zhang et. al. [41] proposed a method by expanding on the original modu-

larityR [33] to address the problem of detecting local communities for networks

with uncertain edges, where the probability of edge eij is denoted by Pij. Al-

though modularity R only considers networks with deterministic edges, Zhang

proposed a variant of this called UR (Uncertain R) to cover the uncertainty

in a network. This new measure is given by:

UR =
E(Bin edge)

E(Bin edge) + E(Bout edge)
(2.19)

E(Bin edge) =
1

2

∑
Vi∈B,Vj∈B,i 6=j

Pij +
∑

Vi∈B,Vj∈C

Pij (2.20)

E(Bout edge) =
∑

Vi∈B,Vj∈S

Pij (2.21)

They provided the network of Figure 2.5 as an example to demonstrate that

using UR is not enough if they want the community to expand appropriately.

This network has two connected cliques of size 4 and 6, which cannot be

detected using UR alone. This failure demonstrates the need for another

factor to help UR in order to obtain the correct communities. A new measure

K is introduced to address this issue, which pays attention to nodes in both

B and S. It is given by:

Ki = E(Ni,in edge) + E(Ni,shell edge) (2.22)

where E(Ni,in edge) is the expected number of edges that connect the candidate

node Vi and the nodes in D, and E(Ni,shell edge) is the expected number of edges

that connect the candidate node Vi and the other nodes in S.

29

Figure 2.5: An example showing the problem of only using UR to find the
local community [41].

The proposed algorithm works in this way, given an uncertain network,

an initial node vx, and a parameter λ which represents the number of early

steps that K should be prioritized over UR, vx goes to set D, and all its direct

neighbors go to S. Then at each step, all nodes in S are ranked based on

both K and UR measures. If the number of nodes in D is smaller than λ,

the ranking should be based on the first K, then UR, otherwise UR would

be the first criteria (if there are some nodes with same measures, tie breaks

randomly). They showed if λ = 3, communities tend to be more similar to the

ground-truth. The first node from S that improves the quality criteria should

move from S to D, then B and S should be updated. This procedure continues

until either no nodes remain in S or no node in S can improve the quality

criteria. Set D at this step would be the community that we were looking

for. They compared their method against modularity R, the uncertain version

of modularity R, Louvain (which is a community mining algorithm based on

global information), and the uncertain version of Louvain.

Since there is no proper dataset for uncertain networks, Zhang et. al. [41]

suggested an algorithm that adds noise to the deterministic edges and adds

new noisy edges, which results in an uncertain network. For this purpose,

they create a new network with the same number of nodes, such that if an

30

edge exists between nodes i and j in the original graph, in the new one, a

probabilistic edge will be added between the same nodes. The algorithm also

determines the number of newly added noisy edges (as a ratio of total edges

in the original network). New probabilistic edges will be added to the network

as well. The probability distribution for both types of edges is normal, while

the mean value of the distribution function for the first kind is µ1 = 0.8, and

for the second kind, it is µ2 = 0.2. They considered different mean values to

emphasize on the edges that initially exist in the deterministic network, called

the existential edges. The problem with this method is it cannot keep the

community structure of the network intact.

2.3 Overview of Evaluation Methods

Considering there are many community detection algorithms which have their

own perspective and method of finding community structures in the networks,

Fortunato [11] demonstrated that they might outperform one another in some

class of networks and they also have various computational complexities. Thus,

we need to have solid criteria and evaluation metrics to compare each commu-

nity detection algorithm’s results to perceive which one provides more mean-

ingful clustering for a given network.

The first way that one may think of is to ask a human expert in the field of

the intended problem to validate the results [34]. However, since the human

expert validation is limited and the networks under study are usually large,

it is not feasible to do it this way. Therefore, we need structured methods

to evaluate different results. In the following, we review and discuss differ-

ent evaluation methods divided into three main types: external evaluation,

internal evaluation, and relative evaluation.

In the following, we assume the graph G = (V,E) is given, where V is the

set of n nodes (n = |V |) and E is the set of edges (represented by (u, v, w =

1, p = 1) where u and v are the end-nodes, w is the weight and p is the

probability of an edge) of the graph. The detected communities are shown as

C = {c1, c2, ..., ck} on V such that V = ∪ki=1ci and ci ∩ cj = ∅ for all i 6= j.

31

2.3.1 External Evaluation

In some cases, we know the actual community structure of the network, which

we call the ground-truth communities. There are two different classes of net-

works that we could have such information about them. Such networks are one

of the prespecified small networks (such as Zachary karate club [42]) that are

frequently used in many studies in this field or a synthesized network made by

network generators (such as LFR benchmark [43]) where we impose the com-

munity structure. However, in real-world networks, we barely have such prior

information about the network’s community structure. Thus, the discovered

communities cannot be validated based on external evaluation.

Girvan and Newman [9] proposed the first synthetic network generator

for community evaluation, called the GN benchmark. The output of this

network generator is a graph that has 128 nodes with an expected degree of

16, which is divided into four groups of equal sizes. The existence probabilities

of the edges between pairs of nodes in the same group and different groups

are zin and 1 − zin, respectively. The main problem of this benchmark is the

simplicity of its community structure, which makes most algorithms perform

well. Lancichinetti et. al. [43] improved on the GN benchmark and proposed

the well-known LFR benchmark. LFR considers power-law distribution for the

degrees of nodes and community sizes. These modifications result in properties

more similar to real-world networks. The nodes of these generated graphs share

a fraction of 1−µ of their edges with the other nodes of their community and

a fraction of µ with the nodes of the rest of the network.

With the ground-truth information G = {G1, G2, ..., Gk}, it is easy to val-

idate the detected communities only by comparing them against the known

communities. We introduce five different metrics that could be used for the

evaluation of the detected communities, such Jaccard Index [44], Purity [45],

Adjusted Rank Index (ARI) [46], Normalized Mutual Information (NMI) [47].

Another simple but important metric is the ratio of the number of detected

communities over the network’s actual number of communities, which is de-

picted by C/Cr. To evaluate the detected communities using this metric is

32

informative because it shows if the algorithm suffers from either resolution

limit (if the ratio is close to 0) or field of view limit (if the ratio is relatively

greater than 1). Jaccard index can compare a pair of communities, one from

set C and the other from set G. Thus, we can replace it with other functions

in the different methods anywhere, a comparison between Ci and Gj is needed.

Jaccard Index [44], also known as the Jaccard similarity coefficient, is a

statistic used to show how much two sets of items are similar and is formally

defined as the size of the intersection divided by the size of the union of the

sample sets as given:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2.23)

Purity [45] is the number of correctly assigned nodes divided by the total

number of nodes in V . Purity ranges from 0 that shows no agreement at all

and 1, which means a full agreement. The mathematical representation of

purity is as follows:

purity(C,G) =
1

n
×
∑
i

maxj|Ci ∩Gj| (2.24)

Adjusted Rand Index (ARI) [46] penalizes both false negatives and

false positives. ARI ranges between −1, which indicates no agreement at

all, and +1, which means a full agreement. Let a, b, c, and d denote the

number of pairs of nodes that are respectively in the same community in both

G and C, in the same community in G but in different communities in C, in

different communities in G but in the same community in C, and in different

communities in both G and C. These four values are computed as follows:

33

a =
∑
i,j

δ(Ci, Cj)δ(Gi, Gj)

b =
∑
i,j

(1− δ(Ci, Cj))δ(Gi, Gj)

c =
∑
i,j

δ(Ci, Cj)(1− δ(Gi, Gj))

d =
∑
i,j

(1− δ(Ci, Cj))(1− δ(Gi, Gj))

where Cn = {Ci|n ∈ Ci} and δ(x, y) is 1 if x = y and 0 otherwise. Then ARI

is computed by the following formula:

ARI(C,G) =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(2.25)

Normalized Mutual Information (NMI) [47] is based on defining a

confusion matrix N , where the rows correspond to the ground-truth commu-

nities, and the columns correspond to the detected communities. The element

Ni,j in this matrix is the number of nodes in the ground-truth community ci

that appear in the detected community cj. A measure of similarity between

the partitions, based on information theory, is then:

NMI(C,G) =
−2
∑nC

i=1

∑nG

j=1Nij log(
NijN

Ni.N.j
)∑nC

i=1Ni. log(Ni.

N
) +

∑nG

j=1N.j log(
N.j

N
)

(2.26)

where the number of real communities is denoted nG and the number of de-

tected communities is denoted nC , the sum over row i of matrix Ni,j is denoted

Ni. and the sum over column j is denoted N.j. Suppose the detected commu-

nities are identical to the ground-truth. In that case, NMI(C,G) takes its

maximum value of 1 if the partition detected by the algorithm is totally inde-

pendent of the ground-truth NMI(C,G) = 0.

2.3.2 Internal Evaluation

As mentioned before, in most cases of real-world networks, we cannot access

the ground-truth community information to evaluate the communities detected

34

by an algorithm. Thus, we need evaluation methods that can do this task using

only the network’s built-in information. These methods need to act based on

the internal criterion that measures the similarity between the detected com-

munity structure and the structure of the data. An internal criterion can also

be considered as a quality measure to compare different community results.

In the following, we introduce four evaluation metrics such as Modularity Q

[12], Conductance [48], Coverage [49], and Performance [50].

Modularity Q [12] is an important measure that falls into this group of

techniques. We use it to validate a single community detection result and also

to compare different community detection results. Modularity is defined as the

fraction of edges within communities minus the expected value of this fraction

derived based on the null model. It can be computed with the formula given

in Equation (2.1).

Conductance [48] compares the size of a cut (i. e., the number of edges

cut) and the weight of the edges in either of the two subgraphs induced by that

cut. Consider a cut that divides the graph into K communities {c1, c2, ..., cK}.

The conductance of any given community φ(ci) can be obtained as shown

in Equation (2.27), where a(ci) =
∑

vj∈ci

∑
vk∈V w(vj, vk) is the sum of the

weights of all edges with at least one endpoint in ci. This φ(ci) value represents

the cost of one cut that bisects the graph into two node sets ci and V − ci.

Since we detected K communities, we need K−1 cuts to achieve that number.

It is also assumed the conductance for the whole partition to be the average

value of those K − 1 cuts.

φ(ci) =

∑
vj∈ci

∑
vk 6∈ci w(vj, vk)

min(a(ci), a(c̄i))
(2.27)

φ(C) = avg(φ(ci)) =
1

K

K∑
i=1

φ(ci) (2.28)

Coverage [49] of a clustering C (where C = {c1, c2, ..., ck}) is given as the

fraction of the weight of all intra-cluster edges with respect to the total weight

of all edges in the whole graph, as shown in the following. Coverage values

usually range from 0 to 1. Higher values of coverage mean that there are more

35

edges inside the communities than edges linking different communities, which

translates to a better partitioning.

coverage(C) =

∑
vi,vj∈V w(vi, vj)δ(ci, cj)∑

vi,vj∈V w(vi, vj)
(2.29)

Performance [50] counts the number of internal edges in a community

along with the edges that do not exist between the community’s nodes and

other nodes in the graph. Performance ranges from 0 to 1, and higher values

indicate that a community is both internally dense and externally sparse and,

therefore, a better partitioning.

performance(C) =
f(C) + g(C)(

n
2

) (2.30)

f(C) =
K∑
i=1

∑
u,v∈Ci

w(u, v)

g(C) =
K∑
i=1

∑
j>i

|{(u, v) 6∈ E|u ∈ Ci, v ∈ Cj}|

2.3.3 Relative Evaluation

The methods in this group are quality functions that would be used to compare

different results that come from various community detection algorithms. It

is not an easy task to define such measures as there is no consensus over the

term ”community” in the first place, which makes it more difficult to judge

different detected communities. However, using some inspiration from well-

studied clustering validation measures in machine learning, some criteria are

adapted for the problem of community detection, including but not limited to

Dunn Index [51], Silhouette [52], and C-Index [53]. In addition to being used

as a goodness measure, we can use them instead of modularity Q to design

novel community detection algorithms.

Before introducing relative evaluation metrics, as they are adopted from

machine learning evaluation approaches, an adjusted definition for the distance

function is required. The distance function is strongly related to the similarity

36

measure between two nodes of the graph. There are many similarity measures,

and as a result, there are many distance functions too. In the following, we

introduce some of them.

Shortest Path is the distance between two nodes of the graph, which

could be computed using the well-known Dijkstra’s Shortest Path algorithm.

Adjacency similarity between the two nodes vi and vj is considered to

be their incident edge weight Ai,j taken from the (weighted) adjacency matrix

A. Accordingly, the distance measure between the mentioned nodes can be

computed as follows:

dAi,j = Amax − Ai,j (2.31)

where Amax is the maximum edge weight in the graph; i.e., Amax = maxij Ai,j,

which is considered to avoid any negative distance values.

Adjacency Relation of two nodes measures their structural dissimilarity,

which is computed by the difference between their instant neighborhoods [54]

as:

dAR
i,j =

√∑
k 6=j,i

(Ai,k − Aj,k)2 (2.32)

Based on each distance function, various evaluation metrics can be defined.

One of which is C-Index [53], which is used as a validity measure for clustering

tasks. Rabbany et. al. [55] generalized it to measure the quality of a network’s

partitioning. C-Index can be defined as follows:

CIndex =
θ −minθ

maxθ −minθ
, where θ =

1

2

K∑
l=1

∑
i,j∈Cl

d(i, j) (2.33)

where minθ/maxθ is the sum of n smallest/largest distances between nodes

in the graph, where n =
∑K

l=1

(|Cl|
2

)
. The best/worst case is when the with-

in community distances are the shortest/longest distances in the graph [55].

These two scenarios correspond with C-Index equal to 0 and 1, respectively.

37

Chapter 3

Global Community Detection
Methods

3.1 Motivation

Q-modularity [12] is a well-known objective function in community mining

tasks. We can use it to detect communities of a network and evaluate the

discovered community structure when we have no ground-truth information

about the network. Newman proposed a greedy agglomerative algorithm to

maximize Q-modularity [23]. This algorithm starts by placing each node in

single communities and then moving nodes towards a neighboring commu-

nity, resulting in the maximum gain in Q-modularity. This algorithm runs in

O(n(n + m)), where n is the number of nodes, and m is the number of edges

of the network. Later, Clauset et al. [25] improved Newman’s algorithm by

utilizing efficient data structures and reduced the running time of the algo-

rithm to O(nlog2n) for sparse networks. Blondel et al. [13] proposed Louvain,

the fastest algorithm that could almost be executed in linear time to optimize

Q-modularity. This method repeats two main steps iteratively until no further

improvement in Q-modularity is achievable.

Although Q-modularity has been widely used, Fortunato and Barthelemy

[56] showed that Q-Modularity suffers from the resolution limit, which means

that by optimizing Q-modularity, communities that are smaller than a scale

cannot be resolved. The field of view limit [57] is in contrast to the resolution

limit, which results in over-partitioning the communities with a large diameter.

38

Schaub et al. [57] showed that Q-modularity and the map equation (as they

both are instances of optimal community detection methods) are affected by

the field of view limit. The general idea behind the Map equation algorithm,

proposed by Rosvall and Bergstrom [58], is to find a binary code with unique

code-words for each node within a community that can be used to describe

the position of a random walker in the network compactly [57].

Several propositions have been made to overcome the resolution limit of Q-

modularity, notably by [1] and [26], who took two different directions to address

this issue. The first idea is a greedy method called SIWO (refer to 2.2.1), with

a critical feature different from Louvain, which is to differentiate the links.

Louvain does not consider any strength value for the edges of the network

when the quality function optimization runs. However, SIWO utilizes the

local information of neighborhoods inside the network and computes strength

values based on the nodes’ local clustering coefficients. Using its innovative

quality function, this SIWO tries to put strong edges as much as possible

inside the communities and weak edges among them. The second idea is a

novel quality function that can be used instead of Q-modularity. It is called

Constant Potts Model, and Leiden [14] is the state-of-the-art method that uses

this quality function. By changing the null model, which is compared while the

quality function is optimizing, this algorithm shows improvements regarding

the resolution limit problem of Louvain. In our experiments, we realized that

although some ideas in these two most recent methods are useful, there is more

room to get them to produce better results. Moreover, these methods are not

problem-free, so we propose some alterations to amend them.

In Section 3.2, we consider the definition of strong and weak edges from

SIWO, bring up the issues in this method, and try to address them as much

as possible. In Section 3.3, we introduce the smart move’s notion when a node

needs to move locally to a neighboring community while optimizing the quality

function. It has been shown that this particular adjustment may result in a

significant reduction in terms of run-time. In Section 3.4, we discuss the guar-

antees in Louvain and the guarantees that should have existed when a credible

subgraph was detected as a community. We propose a solution that ensures

39

the connectedness of the identified communities without too many iterations

or convergence ambiguity. Finally, in Section 3.5, extensive experiments show

that the modifications and enhancements mentioned in this chapter signifi-

cantly improve the results compared with the communities detected by the

well-known Louvain method or its recent successors.

3.2 Strong and Weak Edges

When the network’s communities are detected, some edges fall inside the com-

munities, and the other edges lie between them. Regarding the goal of finding

dense subgraphs (defined by comparing against a null model), we need to put

as many edges as possible into the communities. However, to avoid putting all

the nodes in a single community, one may penalize the missing edges within

the communities.

SIWO assumes there are two kinds of edges, strong edges that reside inside

communities and weak edges that lie between them. Then, instead of pe-

nalizing the missing links, its criterion encourages adding strong links to the

communities while avoiding weak links. The weak edges have a more crucial

role in the graph connectivity compared to the strong edges. By removing any

strong edge, the graph connectivity would not notably change, while removing

a weak edge may even divide the graph into disconnected subgraphs because

it locates between two communities [1]. As nodes in the same community

are more likely to have shared neighbors than nodes in different communities,

weight values in the range of (−1,+1) are assigned to the edges representing

their strength.

SIWO suggested some steps to calculate the strength of the edges. First,

Si,j needs to be computed for any edge ei,j which is the number of shared

neighbors of nodes vi and vj using the following formula:

Si,j = |{vk ∈ V : ei,k ∈ E, ej,k ∈ E}| (3.1)

where V is the set of nodes of the network, and E is the set of edges. We

only can make the comparison of the edges’ strengths locally, such that we

40

can only compare the edges that are incident to a shared end-node. Assuming

the shared node is vi, we need to find Smax
i = maxj:ei,j∈E Si,j. Then any S

value should be normalized using the following formula:

wi
i,j = Si,j

2

Smax
i + 1

+
1

Smax
i + 1

− 1 (3.2)

wj
i,j should be computed similarly, too. Finally, a comparison between the

local clustering coefficient of nodes vi and vj is needed to decide if wi
i,j or wj

i,j is

better to represent the strength of the edge ei,j. The local clustering coefficient

can be computed as defined below:

CC(i) =
|{ej,k : vj ∈ Ni, vk ∈ Ni, ej,k ∈ E}|(

di
2

) (3.3)

where di and Ni are respectively the degree and the set of neighbours of node

vi. CC(i) is in the range of [0, 1] with 1 for nodes whose neighbours form

cliques, and 0 for nodes whose neighbours are not directly connected to each

other. Here, each edge weight is scaled from the viewpoint of the endpoint

that is more likely to be in a dense neighbourhood characterized by a large

CC. wi,j = wi
i,j if CC(i) > CC(j) or otherwise wi,j = wj

i,j.

This scheme is used as a preprocessing step in the SIWO method. SIWO

objective function (given in Equation 2.7) is optimized by putting edges with

larger strengths inside the community and edges with smaller strength be-

tween them. An essential goal of SIWO was to address the resolution limit of

Louvain, which was achieved using its novel weighting scheme. Although this

scheme works well when the SIWO objective function is to optimize, it has

two significant issues in a general case that can be improved:

1. This approach uses a relatively complex normalization formula (given in

Equation 3.2), which may lead to negative values. The experiments show that

any normalization (i.e., the regular min-max normalization) is sufficient. On

the other hand, negative strength values make the whole preprocessing step

futile in cases that we want to use this step for different community detection

algorithms that are mostly designed to work with positive values.

2. Another problem of SIWO’s current weighting scheme is picking the

41

Figure 3.1: Relative Strengths of Nodes of the Graph

larger weight value for each edge among two calculated weights wi
i,j and wj

i,j.

Selection based on the larger clustering coefficient of their end-nodes may cause

misrepresentations of the edges’ strengths. To clarify the problem, we provide

an example in Figure 3.1 to compare the strength of two edges ea,b and eb,c,

where nodes vA, vB, and vC are three nodes of the network that are probably

connected to other nodes in the network. Suppose wa
a,b is a relatively large value

like 0.9, but wb
a,b is a relatively small value like 0.2, whereas wb

b,c = 0.8, and

wc
b,c = 0.6. With the SIWO’s current method for computing the edge strength,

the strongest edge incident to node vB is eab. However, the connection to node

vC is much stronger, considering the weights from both perspectives. These

weights can be larger because of more shared neighbors among vB and vC or

larger primary weights on their corresponding edges.

We proposed a new way to assign the strength values, which represents

the edges more accurately. In this new way, for any edge ei,j, after computing

Smax
i and Smax

j the new weight can be calculated with the given formula:

wi,j =
Si,j

2
× (

1

Smax
i

+
1

Smax
j

) (3.4)

We call this new approach RSIWO1. RSIWO stands for Reciprocal SIWO,

42

as it enables us to calculate the strength of edges based on the local information

obtained by the end-nodes of both sides of each edge. The subscript 1 at the

end of the name denotes the fact that this is only the first improvement in

three improvements that ultimately lead to the final RSIWO. It also solves

the problem of negative values, which makes it a good fit for any community

detection algorithm that can handle only positive edge weights.

3.3 Smart Local Move

Most greedy community detection approaches have two significant steps. In

the first step, nodes move toward neighboring communities, and this process

repeats until no further move can increase the quality of the partition. There

are plenty of algorithms, including Louvain [13] and SIWO [1], that investigate

all nodes in each iteration. However, we only need to move the nodes whose

neighbors’ communities have been changed in the last iteration. If none of the

neighbors of node vi transfer to new communities, moving node vi to any new

community cannot improve the partitioning quality. The smart local move

is an approach to investigate and move nodes to new communities, consider-

ing the idea as mentioned earlier to reduce the number of inquiries on nodes

of the network, mostly in prior iterations. Leiden uses this approach in its

optimization step.

The Leiden algorithm initially uses a queue of all nodes of the network, then

every time the first node in the queue pops out to be analyzed. If moving vi to

a new community causes an improvement in the quality, all of the neighboring

nodes of vi from its former community, which are not in the queue at that

moment, would be appended to the end of the queue. By doing this, we will

avoid many unnecessary nodes’ moves.

Experiments show that although this idea works and significantly reduced

the run time of the community detection process, using a hash table instead

of a queue can improve the performance even more. The hash table consists

of True/False values, which allows/prevents the algorithm from investigating

a node. This enhanced approach does not need a queue with an ever-changing

43

length, making the whole process faster with the same functionality. The

improvement is more sensible on denser networks, where any node has many

neighbors that can potentially be inserted into the queue. The smart local

move is also applicable for any other greedy optimization-based algorithm,

such as Louvain and SIWO, which are called accelerated Louvain and RSIWO2.

The Algorithm 1 shows how the optimization step of RSIWO2 works using this

new enhanced smart local move.

Algorithm 1: Smart Local Move in RSIWO2

Input: Network G
modified← True
TraceNodes1 ← dict(x : True for x in G.nodes())
while modified = True do

modified← False
TraceNodes2 ← dict(x : False for x in G.nodes())
for each node n ∈ G.nodes() do

if TraceNodes1[n] = False then
continue

OldComm← Find Comm(n)
N ← G.neighbors(n)
NewComm← Find Best Comm(n)
if ComOld 6= NewComm then

modified← True
TraceNodes2.update(dict(x : True for x in N))

TraceNodes1.update(TraceNodes2)

3.4 Guaranteeing Connectedness

Communities have different definitions; however, these definitions are based

on a densely connected group of nodes inside a network. Although Louvain

is a successful approach toward detecting communities in the network, and

its results are frequently considered to be qualified and adequate, there is not

even the simplest guarantee for the communities’ connectedness. Traag et.

al. [14] demonstrated this issue using a worst-case scenario example shown

in Figure 3.2. Since, in each iteration, any node may leave its community to

merge into a new community to improve the quality function, it may divide a

connected community into two or more disjoint subgraphs. Because there is

44

no amendment step in Louvain, disconnected communities’ problem may only

worsen after each iteration (because the same accident may occur).

To overcome this issue, a refinement step seems useful. The Leiden al-

gorithm [14] proposed an intermediary refinement step after moving nodes

locally and aggregating the graph. However, this step has some drawbacks.

First of all, this refinement step is not deterministic. Even though Leiden

takes advantage of this feature for more exploration to find better commu-

nities for each node, it jeopardizes the method’s stability. There are large

complex networks that need too many iterations to reach a stable condition

because of the stochasticity of Leiden’s suggested refinement step. Moreover,

a new parameter for randomness has been used that requires fine-tuning as

well. Leiden chooses a community that improves the quality value in the re-

finement step when a node needs to move. This community is not necessarily

the one with the most significant improvement. This choice leads to another

drawback. Finally, no guarantee has not been provided for Leiden’s refinement

step that it can ultimately converge. Since there is a limitation for the number

of iterations (which is two times) in its implementation and mentioned in [14]

as well, the produced results may be different from the stable, high-quality

communities that Leiden is supposed to make in the first place.

To avoid the issues that Leiden algorithm causes, we suggest a new sim-

ple way to handle disconnectedness in the detected communities by Louvain.

Every time all nodes are investigated, we need to check all the merged and

built communities to ensure the problem of disconnected communities does

not propagate through multiple iterations. This can be done using a DFS or

BFS search in O(n+m) time complexity where n is the number of nodes of a

community, and m is the number of edges in that community. Since each node

belongs to exactly one community, they are visited once in the whole graph

every time we check the connectivity, so the overall time complexity is not over

O(‖V ‖ + ‖E‖). It is easy to prove that this is the lowest time complexity in

which the connectivity investigation can be done. We need to check all nodes

and edges at least once to ensure their connectivity status to the rest of the

network.

45

Figure 3.2: Connectivity Problem of Louvain, When Node 0 Leaves, There
Will Be Two Disconnected Parts in the Red Community [14]

Even though RSIWO1 has much less disconnected cases of detected commu-

nities, we propose our refinement step. Any greedy-based method that works

based on an iterative merging of nodes can take advantage of to make sure

no disconnected community exists in the final result. We call this improved

version of SIWO that guarantees connected communities RSIWO3.

3.5 Experiments

3.5.1 Experiment on the Strengths of Edges

The first experiment is to test the impact of the new weighting scheme (given

in Equation 3.4) using the networks from Table 3.1. Three pairs of algorithms

are being tested, SIWO and RSIWO1, original and preprocessing Louvain, and

original and preprocessing Fast-Greedy. The preprocessing version of Louvain

and Fast-Greedy have an extra preprocessing step that adds strength values

to the edges based on the RSIWO1’s new weighting scheme before the step

of moving nodes. We hypothesize that by using the modified version of each

algorithm, those methods would be able to detect communities with smaller

sizes, which ultimately improves the existing resolution problem.

The results from Tables 3.2 to 3.9 show that our hypothesis was valid and

using the new weighting scheme, in almost every case that the main algorithm

suffers from resolution limit, results in finding better communities with higher

Q and NMI measures. Although we know the Dolphins Network consists of

46

‖V ‖ ‖E‖ ‖C‖ Q (ground-truth)
Football Network [9] 115 613 12 0.553

Zachary’s Karate Club [59] 34 78 2 0.358
Political Blogs Network [60] 1222 16717 2 0.405
Political Books Network [60] 105 441 3 0.414

Dolphins Network [61] 62 159 2 -
Small LFR Generated Network 50 332 3 0.501

Medium LFR Generated Network 150 979 12 0.731
Large LFR Generated Network 250 1569 20 0.760

Table 3.1: Networks to test the edge strength effect on community detection

C/Cr Q NMI Run Time
SIWO 1.08 0.581 0.911 0.049

RSIWO1 (new preprocessing) 0.91 0.603 0.909 0.053
Louvain 0.83 0.604 0.884 0.069

Louvain + preprocessing 1.0 0.601 0.926 0.072
Fast-Greedy 0.5 0.568 0.743 0.051

Fast-Greedy + preprocessing 0.75 0.578 0.824 0.074

Table 3.2: Experiments on Football Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 1.0 0.371 0.837 0.010

RSIWO1 (new preprocessing) 1.0 0.371 0.837 0.009
Louvain 2.0 0.383 0.529 0.018

Louvain + preprocessing 3.0 0.404 0.545 0.018
Fast-Greedy 1.5 0.380 0.564 0.009

Fast-Greedy + preprocessing 2.5 0.380 0.420 0.011

Table 3.3: Experiments on Karate Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 2.0 0.416 0.695 2.034

RSIWO1 (new preprocessing) 2.0 0.425 0.701 2.054
Louvain 6.0 0.427 0.631 1.871

Louvain + preprocessing 116 0.416 0.408 3.281
Fast-Greedy 5.5 0.426 0.650 6.012

Fast-Greedy + preprocessing 16 0.211 0.270 0.420

Table 3.4: Experiments on PolBlogs Network for Edge Strength

47

C/Cr Q NMI Run Time
SIWO 1.33 0.519 0.562 0.036

RSIWO1 (new preprocessing) 1.33 0.523 0.553 0.040
Louvain 1.33 0.526 0.536 0.083

Louvain + preprocessing 2.33 0.516 0.454 0.095
Fast-Greedy 1.33 0.501 0.530 0.044

Fast-Greedy + preprocessing 2.0 0.497 0.441 0.052

Table 3.5: Experiments on PolBooks Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 2.0 0.472 - 0.015

RSIWO1 (new preprocessing) 2.0 0.526 - 0.018
Louvain 2.0 0.522 - 0.035

Louvain + preprocessing 10 0.437 - 0.038
Fast-Greedy 2.0 0.495 - 0.014

Fast-Greedy + preprocessing 2.5 0.442 - 0.172

Table 3.6: Experiments on Dolphins Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 1.0 0.501 1.0 0.026

RSIWO1 (new preprocessing) 1.0 0.501 1.0 0.024
Louvain 1.0 0.501 1.0 0.027

Louvain + preprocessing 1.0 0.501 1.0 0.036
Fast-Greedy 1.0 0.489 0.931 0.021

Fast-Greedy + preprocessing 1.0 0.489 0.931 0.097

Table 3.7: Experiments on Small Synthetic Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 1.0 0.731 1.0 0.067

RSIWO1 (new preprocessing) 1.0 0.731 1.0 0.081
Louvain 0.91 0.732 0.984 0.068

Louvain+ + preprocessing 1.0 0.731 1.0 0.115
Fast-Greedy 0.75 0.704 0.926 0.061

Fast-Greedy + preprocessing 1.0 0.718 0.990 0.097

Table 3.8: Experiments on Medium Synthetic Network for Edge Strength

48

C/Cr Q NMI Run Time
SIWO 1.0 0.760 1.0 0.099

RSIWO1 (new preprocessing) 1.0 0.760 1.0 0.162
Louvain 0.85 0.761 0.976 0.133

Louvain + preprocessing 1.0 0.760 1.0 0.190
Fast-Greedy 0.7 0.747 0.926 0.109

Fast-Greedy + preprocessing 0.85 0.749 0.959 0.189

Table 3.9: Experiments on Large Synthetic Network for Edge Strength

C/Cr Q NMI Run Time
SIWO 1.08 0.581 0.911 0.049

RSIWO2 (with SLM) 1.08 0.581 0.911 0.044
RSIWO1 0.91 0.603 0.909 0.053

RSIWO1+2 (with SLM) 0.91 0.603 0.909 0.052
Louvain 0.83 0.604 0.884 0.069

Louvain + SLM 0.83 0.604 0.884 0.049

Table 3.10: Experiments on Football Network for Smart Local Move

two communities, no Q or NMI measure is reported for this network as we

could not find the ground-truth communities (we are not sure which entity

belongs to which community).

3.5.2 Experiment on the Smart Local Move

The second experiment is designed to test if the smart local move could have

been used in different algorithms that exploit different objective functions and

still produce the same result in a shorter period. To test this hypothesis, we

used the same networks; however, we only use original SIWO, modified SIWO,

original Louvain, and accelerated versions to compare the run times.

The results from Tables 3.10 to 3.17 show that our hypothesis was valid

C/Cr Q NMI Run Time
SIWO 1.0 0.371 0.837 0.010

RSIWO2 (with SLM) 1.0 0.371 0.837 0.007
RSIWO1 1.0 0.371 0.837 0.009

RSIWO1+2 (with SLM) 1.0 0.371 0.837 0.008
Louvain 2.0 0.383 0.529 0.018

Louvain + SLM 2.0 0.383 0.529 0.015

Table 3.11: Experiments on Karate Network for Smart Local Move

49

C/Cr Q NMI Run Time
SIWO 2.0 0.416 0.695 2.034

RSIWO2 (with SLM) 2.0 0.416 0.695 1.897
RSIWO1 2.0 0.425 0.701 1.928

RSIWO1+2 (with SLM) 2.0 0.425 0.701 1.911
Louvain 6.0 0.427 0.631 1.871

Louvain + SLM 6.0 0.427 0.631 1.459

Table 3.12: Experiments on PolBlogs Network for Smart Local Move

C/Cr Q NMI Run Time
SIWO 1.33 0.519 0.562 0.036

RSIWO2 (with SLM) 1.33 0.519 0.562 0.036
RSIWO1 1.33 0.523 0.553 0.040

RSIWO1+2 (with SLM) 1.33 0.523 0.553 0.038
Louvain 1.33 0.526 0.536 0.083

Louvain + SLM 1.33 0.526 0536 0.046

Table 3.13: Experiments on PolBooks Network for Smart Local Move

C/Cr Q NMI Run Time
SIWO 2.0 0.472 - 0.015

RSIWO2 (with SLM) 2.0 0.472 - 0.015
RSIWO1 2.0 0.526 - 0.018

RSIWO1+2 (with SLM) 2.0 0.526 - 0.014
Louvain 2.0 0.522 - 0.035

Louvain + SLM 2.0 0.522 - 0.023

Table 3.14: Experiments on Dolphins Network for Smart Local Move

C/Cr Q NMI Run Time
SIWO 1.0 0.501 1.0 0.026

RSIWO2 (with SLM) 1.0 0.501 1.0 0.023
RSIWO1 1.0 0.501 1.0 0.024

RSIWO1+2 (with SLM) 1.0 0.501 1.0 0.022
Louvain 1.0 0.501 1.0 0.027

Louvain + SLM 1.0 0.501 1.0 0.022

Table 3.15: Experiments on Small Synthetic Network for Smart Local Move

50

C/Cr Q NMI Run Time
SIWO 1.0 0.731 1.0 0.067

RSIWO2 (with SLM) 1.0 0.731 1.0 0.061
RSIWO1 1.0 0.731 1.0 0.081

RSIWO1+2 (with SLM) 1.0 0.731 1.0 0.073
Louvain 0.91 0.732 0.984 0.068

Louvain + SLM 0.91 0.732 0.984 0.062

Table 3.16: Experiments on Medium Synthetic Network for Smart Local Move

C/Cr Q NMI Run Time
SIWO 1.0 0.760 1.0 0.099

RSIWO2 (with SLM) 1.0 0.760 1.0 0.093
RSIWO1 1.0 0.760 1.0 0.162

RSIWO1+2 (with SLM) 1.0 0.760 1.0 0.140
Louvain 0.85 0.761 0.976 0.133

Louvain + SLM 0.85 0.761 0.976 0.102

Table 3.17: Experiments on Large Synthetic Network for Smart Local Move

and using the new enhanced smart local move speeds up the process without

jeopardizing the quality of the final results. It improves SIWO and RSIWO1

up to 10% and improves Louvain up to 50% with no damaging effects on the

detected communities. We conclude that using this scheme in greedy-based

methods that iteratively investigate nodes of the network has advantages.

3.5.3 Experiment on the Guaranteed Connectedness

The third experiment is designed to test how vulnerable Louvain and SIWO

are to detecting disconnected communities, and if our proposed refinement step

can solve this problem. For this experiment, we used the AMAZON network

[62] and the DBLP network [62], which are relatively large networks with

hundreds of thousands of nodes and almost one million edges. We decided to

do this experiment using extensive networks as it is more probable an algorithm

finds disconnected communities in them rather than smaller networks. Leiden

and Louvain are the main algorithms we want to investigate; the guaranteed

version of Louvain is also considered. We already claimed that SIWO could

handle this issue better than Louvain. However, we include SIWO, RSIWO1,

and RSIWO3, its guaranteed version, to support our hypothesis and show the

51

C/Cr % Disconnected
Leiden 0.005 0

Louvain 0.003 2.02
Louvain + Guarantee 0.003 0

SIWO 0.303 0.04
RSIWO1 0.306 0.00

RSIWO1+3 (with Guarantee) 0.306 0

Table 3.18: Experiments on Amazon Network for Guaranteed Connectedness

C/Cr % Disconnected
Leiden 0.023 0

Louvain 0.016 4.12
Louvain + Guarantee 0.017 0

SIWO 1.141 0.94
RSIWO1 1.294 0.12

RSIWO1+3 (with Guarantee) 1.295 0

Table 3.19: Experiments on DBLP Network for Guaranteed Connectedness

final method is capable of finding the best communities in terms of accuracy,

run time, and connectivity.

The results from Tables 3.18 and 3.19 show that our hypothesis was valid

and using the new method to guarantee the connectedness of the detected

communities works. Considering the low C/Cr measure of Leiden and Lou-

vain, we might infer that they address the connectedness issue by merging the

communities too much. We also observed that SIWO, using its unique qual-

ity function, handles this issue better. However, if we modify the weighting

scheme to the aforementioned positive weights, it gets better. By exploiting

the guaranteed version, we can claim that no disconnected community would

be found in the final result.

3.6 Conclusion

We realized all three novel modifications to the SIWO approach: the new

weighting scheme, the smart local move, and the connectivity guaranteeing

scheme work as expected and can improve the performance of the former

algorithm in different ways.

52

RSIWO provides a better representation of edge strength that results in

better partitioning and more immunity to resolution limit and the inherent

connectivity issue of such methods. Comparing to Louvain, it is faster, able

to find communities of smaller sizes, and can guarantee that the detected

communities are entirely connected. Comparing to Leiden, it is more robust,

does not need any fine-tuned parameter to perform correctly. The algorithm

is guaranteed to converge and converges to the same final answer every time,

which means RSIWO is a deterministic method.

53

Chapter 4

Local Community Detection
Methods

4.1 Motivation

There have been many types of research done on community search in com-

plex networks, in which the goal is to find all nodes that belong to the same

community as the given node does. Placing a source node in the community

and expanding it is one of the most successful methods for community search

and local community detection. Such methods show their value in different

cases, particularly when the network’s global structure is not accessible or too

large to be used altogether.

In the context of local community detection, the observed part of the net-

work is the neighborhood around certain nodes in the community (D). The

community itself consists of two parts, the set of core nodes (C) and the set of

boundary nodes (B). The core nodes are the ones that have no direct neigh-

bors outside of the community, whereas boundary nodes have at least one

neighbor outside of set D. The set of all nodes outside of D that are directly

connected to nodes in B is called the shell nodes (S), and the rest of the net-

work is unknown. Figure 4.1 shows these different areas. In local community

detection approaches, with expanding the community further, more nodes will

be exposed and may be considered for merging to the community in the next

steps.

Numerous local community detection algorithms have been proposed as we

54

Figure 4.1: A Network Regarding Local Community Approaches [28]

discussed in Section 2.2.2, many of which can be grouped as greedy community

expansion methods. They start by placing an initial node in the community,

merging more nodes from the neighborhood to expand the community based

on maximizing a modularity or quality function. Some of these functions can

be used to evaluate local communities, as well.

Clauset [33] proposed local modularity R to find the best local community.

The modularity R is defined as:

R =
Bin edge

Bin edge +Bout edge

(4.1)

where Bin edge is the number of edges that connect boundary nodes and

other nodes in D, while Bout edge is the number of edges that connect boundary

nodes and nodes in S. Intuitively, a good community should have a sharp

boundary with fewer connections from the boundary to the unknown portion

of the graph, while having a higher number of links from the boundary nodes

back into the local community. Thus, R measures the fraction of those inside-

community edges to all edges with one or more endpoints in B. So, community

D is measured by the sharpness of the boundary given by B. The fact that

modularity R does not take the edges with both endpoints in C into account

is a limit that ultimately results in poor communities.

Similarly, Luo et. al. [34] proposed the modularity M for local community

evaluation. Instead of measuring the internal edge fraction of boundary nodes,

55

they directly compare the ratio of internal and external edges. Internal means

two endpoints are both in D, whereas external means only one of the endpoints

belongs to D. The modularity M is defined as:

M =
number of internal edges

number of external edges
(4.2)

Another proposed metric is called modularity L (or L-metric) presented by

Chen et. al. [28], which aims at reducing outliers that both R and M suffer

from and improving detection accuracy. The definition of the modularity L is:

L =

∑
i∈D IKi

|D|∑
j∈B EKj

|B|

(4.3)

Where IKi is the number of edges between node Vi and nodes in D, and

EKj is the number of connections between node Vj and nodes in S. Thus, the

numerator is the average internal degree of nodes in D, and the denominator

is the average external degree of nodes in B.

Regardless of which modularity function is selected to evaluate and build

local communities in a network, the algorithm firstly places the start node in

the community and its neighbors in the shell set. At each step, the algorithm

adds the neighbor node, which gives the most significant increase of modularity

to the community. Then updates the community set, the boundary set, the

shell set, and finally, the modularity value. This process will finish when no

candidate node could increase the modularity measure.

Although each of these algorithms addressed an issue of a previous method

(for example, modularity R ignores edges with both endpoints in C, whereas

modularity M addresses this limit by considering such edges), they are almost

similar in practice. They often suffer from poor outlier detection and the dis-

covery of incorrect communities in simple ground-truth networks. To address

this problem, Fagnan et. al. [63] proposed their algorithm, Metric T , based on

triads (cliques of size three) to identify local community structure in a complex

network. They presented the T measure as:

T = Tin × Tdiff (4.4)

56

where

Tdiff =

{
Tin − Tex, if Tin > Tex

0, otherwise
(4.5)

Tin =
1

6
×

∑
i∈D,j∈D,k∈D

Ai,jAj,kAi,k (4.6)

Tex =
1

2
×

∑
i∈D,j∈S,k∈S

Ai,jAj,kAi,k (4.7)

Where D is the set of nodes in the community, S is the set of nodes in

the shell set, and A is the adjacency matrix such that Ai,j is 1 if nodes i

and j share an edge. They divide the Tin score by 6 and Tex by 2 to prevent

multiple-counting all permutations of the same triad.

We expect this method to perform better than the previous modularity

based approaches because the T score intuitively favors nodes that form many

triads with nodes within the community and few triads with nodes outside of

the community. This method finds a given node’s community by placing it (or

a direct neighbor of it with the highest degree) in the community. Then, it

finds the best node from S regarding the highest increase in T score (breaking

ties randomly). After a new node joins the community, the algorithm updates

the shell set. Many different experiments have shown that starting from a

neighbor with the highest degree, results in a better community rather than

expanding with the given node itself.

Although the Metric T has shown better performance than Modularity R,

Modularity M , and Modularity L in many cases, it suffers from a unique prob-

lem. This problem occurs while expanding the community such that starting

from a neighbor node with the highest degree may result in a group of nodes

that does not include the given node itself. In such cases, the algorithm de-

clares the node does not belong to any community by returning an empty set

as the output.

Despite the advantages of the approaches mentioned earlier, they share two

significant issues. They are highly sensitive to their early expansion steps, such

that starting with an inadequate initial node or merging bad primary nodes

57

will result in a community with low accuracy. They are also extremely slow

when applied to large dense social networks. To address these issues, we will

introduce two different methods. We first present a modification to the Metric

T to solve its problem with its early steps. Then, by following a different

path, we propose a novel method that can locally discover the communities

very fast. It will be desirable and applicable to large networks, which is the

main reason we prefer local approaches over global ones.

In Section 4.2, we try to find a solution to see how we should select the

initial nodes to start and then continue expanding when a node is given to

discover its community. In Section 4.3, we introduce a novel approach based

on the weighting scheme of the RSIWO presented in Chapter 3. We show that

we can use its weighting scheme and quality function to discover communities

with only local information in a one-node-expansion model. In Section 4.4, we

conduct some experiments to support our hypotheses, and finally, in Section

4.5, we make conclusions regarding local community detection methods, based

on discussions in this chapter.

4.2 Initial Steps of Community Expansion

According to [63], Metric T shows significant improvement compared to its

predecessors in both terms of community search for a given node and commu-

nity detection using only local information while covering the whole network.

However, the Metric T is not empty of flaws, so we decided to work on them to

address some issues in this method and hopefully develop a better algorithm

to discover communities in a network.

The first problem emerges when a node is given to search the network

to find other community nodes. The experiments show that starting with a

neighbor with the highest degree presumably results in a better community

than the given node itself. However, there is no proof of this, and it is not

always the case. A random neighbor often outperforms both, but, starting with

an arbitrary node raises other concerns such as uncertainty and inaccuracy of

the final results. Moreover, expansion in the early steps (after selecting an

58

Figure 4.2: Community Search for Node 6 in Karate Club Network; the red
nodes are the neighbors of the starting node.

initial node) is another critical element of discovering proper communities.

To address this problem, we propose to look more comprehensively to re-

alize better how the community should expand. To do this, we use a new

paradigm similar to the famous n-step return in Reinforcement Learning

[64]. In this new approach, instead of looking one step ahead at a time, we

look forward to n steps. We select one immediate neighbor candidate leading

to the highest quality after all n nodes merge into the community.

We call this new improved method the n-step method, which uses the same

quality function as Metric T . Metric T computes the improvement for one

immediate neighbor of the community. The n-step method first finds all tra-

jectories of size n (which is the algorithm’s parameter) regarding the commu-

nity’s expansion. Then the improvements are computed for the cases when

all next n nodes join the community. If trajectory Ti has the biggest positive

improvement, the first node in that trajectory, Ti[0], merges to the commu-

nity. Figure 4.2 shows this procedure starting from node 6. If n = 4, there

59

are many trajectories of size 4 including T1 = (1, 2, 3, 4), T2 = (1, 2, 4, 8), and

T3 = (11, 5, 7, 17). Since T3 makes the biggest improvement concerning the

quality function, T3[0] = 11 will be the node to join the community (which

currently has node 6 inside it).

The main issue is finding the best initial nodes of the community in the first

few steps, so we only use the n-step trajectory searching scheme in a limited

number of times to avoid extra computations. We define another parameter

K, which shows that the n-step approach should only be used before |D| < K.

Considering that increasing n and K adds too much to the run-time, and they

both should be at least 3, we choose n = K = 3 in our experiments. Other

results show that bigger values improve the final result only a little. After that,

the conventional Metric T method would be applied by neglecting expansion’s

future trajectories. The rest of the algorithm is similar to Metric T . The

Algorithm 2 shows how n-step method works.

Algorithm 2: The n-step Community Discovery Method

Input: Network G, Depth n, Repetition K, and Given Node N0

Output: Community D
D ← {N0}
i← 1
Finish← False
while i ≤ K do

T ← {}
for each node Nj ∈ D do

add all paths starting after node Nj of size n to T

remove paths that pass any node in D
for each trajectory Tj ∈ T do

calculate final T score if nodes in Tj join D

Th, Th,s ← trajectory with highest T score and its score
if Th,s > 0 then

D ← Th[0]
i← i+ 1

else
Finish← True

if Finish = False then
D ← Triads(G,D)

return D

60

There are two aspects regarding this new method; 1- why the n-step method

finds better communities than its predecessors. 2- why the n-step method is

not the ideal approach to discover communities. We cover both sides, then

suggest the algorithm formally at the end of this section.

The n-step method may work better than its predecessors, be-

cause in the simplest case (with n = 1 or K = 1), it would produce the same

communities as the original Metric T does. There are two user-defined pa-

rameters in this algorithm, n, which determines how many steps in the future

should be considered, and K, which determines after merging how many nodes

the algorithm should stop this approach and continue with Metric T .

By increasing either n or K, the method looks at the network and how the

community grows more extensively and profoundly, but in different ways. If

we select a larger n, there will be more exploration in the network to add one

single node to the community, whereas by choosing a larger K, more nodes will

be added to the community in this way. So, we consequently expect to have

more meaningful communities that consist of nodes with qualified connections

if larger values are utilized. If we set both parameters to the minimum values

(n = 1 and K = 1), it would perform similar to the original Metric T , which

can be considered the purest form.

Considering the karate club dataset, Table 4.1 shows the results achieved

by each method when they are applied to discover the nodes in the same

community as node 6. We expect each method to find as many nodes as

possible from the true community shown in that table. However, modularity-

based methods and Metric T fail to discover more than five nodes of the

real community. On the other hand, the n-step method could find a set of

nodes very close to the actual community because of a better initial expansion

(adding node 11, then node 1, and so on, instead of node 7).

The n-step method may not be the ideal approach, because there

are some crucial problems which it cannot solve. These problems are not new

ones caused by the n-step method, but the issues with Metric T algorithm

that have never been noticed before. For example, the T measure is calculated

based on the internal and external cliques of size three, then before adding the

61

Discovered Community Community Size
Modularity R {6, 7, 17} 3
Modularity M {6, 17, 7, 11, 5} 5
Modularity L {6, 7, 17} 3

Metric T {6, 7, 5, 11, 17} 5

n-step Method
{6, 11, 1, 2, 4, 3, 8, 14, 7,

5, 13, 17, 18, 20, 22, 10, 12} 17

True Community
(without any order)

{1, 2, 3, 4, 5, 6, 7, 8, 11,
12, 13, 14, 17, 18, 20, 22} 16

Table 4.1: Performance of Different Methods for Community Search on Karate
Dataset for node 6

second and third node to the community, there are no internal cliques, so we

have to pick n ≥ 2, but this is not enough. With three nodes in the community,

there is only one possibility, and that is containing exactly one triangle. If we

increase n, we will have more possibilities, making the comparison and the

node selection process meaningful. On the other hand, by increasing n, the

number of external triangles does not increase as much, which is good because

we want the two figures, ninternal and nexternal to be comparable (in the original

method, nexternal exceeds the ninternal with a high margin in the first steps).

Considering the notes mentioned above, one may think it is possible to

increase n to have better results. However, this is not practical for three

reasons: 1- It increases the required computations much more than linearly.

2- There may not be n nodes between the starting node and the border of

the network, which is practically similar to using a smaller n value or ignoring

such trajectories. 3- Instead of considering exactly n steps in the future, we

can assess up to n steps in the future, but it does not necessarily make sense.

Because ninternal and nexternal are not meaningfully comparable (it would be

like comparing a bigger initial community and a smaller one, their tendency

to merge nodes from their neighborhood would be different).

Metric T ’s second problem is its lack of detection for nodes that do not

contribute to any triangles. Many links are connected to one other node (dan-

gling nodes as introduced by SIWO [1]) or connected to two nodes (works as

a bridge between two parts of the network), or even to many nodes (works as

62

a core but with no triangles). The Metric T will have difficulty recognizing

them (green nodes in Figure 4.3) because of the whole procedure is based on

the number of triangles a node participates in. Such cases increase the impact

of randomness on the early steps, where no internal cliques could exist.

Figure 4.3: Different Cases Showing Drawbacks of Metric T

The third problem is these algorithms (both Metric T and n-step method)

operate very slowly if applied on large networks. Although increasing n and

K theoretically improves the performance by producing more accurate com-

munities, considering the required time and the amount of improvement, there

is no point in using it because the main reason to prefer local methods over

global methods is to save time. It needs to be mentioned that the results are

not as accurate as of the results of global approaches.

4.3 Local SIWO

This new method to discover the community of a given node or all commu-

nities with only using the local information is called Local SIWO. This novel

method is designed to address the problems mentioned earlier of the well-

known modularity-based methods and the issues of the Metric T and the

n-step method. To do this, we propose to use the weighting scheme of the

RSIWO1 (given in Equation 3.4) to find strong and weak edges in the network

as the community grows, then investigate it to discover the communities. All

strength values are initially zero, and they will be updated during the commu-

nity detection process. Algorithm 3 shows how the local weights are assigned

to the edges of the network.

63

Algorithm 3: Assigning Strength for Edges in Local SIWO

Input: Network G, and Given Node N0

Output: Network G with strength attribute for edges of node N0

A← neighbors of node N0

for each node Nj ∈ A do
w0,j ← number of mutual neighbors of nodes N0 and Nj

B ← neighbors of node Nj

for each node Nk ∈ B do
wj,k ← number of mutual neighbors of nodes Nj and Nk

wj,max ← maxk{wj,k}
w0,max ← maxj{w0,j}
for each node Nj ∈ A do

s0,j ← w0,j

2
× (1

w0,max
+ 1

wj,max
)

assign strength s0,j to edge e0,j
return G

We initially place node vX in the community, then all edges that are in-

cident to node vX should update their strength. After that, the next candi-

dates are determined (which are in the community’s immediate neighborhood).

Then, the strengths values of all edges that are connected to the candidate

nodes will be updated. In each iteration, a node from the candidate set joins

the community if it maximally increases the sum of strengths of the edges in-

cident to the nodes inside the community. The algorithm stops adding nodes

to the community if the most significant improvement is a negative value.

There are three main reasons why we use Local SIWO:

1- We want to know if Local SIWO can work adequately like how RSIWO

outperforms the existing global community detection approaches. We expect

its novel weighting scheme and new quality function can be used for local

methods as well.

2- Since this method does not count the edges many times, theoretically, it

should be much faster than any other previous way. We need to visit each edge

once to measure the parameters required for computing the strength, and we

need to visit and calculate each edge only once for an update. So we need to

do computations on every edge two times.

3- Size of the discovered community does not change the tendency of nodes to

merge into the community as much as it does for the other approaches. For

64

example, in the Metric T , no internal triangle exists before a particular time

during the process. The number of external triangles significantly decreases

after the community becomes large enough, which both affect the T score and

the tendency of the community to merge new nodes to it.

4.4 Experiments

Most methods in this field usually search a network only once to find all nodes

with the same community index as the given node. However, in our exper-

iments, it is also essential to measure the performance of different methods

regarding a community detection task. We need to find all communities of the

network with only local access to the network’s information. Thus, we should

adjust these algorithms according to our questions. However, there are some

gray areas in which we tried different settings to achieve the best results. For

example, although removing the nodes in the discovered communities presum-

ably leads to better results, the experiments show that it is not always the case.

The rare inadequate results are probably because of selecting the initial nodes

or the deleted edges for the next round of community search. Considering

this, to have a consistent setting in all experiments, we remove the discovered

communities’ nodes from the set of candidates any time we need to update it.

This plan works for Modularity R, Modularity M , and Modularity L. How-

ever, either approach may work better depending on the given network for

Metric T . So we conduct two experiments, first with only ignoring the nodes

in the discovered communities while looking for the best next candidate and

second with removing such nodes entirely from the network.

There are different experiments on real-world and synthetic networks to

validate and support our new method and hypotheses. The first experiment is

done on three small real-world networks described in Table 4.2. These small

networks are well-known, and we only use them to show the credibility of the

methods. The results of these experiments are shown in Tables 4.3 to 4.5. We

also experimented on synthetic networks generated by LFR. The parameters

are initially set to n = 1000, τ1 = 20, τ2 = 10, µ = 0.1, and min deg = 10,

65

‖V ‖ ‖E‖ ‖C‖ Q
Football Network [9] 115 613 12 0.553

Zachary’s Karate Club [59] 34 78 2 0.358
Political Books Network [60] 105 441 3 0.414

Table 4.2: Real Networks in the Local Community Detection Experiments

C/Cr Q NMI Run Time (s)
Modularity R 0.92 0.575 0.892 0.044
Modularity M 0.92 0.575 0.892 0.034
Modularity L 0.92 0.575 0.892 0.063

Metric T 0.83 0.544 0.876 0.113
n-step 1.08 0.510 0.845 3.424

Local SIWO 1.0 0.601 0.926 0.034

Table 4.3: Experiments on Football Network for Community Detection

unless told otherwise in each experiment set up. We wanted to know how

different methods perform on different types of large synthetic networks. We

conducted two sets of experiments considering both community search for one

given node and community detection for the whole network.

4.4.1 Evaluate Different Network Sizes

Some results for the n-step method are missing because it takes so much time

that it is practically infeasible to be performed as a local community detection

method. So although it may improve the Metric T in some cases, it adds so

much to the run time that it does not make sense anymore to be used. In this

experiment, we set the parameters of n-step method n = 3 and K = 3, which

are relatively small values selected in favor of the run time.

First, we show the synthetic networks in Table 4.6. As can be seen, we gen-

C/Cr Q NMI Run Time (s)
Modularity R 1.5 0.354 0.631 0.007
Modularity M 1.5 0.374 0.608 0.005
Modularity L 2.5 0.375 0.558 0.006

Metric T 1.0 0.371 0.837 0.008
n-step 1.0 0.371 0.837 0.120

Local SIWO 1.0 0.371 0.837 0.006

Table 4.4: Experiments on Karate Network for Community Detection

66

C/Cr Q NMI Run Time (s)
Modularity R 2.0 0.443 0.454 0.073
Modularity M 1.0 0.445 0.534 0.204
Modularity L 2.33 0.440 0.435 0.108

Metric T 1.0 0.471 0.451 0.135
n-step 1.0 0.463 0.435 3.346

Local SIWO 1.33 0.497 0.554 0.038

Table 4.5: Experiments on Political Books Network for Community Detection

‖V ‖ ‖E‖ ‖C‖ avg. deg. Q
Synthetic Network A1 100 585 9 11.700 0.744
Synthetic Network A2 500 2898 46 11.592 0.830
Synthetic Network A3 1000 5804 93 11.608 0.838
Synthetic Network A4 5000 28855 467 11.542 0.853
Synthetic Network A5 10000 57767 928 11.553 0.851

Table 4.6: Synthetic Networks in the Local Community Detection Experiments

erated networks with similar average degree. The size of the networks increases

gradually while keeping good community structures as the Q-modularity val-

ues are high. We expect to see similar results for modularity based approaches,

whereas the Metric T should be better than them. We first show how they per-

formed in a community detection task by comparing their run-time, and other

measures obtained from the detected communities, such as C/Cr, Q modularity

value, and NMI score.

As the experiments show, the novel Local SIWO outperforms other meth-

ods in every test. We picked the winner method in each trial based on a

realistic number of detected communities, the highest Q and NMI values, and

the shortest run-time. In a case that Q and NMI contradict each other, we

prefer the algorithm with higher NMI as it is directly calculated using the

C/Cr Q NMI Run Time
Modularity R 1.0 0.812 0.984 0.035
Modularity M 1.0 0.812 0.984 0.035
Modularity L 1.0 0.812 0.984 0.081

Metric T 1.0 0.743 1.0 0.069
Local SIWO 1.0 0.743 1.0 0.028

Table 4.7: Experiments on Synthetic Network A1 for Community Detection

67

C/Cr Q NMI Run Time
Modularity R 1.0 0.829 0.978 0.292
Modularity M 0.98 0.831 0.977 0.233
Modularity L 1.0 0.829 0.978 0.354

Metric T 1.0 0.829 1.0 0.455
Local SIWO 1.0 0.829 1.0 0.194

Table 4.8: Experiments on Synthetic Network A2 for Community Detection

C/Cr Q NMI Run Time
Modularity R 0.99 0.847 0.988 0.978
Modularity M 0.98 0.858 0.988 0.900
Modularity L 0.99 0.847 0.988 0.1.106

Metric T 1.0 0.838 1.0 1.389
Local SIWO 1.0 0.838 1.0 0.645

Table 4.9: Experiments on Synthetic Network A3 for Community Detection

C/Cr Q NMI Run Time
Modularity R 0.98 0.855 0.992 71.262
Modularity M 0.98 0.861 0.992 75.181
Modularity L 0.98 0.854 0.992 68.863

Metric T 1.0 0.851 0.999 65.899
Local SIWO 1.0 0.853 1.0 41.748

Table 4.10: Experiments on Synthetic Network A4 for Community Detection

C/Cr Q NMI Run Time
Modularity R 0.98 0.851 0.991 555.473
Modularity M 0.97 0.860 0.991 511.239
Modularity L 0.98 0.852 0.991 515.252

Metric T 0.99 0.849 0.999 503.428
Local SIWO 1.0 0.851 1.0 287.674

Table 4.11: Experiments on Synthetic Network A5 for Community Detection

68

Figure 4.4: Accuracy Results of Experiment 1: Community Discovery

ground-truth community. One important observation is to notice how well

Local SIWO performed when the networks’ size increases in different exper-

iments. This vital feature of our new method makes it a good fit for cases

when the network’s size is too large to be analyzed using global approaches.

Figure 4.4 also shows the accuracy of different methods when used to dis-

cover the community of a single node of the network. In each test, nodes of the

graph are given to the methods separately. Then, we calculated the precision,

recall, and F1-score for them. The reported measures are the average accuracy

values over all nodes of each network. As you can see, as the network’s size

increases, most of the algorithms could not maintain their excellent results.

On the other hand, the run-times considerably increase when networks got

bigger. Among all methods, Local SIWO shines, as its accuracy measures are

almost perfect regardless of the given network’s size. Its run-time is another

bright point in this comparison, as it has not been affected as much as the

other methods did.

69

‖V ‖ ‖E‖ ‖C‖ avg. deg. Q
Synthetic Network B1 1000 5776 95 11.552 0.843
Synthetic Network B2 1000 11730 46 23.460 0.813
Synthetic Network B3 1000 17800 30 35.600 0.799
Synthetic Network B4 1000 23641 23 47.282 0.784
Synthetic Network B5 1000 29231 19 58.462 0.774
Synthetic Network B6 1000 35651 15 71.302 0.757

Table 4.12: Synthetic Networks of the Second Experiments

Figure 4.5: Accuracy Results of Experiment 2: Community Discovery

4.4.2 Evaluate Different Network densities

In this experiment, we evaluate the performance of different methods using

networks with the given average degrees in Table 4.12. For this purpose,

we generated six different networks with the same number of nodes using

LFR benchmark. However, by changing the parameter that determines the

minimum degree of a node in the network, we increase the number of edges

and, consequently, the network’s density. Table 4.12 describes the networks

used in this experiment.

In the community discovery task, as Figure 4.5 shows, modularity based

methods are practically the same. However, the Metric T performs better than

70

Figure 4.6: Accuracy Results of Experiment 2: Community Detection

them when the network is more sparse and performs poorly when it is denser.

In all cases, Local SIWO outperforms the other approaches and finishes the

task in a much shorter time. Considering these experiments, we can claim that

Local SIWO is a promising method in community search applications, even on

large and dense networks.

In the community detection task, as Figure 4.6 shows, due to the excellent

community structure of the networks, any method could find consistent results.

However, Local SIWO can find communities with perfect matches compared to

the ground truth, which results in higher Q-modularity value. The run-time is

still by far in favor of Local SIWO. This method is able to find all communities

of a network with tens of thousands of edges in a few seconds, whereas others

need more than some minutes to do the same job.

4.4.3 Evaluate Different Community Structure Quality

In this experiment, we evaluate the performances of different methods when

networks with different mixing parameters µ are given. The mixing parameter

determines the average ratio of the edges between communities to all edges for

71

‖V ‖ ‖E‖ ‖C‖ avg. deg. Q µ
Synthetic Network C1 1000 5783 93 11.566 0.843 0.10
Synthetic Network C2 1000 6070 92 12.140 0.682 0.15
Synthetic Network C3 1000 6063 95 12.126 0.679 0.20
Synthetic Network C4 1000 6053 95 12.106 0.656 0.25
Synthetic Network C5 1000 6325 93 12.650 0.534 0.30
Synthetic Network C6 1000 6425 95 12.850 0.402 0.35
Synthetic Network C7 1000 6455 94 12.910 0.396 0.40

Table 4.13: Synthetic Networks of the Third Experiments

Figure 4.7: Accuracy Results of Experiment 3: Community Discovery

each node. We expect to have networks with higher quality communities when

µ has smaller values. We generated seven different networks with the same

number of nodes and a minimum degree. However, by changing the µ in each

network, we increased the number of edges that lie between communities, and

consequently, the quality of community structure drops. Table 4.13 describes

the networks used in this experiment.

In the community discovery task, as Figure 4.7 shows, modularity based

methods are practically the same. However, Metric T performs better than

them when µ < 0.3 and performs poorly when µ is larger than that. In this

experiment, we can see the n-step method; it is better than the Metric T

72

Figure 4.8: Accuracy Results of Experiment 3: Community Detection

in all cases. However, this method’s average required time is much higher,

so there is a trade-off when we want to determine the better approach. In

most cases, Local SIWO outperforms the others regarding the performance

measures and finishes the task in a much shorter time. However, it could

not perform better than modularity based approaches when µ > 0.35, which

means there are fewer meaningful communities in the network. Considering

these experiments, we can claim that Local SIWO is a promising method in

community search applications, even on networks that do not have suitable

community structures.

Figure 4.8 shows in the community detection task, even though modularity

based methods performed similarly, modularity M is the fastest. On the other

hand, Local SIWO can find communities that result in the highest modularity,

and they almost perfectly match the ground truth information. Local SIWO’s

run-time is better than the others, which is a significant advantage.

73

4.5 Conclusion

In local community discovery and detection, we cannot access the whole net-

work altogether. This previously raised many problems, including finding

communities that suffer from low accuracy, merging outliers to the commu-

nities, etc. Local SIWO does not seem to suffer from such limitations based

on the results in this chapter. The accuracy measures are almost perfect

for different test-case scenarios, regardless of size, density, or even the given

network’s community structure quality. This new local method proves itself

reliable when we need to analyze huge communities and cannot use the whole

graph simultaneously.

In the previous chapter, we showed that RSIWO, our novel global method,

outperforms the best-known and state-of-the-art methods in community detec-

tion tasks. In this chapter, we demonstrated that the same weighting scheme

and quality function (with small alterations) could be applied to find com-

munities using only local information in a short time with reliable accuracy

measures.

The n-step method is theoretically better than Metric T , and different

experiments prove that as well. However, an essential feature of a local ap-

proach is its speed. The n-step process suffers from a long computation time.

When comparing modularity-based methods, we can claim that modularity

M is better than the others. Because although the communities it detects are

almost the same as modularity R and modularity L, the run time is in favor

of modularity M .

Comparing the run-times, we can see the novel Local SIWO is extremely

fast, and there are three reasons for that:

• Fewer Edge Visiting: While other methods have to revisit each edge

that is out of the communities multiple times; Local SIWO only needs

to visit each edge twice to update the strength value. Since we consider

this a new attribute for edges of the graph, once it is processed, we do

not need to recalculate again.

74

• Different Calculation Process: Modularity based methods need

to consider edges inside the communities and edges that connect the

community to the rest of the network. In contrast, the local SIWO only

needs to sum up the edges’ strength values that connect the shell set

to the community’s boundary nodes. This difference is another reason

why local SIWO is so much faster. On the other hand, the Metric T

needs to count the number of triangles every time it looks for a new

node to merge into the community, which is computationally much more

expensive. The n-step method not only does that but also has some

brute-force search mechanism in its first K steps, which puts it on the

last ranking regarding the shortest run-time.

• Smarter Optimization Techniques: As the network’s information

is exposed gradually, any method needs to recalculate the same values

repeatedly. Different methods can be implemented by some tweaks and

optimization techniques to reduce such repetitions. For example, in the

Metric T ’s paper, the authors suggested an incremental counting system

that significantly reduces the run-time. We also added another technique

in the triangle-counting process that reduced the required time three

times. Nonetheless, it cannot perform as fast as Local SIWO.

Although we demonstrated that Local SIWO is by far the fastest, there

may be better implementations of each algorithm that makes them faster.

However, speed has never been our main concern in these experiments. The

most important achievement of this chapter is to propose a novel approach with

a completely different viewpoint to the problem of local community detection

that can find correct outcomes.

75

Chapter 5

Community Detection in
Uncertain Networks

5.1 Motivation

In the last chapter, we saw how we could use local community discovery al-

gorithms to find all the nodes that belong to the same community as a given

node in a network with deterministic edges. A network with deterministic

edges means that we are entirely sure whether a link between two nodes ex-

ists. It is also possible to detect all of the communities of such a network using

only local information. This chapter discusses how we can discover and detect

communities for a network with uncertain edges. This means that each edge

of the network, i.e., between nodes vi and vj, is assigned a probability value

pi,j where 0 ≤ pi,j ≤ 1.

The uncertainty in the edges’ probabilities may occur because of the obser-

vations, measurement errors, report mistakes, etc. For these reasons, reported

networks might include edges with probabilities mostly close to the extremes

of the spectrum of the probability values [0, 1]. However, probability values

may be around 0.5. A probability value close to 0 shows that the edge does

not exist in the network, and the errors cause a low probability. For the high

probability edges, we can infer the opposite.

Local SIWO already demonstrated promising results in cases of community

discovery and detection using only local information of the known part of a

network. We develop an uncertain version of SIWO such that it would be

76

Figure 5.1: An Example to Show the Problem of Using Local SIWO for Un-
certain Networks

capable of taking edge probabilities into account. However, first, we show why

Local SIWO is not enough to handle the probabilities. Figure 5.1 depicts an

uncertain network with the likelihood of each edge on top of it, consisting of

two cliques of size 3 and 4, where they are connected to node 5 with 3 and

2 edges, respectively. Local SIWO would find nodes {v1, v2, v3, v4, v5} in one

community and nodes {v6, v7, v8} in another community, whereas we expect

two communities of size 4, such that node 5 belongs to the other community.

This is because we are evidently more confident about the edges e5,6 and e5,7

rather than edges e1,5 e2,5, and e3,5. In the following sections, we introduce a

metric to systematically measure the strength of found communities and show

why two communities of size 4 are more meaningful than what Local SIWO

offers as the network’s detected communities.

In Section 5.2, we first review Modularity UR and UR+K, two previous

methods for community detection on uncertain networks, then propose Un-

certain SIWO, our new uncertain community detection algorithm, based on

Local SIWO introduced in 4.3. In Section 5.3, we go over an old uncertain

network generator and discuss its drawbacks, then suggest a new approach to

synthesize networks with probabilistic edges. In Section 5.4, we conduct some

experiments to evaluate our proposed algorithm. Finally, in Section 5.5, we

make conclusions regarding the local community detection when the edges of

the network are uncertain, based on the discussions in this chapter.

77

5.2 Local Community Discovery for Networks

with Uncertain Edges

5.2.1 Review of Previous Methods

Based on some local community detection algorithms for deterministic net-

works, proper methods are devised to find communities in uncertain networks.

In Chapter 4, we review some deterministic approaches, including local mod-

ularity R. Inspired by this, Zhang et. al. [41] introduced two methods to

discover communities in networks with edge uncertainty locally; local modu-

larity UR and its revised version, UR+K.

The main idea of modularity UR is to convert the uncertain edges into

a deterministic scenario using probability values for the edges. Then, after

partitioning the network to the detected community D (consisting of C and

B, refer to Section 4.1), the neighborhood S and the unknown part of the

network, the uncertain modularity formula can be defined as follows:

UR =
E(Bin edge)

E(Bin edge) + E(Bout edge)
(5.1)

where E(Bin edge) is the expected number of edges that connect boundary

nodes and the nodes in D and E(Bout edge) is the expected number of edges

that connect boundary nodes and the nodes in S. These two terms can be

expressed as follows:

E(Bin edge) =
1

2

∑
vi,vj∈B,i 6=j

pi,j +
∑

vi∈B,vj∈C

pi,j (5.2)

E(Bout edge) =
∑

vi∈B,vj∈S

pi,j (5.3)

In each step to add a new node to the community, after the modularity

values are calculated using this new formula, the method is similar to the

local modularity R. The algorithm uses the uncertain modularity measure

UR instead of the original R in Clauset [33] method. However, this new un-

certain method has the same problem that the deterministic modularity R

suffers from, which is the early steps in expanding and discovering outliers

78

Figure 5.2: An example showing the problem when only using UR to find the
local community [41]

into the community. Similar to that method, UR may expand the commu-

nity in the wrong direction and ultimately declares a wrong group of nodes as

the discovered community. Zhang exposed this issue with an example shown

in Figure 5.2 in which starting from node v6 leads to discovering false com-

munities {v1, v2, v3, v4, v5} and {v6, v7, v8, v9, v10}. These are not the correct

communities because nodes v1 to v6 compose a 6-vertex clique and nodes v7

to v10 compose another clique of size 4. Although the community structure

is quite simple, modularity UR is unable to discover the actual communities

correctly. There are two ways to handle this issue; the first is to regard such

start nodes as periphery nodes and report no community for them. This am-

biguity is not acceptable as there may exist more periphery nodes in more

complex networks. The need to effectively address this issue is inevitable so

that the real community members could be detected for any node in the net-

work. Zhang et. al. [41] suggested an amendment to modularity UR and

called it UR+K to overcome the problem of periphery nodes.

The new measure K takes the nodes in S into account while paying atten-

tion to nodes in B. It aims to measure the relationship between a candidate

node vi and the discovered community D, which can be defined as follows:

Ki = E(Ni,in edge) + E(Ni,shell edge) (5.4)

79

Figure 5.3: Am Example to Show the Problem of Using R and UR for Uncer-
tain Networks

where E(Ni,in edge) is the expected number of edges that connect node vi

and the nodes in D and E(Ni,shell edge) is the expected number of edges that

connects node vi and the other nodes in S. They can be represented as follows:

E(Ni,in edge) =
∑
vj∈D

pi,j (5.5)

E(Ni,shell edge) =
∑
vj∈S

pi,j[1−
∏
vk∈D

(1− pj,k)] (5.6)

This new parameter K plays two critical roles; to determine which node

from the shell set to join the discovered community D in the first few steps and

break ties when modularity UR ties in future phases. The UR+K algorithm

works by placing the start node in the community D, and then, it sorts all

candidate nodes (nodes in S) based on their K or UR measures for the first

few steps and the later steps respectively. The algorithm picks the first node

and adds it to the community until no node in S can increase its modularity.

The number of steps that K supersedes UR in ranking the candidate nodes

is a hyper-parameter demonstrated by λ, which can be set to λ = 3 based on

the experiments they conducted.

Although this new method addresses a crucial drawback of the former UR

algorithm and can handle the edges’ probability values, it still cannot perform

well on simple networks such as the example shown in Figure 5.3. We expect

two important features; a good community discovery algorithm should ideally

80

Start Node Modularity UR Modularity UR+K Uncertain SIWO
v1 {1, 2, 3, 4, 5} {1, 2, 3, 4} {1, 2, 3, 4, 5}
v2 {1, 2, 3, 4, 5} {1, 2, 3, 4} {1, 2, 3, 4, 5}
v3 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4, 5}
v4 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4, 5}
v5 {1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
v6 {6, 7, 8} {6, 7, 8} {6, 7, 8}
v7 {6, 7, 8} {6, 7, 8} {6, 7, 8}
v8 {6, 7, 8} {6, 7, 8} {6, 7, 8}

Table 5.1: Performance of Different Methods for Community Search on the
Example Network in Figure 5.3

be able to find the desired group of nodes, which connect to each other more

densely, correctly and entirely, regardless of which node in that particular

community starts the expansion.

Table 5.1 shows the results of the previous methods, modularity UR, mod-

ularity UR+K. The third column depicts the communities discovered by Un-

certain SIWO, which is our proposed method that we introduce in the next

section. The first two could not find the true communities when nodes v1 to v4

started community expansion. Modularity UR also fails to find the true com-

munity when node v5 is the start node and put all nodes in a single community.

This problem originates from the inability to initialize the expansion in the

right direction, leading to different community members when other nodes are

used for the start. So, paying attention to the shell set alongside the sharp-

ness of the boundary set (which UR+K claims to take into account) is not

enough, as this simple network and the discovered communities in Table 5.1

illustrate. We have already demonstrated that similar approaches would fail

in a deterministic scenario in Chapter 4 (refer to different modularity-based

methods discussed in Section 4.1). So, we propose a new algorithm based on

Local SIWO to find communities in the uncertain networks and address the

problem derived from the deterministic local approaches.

81

5.2.2 Introducing the Uncertain SIWO

We have already shown that Local SIWO outperforms many other local com-

munity detection algorithms in Chapter 4. It could effectively address the

problem of initial steps while the community is expanding and dropping the

outliers to not join the community in a considerably less amount of time.

Inspired by that novelty, we propose a new method to detect and discover

communities in large uncertain networks using only local information.

The major transformation in the Uncertain SIWO, which we call USIWO

after this, is how to compute the strength values. Studying the deterministic

networks taught us exploiting cliques would lead to more meaningful local

communities than when an algorithm only uses edges separately (like how

modularity R and L find communities). Thus, we used the idea of counting the

number of shared neighbors of each two nodes, i.e., vi and vj, to calculate the

strength value of the edge ei,j that connects them. This quantity is the number

of size three cliques that both nodes vi and vj belong to. In a probabilistic

scenario, for any node vk to be the shared neighbor of both nodes vi and vj,

both edges ei,k and ej,k are important. Thus, instead of counting the number

of shared neighbors, we need to calculate their expected number, equal to half

of the expected number of the edges that connect any shared neighbor vk to

the end-nodes of the edge ei,j. This can be defined as follows:

si,j = E(Ni,j) =
1

2

∑
k 6=i,k 6=j,
vk∈V

(pi,k + pj,k) (5.7)

Algorithm 4 shows how USIWO uses the edges’ probabilities to calculate

the strength values for the edges. USIWO starts with placing a given node into

the community D, and all its neighbors, which are any edges with probability

greater than zero, into the shell set S. Each step aims to add only the best

node from S to D if such a node exists that improves the quality function. To

do this, the strength values of the edges incident to the nodes in S needs to be

calculated based on the expected number of neighbors that a candidate shares

with another node in its neighborhood. Algorithm 4 describes how USIWO

assigns strengths to the edges.

82

Algorithm 4: Assigning Strength for Edges in USIWO

Input: Network G, and Given Node N0

Output: Network G with strength attribute for edges incident to N0

for each node Nj ∈ G.neighbors(N0) do
M ← shared neighbors of N0 and Nj

s0,j ← 0
for each node Nk ∈M do

s0,j ← s0,j + 1
2
[p0,k + pk,j]

for each node Nk ∈ G.neighbors(Nj) do
M ′ ← neighbors of node Nk

sj,k ← 0
for each node Nl ∈M ′ do

sj,k ← sj,k + 1
2
[pj,l + pl,k]

smax
j ← maxk{sj,k}

smax
0 ← maxj{s0,j}

for each node Nj ∈ G.neighbors(N0) do
S0,j ← s0,j

2
× (1

smax
0

+ 1
smax
j

)

assign strength S0,j to edge e0,j
return G

From all candidate nodes in S, the one that increases the total strength of

the edges inside the community the most joins D. Then, we need to update

S accordingly and try to find the next best node among nodes in the new S.

This procedure stops when there are no more nodes in the shell set to increase

the discovered community’s total strength.

USIWO has three more important advantages over modularity UR and

modularity UR+K :

1. This algorithm does not need to calculate two different modularity mea-

sures for each node when that node is considered a candidate to join the

community D. The strength value of an edge requires to be computed

only once, and it remains fixed until the algorithm stops so that we can

use it multiple times without extra computational costs.

2. USIWO is free of hyper-parameters. Tuning any hyper-parameter, such

as UR+K ’s λ, usually requires a significant amount of data. Otherwise,

an untrained value may lead the algorithm to fail in unusual cases.

83

3. Modularity UR and UR+K discover communities similar to how mod-

ularity R finds communities. They need extensive and repetitive edge

counting whenever a node is about to join the community. USIWO fol-

lows the instructions introduced by Local SIWO and needs significantly

less computation. We have already demonstrated in the deterministic

scenarios how fast Local SIWO is, compared to other methods such as

modularity R. Thus, we can anticipate USIWO would be faster than

UR and UR+K.

We also can measure the goodness of a detected community C or the whole

partition P in an uncertain network using the following metrics. The USIWO

measure can be in the range of [0, 1]. A value close to 0 shows a weak com-

munity/partitioning, meaning there is the most uncertainty about the nodes’

inter-relations in each community. However, a value close to 1 shows a strong

community/partitioning for the opposite reason.

USIWOC =

∑
vi,vj∈C pi,j

|{ei,j ∈ E : vi, vj ∈ C}|
(5.8)

USIWOP =
1

|P |
∑
ci∈P

USIWO(ci) (5.9)

Looking back at Figure 5.1 at the beginning of this chapter, we can use

this goodness measure to support our claim why two communities of size four

are better than a community of size five and another of size three. Using

USIWO measure, the evaluations for both partitions are as follows, when

P1 = {{v1, v2, v3, v4, v5}, {v6, v7, v8}} and P2 = {{v1, v2, v3, v4}, {v5, v6, v7, v8}}:

USIWOP1 =
1

2
[USIWO{v1:v5} + USIWO{v6 : v8}] =

1

2
[
6× 0.9 + 3× 0.3(

4
2

)
+ 3

+
3× 0.9(

3
2

)] =
1

2
× [0.7 + 0.9] = 0.8

(5.10)

USIWOP2 =
1

2
[USIWO{v1:v4} + USIWO{v5 : v8}] =

1

2
[
6× 0.9(

4
2

) +
3× 0.9 + 2× 0.8(

3
2

)
+ 2

] =
1

2
× [0.9 + 0.86] = 0.88

(5.11)

84

Based on evaluations in Equation 5.10 and Equation 5.11 we conclude that

P2 is a better partitioning for the example network in Figure 5.1. Following

the same evaluation, for the example network in Figure 5.3, the quality of

P1 = {{v1, v2, v3, v4, v5}, {v6, v7, v8}} is 1
2
× [0.725+0.9] = 0.8125 is higher than

the quality of P2 = {{v1, v2, v3, v4}, {v5, v6, v7, v8}} which is 1
2
×[0.7+0.9] = 0.8.

So, our assumption for the true community structure was correct.

5.3 Uncertain Network Generator

Since there are not many publicly available uncertain network datasets, we

need to generate such networks synthetically to conduct our experiments and

evaluate our hypotheses. In this section, we first review a network generator

suggested by Zhang et. al. [41], then after mentioning how we can improve on

that, we propose our new uncertain network generator, which produces more

realistic networks.

5.3.1 Review of A Previous Method

Zhang et. al. [41] proposed a method to generate networks with edge uncer-

tainty derived from a deterministic network, based on three main assumptions:

1. If an edge exists between nodes vi and vj in the deterministic network,

the probability of this edge in the uncertain network should be high.

2. If nodes vi and vj are not connected in the deterministic network, a non-

existential edge between them is still possible, which should have a low

probability in the uncertain network. These edges would be new to the

uncertain network compared to the original deterministic network.

3. Nodes with a higher degree in the deterministic network are more likely

to have new added edges in the uncertain network.

The ratio of the extra non-existential edges to the number of edges in the

deterministic network is adjustable in this method. It is also possible to set

85

mean values for the normal probability distribution function that generates

high and low probabilities.

Although this network generator produces uncertain networks with proba-

bilistic edges, the second assumption leads to adding new edges. These edges

may change the network’s community structure even though the probabili-

ties are low, so it would be challenging to evaluate a community detection

algorithm’s output.

5.3.2 The New Uncertain Network Generator

To address the critical problem that the former network generator suffers from,

we propose a new approach to synthesize uncertain networks. This algorithm

takes a deterministic network G with the ground-truth community C, Rp, and

Rs. Rp is the ratio of the number of probabilistic edges to the number of all

edges in the network. Rs is the swap ratio, which is the proportion of proba-

bilistic edges inside the communities to all probabilistic edges in the network.

Since we initially consider uncertainty only for the edges between the com-

munities (where swap ratio is zero), we can increase the swap ratio to replace

some of such inter-community edges with the edges inside the communities.

However, if the swap ratio is higher than a certain amount, it would spoil the

community structure’s guarantee.

The output of this generator is a network with only some uncertain edges,

and for the rest of them, there is no doubt about their existence, i.e., pi,j = 1.0

for the edge ei,j. This feature makes more sense as not all data is unclear

in real datasets. The input deterministic network can be created using LFR

benchmark [43], DANCer [65], etc.

After a deterministic network and its ground-truth community structure

are available, the number of uncertain edges is determined using the ratio of

probabilistic edges. The algorithm then generates the same number of positive

values between [0, 1] as the probabilities. We suggest a normal distribution;

however, users can apply other probability distribution functions to generate

the random probability values. Since we need to assign the higher probabilities

to the edges inside the communities first and then lower probabilities to the

86

between-community edges, we need to sort these values in descending order.

We swap as many probability values as required by the swap ratio in the input

parameters. The algorithm provides the possibility of swapping not to limit

the network’s uncertainty to the inter-community edges; it is still possible that

edges inside a community have this issue. Finally, we assign the probability

values to the edges inside and between the communities, respectively. The

Algorithm 5 demonstrates how the uncertain network generator works.

Algorithm 5: Generating Uncertain Network with Ground-truth
Communities

Input: Deterministic Network G, Ground-truth Communities C,
Probabilistic Edges Ratio RP , and Swapping Ratio RS

Output: Network G′ with Uncertain Edges
G′ ← Create a new graph
m← Number of Edges of G
m1 ← Number of Edges Inside Communities of G
m2 ← Number of Edges Between Communities of G
m′ ← m×RP . number of all probabilistic edges
m′′ ← m′ ×RS . number of swapped probabilistic edges
P ← Generate m′ Random Numbers ∈ [0, 1]
P ← Sort(P)
i← 0
while i < m′′ do

j ← Random Number ∈ [0,m′)
P [j], P [m′ − j]← P [m′ − j], P [j]
i← i+ 1

P1 ← P [0 : bm1

m
c]

P2 ← P [bm1

m
c : end]

for each edge ei,j ∈ G.edges do
if C(i) = C(j) & len(P1) > 0 then

p← P1.pop()
Add Probabilistic Edge ei,j with pi,j = p to G′

else if C(i) 6= C(j) & len(P2) > 0 then
p← P2.pop()
Add Probabilistic Edge ei,j with pi,j = p to G′

else
Add Probabilistic Edge ei,j with pi,j = 1.0 to G′

return G′, C

87

Variable Description Value
n number of nodes 100
τ1 parameter of degree distribution 20
τ2 parameter of community size distribution 10
µ mixing parameter 0.2

min degree minimum degree of nodes 30

Table 5.2: Parameters for Generating Synthetic Networks using LFR

5.4 Experiments

In this section, we evaluate our proposed algorithm, USIWO, against the pre-

vious methods, modularity UR and modularity UR+K in terms of accuracy

and run time. We use our uncertain network generator, which needs a deter-

ministic network with known ground-truth community information, to prepare

the evaluation’s required datasets. We use both real and synthetic networks

with different sizes and community structures for the initial deterministic net-

work. We consider the Zachary’s Karate Club [59], the Football network [9],

and a synthetic network generated according to Table 5.2.

We conduct two sets of experiments for each network dataset; in the first

one, we increase the probabilistic edges’ ratio in a network and record each

method’s performance. In the second set of experiments, we keep the percent-

age of the probabilistic edges constant on 30% and increase the swap ratio.

The higher the swap ratio, the more inside community edges are assigned

with smaller probability values. This ultimately leads to failing to keep the

community structure.

We generate with a normal distribution with parameters µ = 0.5 and

σ = 0.1 and assign them to 0% up to 35% of the edges of the network with

5% step size. In the next experiment, 0% up to 70% of the edges are swapped

as described before. To get more reliable results, we repeat the random prob-

ability assignments 20 times, and the values shown in the following figures are

the average over those 20 runs. For the run time bar plot, we measure each

algorithm’s cumulative required time to start with every node in the network

and discover its corresponding community. So, both the network’s size and

the density of the connections inside it have an impact on the final run time.

88

Figure 5.4: Experiment on Percentage of Probabilistic Edges on Karate
Dataset. We assign probabilities to up to 35 % of network’s edges.

Figure 5.5: Experiment on Swapping Probabilistic Edges on Karate Dataset.
We assign up to 70 % of the generated probabilities to the edges inside the
communities.

89

Figure 5.6: Experiment on Percentage of Probabilistic Edges on Football
Dataset. We assign probabilities to up to 35 % of network’s edges.

Figure 5.7: Experiment on Swapping Probabilistic Edges on Football Dataset.
We assign up to 70 % of the generated probabilities to the edges inside the
communities.

90

Figure 5.8: Experiment on Percentage of Probabilistic Edges on Synthetic
Dataset.We assign probabilities to up to 35 % of network’s edges.

Figure 5.9: Experiment on Swapping Probabilistic Edges on Synthetic Dataset.
We assign up to 70 % of the generated probabilities to the edges inside the
communities.

91

Figure 5.4 to Figure 5.9 show that USIWO could outperform UR and

UR+K in most cases considering the accuracy measures (precision, recall,

and F1-score). USIWO ’s performance drops by assigning probabilities to more

edges in some cases and remains relatively constant in others. However, the

performance of UR and UR+K improved by adding these uncertainties, which

is counter-intuitive. Zhang had the same observation in [41]. The other sig-

nificant improvement of USIWO is its run time compared to the other two

methods, which confirms our anticipation in 5.2.2.

5.5 Conclusion

In this chapter, we propose a novel method that is able to locally discover

the community of a given node in an uncertain network. By converting the

uncertainty to edge probabilities and exploiting the notion of local strength

of the edges, we could avoid wrong expansion in the first steps that former

modularity R-based approaches suffer from. Our algorithm can discover the

communities even for the periphery nodes, so any node in an uncertain network

can be grouped into their actual community.

We also provide a principled approach to evaluate the quality of a dis-

covered community or the whole detected partition of an uncertain network

such that the nodes with the highest level of certain connections should form

a community. Based on this definition of quality, our proposed method could

handle special networks that UR and UR+K could not process correctly. The

experiments on different types of uncertain networks show that our method

not only performs better than the former approaches in terms of accuracy but

also is much faster (up to 70 times). This advantage is more evident on larger

and denser networks.

The new USIWO method is hyper-parameter-free, which means it does not

need any prior training to be ready to detect and discover communities of the

uncertain networks. It also avoids extra computation, which UR+K needs to

perform.

92

Chapter 6

Conclusion

6.1 Contributions

In this thesis, we first study existing deterministic community detection algo-

rithms, both global and local, and then develop our novel approaches to detect

and discover communities globally and locally. We call them RSIWO (which

stands for Reciprocal SIWO) and Local SIWO respectively. After analyzing

deterministic local approaches, we find the essential features that enable our

proposed method to perform well. Then, we transfer them into an uncertain

scenario and develop USIWO, which is a new method to detect and discover

communities in networks with probabilistic edges. We finally propose a good-

ness function which can be used to measure the quality of a community or an

entire partitioning done by a community detection algorithm over a network

with uncertain edges.

We build RSIWO by merging a few beneficial features of other existing

methods, combined with some novelty in both algorithm and implementation.

RSIWO ’s goal is to solve the resolution problem, guarantee the connectedness

for the detected communities, and perform quickly.

Local SIWO shows that discovering local communities with a combination

of nodes and their inter-connection, i.e., their shared neighbors, leads to more

accurate results. It aims to solve the problem of wrong initial expansion that

many existing methods suffer from and provide a mechanism that finds the

same group of nodes regardless of which node of the community starts the

expansion.

93

USIWO demonstrated that we can use local deterministic community dis-

covery algorithms and adjust them to perform well on the uncertain networks.

It also could remedy some drawbacks of existing methods in this field.

Since there is a shortage of publicly available real-world uncertain networks,

using a generator that produces synthetic networks is essential to conduct ex-

periments. Because of this, we provide a network generator that produces

realistic uncertain datasets. We also introduce, review, and use different eval-

uation metrics, each suitable for different cases and viewpoints.

6.2 Future Work

We were able to propose community discovery and detection methods that

can find communities using the network’s information locally or globally. Al-

though these methods are accurate, reliable, and fast, there is more room to

improve them. We may continue this research path to enable our next method

capable of dealing with weights on the edges. More generally, we also may

consider networks with attributes. In addition to the topological structure of

the network, we may need to take another source of data about the network’s

entities into account.

The new algorithms suggested in this thesis assume each node only belong

to one community. They also consider the edges have no direction, meaning

there is no difference between ei,j an ej,i. Related work in the future may

consider networks with overlapping communities or networks with directed

edges. These scenarios may be considered for both deterministic and uncertain

networks, as well as global community detector algorithms and local ones. For

example, in local community detection, we currently remove the nodes in the

discovered communities or ignore them among the candidates to find the next

community. However, we can give such nodes the chance to be picked for the

next communities by not removing or ignoring them. It would also be possible

to consider a parallel implementation when the overlap is desired.

We mentioned in Section 1.2.3 that there are various types of uncertainty

in a social network, such as uncertainty in the existence of nodes, the presence

94

of edges, or their attributes. We may follow this line of research to propose

methods to handle other types of uncertainty or even be capable of processing

networks with multiple types of uncertainty.

95

References

[1] S. Gharaghooshi, O. Zäıane, C. Largeron, M. Zafarmand, and C. Liu,
“Addressing the resolution limit and the field of view limit in community
mining,” in. Apr. 2020, pp. 210–222, isbn: 978-3-030-44583-6. doi: 10.
1007/978-3-030-44584-3_17.

[2] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999. doi: 10.
1126/science.286.5439.509. [Online]. Available: https://doi.org/
10.1126/science.286.5439.509.

[3] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998. doi: 10.
1038/30918. [Online]. Available: https://doi.org/10.1038/30918.

[4] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–
8582, May 2006. doi: 10.1073/pnas.0601602103. [Online]. Available:
https://doi.org/10.1073/pnas.0601602103.

[5] N. Humphries, N. Queiroz, J. Dyer, N. Pade, M. Musyl, K. Schaefer, D.
Fuller, J. Brunnschweiler, T. Doyle, J. Houghton, G. Hays, C. Jones, L.
Noble, V. Wearmouth, E. Southall, and D. Sims, “Environmental context
explains lévy and brownian movement patterns of marine predators,”
Nature, vol. 465, pp. 1066–9, Jun. 2010. doi: 10.1038/nature09116.

[6] A. Klaus, S. Yu, and D. Plenz, “Statistical analyses support power law
distributions found in neuronal avalanches,” PloS one, vol. 6, e19779,
May 2011. doi: 10.1371/journal.pone.0019779.

[7] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densifi-
cation and shrinking diameters,” en, ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, p. 2, Mar. 2007, issn: 1556-4681, 1556-
472X. doi: 10.1145/1217299.1217301. [Online]. Available: https:

//dl.acm.org/doi/10.1145/1217299.1217301.

[8] R. D. Luce and A. D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, Jun. 1949, issn:
1860-0980. doi: 10.1007/BF02289146. [Online]. Available: https://
doi.org/10.1007/BF02289146.

96

https://doi.org/10.1007/978-3-030-44584-3_17
https://doi.org/10.1007/978-3-030-44584-3_17
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1038/nature09116
https://doi.org/10.1371/journal.pone.0019779
https://doi.org/10.1145/1217299.1217301
https://dl.acm.org/doi/10.1145/1217299.1217301
https://dl.acm.org/doi/10.1145/1217299.1217301
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146

[9] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, Jun. 2002. doi: 10.1073/pnas.122653799.
[Online]. Available: https://doi.org/10.1073/pnas.122653799.

[10] T. Silva and L. Zhao, “Semi-supervised learning guided by the modular-
ity measure in complex networks,” Neurocomputing, vol. 78, pp. 30–37,
Feb. 2012. doi: 10.1016/j.neucom.2011.04.042.

[11] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486,
Jun. 2009. doi: 10.1016/j.physrep.2009.11.002.

[12] M. Newman and M. Girvan, “Finding and evaluating community struc-
ture in networks,” Physical review. E, Statistical, nonlinear, and soft
matter physics, vol. 69, p. 026 113, Mar. 2004. doi: 10.1103/PhysRevE.
69.026113.

[13] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast un-
folding of communities in large networks,” Journal of Statistical Mechan-
ics Theory and Experiment, vol. 2008, Apr. 2008. doi: 10.1088/1742-
5468/2008/10/P10008.

[14] V. A. Traag, L. Waltman, and N. J. van Eck, “From louvain to leiden:
Guaranteeing well-connected communities,” Scientific Reports, vol. 9,
no. 1, Mar. 2019. doi: 10.1038/s41598-019-41695-z. [Online]. Avail-
able: https://doi.org/10.1038/s41598-019-41695-z.

[15] S. Wasserman and K. Faust, “Social network analysis in the social and
behavioral sciences,” in Social Network Analysis: Methods and Applica-
tions, ser. Structural Analysis in the Social Sciences. Cambridge Univer-
sity Press, 1994, pp. 3–27. doi: 10.1017/CBO9780511815478.002.

[16] E. Otte and R. Rousseau, “Social network analysis: A powerful strat-
egy, also for the information sciences,” Journal of Information Science,
vol. 28, no. 6, pp. 441–453, 2002. doi: 10.1177/016555150202800601.

[17] R. Alsamadani, M. Hallowell, and A. N. Javernick-Will, “Measuring
and modelling safety communication in small work crews in the us us-
ing social network analysis,” Construction Management and Economics,
vol. 31, no. 6, pp. 568–579, 2013. doi: 10.1080/01446193.2012.685486.

[18] M. Keeling and K. Eames, “Networks and epidemic models,” Journal
of the Royal Society, Interface / the Royal Society, vol. 2, pp. 295–307,
Oct. 2005. doi: 10.1098/rsif.2005.0051.

[19] M. D. Ward, K. Stovel, and A. Sacks, “Network analysis and political
science,” Annual Review of Political Science, vol. 14, no. 1, pp. 245–264,
2011. doi: 10.1146/annurev.polisci.12.040907.115949.

[20] J. Bouttier, P. Francesco, and E. Guitter, “Geodesic distance in planar
graphs,” Nuclear Physics B, vol. 663, pp. 535–567, Jul. 2003. doi: 10.
1016/S0550-3213(03)00355-9.

97

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.neucom.2011.04.042
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1017/CBO9780511815478.002
https://doi.org/10.1177/016555150202800601
https://doi.org/10.1080/01446193.2012.685486
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1146/annurev.polisci.12.040907.115949
https://doi.org/10.1016/S0550-3213(03)00355-9
https://doi.org/10.1016/S0550-3213(03)00355-9

[21] R. D. Alba, “A graph-theoretic definition of a sociometric clique,” The
Journal of Mathematical Sociology, vol. 3, no. 1, pp. 113–126, 1973. doi:
10.1080/0022250X.1973.9989826.

[22] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Mixing local and
global information for community detection in large networks,” Journal
of Computer and System Sciences, vol. 80, Mar. 2013. doi: 10.1016/j.
jcss.2013.03.012.

[23] M. Newman, “Fast algorithm for detecting community structure in net-
works. phys. rev. e stat. nonlin. soft. matter. phys. 69(6 pt 2), 066133,”
Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 69,
p. 066 133, Jul. 2004. doi: 10.1103/PhysRevE.69.066133.

[24] S. Rahiminejad, M. Maurya, and S. Subramaniam, “Topological and
functional comparison of community detection algorithms in biological
networks,” BMC Bioinformatics, vol. 20, Dec. 2019. doi: 10 . 1186 /

s12859-019-2746-0.

[25] A. Clauset, M. Newman, and C. Moore, “Finding community struc-
ture in very large networks,” Physical review. E, Statistical, nonlinear,
and soft matter physics, vol. 70, p. 066 111, Jan. 2005. doi: 10.1103/
PhysRevE.70.066111.

[26] V. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for resolution-
limit-free community detection,” Physical review. E, Statistical, nonlin-
ear, and soft matter physics, vol. 84, p. 016 114, Jul. 2011. doi: 10.1103/
PhysRevE.84.016114.

[27] L. Waltman and N. J. van Eck, “A smart local moving algorithm for
large-scale modularity-based community detection,” European Physical
Journal B, vol. 86, Aug. 2013. doi: 10.1140/epjb/e2013-40829-0.

[28] J. Chen, O. Zäıane, and R. Goebel, “Detecting communities in social
networks using local information,” From Sociology to Computing in So-
cial Networks, ISBN 978-3-7091-0293-0. Springer-Verlag Wien, 2010, p.
197, Jan. 2010. doi: 10.1007/978-3-7091-0294-7_11.

[29] L. Branting, “Context-sensitive detection of local community structure,”
Soc. Netw. Anal. Min., vol. 2, pp. 1–11, Sep. 2011. doi: 10 . 1007 /

s13278-011-0035-7.

[30] A. Zakrzewska and D. Bader, “A dynamic algorithm for local community
detection in graphs,” Aug. 2015, pp. 559–564. doi: 10.1145/2808797.
2809375.

[31] Y. Li, K. He, D. Bindel, and J. Hopcroft, “Uncovering the small commu-
nity structure in large networks: A local spectral approach,” Sep. 2015,
pp. 658–668. doi: 10.1145/2736277.2741676.

[32] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” vol. 2, Nov. 2001.

98

https://doi.org/10.1080/0022250X.1973.9989826
https://doi.org/10.1016/j.jcss.2013.03.012
https://doi.org/10.1016/j.jcss.2013.03.012
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.1007/978-3-7091-0294-7_11
https://doi.org/10.1007/s13278-011-0035-7
https://doi.org/10.1007/s13278-011-0035-7
https://doi.org/10.1145/2808797.2809375
https://doi.org/10.1145/2808797.2809375
https://doi.org/10.1145/2736277.2741676

[33] A. Clauset, “Finding local community structure in networks,” en, Phys-
ical Review E, vol. 72, no. 2, p. 026 132, Aug. 2005, issn: 1539-3755,
1550-2376. doi: 10.1103/PhysRevE.72.026132. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.72.026132.

[34] F. Luo, J. Wang, and E. Promislow, “Exploring local community struc-
tures in large networks,” Web Intelligence and Agent Systems, vol. 6,
pp. 387–400, Jan. 2008. doi: 10.1109/WI.2006.72.

[35] J. Whang, I. Dhillon, and D. Gleich, “Non-exhaustive, overlapping k -
means,” in. Jun. 2015, pp. 936–944, isbn: 978-1-61197-401-0. doi: 10.
1137/1.9781611974010.105.

[36] Z. Ding, X. Zhang, D. Sun, and L. Bin, “Overlapping community detec-
tion based on network decomposition,” Scientific Reports, vol. 6, Apr.
2016. doi: 10.1038/srep24115.

[37] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, pp. 814–818, Jul. 2005.

[38] J. Whang, D. Gleich, and I. Dhillon, “Overlapping community detection
using seed set expansion,” Oct. 2013, pp. 2099–2108. doi: 10.1145/

2505515.2505535.

[39] Z. Yakoubi and R. Kanawati, “Applying leaders driven community de-
tection algorithms to data clustering,” Aug. 2012.

[40] M. Elyasi, M. Meybodi, A. Rezvanian, and M. Amir Haeri, “A fast al-
gorithm for overlapping community detection,” Sep. 2016.

[41] C. Zhang and O. R. Zaiane, “Detecting local communities in networks
with edge uncertainty,” in 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), IEEE,
Aug. 2018. doi: 10.1109/asonam.2018.8508543. [Online]. Available:
https://doi.org/10.1109/asonam.2018.8508543.

[42] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of anthropological research, pp. 452–473, 1977.

[43] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical review. E, Statistical,
nonlinear, and soft matter physics, vol. 78, p. 046 110, Nov. 2008. doi:
10.1103/PhysRevE.78.046110.

[44] M. Niewiadomska-Bugaj and D. Mihalko, “On similarity indices and cor-
rection for chance agreement,” Journal of Classification, vol. 23, pp. 301–
313, Feb. 2006. doi: 10.1007/s00357-006-0017-z.

[45] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge, UK: Cambridge University Press, 2008, isbn:
978-0-521-86571-5. [Online]. Available: http://nlp.stanford.edu/IR-
book/information-retrieval-book.html.

99

https://doi.org/10.1103/PhysRevE.72.026132
https://link.aps.org/doi/10.1103/PhysRevE.72.026132
https://doi.org/10.1109/WI.2006.72
https://doi.org/10.1137/1.9781611974010.105
https://doi.org/10.1137/1.9781611974010.105
https://doi.org/10.1038/srep24115
https://doi.org/10.1145/2505515.2505535
https://doi.org/10.1145/2505515.2505535
https://doi.org/10.1109/asonam.2018.8508543
https://doi.org/10.1109/asonam.2018.8508543
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1007/s00357-006-0017-z
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

[46] S. Ahajjam, E. H. Mohamed, and B. Hassan, “A new scalable leader-
community detection approach for community detection in social net-
works,” Social Networks, vol. 54, pp. 41–49, Jul. 2018. doi: 10.1016/j.
socnet.2017.11.004.

[47] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, “Comparing commu-
nity structure identification,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2005, Jun. 2005. doi: 10.1088/1742-5468/2005/
09/P09008.

[48] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and
spectral,” Journal of the ACM, vol. 51, Aug. 2001. doi: 10 . 1145 /

990308.990313.

[49] U. Brandes, M. Gaertler, and D. Wagner, “Engineering graph clustering
: Models and experimental evaluation,” First publ. in: ACM Journal of
Experimental Algorithmics 12 (2007), Article 1.1, vol. 12, Jan. 2007.
doi: 10.1145/1227161.1227162.

[50] S. Dongen, “Graph clustering by flow simulation,” PhD thesis, Center
for Math and Computer Science (CWI), May 2000.

[51] J. Dunn, “Well-separated clusters and optimal fuzzy partitions,” Cy-
bernetics and Systems, vol. 4, pp. 95–104, Apr. 2008. doi: 10.1080/
01969727408546059.

[52] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” en, Journal of Computational and
Applied Mathematics, vol. 20, pp. 53–65, Nov. 1987, issn: 03770427.
doi: 10.1016/0377- 0427(87)90125- 7. [Online]. Available: https:

//linkinghub.elsevier.com/retrieve/pii/0377042787901257.

[53] E. C. Dalrymple-Alford, “Measurement of clustering in free recall.,”
Psychological Bulletin, vol. 74, no. 1, pp. 32–34, 1970. doi: 10.1037/
h0029393. [Online]. Available: https://doi.org/10.1037/h0029393.

[54] S. Wasserman and K. Faust, Social Network Analysis: Methods and Ap-
plications, ser. Structural Analysis in the Social Sciences. Cambridge
University Press, 1994. doi: 10.1017/CBO9780511815478.

[55] R. Rabbany, M. Takaffoli, J. Fagnan, O. R. Zäıane, and R. Campello,
“Relative validity criteria for community mining algorithms,” in Ency-
clopedia of Social Network Analysis and Mining, Springer New York,
2014, pp. 1562–1576. doi: 10.1007/978-1-4614-6170-8_356. [Online].
Available: https://doi.org/10.1007/978-1-4614-6170-8_356.

[56] S. Fortunato and M. Barthelemy, “Resolution limit in community de-
tection,” Proc. Nat. Acad. Sci., vol. 104, pp. 36–41, Jan. 2006.

100

https://doi.org/10.1016/j.socnet.2017.11.004
https://doi.org/10.1016/j.socnet.2017.11.004
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/1227161.1227162
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1016/0377-0427(87)90125-7
https://linkinghub.elsevier.com/retrieve/pii/0377042787901257
https://linkinghub.elsevier.com/retrieve/pii/0377042787901257
https://doi.org/10.1037/h0029393
https://doi.org/10.1037/h0029393
https://doi.org/10.1037/h0029393
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1007/978-1-4614-6170-8_356
https://doi.org/10.1007/978-1-4614-6170-8_356

[57] M. Schaub, J.-C. Delvenne, S. Yaliraki, and M. Barahona, “Markov
dynamics as a zooming lens for multiscale community detection: Non
clique-like communities and the field-of-view limit,” PloS one, vol. 7,
e32210, Feb. 2012. doi: 10.1371/journal.pone.0032210.

[58] M. Rosvall and C. Bergstrom, “Maps of random walks on complex net-
works reveal community structure,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 105, pp. 1118–23, Feb.
2008. doi: 10.1073/pnas.0706851105.

[59] W. Zachary, “An information flow model for conflict and fission in small
groups1,” Journal of anthropological research, vol. 33, Nov. 1976. doi:
10.1086/jar.33.4.3629752.

[60] L. Adamic, “The political blogosphere and the 2004 u.s. election: Divided
they blog,” Proceedings of the 3rd International Workshop on Link Dis-
covery, Apr. 2005. doi: 10.1145/1134271.1134277.

[61] R. A. Rossi and N. K. Ahmed, “The network data repository with in-
teractive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com.

[62] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
May 2012. doi: 10.1145/2350190.2350193.

[63] J. Fagnan, O. Zaiane, and D. Barbosa, “Using triads to identify lo-
cal community structure in social networks,” in 2014 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2014), China: IEEE, Aug. 2014, pp. 108–112, isbn:
9781479958771. doi: 10.1109/ASONAM.2014.6921568. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/6921568/.

[64] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, Second. The MIT Press, 2018, ch. 7. [Online]. Available: http:

//incompleteideas.net/book/the-book-2nd.html.

[65] C. Largeron, P.-N. Mougel, O. Benyahia, and O. Zäıane, “Dancer: Dy-
namic attributed networks with community structure generation,” Knowl-
edge and Information Systems, vol. 53, Mar. 2017. doi: 10.1007/s10115-
017-1028-2.

101

https://doi.org/10.1371/journal.pone.0032210
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1145/1134271.1134277
http://networkrepository.com
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1109/ASONAM.2014.6921568
http://ieeexplore.ieee.org/document/6921568/
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1007/s10115-017-1028-2
https://doi.org/10.1007/s10115-017-1028-2

	Introduction
	Motivation and Background
	Problem Definition and Challenges
	Global Community Detection Algorithms
	Local Community Detection Algorithms
	Networks with Uncertainty
	Networks with Overlapping Communities
	Evaluation Methods

	Thesis Statements
	Thesis Contribution
	Thesis Organization

	Background and Related Work
	Social Network Analysis
	Social Networks
	Social Network Analysis
	Terms and Definitions

	Community Detection in Social Networks
	Global Community Detection Algorithms
	Local Community Detection Algorithms
	Overlapping Community Detection Algorithms
	Community Detection Algorithms in Uncertain Networks

	Overview of Evaluation Methods
	External Evaluation
	Internal Evaluation
	Relative Evaluation

	Global Community Detection Methods
	Motivation
	Strong and Weak Edges
	Smart Local Move
	Guaranteeing Connectedness
	Experiments
	Experiment on the Strengths of Edges
	Experiment on the Smart Local Move
	Experiment on the Guaranteed Connectedness

	Conclusion

	Local Community Detection Methods
	Motivation
	Initial Steps of Community Expansion
	Local SIWO
	Experiments
	Evaluate Different Network Sizes
	Evaluate Different Network densities
	Evaluate Different Community Structure Quality

	Conclusion

	Community Detection in Uncertain Networks
	Motivation
	Local Community Discovery for Networks with Uncertain Edges
	Review of Previous Methods
	Introducing the Uncertain SIWO

	Uncertain Network Generator
	Review of A Previous Method
	The New Uncertain Network Generator

	Experiments
	Conclusion

	Conclusion
	Contributions
	Future Work

	References

