
University of Alberta

Automated Planning and Scheduling for Industrial Construction

Processes

by

Di Hu

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Di Hu

Spring 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. Yasser Mohamed, Civil and Environmental Engineering

Dr. Aminah Robinson Fayek, Civil and Environmental Engineering

Dr. Simaan AbouRizk, Civil and Environmental Engineering

Dr. Amy Kim, Civil and Environmental Engineering

Dr. Amit Kumar, Mechanical Engineering

Dr. Tarek Hegazy, Civil and Environmental Engineering, University of Waterloo

Dedication

This thesis is dedicated with love and respect

 to my beloved parents Zhepian Xiong and Hantong Hu;

 to my dear relatives;

 to my best friends

Abstract

Cost overrun and schedule slippage are common problems for mega industrial

construction projects. Lack of effective planning and scheduling tools is identified

as a major contributing factor to poor project performance. Planning and

scheduling tools should be custom designed to address the characteristics of mage

industrial projects: unique components, modularized execution strategy and its

extremely accelerated project delivery. The main objective of this research is to

investigate and develop automated solutions for planning and scheduling two

essential stages of mega industrial projects, shop fabrication and on-site

construction.

This research explores use of discrete event simulation (DES) to automate

scheduling of shop fabrication and on-site construction processes. For industrial

fabrication shops, a new simulation structuring methodology is developed to

address the complex routing issue. Following this methodology, a simulation

model is developed for pipe spool fabrication shops, which performs scheduling

for shop operations, and mainly evaluates the impact of fabrication sequence on

the spool cycle time. For site construction, a time-stepped simulation framework

is developed to address congestion and dynamic resource allocation issue. For a

real-life industrial construction case, this framework returns a schedule that has 12%

shorter duration than those generated from Microsoft Project and Primavera P6.

The research investigates use of domain-independent Artificial Intelligence (AI)

planning to automate the sequence planing for pipe spool fabrication and on-site

module installation. Experiment results show that AI planning is not suitable for

sequencing spool fabrication due to the limited parsing capability of existing AI

planners. However, AI planning is efficient to identify feasible sequence plans for

module installation based on the current module availability and installation status.

The research finds Dynamic Programming (DP) is suitable to sequence pipe spool

fabrication. A DP algorithm is developed to automatically identify the optimal

sequence in terms of the minimum position welds. Simulation experiments were

conducted with 29 real-life spools to quantify the performance improvement

obtained from the DP algorithm. Results showes that by using the DP algorithm,

there is a 45% reduction in the number of position welds, which is translated to a

reduction in the total cycle time, ranging from 4.8% to 12%.

Aknowledgement

First and foremost, I would like to thank my PhD supervisor, Dr. Yasser

Mohamed for his immense support, visionary guidance and great patience

throughout the course of my study. I owe my great gratitude to Dr. Al-Hussein for

his insightful comments during my defense preparation process.

I would like to acknowledge Dr. Tarek Hegazy for serving as my external

examiner and providing valuable comments and suggestions. I am also grateful to

my candidacy and doctoral committee: Dr. Aminah Robinson Fayek, Dr. Simaan

M. AbouRizk, Dr. Amit Kumar, and Dr. Amy Kim.

I would like to take this opportunity to thank Brenda Penner, Amy Carter, Maria

Al-Hussein, Stephen Hague and other faculty members and staff and colleagues in

the construction engineering and management group.

I would particularly like to thank PCL Industrial Management Inc. This thesis

would not have been possible without generous support and close collaboration

from Ulrich (Rick) Hermann, Manager of Construction Engineering, and Hosein

Taghaddos, Construction Engineer of Construction Engineering, at PCL Industrial

Management Inc. Their invaluable input to this thesis is deeply appreciated.

Especially, I would like to express my deepest gratitude to my family for their

unconditional love and unfailing support. My parents and grandparents have

taught me how to live, to dream, and to love. Although I have been far away from

you, your love and support transcend the distance and always have and will

encourage me to succeed.

Table of Contents

Chapter 1. Introduction ... 1

1.1 Background and Problem Statement .. 1

1.1.1 Complexity of Oil Sands Projects ... 2

1.1.2 Pre-Fabrication, Pre-Assembly and Modularization 2

1.1.3 Fast Tracking .. 4

1.1.4 Uniqueness of Products .. 5

1.1.5 Supply Chain Disruptions ... 7

1.1.6 Challenges for Planning and Scheduling ... 9

1.2 Scope of Research .. 11

1.3 Research Objectives ... 12

1.4 Research Methodology ... 13

1.5 Thesis Organization ... 15

1.6 References .. 16

Chapter 2. Simulation Model Structuring Methodology for Industrial

Fabrication Shops………………….. 20

2.1 Problem Statement ... 20

2.2 Simulation Methodologies .. 22

2.3 Traditional Simulation Model Structuring Paradigm 23

2.4 Proposed Simulation Model Structuring for Industrial Fabrication Shops

 26

2.4.1 Entity Object Information Model .. 27

2.4.2 State-Based Entity Routing Mechanism .. 30

2.4.3 Simplified Graphical Representation .. 33

2.4.4 Schedule Updating .. 34

2.5 Methodology Implemention .. 34

2.6 System Architecture .. 35

2.7 An Illustration Example ... 36

2.8 Conclusion .. 40

2.9 References .. 41

Chapter 3. A Dynamic Programming Solution to Automate Fabrication

Sequencing of Pipe Spools…………….. 44

3.1 Problem Statement ... 44

3.2 Pipe Spool Fabrication .. 48

3.3 Pipe Spool Fabrication Sequencing ... 49

3.4 Previous Research on Construction Sequencing 51

3.5 Artificial Intelligence (AI) Planning .. 53

3.6 Dynamic Programming .. 55

3.6.1 Problem Formulation in DP Perspective 56

3.6.2 DP Algorithm .. 64

3.7 Simulation Experiments.. 65

3.7.1 Pipe Spool Set ... 66

3.7.2 Experiment 1 Results... 67

3.7.3 Experiment 2 Results... 68

3.7.4 Discussion of Experiment Results ... 69

3.8 Conclusion .. 70

3.9 References .. 71

Chapter 4. Congestion-Constrained Dynamic Resource Allocation Scheduling

Tool for Industrial Construction Projects ... 75

4.1 Problem Statement ... 75

4.2 Literature Review ... 78

4.3 Parallel Scheduling Scheme ... 83

4.4 Time-Stepped Discrete Event Simulation ... 84

4.5 Work-Area-Work-Package as Moving Entity ... 87

4.6 Simulation Algorithm ... 91

4.6.1 Identify Eligible Work Packages ... 93

4.6.2 Dynamic Resource Allocation Algorithm 95

4.6.3 Variable Resource Level and Variable Durations 98

4.6.4 Update the Progress of Work Packages 100

4.7 Simulation Efficiency and Calendar Constraint 100

4.8 System Architecture .. 101

4.9 Case Study .. 103

4.9.1 Pre-Simulation Calculations ... 108

4.9.2 Simulation Run and Results .. 110

4.9.3 Comparison to MS Project and Primavera 112

4.9.4 Discussion of Results .. 113

4.10 Conclusions .. 115

4.11 Limitations and Future Work ... 116

4.12 References .. 118

Chapter 5. Automating Sequence Planning for Industrial Construction

Processes Using Domain Independent Artificial Intelligence Planning 124

5.1 Problem Statement ... 124

5.2 Literature Review ... 126

5.3 Domain Independent AI Planning .. 130

5.4 Applicability of Domain-Independent AI Planning to Construction

Sequencing .. 133

5.5 Pipe Spool Fabrication Sequencing Problem 135

5.5.1 Problem Abstraction ... 137

5.5.2 Pddl Domain and Problem Definition Representation 139

5.5.3 Experiments and Results ... 141

5.6 Module Installation Sequencing Problem .. 144

5.6.1 Problem Abstraction ... 145

5.6.2 PDDL Domain and Problem Definition Representation 146

5.6.3 Experiments and Results ... 148

5.7 Conclusions .. 154

5.8 References .. 155

Chapter 6. Conclusions ... 158

6.1 Conclusions .. 158

6.2 Major Contributions ... 160

6.3 Limitations and Future Work ... 161

Appendix A ... 164

Appendix B ... 277

List of Tables

Table 2-1 As-built progress of the illustrative example .. 39

Table 4-1 Case study data ... 105

Table 4-2 Daily trade availability limit ... 105

Table 4-3 Congestion constraint of each work area .. 106

Table 5-1 Resulting plans from each AI planner .. 143

Table 5-2 Generated plans for module installation scenario 1 150

Table 5-3 Generated plans for module installation scenario 2 151

Table 5-4 Generated plans for module installation scenario 3 153

List of Figures

Figure 1-1 Piping supply chain in industrial projects ... 7

Figure 1-2 Research methodology .. 13

Figure 2-1 Four fundamental elements for a simulation model (in Simphony.Net)

... 24

Figure 2-2 Example simulation model for a spool fabrication shop (Ping Wang et

al. 2009) .. 26

Figure 2-3 Fabrication sequence of an example pipe spool 28

Figure 2-4 Entity object information model ... 30

Figure 2-5 State-based entity routing algorithm .. 31

Figure 2-6 Simplified graphical representation of illustration example 33

Figure 2-7 Architecture of the prototype system .. 36

Figure 2-8 Process plans for three product types .. 38

Figure 2-9 Graphical representation using traditional simulation methodology .. 39

Figure 2-10 Initial schedule and updated schedule ... 40

Figure 3-1 Disturbances from piping supply chain of an industrial construction

project ... 45

Figure 3-2 Simulation experiment result (Hu and Mohamed 2011) 47

Figure 3-3 Roll welding and position welding (Hu and Mohamed 2012) 49

Figure 3-4 Alternative pipe spool fabrication sequences (Hu and Mohamed 2012)

... 50

Figure 3-5 Decomposition stages of an example pipe spool 59

Figure 3-6 Two alternative ways of fabricating sub-assembly 5 63

Figure 3-7 Three alternative ways of fabricating the pipe spool 64

Figure 3-8 DP-based pipe spool fabrication sequencing algorithm 65

Figure 3-9 Simulation experiment .. 67

Figure 3-10 Complexity of pipe spool set... 67

Figure 3-11 Results of experiment 1 (including 29 pipe spools) 68

Figure 3-12 Results of experiment 2 (including 19 pipe spools) 69

Figure 4-1 Event-driven simulation and time-stepped simulation 86

Figure 4-2 Simulation time advance in 24/7 manner .. 87

Figure 4-3 Work areas and congestion limit ... 88

Figure 4-4 Work-area-work-package and congestion constraint 91

Figure 4-5 Routine procedure for every time step .. 92

Figure 4-6 Various built-in constraint checks ... 95

Figure 4-7 Dynamic resource allocation algorithm .. 97

Figure 4-8 Constant resource limit vs. time-dependent resource limit 99

Figure 4-9 CDRASS system architecture ... 102

Figure 4-10 Pipe-rack area of Kearl Initial Development (KID) project 104

Figure 4-11 Work packages and work areas ... 108

Figure 4-12 Remove excessive dependency relationship 109

Figure 4-13 Congestion status when congestion constraint is not active 111

Figure 4-14 Congestion status after the simulation run 112

Figure 4-15 Comparison between the simulation tool, MS Project and Primavera

... 117

Figure 5-1 The block system and the description in PDDL................................ 132

file:///C:/Users/amy/Desktop/Di%20Hu's%20PhD%20Thesis%20Draft%20Edit.docx%23_Toc348449365
file:///C:/Users/amy/Desktop/Di%20Hu's%20PhD%20Thesis%20Draft%20Edit.docx%23_Toc348449365

Figure 5-2 Pipe spool fabrication sequences .. 136

Figure 5-3 Roll welding and position welding ... 137

Figure 5-4 Example pipe spool components and their geometries 139

Figure 5-5 An example PDDL domain definition file for pipe spool fabrication

... 140

Figure 5-6 An example PDDL problem definition file for pipe spool fabrication

... 141

Figure 5-7 Experiments of using PDDL to model and plan sequence for pipe

spools .. 142

Figure 5-8 Constraints for module installation ... 145

Figure 5-9 An example PDDL domain definition file for module installation... 147

Figure 5-10 An example PDDL problem definition file for module installation 148

Figure 5-11 Pipe-rack modules 3D model from Kearl Initial Development (KID)

... 149

Figure 5-12 Simplified model for modules in scenario 1 150

Figure 5-13 Simplified model for modules in scenario 2 151

Figure 5-14 Simplified model for modules in scenario 3 153

1

CHAPTER 1. Introduction

1.1 BACKGROUND AND PROBLEM STATEMENT

A surging global demand and soaring prices of oil and gas put unprecedented pressure on

existing oil production infrastructure around the globe. This leads to a significant wave of capital

investment into oil and gas projects. Thanks to fast growing oil sands projects, the province of

Alberta recently experienced an economic boom reminiscent of the first oil boom in Canada in

the 1970s. According to current government figures, about $193.5-billion in major projects are

under way in Alberta, with 65% ($125.8) of those being oil sands related (Alberta Enterprise and

Advanced Education 2012).

Oil sands production steadily ramped up in the late 1990s and early 2000s. It is spurred by high

oil prices and by strong demands from the international community, which sees the oil sands as

the next big source of oil (other than conventional crude oil), and as part of the solution to energy

security issues. The oil sands currently represent 59% of western Canada’s total crude oil

production (CAPP 2012).

In order to produce oil from oil sands, facilities that extract and upgrade the bitumen to produce

petroleum products are needed. Building such facilities is considered a special type of

construction, “industrial construction.” Generally speaking, industrial construction refers to

constructing a wide range of facilities or plants, e.g. chemical plants, pharmaceutical plants,

oil/gas production plants, petrochemical refineries, and nuclear power plants. Industrial projects

vary both in size and complexity. Purposes of industrial projects include construction of a

completely new facility, expansion of an existing facility, as well as demolition of an existing

facility.

2

1.1.1 Complexity of oil sands projects

Many oil sands projects executed during the oil boom are defined as ‘mega projects.’ These

projects continue to increase in size. The first mega-project during this period was Suncor’s

Millennium project, with a final cost of $3.4 billion. Shell Canada Ltd.’s Muskeg River project

was next to follow the trend with a total around $5.7 billion. Syncrude Canada Ltd. completed its

UE-1 in 2004 with a cost ballooning to $7.8 billion (Feuffel and Hanley 2009). A recent oil

sands project, Kearl Inistial Development (KID), by Imperial Oil Ltd. is close to completion with

a capital appropriation of $10.9 billion.

Cost is, however, merely one of characteristics that define a mega project. Mega projects often

push beyond the limit of almost every aspect of a construction project. The Alberta Economic

Development Authority (AEDA, 2004) summarized a number of facts about mega projects in the

province of Alberta. For example, for a mega project of $2.5 billion, over 3.5 million engineering

man-hours are usually required, which generate 40,000 to 50,000 design drawings and involve

10,000 to 20,000 vendor and shop drawings. A labor force of 6,000 to 8,000 is needed to perform

construction and to provide 15 million construction man-hours. Work of a variety of disciplines,

e.g. civil, piling, structural steel, piping, electrical, etc., is involved in a single project. Each

discipline can be viewed as a supply chain which is closely interwoven with other disciplines at

certain stages. A deviation in one discipline can cause a cascade of disruptive effects on other

disciplines. Therefore, intensive effort is required for project coordination.

1.1.2 Pre-fabrication, pre-assembly and modularization

Since many oil sands projects are located in frontier areas where site conditions and weather

problems are severe, and where local labor availability is not sufficient and a substantial

3

workforce needs to be relocated from somewhere else (i.e. on-site labor cost might be very

expensive), pre-fabrication, pre-assembly and modularization are common strategies to perform

these projects. Another major reason for this approach is that it allows site preparation to occur

while some pre-fabrication and pre-assembly is being done on components required for a plant.

This is especially relevant as many oil sands projects are executed in a reduced timeframe. For

simplicity, pre-fabrication and pre-assembly are referred to as fabrication and assembly in the

rest of this thesis.

Fabrication refers to the pre-production of some components of an industrial project, usually in a

shop environment, which are then shipped to the construction site for final installation.

Fabrication often involves only a trade (Tatum 1987), such as pipe spool fabrication or structural

steel fabrication. Industrial fabrication does not fall under a typical manufacturing system in

which the same components are used repetitively to produce standardized items. Pipe spools or

structural steel pieces are usually unique and need to be custom built. The characteristic of

uniqueness differentiates industrial fabrication shops from traditional mass production

manufacturing shops. This point will be elaborated in detail in the following section.

After they are fabricated in shops, some components are shipped to an assembly yard (i.e.

usually close to the fabrication shop) where they are synthesized with other fabricated

components into a unit called a module. A module is a part of a pipe rack or plant that includes a

steel structure, pipe spools, equipment, cable tray, heat tracing, instrumentation, electrical

components, fireproofing and insulation. Different types of modules include pipe racks,

processes, stair-towers, and buildings. Modules are usually sized within the limitations of

transportation. They are usually shipped from the assembly yard to the construction site and

joined together to form a completed portion of the industrial plant.

4

Modularization can account for as much as 30% to 40% of the overall project scope (Fossen and

Kukkola 2009). The proportion of shop fabrication and module assembly used in industrial

projects has significantly increased over the past 20 years (Hass et al 2000). This might be

accredited to modularization’s controlled factory environment and production conditions which

can lead to higher productivity and better quality. Another advantage of fabrication and assembly

is that both field construction duration and cost can be significantly reduced. Figure 1-1 shows

the piping supply chain that consists of fabrication, assembly and site installation stages.

1.1.3 Fast tracking

In order to reduce the investment payback time and to reduce the period of risk exposure (e.g.

fluctuation in oil price, uncertainty of inflation and interest costs), owners of oil sands projects

tend to prefer an accelerated project delivery process, such as fast track. Fast-tracking forces

overlap between design, procurement, fabrication, module assembly and site installation in an

industrial project. As such, fabrication, assembly and even installation start before the design is

completed. However, information available at the beginning of any project is scarce. Much of the

initial design has to be made based on the ‘best guesses’ of engineers. As the project progresses,

this initial design is prone to change. In industrial construction, incomplete designs usually result

in a large number of drawing revisions, which in turn lead to late or out-of-sequence delivery of

ISO drawings. Since ISO drawings are essential guidelines for fabrication, module assembly and

site installation stages, their delay can generate significant disturbance to these operations.

Sometimes, design changes occur after fabrication, assembly or site installation has begun. This

usually means that work packages might be cancelled and all man-hours that have been spent

prior to the cancellation might be completely wasted. Fast tracking also means that procurement

proceeds concurrently with evolving project design. When purchases are based on poorly defined

5

requirements, the risk of procuring the wrong materials is high (Wyss 2009). The supply of raw

materials is as unreliable as that of ISO drawings, and thus, disrupts subsequent fabrication,

assembly and installation stages in a similar way. A study (Burati et al. 1992) on quality

deviation of nine fast-tracking industrial projects showed that design deviation averaged 78% of

the total number of deviations, 79% of the total deviation costs and 9.5% of the total project cost.

Further, it showed that design change accounted for two-thirds of the design deviations. Another

survey (Wang 2006) indicated that 62% of the total shop drawings needed revisions.

Fast tracking also implies that the duration of each project stage is shortened. During the

construction stage, for example, a compressed schedule usually implies overlapping of work

packages that would be sequentially performed in a normal schedule. This usually causes trade

interference, work disruptions and consequently, productivity losses. This is especially the case

during the site construction stage when a variety of disciplines (e.g. civil, architectural, piping,

steel structure, mechanical, electrical, etc.) proceed with their work concurrently, in the same

construction site. Interference between work packages usually manifests in the form of resource

and space conflicts.

1.1.4 Uniqueness of products

Many oil sands facilities are one-of-a-kind, uniquely designed. This uniqueness is also reflected

in the facilities’ constituent components, e.g. pipe spools, steel structures, and modules. A

petroleum refinery can require as many as 10,000 piping inventory codes, each of which

represents a unique piping component (Wyss 2009). Pipe spools can vary in material,

configuration, types of joints, and many other properties. Song and AbouRizk (2003)

characterized the steel fabrication process by the high product mix and low production volume.

6

They found that many fabricated steel pieces are unique and vary in geometry and processing

requirements. The unique design of steel pieces is mainly determined by unique functions and

unique loads (each structure is different). Modules, which are assembled from these unique pipe

spools, steel pieces and other specialty items, are thus unique in nature and each can be treated as

its own individual project.

The unique nature of these industrial components means that they need to be custom built. Both

pipe spools and structural steel pieces have unique routings in the shop. A routing is the

sequence of shop operations necessary to fabricate a spool or a steel piece. This is very different

from mass production manufacturing shops where identical or standard projects are produced

and only a few typical routings are followed. Therefore, production planning is constantly

required for each pipe spool or steel piece.

Unique industrial components are not interchangeable. Delay in delivery of such a unique

component might hold back the assembly of a module or the installation of a processing unit on

site. For industrial fabrication shops, those unique characteristics mean that these industrial

components cannot be entirely or partially fabricated in advance, as standard products are in

manufacturing shops. It also means that the fabricators are unable to use on-hand inventory to

buffer against variability from within or outside the shop. This requires a high level of

coordination between fabrication, assembly and site installation so that just-in-time supply of

ISO drawings, materials and fabricated components can facilitate a smooth site construction

process.

7

Raw Material Supplier 1

Transportation

Raw Material Supplier 2

Owner or engineering firms

Transportation

ISO Drawings

Pipe spool

fabrication

Transportation

Module Assembly

Transportation

Site installation

Late

delivery

Out-

Sequence

- delivery

 Change

order

Late

delivery Rush

orders

Rush

orders

Change

orders

Pipe Spools

Transportation

Pipe Spools

Pipe Spools

 order

Cancellation

Rush

orders

Late

delivery

Late

delivery

Out-

Sequence

- delivery

Figure 1-1 Piping supply chain in industrial projects

1.1.5 Supply chain disruptions

In a well-coordinated supply chain, on-site installation should drive module assembly, which in

turn drives shop fabrication. For example, if there are two construction work areas (CWAs) (a

construction work area is a spatial division of an industrial project that contains mechanical

equipment, structural steel, piping and electrical scopes of work) and CWA 1 is scheduled to be

prepared (completion of underground structural foundation) before CWA 2, then all the modules

and components that compose CWA 1 should accordingly be produced and delivered prior to

those of CWA 2. In an ideal situation, if the schedule of on-site installation remains consistent

throughout the entire project, scheduling operations for the module assembly or for the

fabrication shop should straight-forward. However, this is often not the case in reality. The

schedule of on-site installation is prone to change, due to many factors such as scope/design

changes, site conditions or constructability issues. Since this variability originates at the end of

the supply chain, its influence can ripple back to all the preceding stages, e.g. module assembly

and spool fabrication (Wang 2006). The variability manifests in the form of rush orders, change

orders or order cancellations (Figure 1-1).

8

For fabrication shops, rush orders, change orders and order cancellations result in occurrence of

rework, stoppage in fabrication and change in spool fabrication sequence, which disrupt shop

operations and hamper shop productivity. Effects of these disruptions can be amplified when

there is an unreliable supply of ISO drawings and raw materials at the same time. In addition,

fabricators also suffer from the variability that originates within their own shops, such as

machine breakdown, staff absenteeism, and rework. Due to the uniqueness of these industrial

components, fabrication shops cannot entirely or partially fabricate these components in advance

or use on-hand inventory to buffer against these disruptions. Many research studies (Howell and

Ballard 1996, Tommelein 1998, Song and AbouRizk 2006, and Wang et al. 2009) identified that

spool fabrication shops are often not operating at optimal productivity.

The major consequence of disrupted shop fabrication is the late or out-of-sequence delivery of

fabricated industry components that, in turn, disrupts both the module assembly and the site

installation stages (Figure 1-1). As many supply chains (e.g. piping, structural steel, equipment,

instruments and other pre-ordered specialty items) merge just prior to final installation and the

precondition for a successful installation is that all matching components be available, delay in

any of these supply chains could hinder the site installation progress. Assume that there are 5

supply chains providing fabricated or assembled components necessary for the site installation

and that each has 10% probability of having delayed or out-of-sequence delivery, then the

probability of having timely successful installation is about 59% (= 0.95). Furthermore, site

installation faces the same problem of unreliable supply of ISO drawings and raw materials and

design revisions as shop fabrication does. As a result, schedule slippage and cost overrun are

very common in today’s industrial projects. A study commissioned by the Construction Owner’s

Association of Alberta (COAA) in 2004 focused on labor productivity of heavy industrial

9

projects. It is found that tool time, the hours actually spent working on the asset, is as low as 37%

and much of the remaining time is spent waiting for material and equipment (COAA website).

1.1.6 Challenges for planning and scheduling

Under the combined effect of the aforementioned influencing factors (fast tracking, the unique

design and consequently high level of uncertainty), performance of many industrial projects

(including all fabrication, assembly and site installation phases) is often not satisfying. Cost

overruns, schedule delays and loss of productivity are common characteristics of these large-

scale industrial projects. Jergeas (2008) and Ruwanpura et al. (2006) reviewed the major oil and

gas projects in Alberta, Canada and discovered that the costs of industrial projects could balloon

to 200% of the original cost estimates. The Association of Professional Engineers, Geologists

and Geophysicists of Alberta (APEGGA) also found that cost overruns ranging from 50% to 100%

are present in almost all major oil and gas projects in Alberta (Smyth 2004).

COAA initiated a series of studies to identify underlying reasons for project cost overruns. One

of the studies identified insufficient planning as one of possible contributing factors to low

productivity and cost overrun. Ruwanpura et al. (2006) argued that effective planning can reduce

project cost by 40%, while inadequate planning can result in cost overrun as high as 400%.

Jergeas (2008) also identified causes for cost overrun and schedule slippage in mega-size oil

sands projects, including overly optimistic initial schedules and inadequate project front-end

planning.

Project planning and scheduling is at the core of project management and is essential to project

success. Project planning is the process of deciding what to do and how to do it before the

project is carried out. It is achieved by identifying the scope of work from the design of the

10

project (i.e. the “what”) and selecting the proper construction methods for each piece of work

(Fischer and Aalami 1996). The result of the planning process is a list of activities and their

precedence dependencies. Project scheduling is a process of allocating limited resources among

activities over time. It determines when activities are performed and how long it will take to

complete each activity. Project planning and project scheduling are complementary, but they are

not the same.

Current construction project planning and scheduling relies mainly on network-based approaches

such as critical path method (CPM) and project evaluation review technique (PERT).

Commercial software that is based on CPM, such as Primavera P6 or Microsoft Project, has also

gained prevalence in the construction industry. These CPM-based tools are useful in presenting a

schedule network and in performing CPM calculations, but they also require a complete project

plan (all involved activities, their precedence dependencies and resource requirements) as input.

This means that these tools are still heavily dependent on the manual formulation of project plans

and schedules. Manual project planning and scheduling is a time-consuming and error-prone

process, especially for mega-size industrial construction projects. It is an even more tedious job

to update and maintain these project plans and schedules. Project planning and scheduling also

require intensive knowledge and expertise. For example, construction sequencing involves

identifying and applying various physical or technical aspects governing the sequence between

different activities. To develop realistic project schedules, various constraints (e.g. dependency

relationship, imposed dates, calendar and resource availability) need to be taken into

consideration during the scheduling process. CPM-based tools generally lack the ability to

capture and apply this knowledge. In other words, they provide little assistance to generate

project plans and schedules. As such, project plans and schedules are primarily formulated based

11

on planners’ or schedulers’ personal experience and knowledge of the current status of

construction (either in fabrication shops or on the construction site). Given the dynamic and

uncertain project environments and the sheer size and complexity of industrial projects, it is quite

challenging for human planners or schedulers to process all the necessary information to develop

accurate project plans and schedules. As a result, the efficiency and effectiveness of project plans

and schedules (from human formulation) are severely insufficient.

1.2 SCOPE OF RESEARCH

Manual project planning or project scheduling processes cannot meet the requirements of mega-

size oil sands projects. Potential performance improvement can be achieved through automated

solutions to both project planning and project scheduling. However, mega-size industrial projects

usually span a long period of time and involve various stages. Operations that are involved in

one stage might have a totally different nature from those of another stage. For example,

fabrication shops run on a project-by-project basis where a factory facility manufactures

components for several projects simultaneously. Fabrication shops usually involve one trade (i.e.

a spool fabrication shop only fabricates pipe spools). On the other hand, site construction is a

typical construction project environment where many different trades are involved to construct a

facility (or facilities) that is (are) specific to that project. It is therefore almost infeasible to

develop a universal project planning or scheduling tool that can serve all the stages of industrial

projects. In other words, each stage should be equipped with a custom built project planning or

scheduling tool that accommodates the characteristics of operations in that specific stage. This

study focuses on developing automated planning and scheduling tools for fabrication shops and

on-site construction.

12

1.3 RESEARCH OBJECTIVES

The primary objective of this study is to develop automated solutions for project planning as well

as project scheduling in both the shop fabrication stage and site construction stage of industrial

projects. To reach this goal, three auxiliary objectives have been identified:

I. To develop a new simulation methodology that addresses the uniqueness of the product

family in industrial fabrication shops and facilitates simulation-based scheduling and

schedule updating for fabrication shops.

II. To investigate the feasibility of automating sequence planning for both pipe spool

fabrication and on-site module installation to provide added support to human planners to

make informed decisions in an efficient manner.

III. To develop a time-stepped simulation scheduling tool for on-site construction of

industrial projects that (1) complies with various constraints of work packages

(precedence dependency, time dependent resource availability limit, calendar, time

constraint), (2) dynamically allocates resources to work packages, and (3) accounts for

jobsite congestion constraints of work areas.

13

1.4 RESEARCH METHODOLOGY

Study the system of interest

Model the system

using Discrete Event Simulation

Use the model as simulation

laboratory environment

Use the model for shop

scheduling and schedule updating

Fabrication shops

Primary

Secondary

· Time-stepped simulation

· Use the model for scheduling

on-site construction

· Evaluate the improvement by

comparing to main stream

scheduling packages

Onsite Construction

Primary

Automate the sequence planning

process by AI techniques

Evaluate the capability of the

automated solutions

Quantify the performance gain

from the optimized sequence by

the simulation model

Fabrication shops only

Figure 1-2 Research methodology

The above-mentioned objectives are achieved through the methodology shown in Figure 1-2.

Each step in the flow chart is explained as follows:

14

Step 1: study the system of interest (either fabrication shops or on-site construction), identify

primary characteristics of the system and understand the requirements for construction planning

and scheduling.

Step 2: model the system at the appropriate level of detail using DES technology. For fabrication

shops, the primary purpose is to offer a simulation laboratory environment where various

alternative sequences can be evaluated in terms of performance. The simulation model also

serves as a scheduling tool that is customized for the fabrication shop process. For on-site

construction, a special type of DES simulation, time-stepped simulation (i.e. semi-continuous

simulation), is employed to model the on-site construction process. The main purpose of the

simulation model is scheduling on-site work packages such that their schedules comply with

various constraints, e.g. dependency relationship, imposed dates, calendar, time dependent

resource availability, as well as congestion. A dynamic resource allocation algorithm is

implemented in the simulation model to resolve both the resource and the space conflict between

overlapping work packages. This simulation-based scheduling system is also evaluated by

comparing it to other mainstream scheduling packages on the basis of the same industrial

construction case study.

Step 3: investigate domain independent AI planning techniques that are efficient and effective to

automate the sequence planning process of the system, i.e. sequence for pipe spool fabrication

and sequence for on-site module installation. Domain independent AI planning technique (also

referred to as general purpose planning) is first selected to experiment on both sequence planning

problems. It is discovered that this technique works efficiently to identify feasible sequences for

module installation, but fails to do so for pipe spool fabrication due to the limited parsing

capability of existing AI planners. This leads to a search for other problem solving techniques.

15

DP is found to be a good candidate. A DP-based algorithm is customized for identifying the

optimal spool fabrication sequences.

Step 4: evaluate the effectiveness of automated solutions developed in Step 3. Nine experiments

are conducted to test the capability of AI planning technique (i.e. PDDL and compliant AI

planners) to model and to solve the module installation sequencing problem. These experiments

use test cases from a real-life industrial project. On the other hand, 29 pipe spools are selected

from a real-life industrial fabrication shop to test the capability of the DP-based algorithm to

solve the spool fabrication sequencing problem.

Step5: quantify the performance improvement that is gained from the optimized fabrication

sequences for 29 pipe spools. The simulation model developed in Step 2 is used to compare the

total cycle time resulting from the original sequences (used in the fabrication shop) and the

optimized sequences (generated by the DP algorithm).

1.5 THESIS ORGANIZATION

The remainder of this thesis is organized into the following chapters. Chapter 2 reviews current

DES methodologies and highlights the problems of using these methodologies to model

industrial fabrication shops. It then presents a new simulation structuring methodology that is

based on a self-routing entity mechanism. Chapter 3 briefly discusses the spool fabrication

sequencing problem and reviews past research on construction sequencing. The focus of this

chapter is placed on the use of Dynamic Programming (DP) to formulate the spool fabrication

problem and the development of a DP-based algorithm to identify optimal sequences for spool

fabrication. It also presents the results of simulation experiments used to quantify the

improvement gained from using the DP algorithm. Chapter 4 highlights the requirement for

16

dynamic resource allocation that is one of the main characteristics of the on-site construction of

mega-size industrial projects. It then reviews prior research that is related to resource constrained

scheduling and to jobsite congestion. It elaborates the time-stepped simulation framework and

the dynamic resource allocation mechanism (i.e. implemented in the time-stepped framework). It

also presents a real-life large-scale industrial construction case study and demonstrates the

advantage of the proposed CDRASS framework by comparing a generated schedule with those

achieved using mainstream scheduling packages. Chapter 5 briefly explains the domain

independent AI planning technique, one of its standard planning languages—PDDL, and its

applicability to industrial construction sequencing problems. It investigates the feasibility of

using domain independent AI planning technique to sequence two industrial construction

processes, pipe spool fabrication and on-site module installation. It also provides details of a

series of experiments that are conducted for each process. Based on the results of those

experiments, the conclusion is drawn.

1.6 REFERENCES

Alberta Enterprise and Advanced Education. (2012). “Inventory of Major Alberta Projects.”,

available online < http://www.albertacanada.com/sp_majoralbertaprojects.pdf> (Jan. 16, 2013).

Alberta Economic Development Authority (2004). “Mega project excellence: preparing for

Alberta’s legacy - an action plan.” available online

<https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102

004.pdf> (Jan. 16, 2013).

Burati, J. L., Farrington, J. J. and Ledbetter W. B. (1992). “Causes of Quality Deviations in

Design and Construction.” J. Constr. Eng. Manage., 118(1), 34-49.

http://www.albertacanada.com/sp_majoralbertaprojects.pdf
https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102004.pdf
https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102004.pdf

17

Canadian Association of Petroleum Producers (CAPP). (2012). “Crude Oil Forecast, Markets &

Pipelines.”, available online < http://www.capp.ca/getdoc.aspx?DocId=209546&DT=NTV> (Jan.

16, 2013).

Construction Owner Association of Alberta (COAA). (n.d.) Citing Websites. Workface Planning.

Retrieved from http://www.coaa.ab.ca/Productivity/WorkFacePlanning.aspx (Mar. 12, 2013)

Fayek, A. Robinson. Invited speaker and workshop. (2004). “A Preliminary Study to Identify

and Quantify Productivity Deviations on Heavy Industrial Construction Projects in Alberta”,

Construction Owners Association of Alberta Best Practices XII Conference, Edmonton, Alberta,

May 19-20, 2004.

Feuffel, J. and Hanley, K. Jr. (2009). Workface Planning. Excellence in Construction, PCL

College of Construction.

Fischer, M. A., and Aalami, F. (1996). “Scheduling with Computer-Interpretable Construction

Method Models.” J. Constr. Eng. Manage., 122(4), 337–347.

Fossen, B and Kukkola, R. (2009). Executing Industrial Module Projects Under Extreme Market

Conditions, PCL College of Construction.

Haas, C.T., O'Connor, J.T., Tucker, R.T., Eickmann, J.A. and Fagerlund, W.R. (2000).

Prefabrication and Preassembly Trends and Effects on the Construction Workforce. Report No.

14, Center for Construction Industry Studies, Austin, TX.

Howell, G.A. and Ballard, H.G. (1996). Managing Uncertaintyin the Piping Process. RR 47-13,

Constr. Industry Institute, Univ. of Texas, Austin, TX, September, 103 pp.

http://www.capp.ca/getdoc.aspx?DocId=209546&DT=NTV
http://www.coaa.ab.ca/Productivity/WorkFacePlanning.aspx

18

Jergeas, F. (2008). “Analysis of the front-end loading of Alberta mega oil sands projects.”

Project Management Journal, 39 (4), 95–104.

Ruwanpura, J.Y., Ahmed, T.N., Karim Kaba, K. and Mulvany, G.P. (2006). “Project Planning

and Scheduling and its Impact to Project Outcome: A study of EPC Projects in Canada.” AACE

International Transactions, 20.1-20.9.

Smyth, M. (2004). APEGGA President Addresses Mega-project Overruns, Release February 12,

2004. Speech of the Association of Professional engineers, Geologists and Geophysicists of

Alberta.

Song, L., and AbouRizk, S.M. (2003). “Building a Virtual Shop Model for Steel Fabrication.”

Proceedings of Winter Simulation Conference, New Orleans, Louisiana, USA, pp. 1510-1517.

Song, L., and AbouRizk, S. M. (2006). "Virtual Shop Model for Experimental Planning of Steel

Fabrication Projects." J. Comput. Civ. Eng., 20(5), 308-316.

Tatum, C. B., Vanegas, J. A., and Williams, J. M. (1987). Constructability improvement using

prefabrication, preassembly, and modularization, Construction Industry Institute, Austin, TX.

Tommelein, I.D. (1998). "Pull-driven Scheduling for Pipe-Spool Installation: Simulation of Lean

Construction Technique." J. Constr. Eng. Manage., 124 (4), 279-288.

Walsh, K.D., Hershauer, J.C., Walsh, T.A., Tommelein, I.D., and Sawhney, A. (2002). "Lead

Time Reduction via Pre-Positioning of Inventory in an Industrial Construction Supply Chain."

Proceedings of Winter Simulation Conference Proceedings, San Diego, CA, USA, pp. 1737-

1744.

19

Wang, P. (2006). “Production-based Large Scale Construction Simulation Modeling.” Ph.D.

thesis, University of Alberta, Edmonton, Alberta, Canada.

Wang, P., Mohamed, Y., AbouRizk, S. M., and Rawa, A. R. T. (2009). “Flow Production of

Pipe Spool Fabrication: Simulation to Support Implementation of Lean Technique.” J. Constr.

Eng. Manage., 135(10), 1027-1038.

Wyss, Stephen. (2009). “Active Management of Pipe spool Fabricators.” Chemical Engineering,

116(1), 40-45.

20

CHAPTER 2. Simulation Model Structuring Methodology for Industrial

Fabrication Shops

2.1 BACKGROUND AND PROBLEM STATEMENT

In the construction domain, contractors are often faced with projects with varying degrees of

uniqueness. Between two extremes on the spectrum—one-of-a-kind project and repetitive project,

most construction projects are characterized by more or less degree of customization and

repetitiveness. Industrial fabrication shops (e.g. pipe spool fabrication shops and structural steel

fabrication shops) are an example, where the same set of operations is repetitively performed on

different products (e.g. pipe spools and structural steel pieces) but the sequence of these

operations varies considerably from one product to another, due to unique design and

configuration. Industrial fabrication is described as a “low-volume and high product mix

production process” (Song et al. 2006). It is also described as job shop environment

(Karumanasseri and AbouRizk 2002). This differentiates industrial fabrication shops from

manufacturing shops where identical or standard products are mass produced with limited

variation . As a result, planning and scheduling is constantly required for each shop product.

Traditional-critical-path-method- (CPM) related approaches are not effective to model industrial

fabrication shops, due to CPM’s limitation or inability to model the repetition of operations, the

interactions between resources, and what-if scenarios. Discrete event simulation (DES) has long

been widely used to model and study real-world systems (Wang and Halpin, 2004), especially

for processes that are repetitive in nature. Recently, simulation has increasingly been used for

scheduling day-to-day operations (referred to as simulation-based scheduling). By simulating the

behavior of a production system over time, DES is able to reproduce the process of how products

and resources interact with each other. A schedule can then be viewed as a record of this

21

artificial history. DES also provides a cost-effective laboratory environment where various

alternatives can be tested and compared and the best one can be selected without interrupting the

real system.

Despite these advantages, DES has limitations in modeling industrial fabrication shops. The

major challenge derives from the high product mix. Industrial shop products, though undergoing

the same operations, differ considerably in the sequence of operations necessary to fabricate

them. This sequence is referred to as routing for the rest of this chapter. Most current simulation

methodologies ‘hard code’ this routing in the graphical representation using directional arrows

and branching elements. To guide simulation entities (entities represent shop products) through a

series of shop floor operations, each routing needs to be explicitly indicated in the model. This

method of modeling works for identical products or standard products where only one or few

typical routings need to be modeled. However, when facing complex, large-scale industrial

projects with more than 10,000 unique pipe spools it becomes cumbersome and inefficient, for

two reasons. First, almost every unique product requires a unique routing in the shop. When all

these routings have to be tracked and explicitly mapped out in the simulation model, the

graphical representation becomes cluttered and hard to read. Second, the simulation model is

rather static in that once it is developed, it can only process routings that are already defined in

the model. Whenever a new routing is encountered the model has to be modified. This means

that the simulation model is very unlikely to be re-used from one project to another, which

makes the development of the simulation model quite uneconomical.

This chapter proposes a new simulation model structuring methodology. It directly addresses the

complex routing issue in industrial fabrication shops and significantly simplifies the simulation

model development. Moreover, this structuring methodology also fully supports both shop

22

scheduling and schedule updating, the latter of which is essential for industrial fabrication shops

that operate under uncertain dynamic project circumstances.

In the following sections of this chapter, a literature review of DES methodologies is provided

first, which is followed by a generalization of the simulation model structuring paradigm that is

common among many construction simulation environments. After this, the new model

structuring methodology is introduced and two major components, entity object information

model and state-based entity routing mechanism, are explained in detail. An example is provided

to illustrate how this methodology supports shop scheduling and schedule updating. Finally,

conclusions, limitations and future development are also discussed.

2.2 SIMULATION METHODOLOGIES

Simulation methodologies (also called ‘simulation strategies’) specify the world view that a

simulation analyst applies towards modeling a real-world system, and therefore, significantly

impact model development (Martinez and Ioannou 1999; Zhang et al. 2005). Different

simulation methodologies vary mainly in the basic building blocks they use to model a system

(Pidd 1998). Event Scheduling (ES) describes a system by a chronological list of unconditional

events (Zhang et al. 2005), each of which is composed of a routine or a list of actions (Pidd 1998)

and can trigger another event. Activity Scanning (AS) views a system from the viewpoint of

activities. AS-based simulation models advance by repeatedly scanning start-up conditions of

activities and activating those whose conditions are satisfied (Martinez and Ioannou 1999, Zhang

et al. 2005). Due to repeated activity scanning and, consequently, the slow runtimes on

computers, AS has been replaced by one of its modified forms—the three phase approach. Many

construction simulation tools adopt the three phase approach, such as CYCLONE (Halpin 1977)

23

and STROBOSCOPE (Martinez 1996). Process Interaction (PI) decomposes a system into

processes. In PI world view, entities transverse the model and trigger various activities by

requesting resources, engaging resources to perform operations and then releasing them. Each

entity has its own life cycle. A simulation model is thus defined in terms of entities’ life cycles.

Simulation entities are distinguishable in PI approach. There are moving entities, as described

above, as well as static entities that are scarce resources. The quality of the simulation model

largely depends on how simulation analysts select moving entities and scarce resources

(Martinez and Ioannou 1999). PI is especially suitable to model systems in manufacturing and

service industries (Martinez and Ioannou 1999), because it offers a natural metaphor for

production systems in these industries. One of established applications of PI in the construction

domain is Simphony.NET (AbouRizk and Mohamed 2000).

2.3 TRADITIONAL SIMULATION MODEL STRUCTURING PARADIGM

Process interaction and activity scanning are two of the most frequently used methodologies in

construction. CYCLONE (Halpin 1977), COOPS (Liu and Ioannou 1992), and STROBOSCOPE

(Martinez 1996) are based on AS methodologies, or specifically, based on modified forms of

AS—three-phase, while SLAM II (Shi and AbouRizk 1997) and Simphony.Net (AbouRizk and

Mohamed 2000) are based on PI methodologies. Lu (2003) further simplified the AS

methodology and proposed Simplified Discrete Event Simulation Approach (SDESA). Zhang

(2005) developed an object-oriented strategy (Activity Object-Oriented, AOO) to model

construction activities.

Despite the apparent differences between these simulation environments, they all contain the

same set of fundamental elements necessary to compose a simulation model (shown in Figure 2-

24

1), including moving entities, operations that transform entities, resources that perform

operations, and directional arrows indicating the flow of entities or the sequence of operations.

All of these elements are modeled in one way or another in these simulation environments.

Another commonality is that these simulation environments are all associated with a graphical

representation. Graphical method is used to develop simulation models since it reduces the

requirement for familiarity of simulation programming languages. Except for moving entities

that are often invisible, all the other elements are included in the graphical representation, in one

way or another.

Figure 2-1 Four fundamental elements for a simulation model (in Simphony.Net)

Further observation finds that all these simulation environments require explicit mapping out of

the routings of moving entities in the graphical representation, with directional arrows and

25

branching elements. Dubiel and Tsimhoni (2005) pointed out that “in all commercial DES

packages, a path must be drawn from one point to another in order for an entity to move between

those two points.” This “generality of movement” (Dubiel and Tsimhoni 2005) of entities

implies a hidden assumption that variation in routing is small (i.e. all entities follow the same

path or a few typical paths). However, this assumption does not hold when it comes to modeling

industrial fabrication shops where almost every product tends to have a unique routing. The

graphical network might be cumbersome when there are a large number of distinct routings.

Another alternative is to generalize these routings. However, certain unrealistic assumptions

must be made as a result. Wang (2009) developed spool fabrication shop model (Figure 2-2)

using the traditional way of modeling entity routing. In this model, it is easy to identify that pipe

spools coming from RollFitter3 (i.e. a roll fitting table) have to go to either RollWelder4 or

RollWelder5, instead of any other welding stations (e.g. RollWelder1, 2 or 3). But this is not the

case in reality. In fact, pipe spools, after being fitted, should be able to choose any welding

station, as long as it is available. Similar unrealistic assumptions can be identified in routing

between other fitting tables (RollFitter2 and RollFitter1) and welding stations (RollWelder1, 2, 3,

4 and 5). These assumptions reduce the accuracy and fidelity of simulation models. Sadeghi and

Fayek (2008) developed a simulation model for industrial fabrication shops in order to study

long-term performance. However, its graphical representation is not described in the paper and

therefore it is impossible to compare to this study. Rokni (2010) developed a simulation with

high level of details to model the pipe spool fabrication shop. However, the directional arrows

are still used to represent the flow of the entity.

26

Figure 2-2 Example simulation model for a spool fabrication shop (Ping Wang et al. 2009)

2.4 PROPOSED SIMULATION MODEL STRUCTURING FOR INDUSTRIAL

FABRICATION SHOPS

Within industrial fabrication shops, products (pipe spool or structural steel) arrive, undergo

certain processing and exit the system. To model this system, it is natural to choose shop

products as moving entities and to treat workstations (e.g. fitting tables or welding stations) as

resources. As such, PI is a suitable method to model industrial fabrication shops.

However, problems still exist with PI-based simulation models. To address these problems, a

new methodology for structuring a simulation model is developed. More specifically, all the

routing (i.e. directional arrows and/or branching elements) that indicates the flow of entities is

extracted from the graphical model and is carried by individual entities instead. This poses

certain requirements for simulation entities, including (1) distinction between entities so that

each represents a unique product, and (2) ability to autonomously route through the simulation

model (i.e. according to their process plans). In the following sections, these points will be

27

addressed through detailed explanations of entity information model and the state-based entity

routing mechanism.

2.4.1 Entity object information model

Moving entities in PI-based simulation tools are by default considered equal. In order to make

them distinct and representative of individual products, some key product information needs to

be carried by entities. This often refers to descriptive attributes such as product ID, name,

product type and any other identification information that helps distinguish one product from

another (e.g. a pipe spool always has an associated ISO number in addition to the pipe spool

number). Other physical characteristics such as dimensions, size and weight are also necessary,

since they may impact the product routing in the shop. For example, the diameter of a pipe

usually determines the cutting station where the pipe can be cut.

Routing information (i.e. other interchangeable terms include process plan or fabrication

sequence), like product information, is also highly product-dependent. Routing of a pipe spool or

structural steel is largely decided by its physical configurations (Figure 2-3). Since industrial

shop products tend to have unique configurations, the routing often differs greatly from one

product to another. Figure 2-3 shows an example pipe spool fabrication sequence. Each

fabrication step represents a pair of a fitting operation and a welding operation. Fabrication steps

depicted in a vertical direction have to be performed in a sequential way (i.e. the final pipe spool

cannot be produced before sub-assembly 7 and 8 are fabricated), while processes depicted on the

same horizontal level can be performed concurrently (i.e. sub-assembly 7 and sub-assembly 8

can be performed independently). Each step must have all the components (e.g. raw material or

intermediate sub-assemblies) ready before it can start.

28

Flange1 Pipe2 Elbow3 Pipe5 Plate6

Flange4

Raw Materials

Pipe Spool

Sub-assembly Sub-assembly7 8

Sub-assembly

Figure 2-3 Fabrication sequence of an example pipe spool

To enable entities to carry both product and routing information, an entity information model is

designed (Figure 2-4). An information model can be defined as “a collection of information that

describes, represents, or abstracts something” (Fisher and Froese 1996). Its scope largely

depends on the perspective one takes towards the object. The main purpose here is to enable

entities to be distinguished from one another, and to route themselves through the simulation.

Product information and routing information are therefore major pieces to be included. In

addition, two other sets of information are also incorporated in the information model, including

entity state information and schedule information. Compared to product and routing information,

29

these are output information generated during the simulation. The state information describes

how far the fabrication has progressed. It helps the entity determine the next fabrication step(s) to

perform. The details of how to use this information will be explained in the next section. The

schedule information simply records details of operations that have been completed, such as its

start time, duration, finish time and work stations that performed the operation.

In this information model, routing information is divided into two parts. The first part is a list of

operations that a product needs to go through before becoming the final product. Each operation

represents the transformation from raw material to an intermediate sub-assembly or the final

product. For example, the fitting operation that assembles spool component 1, 2 and 3 produces

sub-assembly 7 (Figure 2-3). The information model also specifies the type of workstation that

can provide such service. For example, a fitting operation has to be performed at a fitting table

and a welding operation engages a welding station. The second part specifies the precedence

relationships between these operations. This dependency is determined by two underlying

reasons: (1) technical reasons and (2) composition reasons. An example of a technical reason is

that fitting operations for pipe spools always precede the welding operations since the former

provides only temporary connections while the latter provides permanent connections between

spool components. Figure 2-3 shows a good example of composition reasons. The fitting

operation that assembles sub-assembly 7 and 8 into the final pipe spool can only take place after

both sub-assemblies have been welded.

30

Entity

General information

Unit ID Name Division ID Project ID Type

127010 Mod Spool Area-01 Kearl CS

Process Plan

Scheduling Information State Information

Figure 2-4 Entity object information model

2.4.2 State-based entity routing mechanism

The main objective is to enable moving entities to autonomously route through the simulation

model. This means that moving entities should be able to determine what operations to perform

next and where to have them performed. Such decisions are often made when entities enter the

simulation model or whenever an operation is completed. The aforementioned integrated

information model encapsulates all information necessary for entities to make such decisions.

However, how the information is used to infer the next operation to perform has not been

addressed.

31

A state-based entity routing algorithm (Figure 2-5) is developed. It mainly makes use of two

information sets: (1) routing information and (2) state information. Routing information works as

a road map that shows how an entity gradually evolves from the initial state (i.e. raw materials)

to the goal state (i.e. the final product). State information, on the other hand, describes the

current completion status of entities. Each entity is composed of distinct operations. The state of

each operation can be simply described by its percent completed. The states of individual

operations constitute the state of the moving entity. Figure 2-4 shows an example entity state. It

indicates that the entity has completed fabrication operations 1, 2, 3, 4 and 6, but is yet to fulfill

the operations 5, 7, 8, 9 and 10. At this moment, the algorithm will be activated since operation 6

has just been completed and the state of the entity has been updated. The algorithm is formulated

as shown in Figure 2-5.

Start simulation

Set current time to zero

Set Start state to the initial state

While not (final state) do

Scanning current state information

*Identifying operations that can be started based on precedence constraints

Dispatching a copy of moving entity to corresponding workstations

*If Entity copies from all predecessors have already been received

Performing the operation

Updating current state

Record all schedule times

End If

End while

End simulation

Figure 2-5 State-based entity routing algorithm

32

Key steps in this algorithm are marked with asterisks. The selection of operation to perform is

controlled by the precedence constraints and the current entity state. If an operation is completed,

a copy of the current entity will be dispatched to each of its succeeding operations. However, this

does not necessarily lead to the start of any succeeding activities. If the succeeding operation has

only one predecessor, it will be triggered immediately. However, if the succeeding operation has

more than one predecessor, it will not be performed until all the copies of the entity have been

received. This kind of checking is done whenever a dispatching event occurs. Suppose, for

example, an entity with the same process plan as shown in Figure 2-4 has already finished

operations 5, 6 and 7 at the same time. According to the algorithm, upon completion of operation

5, a copy of the entity will be sent to each of the workstations where operation 7 and 10 can be

performed. A similar situation occurs when operation 6 is completed. Workstations that will

perform operations 8 and 9 will receive a copy of the entity. In this case, both operation 8 and

operation 9 can start right away. Operation 10, however, cannot start since it still needs another

two copies of the entity from the workstations that perform operation 8 and 9. It should be noted

that when operation 10 is eligible to be performed, all four copies will be consolidated into a

single entity so that operation 10 will be performed just once. This algorithm will be repeatedly

triggered until the entity goes through all the operations and exits the simulation model.

It should be noted that the state-based entity routing mechanism is only responsible for the

process plan (or precedence relationship) while the resource constraint is still taken care of by

the capture-engage-release routine already built into the simulation environment.

33

2.4.3 Simplified graphical representation

When the routing information is extracted from the graphical representation and carried directly

by moving entities, the model is reduced to facility modeling of the industrial fabrication shop.

Specifically, only workstations that perform shop floor operations will be modeled. In simulation

environments where hierarchical simulation modeling is allowed, each workstation can be

modeled with a composite simulation element (Figure 2-6), which has a lower level child model

that defines all details (e.g. what resource is required and how the operation is carried out)

related to this particular operation. Figure 2-6 shows such an example of hierarchical modeling

in Simphony.NET (AbouRizk and Mohamed 2000). The simulation model now has flexibility to

accommodate variations in entity routing. It is able to process any entity, as long as the model

contains all the required workstations (or operations), regardless of what routing it chooses to

traverse them.

Figure 2-6 Simplified graphical representation of illustration example

34

2.4.4 Schedule updating

In this approach, the progression of a simulation entity along its life cycle is mainly driven by its

current state. This means that the entity is able to start its simulation from any intermediate state

throughout its life cycle, rather than only from the initial state (i.e. when no operation has been

performed yet). If simulation users feed the simulation model with a group of entities with

partially completed states, the simulation can run directly from those states and simulate the rest

of their life cycles. This represents a departure from conventional simulation-based scheduling

practice, which requires manipulating the simulation to run in a way that exactly imitates the as-

built progress and to continue simulation from that point. Comparing these two, the new

approach provides a more natural way to perform scheduling and schedule updating. In addition,

the simulation also has the ability to reconstruct the current work load of an industrial fabrication

shop. It is particularly useful to model a situation where a shop is already loaded with existing

products when new orders enter the system.

2.5 METHODOLOGY IMPLEMENTION

The implementation of the proposed simulation structuring methodology in Simphony.NET

results in two special purpose simulation (SPS) templates. The first template is a generic

simulation tool that facilitates modeling any construction process that involves a high product

mix and varied construction (or fabrication) sequences. A model developed from this template is

shown in Figure 2-6. The second template is customized for modeling pipe spool fabrication

shops. It consists of many simulation elements that are specific to pipe spool fabrication such as

bay element and lay-down element. These elements represent the objects that are involved in

real-life pipe spool fabrication shops. The detailed implementation of these simulation elements

35

in Simphony.Net is provided in Appendix A. The second template also has a number of built-in

spool fabrication rules. For example, a simulation entity that represents a pipe spool is usually

decomposed into a number of entities that represent its components. A simulation element is

designed for this purpose, which tags each entity with a unique component ID and the original

pipe spool ID (as a reference to retrieve information about the original pipe spool entity). A

number of entities are flowing concurrently in the simulation and are gradually assembled

together in the sequence specified in the spool process plan. Each assembly operation involves

conversion of a number of spool components into a spool sub-assembly or the final assembly.

Another simulation element is also designed to fulfill this purpose, which collects all entities

(that represent spool components) that are involved in the assembly and generates a new entity

that represents the resulting sub-assembly. Another rule is that all components that belong to the

same pipe spool have to be fitted at the same fitting table, though they can be welded at different

welding stations. For example, sub-assembly 7, sub-assembly 8 and the final assembly in Figure

2-3 should be fitted at the same fitting table and can be welded at any welding station depending

on its availability. This rule is also implemented in the pipe spool fabrication simulation template.

2.6 SYSTEM ARCHITECTURE

Since a large amount of input information is required for the model development and a great deal

of output information (i.e. scheduling information) is generated after the simulation run, the

simulation works closely with a database. Figure 2-7 shows the architecture of the system that is

composed by (1) Microsoft Access®, (2) Microsoft Project® and (3) a simulation model.

36

Figure 2-7 Architecture of the prototype system

The system starts with simulation developers modeling existing workstations on the shop floor

using elements defined in the simulation template. The simulation model then reads both product

and routing information from a Microsoft Access® database and assigns it to entities so that each

of them represents a shop product. The simulation model is then ready to run. Schedule

information is collected for each entity during the simulation run and is sent back to the database

after simulation ends. The resulting schedule is then translated by a user-defined function in

Microsoft Access® from simulation times to real calendar dates. Finally, the schedule is

presented in Gantt chart style when it is sent from the database to Microsoft Project®.

2.7 AN ILLUSTRATION EXAMPLE

A simple case study is used to illustrate this concept. Assume the shop receives an order that

involves three different types of shop products. The process plan for each type (Figure 2-8)

differs from each other. For example, Type 2 varies from Type 1 mainly in operation duration

37

(e.g. for operations D, G, I and J) and it does not include operation E, while Type 3 varies in both

process plan and duration, which results in a completely different network than for Type 1. The

order involves producing nine units (i.e. three units per type). Assume these product units are

dispatched to the shop floor at the same time and are processed in the order of their identity

numbers, e.g. unit 1 has higher priority than unit 2. Each workstation has two or three resources

available to perform the operation. For simplification purpose, durations of all the operations are

assumed to be deterministic, but stochastic durations are also natively allowed in

Simphony.NET—users can select a certain type of probability distribution and specify the

associated parameters.

38

Figure 2-8 Process plans for three product types

Figure 2-6 shows the graphical representation developed by the proposed methodology while

Figure 2-9 shows the graphical representation developed by the traditional methodology. It is

easy to identify that Figure 2-6 is much less cluttered than Figure 2-9. Note that only three

different types of routings are considered in this example. The difference could be much more

when thousands of unique products need to be modeled (e.g. for an industrial construction

project). In addition, whenever a new routing is encountered, the model in Figure 2-9 has to be

39

modified (i.e. adding more arrows and branching elements). On the other hand, the model in

Figure 2-6 does not require any modification, if the model already contains all the required

operations.

Figure 2-9 Graphical representation using traditional simulation methodology

To illustrate the schedule updating, a virtual depiction of as-built progress is also developed,

which highlights its deviations from the initial schedule. Assume at the end of the fifth day some

schedule slippage is identified. Table 2-1 lists all the units with deviations (i.e. the units that are

not listed here are not started yet). After it is fed with this as-built progress, the simulation model

generates a schedule update. A comparison between the initial schedule and the updated one can

then be made by Microsoft Project® (light grey bars in Figure 2-10).

Table 2-1 As-built progress of the illustrative example

Unit

Operation

ID

Operation

Name

Original

Schedule

Actual

Progress

Schedule

deviations

Unit 1 1 A 100.00% 100.00% on time

2 B 83.30% 50.00% 2 days behind

3 C 100.00% 100.00% 3 days behind

4 D 12.50% 12.50% on time

Unit2 1 A 100.00% 100.00% on time

40

2 B 83.30% 50.00% 2 days behind

3 C 100.00% 100.00% 3 days behind

4 D 25.00% 25.00% on time

Unit 3 1 A 14.30% 14.30% on time

2 B 100.00% 100.00% 2 days behind

3 C 75.00% 0.00% 3 days behind

Unit4 1 A 14.30% 14.30% on time

2 B 66.70% 0.00% 2 days behind

 3 C 75.00% 0.00% 3 days behind

Figure 2-10 Initial schedule and updated schedule

2.8 CONCLUSION

The proposed methodology for structuring a simulation model stresses that when modeling a

construction system where products have highly varied processes, it is better to extract the logic

41

information from the graphical model and to enable each moving entity to carry it directly. To

achieve this, an entity object information model and a state-based entity routing mechanism are

developed, which track the state of each entity along its life cycle and use precedence constraints

and the current entity state to figure out how to transverse various operations in the simulation

model. Advantages include a less cluttered graphical representation, reusability of the simulation

model, and a natural way to perform both scheduling and schedule updating.

There are also limitations for the proposed methodology. The major limitation is that graphical

representations of simulation models no longer contain the routing information (how entities

flow in the simulation). Simulation users have to define all routing patterns in the database

before the simulation can run. Another limitation is that simulation models heavily depend on

reading a large amount of data from the database. If these data are scattered in various existing

information systems or some of them are contained in paper documents, the consequential

manual input could be very cumbersome. These limitations will be addressed in the future

research section.

2.9 REFERENCES

AbouRizk, S., and Mohamed, Y. (2000). “Simphony-an integrated environment for construction

simulation.” Winter Simulation Conference Proceedings, 2000, Orlando, FL, USA, 2: 1907-1914.

Chang, D. Y. (1986). "RESQUE: A resource based simulation system for construction process

planning." PhD dissertation, University of Michigan, Ann Arbor, Michigan.

Dubiel, B. and Tsimhoni, O. (2005). "Integrating Agent-based Modeling into a Discrete Event

Simulation." Winter Simulation Conference Proceedings, 2005, Orlando, FL, USA, 1029-1037.

42

Fisher, M. and Froese, T. (1996). "Examples and Characteristics of Shared Project Models."

Journal of Computing In Civil Engineering, ASCE, 10(3), 174-182.

Halpin, D. W. (1977). "CYCLONE—Method for modeling job site processes." Journal of

Construction Division, ASCE, 103(3), 489–499.

Harrell, C. R., and Tumay, K. (1990). "ProModelPC tutorial." Winter Simulation Conference

Proceedings, 1990, IEEE, New Orleans, LA, USA, 128-131.

Karumanasseri, G. and AbouRizk, S. (2002). "Decision Support System for Scheduling Steel

Fabrication Projects. " J. Constr. Eng. Manage., 128(5), 392–399.

Liu, L. Y., and Ioannou, P. G. (1992). "Graphical object-oriented discrete-event simulation

system." Winter Simulation Conference Proceedings, 2008, Piscataway, N.J., USA, 1285–1291.

Martinez, J.C. (1996). "STROBOSCOPE - State and Resource Based Simulation of Construction

Process." PhD dissertation, University of Michigan, Ann Arbor, Michigan.

Martinez, J. C. and Ioannou, P. G. (1999). "General-Purpose System for Effective Construction

Simulation". Journal of Construction Engineering and Management. ASCE, 125(4), 265-276

Pidd, M. (1998). Computer simulation in management science, Wiley, Chichester, U.K.

Rokni, S. (2009). "Optimization of Industrial Shop Scheduling Using Simulation and Fuzzy

Logic". PhD dissertation, University of Alberta, Edmonton, Alberta.

Sadeghi, N., and Fayek, A. R. (2008). "A framework for simulating industrial construction

processes." Winter Simulation Conference, 2396-2401.

43

Song, L., and AbouRizk, S. M. (2006). “Virtual shop model for experimental planning of steel

fabrication projects.” J. Comput. Civ. Eng., 20 (5), 308–316.

Wang, P., Mohamed, Y., AbouRizk, S.M., Rawa, A. R. T. (2009). "Flow Production of Pipe

Spool Fabrication: Simulation to Support Implementation of Lean Technique." Journal of

Construction Engineering and Management, ASCE, 135(10), 1027-1038.

Wang, Shihyi and Halpin, Daniel W. (2004). “Simulation experiment for improving construction

processes.” Proceedings of the 2004 Winter Simulation Conference, 1252 – 1259.

Wyss, Stephen. (2009). “Active Management of Pipespool Fabricators.” Chemical Engineering,

116(1), 40-45.

Zhang, H., Tam, C. M., Li, H. (2005). "Activity Object-Oriented Simulation Strategy for

Modeling Construction Operations." Journal of Computing In Civil Engineering, ASCE, 19(3),

313-322.

44

CHAPTER 3. A Dynamic Programming Solution to Automate Fabrication

Sequencing of Pipe Spools

3.1 PROBLEM STATEMENT

A surging global demand and soaring prices of natural oil and gas put unprecedented pressure on

existing oil production infrastructure in Alberta. This leads to a significant wave of capital

investment into oil and gas projects. Many of these projects are referred to as ‘Mega’ industrial

projects meaning that the capital investment required per project will exceed $1 billion (ECC

2007). Cost, however, is only one of the characteristics to describe the mega-ness of a petro-

chemical project. Mega-projects usually imply that they are also technology-complex and have

very long project execution period. For example, a typical project involves many trades and

disciplines (e.g. civil, steel structure, piping, electrical, mechanical, HVAC, etc.), has extremely

high level of engineering and construction activities, e.g. 3.5 million engineering man-hours and

15 million construction man-hours are required for a $2.5 billion project in Alberta (AEDA

2004). In addition, these activities are interwoven and tightly coupled with each other; a change

or deviation in one activity can produce a cascade of effects on others that depend on it.

Piping is always the single largest job (Kim and Ibbs 1995) and is a critical and costly process

for industrial construction projects (BRT 1982). Piping is usually broken up into three stages—

shop fabrication, module assembly and site installation. This is mainly due to a fact that,

considering the remote location, severe weather conditions and congestion issues, it is more

efficient and effective to pre-fabricate and pre-assemble parts of project in a controlled

environment (e.g. fabrication shops and module assembly yards) than on site. It has been

reported that the proportion of shop fabrication has significantly increased over the past 20 years

(Haas et al 2000). Figure 3-1 depicts different stages of the piping supply chain.

45

Pipe spools are building blocks to the piping system of industrial construction projects. They are

fabricated in fabrication shops and are shipped to either module assembly yard (i.e. on-module

piping) or construction site (i.e. off-module piping). Timely delivery of pipe spools has great

impact on the successful execution of the overall industrial projects. The performance of pipe

spool fabrication shops is, however, found not quite satisfactory (Howell and Ballard 1996,

Tommelein 1998, and Wang et al. 2009). This is because pipe spool fabrication shops are very

susceptible to various disruptions from within or outside the shop (Figure 3-1). For example, the

supply of ISO drawings or raw materials could be late or out-of-sequence. Change orders from

the owner or general contractor could generate a huge amount of rework. Rush orders from the

assembly yard or the site can also cause deviations from the original shop schedules. In addition,

most pipe spools have unique designs and need to be custom built (Wyss 2009). Pipe spools can

be unique in material, shape, configuration, type of joints, and many other properties. As such,

pipe spools cannot be entirely or partially fabricated in advance, which makes the fabricators

unable to use on-hand inventory to buffer against the variability from within or outside the shop.

Raw Material Supplier 1

Transportation

Raw Material Supplier 2

Owner or engineering firms

Transportation

ISO Drawings

Pipe spool

fabrication

Transportation

Module Assembly

Transportation

Site installation

Late

delivery

Out-

Sequence

- delivery

 order

Cancellation

Late

delivery

Rush

orders

Rush

orders

Changed

due dates

Pipe Spools

Transportation

Pipe Spools

Pipe Spools

Figure 3-1 Disturbances from piping supply chain of an industrial construction project

To improve pipe spool fabrication shop performance, a number of innovative attempts

(Tommelein 1998, Tommelein 2006, Walsh et al 2002, Wang et al 2009) have been made and

46

many factors have been investigated. These include shop layout, dispatching rules, buffer

location, and standardized products. However, there is one factor that is overlooked, which is the

sequence of pipe spool fabrication. The fabrication sequence determines the process that pipe

spools go through from raw materials (i.e. raw pipes and pipe fittings) to the final product.

Unique configurations cause the fabrication sequence to vary from one pipe spool to another.

This is different from manufacturing where the majority of products has similar configurations

and follows a few typical fabrication steps. Pipe spool fabrication sequence is usually determined

by shop foremen based on personal experience and intuition. Interviews with shop foremen and

superintendents show that the fabrication sequence for the same pipe spool could vary with

human planners, because there is no standard way of sequencing in the industry. In fact, many

pipe spools can be fabricated in several alternative sequences. However, it is rare for these

alternative sequences to get compared and evaluated.

The magnitude of the impact of fabrication sequence could have on the fabrication performance

has been investigated by Hu and Mohamed (2011). A simulation model is developed to represent

the shop operations and pipe spools are with two alternative fabrication sequences (a good

scenario and a bad scenario, but not necessarily the best and the worst). The total cycle time for

all pipe spools are collected and compared (Figure 3-2). The results show there is 10.09%

reduction in the total cycle time for all pipe spools and 16.88% decrease in the number of

handlings during the fabrication.

47

Figure 3-2 Simulation experiment result (Hu and Mohamed 2011)

To sequence pipe spool fabrication and especially to identify the optimal fabrication sequence is

an issue that needs to be addressed. A review of literature on construction sequencing finds that

many of the past research only focus on sequencing rationales of building projects. However, the

building blocks for industrial construction projects (e.g. steel structures, equipment, pipe works,

and cable trays) are very different from those for building projects (e.g. columns, beams, walls,

slabs). This makes it hard to apply the existing sequencing rationales or planning systems to

industrial construction projects.

A search for problem solving techniques in computing science has found that artificial

intelligence (AI) planning and dynamic programming (DP) seem to be good candidates for

solving the pipe spool fabrication sequencing problem. The use of AI planning has been

investigated in one of previous papers (Hu and Mohamed 2012). Conclusions include (1) AI

planning suffices in handling all the logic of pipe spool fabrication; but (2) existing AI planners

have limited parsing capability (to parse the system description with both numerical calculations

and conditional effects which are required by the pipe spool fabrication problem) and make it

difficult to solve real-life pipe spool problems. This chapter mainly focuses on exploring the

applicability of DP.

48

In this chapter, a DP-based algorithm to identify the optimal fabrication sequences of pipe spools

is presented. The chapter starts with description of pipe spool fabrication sequencing problem.

Review of previous research on construction sequencing is provided in the next section and the

gap in the body of knowledge is pointed out. A brief discussion of AI planning technique and its

application on pipe spool fabrication problem. The main focus of the chapter is placed on the use

of DP. First the pipe spool fabrication problem is formulated in DP manner. A DP-based

algorithm is then proposed and simulation experiments are conducted to test its effectiveness.

Finally, limitations and future research directions are also discussed.

3.2 PIPE SPOOL FABRICATION

Pipe spools are fabricated from a number of raw pipes and pipe fittings (e.g. elbows, flanges, tees,

etc.) in fabrication shops. These raw pipe spool parts need to go through three major types of

operations to become the final product, basically cutting, fitting and welding. Cutting always

occurs at the beginning of the fabrication process and is only applied to raw pipes (Not pipe

fittings). Generally, fitting precedes welding since fitting offers merely a temporary connection

while welding forms a permanent one. However, more often than not, fitting and welding occurs

in alternate manner. Specifically, some of pipe spool parts are fitted and welded first, which

results in a sub-assembly (in-progress assembly, part of the final pipe spool). After welded, the

sub-assembly is moved back to the original fitting table and gets fitted with other pipe spool

parts. It then proceeds with welding to become another sub-assembly or the final product. This

fitting-welding cycle ends when all pipe spool parts are welded. Pipe spool fitting and welding

can be grouped into two types: (1) roll fitting and roll welding (Figure 3-3(a)) and; (2) position

fitting and position welding (Figure 3-3(b)). Roll fitting and welding means the main pipe can be

turned by a pipe roller and the fitter or the welder does not have to change his or her position to

49

perform the operation, whereas position fitting and welding occur when one or more branches of

the main pipe exceed the clearance limit (Figure 3-3(b)). In such case, the fitter or the welder has

to move around the main pipe to perform fitting or welding. As a result, position fitting and

position welding usually takes more time to finish than roll fitting and roll welding. To minimize

number of position fitting and welding is one of the objectives of pipe spool fabrication

sequencing.

(a) Roll welding (b) Position welding

Pipe Roller is usable Pipe Roller is not usable

Clearance limit

Arm Length

Clearance limit

Arm Length

Arm Length =< Clearance limit Arm Length > Clearance limit

Figure 3-3 Roll welding and position welding (Hu and Mohamed 2012)

3.3 PIPE SPOOL FABRICATION SEQUENCING

The fabrication sequence defines the process of how a pipe spool will be fabricated gradually

from raw materials (e.g. pipes and fittings), to intermediate sub-assemblies, and eventually to the

final product. A pipe spool, in many cases, can be fabricated through a number of alternative

sequences. Figure 3-4 shows such an example. The pipe spool can be fabricated at least by two

different sequences from the same raw materials. Fabrication sequence1 necessitates two

position welding when it fabricates sub-assembly 7, sub-assembly 8 and spool part 4 since the

rolling axis would be axis Z and the longest arm length would be L (2.7m) which is larger than

rolling clearance (1.5m) (Figure 3-4). Fabrication sequence 2, on the other hand, requires no

50

position welding (all spool parts can be roll welded). Another difference between these two

sequences is that sequence 1 takes three fabrication steps to finish the fabrication while sequence

1 only needs two steps. The reason is that although the fabrication in step 2 and in step 3 are on

the same axis Z they require different type of welding and thus cannot be completed in the same

step. More fabrication steps also imply more handling needed between these steps, which further

deteriorate the shop performance. It can be concluded, without further analysis, that sequence 2

will outperform sequence 1.

Likewise, most of real-life pipe spools have a number of alternative fabrication sequences.

However, sequence is usually determined by shop foremen in very heuristic manner and these

alternative sequences seldom have a chance to be compared and evaluated. As a result,

opportunities of productivity improvement slip away. The root cause is attributed to the fact that

currently there is no standard, structured way to identify sequence for pipe spools in the industry,

and neither has any academic research on this specific topic been found.

Raw

Material

Flange1

Pipe2

Elbow3

Pipe5

Plate6

Flange4

Step 1

1 2 3 7+ + = 5 6 8+ =

4 5 6

7

+ +

=

3 +

Step 3

87 4+ +

71 2+ +

Step 2

Fabrication Sequence 1

Fabrication Sequence 2

H1 =0.5m

H2 = 0.7m

L=2.7m
1

2

3

4

5

6

x

y

z

Final Product

Two roll welding One roll welding Two position welding

Three roll welding Two roll welding

Figure 3-4 Alternative pipe spool fabrication sequences (Hu and Mohamed 2012)

51

3.4 PREVIOUS RESEARCH ON CONSTRUCTION SEQUENCING

Construction sequencing in this chapter refers to logic dependency between processes by

considering the geometric and technological requirements. It should be distinguished from

scheduling problems where process are sequenced and prioritized under limited resource

availability in scheduling problems. A review of the previous relevant researches reveals that two

major topics are: (1) identify and formalize construction sequence rationales (2) automate

generation of construction sequences. Gray (1986) identified sequence rationales such as

“covered by” or “weather protected by other components” that are generalized from different

schedules generated by contractors. Kartam and Levitt (1989) consider “gravity support” and

“enclosure” relationships as “general principles.” Navinchandra et al. (1988) identifies similar

dependencies as “supported by” and “connected to.” Most of these sequence rationales are

derived from the physical relationships between building components. Echeverry et al (1991)

enrich the body of knowledge by adding three more factors that might govern the sequence of

construction. Basically, they identify, in addition to “physical relationships among building

components,” “trade interaction,” “path interference,” and “code regulations.” Other researchers

have attempted to develop AI planning systems that capitalize on the existing construction

sequencing rationales and automatically generate sequential dependencies between construction

activities, for example, CONSTRUCTION-PLANEX (Hendrickson 1987), GHOST

(Navinchandra et al. 1988), OARPLAN (Darwiche et al. 1989) and Construction Method

Modeler (Aalami et al. 1998). Recent work by Koo et al. (2007) pointed out that much research

on domain specific AI planning systems is focused more on identifying a correct construction

sequence, than on discovering a number of possible sequence alternatives. They introduced a

prototype system named "constraint-loaded CPM (CLCPM),” that makes use of constraint

52

ontology, and a classification mechanism to automatically assign "role" and "status" to relevant

activities (i.e. to a target activity that needs re-sequencing) in CPM. These activities exert their

"impact" on the target activity through "multiple network chains.” Their "role" and "status" will

be analyzed in the context of each related network chain and a final decision (whether or not can

change sequence with the target activity) will be made based on pre-defined inference rules.

Since all relevant activities will be evaluated, multiple re-sequencing alternatives might be

generated.

The first observation from the previous research is that most of sequencing rationales are focused

on building projects. These sequencing rationales are derived directly from the physical

relationships between building components (e.g. columns, beams, walls and slabs). This makes it

difficult to apply them to industrial construction projects, i.e. the building blocks are pipe spools

and modules which most likely need to be pre-fabricated or pre-assembled before the final

installation on site. The sequence constraints between these components are significantly

different from those between building components. The second observation is that existing

planning systems are mostly knowledge-based systems (KBS) which are highly domain-specific

AI planning systems (e.g. building construction). Finally, the CLCPM system (Koo et al. 2007)

even needs an existing schedule to infer re-sequence options.

Rokni (2009) developed heuristic search algorithm to identify the optimal sequence for pipe

spools. However, the algorithm is a brute force search algorithm which needs to search through

all the entire search space to find the optimal sequence. For example, if a pipe spool has n

welding points, the number of possible solutions in the search space is n! (i.e. for a spool with

13 welds, it has 6,227,020,800 possible sequences). Although heuristics such as, determination

of the type of welding by certain type of joint or assembly of small spool components first has

53

been built to reduce the search space, it is never proved in the paper that how effective these

heuristics are for this purpose (i.e. the reduction rate in the search space). In addition, the

benchmark to evaluate the algorithm is set up as how close the algorithm-returned sequence is to

human planner’s sequence, rather than how to further improve it.

3.5 ARTIFICIAL INTELLIGENCE (AI) PLANNING

Artificial Intelligence is a broad topic that consists of a variety of topcis such as knowledge

representation, planning, machine learning, natural language processing, fuzzy logic, etc.

Planning has been one of major research topics in artificial intelligence since 1960s (Newell and

Simon 1972). It should be noted that AI planning in this chapter only refers to domain

independent planning. AI planning is a process of selecting and sequencing a set of actions that

change the system under study from an initial state to a desired goal state. This process starts

with a general description of the system: (1) objects and states, a set of simple literals are used to

describe the state of the objects that constitute the system; (2) actions, a finite number of actions

are available to act upon the objects and to change their states. Each action comes with its own

preconditions (must be true before applying the action) and effects (the resulting states after

perform the action); (3) an initial state and a goal state, the main principle of selecting actions to

perform is to reduce the difference between the initial state and the goal state so that eventually

the system can achieve the goal from the initial state; (4) evaluation criteria, which is used to

compare alternative plans and to find the optimal one. This description is then fed to a generic

planning engine (called planner) which returns a sequence of actions (or plan) to achieve the goal.

Particular modeling languages (e.g. STRIPS or ADL) are used to generate such a description.

Planning Domain Description Language (PDDL) is very popular recently. It was first developed

by Drew McDermott (1998). Since then, it has evolved and refined through several versions. AI

54

planning has been successfully implemented in many domains such as robot navigation,

manufacturability of machined parts, and emergency evacuation (Ghallab et al. 2004).

AI planning could be a good candidate to solve the pipe spool fabrication sequencing problem.

First, each pipe spool deals with limited number of pipes, pipe fittings and welding points. Pipes

and fittings can be all viewed as the same object type—pipe spool part and welding points are

the other object type. Second, there are only four actions available to change the state of a pipe

spool or its parts—roll fitting, roll welding, position fitting as well as position welding. This

differs greatly from the other types of construction where a wide variety of objects (e.g. columns,

beams, walls, footings, etc.) are involved and hundreds of actions are required to build these

components. Third, the preconditions and effects of pipe spool fabrication are quite

straightforward. For fitting, it only requires two spool parts with an un-fitted (not fitted yet)

welding point and the result is that spool parts are connected (becomes a sub-assembly) with a

fitted welding point. For welding, it needs a sub-assembly with a fitted welding point and the

result is a finished sub-assembly and a welded welding point. This is a unique characteristic.

Researchers (Levitt and Kunz 1987, Navinchandra 1988, Darwiche et al. 1989) found that it is

quite difficult to formulate preconditions and effects for operations in other construction projects

(e.g. building construction).

A number of experiments have been conducted to test the capability of AI planning to solve pipe

spool fabrication problem. The details of these experiments can be referenced in a previous paper

(Hu and Mohamed 2012). Experiments selected three popular planners: (1) Metric-FF

(Hoffmann 2002); (2) LPRPG (Coles et al. 2008); (3) LPG (Gerevini and Serina 2002). Results,

however, showed that these planners lack adequate parsing capability when the system

description contains both numerical calculations and conditional effects which are required by

55

the pipe spool fabrication problem. A grounding process is needed in this case to release the

conditions from the effects of actions but requires enumerating all possible situations in the

action description. A side effect of the grounding process is that the number of actions defined in

the domain file grows exponentially with the number of welds in the pipe spool. For example, a

pipe spool has N welds and then 2N-1 actions need to be explicitly formulated (e.g. a pipe spool

with 13 welds requires 4096 actions defined). It poses huge computation challenge to AI

planners and makes it almost impossible to solve some moderately complex pipe spool problems.

This finding led to a search for other problem solving techniques. Dynamic programming is

found to be a fit candidate.

3.6 DYNAMIC PROGRAMMING

Dynamic programming (DP) is a generic, efficient approach to solve optimization problems that

usually involves a succession of decision making process (Chinneck 2010). To implement DP,

two key Characteristics are required for the target problem: (1) Overlapping sub-problems and (2)

Optimal substructure. When a problem can be broken down into sub-problems whose solutions

will be reused for a number of times, the problem is said to have overlapping sub-problems. On

the other hand, optimal substructure means that the optimal solution of a problem can be

constructed from the optimal solutions of its sub-problems (Farmer 2008).

DP solves a problem by decomposing it. The decomposition requires that the problem and all its

sub-problem are expressed in a recursive form. Decomposition process stops when the sub-

problem becomes so simple that its solution is rather easy to be found (Dreyfuse and Law 1977).

From this point, DP adds to this simple problem a small part at a time so that the new sub-

problem is more complicate than the previous sub-problem. The optimal solution to the new sub-

56

problem is usually constructed from the optimal solution to the previous sub-problem. This

process continues until the new sub-problem is the original problem (Chinneck 2010). The

sequence of this process is the reverse to the sequence of decomposition used in the first step. At

the end, both the sequence of solving the problem and the utility of this solution can be returned

as part of the optimal solution.

DP improves the computation efficiency by two reasons. Unlike brute force approaches of total

enumeration, DP memorizes the solutions of sub-problems and avoids re-calculating them when

they are needed again. Second, it rules out many inferior solutions as it progress through a

succession of decision making. This often considerably reduces the search space required to

reach the optimal solution.

DP differs from many other optimization algorithms which contain a universal algorithm that

applies to every problem and user only need to feed in the specific numbers of a problem. To use

DP, every problem needs to be custom formulated and involves innovative thinking.

3.6.1 Problem formulation in DP perspective

To use DP, it is necessary to formulate the pipe spool fabrication sequencing problem in such a

way that it matches the important characteristics of DP. Assume that the cost for roll-welding is

1 and the cost for position-welding is 2. The problem of finding the minimum number of position

welding sequence for spool fabrication can be converted to the problem of discovering the

minimum cost sequence for spool fabrication. The numbers used here are merely to distinguish

the position welding from roll welding in the algorithm and are not the actual representation of

costs for roll welding and position welding.

57

Stages: The problem can be divided into stages. In the pipe spool problem, a pipe spool is

composed of several pipe spool parts and welds. The minimum cost fabrication sequence for the

whole pipe spool should also be the minimum cost sequence for any of its sub-assemblies. Thus,

the problem at stage t is to find the minimum cost sequence to assemble a sub-assembly (could

be the original pipe spool). Figure 3-5 shows a number of such stages for an example pipe spool.

At stage 1, the objective is to find the minimum cost sequence for the entire pipe spool. To do so,

it is necessary to know the minimum cost sequence to assemble sub-assembly 5, 6, 7, and 8 (1

and 4 are basic pipe spool parts and need no fabrication), since the cost to assemble the pipe

spool is dependent on the cost for these sub-assemblies. At stage 2, the objective is to find the

minimum cost sequence to weld sub-assembly 5, which in turn leads to finding the minimum

costs to assemble sub-assembly 7 and sub-assembly 9. This process continues until a stage is

reached (e.g. stage 3) where the sub-assembly is composed from two basic pipe spool parts and

one welding point, where the cost can be immediately determined.

States: Each stage has a number of states. Figure 3-5 shows that the pipe spool can be assembled

by welding spool part 1 and sub-assembly 5, or by welding sub-assembly 6 and sub-assembly 7,

or by welding sub-assembly 8 and spool part 4. Likewise, stage 2 and stage 3 also have

alternative fabrication sequences to choose from.

Decision at a stage: The decision refers to choosing the optimum fabrication sequence of all

alternatives at one stage. Since it is impossible to make a decision at an early stage (i.e. the cost

of many sub-assemblies are unknown), decisions are made from the last stage (stage 3 in Figure

3-5). It is easy to make a decision since there is only one way to fabricate the sub-assembly, and

cost can be immediately determined. From this stage, one can work backwards to make decisions

for previous stages.

58

Recursive value relationship: The first few functions and variables need to be defined:

· C(k): minimum cost to assemble sub-assembly k,

· C(i): minimum cost to assemble child sub-assembly i of sub-assembly k,

· C(j): minimum cost to assemble child sub-assembly j of sub-assembly k,

· W (i, j): cost to assemble i and j to produce sub-assembly k,

· The recursive value relationship is then: C(k) = min{C(i) + C(j) + W(i, j)}.

Note that C(∙) appears on both sides of the recursive relationship. The optimum at stage t

depends on two things: the value of current fabrication decision W(i, j), and the value of a

previously found optima C(i) and C(j).

59

Decompose at welding point 2

1

2

L=2.6m

H1 =0.7m
3

H2 =0.5m

+

Sub-assemblyComponent

2
3

51

Decompose at welding point1

Sub-assembly

+

7

Sub-assembly

1
3

6

Decompose at welding point2

Sub-assembly

1

8

2

+

Component

4

Decompose at welding point3

Stage 1

7

Sub-assembly

3

+
Component

2

Decompose at welding point 2 Decompose at welding point 3

2

Sub-assembly

9

+
Component

4

Stage 2

Pipe Spool

Component

3

+

Component

4

Decompose at welding point 3

+

Component

3

Component

2

Stage 3

Figure 3-5 Decomposition stages of an example pipe spool

Use the pipe spool in Figure 3-5 as an example to clarify these concepts. Before analysis, the

clearance limit is assumed to be 1.5 meters.

To determine the stages, the pipe spool should be subdivided until the sub-assemblies become so

simple that their fabrication costs can be determined immediately. In other words, the pipe spool

60

should be sub-divided into sub-assemblies that only involve two pipe spool components and one

welding point. Figure 3-5 gives an example to decompose the pipe spool.

Stage 1: Three alternatives are available since decomposition at each welding point can

result in a new pair of sub-assemblies. All three alternatives require further

decomposition since either one or two resulting sub-assemblies are not simple enough.

Suppose C0 represents the total cost to assemble the pipe spool while Ci represents the

cost to assemble the ith (=5,…,12) sub-assembly. For basic pipe spool parts (e.g. 1, 2, 3

and 4 in round bracket of Figure 3-5), the cost to assemble them is considered 0.

C0 = Min(

)

Stage 2: For space limit, take alternative 1 as an example (the same process should be

applied to alternative 2 and 3). Only sub-assembly 5 needs further decomposition. It has

two alternatives: decomposed at welding point 2, which results in spool part 2 and sub-

assembly 7, or decomposed at welding point 3, which results in spool part 4 and sub-

assembly 9. Either alternative needs further decomposition which leads to stage 3.

C5 = Min(

)

Stage 3: This is the final stage where there is only way to fabricate both sub-assemblies

(7 and 9), and the fabrication cost can be determined right away.

Sub-assembly 7 is composed from spool part 3 and spool part 4 (both have zero cost as

they require no fabrication).

C7 = C3+C4+W3,4 = W3,4

Since the arm length of spool part 3 is less than 1.5 meters, sub-assembly 7 can be roll-

welded. Thus,

61

W3,4 = 1

C7 = 1

Sub-assembly 9 is composed from spool part 2 and part 3.

C9 = C2+C3+W2,3 = W2,3

Since H1 (0.7 m, the arm length of the elbow shown in Figure 3-5) is less than the

clearance limit (1.5 m), sub-assembly 9 can also be roll-welded.

W2,3 = 1

C9 = 1

Since the fabrication cost of lower level sub-assemblies have been determined, it is now

possible to construct the solution in the bottom-up manner. The sequence is the reverse of

the decomposition order.

Back to stage 2, sub-assembly 5 could be assembled from either spool part 2 and sub-

assembly 7 or sub-assembly 9 and spool part 4.

C5 = Min(

)

W2,7 and W9,4 should be determined by the dimensions of their constituent components

and their relative position to the welding point. As Figure 3-6(a) shows, if sub-assembly 5

is assembled from spool part 2 and sub-assembly 7, it can be roll-welded, since H1 (0.7

m) is less than clearance limit (1.5 m).

W2,7 = 1

However, when sub-assembly 5 is assembled from sub-assembly 9 and spool part 4

(Figure 3-6(b)), it has to be position-welded, since L (2.1 m, the length of pipe shown in

Figure 3-5) is more than the clearance limit (1.5 m).

W9,4 = 2

62

Therefore, the minimum fabrication cost for sub-assembly 5 can be determined and the

optimal sequence for sub-assembly 5 is to fabricate pipe spool part 2 and sub-assembly 7.

C5 = Min(

) = Min(

) = 2

Stage 1: In order to determine the minimum fabrication cost for the whole pipe spool, the

same decomposition and solution construction processes should apply to the other two

alternatives (i.e. from sub-assembly 6 and sub-assembly 7, or from sub-assembly 8 and

spool part 4). The details are omitted here and results are shown below.

C6 = C1+C2+W1,2 = W1,2 = 1

C7= 1 (has already been calculated above)

C8 = Min(

), Since C6 = C9 = 1 and W6,9 = W3,9 = 1

C8 = 2

Finally, for the entire pipe spool,

C0 = Min(

)

If the pipe spool is assembled from spool part 1 and sub-assembly 5 (alternative 1 shown

in the Figure 3-7(a)), the rolling axis will be the axis X and the maximum rolling arm will

be H1 (0.7 m). Since H1 (0.7 m) is less than the clearance limit (1.5 m), it can be

performed by roll-welding. Thus,

W1,5 = 1

C5 +W1,5 = 2 + 1 = 3

If the pipe spool is assembled from sub-assembly 6 and sub-assembly 7 (alternative 2

shown in the Figure 3-7(b)), the rolling axis will be the axis X again. The maximum

rolling arm is still H1 (0.7 m < clearance limit 1.5 m). Thus,

63

W6,7 = 1

C6 + C7 + W6,7 = 1 + 1 + 1 = 3

If the pipe spool is assembled from sub-assembly 8 and spool part 4 (alternative 3 shown

in the Figure 3-7(c)), the rolling axis will be the axis Z again. The maximum rolling arm

will be L (2.6 m), which is longer than the clearance limit (1.5 m). A position-weld has to

be performed in this case. Thus,

W8,4 = 2

C8 + W8,4 = 2 + 2 = 4

Consequently,

C0 = Min(

) = 3

Therefore, there are two optimal fabrication sequences (alternative 1 and 2 in Figure 3-5)

for the pipe spool, both of which incur the minimum fabrication cost.

Sub-assembly 7

21 H1 =0.7m

Z

X

Y

Component 2

(a)

Component 4

21

Z

X

Y

Sub-assembly 9

(b)

L=2.1m

Figure 3-6 Two alternative ways of fabricating sub-assembly 5

64

21 H1 =0.7m

H2 =0.5m

Z

X

Y

Sub-assembly 5

Part 1

(a) Alternative 1: Part 1 + Sub-assembly 5

21 H1 =0.7m

H2 =0.5m

Z

X

Y

Sub-assembly 7

(b) Alternative 2 :

Sub-assembly 6 + Sub-assembly 7

Sub-assembly 6

21

Z

X

Y

(c) Alternative 3 : Sub-assembly 8 + Part 4

L=2.6m

Sub-assembly 8

Part 4

Figure 3-7 Three alternative ways of fabricating the pipe spool

3.6.2 DP algorithm

Based on the DP formulation of the pipe spool fabrication sequencing problem, an algorithm

(abstracted pseudo code shown in Figure 3-8) is developed to automatically identify the optimal

sequence. The detailed implementation of the algorithm in Python is provided in appendix B.

65

1) Initialization

· Initialize coordinates and dimensions of each pipe spool part P

· Initialize coordinates of each welding point W and the axis that each of them sits on

· Initialize the configuration of the pipe spool (i.e. relationship between P and W)

· Initialize the clearance limit (for roll welding)

2) find a Minimum Fabrication Cost for an sub-assembly A

· If A is a pipe spool part

· Minimum fabrication cost = 0

· If A is simple assembly (consists of only one welding point and two pipe parts)

· Minimum fabrication cost = cost for fabricating pi and pj together (i.e. if roll-welding, cost = 1;

if position welding, cost = 2)

· If A is complex (i.e. contains more than one welding points and more than two pipe spool parts)

· Initialize minimum fabrication cost (MFC) for A = the Maximum Integer Value)

· For each welding point wk in A

· Decompose A at wk and results in two sub-assemblies A1 and A2

· Calculate the minimum fabrication cost for both A1 and A2 (recursive call)

· mwck = minimum fabrication cost for A1 +

minimum fabrication cost for A2 +

cost for fabricating A1 and A2 together

· If the mwck < MFC (i.e. obtained from all the previous decomposition)

 MFC = mwck

 Record the welding point wk

 Record the optimal fabrication sequence for A1 and A2

· Next welding point

· Record the welding point w that achieves MFC

· Record the optimal fabrication sequence for A

Figure 3-8 DP-based pipe spool fabrication sequencing algorithm

3.7 SIMULATION EXPERIMENTS

In order to test the effectiveness of the DP algorithm, two simulation experiments are conducted

to prove if the fabrication sequences generated from the DP algorithm can really improve the

shop performance. Unlike the previous simulation experiment [12], the fabrication sequences

used here are the ones generated from the DP program, and ones that are generated by shop

foremen which were actually used in one of Edmonton-based KBR fabrication shops. Figure 3-9

shows the general process of the simulation experiments. Two sets of sequences are input into

66

the same simulation model and results are collected and compared. Major performance metrics

include: (1) the number of position welds, (2) the total cycle time, and (3) the number of

handlings. The difference between the two experiments is that experiment 1 focuses on all 29

pipe spools, while experiment 2 only focuses on 19 of the total 29 pipe spools. These are the

ones that have variations between the original sequences and the DP sequences.

3.7.1 Pipe spool set

29 pipe spools are used in the simulation experiment. They are real-life pipe spools that have

been fabricated in one of KBR fabrication shop. They are selected because their fabrications

have been tracked from the beginning (i.e. when they are issued to the shop) to the end (i.e. when

the fabrication is completed). All processes (cutting, fitting, and welding) are recorded in time

study sheets, including their sequences. These sequences are referred to as Original Sequences in

Figure 3-9. In addition, they were all collected in the same quarter of the year and thus are quite

representative of real-life work load of the fabrication shop. Figure 3-10 shows the composition

of this pipe spool set in terms of pipe spool complexity.

67

Shop foremenShop foremen

DP SequencesDP Sequences

Original SequencesOriginal Sequences

Dynamic Programming

algorithm

Simulation ModelSimulation Model Original DP

T
o

ta
l

C
y

cl
e

T
im

e

Figure 3-9 Simulation experiment

Figure 3-10 Complexity of pipe spool set

3.7.2 Experiment 1 results

The results of experiment 1 show that the total number of position welds has been reduced from

20 to 11 (Figure 3-11(b)). Considering that the total number of welding points for all 29 pipe

0

2

4

6

8

10

12

Low (<= 5) Medium (5 < spool parts

< 12)

High (>= 12)

#
 o

f
P

ip
e

S
p

o
o

ls

Complexity of Pipe Spool Set

68

spools is 203, the improvement percentage is around 4.4%. This generally matches the total

cycle time result, which is about 4.8% reduction (Figure 3-11(a)). The total number of handlings,

however, actually increased by 2.5% (Figure 3-11 (c)). This can be explained in that the number

of handlings is not considered as one of the optimization objectives in the DP algorithm. The

increased number of handlings definitely offsets the improvement that is gained from the

reduction in position welding.

Figure 3-11 Results of experiment 1 (including 29 pipe spools)

3.7.3 Experiment 2 results

Experiment 2 focuses on the pipe spools that have different sequences (from the original

sequences) after using the DP algorithm. Figure 3-12 (b) shows that the decrease in position

welding is still 9. This is the same as in experiment 1. However, the improvement in terms of the

69

total cycle time is increased to 12% (Figure 3-12 (a)). The total number of handlings is increased

3.1% compared to the original sequences (Figure 3-12(c)).

Figure 3-12 Results of experiment 2 (including 19 pipe spools)

3.7.4 Discussion of experiment results

Both experiments show that the DP algorithm is effective in minimizing the position welding (or

position fitting), which results in a significant reduction in the cycle time of fabricating pipe

spools. Given the enormous number of pipe spools involved in an industrial project and the fast-

tracking nature of the project, it will not only save the fabrication shop a considerable amount in

dollar value, but will also enhance its responsiveness to the changing project environment.

However, there are several issues that need to be addressed in future research. First, the number

of handlings should be incorporated as part of optimization objectives in the DP algorithm.

70

Handling is a type of non-value-adding activity and should be minimized. It is also observed that

although in most cases including 29 pipe spools, the program returns the sequence in a few

seconds; it took the program more than one hour to calculate the optimal sequence for an

extremely complicated pipe spool which has 17 spool parts and 16 welding points. This means

that the program itself needs to be optimized so that it meets the efficiency requirement for real-

life fabrication shops. Integration is another issue that needs to be addressed. Since the DP

program needs intensive information about the dimensions of pipe spool parts, the coordinates of

welding points, as well as the configurations of pipe spools, it is critical for the program to be

able to pull this information from existing drafting software. Manual input should be minimized

so that input errors can be minimized.

3.8 CONCLUSION

Fabrication sequence is one of the key factors that impact pipe spool shop performance.

Currently, this sequence is determined by human planners in a very heuristic manner, and thus, is

not guaranteed to be optimal. Potential performance enhancement can be obtained through

automation of this decision-making process through advanced problem solving techniques. This

chapter investigated the use of dynamic programming. DP offers a way of decomposing and

solving the problem, and leaves great flexibility to build in pipe spool fabrication logic and to

perform any type of numerical calculations. A DP algorithm is customized for the pipe spool

sequencing problem. Simulation is used to test the effectiveness of this DP algorithm and results

show that the program is able to reduce the number of position welds as well as to shorten the

pipe spool cycle time. Future work is focused on embedding more pipe spool fabrication

heuristics into the DP algorithm to optimize more objectives in addition to the minimum number

of postion welding.

71

3.9 REFERENCES

Aalami, F., Kunz, J., and Fischer, M. (1998). “Model-based sequencing mechanisms used to

automate activity sequencing.” Working Paper No. 50, CIFE, Stanford Univ., Stanford, Calif.

Alberta Economic Development Authority (2004). “Mega Project Excellence: Preparing for

Alberta’s Legacy - An Action Plan.” available online

<https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102

004.pdf> (Aug. 29, 2012).

BRT (1982). Construction technologies needs and practices. The Business Roundtable,

Construction Industry Cost Effectiveness (CICE) Project Report B-3, New York, N.Y.

Chinneck, J. W. (2010), Practical Optimization: A Gentle Introduction, Carleton University,

Ottawa, Canada, available online <http://www.sce.carleton.ca/faculty/chinneck/po.html> (Aug.

29, 2012).

Coles, A.I., Fox, M., Long, D. and Smith, A.J. (2008). "A Hybrid Relaxed Planning Graph-LP

Heuristic for Numeric Planning Domains." Proc., Eighteenth Int. Conf. on Automated Planning

and Scheduling (ICAPS 08), Sydney, Australia, September.

Darwiche, A., Levitt, R., and Hayes-Roth, B. (1989). "OARPLAN: Generating Project Plans by

Reasoning about Objects, Actions and Resources." AI EDAM, 2(3), 169-181.

Dreyfus, S. E. and Law, A. M. (1977), The Art and Theory of Dynamic Programming, Academic

Press, Inc. New York.

Echeverry, D., Ibbs, C. W., and Kim, S. (1991). “Sequencing knowledge for construction

scheduling.” J. Constr. Engrg. and Mgmt., ASCE, 117(1), 118–130.

https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102004.pdf
https://aeda.alberta.ca/AEDA%20Public%20Document%20Library/MegaProjectExcel_Dec102004.pdf
http://www.sce.carleton.ca/faculty/chinneck/po.html

72

Engineering and Construction Contracting (2007). “Tackling the Unique Challenges of Mega

Projects.” Panel Discussion, 39
th

 Engineering and Construction Contracting (ECC) Conference,

Colorado Springs, Colorado.

Farmer, J. (2008). “Introduction to Dynamic Programming.” available online

<http://20bits.com/article/introduction-to-dynamic-programming> (Aug. 29, 2012).

Gerevini, A. and Serina, I. (2002). "LPG: a Planner based on Local Search for Planning Graphs."

Proc., Sixth Int. Conf. on Artificial Intelligence Planning and Scheduling (AIPS'02), AAAI Press,

Toulouse, France.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory and Practice,

Elsevier Inc. San Francisco.

Gray, C. (1986). “Intelligent construction time and cost analysis.” Journal of Construction Mgmt

and Economics, 4(2), 135–150.

Hendrickson, C, Zozaya-Gorostiza, C., Rehak, D., Baracco-Miller, E., and Lim, P. (1987).

"Expert system for construction planning", J. Comp. in Civ. Engrg., ASCE, 1(4), 253-269.

Hoffmann, J. (2002). "Extending FF to Numerical State Variables." Proc., 15th European Conf.

on Artificial Intelligence, Lyon, France, July.

Howell, G.A. and Ballard, H.G. (1996). “Managing Uncertainty in the Piping Process.” RR 47-

13, Constr. Industry Institute, Univ. of Texas, Austin, TX, September, 103 pp.

Hu, D. and Mohamed, Y. (2011). “Effect of pipe spool sequence in industrial construction

processes.” Proc., 3rd International/9th Construction Specialty Conf., CSCE, Ottawa, Ont., June.

http://20bits.com/article/introduction-to-dynamic-programming

73

Hu, D. and Mohamed, Y. (2012). “Pipe spool fabrication sequencing by automated planning.”

Proc., Construction Research Congress, ASCE, West Lafayette, Indiana, USA, May.

Haas, C.T., O'Connor, J.T., Tucker, R.T., Eickmann, J.A. and Fagerlund, W.R. (2000).

Prefabrication and Preassembly Trends and Effects on the Construction Workforce. Report No.

14, Center for Construction Industry Studies, Austin, TX.

Kartam, N., and Levitt, R. E. (1990) “Intelligent planning of construction projects”, J.

Computing in Civ. Engrg., ASCE, 4(2), 155–175.

Kim, J.J., and Ibbs, C.W. (1995). “Work-Package-Process Model for Piping Construction.”

Journal of Construction Engineering and Management. 121(4), 381-387.

Koo, B., Fischer, M., and Kunz, J. (2007). “Formalization of construction sequencing rationale

and classification mechanism to support rapid generation of sequencing alternatives.” J.

Computing in Civ. Engrg., 21(6), 423–433.

Levitt, R.E. and Kunz, J.C. (1987). “Using Artificial Intelligence techniques to Support Project

Management.” The Journal of Artificial Intelligence in Engineering, Design, Analysis and

Manufacturing, Vol. 1, No. 1, 3-24.

Navinchandra, D., Sriram, D., and Logcher, R. D. (1988). "GHOST: Project Network

Generator." J. Computing in Civ. Engrg., ASCE, 2(3), 239-254.

Newell, A., and Simon, H. (1972). Human problem solving. Prentice Hall, Englewood Cliffs, N.J.

Rokni, S. (2009). "Optimization of Industrial Shop Scheduling Using Simulation and Fuzzy

Logic". PhD dissertation, University of Alberta, Edmonton, Alberta.

74

Tommelein, I.D. (1998). “Pull-driven Scheduling for Pipe-Spool Installation: Simulation of Lean

Construction Technique.” ASCE, Journal of Construction Engineering and Management, 124 (4)

279-288.

Tommelein, I.D. (2006). “Process Benefits from Use of Standard Products - Simulation

Experiments using the Pipe Spool Model.” Proc., 14th Conference of the International Group for

Lean Construction (IGLC14), Santiago, Chile, 177-189.

Walsh, K.D., Hershauer, J.C., Walsh, T.A., Tommelein, I.D., and Sawhney, A. (2002). “Lead

Time Reduction via Pre-Positioning of Inventory in an Industrial Construction Supply Chain.”

Proc., of the 2002 Winter Simulation Conference, San Diego, CA, USA, 1737-1744.

Wang, P., Mohamed, Y., AbouRizk, S. M., and Rawa, A. R. T. (2009). “Flow Production of

Pipe Spool Fabrication: Simulation to Support Implementation of Lean Technique.” J. Constr.

Engrg. and Mgmt., ASCE, 135(10), 1027-1038.

Wyss, Stephen. (2009). “Active Management of Pipe spool Fabricators.” Chemical Engineering,

116(1): 40-45.

Haas, C.T., O'Connor, J.T., Tucker, R.T., Eickmann, J.A. and Fagerlund, W.R. (2000).

Prefabrication and Preassembly Trends and Effects on the Construction Workforce. Report No.

14, Center for Construction Industry Studies, Austin, TX.

http://www.ce.berkeley.edu/~tommelein/papers/IGLC06-038-Final-Tommelein.pdf
http://www.ce.berkeley.edu/~tommelein/papers/IGLC06-038-Final-Tommelein.pdf
http://www.iglc2006.cl/
http://www.iglc2006.cl/

75

CHAPTER 4. Congestion-Constrained Dynamic Resource Allocation

Scheduling Tool for Industrial Construction Projects

4.1 PROBLEM STATEMENT

Industrial construction includes a wide range of projects such as petroleum refineries, oil and gas

production facilities, petrochemical plants and power plants. Recently, industrial construction

projects have seen a significant increase in both tighter schedules and fast-tracked engineering

and construction, which leads to increased interference among work packages on-site. Schedules

are too tight to allow one discipline to end their work prior to another discipline beginning theirs.

Work packages often overlap rather than proceeding consecutively. This increases occurrences

of resource over-allocation, where resource requirement exceeds availability. Decisions have to

be made about how to allocate limited resources in order to best serve the overall project.

Prioritizing work packages is common practice to solve resource over-allocation problems.

Sometimes, planners allocate the resource to higher-priority work packages and delay lower-

priority ones until the resource becomes available again. Other times, resources are released from

work packages that are in progress and re-allocated to newly started work packages, if early

completion of the new work packages is considered critical for the entire project. In this case,

work packages with higher priority receive more resources than what they normally require,

while work packages with lower priority end up with a reduced resource level. As a result, their

durations are either shortened or extended. In reality, resource level assigned to work packages

might be any value within a range, which is described by three (minimum, normal and maximum)

levels. Furthermore, this resource level can fluctuate as the work package progresses.

Overlapped work packages also give rise to spatial interference and congestion. A petro-

chemical project is literally a ‘steel maze’ that consists of pipe works, steel structures, cable trays,

76

vessels, tanks, pumps and a variety of equipment (Hammed 2009), all of which are compacted

into a relatively small area. This dense jobsite could incorporate several million direct hours of

work and several thousand skilled workers. Congestion is aggravated when two or more work

packages are performed concurrently in the same area (due to overlap between work packages).

Trade stacking is the congestion of two or more trades within a work area. It is quite common

when the schedule is compressed. Since congestion diminishes productivity and increases the

risk of incidents, it is necessary to impose congestion constraint on these areas so that the

congestion situation can be controlled (i.e. defining the maximum number of people that can be

present concurrently in a work area). This congestion constraint, in turn, affects the amount of

resources (especially skilled workers) that could be allocated to work packages in the area (i.e.

might be less than the amount that it normally requires). On the other hand, the congestion status

of a work area changes dynamically over time while work packages start or are completed in that

area.

In addition, resource limit is often not fixed at the same level throughout project duration.

Resources employed in the on-site construction of industrial projects are often expensive. For

example, cranes for lifting various pre-assembled modules, or skilled workers, due to the remote

locations of these projects. Resource level (i.e. especially manpower) usually starts at a relatively

low level, peaks somewhere in the middle of the project and gradually declines towards the end.

The availability of resources can vary from one period to another and be at different levels

during the project life cycle. In the industry, this is usually referred to as Time-dependent

Resource Availability.

These aforementioned facts illustrate the issue that both resource availability level and resource

utilization level can be variable over time, even in the middle of execution of work packages.

77

This variation definitely has impact on the execution of work packages as well as on their

schedules. A challenge is posed then to project planners as to how to reflect the dynamic

characteristics of resource allocation in the project schedule.

This chapter presents a congestion-constrained, dynamic resource allocation scheduling system

(CDRASS) using time-stepped simulation technology. The objective is to develop a work

package schedule with the shortest project duration, which is generated under a dynamic

resource allocation mechanism. This is achieved by using time-stepped simulation to reflect

possible variations in either resource availability or resource allocation in every time unit (i.e.

could be hour, day or week depending on the users’ requirement). The feasibility of the schedule

is established by satisfying various hard constraints on work packages (e.g. dependency

relationship, imposed dates, calendar and resource availability), as well as congestion constraint.

Work packages can have durations that differ from the initial estimates, while keeping their

dependency relationships valid.

The next section reviews the literature that is relevant to this research. Limitations of existing

techniques are examined. The relevance of parallel scheduling scheme and time-stepped

simulation is then discussed. Details of the simulation mechanism are elaborated afterwards. A

case study from a real industrial project is used to illustrate the practicability of CDRASS.

Results are also compared to those achieved by main stream commercial scheduling packages,

and analysis of results is provided. Finally, conclusions and future improvements are given at the

end.

78

4.2 LITERATURE REVIEW

This research draws on literature in two areas: (1) resource-constrained project scheduling, and

(2) construction jobsite congestion.

Traditional critical-path-method- (CPM) based project scheduling techniques (e.g. PERT, ANO,

AOA and PDM) are widely criticized for their unrealistic assumption that resources are

unlimited. Recognition of this limitation motivated intensive research in regards to the resource-

constrained project scheduling problem (RCPSP). There are two major topics in this domain:

resource allocation and resource leveling. The former aims to find the shortest project duration

within the resource availability constraints, while the latter seeks to reduce the fluctuation in

resource usage with assumptions such as unlimited resource availability and fixed project

duration (Hegazy 1999). Since this research is more closely related to the former topic, only

literature related to resource allocation is reviewed herein. Many researchers have attempted to

formulate the RCPSP as a mathematical programming problem using various optimization

techniques such as linear programming, branch-and-bound, and enumerative branch-and-cut

(Karshenas and Haber 1990, Demeulemeester and Herroelen 2002, Jiang and Shi 2005). These

techniques are able to find a global optimal solution if the RCPSP problem is solvable. However,

for most real-life projects, these techniques are computationally impractical (Moselhi and

Lorterapong 1992, Hegazy 1999, Kim and Garza 2003, Lu and Li 2003). Another way to tackle

the RCPSP problem is through heuristic techniques. Heuristics provide criteria for prioritizing

concurrent work packages that are competing for the same resource. Commonly used heuristics

include the least total float (LTF), the minimum latest finish (LFT), and resource scheduling

method (RSM) (Davis and Patterson 2001). Shanmuganayagam (1990) proposed current float

(CF) as a variation of LTF. Moselhi and Lorterapong (1992) devised another heuristic technique,

79

‘least impact’, which allocates resources to a set of activities (out of all feasible sets at a certain

time), rather than to an individual activity, as in most heuristic techniques. Lu and Li (2003)

proposed a new heuristic called ‘work content’ and claimed it has comparable performance with

LTF in terms of finding the shortest project duration. A common feature of heuristic techniques

is that they are easy to apply, involve less computational efforts, and thus are suitable for real-life

projects. However, they can only offer a near-optimal solution and their effectiveness varies with

different problems. Meta-heuristic-based project scheduling techniques become popular recently.

These algorithms perform stochastic searches on populations of solutions which evolve over a

number of iterations (Elbeltagi et al. 2005, Lu et al. 2008). Genetic algorithm (GA) has also

been adopted to solve RCPSP problems (Chan et al. 1996, Hegazy 1999, Kandil and EI-Rayes

2006). Unlike mathematic and heuristic techniques, these algorithms are usually designed to

achieve more than one objective simultaneously (e.g. the minimum project duration, the least

resource utilization variation and the least cost). Kandil and EI-Rayes (2006) develop a GA-

based algorithm to optimize time and cost as well as quality. GA has been used widely to

optimize various construction problems, such as fleet configuration for earthmoving (Marzouk

and Moselhi 2004), and location selection for crane lifting (Al-Hussein 2005). GA limitations

have also been identified, e.g. long processing time and tendency to be trapped in local optima

(Elbeltagi et al. 2005, Ng and Zhang 2008). This motivated researchers to explore other meta-

heuristic techniques. Particle swarm optimization (PSO) and ant colony optimization (ACO) are

the two algorithms recently introduced to the construction scheduling domain. Christodoulou

(2007) first developed an ACO algorithm to address RCPSP problems and claimed that ACO has

a structure and representation similar to traditional CPM networks, and thus, has less complexity

to model RCPSP problems than GA and PSO. Ng and Zhang (2008) adopted ant colony system

80

(ACS), a variation of traditional ACO algorithm, to solve time and cost trade-off problems. By

applying the ACS algorithm to an 18-activity construction project, they found that ACS

significantly improves computational efficiency compared to the traditional ACO-based

algorithm. The applicability of PSO to RCPSP problems was also investigated (Zhang et al. 2005

and Lu et al. 2008). In comparison to other meta-heuristic algorithms such as GA, it is found that

PSO outperforms with less average deviations from the optimal solution. A similar conclusion

was also reached by Elbeltagi et al. (2005).

An observation can be made that most previous RCPSP research is focused on finding more

efficient and more effective scheduling optimization techniques. Scheduling optimization aside,

they all assume that the work package can only start when all required resources are available

throughout its duration and that, once captured, the resource levels stay constant for the duration

of the work package. For example, if a piping work package requires a crew of 10 pipe fitters to

perform the work, it is allowed to start only when there are 10 or more pipe fitters available.

Otherwise, it would be simply delayed or interrupted until the precondition could be met. In

theory, the resource level should remain at 10 pipe fitters throughout the work package’s

performance. In practice, however, the work package might be carried out even if there are only

8 pipe fitters available. The resource level allocated to a work package could be any value within

the range (minimum, normal, and maximum). In addition, resource level could also change

during the execution of the work package. For example, when a work area is congested, the

number of skilled workers assigned to work packages that occur in this area might be reduced to

alleviate the congestion. Or, skilled workers might be diverted from lower priority, in-progress

work packages to higher priority ones, so that those work packages can be started. The dynamic

characteristics of resource allocation, due to changing site conditions, are ignored in most

81

previous RCPSP research, although it may have substantial impact on work packages’

performance and must be considered in the scheduling process.

Hegazy and Menesi (2010) proposed a new critical path analysis method called Critical Path

Segment (CPS), which decompose activities into a group of segments based on days. This

method converts the complicated precedence relationships (such as Start-to-Start and Finish-to-

Finish) into Finish-to-Start. However, as for resource allocation, it holds the same deterministic

view point (as mentioned above). Dynamic resource allocation is therefore not fully addressed.

The jobsite congestion issue has been approached mainly in two different ways: (1) space

scheduling, and (2) productivity loss due to site congestion. The former takes space as one of the

pre-conditions (as a resource constraint) to perform a work package and returns a space-loaded

construction schedule (Thabet and Beliveau 1994, Thabet and Beliveau 1997, Riley and Sanvido

1997, Zouein and Tommelein 2001 and Akinci and Fischer 2002). A main goal of this line of

research is to discover the mapping between space requirements of work packages and the

physical space in 2D or 3D format, and then to detect and resolve the space conflict between

work packages in close proximity. However, there is another type of congestion—overcrowding.

It only reflects a degree of how crowded a work area is but not necessarily amounts to a space

conflict. Jobsite crowding is believed to be one of the major causes of productivity loss and

safety hazards (Ahuja and Nandakumar 1986, Dozzi and AbouRizk 1993, Thabet and Beliveau

1994, Ovararin and Popescu 2001). Many researchers attempted to quantify the impact of site

congestion on crew productivity. Ovararin and Popescu (2001) used the frequency of having

more than one crew working concurrently in the same area to represent the severity of

congestion. Thomas and Smith (1990) reported that a skilled worker normally needs 19m
2
 to

perform a task, and productivity plunges to half when area per person shrinks to 10.4 m
2
. Horner

82

and Talhouni (1995) suggested that productivity starts to reduce when area per person is lower

than 28.3 m
2
. Thebet and Beliveau (1994) created a productivity-space-capacity-factor (SCF)

curve, which depicts how productivity declines as work space becomes increasingly congested.

A similar curve was used in Dozzi and AbouRizk (1993) to illustrate loss in efficiency with

percentage of crowding.

Few researchers attempted to incorporate the impact of jobsite overcrowding into the schedules

of work packages. Zouein and Tommelein (2001) suggested the space congestion issue can be

solved, in addition to delaying the start of a work package, by lowering the resource level of

work packages, believing that the space requirement can be reduced as its resource level declines.

Although recognizing the relationship between the resource level and the degree of congestion,

they did not fully make use of dynamic resource allocation. Instead, they still assumed that the

resource level, whether it is decreased or at the normal level, is determined at the start of a work

package and stays constant throughout its duration. Thabet and Beliveau (1994) also recognized

that work space crowding lengthens the duration of work packages and attempted to reflect this

in the schedules of work packages. However, they suggested that instead of lowering resource

level (as Zouein and Tommelein 2001), the production rate should be reduced, due to multiple

work packages taking place concurrently in the same work area, and consequently, increased

congestion. This means that work packages can still hold the normal amount of resources,

regardless of how crowded the work area is, and only get penalized by decreased production

rates. In reality, however, this is not the case, since overcrowding not only causes reduction in

productivity, but also brings about safety hazards and should be restricted with a maximum limit.

A gap exists between the project-scheduling-related research and industry practice. Little

attention has been paid to the variability of resource availability, resource need and resource

83

level of work packages. Instead, a deterministic point of view dominates most previous research.

Meanwhile, jobsite overcrowding is seldom considered and integrated during the scheduling

process. Zouein and Tommelein (2001) investigated the alleviation of congestion by varying the

crew size required by work packages. However, they still held the similar deterministic view that

crew size be decided before the start of a work package and should remain the same throughout

the work packages’ performance.

4.3 PARALLEL SCHEDULING SCHEME

The CDRASS system was developed using time-stepped discrete event simulation (DES)

technology. Since scheduling optimization is not the focus of this chapter, heuristic technique is

selected to implement in DES. Many meta-heuristic optimization techniques require extensive

computing time for real-life problems, and thus, are not appropriate for simulations.

Heuristic-optimization-based resource constrained project scheduling has two components: a

scheduling scheme and a priority rule (Kolisch 1996). Scheduling scheme can be categorized

into two different modes: serial scheduling scheme and parallel scheduling scheme. Serial

scheduling scheme determines a sequence of activities, ordered by their priority (based on

whatever priority rule is used). This sequence of activities is then scheduled one at a time and at

the earliest time when both dependency and resource availability constraints can be met. Parallel

scheduling scheme, on the other hand, assigns and releases resources at every time unit.

Likewise, at the beginning of each time unit, a list of eligible activities (those whose

predecessors have been completed) is updated and ordered by priority. Activities that create no

resource over-allocation are scheduled and others are delayed or interrupted. This procedure

repeats until all activities are scheduled. The major difference between the two scheduling

84

schemes is that the serial mode releases resources only at the completion of activities while the

parallel mode releases resources at the end of every time unit. This means that in parallel mode,

activities are assigned with resources for the current time only. In the next time unit, the same

activities may or may not be able to capture the same resources (or the same amount of resources)

(Ahuja et al. 1994 and Lu and Li 2003).

If the serial scheduling scheme is adopted, it implies that resources must be available throughout

the duration of an activity, and also, that the resource level must stay constant during this period.

In contrast, the parallel scheduling scheme has no such implication. It allows resource level of

activities to vary from time-to-time. Considering the flexibility that is required by dynamic

resource allocation in this study, the parallel scheduling scheme is preferred over the serial

scheduling scheme.

4.4 TIME-STEPPED DISCRETE EVENT SIMULATION

The heuristic resource allocation approach can be implemented and automated through the use of

DES. Simulation has long been used to model and analyze various construction processes, with

the objective of improving long-term performance. For the last two decades, it has increasingly

been used for planning and scheduling day-to-day operations. It is usually referred to as

simulation-based scheduling. Compared to traditional CPM method, DES is able to explicitly

model resource interactions such that the resulting schedule is automatically leveled to the

availability of resources. Another major advantage of using DES is that it provides a cost-

effective laboratory environment where various alternatives can be tested and compared and the

best one can be selected, without interrupting the real system. Many researchers have

investigated the use of DES to solve construction planning and scheduling problems (Senior and

85

Halpin 1998, Martinez and Iaonnou 1997, Zhang et al 2002, Song and AbouRizk 2006,

Mohamed et al. 2007, Hu and Mohamed 2010, and Taghaddos et al. 2012). Sadeghi and Fayek

(2010) developed fuzzy discrete event simulation to develop a ‘robust’ schedule (insert time

buffer proactively into the schedule) for construction projects. Sadeghi and Fayek (2012) further

investigates the use of stochastic events to model start and finish of activities and to calculate

critical path with highest expected value.

However, previous research depends heavily on the event-driven type of discrete event

simulation (DES). Event-driven DES uses two events (start event and/or end event) to represent

the beginning and the completion of a work package (Figure 4-1). Once the duration is sampled

from a statistic distribution, the execution of the work package (including resource level) is

determined and will stay the same throughout its duration. It then skips the interval between

these two events. Time-stepped simulation is another type of DES where time advances in equal

increments (Figure 4-1). At each step, the event list is checked to see if whether an event is

scheduled to occur. If yes, the system state will be updated accordingly; otherwise, the

simulation advances to the next time step and the system state remains unchanged. Future events

are also scheduled in response to events occurring at the current time. This procedure continues

until either there are no more events in the event list or a pre-defined time limit has been reached.

Generally speaking, event-driven simulation is much more efficient, from a computing-time

point of view, than time-stepped simulation, as it skips the time intervals between events without

checking the details. However, it also loses the capability of capturing changes that might happen

during these intervals. Event-driven simulation is best suited for modeling a system with an

accurate forecast of future events, and no occurrences between two scheduled events. The time-

stepped DES is preferred over the event-driven DES to develop the CDRASS system because it

86

dissects the execution of a work package into subsequent segments and carries them out

individually (one at each time unit). This level of granularity allows incorporation of schedule

changes during work package execution and analysis of its possible effect on other work

packages. Meanwhile, with a properly designed resource allocation algorithm, the adoption of

the parallel scheduling scheme does not necessarily create any stoppage in the work packages’

execution. Figure 4-1 offers a direct comparison between event-driven simulation and time-

stepped simulation.

Start Event End Event

Workpackage Duration

Skip

(a) Event-Driven Simulation

Workpackage Duration

Time Step

(b) Time-stepped Simulation

Figure 4-1 Event-driven simulation and time-stepped simulation

In the CDRASS system, simulation is designed to advance time in a 24/7 manner (i.e. 24 hours

per day and 7 days per week). Each time step represents an hour, but could easily be scaled up or

down (i.e. time step could be minutes, days, or weeks). The major reason to choose to advance

time in a 24/7 manner is because calendars might vary from one work package to another (e.g.

87

piling work packages use the 10/5 calendar, i.e. 10 hours per day and 5 days per week, while

steel structure work packages use the 8/6 calendar, i.e. 8 hours per day and 6 days per week). The

24/7 calendar offers a common foundation on which different calendars can be incorporated in

the simulation model (Figure 4-2).

Figure 4-2 Simulation time advance in 24/7 manner

4.5 WORK-AREA-WORK-PACKAGE AS MOVING ENTITY

Project managers tend to overstaff the jobsite based on the notion that increased manpower levels

can accelerate the schedule and increase productivity. However, after a certain optimum level,

further increased manpower would do nothing but cause physical interference, as overlapping

work packages also gives rise to the occurrence of jobsite overcrowding, which in turn causes

productivity loss.

Congestion issues are associated with ‘work area,’ a concept that does not directly correspond to

work packages. This is especially the case in industrial projects where many work packages are

linear and cross a number of work areas, while each work area might involve more than one

work package. Figure 4-3 shows a situation where several work packages take place concurrently

in the same work area (e.g. WorkArea101) and a work package (e.g. WP2) can extend across

88

several work areas (e.g. WorkArea100, 101 and 102). As a result, the execution of WP2 should

comply with both resource limit and congestion constraints of all three work areas that it crosses.

Figure 4-3 Work areas and congestion limit

The congestion constraint can be treated as a type of resource that is expressed as how many

skilled workers can be present in the same work area. For example, assume that WP2 normally

requires 10 skilled workers. Due to the congestion status of WorkArea101, however, it could

only get work space to accommodate 8 skilled workers. This can be modeled as it captures 8

skilled workers from a certain trade and meanwhile takes work space for 8 skilled workers from

WorkArea101. A dilemma arises when WorkArea100 and WorkArea102 differ from

WorkArea101. For example, WorkArea100 allows 10 skilled workers while WorkArea102 can

only accommodate 7 skilled workers, since WP2 also crosses these two work areas and should

respect congestion constraints imposed in these areas. It is then inaccurate to assign 8 skilled

workers to the entire work package WP2 (Figure 4-4a). When WP2 is being performed in

WorkArea101, it does not involve congestion limits in WorkArea100 and WorkArea102, and

vice versa.

89

Figure 4-4b presents a new way of implementing congestion constraint. Basically, work

packages are further broken down into smaller elements called Work-Area-Work-Packages

(WAWP). Each WAWP represents a portion of the work package in a specific work area. In this

way, congestion constraint can act respectively on individual WAWPs instead of on the whole

work package. In the simulation, WAWPs are treated as moving entities (not resource entities).

Meanwhile, skilled workers represent limited and expensive resources, the use of which needs to

be effectively planned. In this study, they are considered the resource entities.

Since work packages are already at the lowest level of project planning and scheduling, WAWPs

need to be automatically created before the simulation commences. The creation of WAWPs can

be viewed as part of the pre-simulation data processing. The details and assumptions about the

creation process are described as follows:

(1) Definition of WAWP

In order to define WAWPs, it is necessary to know in which work area(s) a work package is

going to take place. Each work package/work area pair defines a WAWP. A link is established

between WAWP and its parent work package. In this way, WAWPs have access to the properties

of their parent work packages, e.g. discipline, total man-hours, total quantity, unit of

measurement, etc.

(2) Size of WAWP

It is assumed that the size of WAWPs is roughly derived from dividing the total man-hours (or

the total quantity) of the parent work package by the number of work areas it crosses. This is

merely an approximation, but accurate enough for the work-area-work-package level. For

90

example, sizes of piping WAWPs can be determined by the length of pipe spools or the number

of ISOs in each work area.

(3) Sequence of WAWP

WAWPs inherit all precedence relationships from parent work packages. For example, if work

package A is a predecessor to work package B, all WAWPs of A (A1, A2, …, An) are

predecessors to all WAWPs of B (B1, B2, …, Bn). It should be noted that excessive precedence

dependency should be eliminated at this step. This will be elaborated in the case study section.

Both the type of precedence relationship and the time lag remain the same. No sequence exists

between WAWPs from the same work packages.

(4) Continuity of WAWP

It is assumed that each WAWP should be performed continuously once it has been started.

However, on the work package level, children WAWPs are not necessarily performed in a

continuous fashion. This assumption makes sense especially in the context of industrial projects,

since stoppage between WAWPs can be interpreted as time that may be required to set up

scaffolding in each work area when the work takes place in elevation.

Congestion constraint mainly affects the amount of resources that can be allocated to the work

packages. A work package could be delayed if the congestion constraint cannot allow the

minimum number of skilled workers (i.e. minimum manpower level), even though there are

sufficient labor resources. Meanwhile, congestion constraint is a dynamic constraint that keeps

changing over time as work packages start and finish in the work area. A work package might be

allocated fewer resources when the area becomes increasingly congested, or vice versa. The

resource allocation to a work package might change during its execution due to congestion status.

91

WP2

(a) Traditional way of implementing congestion limit

WP2

(b) WorkAreaWorkPackage

Sub work package

@ WorkArea100

Sub work package

@ WorkArea101

Sub work package

@ WorkArea102

Figure 4-4 Work-area-work-package and congestion constraint

4.6 SIMULATION ALGORITHM

Time-stepped simulation needs to go through a routine procedure in every time step, which

includes these typical steps, as shown in Figure 4-5: (1) if this is the beginning of the simulation,

move to step 2 immediately; otherwise, update the progress for WAWPs that successfully

captured resources in the last time step, release all the resources and update the resource

availability limit at the current time; (2) identify eligible WAWPs (i.e. those that satisfy all

prerequisites, e.g. drawings, materials, time constraints, as well as precedence dependency); (3)

92

prioritize eligible WAWPs and allocate resources to them considering the limited availability and

congestion conditions in each work area; (4) advance the simulation to the next time step unless

all WAWPs have been completed already or a pre-defined time limit has been reached.

The Start of Simulation

Update the progress of

the last time step

Start of

simulation?

Identify eligible Work-Area-

Work-Packages (WAWPs)

No

Yes

Allocate resource to eligible WAWPs

within the availability limit

Advance simulation to

the next time step

All WAWPs
completed?

No

The End of Simulation

Repeat for every time step

Figure 4-5 Routine procedure for every time step

93

4.6.1 Identify eligible work packages

Work packages should not be released to the work face until all the preconditions have been met.

It is necessary to check the eligibility of every work package before it can be scheduled. This

also applies to WAWPs, each of which represents a portion of its parent work package. Various

constraint checks are built into the simulation, including predecessor status check, time

constraints check, and prerequisites check, as defined below.

(1) Predecessor WAWPs Check

It is the precedence relationships that drive the schedule to move forward. As predecessor

WAWPs progress or are completed, the succeeding WAWPs become eligible to be executed.

The CDRASS system incorporates all four types of precedence relationships: (1) start-to-start

(SS); (2) start-to-finish (SF); (3) finish-to-start (FS); and (4) finish-to-finish (FF). Both positive

and negative time lags are allowed to complement the four relationship types in order to model

the logic relationship between WAWPs. More than one relationship can exist between a pair of

WAWPs. A common example would be a WAWP that has both SS and FF relationships with its

succeeding WAWPs.

Two predecessor WAWP checks are built into the simulation based on the type of precedence

relationships. If it is related to the start of predecessors, such as SS and SF, then the WAWP is

eligible if all predecessors have already been started (or have a start time), and the current time

satisfies the lag or the lead. If it is related to the finish of predecessors, such as FS and FF, then

the WAWP is eligible if all predecessors already have an estimated finish time and the current

time satisfies the lag or the lead.

(2) Time Constraint Check

94

A work package would have certain time constraints which somewhat govern its start time

or/and finish time. For example, early start constraint (cannot be started before a certain time) or

late finish constraint (cannot be finished later than a certain time). This constraint also applies to

the children WAWPs of this work package. Simulation converts the current simulation time into

date-time format and compares with these constraints to determine the eligibility of WAWPs.

(3) Prerequisite Check

Material and drawing availability are the most frequent reasons to delay work packages. In fast-

tracked industrial projects, construction and procurement starts way before the design is

completed. Since scope is either undetermined or prone to change, the delivery of material and

drawings becomes the major issue to hamper project progress. The start of WAWPs should be

assigned to match delivery dates of required material and drawings.

Only WAWPs that have successfully passed all three checks are schedulable or eligible. Others

will be sent back to the WAWP pool, and checked in future time units (Figure 4-6).

95

Work-Area-Work-Package (WAWP) Pool

Check all predecessor WAWPs

Eligible WAWPs

Not Ready WAWPs

Yes

No

Check all time constraints

(Early Start, Late Finish, Early Finish)

No

Yes

Check all prerequisites

(material drawing availability)

Yes

No

Figure 4-6 Various built-in constraint checks

4.6.2 Dynamic resource allocation algorithm

A two-round resource allocation algorithm is designed to allow for dynamic resource allocation

while maintaining the continuity of WAWPs (shown in Figure 4-7).

First, all eligible WAWPs are divided into two categories: (1) in-progress WAWPs, and (2)

newly-included WAWPs. The first round of resource allocation is active if the number of in-

progress WAWPs is not equal to zero. It allocates resources to all in-progress WAWPs up to

their respective minimum-manpower-level requirements. The purpose is to guarantee that all in-

progress WAWPs can be continuously performed. However, the resource level may or may not

be the same as in the previous time units.

96

After the first round is done, all WAWPs (in-progress and newly-added) are combined in a single

list and sorted by their priority, given a particular priority rule (e.g. least total float, earliest late

finish or current float). The second round of resource allocation is active if resources are not

depleted in the first round. The second round adopts greedy first-fit criteria when allocating

resources to work packages. This means that it attempts to fulfill the resource requirements of

higher-priority WAWPs. The allocation is successful when the sum of resources that a WAWP

has obtained from both rounds is more than the minimum manpower level. Otherwise, the

WAWP has to be delayed. If resources are abundant, the resources allocated to a WAWP could

sum up to the WAWP’s normal resource level. In this case, the amount of resources captured in

the second round is equal to the normal resource level minus the amount captured in the first

round. For example, assume that a piping WAWP normally requires 10 pipe fitters and has

already captured 8 pipe fitters in the first round of resource allocation. It can capture another two

pipe fitters in the second round of resource allocation if two or more than two pipe fitters are still

available. If resources are insufficient, all the remaining resources are allocated to this WAWP.

For example, assume that there is only one pipe fitter left in the second round. The piping work

package will still capture this pipe fitter and the total manpower level is 9 (less than the normal

required amount of 10, but more than the minimum required amount of 8).

It should be noted that resource allocation is also constrained by congestion conditions of related

work areas. The amount of resources that can be allocated to a WAWP is the minimum of both

the availability of the resource it requires and the number of people that can be present in the

work area. For example, if there are more than 10 pipe fitters available but the work area can

only accommodate 8 people, then the maximum amount of resources that can be allocated to the

piping WAWP is 8 (=min(10, 8)).

97

Eligible Work-Area-Work-Packages (WAWPs)

Check if it has been started?

(if it has captured resource in previous time step)

In-progress WAWPs

First run of resource allocation:

1. sort the in-progress WAWPs

according to their priority

2. allocate the minimum manpower

to each in-progress WAWPs

3. subtract the same number of

workers from the congestion limit of

the corresponding work area

Newcommer WAWPs

Mix all WAWPs together

Second run of resource allocation:

1. Sort all WAWPs according to their priority

2. Resource Can Be Allocated = Min (Available Resource,

Available Congestion Limit)

3. If ‘Can-be-allocated’ resource is larger than 0, allocate it to

WAWPs; total allocation from two rounds should be at least

equal to the minimum manpower requirement and at most

equal to the normal manpower requirement

3. If resource is captured, subtract the same number of

workers from the congestion limit of corresponding work area

Check if all resource has been allocated? Or

congestion limits allow no more allocation?

End of resource allocation at current time step

Figure 4-7 Dynamic resource allocation algorithm

98

4.6.3 Variable resource level and variable durations

Although WAWPs that are in progress are guaranteed to be performed continuously (no

stoppage), their resource levels are not necessarily constant. Resource levels of a WAWP might

change under a few circumstances. First, in cases where a higher-priority WAWP that requests

the same type of resource is added to the eligible list, and it successfully captures resources in the

second round of resource allocation, the resource level of the in-progress WAWP might be

reduced. Likewise, in cases where a higher-priority WAWP that takes place in the same work

area becomes schedulable and it manages to take some congestion resources in the second round,

the resource level of the in-progress WAWP might as well be decreased. Another reason for

change in WAWP resource levels could simply be a decrease in the availability of the resource

(due to time-dependent resource limit, as shown in Figure 4-8). The resource level could also be

increased when all aforementioned situations are inversed (i.e. completion of higher priority

WAWP that requires the same resources or occurs in the same work area, or availability of the

resource is increased). It should be noted that traditional scheduling tools such as MS Project

also allow for variations in resource allocation, but the variation is restricted to either the normal

resource requirement, or nothing. However, completely stopping work on a WAWP that is

already started is very rare in real-life projects. Possible extra costs for protecting work-in-

process, mobilizing equipment, double-handling materials and associated set-up time and

moving time make complete interruption a very expensive option.

99

Figure 4-8 Constant resource limit vs. time-dependent resource limit

Given the fixed work quantity of a WAWP, its duration is bound to change as the resource level

changes. Traditionally, durations of work packages are treated as a constant number. Even in

simulation-based scheduling, the duration of a work package is generated once a number is

sampled from a probability distribution. This duration will not change at all as the work package

progresses. However, this is no longer the case when resource level is allowed to vary during the

execution of work packages or their children WAWPs. Thus, the original duration of a work

package or a WAWP is merely an estimate and the actual simulation duration might differ.

Variable durations pose a challenge to maintaining the precedence dependency between WAWPs.

This is the case especially when the dependency is related to the completion time of a

predecessor WAWP. For example, assume that two WAWPs (WAWP1 and WAWP2) have a FF

relationship. WAWP1 is the predecessor. If the duration of WAWP1 is somehow extended, the

completion time for WAWP1 will of course be postponed. This means that the completion time

for WAWP2 should be delayed accordingly, which, in turn, means the resource level of WAWP2

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Original Plan

30

WP1 (12 craft workers)

WP3 (15 craft workers)

WP2 (10 craft workers)

WP4 (20 craft workers)

35

11 12

WP1 (12 craft workers)

WP3 (15 craft workers)

WP2 (10 craft workers)

WP4 (20 craft workers)

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

modified Plan

30

35

11 12

(a) Constant Resource Limit (b) Time dependent Resource Limit

100

should be reduced. This adjustment mechanism is already built into the dynamic resource

allocation algorithm.

4.6.4 Update the progress of work packages

All WAWPs that have successfully captured resources in the current simulation time are

collected in a list. The progress of these WAWPs will be updated accordingly at the end of the

current simulation time. For example, if a piping WAWP captures 8 pipe fitters, the man-hours

that it has gained are equal to 8 times the time unit. If the time unit is an hour, 8 man-hours are

gained. If the time unit is a day, then the total man-hours obtained depend on the calendar of the

work package. Assuming that it uses the 10/5 calendar (10 hours per day and 5 days in a week),

80 man-hours are then obtained. If a WAWP has fulfilled the total man-hours, it will be added to

the completed work package list. This means that the WAWP can no longer be included in the

eligible WAWP list.

The end of the current simulation time is also the beginning of the next simulation time. Two

important additional tasks need to be performed. First, all resources captured in the current

simulation time should be released to replenish the resource pool. Second, the availability limit

of each type of resource should be updated according to the pre-defined, time-dependent value.

4.7 SIMULATION EFFICIENCY AND CALENDAR CONSTRAINT

Since the time-stepped simulation advances time in a 24/7 manner, it will definitely require

much more time than other event-driven simulations. The simulation efficiency is then an issue

that has to be addressed. Most work packages or WAWPs will not be performed 24 hours per

day or 7 days per week. There must be certain time units that are non-working time for all work

packages.

101

A check is then performed at the beginning of each time unit to see if it is non-working time for

all eligible WAWPs. If yes, then a standard procedure will be carried out (identify eligible work

packagesallocate resourcesadvance simulation timeupdate the progress). Otherwise, this

procedure is skipped and the simulation time is advanced one time unit forward. This will

significantly reduce the computation required by the simulation, and thus, reduce the required

time to run the simulation model.

4.8 SYSTEM ARCHITECTURE

The CDRASS system requires a variety of information from different information sources. The

design is based on the idea that simulation runs as a scheduling engine in a behind-the-scene

manner. It automatically reads data from the database, constructs and runs the simulation model,

and eventually writes the generated schedule back to the database. Users do not have to get

involved in model development. The simulation tool also interfaces with other information

systems at a database level (Figure 4-9). For example, material and drawing availability

information can be exchanged via a database between a material management system and a

simulation database. As-built information is pulled from a progress tracking system so that

simulation can start right from the current time instead of from the beginning of the project.

Meanwhile, some, if not all, of the work packages can be extracted directly from the 3D model,

depending on how much information is embedded. For example, various modules (e.g. pipe rack,

building, substation, steel structure, etc.) can be easily identified in the 3D model and their

physical location information (e.g. coordinates, dimensions) can also be obtained. It should be

noted that not all data can be pulled from existing information systems and manual input is still

required to populate some data tables (e.g. dependency relationships between work packages,

man-hours of work packages, or time dependent availability limits of resources) in the simulation

102

database. This system has been developed to implement the proposed algorithms using Visual

Basic.Net and Simphony.Net 4.0 (detailed implementation is provided in Appendix C).

Simphony is a discrete-event simulation environment for construction projects that facilitates

graphical, hierarchical and modular modeling (AbouRizk and Mohamed 2000). It has evolved

through several versions concurrent with upgrades of the Microsoft.NET framework. The most

recent version is Simphony.Net 4.0, which is based on the .NET 4.0 framework. Visual Studio

2010 is the main programming environment for Simphony.Net 4.0 and Microsoft Access 2007 is

used as the main data base management system (DBMS).

Figure 4-9 CDRASS system architecture

103

4.9 CASE STUDY

In order to demonstrate the practicality of the CDRASS system, a real case from PCL, a

construction leader in Canada and the United States, is used. PCL industrial management Inc. is

closely involved in industrial construction work and provides services from pipe spool pre-

fabrication, module pre-assembly, to field construction. The Kearl Initial Development (KID)

project was started by Imperial Oil Limited in 2009 and PCL is the general contractor on this

project. This is the first building block within phased development, offering 110,000 barrels of

bitumen processing capacity per day. The capital investment is approximately $10.9 billion. The

project is a typical mega oil-sand project that is being constructed in the province of Alberta,

Canada. The sheer size of the project is beyond illustrating for the purpose of the case study. As

such, only a portion of pipe rack area is focused on here (the part that is marked by yellow left-

right arrows in Figure 4-10).

104

Figure 4-10 Pipe-rack area of Kearl Initial Development (KID) project

The major work in this area is to install a number of pipe-rack modules in a stacked

configuration. These modules are pre-assembled in a module yard and shipped to the

construction site for final installation. Other disciplines involved here include piling, support

structure, piping (for interconnecting modules), silencer, hydro-testing, insulation, as well as

electrical cable tray. 51 work packages are identified with quantity, work areas, dependency

relationships, and resource requirements data, part of which is shown in Table 4-1 (the full list of

work package data is included in Appendix D). As many petro-chemical projects are fast tracked,

schedules are too tight to allow one discipline to end their work prior to another discipline

beginning theirs. This means that overlap between work packages (e.g. work packages 38 to 42

and work packages 44 to 49 in Table 4-1) is quite common, which has significant implications

for the execution of work packages. Five trades are required to perform these work packages.

Daily availability limit for each trade is shown in Table 4-2.

105

Table 4-1 Case study data

Work

Package

No.

(1)

Description

(2)

Quantity

(man

hours)

(3)

Work

Areas

(4)

Predecessors

(FS)

(5)

Craft Personnel

Requirements

Trade

(6)

Normal

Crew

Size

(7)

Min

Crew

Size

(8)

38 HydrotesingBetw011AB012ABC 30 011AB 29(-2 days) PF 10 8

39 HydrotesingBetw012ABC005AB 30 012ABC 30(-2 days) PF 10 8

40 HydrotesingBetw005AB006AB 30 005AB 31(-2 days) PF 10 8

41 HydrotesingBetw006AB007ABC 30 006AB 32(-2 days) PF 10 8

42 HydrotesingBetw007ABC014AB 30 007ABC 33(-2 days) PF 10 8

43

HydrotestingSilencerOnTopOf00

7ABC014AB 80

007ABC,

014AB 36,37 PF 10 8

44 InsulationBetw011AB012ABC 20 011AB 38(-1 day) INS 10 8

45 InsulationBetw012ABC005AB 20 012ABC 39(-1 day) INS 10 8

46 InsulationBetw005AB006AB 20 005AB 40(-1 day) INS 10 8

47 InsulationBetw006AB007ABC 20 006AB 41(-1 day) INS 10 8

48 InsulationBetw007ABC014AB 20 007ABC 42(-1 day) INS 10 8

49

InsulationSilencerOntopOf007A

BC014AB 40 014AB 43(-1 day) INS 10 8

Table 4-2 Daily trade availability limit

Trade

(1)

Start Date

(2)

End Date

(3)

Available Amount

(4)

106

EL (Electrician) 01-Sep-12 31-Jan-13 20

INS (Insulation) 01-Sep-12 31-Jan-13 20

IW (Iron Worker) 01-Sep-12 31-Jan-13 20

PF (Pipe Fitter) 01-Sep-12 31-Jan-13 16

PIL (Piling) 01-Sep-12 31-Jan-13 20

Multi-tier pipe rack areas are usually highly congested with various pipes and cable trays running

(horizontally or vertically) on the steel structures. Given that many work packages have to be

performed concurrently in these areas (i.e. due to the overlaps between work packages) and the

work space is quite limited, the congestion issue is unavoidable. Since congestion diminishes

productivity and increases the risk of incidents, it is necessary to impose congestion constraint on

these areas. Table 3 shows the congestion constraint for each work area. Congestion constraint is

imposed on the work area level, not directly related to individual work packages. For example,

Figure 4-10 shows that many work packages (e.g. piping, cable tray) are linear and extend across

two or more work areas. When executed, these work packages should respect the congestion

constraint in each work area. To associate work packages with work areas, a work package (i.e.

that occurs in more than one work area) is broken down into a number of elements—WAWPs.

For example, work package Piling@011AB012ABC (shown in Table 1) take places in two work

areas and thus can be decomposed into two WAWPs, Piling@011AB and Piling@012ABC.

Table 4-3 Congestion constraint of each work area

Work

Area

(1)

Max Craft Persons

(2)

107

011AB 16

012ABC 16

005AB 16

006AB 16

007ABC 16

014AB 16

108

Figure 4-11 Work packages and work areas

4.9.1 Pre-simulation calculations

After reading information from the database, the simulation goes through a pre-simulation stage.

The main task of this stage is to translate the information to the WAWP level. For work-

quantity-related information (e.g. total man hours), it is simply divided by the number of work

areas that the work package crosses. This is merely an approximation, but accurate enough for

109

the WAWP level. WAWPs can directly copy resource requirement information (e.g. trade, crew

size) from their parent work packages. WAWPs can inherit all logic-dependency relationships

from their parent work packages, but excessive constraints should be removed too. For example,

Figure 4-12 shows a situation where work package A is one of predecessors of work package B,

and both take place in work area 1 and work area 2. One of predecessors to B1 (the portion of

work package B in work area 1) is A1 (the portion of work package A in work area 1), but not

A2 (the portion of work package A in work area 2). Likewise, there is no dependency

relationship between B2 and A1.

Figure 4-12 Remove excessive dependency relationship

110

After all the basic information is determined for WAWPs, a CPM calculation is carried out

before the simulation starts. This calculation does not take resource availability constraints into

account, since the major objective is to calculate various CPM values (e.g. total float, current

float, early start or early finish), which can be used to prioritize WAWPs. There is no need to

calculate the actual early/late start/finish times and actual floats.

4.9.2 Simulation run and results

In this case, the least total float is selected as the main priority rule. When running, the

simulation takes all the constraints (e.g. dependency, resource availability, calendar, time

constraint, and congestion) into consideration and dynamically assigns resource to WAWPs. At

the end of simulation, the start times and finish times of WAWPs are rolled up to the work

package level, i.e. the earliest start time of children WAWPs becomes the start of their parent

work package, while the latest finish time of children WAWPs defines the finish of the work

package.

It is assumed that the entire sub-project starts September 10
th

, 2012. The simulation result shows

that it can be completed by January 7
th

, 2013.

Congestion issues exists in every work area (as in Figure 4-13, as the darker bars indicate that the

congestion constraint has been exceeded) when the congestion constraint is not imposed. After

running the simulation, the resulting schedule shows that all congestion situations have been

resolved (Figure 4-14).

111

Figure 4-13 Congestion status when congestion constraint is not active

112

Figure 4-14 Congestion status after the simulation run

4.9.3 Comparison to MS Project and Primavera

The same case study is also implemented manually in MS Project and Primavera 6. The

experiment has two steps: (1) schedule all WAWPs without any constraints (i.e. only with

precedence dependency and calendar constraints); (2) schedule under both resource availability

limit and congestion constraint.

When only considering precedence dependency and calendar constraint, all programs, including

the simulation tool, result in the same project completion date—November 26
th

, 2012. All three

generated schedules are identical.

113

The simulation tool sets a departure from MS Project and Primavera 6 when both resource limit

(Table 4-2) and congestion constraint (Table 4-3) come into play. It returns a project completion

date of January 7
th

, 2013. MS Project, after resource leveling, reaches a project finish date of

January 24
th

, 2013. Since MS Project is using its own proprietary algorithm, there is no other

resource allocation algorithm to choose. The only variation that can be made is to allow the

program to create splits in activities (i.e. allow interruption). Although quite impractical in reality

(as mentioned before), this option was experimented with, and the result was still January 24
th

,

2013. Primavera 6, on the other hand, allows users to experiment with various heuristics (early

start/finish, late start/finish, total float, free float, etc.). When using total float as the main

heuristic (i.e. the same as used in the simulation) to allocate resources, the program results in a

project finish date of January 24
th

, 2013. Many other heuristics have been tried and most of them

return an even later project completion date, except for free float heuristic. When adopting free

float as the main heuristic, the program manages to return a project finish date of January 22
th

,

2013. However, this result is still not as desirable as the one also returned by the simulation—

January 7
th

, 2013.

4.9.4 Discussion of results

It was found that the major difference between the simulation tool and other scheduling

programs stems from the way that resources are allocated. CDRASS allows adjustment of

resource allocation at any point during the execution of work packages. However, MS Project or

Primavera 6 sticks to the same resource allocation throughout the execution of work packages. If

allowed to create splits in work packages, MS Project can completely interrupt the work package

and allocate no resources to it. The simulation tool, on the other hand, can assign work packages

with any amount of resource within the normal and the minimal range mentioned previously.

114

This is best illustrated by Figure 4-15. It focuses on four work packages, work package 37 to 40.

Work packages 37 and 38 are to install the pipes and pipe spools that are used to connect

silencers on the top of pipe rack modules, while work package 39 and 40 are to install the

silencers (i.e. a type of module equipment). Though two different disciplines (piping and

equipment) are involved, all these work packages require the same type of skilled workers—pipe

fitters. The background bar chart shows the original schedule when there is no resource limit or

congestion constraint. Overlap between these work packages exists (as shown in Figure 4-15).

This leads to a situation where a higher-priority work package starts during the execution of a

lower-priority work package. For example, work package 38 and 40 both have overlap with work

package 39. The resource limit for pipe fitters is 16 and each work package normally requires a

crew of 10 pipe fitters. During the overlap, the total resource requirement could surge to 20,

which exceeds the resource limit of 16. Figure 4-15 also shows the total float of each work

package (i.e. the number of days on the right of the bars), e.g. work package 37 and 39 have 1

day total float, while work packages 38 and 40 have zero total float, and thus, have higher

priority than the former two work packages. When work package 39 starts before work packages

38 and 40, a decision needs to be made as to whether the resources should be re-allocated.

MS Project or Primavera only assign either the full amount of required resources or nothing to

work packages. Therefore, if the aforementioned situation occurs, it completely postpones one

work package or the other. Figure 4-15 shows that MS Project and Primavera can only perform

one work package at a time, though the sequence might be different. However, the CDRASS

system allows these work packages to take place concurrently. This is due to the dynamic

resource allocation mechanism built into the simulation. When work package 38 starts, it can

distract some resources from work package 39, even though 39 is still in progress. The two-

115

round resource allocation algorithm allocates 8 pipe fitters to work package 39 (i.e. as the

minimal manpower level is 8) in the first round. In the second round of resource allocation, it

allocates the remaining 8 pipe fitters to work package 38 (i.e. the total number of pipe fitters is

16), since it has higher priority to work package 39. In this way, the continuity of work package

39 is maintained. Meanwhile, work package 38 can be started immediately without delay. The

same process happens when work package 40 starts.

The effect of this dynamic resource allocation is quite straightforward, as shown in Figure 4-15.

In the case of the simulation tool, all four work packages can be completed within 10 working

days (i.e. from Nov. 7
th

 to Nov. 20
th

, 2012). The duration work package 39 is also extended from

6 days to 7.5 days. In contrast, it takes 15 working days and 26 working days to complete these

work packages in MS Project and Primavera, respectively. This is just a glimpse of what

happened in the entire project schedule, but pinpoints why the simulation tool returns much

shorter project duration than the other two scheduling programs.

4.10 CONCLUSIONS

This chapter presents a time-stepped simulation-based scheduling system that (1) complies with

various constraints of work packages (precedence dependency, time dependent resource limit,

calendar, as well as time constraint), (2) dynamically allocates resources to work packages, and

(3) accounts for jobsite congestion constraints of work areas. This scheduling system is

implemented such that it can automatically read the information from a database, construct and

run the simulation model, and return the generated schedule to the database. It integrates with

existing information systems on the database level and works in a behind-the-scene manner so

that users do not have to get involved in model development. A real industrial construction case

116

was used to test the practicality of the tool. The generated schedule was also compared with

those from popular project scheduling software Microsoft (MS) and Project, and Primavera (P6).

It is observed that the schedule generated from CDRASS is 13 working days shorter than those

returned by MS Project and P6.

4.11 LIMITATIONS AND FUTURE WORK

There a number of limitations of this CDRASS system that need to be addressed in future work.

First, the resources considered in this development are restricted to various skilled workers.

Another important type of resource on the sites of industrial construction projects is cranes. The

availability of cranes, if required, is essential to start the execution of work packages, and

therefore, should be considered as another constraint to work packages. The dynamic resource

allocation algorithm can also be improved by incorporating advanced resource allocation

algorithms (e.g. simulation-based auction protocol, SBAP, by Taghaddos et al. 2012).

Meanwhile, time unit can be expanded from hour to day, so as to strike a balance between

dynamic variation and stability in resource allocation. The change of time unit should not change

the main simulation mechanism and resource allocation algorithm. Simphony 4.0 is by nature an

event-driven DES environment. When it is used to implement time-stepped simulation, it could

impose overhead on processing time. It might be more efficient if the CDRASS system could be

implemented in a pure time-stepped simulation engine. Finally, part of the precedence

dependency information can be derived automatically from 3D models due to the physical

constraints between project components. This could reduce the manual input that is required to

populate the simulation database.

117

Figure 4-15 Comparison between the simulation tool, MS Project and Primavera

118

4.12 REFERENCES

AbouRizk, S., and Mohamed, Y. (2000). “Simphony-an integrated environment for construction

simulation.” Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, USA, 2:

1907-1914.

Ahuja, H. N., and Nandakumar, V. (1985). “Simulation model to forecast project completion

time.” J. Constr. Eng. Manage. , 111 (4), 325–342.

Ahuja, H., Dozzi, S. P., and AbouRizk, S. M. (1994). Project management techniques in

planning and controlling construction projects, 2nd Ed., Wiley, New York.

Akinci, B., Fischer, M., and Kunz, J. (2002). “Automated generation of work spaces required by

construction activities.” J. Constr. Eng. Manage. , 128 (4), 306–315.

Al-Hussein, M., Alkass, S., and Moselhi, O. (2005). “Optimization algorithm for selection and

on-site location of mobile cranes.” J. Constr. Eng. Manage. , 131 (5), 579–590.

Chan, W., Chua, D., and Kannan, G. (1996). "Construction resource scheduling with genetic

algorithms." J. Constr. Eng. Manage., 112(2), 125–132.

Christodoulou, S. (2010). “Scheduling resource-constrained projects with ant colony

optimization artificial agents.” J. Comput. Civ. Eng. , 24 (1), 45–55.

Davis E. W., Patterson J. H. (1975). “A comparison of heuristic and optimum solutions in

resource-constrained project scheduling.” Management Science, 21(8), 944-955.

Demeulemeester, E. L., and Herroelen, W. S. (2002). Project Scheduling : A Research

Handbook, Kluwer Academic Publishers, Boston, Mass, USA.

119

Dozzi, S. P., and AbouRizk, S. M. (1993). Productivity in Construction, Institute for Research in

Construction, National Research Council, Ottawa, ON, Canada.

Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). "Comparison among five evolutionary-based

optimization algorithms." J. Adv. Engng. Informatics, 19(1), 43 – 53.

Hammad, A. (2009). “An Integrated Framework for Managing Labour Resources Data in

Industrial Construction Projects: A Knowledge Discovery in Data (KDD) Approach.” University

of Alberta, Edmonton, Canada

Hegazy, T. (1999). “Optimization of resource allocation and leveling using genetic algorithm.” J.

Constr. Eng. Manage., 125(3), 167–175.

Hegazy, T. and Menesi, W. (2010). “Critical Path Segments Scheduling Technique.” J. Constr.

Eng. Manage., 136(10), 1078–1085.

Hu, D., and Mohamed, Y. (2010). “State-Based Simulation Mechanism for Facilitating Project

Schedule Updating.” Construction Research Congress 2010, Banff, AB, Canada, ASCE, 369-378.

Kandil, A., and El-Rayes, K. (2006a). “MACROS: Multi-objective automated construction

resource optimization system.” J. Manage. Eng., 22(3), 126–134.

Karshenas, S., and Haber, D. (1990). “Economic optimization of construction project scheduling.”

Journal of Construction Management and Economics, Vol. 8, No. 2, 135-146.

120

Kim, K., and de la Garza, J. M. (2005). “Evaluation of the resource constrained critical path

method algorithms.” J. Constr. Eng. Manage., 131(5), 522–532.

Horner, R. M. W., and Talhouni, B. T. (1995). Effects of accelerated working, delays and

disruption on labour productivity, Chartered Institute of Building, Ascot, U.K.

Hu, D., and Mohamed, Y. (2010). “State-Based Simulation Mechanism for Facilitating Project

Schedule Updating.” Construction Research Congress 2010, Banff, AB, Canada, ASCE, 369-378.

Jiang G., and Shi J (2005). “Exact algorithm for solving project scheduling problems under multi

resource constrains.” J. Constr. Eng. Manage., 131(9), 986–992.

Kolisch R. (1996). “Efficient priority rules for the resource-constrained project scheduling

problem.” Journal of Operations Management, 14(3), 179-192.

Lu, M., and Li, H. (2003). “Resource-activity critical-path method for construction planning.” J.

Constr. Eng. Manage., 129(4), 412–420.

Lu, M., Lam, H.C., Dai, F., (2008). “Resource-constrained critical path analysis based on

discrete event simulation and particle swarm optimization.” Automation in Construction, 17(6),

670–681.

121

Martinez, J. C., and Ioannou, P. G. (1997). “State-based probabilistic scheduling using

STROBOSCOPE’s CPM add-on.” Construction Congress V, Minneapolis, MN, ASCE, 438–45.

Marzouk, M. , and Moselhi, O. (2004). “Multiobjective optimization of earthmoving operations.”

J. Constr. Eng. Manage. , 130 (1), 105–113.

Mohamed, Y., Borrego, D., Francisco, L., Al-Hussein, M., Abourizk, S., and Hermann, U.

(2007). “Simulation-based scheduling of module assembly yards: Case study.” Engineering,

Construction and Architectural Management, 14(3), 293-311.

Moselhi, O., and Lorterapong, P. (1993). “Near optimal solution for resource-constrained

scheduling problems.” Construction Management and Economics, 11, 293-303.

Ng, S. T., and Zhang, Y. (2008). “Optimizing construction time and cost using ant colony

optimization approach.” J. Constr. Eng. Manage. , 134 (9), 721–728.

Ovararin, N., and Popescu, C. (2001). “Field factors affecting masonry productivity.” AACE

International Transactions, ES91-ES97.

Riley, D. R., and Sanvido, V. E. (1997). “Space planning method for multistory building

construction.” J. Constr. Eng. Manage., 123 (2), 171–180.

122

Sadeghi, N., and Fayek, A. Robinson. (2011). “A fuzzy-based approach for proactive scheduling

of construction projects.” Proceedings, 3rd International/9th Construction Specialty Conference,

CSCE, Ottawa, Ont., June 14-17: CN-007-1-CN-007-11.

Sadeghi, N., Fayek, A., and Ingolfsson, A. (2012). ”Simulation-Based Approach for Estimating

Project Completion Time of Stochastic Resource–Constrained Project Networks.” J. Comput.

Civ. Eng., 26(4), 558–560.

Senior, B. A., and Halpin, D. W. (1998). “Simplified simulation system for construction projects.”

J. Constr. Eng. Manage. , 124 (1), 72–81.

Song, L., and AbouRizk, S. M. (2006). “Virtual shop model for experimental planning of steel

fabrication projects.” J. Comput. Civ. Eng., 20 (5), 308–316.

Taghaddos, H., AbouRizk, S., Mohamed, Y., and Hermann, U. (2012). ”Simulation-Based

Auction Protocol for Resource Scheduling Problems.” J. Constr. Eng. Manage., 138(1), 31–42.

Thabet, W. Y., and Beliveau, Y. J. (1994). “Modeling work space to schedule repetitive floors in

multistory buildings.” J. Constr. Eng. Manage. , 120 (1), 96–116.

Thomas, H. R., Jr., and Smith, G. R. (1990). “Loss of construction labor productivity due to

inefficiencies and disruptions: The weight of expert opinion.” PTI Rep. No. 9019, Pennsylvania

Transportation Institute, Pennsylvania State University.

123

Zhang, H., Tam, C.M., and Shi J. (2002) “Simulation-based methodology for project scheduling.”

Construction Management and Economics, 20 (8), 667 – 678.

Zhang, H., Li, X., Li, H. and Huang, F. (2005). “Particle swarm optimization-based schemes for

resource-constrained project scheduling.” Automation in Construction, 14 (3), 393–404.

Zouein, P. P., and Tommelein, I. D. (2001). “Improvement algorithm for limited space

scheduling.” J. Constr. Eng. Manage. , 127 (2), 116–124.

124

CHAPTER 5. Automating Sequence Planning for Industrial Construction

Processes Using Domain Independent Artificial Intelligence Planning

5.1 PROBLEM STATEMENT

Project planning is one of the core project management functions, which “links the design of a

facility to its construction” (Fischer and Aalami 1996). It involves two major tasks: (1) identify a

list of activities necessary to deliver the designed facility, and (2) generate proper sequential

relationships between them. The latter is also referred to as construction sequencing.

Construction sequencing involves intensive knowledge and expertise, since each sequential

relationship has its underlying rationale. For example, the physical relationship between building

components, e.g. construction of columns should precede beams due to the support relationship

between them. Others reasons could be technical relationships which depend on the technical

method, e.g. pipe spool components should be fitted (temporary connection) before they can be

welded (permanent connection).

In practice, many construction planners rely on critical-path–method- (CPM) based tools to

generate project plans. As useful as these tools may be in displaying and analyzing project plans,

they generally lack the ability to capture and use aforementioned knowledge to sequence various

activities. In other words, they provide little assistance, if any, to generate project plans. As such,

current project planning is mainly performed by human planners in a manual and heuristic

manner. This becomes a challenging task as planners face the growing complexity, increasing

uncertainty as well as ever compressed schedule that have become the common characteristics of

large-scale construction projects, such as those within industrial construction.

Automating this construction sequencing process is beneficial to the overall project success.

However, limited attention has been paid to automated construction sequence. In addition,

125

previous research has been focused on developing solutions for building construction projects

using domain specific artificial intelligence (AI) planning techniques (e.g. knowledge based

expert system). Most sequencing rationales are derived from the physical relationships between

building components (e.g. columns, beams and slabs), which make it difficult to apply them to

other types of construction, e.g. industrial construction projects.

This chapter investigated the use of domain-independent AI planning technique to solve

construction sequencing problems for two industrial construction processes. Industrial

construction refers to building facilities such as petro-chemical refineries or oil/gas production

plants. The construction processes studied in this chapter are (1) pipe spool fabrication and (2)

module installation. A standard AI planning language called Planning Domain Definition

Language (PDDL) is used to model these processes and several AI planners that can handle

PDDL representations (e.g. Metric-FF by Hoffmann 2002, LPRPG by Coles et al. 2008, and

LPG by Gerevini and Serina 2002) are employed to identify feasible plans to accomplish the

construction process without violating any physical or technical constraints. A number of

experiments are conducted to test the effectiveness of PDDL on each of these processes and

results show that PDDL technique is more suitable to generate plans for module installation than

pipe spool fabrication.

The rest of chapter is organized as follows. Reviews of previous research work related to

automated planning and scheduling for construction projects are provided in the next section.

This is followed by a brief explanation of domain-independent AI planning technique (also

referred to as general purpose planning), a standard planning language PDDL and its

applicability to construction sequencing problems. Two industrial construction processes,

namely pipe spool fabrication and pipe-rack module installation, are investigated to see if

126

domain-independent AI planning is capable of generating feasible sequences or plans for real-life

construction processes. Brief descriptions of experiments and results are provided for each case.

Finally, limitations and some issues for future research are discussed.

5.2 LITERATURE REVIEW

A review of previous research finds that limited attention has been paid to the topic of automated

project planning and scheduling in the construction domain and that most relevant research was

conducted in the 1980s and the early 1990s. Many researchers realized that development of

automated planning and scheduling systems should start with formalization of sequencing

knowledge between activities. Gray (1986) introduced sequencing rationales such as “fixing base

provided by,” “flexibility of material,” “covered by,” “service provided by,” and “protected by”

that are generalized from different contractors’ schedules. Darwiche et al. (1989) made use of

similar dependencies, such as “supported-by,” “adjacent-to,” “enclosed-by,” and “in-same-floor.”

Most of the aforementioned sequence rationales are derived from the physical relationships

between building components. Echeverry et al. (1991) enriched the body of knowledge by

adding three more types of sequencing factors in addition to physical relationships, specifically

“trade interaction,” “path interference,” and “code regulation.” Detailed sequencing rationales

are listed under each factor type. For example, under “trade interaction” category, they identified

“space competition,” “resource limitation,” “unsafe environment effects,” etc. These sequencing

rationales possess different levels of flexibility, i.e. some of them are hard constraints that cannot

be violated and result in only one feasible sequence, while others are soft constraints that can be

satisfied by a variety of sequence options. To effectively apply these sequencing rationales to

construction activities and to automatically generate realistic construction plans or schedules,

many researchers developed automated planning or scheduling systems. Gray (1986) developed

127

the TIME system, a rule-based knowledge-based system (KBS), to analyze a design, to generate

the network of all required activities (i.e. project schedule) and to perform critical path method

(CPM) calculations. Hendrickson (1988) developed a frame-based KBS system, called

CONSTRUCTION PLANEX, for construction planning and scheduling of modular high-rise

buildings. The system takes a detailed description of the building design as input, such as design

elements (building components), site information as well as resource availability. Based on this

input, it automatically selects activities that are necessary to build these design elements and

aggregates them into project activities (i.e. bottom up manner) for which precedence dependency

estimate durations are added. PLANEX then performs CPM calculations and resource allocation.

The output is a project schedule and a cost estimate. Darwiche et al. (1989) developed a

prototype planning system called OARPLAN. Like PLANEX, it needs users to input a

description of the designed building, e.g. a set of physical building components with their

specifications and relationships. Similarly, OARPLAN starts with including activities that are

necessary for the building components and keeps elaborating them to a level of detail that is

appropriate for project estimate or control (i.e. top-down manner). Meanwhile, it also assigns

precedence dependencies to sub-activities (generated during elaboration), if necessary. Different

knowledge sources are triggered to automate this activity elaboration and sequencing process.

Aalami et al. (1998) characterized OARPLAN as a component-based reasoning system as

opposed to a process-based reasoning system such as GHOST (Navinchandra et al. 1988).

GHOST starts with an unrealistically optimum schedule where all activities are in parallel. It

then uses “critic knowledge sources” (CKSs) to modify the schedule by introducing sequences

between activities when necessary. GHOST also includes an activity elaboration process in

which new sub-activities are introduced and sequenced by CKSs. GHOST generates a project

128

schedule as output, at appropriate levels of detail with precedence dependencies among activities.

Fischer and Aalami (1996) argued that construction method knowledge is the missing link

between a design and a construction plan. They formalized this knowledge by creating

construction method templates that consist of five elements: domain, constituting activities,

activity sequencing, constituting objects, and resource requirements. Fischer and Aalami (1996)

developed a system where all these construction method templates are organized in a hierarchical

structure and are used to elaborate a high level seed activity to a desired level of detail. Once the

elaboration process is done, the system performs duration estimate and CPM calculations. User

participation is required when selecting a method to apply to an activity. Therefore, it is not a

fully automatic system. Koo et al. (2007) pointed out that most aforementioned automatic

planning and scheduling systems aim at identifying a correct construction sequence rather than

providing possible sequence alternatives. They prototyped a system called CLCPM, which

automatically analyzes the “role” and “status” of activities of interest (i.e. need to be re-

sequenced) using a constraint ontology and a classification mechanism. A decision is made

afterwards with respect to whether these activities can be re-sequenced.

An observation from the previous research is that most of the developed automatic systems are

knowledge-based expert systems which use only domain specific knowledge and rules, and that

almost all of them focus on building projects. In other words, these systems can only be used to

generate plans for building projects. For example, many sequencing rationales are derived from

the physical relationships between building components (e.g. columns, beams, walls and slabs).

They cannot be readily applied to industrial construction processes where the building blocks are

pipe spools, equipment and modules. The sequence rationales between these components are

fundamentally different from those applied in building construction projects. Kartam and Levitt

129

(1990) experimented with domain-independent AI planning technique and customized a planner

SIPE to identify feasible plans for modular building projects. They, like many other researchers,

used physical relationships between building components, e.g. supported-by and enclosed-by, to

propagate sequence constraints among activities. It was found that the system was only able to

handle simplified construction processes and was inefficient for real-life planning situations

(Echeverry et al. 1991).

Another observation is that many of these automatic systems (e.g. TIME, CONSTRUCTION

PLANEX, GHOST, etc.) aim at handling the complete scheduling process. This means that

systems are designed to perform all the functions: activity identification and inclusion, activity

sequencing, activity duration estimation, CPM calculation and/or cost estimation. As useful as

they are, they all suffer from the complication which stems from squeezing all these planning

and scheduling functions into one single system. For example, individual knowledge sources are

required for each of these functions and a sophisticated mechanism is needed to manage the

interactions among the knowledge sources so that no conflict occurs. An error in any of the

components could propagate and consequently compromise the quality of generated schedules. It

is therefore believed by the authors that it might be more efficient and effective to develop a

dedicated tool to automate only one part of the planning and scheduling process, e.g.

construction sequencing. Reasons for this is that today, many commercial software packages are

already equipped with the capability of identifying and creating work packages (or activities)

directly from a 3D model, for example ConstructSim V8i by Bentley. Meanwhile, many

sophisticated scheduling packages (e.g. Microsoft Project, Primavera P6) or simulation-based

scheduling systems (Hu and Mohamed 2010, Taghaddos et al. 2012) have been developed to

perform various scheduling functions (e.g. resource allocation and leveling, CPM calculations,

130

and even schedule optimization). A gap exists between them with regard to how to generate

logical sequences between activities. As mentioned before, sequencing is still largely manually

performed by human planners. This chapter then focuses on investigating automated solutions to

the construction sequencing process using domain-independent AI planning technique.

5.3 DOMAIN-INDEPENDENT AI PLANNING

Planning has been one of the major AI research areas since the 1960s (Newell and Simon 1972).

Domain-independent planning (also referred to as general purpose planning or classic planning)

is the process of identifying a sequence of actions that gradually change a system (i.e. the block

system in Figure 5-1) from the initial state to a desired goal state. It assumes a state

representation of the system and defines a set of literals or predicates to describe the state (i.e.

block A is on the top of block B or block C is on the table, as shown in Figure 5-1a). One or

more actions (also called operators) are defined to change the state of the system (i.e. the ‘Place-

on-table’ action in Figure 5-1c). Each action is defined with preconditions and effects (Figure 5-

1c). An action is applicable when all the preconditions are satisfied. Effects are true when the

action is accomplished, which usually means that a change has occurred in the state of the

system. The AI planning system is fed with an initial state (Figure 5-1a) of the system and a goal

state (Figure 5-1b). It then selects appropriate actions to bridge the gap between the current state

and the goal state. When the goal state is achieved, a feasible plan (a sequence of actions) is

found.

131

B

A

C

Table

Initial State

B

A

C

Table

Goal State

(define (domain block)

 (:requirements :conditional-effects :equality :negative-preconditions)

 (:type block table)

 (:predicates

 (ontopof ?b ?b0 – block)

 (ontable ?b – block ?t – table)

)

 (:action place-on-table

:parameters (?b ?b1 – block ?t – table)

:precondition (and (not exists (?b0 - block) (ontopof ?b0 ?b))

 (and (not (=?b ?b1) (ontopof ?b ?b1)))

:effect (and (ontable ?b ?t)

 (not (ontopof ?b ?b1)))

)

 … …

)

(define (domain block)

 (:requirements :conditional-effects :equality :negative-preconditions)

 (:type block table)

 (:predicates

 (ontopof ?b ?b0 – block)

 (ontable ?b – block ?t – table)

)

 (:action place-on-table

:parameters (?b ?b1 – block ?t – table)

:precondition (and (not exists (?b0 - block) (ontopof ?b0 ?b))

 (and (not (=?b ?b1) (ontopof ?b ?b1)))

:effect (and (ontable ?b ?t)

 (not (ontopof ?b ?b1)))

)

 … …

)

Domain Definition File (PDDL)

(define (problem blockplacing)

 (:domain block)

 (:requirements :conditional-effects :equality :negative-preconditions)

 (:object A B C – block T – table)

 (:init

 (ontopof A B)

 (ontable B T)

 (ontable C T)

)

 (:goal (and (ontopof B C) (ontopof A B) (ontable C T)))

)

(define (problem blockplacing)

 (:domain block)

 (:requirements :conditional-effects :equality :negative-preconditions)

 (:object A B C – block T – table)

 (:init

 (ontopof A B)

 (ontable B T)

 (ontable C T)

)

 (:goal (and (ontopof B C) (ontopof A B) (ontable C T)))

)

Problem Definition File (PDDL)

a b

c

d

132

Figure 5-1 The block system and the description in PDDL

Planning Domain Description Language (PDDL) is one of the standard languages (e.g. STRIPS)

for domain-independent planners. It has evolved through a number of versions since it was first

proposed by Drew McDermott (1998). The representation of a target system and its associated

planning problem in PDDL consists of two pieces of description. First, there is a general

description of the system under study called Domain Definition File (Figure 5-1c). It defines

which object classes are of interest in the system, what possible states they could have, and what

actions are available to change their states. Another piece of description called Problem

Definition File (Figure 5-1d) is used to describe a specific planning problem. It defines the actual

instances for each object class and depicts their initial states and goal states. The domain

definition file can be re-used as long as it is a valid representation of the system while the

problem definition file could vary with each specific planning problem (i.e. different instances

could be involved and/or different initial or goal states). These two descriptions are eventually

input into a PDDL compliant planner which might be able to identify a feasible plan using a

variety of search methods.

Domain-independent AI planning has been successfully employed in several areas, such as robot

navigation, machined parts manufacturing sequencing, and emergency evacuation (Ghallab et al.

2004). It could also be a good candidate technique to plan construction processes when planning

problems are properly abstracted and scoped.

133

5.4 APPLICABILITY OF DOMAIN-INDEPENDENT AI PLANNING TO

CONSTRUCTION SEQUENCING

In order to make the best use of domain-independent AI planning technique as a plan generator,

the domain in which planning problems arise should satisfy a number of features. First, domain-

independent AI planning assumes a state representation of the system under study (Darwiche et

al. 1989). States are abstract descriptions of the system’s status that must serve for two main

purposes: (1) to distinguish the difference between the initial state and the goal state for the

planning problem, and (2) to determine what actions could be taken under each possible state of

the system. Since it is impossible to represent infinite knowledge, the states of the system must

be finite and the required knowledge should be limited. Second, actions are used in domain-

independent AI planning to change the states of the system gradually and to lead it to reach the

goal state. Actions should be unique (distinct from each other) and the total number of actions

should be limited. In addition, preconditions and effects of actions should also have the ability to

be precisely formulated (i.e. a precondition is a specific state of the system that when satisfied,

allows the action to become applicable, while an effect is the resulting state of the system after

the action is performed). Finally, actions could be repeatedly used in the plan. For example,

action ‘place-on-table’ in the block stacking system (Figure 5-1c) could be applied to different

blocks.

Darwiche et al. (1989) argued that domain-independent AI planning is not quite suitable for

planning and sequencing construction projects. The major reasons they cited include: (1) in the

construction domain, there are huge number of unique actions such that it is almost impossible to

have a complete enumeration of them, and (2) construction actions are usually not clearly

defined with preconditions and effects. For example, in order to install pre-assembled equipment

134

in a room of a building, it might require not only that the floor that supports it should be

completed and service like water or power supply is in place, but also that the exterior walls of

the floor (where the room is located) should not be completed so that the equipment can be lifted

and transported by a crane to the final location.

It is important to put this argument in context. Many researchers, including Darwiche, attempted

to develop a planning system that is capable of producing plans or schedules for an entire project,

which usually implies planning or scheduling at a work-package level or at a master-plan level

(i.e. highest planning level). The scope of planning leads to the fact that numerous types of

objects (e.g. walls, columns, beams, floors, windows, doors, etc. in buildings) and their possible

states should be considered and that all available actions should be enumerated. This means that

a large amount of case-specific knowledge will need to be formulated in domain and problem

definition files (Figure 5-1c and Figure 5-1d), which becomes a very cumbersome task to fulfill.

It might also make the planning problem too complex to be solved by any AI planner. In

addition, actions (or activities) at this level of detail also tend to be unique and have less

repetition. Levitt and Kunz (1987) discovered that, at this level, the precondition to start an

action is usually the completion of another action and that is the sequence. This leads to a

situation where the sequence is already implicitly contained in preconditions and effects of

actions and if the same information is input into a CPM tool (with no searching capability), the

same sequence or plan would be generated. Thus, no new knowledge is created during the AI

planning process. Levitt and Kunz (1987) concluded that domain-independent AI planning is

suitable to plan on the construction operation level where fewer objects and actions are involved

and more repetition of actions occurs. This point of view is echoed in this study. By

experimenting with domain-independent AI planning technique on two industrial construction

135

processes, it has been proven that domain-independent planning is a competent plan generator

for problems which are properly abstracted and scoped.

Most previous research on automatic planning for construction projects was conducted during

the 1980s and early 1990s. On the other hand, research on domain-independent AI planning has

continued to advance significantly over time. Domain-independent AI planning technique

evolved from classical planning that is only capable of handling logic inference, to more

advanced planning that can address various issues encountered in real-life settings such as

numeric-valued variables, time constraints, or a non-deterministic environment. The computing

capacity of personal computers has also improved drastically. It is then worth revisiting the

opportunity of using newly developed domain-independent AI planning technique to

automatically plan construction processes.

5.5 PIPE SPOOL FABRICATION SEQUENCING PROBLEM

Pipe spools are building blocks for industrial construction projects and are fabricated from a

group of raw pipes and pipe fittings. Cutting, fitting and welding are three major steps that a pipe

spool goes through during fabrication. Among them, cutting always occurs at the beginning and

only applies to raw pipes (i.e. cut to required sizes). This is followed by fitting (i.e. temporarily

connecting) some of the cut pipes and pipe fittings together, which results in a sub-assembly (e.g.

Assembly 7 at step 1 in Figure 5-2). This sub-assembly is then transported to welding stations

where it is welded (i.e. permanently connected). Fitting and welding take place alternately, rather

than simply in sequence. For example, after welding, the sub-assembly would be sent back to the

original fitting table where it is fitted with more pipes and/or pipe fittings (e.g. sub-assembly 7

136

and sub-assembly 8 are connected at step 3 in Figure 5-2). This back and forth between the

fitting table and welding stations continues until all the components are welded.

Pipe spools can be fabricated through a number of alternative sequences. Figure 5-2 shows an

example of a pipe spool with a simple configuration that can be fabricated in at least two

different sequences. One difference between these sequences is that sequence 1 requires one

more fabrication step than sequence 2. Another difference is that sequence 1 involves two

position welds (at step 3) while sequence 2 only involves two roll welds (Figure 5-3a). Position

welding (Figure 5-3b) occurs when one or more than one branch of the main pipe exceeds the

clearance limit of the rolling machine. Compared to roll welding, position welding requires more

manual work and therefore takes more time to complete. This means that sequence 2 can result

in better performance (e.g. cycle time) than sequence 1. One of the major objectives of

sequencing pipe spool fabrication is to identify a sequence that requires the minimum number of

position welds.

Raw

Material

Flange1

Pipe2

Elbow3

Pipe5

Plate6

Flange4

Step 1

1 2 3 7+ + = 5 6 8+ =

4 5 6

7

+ +

=

3 +

Step 3

87 4+ +

71 2+ +

Step 2

Fabrication Sequence 1

Fabrication Sequence 2

H1 =0.5m

H2 = 0.7m

L=2.7m
1

2

3

4

5

6

x

y

z

Final Product

Two roll welding One roll welding Two position welding

Three roll welding Two roll welding

1

2

3

4

5

Figure 5-2 Pipe spool fabrication sequences

137

(a) Roll welding (b) Position welding

Pipe Roller is usable Pipe Roller is not usable

Clearance limit

Arm Length

Clearance limit

Arm Length

Arm Length =< Clearance limit Arm Length > Clearance limit

Figure 5-3 Roll welding and position welding

5.5.1 Problem abstraction

Since it is impossible to model every aspect of pipe spool fabrication, an appropriate level of

abstraction is necessary for PDDL representations. First, cutting always occurs at the beginning

of the fabrication process. It is the invariable part of the fabrication sequence and therefore, does

not need to be considered here. Every fitting operation is followed by a subsequent welding

operation which means the sequence of fitting is identical to the sequence of welding. It is then

appropriate to use the sequence of welding operation to represent the sequence of the whole pipe

spool fabrication. Two types of welding operations, roll welding and position welding, are

considered, and their selection is determined by the maximum arm length from the rolling axis

where the welding is performed and the clearance limit of the rolling machine.

Two types of objects are considered: (1) pipe spool assemblies (represent all raw components

and in-progress subassemblies), and (2) welding points (indicated by numbers enclosed in

squares in Figure 5-2). For assemblies, there are only two states: active and not active (i.e. only

active assemblies can participate in the next welding). For welding points, three predicates are

used to describe their states. A welding point should belong to an assembly (e.g. welding point 1

138

belongs to Assembly 7 in Figure 5-2). It is also located on a specific axis (e.g. welding point 1 is

on axis X in Figure 5-2). To indicate progress of fabrication, a welding point should be described

as welded or not welded.

In order to determine if a welding operation is a position welding or a roll welding, coordinates

and dimensions of an assembly should also be included. Each pipe spool assembly is treated as a

3D rectangular box. Assembly 5 (i.e. an elbow) in Figure 5-4, for example, is described by a base

point (0, 0, 920) which happens to be a welding point and its dimensions (0, 89, 89), respectively

on the X, Y, and Z axes. Assembly 4 can be described in a similar manner. When fabricating

Assembly 4 and Assembly 5 (in Figure 5-4), the axis Z will be the rolling axis if a roll welding is

to be performed. The maximum branch length is either on the X axis or on the Y axis. In this

case, the maximum branch length is 89 (i.e. on Y axis). If it is less than the clearance limit, then

a roll weld is feasible. Otherwise, a position weld is required.

139

x

y

z

(0,0,920)

(0,0,114)

(114,0,0)
(220,0,0)

1
2

3
(0,0,0)

4

5

(0,0,920)

89

89

(0,89,1009)

Assembly 5

1
2

3

4

4

(0,0,920)

(0,0,114)
3

4

806

Assembly 4

89

89

z

x
y

4

4

5

When welding assembly 4 and 5

at welding point 4

806

Figure 5-4 Example pipe spool components and their geometries

5.5.2 PDDL domain and problem definition representation

Domain definition file is intended to describe general knowledge about the system under study.

On the other hand, problem definition file provides specific knowledge about a planning problem.

Object types and possible states as well as all available actions are modeled in the domain

140

definition file, while instances of object types with their initial states and goal states are included

in problem definition file. Figure 5-5 and Figure 5-6 show an example domain definition file and

an example problem definition file, respectively.

Figure 5-5 An example PDDL domain definition file for pipe spool fabrication

141

Figure 5-6 An example PDDL problem definition file for pipe spool fabrication

5.5.3 Experiments and results

A series of experiments (Figure 5-7) were conducted to test the capability of PDDL to model and

solve pipe spool fabrication sequencing problems. The experiments begin with very simple pipe

spools and then gradually move to more complex and more realistic configurations. Three

142

popular planners (domain-independent) were used in the experiments, namely Metric-FF

(Hoffmann 2002), LPRPG (Coles et al. 2008) and LPG (Gerevini and Serina 2002). Metric-FF

searches on a state space while the other two search on a plan space.

Pipe2 Elbow3Elbow1

Experiment 1

Pipe1 Elbow7

Experiment 2

1 2 3

1

2

3

4

5

6

7

8

4~ 5 Reducer 6 Tee 8

Experiment 3

400 106 114

114

806

1

2Pipe1 Intermediate

Assembly

2

2

1

3

Figure 5-7 Experiments of using PDDL to model and plan sequence for pipe spools

In Experiment 1, a simple pipe spool is designed (Figure 5-7). No numerical values are included.

It simply tests if the AI planners can handle the logic aspect of the pipe spool fabrication

sequencing problem. Experiment 2 uses a pipe spool with more complex configuration (Figure 5-

7). Again, no numerical values are considered in Experiment 2. Although the pipe spool in

Experiment 3 seems to have a simpler configuration than that in Experiment 2, it involves the

major challenge that coordinates and dimensions of assemblies are considered. The objective is

that position welding can be distinguished by the AI planners from roll welding. Coordinates and

dimensions of assemblies also need to be updated after each welding operation that creates a new

143

in-progress assembly. PDDL files for each experiment are attached in Appendix E. Results of

these experiments are compiled in Table 1.

Table 5-1 Resulting plans from each AI planner

 Experiment1 Experiment2 Experiment3

LPG Unsolvable Unsolvable

Step1: ROLL-X-P1-

P2-1

(P1 P2 W1 W3 W2 C)

LPRPG Unsolvable Unsolvable Unsolvable

Metric-FF

Step1:

ROLL-FITTING

P1 P2 W1

Step2:

ROLL-FITTING

P1 P3 W2

Step1: ROLL-FITTING-X P1 P7 W1

Step2: ROLL-FITTING-Y P1 P2 W2

Step3: ROLL-FITTING-Y P1 P8 W3

Step4: ROLL-FITTING-Z P1 P3 W4

Step5: ROLL-FITTING-Z P1 P6 W5

Step6: ROLL-FITTING-Z P1 P4 W6

Step7: ROLL-FITTING-Z P1 P5 W7

Step1: ROLL-X-P1-

P2-4

(P1 P2 W1 W1 W1 C)

The results obtained from these three experiments indicate that Metric-FF is more capable than

the other two AI planners in terms of handling pipe spool fabrication logic. However, Metric-FF

has its limitation too. In Experiment 3 where numerical calculation and assignment is involved,

Metric-FF could not handle the combination of conditional effects (certain effect of an action is

preconditioned) and numerical calculations. One way to get around this limitation is to break

down the conditional effects by moving the condition part to the preconditions of the whole

action. This requires elaborating original actions to more specific sub-actions. In PDDL, or Lisp

language, this is called a “grounding” process. After converting the conditional effect, LPG

planner is able to return a solution which is shown in Table1. Metric-FF seems to be able to do

the same but a closer check finds that it returns an illogical solution. The challenge regarding the

grounding process is that the number of actions defined in the domain file will grow

exponentially with the number of welds in the pipe spool. If a pipe spool has N welds, then 2N-1

actions need to be explicitly formulated in the domain file (e.g. a pipe spool with 13 welds

144

requires 4096 actions to be defined). For extremely complicated pipe spools, it could be

computationally prohibitive to find a solution.

5.6 MODULE INSTALLATION SEQUENCING PROBLEM

After the pipe spools are fabricated, some of them are shipped to the assembly yard to build

modules while others are sent directly to the construction site for final installation. In the module

assembly yard, pipe spools are mounted with other module components (equipment, instruments,

electrical cable trays, etc.) on the steel frames. They are assembled together to form various

modules, each of which is a basic building block during the on-site installation stage. Every

module is sized so that it can be hauled by trucks to the construction site where the industrial

facility is constructed.

After being delivered to the construction site, modules are ready to be placed in their final

locations. Due to their fast tracking nature (i.e. construction commences before design and

procurement is complete), change orders and rush orders are quite common in industrial

construction projects. This usually leads to out-of-sequence delivery of modules. Given the

limited availability of cranes and the installation constraints, some of these out-of-sequence

modules cannot be installed immediately after delivery. Modules that are not to be installed

within 24 hours of delivery are stored in a staging area, which will incur additional cost for

storing and moving the modules.

Generally, module installation should comply with two basic constraints. The first rule is that

modules in elevation cannot be installed unless the module that provides physical support has

been installed (Figure 5-8a). The second rule is for modules that sit right next to each other. A

situation to be avoided is when modules on both sides are already installed with the one in the

145

middle still to be installed (Figure 5-8b). This makes it very difficult to maneuver the crane and

to complete module lifting and placing.

Current industry practice requires human planners to plan the module installation sequence and

to update it based on the current situation of the construction site. However, fast changing

conditions on the construction site and unreliable delivery of modules make it difficult for human

planners to come up with or to update plans with both efficiency and quality. This chapter

investigates the use of domain-independent AI planning to automate this decision-making

process and provide human planners with decision support.

Figure 5-8 Constraints for module installation

5.6.1 Problem abstraction

The module installation sequencing problem can be abstracted to a level suitable to generate

PDDL representations and to be solved by AI planners. First, module is the only object type that

is involved in the planning problem. A number of predicates are used to describe its states.

Modules that are placed on ground level are tagged as base. This predicates is intended to

differentiate modules on the ground level and those on elevation, since they require different

physical support. Three predicates are employed to model the adjacency between modules,

146

including AdjX, AdjY, and AdjZ. Modules that can be described by these predicates are sitting

next to each other on the left-to-right direction, the front-to-end direction, and the vertical

direction, respectively. Relative positions of modules are enough to impose the constraints on the

action formulation. Therefore, actual geometries and locations of modules are not needed here.

To indicate the installation progress, modules are also described as placed or not placed.

The only type of action involved here is Place. However, preconditions might vary with different

modules at different locations. For example, modules on the ground level (or base modules) do

not need physical support from other modules. Modules that have adjacent modules only on one

side would never encounter similar situations, as in Figure 5-8b. Modules that have four adjacent

modules around them (i.e. two on the left-to-right direction as well as on the front-to-back

direction) require at least one end on each direction to be open. The number of actions increases

when more adjacency situations are considered.

5.6.2 PDDL domain and problem definition representation

All aforementioned information should be expressed in the PDDL language. Figure 5-9 and

Figure 5-10 show an example domain definition file and an example problem definition file for

the module installation sequencing problem.

147

(define (domain modulesequencing)

 (:requirements :conditional-effects :equality :strips :typing :negative-preconditions :fluents :disjunctive-preconditions)

 (:types module) ;; module

 (:constants x y z - axs)

 (:predicates

 (placed ?m - module) ;; module is placed in its final location

 (base ?m - module) ;; base module (bottom one)

 (AdjZ ?m ?m0 - module) ;; module m is on top of m0

 (AdjX ?m ?m0 - module) ;; module m is to the Left of m0

 (AdjY ?m ?m0 - module);; module m is in front of m0

)

 (:action place_1

 :parameters (?m ?m2 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 … …

)

Domain Definition File (PDDL)

Figure 5-9 An example PDDL domain definition file for module installation

148

(define (problem cubeOf9modules)

 (:domain modulesequencing)

 (:requirements :typing :fluents)

 ;; m z,x,y z(AdjZ), x(AdjX), y(AdjY)

 (:objects m014A m014B m007A m007B - module)

 (:init (base m014A)

 (base m007A)

 (AdjZ m014B m014A)

 (AdjZ m007B m007A)

 (AdjX m014A m007A)

 (AdjX m014B m007B)

)

 (:goal (and (placed m014A)(placed m014B)(placed m007A)(placed m007B)))

)

Problem Definition File (PDDL)

Figure 5-10 An example PDDL problem definition file for module installation

5.6.3 Experiments and results

Likewise, a series of experiments are conducted to test the capability of PDDL to model and to

solve module installation sequencing problems. Experiments are also designed with increasingly

complexity (i.e. increasing number of different adjacency situations). Test cases are extracted

from a the same Kearl oil sands project as used in Chapter 4. The entire pipe rack area is focused

in this chapter (Figure 5-11). They are also categorized into scenarios by the complexity of

adjacency situations. For each scenario, two or three experiments are performed. Since no

numerical calculation is involved in the module installation planning problems, Metric-FF is

selected to be used in experiments based on its performance in pipe spool fabrication sequencing

experiments.

149

Figure 5-11 Pipe-rack modules 3D model from Kearl Initial Development (KID)

(1) Module Installation Scenario 1

Adjacent modules only happen on the left-to-right direction and on the vertical direction. Figure

5-12 shows the simplified graphical model of modules for Scenario 1. It is assumed in

Experiment 1 that no modules have been installed. Experiment 2 has the same layout of modules

but assumes that modules 006A and 006B have been installed. Generated module installation

sequences are presented in Table 2. PDDL files for Experiment 1 and 2 are attached in Appendix

E.

150

014A

014B

007A

007B

007C

006A

006B

PR001

005A

005B

PR002

Scenario 1

Figure 5-12 Simplified model for modules in scenario 1

Table 5-2 Generated plans for module installation scenario 1

 Experiment 1 Experiment 2

Metric-

FF

Step 0: PLACE_5 M014A Step 0: PLACE_5 M007A

 1: PLACE_1 M014B 1: PLACE_1 M014A

 2: PLACE_1 M007A 2: PLACE_1 M007B

 3: PLACE_1 M007B 3: PLACE_1 M014B

 4: PLACE_1 M007C 4: PLACE_1 M007C

 5: PLACE_1 M006A 5: PLACE_1 PR001

 6: PLACE_1 M006B 6: PLACE_1 M005A

 7: PLACE_1 PR001 7: PLACE_1 M005B

 8: PLACE_1 M005A 8: PLACE_1 PR002

 9: PLACE_1 M005B

 10: PLACE_1 PR002

(2) Module Installation Scenario 2

More modules are added in this scenario. Adjacent modules occur not only in the left-to-right

direction and the vertical direction but also in the front-to-back direction (Figure 5-13). Three

151

experiments are conducted in Scenario 2. Experiment 3 assumes that no module has been

installed. Experiment 4 assumes that module 006A and module 006B have already been placed

while Experiment 5 assumes that module 006A, 006B, 013A and 013B have all been installed.

Generated plans are presented in Table 3. PDDL files for Experiment 3, 4 and 5 are attached in

Appendix E.

Scenario 2

014A

014B

007A

007B

007C

006A

006B

PR001

005A

005B

PR002

012A

012B

012C

011A

011B

013A

013B

013C

004A

004B 143A

143B

Figure 5-13 Simplified model for modules in scenario 2

Table 5-3 Generated plans for module installation scenario 2

 Experiment 3 Experiment 4 Experiment 5

Metric-FF

step 0: PLACE_1 M014A step 0: PLACE_5 M007A step 0: PLACE_5 M007A

 1: PLACE_2 M014B 1: PLACE_1 M014A 1: PLACE_1 M014A

 2: PLACE_5 M007A 2: PLACE_6 M007B 2: PLACE_6 M007B

 3: PLACE_6 M007B 3: PLACE_2 M014B 3: PLACE_2 M014B

 4: PLACE_2 M007C 4: PLACE_2 M007C 4: PLACE_2 M007C

152

 5: PLACE_5 M006A 5: PLACE_6 PR001 5: PLACE_6 PR001

 6: PLACE_6 M006B 6: PLACE_5 M005A 6: PLACE_5 M005A

 7: PLACE_6 PR001 7: PLACE_6 M005B 7: PLACE_6 M005B

 8: PLACE_5 M005A 8: PLACE_6 PR002 8: PLACE_6 PR002

 9: PLACE_6 M005B 9: PLACE_7 M011A 9: PLACE_13 M012A

 10: PLACE_6 PR002 10: PLACE_8 M011B 10: PLACE_7 M011A

 11: PLACE_7 M011A 11: PLACE_13 M012A 11: PLACE_14 M012B

 12: PLACE_8 M011B 12: PLACE_14 M012B 12: PLACE_8 M011B

 13: PLACE_13 M012A 13: PLACE_15 M012C 13: PLACE_15 M012C

 14: PLACE_14 M012B 14: PLACE_11 M013A 14: PLACE_10 M013C

 15: PLACE_15 M012C 15: PLACE_12 M013B 15: PLACE_11 M004A

 16: PLACE_11 M013A 16: PLACE_10 M013C 16: PLACE_12 M004B

 17: PLACE_12 M013B 17: PLACE_11 M004A 17: PLACE_9 M143A

 18: PLACE_10 M013C 18: PLACE_12 M004B 18: PLACE_10 M143B

 19: PLACE_11 M004A 19: PLACE_9 M143A

 20: PLACE_12 M004B 20: PLACE_10 M143B

 21: PLACE_9 M143A

 22: PLACE_10 M143B

(3) Module Installation Scenario 3

This is the original planning problem as shown in Figure 5-11. The simplified graphical model is

shown in Figure 5-14. Three experiments are conducted in this scenario. Experiment 6 assumes

that no module has been installed. Experiment 7 assumes that modules 005A, 005B, 004A and

004B have been installed. Experiment 8 assumes that 005A, 005B, 004A, 004B, and PR113 have

already been installed. PDDL files for Experiment 6, 7 and 8 are attached in Appendix E.

153

014A

014B

007A

007B

007C

006A

006B

PR00

1

005A

005B

PR00

2

012A

012B

012C

011A

011B

013A

013B

013C

004A

004B 143A

143B

PR11

2

PR11

3

PR11

4

PR11

5

Scenario 3

Figure 5-14 Simplified model for modules in scenario 3

Table 5-4 Generated plans for module installation scenario 3

 Experiment 6 Experiment 7 Experiment 8

Metric-FF

step 0: PLACE_1 M014A step 0: PLACE_3 PR114 step 0: PLACE_3 PR114

 1: PLACE_2 M014B 1: PLACE_0 PR115 1: PLACE_0 PR115

 2: PLACE_5 M007A 2: PLACE_5 PR113 2: PLACE_5 PR112

 3: PLACE_6 M007B 3: PLACE_5 PR112 3: PLACE_16 M143A

 4: PLACE_2 M007C 4: PLACE_16 M143A 4: PLACE_10 M143B

 5: PLACE_5 M006A 5: PLACE_10 M143B 5: PLACE_11 M013A

 6: PLACE_6 M006B 6: PLACE_11 M013A 6: PLACE_12 M013B

 7: PLACE_6 PR001 7: PLACE_12 M013B 7: PLACE_10 M013C

 8: PLACE_5 M005A 8: PLACE_10 M013C 8: PLACE_13 M012A

 9: PLACE_6 M005B 9: PLACE_13 M012A 9: PLACE_14 M012B

 10: PLACE_6 PR002 10: PLACE_14 M012B 10: PLACE_15 M012C

 11: PLACE_7 M011A 11: PLACE_15 M012C 11: PLACE_7 M011A

 12: PLACE_8 M011B 12: PLACE_7 M011A 12: PLACE_8 M011B

 13: PLACE_13 M012A 13: PLACE_8 M011B 13: PLACE_6 PR002

 14: PLACE_14 M012B 14: PLACE_6 PR002 14: PLACE_5 M006A

 15: PLACE_15 M012C 15: PLACE_5 M006A 15: PLACE_6 M006B

 16: PLACE_11 M013A 16: PLACE_6 M006B 16: PLACE_6 PR001

 17: PLACE_12 M013B 17: PLACE_6 PR001 17: PLACE_5 M007A

 18: PLACE_10 M013C 18: PLACE_5 M007A 18: PLACE_6 M007B

154

 19: PLACE_11 M004A 19: PLACE_6 M007B 19: PLACE_2 M007C

 20: PLACE_12 M004B 20: PLACE_2 M007C 20: PLACE_1 M014A

 21: PLACE_16 M143A 21: PLACE_1 M014A 21: PLACE_2 M014B

 22: PLACE_10 M143B 22: PLACE_2 M014B

 23: PLACE_5 PR112

 24: PLACE_5 PR113

 25: PLACE_3 PR114

 26: PLACE_0 PR115

The longest processing time takes place in Experiment 6. It takes about 57 seconds to find the

plan. Processing times for other experiments are all less than 45 seconds.

5.7 CONCLUSIONS

This chapter investigates the use of domain-independent AI planning technique to plan two

industrial construction processes, pipe spool fabrication and module installation. PDDL and three

PDDL compliant AI planners (Metric-FF, LPRPG, LPG) are selected due to their expressiveness

and efficiency in searching capability. A number of experiments have been conducted to test the

effectiveness of PDDL technique in terms of modeling and solving the industrial construction

planning problems. A number of experiments are conducted for each domain. Results show that

PDDL is sufficiently expressive to model the logical and numerical parts of both construction

processes. However, the parsing capability of existing AI planners is somewhat limited,

particularly in presence of both numeric calculations and conditional effects. This makes PDDL

not quite suitable to solve pipe spool fabrication sequencing problems. On the other hand,

however, it has been observed that PDDL technique is both effective and efficient to solve

module installation sequencing problems where only logic calculation is involved.

155

5.8 REFERENCES

Aalami, F., Kunz, J., and Fischer, M. (1998). “Model-based sequencing mechanisms used to

automate activity sequencing.” Working Paper No. 50, CIFE, Stanford Univ., Stanford, Calif.

Coles, A.I., Fox, M., Long, D. and Smith, A.J. (2008). “A Hybrid Relaxed Planning Graph-LP

Heuristic for Numeric Planning Domains.” Proc., Eighteenth Int. Conf. on Automated Planning

and Scheduling (ICAPS 08), Sydney, Australia, September.

Darwiche, A., Levitt, R., and Hayes-Roth, B. (1988). “OARPLAN: Generating Project Plans by

Reasoning about Objects, Actions and Resources.” AI EDAM, 2(3), 169-181.

Echeverry, D., Ibbs, C. W., and Kim, S. (1991). “Sequencing knowledge for construction

scheduling.” J. Constr. Engrg. and Mgmt., ASCE, 117(1), 118–130.

Fischer, M. A., and Aalami, F. (1996). “Scheduling with Computer-Interpretable Construction

Method Models.” J. Constr. Eng. Manage., 122(4), 337–347.

Gerevini, A. and Serina, I. (2002). “LPG: a Planner based on Local Search for Planning Graphs.”

Proc., Sixth Int. Conf. on Artificial Intelligence Planning and Scheduling (AIPS'02), AAAI Press,

Toulouse, France.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory and Practice,

Elsevier Inc. San Francisco.

Gray, C. (1986). “Intelligent construction time and cost analysis.” Journal of Construction Mgmt

and Economics, 4(2), 135–150.

156

Hendrickson, C., Zozaya-Gorostiza, C., Rehak, D., Baracco-Miller, E., and Lim, P. (1987).

“Expert System for Construction Planning.” J. Comput. Civ. Eng., 1(4), 253–269.

Hoffmann, J. (2002). "Extending FF to Numerical State Variables." Proc., 15th European Conf.

on Artificial Intelligence, Lyon, France, July.

Hu, D., and Mohamed, Y. (2010). “State-Based Simulation Mechanism for Facilitating Project

Schedule Updating.” Proc., Construction Research Congress 2010, ASCE, Banff, Alberta,

Canada, 369–378.

Kartam, N. and Levitt, R. (1990). ”Intelligent Planning of Construction Projects.” J. Comput. Civ.

Eng., 4(2), 155–176.

Koo, B., Fischer, M., and Kunz, J. (2007). “Formalization of construction sequencing rationale

and classification mechanism to support rapid generation of sequencing alternatives.” J.

Computing in Civ. Engrg., 21(6), 423–433.

Levitt, R. E. , and Kunz, J. C. (1987). “Using artificial intelligence techniques to support project

management.” Journal of Artificial Intelligence in Engrg. Design, Analysis and Manufacturing ,

1 (1), 3–24.

McDermott, D., and the AIPS-98 Planning Competition Committee (1998)."PDDL–the planning

domain definition language." Technical report, <

http://www.cs.washington.edu/education/courses/cse473/06sp/pddl.pdf > (Dec., 2012).

Navinchandra, D., Sriram, D., and Logcher, R. D. (1988). "GHOST: Project Network

Generator." J. Computing in Civ. Eng., ASCE, 2(3), 239-254.

157

Newell, A., and Simon, H., (1972). Human problem solving. Prentice Hall, Englewood Cliffs,

N.J.

Taghaddos, H., AbouRizk, S., Mohamed, Y., and Hermann, U. (2012). ”Simulation-Based

Auction Protocol for Resource Scheduling Problems.” J. Constr. Eng. Manage., 138(1), 31–42.

158

CHAPTER 6. Conclusions

6.1 CONCLUSIONS

Mega industrial projects, such as those involved in the oil sands, are frequently plagued by cost

overruns and schedule slippages. Insufficient project planning is identified as one of major

contributing factors to poor project performance. The main objective of this research is to

explore and to develop automated solutions for planning and scheduling two major industrial

construction stages: shop fabrication and on-site construction. Planning here refers to planning

the sequences of construction processes that meet relevant technical or physical constraints

and/or optimize certain performance metrics. Major conclusions of this research are presented as

follows.

First, this research develops a new simulation model structuring methodology that

accommodates the characteristics of industrial fabrication shops—shop floor operations are

repetitive, but the routing (or the sequence of operations) varies with shop products. This is

achieved through an integrated entity information model and a state-based entity routing

mechanism, which enable entities to autonomously route through the simulation model.

Advantages of the new simulation model structuring methodology include: (1) less cluster in the

graphical representation of simulation models and (2) the facilitation of both scheduling and

schedule updating for shop fabrication.

Following this simulation structuring methodology, a detailed simulation model is developed for

pipe spool fabrication shops. This model is first used in a simulation experiment, the result of

which shows that the sequence of pipe spool fabrication could have significant impact on the

spool cycle time. A search for problem solving techniques in computing science finds that

159

Dynamic Programming (DP) is a good candidate to automate the sequencing of spool fabrication.

A DP-based algorithm is customized for the pipe spool sequencing problem. A set of real-life

pipe spools are used to evaluate the performance of the DP algorithm. For all pipe spools, the

algorithm successfully returns an optimal sequence in terms of the minimum number of position

welds. To quantify the productivity improvement, two simulation experiments are conducted.

The results indicate 45% reduction in the total number of position welds, which translates into a

reduction in the total cycle time by a range of 4.8% to 12%.

Highly compressed construction stages, frequent interference between trades and congested

jobsites require a specialized scheduling tool for on-site construction of mega industrial projects.

To meet these requirements, this research presents a time-stepped simulation-based scheduling

framework that (1) complies with various constraints of work packages (precedence dependency,

time dependent resource limit, calendar, as well as time constraint), (2) dynamically allocates

resources to work packages, and (3) accounts for jobsite congestion constraints of work areas. A

real industrial construction case was used to evaluate the effectiveness of the scheduling

framework. The generated schedule was also compared with those obtained from popular project

scheduling software Microsoft Project 2010, and Primavera P6 (R 8.2). Results show that the

schedule generated from the simulation-based scheduling framework (86 working days) is 13

working days shorter than those returned by MS Project and P6 (99 working days) and the

duration reduction is about 13%.

This research also investigates the use of domain independent AI planning technique to

automatically plan operation sequences for two industrial construction processes, namely (1)

pipe spool fabrication and (2) on-site module installation. A standard AI planning language

called Planning Domain Definition Language (PDDL) is used to model these processes and

160

several AI planners that can handle PDDL representations are employed to identify feasible

sequences to accomplish the construction processes without violating any physical or technical

constraints. For pipe spool fabrication, a number of experiments are conducted and results show

that the combination of conditional effects and numeric calculations in the PDDL representation

pose a parsing challenge for existing planners, which makes AI planning unsuitable to solve pipe

spool fabrication sequencing problems. For on-site module installation, a set of experiments are

also conducted. Only one of AI planners, Metric-FF, is selected to be used in experiments based

on its performance in pipe spool fabrication sequencing experiments. Results show that, in each

experiment, Metric-FF successfully returns a feasible sequence plan that satisfies all the module

installation constraints. For the most complex experiment, it takes about 57 seconds to find the

plan. Processing time for other experiments are all less than 45 seconds.

6.2 MAJOR CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

(1) Introducing a new simulation model structuring methodology that accounts for complex

routing issues in industrial fabrication shops.

(2) Developing a Special Purpose Simulation template based on the above methodology for

pipe spool fabrication.

(3) Customizing a DP-based algorithm to automatically identify sequences for spool

fabrication that require the minimum number of position welds.

(4) Developing a time-stepped simulation-based scheduling framework for on-site

construction of industrial projects, which 1) complies with various constraints of work

packages (precedence dependence, time-dependent resource limit, calendar, as well as

161

time constraint), 2) dynamically allocates resources to work packages, and 3) accounts

for jobsite congestion constraints of work areas. This development is currently being put

into use by PCL industrial Management Inc.

(5) Investigating the use of domain independent AI planning to automate the sequencing

process for both spool fabrication and on-site module installation.

(6) All above mentioned developments, though relevant to company practice, can be

implemented in other industrial fabrications and industrial construction sites.

6.3 LIMITATIONS AND FUTURE WORK

This research also exposes a number of areas that have potential for improvement. Further

research efforts could be invested in following areas:

(1) Dynamic programming algorithm should be tested with more real-life pipe spools to

validate its contribution to the total cycle time reduction. Durations of operations use

average numbers (from time study of real life fabrication shop) and should be modeled by

probability distributions to add stochastic nature into simulation. The order of entering

pipe spools into the simulation model will be randomized and the results of experiments

will be compared. Pipe spool fabrication heuristics will be added into the DP algorithm to

optimize more objectives in addition to postion welding.

(2) the use of genetic algorithm to sequence spool fabrication will be investigated and

compared to the dynamic programming algorithm.

(3) Domain independent AI planning is one of the major research topics in artificial

intelligence that keeps evolving. The expressiveness of its modeling languages and the

searching capability of AI planners have improved significantly and will continue to do

162

so in the future. This research draws a tentative conclusion that AI planning is not quite

suitable to solve the pipe spool fabrication sequencing problems due to the limited

parsing capability of existing planners. However, this limitation is very likely to be

overcome in the future. It is also worth exploring opportunities of applying domain

independent AI planning to more construction processes.

(4) The time-stepped simulation based scheduling framework for site construction of

industrial projects can be enhanced in a number of areas. First, the framework only

focuses on various skilled workers on the construction site. It can be enhanced by

considering major equipment (e.g. cranes) as one of the resource constraints to work

packages. The dynamic resource allocation algorithm is currently a heuristic optimization

process which can also be enhanced by incorporating other scheduling optimization

techniques, e.g. meta-heuristic techniques, Multi-Agent Resource Allocation (MARA).

The time window in which the resource allocation decision is made can be extended from

a single time step to several time steps. For example, if a simulation time step represents

a day in the real world, then resource allocation could be made not just for the current day

but rather for the next 10 days.

(5) The time-stepped simulation is being implemented in PCL Industrial Management Inc.

the improvement of scheduling process will be further tracked and evaluated.

(6) Simulation models developed for industrial fabrication shops and site construction can be

integrated through a distributed simulation technique called High Level Architecture

(HLA) into a single distributed simulation model called a federation. This aggregated

simulation model provides a cost-effective virtual environment where industrial

construction professionals can study the interactions between different stages in the

163

industrial project and develop efficient strategies to enhance the coordination and to

mitigate the disruptive effects.

164

Appendix A

This is the VB.NET code for the 'Spool_Generation' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Imports System.Data

Imports System.Data.OleDb

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function Spool_Generation_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 'call to the base constructor to create the element

 ob.OnCreate(x,y,True)

 'Add Attribues

 'to define Database file address

 ob.AddAttribute("SpoolDBFileAddress", "Database file

address",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 'to specify the 'Unit' table name

 ob.AddAttribute("SpoolDBTableName", "Spool Table

Name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("SpoolItemsDBQueryName", "Spool Items Query

Name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("SpoolComponentsDBQueryName", "Spool Components Query

Name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("Spool_Component_Item_Relationship", "relationship

between Spool Items and

165

Components",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("ActCuttingDBQueryName", "Cutting activity query

name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("ActHandlingDBQueryName", "Handling activity query

name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("ActFittingDBQueryName", "Fitting activity query

name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("ActWeldingDBQueryName", "Welding activity query

name",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 'to create a spool table

 ob.AddAttribute("Spool",

"Spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRe

presentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 'how many entities should the element produce in total

 ob.AddAttribute("NA", "Number of Arrivals",

CFC_AttributeInternalRepresentation.CFC_Numeric,

CFC_AttributeExternalRepresentation.CFC_Singular,

CFC_AttributeAccess.CFC_ReadWrite,1, 100000000000)

 'the time at which the first entity will be created.

 ob.AddAttribute("TFA", "Time of First Arrival",

CFC_AttributeInternalRepresentation.CFC_Numeric,

CFC_AttributeExternalRepresentation.CFC_Singular,

CFC_AttributeAccess.CFC_ReadWrite, 0, 100000000000)

 ob("TFA").Value=0

 'the time interval between the creations of any two entities. The

 'user can set this time to a constant or a distribution.

 ob.AddAttribute("TBA", "Time Between Arrivals",

CFC_AttributeInternalRepresentation.CFC_Distribution,

CFC_AttributeExternalRepresentation.CFC_Singular,

CFC_AttributeAccess.CFC_ReadWrite, 0,100000000000)

 ob("TBA").Value=0

 ob.AddAttribute("Fired", "the number of fired

entities",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExtern

alRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_Hidden)

 ob.AddConnectionPoint("Out", x + 70, y + 25, TConnectionType.COutput, 5)

 return true

End Function

Public Function Spool_Generation_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

166

 r.Size = new SizeF(65, 55)

 'To add an image you have to add the image to the templates "bitmap"

collection

 Dim image As new GoImage

 image.Image = ob.ModelingElement.Template.RetrieveImage("CreateEnt.bmp")

 'image.Position = new PointF(12.5f,5)

 image.Position = new PointF(2, 2)

 image.Size = new SizeF(30, 30)

 'creates a text with the quantity to create

 Dim text1 As new GoText

 If ob("NA").Calculation=CFC_AttributeCalculation.CFC_Simple Then

 text1.Text = Convert.ToString(ob("NA").Value)

 Else

 text1.Text = "Qty: (Formula)"

 End If

 text1.FontSize = 8

 'text.Position = new PointF(25, 45)

 text1.Position = new PointF(25, 43)

 Dim text2 As New GoText

 text2.Text = "Spool_Gen"

 text2.FontSize = 8

 text2.Position = new PointF(6,20)

 'adds all elements to a GoGroup and returns it

 Dim g As new GoGroup

 'g.Add(shape)

 g.Add(r)

 g.Add(text1)

 g.Add(text2)

 g.Add(image)

 return g

End Function

'Public Function Spool_Generation_OnCheckIntegrity(ob As

CFCSim_ModelingElementInstance) As Boolean handles

Scripting.OnCheckIntegrityEvent

'End Function

'Public Sub Spool_Generation_OnAttributeChanged(ob As

CFCSim_ModelingElementInstance, attr As CFCSim_Attribute) handles

Scripting.OnAttributeChangedEvent

'End Sub

Public Sub Spool_Generation_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

167

 'declares the entity firing event for use later

 ob.AddEvent("FireEntity")

 Dim Address As String

 Dim TableName As String

 Address = ob("SpoolDBFileAddress").Value

 TableName = ob("SpoolDBTableName").Value

 'To get the spool records from Database

 Dim cn As system.Data.OleDb.OleDbConnection

 Dim MydataAdapter As System.Data.OleDb.OleDbDataAdapter

 Dim Query As String = "SELECT * FROM " & TableName & " ORDER BY

Priority DESC"

 'Have to create an instance of dataset!!!

 cn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=" & Address)

 'Fill Data

 Try

 cn.Open()

 MyDataAdapter = New OleDbDataAdapter(Query, cn)

 Dim MyDataTable = New DataTable()

 MyDataAdapter.Fill(MyDataTable)

 ob("Spool").SetDataTable(MyDataTable)

 Catch exp As Exception

 MessageBox.Show(exp.Message)

 finally

 cn.close()

 End Try

 'Update the arrtibute of "NA" (Number of Arrivals)

 ob("NA").Value = ob("Spool").RowCount

 ob.Invalidate()

End Sub

Public Sub Spool_Generation_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, runNum As Int32) handles

Scripting.OnSimulationInitializeRunEvent

 'scheduals the fire entity event on a new entity at the time the first

entity is to be made

 ob.ScheduleEvent(ob.AddEntity(),"FireEntity",ob("TFA").Value)

 ob("Fired").Value=0

 ob.Invalidate()

End Sub

168

Public Sub Spool_Generation_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 'quit if we have fired enough entities

 'MessageBox.Show("OK!")

 Select Case MyEvent

 Case "FireEntity"

 If ob("Fired").Value < cint(ob("NA").Value) Then

 Dim newEntity As CFCSim_Entity

 ob("Fired").Value = ob("Fired").Value + 1

 newEntity = ob.AddEntity()

 newEntity("EntityType") = "Spool"

 'MessageBox.Show("OK!")

 'set attributes to each spool entity according to ob("Spool")

 Dim i as Integer

 For i = 0 to ob("Spool").ColumnCount - 1

 newEntity(ob("Spool").ColumnLabel(i)) =

ob("Spool").GetValueRC(ob("Fired").Value-1, i)

 If ob("Spool").ColumnLabel(i)= "SpoolState" Then

 newEntity(ob("Spool").ColumnLabel(i)) = "Issued"

 End If

 Next

 'Add referrence of corresponding 'spool_element' as one of the

attributes of the entity

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 If MySpoolElement("JobControlNumber").Value =

newEntity("JobControlNumber") Then

 newEntity("SpoolElement") = MySpoolElement

 Exit for

 End If

 End If

 Next

 'transfer the entity out

 ob.TransferOut(newEntity)

 'To inform users what happened in the simulation

169

 Trace.WriteLine("Entity: " & newEntity.ID & " Created",

"Simulation")

 End If

 End Select

 'To schedule the next firing of an entity

 If ob("Fired").Value < cint(ob("NA").Value) Then

 ob.ScheduleEvent(Entity, "FireEntity", ob("TBA").Value)

 End If

End Sub

End Module

End Namespace

This is the VB.NET code for the 'Spool_Element' Element

 'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function Spool_Element_OnCreate(ob As CFCSim_ModelingElementInstance,

x As Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

170

 ob.AddAttribute("JobControlNumber", "ID of

Spool",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepr

esentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("Priority", "Priority of

Spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("Weight", "Weight of

Spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("DiameterInches", "DiameterInches of

Spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("Length", "Length of

Spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("IssuanceDate", "Issuance Date of

Spool",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepr

esentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("BayID", "ID of bay in which the spool is

processed",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExter

nalRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("Duration", "Duration of

Spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("SpoolState", "the states of a

spool",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepr

esentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("NumOfSpoolItems", "Number of spool items belonging to

the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfSpoolItems").Value = 1

 ob.AddAttribute("NumOfSpoolComponents", "Number of spool components

belonging to the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfSpoolComponents").Value = 1

 ob.AddAttribute("NumOfCutting", "Number of cutting for the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfCutting").Value = 1

 ob.AddAttribute("NumOfHandling", "Number of handling for the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfHandling").Value = 1

171

 ob.AddAttribute("NumOfFitting", "Number of fitting for the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfFitting").Value = 1

 ob.AddAttribute("NumOfWelding", "Number of welding for the

spool",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("NumOfWelding").Value = 1

 'Spool items refer to cut pipes and fittings

 ob.AddAttribute("SpoolItems", "Spool items of the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("SpoolItems").SetRC(1,11)

 For i As Integer =0 to ob("NumOfSpoolItems").Value - 1

 For j As Integer = 0 to 10

 ob("SpoolItems").SetValueRC(i,j,0)

 Next

 Next

 ob("SpoolItems").DataTable.Columns(0).ColumnName = "JobControlNumber"

 ob("SpoolItems").DataTable.Columns(1).ColumnName = "SpoolPartID"

 ob("SpoolItems").DataTable.Columns(2).ColumnName = "Priority"

 ob("SpoolItems").DataTable.Columns(3).ColumnName = "PartTypeID"

 ob("SpoolItems").DataTable.Columns(4).ColumnName = "Weight"

 ob("SpoolItems").DataTable.Columns(5).ColumnName = "Size"

 ob("SpoolItems").DataTable.Columns(6).ColumnName = "MaterialTypeID"

 ob("SpoolItems").DataTable.Columns(7).ColumnName = "Length"

 ob("SpoolItems").DataTable.Columns(8).ColumnName = "SpoolPartState"

 ob("SpoolItems").DataTable.Columns(9).ColumnName = "SpoolLocation_X"

 ob("SpoolItems").DataTable.Columns(10).ColumnName = "SpoolLocation_Y"

 'Spool components refer to parts that are composed by cut pipes and/or

fittings

 ob.AddAttribute("SpoolComponents", "Composite parts of the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("SpoolComponents").SetRC(1,14)

 'For i As Integer = 0 to ob("NumOfSpoolComponents").Value- 1

 'For j As Integer = 0 to 12

 'ob("SpoolComponents").SetValueRC(i,j,0)

 'Next

 'Next

 ob("SpoolComponents").DataTable.Columns(0).ColumnName =

"JobControlNumber"

 ob("SpoolComponents").DataTable.Columns(1).ColumnName = "SpoolPartID"

 ob("SpoolComponents").DataTable.Columns(2).ColumnName = "Priority"

 ob("SpoolComponents").DataTable.Columns(3).ColumnName = "PartTypeID"

 ob("SpoolComponents").DataTable.Columns(4).ColumnName = "WeldID"

 ob("SpoolComponents").DataTable.Columns(5).ColumnName = "Sequence"

 ob("SpoolComponents").DataTable.Columns(6).ColumnName = "Stage"

 ob("SpoolComponents").DataTable.Columns(7).ColumnName = "Weight"

 ob("SpoolComponents").DataTable.Columns(8).ColumnName = "Size"

172

 ob("SpoolComponents").DataTable.Columns(9).ColumnName =

"MaterialTypeID"

 ob("SpoolComponents").DataTable.Columns(10).ColumnName = "Length"

 ob("SpoolComponents").DataTable.Columns(11).ColumnName =

"SpoolPartState"

 ob("SpoolComponents").DataTable.Columns(12).ColumnName =

"SpoolLocation_X"

 ob("SpoolComponents").DataTable.Columns(13).ColumnName =

"SpoolLocation_Y"

 'Relationship between Spool items and components

 ob.AddAttribute("SpoolComponentsItemsRelationship",

"",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalReprese

ntation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("SpoolComponentsItemsRelationship").SetRC(1, 8)

 'For i As Integer = 0 to ob("NumOfSpoolComponents").Value- 1

 'For j As Integer = 0 to 3

 'ob("SpoolComponentsItemsRelationship").SetValueRC(i,j,0)

 'Next

 'Next

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(0).ColumnName

= "JobControlNumber"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(1).ColumnName

= "ComponentID"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(2).ColumnName

= "WeldID"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(3).ColumnName

= "PartID"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(4).ColumnName

= "Sequence"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(5).ColumnName

= "Stage"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(6).ColumnName

= "RollOrFixed"

 ob("SpoolComponentsItemsRelationship").DataTable.Columns(7).ColumnName

= "State"

 'Cutting activity for the spool

 ob.AddAttribute("CuttingActivities","Cutting activities for the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("CuttingActivities").SetRC(1,12)

 'For i As Integer = 0 to ob("NumOfCutting").Value - 1

 'For j As Integer = 0 to 11

 'ob("CuttingActivities").SetValueRC(i,j,0)

 'Next

 'Next

 ob("CuttingActivities").DataTable.Columns(0).ColumnName =

"JobControlNumber"

 ob("CuttingActivities").DataTable.Columns(1).ColumnName = "SpoolPartID"

 ob("CuttingActivities").DataTable.Columns(2).ColumnName = "CuttingID"

 ob("CuttingActivities").DataTable.Columns(3).ColumnName =

"CuttingStationID"

 ob("CuttingActivities").DataTable.Columns(4).ColumnName =

"CuttingConfiguration"

173

 ob("CuttingActivities").DataTable.Columns(5).ColumnName =

"CuttingMethod"

 ob("CuttingActivities").DataTable.Columns(6).ColumnName =

"PipeSchedule"

 ob("CuttingActivities").DataTable.Columns(7).ColumnName =

"SingleOrDouble"

 ob("CuttingActivities").DataTable.Columns(8).ColumnName =

"NumberOfPersonnel"

 ob("CuttingActivities").DataTable.Columns(9).ColumnName = "StartTime"

 ob("CuttingActivities").DataTable.Columns(10).ColumnName = "Duration"

 ob("CuttingActivities").DataTable.Columns(11).ColumnName = "FinishTime"

 'Handling activity for the spool

 ob.AddAttribute("HandlingActivities", "Handling acitvities for the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("HandlingActivities").SetRC(1,11)

 'For i As Integer = 0 to ob("NumOfHandling").Value - 1

 'For j As Integer = 0 to 8

 'ob("HandlingActivities").SetValueRC(i,j,0)

 'Next

 'Next

 ob("HandlingActivities").DataTable.Columns(0).ColumnName =

"JobControlNumber"

 ob("HandlingActivities").DataTable.Columns(1).ColumnName =

"SpoolPartID"

 ob("HandlingActivities").DataTable.Columns(2).ColumnName = "HandlingID"

 ob("HandlingActivities").DataTable.Columns(3).ColumnName = "Type"

 ob("HandlingActivities").DataTable.Columns(4).ColumnName = "StartTime"

 ob("HandlingActivities").DataTable.Columns(5).ColumnName = "Duration"

 ob("HandlingActivities").DataTable.Columns(6).ColumnName = "FinishTime"

 ob("HandlingActivities").DataTable.Columns(7).ColumnName = "FromArea"

 ob("HandlingActivities").DataTable.Columns(8).ColumnName = "ToArea"

 ob("HandlingActivities").DataTable.Columns(9).ColumnName =

"NumberofPersonnel"

 ob("HandlingActivities").DataTable.Columns(10).ColumnName =

"NumberOfCrane"

 'Fitting activity for the spool

 ob.AddAttribute("FittingActivities", "Fitting acitivities for the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("FittingActivities").SetRC(1, 14)

 'For i As Integer = 0 to ob("NumOfFitting").Value - 1

 'For j As Integer = 0 to 15

 'ob("FittingActivities").SetValueRC(i,j,0)

 'Next

 'Next

 ob("FittingActivities").DataTable.Columns(0).ColumnName =

"JobControlNumber"

 ob("FittingActivities").DataTable.Columns(1).ColumnName = "ComponentID"

 ob("FittingActivities").DataTable.Columns(2).ColumnName = "WeldID"

 ob("FittingActivities").DataTable.Columns(3).ColumnName = "FittingID"

 ob("FittingActivities").DataTable.Columns(4).ColumnName = "JointType"

 ob("FittingActivities").DataTable.Columns(5).ColumnName = "Size"

174

 ob("FittingActivities").DataTable.Columns(6).ColumnName = "SCH/Rating"

 ob("FittingActivities").DataTable.Columns(7).ColumnName =

"WeldingVolume"

 ob("FittingActivities").DataTable.Columns(8).ColumnName = "RollOrFixed"

 ob("FittingActivities").DataTable.Columns(9).ColumnName = "StartTime"

 ob("FittingActivities").DataTable.Columns(10).ColumnName = "Duration"

 ob("FittingActivities").DataTable.Columns(11).ColumnName = "FinishTime"

 ob("FittingActivities").DataTable.Columns(12).ColumnName =

"FittingTableID"

 ob("FittingActivities").DataTable.Columns(13).ColumnName = "Rework"

 'Welding activity for the spool

 ob.AddAttribute("WeldingActivities", "Welding activities for the

spool",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternalRep

resentation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("WeldingActivities").SetRC(1, 15)

 'For i As Integer = 0 to ob("NumOfWelding").Value - 1

 'For j As Integer = 0 to 16

 'ob("WeldingActivities").SetValueRC(i,j,0)

 'Next

 'Next

 ob("WeldingActivities").DataTable.Columns(0).ColumnName =

"JobControlNumber"

 ob("WeldingActivities").DataTable.Columns(1).ColumnName = "ComponentID"

 ob("WeldingActivities").DataTable.Columns(2).ColumnName = "WeldID"

 ob("WeldingActivities").DataTable.Columns(3).ColumnName = "WeldingID"

 ob("WeldingActivities").DataTable.Columns(4).ColumnName = "JointType"

 ob("WeldingActivities").DataTable.Columns(5).ColumnName = "Size"

 ob("WeldingActivities").DataTable.Columns(6).ColumnName = "SCH/Rating"

 ob("WeldingActivities").DataTable.Columns(7).ColumnName =

"WeldingVolume"

 ob("WeldingActivities").DataTable.Columns(8).ColumnName = "RollOrFixed"

 ob("WeldingActivities").DataTable.Columns(9).ColumnName = "StartTime"

 ob("WeldingActivities").DataTable.Columns(10).ColumnName = "Duration"

 ob("WeldingActivities").DataTable.Columns(11).ColumnName = "FinishTime"

 ob("WeldingActivities").DataTable.Columns(12).ColumnName =

"WeldingMachineID"

 ob("WeldingActivities").DataTable.Columns(13).ColumnName = "Rework"

 ob("WeldingActivities").DataTable.Columns(14).ColumnName =

"WeldingMethod"

 Return True

End Function

Public Function Spool_Element_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

 Dim text1 As new GoText

175

 text1.Text = "Spool ID = " & ob("JobControlNumber").Value

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

End Module

End Namespace

 This is the VB.NET code for the 'Composite_Element' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public NumOfSpool As Integer

Public SpoolFileAddress As String

Public SpoolTableName As String

Public SpoolItemsQueryName As String

Public SpoolComponentsQueryName As String

Public Spool_Components_Items_Relationship As String

Public ActCutting As String

Public ActHandling As String

Public ActFitting As String

Public ActWelding As String

'Public Structure NumOfWeldsForComp

 'Dim ComponentID As Integer

 'Dim NumOfWelds As Integer

'End Structure

176

Public Function Composite_Element_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("NumOfSpools", "Number of

Spools",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternal

Representation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("NumOfSpools").Value = 1

 Return True

End Function

Public Function Composite_Element_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

 Dim text1 As new GoText

 text1.Text = "Composite Element"

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub Composite_Element_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, runNum As Int32) handles

Scripting.OnSimulationInitializeRunEvent

 Dim Child As CFCSim_ModelingElementInstance

 For each Child In ob.ChildElements.Values

 If Child.ElementType = "Spool_Generation" Then

 NumOfSpool = Child("NA").Value

 SpoolFileAddress = Child("SpoolDBFileAddress").Value

 SpoolTableName = Child("SpoolDBTableName").Value

 SpoolItemsQueryName = Child("SpoolItemsDBQueryName").Value

 SpoolComponentsQueryName =

Child("SpoolComponentsDBQueryName").Value

177

 Spool_Components_Items_Relationship =

Child("Spool_Component_Item_Relationship").Value

 ActCutting = Child("ActCuttingDBQueryName").Value

 ActHandling = Child("ActHandlingDBQueryName").Value

 ActFitting = Child("ActFittingDBQueryName").Value

 ActWelding = Child("ActWeldingDBQueryName").Value

 ob("NumOfSpools").Value = NumOfSpool

 For i As Integer = 0 to NumOfSpool - 1

 'MessageBox.Show("OK!")

 Dim AddElement As CFCSim_ModelingElementInstance

 AddElement = ob.AddElement("Spool_Element", 50,

100+i*100)

 AddElement("JobControlNumber").Value =

Child("Spool").GetValueRC(i, 0)

 AddElement("Priority").Value =

Child("Spool").GetValueRC(i, 2)

 AddElement("Weight").Value =

Child("Spool").GetValueRC(i, 3)

 AddElement("DiameterInches").Value =

Child("Spool").GetValueRC(i, 4)

 AddElement("Length").Value =

Child("Spool").GetValueRC(i, 5)

 AddElement("IssuanceDate").Value =

Child("Spool").GetValueRC(i, 6)

 AddElement("BayID").Value =

Child("Spool").GetValueRC(i, 8)

 AddElement("Duration").Value =

Child("Spool").GetValueRC(i, 9)

 AddElement("SpoolState").Value = "Issued"

 Next

 Exit For

 End If

 Next

 For each Child in ob.ChildElements.Values

 If Child.ElementType = "Spool_Element" Then

 'populate each "Spool_element"

 Dim SpoolID As String

 SpoolID = Child("JobControlNumber").Value.ToString

 Dim cn As System.Data.OleDb.OleDbConnection

 Dim MyDataAdapter1 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter2 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter3 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter4 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter5 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter6 As System.Data.OleDb.OleDbDataAdapter

 Dim MyDataAdapter7 As System.Data.OleDb.OleDbDataAdapter

 cn = New System.Data.OleDb.OleDbConnection("Provider =

Microsoft.Jet.OLEDB.4.0; Data Source = " & SpoolFileAddress & ";")

178

 'Fill Data

 Try

 cn.Open()

 Dim MyDataTable1 = New System.Data.DataTable()

 Dim MyDataTable2 = New System.Data.DataTable()

 Dim MyDataTable3 = New System.Data.DataTable()

 Dim MyDataTable4 = New System.Data.DataTable()

 Dim MyDataTable5 = New System.Data.DataTable()

 Dim MyDataTable6 = New System.Data.DataTable()

 Dim MyDataTable7 = New System.Data.DataTable()

 'Spool Items

 MyDataAdapter1 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " & SpoolItemsQueryName & "

WHERE " & SpoolItemsQueryName & ".JobControlNumber = " & "'" & SpoolID & "'",

cn)

 'Spool Components

 MyDataAdapter2 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " &

SpoolComponentsQueryName & " WHERE " & SpoolComponentsQueryName &

".JobControlNumber = " & "'" & SpoolID & "'", cn)

 'Spool Components and Items Relationships

 MyDataAdapter3 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " &

Spool_Components_Items_Relationship & " WHERE " &

Spool_Components_Items_Relationship & ".JobControlNumber = " & "'" & SpoolID

& "'", cn)

 'Spool Cutting Activities

 MyDataAdapter4 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " & ActCutting & " WHERE "

& ActCutting & ".JobControlNumber = " & "'" & SpoolID & "'", cn)

 'Spool Handling Activities

 MyDataAdapter5 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " & ActHandling & " WHERE "

& ActHandling & ".JobControlNumber = " & "'" & SpoolID & "'", cn)

 'Spool Fitting Acitivities

 MyDataAdapter6 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " & ActFitting & " WHERE "

& ActFitting & ".JobControlNumber = " & "'" & SpoolID & "'", cn)

 'Spool Welding Activities

 MyDataAdapter7 = New

System.Data.OleDb.OleDbDataAdapter("SELECT * FROM " & ActWelding & " WHERE "

& ActWelding & ".JobControlNumber = " & "'" & SpoolID & "'", cn)

 'To get the spool items information

 MyDataAdapter1.Fill(MyDataTable1)

 'Fill the 'SpoolItems'Atrribute

 Child("SpoolItems").SetDataTable(MyDataTable1)

 'To get the spool components information

 MyDataAdapter2.Fill(MyDataTable2)

 'Fill the 'SpoolComponents'Atrribute

 Child("SpoolComponents").SetDataTable(MyDataTable2)

179

 'To get the spool components and items relationship

information

 MyDataAdapter3.Fill(MyDataTable3)

 'Fill the 'SpoolItems'Atrribute

 Child("SpoolComponentsItemsRelationship").SetDataTable(MyDataTable3)

 'To get the spool cutting information

 MyDataAdapter4.Fill(MyDataTable4)

 'Fill the 'SpoolItems'Atrribute

 Child("CuttingActivities").SetDataTable(MyDataTable4)

 'To get the spool handling information

 MyDataAdapter5.Fill(MyDataTable5)

 'Fill the 'SpoolItems'Atrribute

 Child("HandlingActivities").SetDataTable(MyDataTable5)

 'To get the spool fitting information

 MyDataAdapter6.Fill(MyDataTable6)

 'Fill the 'SpoolItems'Atrribute

 Child("FittingActivities").SetDataTable(MyDataTable6)

 'To get the spool welding information

 MyDataAdapter7.Fill(MyDataTable7)

 'Fill the 'SpoolItems'Atrribute

 Child("WeldingActivities").SetDataTable(MyDataTable7)

 Catch exp As Exception

 MessageBox.Show(exp.Message)

 Finally

 'MessageBox.Show("OK!")

 cn.Close()

 End Try

 'Calculate Number of welds for each spool component

 'first to initialize the # of welds as 1 for each component

 Dim SpoolCompID As Integer

 Dim NumOfSpoolComp As Integer

 NumOfSpoolComp = Child("SpoolComponents").RowCount

 Dim SpoolComponentsWelds(NumOfSpoolComp, 1) As Integer

 For i As Integer = 0 to NumOfSpoolComp - 1

 SpoolCompID = Child("SpoolComponents").GetValueRC(i, 1)

 SpoolComponentsWelds(i,0) = SpoolCompID

 SpoolComponentsWelds(i,1) = 1

 Next

 For i As Integer = 0 to Child("SpoolComponents").RowCount - 1

 SpoolCompID = Child("SpoolComponents").GetValueRC(i, 1)

 'To find its assembly stage

 Dim CompStage As Integer

 'To find constituent parts for this component

 Dim CompParts As New ArrayList

 For j As Integer = 0 to

Child("SpoolComponentsItemsRelationship").RowCount - 1

 If

Child("SpoolComponentsItemsRelationship").GetValueRC(j, 1) = SpoolCompID Then

180

 CompStage =

Child("SpoolComponentsItemsRelationship").GetValueRC(j,5)

 CompParts.Add(Child("SpoolComponentsItemsRelationship").GetValueRC(j,3))

 End If

 Next

 'To find all the spool components that are in the same

stage

 Dim CompAtSameStage As New ArrayList

 For j As Integer = 0 to

Child("SpoolComponentsItemsRelationship").RowCount - 1

 If

Child("SpoolComponentsItemsRelationship").GetValueRC(j,5) = CompStage Then

 CompAtSameStage.Add(Child("SpoolComponentsItemsRelationship").GetValueR

C(j,1))

 End If

 Next

 'To check any of its part is also included in Arraylist

'CompAtSameStage'

 Dim NumOfweldingsForComp As Integer = 0

 For j As Integer = 0 to CompParts.Count - 1

 Dim PartID As Integer

 PartID = CompParts(j)

 Dim NumOfWeldingsForPart As Integer

 If CompAtSameStage.Contains(PartID) Then

 For k As Integer = 0 to NumOfSpoolComp - 1

 If SpoolComponentsWelds(k,0) = PartID

Then

 NumOfWeldingsForPart =

SpoolComponentsWelds(k,1) + 1

 End If

 Next

 Else

 NumOfWeldingsForPart = 1

 End If

 NumOfweldingsForComp = NumOfweldingsForComp +

NumOfWeldingsForPart

 Next

 'To calculate number of welds for this component

 NumOfweldingsForComp = NumOfweldingsForComp - 1

 'Update the records in SpoolComponentsWelds

 For j As Integer = 0 to NumOfSpoolComp - 1

 If SpoolComponentsWelds(j,0) = SpoolCompID Then

 SpoolComponentsWelds(j, 1) =

NumOfweldingsForComp

 Exit For

 End If

 Next

 Next

 'Add this number of welds for each component to the

"SpoolComponents" table

181

 Child("SpoolComponents").DataTable.Columns.Add("NumOfWelds",GetType(Int

eger))

 For i As Integer = 0 to Child("SpoolComponents").RowCount - 1

 Dim ComponentID As Integer

 ComponentID = Child("SpoolComponents").GetValueRC(i, 1)

 For j As Integer = 0 to NumOfSpoolComp - 1

 If SpoolComponentsWelds(j,0) = ComponentID Then

 Child("SpoolComponents").SetValueRC(i,14,SpoolComponentsWelds(j,1))

 End If

 Next

 Next

 Dim RowNum As Integer

 RowNum = Child("SpoolItems").RowCount

 Child("NumOfSpoolItems").Value = RowNum

 RowNum = Child("SpoolComponents").RowCount

 Child("NumOfSpoolComponents").Value = RowNum

 RowNum = Child("CuttingActivities").RowCount

 Child("NumOfCutting").Value = RowNum

 RowNum = Child("HandlingActivities").RowCount

 Child("NumOfHandling").Value = RowNum

 RowNum = Child("FittingActivities").RowCount

 Child("NumOfFitting").Value = RowNum

 RowNum = Child("WeldingActivities").RowCount

 Child("NumOfWelding").Value = RowNum

 Child.Invalidate()

 End If

 Next

End Sub

End Module

End Namespace

This is the VB.NET code for the 'BayElement' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

182

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function BayElement_OnCreate(ob As CFCSim_ModelingElementInstance, x

As Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("BayID", "The ID of the

bay",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalRep

resentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 Return True

End Function

183

Public Function BayElement_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(300, 80)

 Dim text1 As new GoText

 text1.Text = "Bay ID = " & ob("BayID").Value

 text1.FontSize = 8

 text1.Position = new PointF(30, 32)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

End Module

End Namespace

This is the VB.NET code for the 'LayDownAreaElement' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

184

Public SpoolHaveAssigned As New ArrayList

Public Function LayDownAreaElement_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("LayDownAreaID", "The ID of the lay_down

area",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("BayID", "The ID of the Bay where the lay_down area is

located",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("PhysicalLocation_X", "X coordinate of the physical

location of the

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_X").Value = 0

 ob.AddAttribute("PhysicalLocation_Y", "Y coordinate of the physical

location of the

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_Y").Value = 0

 ob.AddAttribute("LayDownAreaType", "the type of laydown

area",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepre

sentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 'add waiting file for the lay-down area

 ob.AddFile("LayDownFile",CFC_FileType.QUEUE)

 ob.AddConnectionPoint("In", x - 15, y + 32,TConnectionType.CInput,5)

 ob.AddConnectionPoint("Out", x + 155, y + 32,TConnectionType.COutput,5)

 Return True

End Function

Public Function LayDownAreaElement_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(150, 80)

 Dim text1 As new GoText

 text1.Text = "LayDown Element"

 text1.FontSize = 7

 text1.Position = new PointF(15, 40)

 Dim text2 As New GoText

185

 text2.Text = "LayDown Area ID = " & ob("LayDownAreaID").Value

 text2.FontSize = 7

 text2.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 g.Add(text2)

 return g

End Function

Public Function LayDownAreaElement_OnListBoxInitialize(ob As

CFCSim_ModelingElementInstance, attr As CFCSim_Attribute) As ArrayList

handles Scripting.OnListBoxInitializeEvent

 Dim AttrList As New ArrayList

 If attr.Name = "LayDownAreaType" Then

 AttrList.Add("Raw Cut Pipes Or Partial Pipe Components")

 AttrList.Add("Raw Fittings")

 End If

 Return AttrList

End Function

Public Sub LayDownAreaElement_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

 ob.AddEvent("EnterIn")

End Sub

Public Sub LayDownAreaElement_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 ob.ScheduleEvent(Entity,"EnterIn", 0)

End Sub

Public Sub LayDownAreaElement_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 Select Case MyEvent

 Case "EnterIn"

 If entity("EntityType") = "SpoolItem" Then

186

 'MessageBox.Show("Spool Items Enter In!")

 Dim SpoolID As String

 Dim AvailableSpoolItemsInFile As New ArrayList

 Dim AllSpoolItems As New ArrayList

 Dim Priority As Integer

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 'Determine which spool the incoming spool item

belongs to

 SpoolID = entity("JobControlNumber")

 MySpoolElement = entity("SpoolElement")

 'Find all spool items that belongs to this

spool

 For i As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 Dim MySpoolItemID As String

 MySpoolItemID =

MySpoolElement("SpoolItems").GetValueRC(i,1)

 AllSpoolItems.Add(MySpoolItemID)

 Next

 'Add the entity to the file

 Priority = entity("Priority")

 ob.File("LayDownFile").Add(entity, Priority)

 'Find spool items that already arrive in the File

 Dim Ent As CFCSim_Entity

 With ob.File("LayDownFile")

 If .Length <> 0 Then

 .MoveFirst()

 While (.EOF =False And .Length > 0)

 Ent = .Entity

 If Ent("JobControlNumber") =

SpoolID Then

 AvailableSpoolItemsInFile.Add(Ent("SpoolPartID"))

 End If

 .MoveNext()

 End While

 End If

 End With

 'Compare the 'AvailableSpoolItemsInFile' with

'AllSpoolItems' to find if all the spools item already being moved to the

lay-down area

 If AllSpoolItems.Count =

AvailableSpoolItemsInFile.Count Then

 'If this is true, it means all spool

items are ready to be processed

 'Send Dummy entity to all the roll

fitting station to test any of them are available

 Dim MyFittingStation As

CFCSim_ModelingElementInstance

 For Each MyFittingStation in

SimEnvironment.Elements.Values

187

 'Only send entity to the roll

fitting station

 If MyFittingStation.ElementType =

"StationElement" Then

 If

MyFittingStation("StationType").Value = "FittingStation" Then

 If

MyFittingStation("BayID").Value = ob("BayID").Value and

MyFittingStation("RollOrFixed").Value = "Roll" Then

 Dim DummyEntity

As CFCSim_Entity

 DummyEntity =

ob.AddEntity

 DummyEntity("EntityType") = "Dummy"

 DummyEntity("RequestLayDownArea") = ob("LayDownAreaID").Value

 DummyEntity("RequestFittingStation") =

MyFittingStation("StationID").Value

 DummyEntity("AvailableOrNot") = "NotAvail"

 'Send the dummy

entity to this fitting station

 Dim Incp As

CFCSim_ModelingElementInstance

 For Each Incp In

MyFittingStation.ChildElements.Values

 If

Incp.ElementType = "InPort" Then

 Incp.OnSimulationTransferIn(DummyEntity,ob.ConnectionPoints("Out"),Incp

.ConnectionPoints("In"),True)

 End If

 Next

 End If

 End If

 End If

 Next

 End If

 Else If entity("EntityType") = "Dummy" Then

 'If the fitting station is available

 If entity("AvailableOrNot") = "Avail"

 'First to check if a complete set of spool

parts is in the AssemblyFile

 Dim CompleteSetOrNot As Boolean

 CompleteSetOrNot =False

 Dim SpoolID As String

 Dim AvailableSpoolItemsInFile As New ArrayList

 Dim Ent As CFCSim_Entity

 'Get the Spool Id of the first entity in the

file

 With ob.File("LayDownFile")

 If .Length <> 0 Then

 .MoveFirst()

188

 If .EOF =False Then

 Ent = .Entity

 SpoolID =

Ent("JobControlNumber")

 End If

 End If

 End With

 Dim MySpoolElement As

CFCSim_ModelingElementInstance

 Dim AllSpoolItems As New ArrayList

 For Each MySpoolElement In

SimEnvironment.Elements.Values

 If MySpoolElement.ElementType =

"Spool_Element" Then

 If

MySpoolElement("JobControlNumber").Value = SpoolID Then

 For j As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 AllSpoolItems.Add(MySpoolElement("SpoolItems").GetValueRC(j,1))

 Next

 Exit For

 End If

 End If

 Next

 'Find spool items that already arrive in the

File

 With ob.File("LayDownFile")

 If .Length <> 0 Then

 .MoveFirst()

 While (.EOF =False And .Length > 0)

 Ent = .Entity

 If Ent("JobControlNumber") =

SpoolID Then

 AvailableSpoolItemsInFile.Add(Ent("SpoolPartID"))

 End If

 .MoveNext()

 End While

 End If

 End With

 If AllSpoolItems.Count =

AvailableSpoolItemsInFile.Count Then

 CompleteSetOrNot =True

 End If

 'If there is not a complete set of spool parts

in the file

 If Not CompleteSetOrNot Then

 Exit Sub

 End If

189

 'The ID of the available fitting station

 Dim MyFittingStationID As String =

entity("RequestFittingStation")

 'To determine the fitting station

 Dim MyFittingStation As

CFCSim_ModelingElementInstance

 For each MyFittingStation in

SimEnvironment.Elements.Values

 If MyFittingStation.ElementType =

"StationElement" Then

 If

MyFittingStation("StationID").Value = MyFittingStationID Then

 Exit For

 End If

 End If

 Next

 Dim NewEntity As CFCSim_Entity

 With ob.File("LayDownFile")

 'Whether or not the 'LayDownFile' is

empty

 If .Length <> 0 Then

 .MoveFirst()

 'Find the ID of spool with highest

priority in the file

 If .EOF =False Then

 Ent = .Entity

 SpoolID =

Ent("JobControlNumber")

 End If

 While (.EOF =False And .Length > 0)

 Ent = .Entity

 If Ent("JobControlNumber") =

SpoolID Then

 NewEntity =

ob.cloneEntity(Ent)

 'Send the entity to the

destination

 'There could be two

situations: 1) send to roll fitting station; 2) send to fixed fitting station

 'Check if the spool

item should be assembled at final stage

 Dim PrimaryOrFinal As

String

 For j As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j,0) =

NewEntity("JobControlNumber") And

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j,3) =

NewEntity("SpoolPartID") Then

190

 PrimaryOrFinal =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j,6)

 End If

 Next

 If PrimaryOrFinal =

"Roll" Then

 Dim Incp As

CFCSim_ModelingElementInstance

 For Each Incp In

MyFittingStation.ChildElements.Values

 If

Incp.ElementType = "InPort" Then

 Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.C

onnectionPoints("In"),True)

 If

SpoolID = "B969-00384" then

 'MessageBox.Show("Send Spool Items to Roll Fitting!")

 'MessageBox.Show(Ent("JobControlNumber"))

 'MessageBox.Show(Ent("SpoolPartID"))

 'MessageBox.Show(MyFittingStation("StationID").Value)

 'MessageBox.Show(SimEnvironment.SimTime)

 End

If

 End If

 Next

 Else

 'to locate the

fixed fitting table

 Dim

MyFixedFittingTable As CFCSim_ModelingElementInstance

 For each

MyFixedFittingTable in SimEnvironment.Elements.Values

 If

MyFixedFittingTable.ElementType = "StationElement" Then

 If MyFixedFittingTable("StationType").Value = "FittingStation" Then

 If MyFixedFittingTable("RollOrFixed").Value = "Fixed" And

MyFixedFittingTable("BayID").Value = ob("BayID").Value Then

 Exit For

 End If

 End If

 End

If

 Next

191

 'Send the

newentity to the fixed fitting table

 Dim Incp As

CFCSim_ModelingElementInstance

 For Each Incp In

MyFixedFittingTable.ChildElements.Values

 If

Incp.ElementType = "InPort" Then

 Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.C

onnectionPoints("In"),True)

 'If

SpoolID = "B969-00384" then

 'MessageBox.Show("Send Spool Items to Fixed Fitting!")

 'MessageBox.Show(Ent("SpoolPartID"))

 'End

If

 End If

 Next

 End If

 End If

 .MoveNext()

 End While

 End If

 End With

 'Remove the spool items from the file

 With ob.File("LayDownFile")

 If .Length <> 0 Then

 .MoveFirst()

 While (.EOF =False And .Length > 0)

 If .Entity("JobControlNumber")

= SpoolID Then

 .Remove(.Entity)

 Else

 .MoveNext()

 End If

 End While

 End If

 End With

 ob.DeleteEntity(entity)

 End If

 End If

 End Select

192

End Sub

End Module

This is the VB.NET code for the 'Dispatching' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function Dispatching_OnCreate(ob As CFCSim_ModelingElementInstance, x

As Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

193

 ob.AddAttribute("Count", "Number of entities passing the counter",

CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalRepresen

tation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("Count").Value=0

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 125, y + 25, TConnectionType.COutput,5)

 Return True

End Function

Public Function Dispatching_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

 Dim text1 As new GoText

 text1.Text = "Dispatching"

 text1.FontSize = 9

 text1.Position = new PointF(20, 15)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub Dispatching_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

 ob.AddEvent("EnterIn")

End Sub

194

Public Sub Dispatching_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, runNum As Int32) handles

Scripting.OnSimulationInitializeRunEvent

 ob("Count").Value=0

End Sub

Public Sub Dispatching_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 ob.ScheduleEvent(Entity,"EnterIn", 0)

End Sub

Public Sub Dispatching_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 Select Case MyEvent

 Case "EnterIn"

 ob("Count").Value=ob("Count").Value+1

 'For spools that are just issued

 If entity("EntityType") = "Spool" Then

 Dim BayID As Integer

 Dim NewEntity As CFCSim_Entity

 BayID = entity("BayID")

 NewEntity = ob.cloneEntity(Entity)

 'Send the entity to the bay

 TransferTo(BayID, ob, NewEntity)

 End If

 'For Dummy Entity

 If entity("EntityType")= "Dummy" Then

195

 Dim NewEntity As CFCSim_Entity

 NewEntity = ob.cloneEntity(Entity)

 'To Locate the Lay-Down Area

 Dim MyLayDownArea As CFCSim_ModelingElementInstance

 For Each MyLayDownArea In SimEnvironment.Elements.Values

 If MyLayDownArea.ElementType = "LayDownAreaElement"

Then

 'Send the dummy entity to the lay-down area

 If MyLayDownArea("LayDownAreaID").Value =

entity("RequestLayDownArea") Then

 MyLayDownArea.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out

"),MyLayDownArea.ConnectionPoints("In"),True)

 End If

 End If

 Next

 'Transfer out the entity

 ob.DeleteEntity(entity)

 End If

 'For Spool Component

 If entity("EntityType")= "SpoolComponent" Then

 Dim NewEntity As CFCSim_Entity

 Dim ActJustFinished As String

 NewEntity = ob.cloneEntity(Entity)

 ActJustFinished = entity("ActivityJustFinished")

 Select Case ActJustFinished

 Case "RollFitting"

196

 'Check whether it needs return to the 'Assembly'

Element immediately

 'If NewEntity("ReturnOrNot") = 1 Then

 'Dim MyFittingStation As

CFCSim_ModelingElementInstance

 'Dim Incp As CFCSim_ModelingElementInstance

 'MyFittingStation =

NewEntity("RollFittingTable")

 'For Each Incp In

MyFittingStation.ChildElements.Values

 'If Incp.ElementType = "InPort" Then

 'Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.

ConnectionPoints("In"),True)

 'End If

 'Next

 'If entity("JobControlNumber") = "B696-00875"

Then

 'MessageBox.Show("Return")

 'MessageBox.Show(entity("SpoolPartID"))

 'End If

 'ob.DeleteEntity(entity)

 'Else

 'Dim MyRollWeldingStation As

CFCSim_ModelingElementInstance

 'For Each MyRollWeldingStation In

simenvironment.Elements.Values

 'If MyRollWeldingStation.ElementType =

"StationElement" Then

197

 'If

MyRollWeldingStation("StationType").Value = "WeldingStation" And

MyRollWeldingStation("RollOrFixed").Value = "Roll" Then 'And

MyRollWeldingStation("BayID").Value = ob.Parent("BayID").Value

 'Dim Incp As

CFCSim_ModelingElementInstance

 'For Each Incp In

MyRollWeldingStation.ChildElements.Values

 'If Incp.ElementType =

"InPort" Then

 'Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.

ConnectionPoints("In"),True)

 'Exit For

 'End If

 'Next

 'End If

 'End If

 'Next

 'If entity("JobControlNumber") = "B696-00875"

Then

 'MessageBox.Show("GoforWelding")

 'MessageBox.Show(entity("SpoolPartID"))

 'End If

 'If NewEntity("JobControlNumber") = "B969-

00741" Then

 'MessageBox.Show(NewEntity("SpoolPartID"))

 'End If

 ob.TransferOut(NewEntity)

 ob.DeleteEntity(entity)

 'End If

198

 Case "RollWelding"

 'Check whether the spool is finished

 Dim SpoolID As String

 Dim SpoolPartID As String

 Dim ParentSpoolPartID As String

 Dim RollOrFixed As String

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 SpoolID = entity("JobControlNumber")

 SpoolPartID = entity("SpoolPartID")

 MySpoolElement = entity("SpoolElement")

 Dim FinishedOrNot As Boolean = True

 'See if it is a component of another spoolcomponent

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,3) =

SpoolPartID Then

 FinishedOrNot = False

 ParentSpoolPartID =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,1)

 RollOrFixed =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,6)

 Exit For

 End If

 End If

 Next

 If FinishedOrNot Then 'If it is the final spool

199

 'Send the entity to the 'End' Element

 'MessageBox.Show(entity("JobControlNumber"))

 Dim MyBayElement As

CFCSim_ModelingElementInstance

 MyBayElement = ob.Parent

 Dim Outcp As CFCSim_ModelingElementInstance

 For Each Outcp In

MyBayElement.ChildElements.Values

 If Outcp.ElementType = "OutPort" Then

 Outcp.OnTransferOut(NewEntity,Outcp.ConnectionPoints("Out"))

 ob.DeleteEntity(entity)

 Exit For

 End If

 Next

 Else 'If it needs further processing

 'Check if the further processing is roll-

fitting

 If RollOrFixed = "Roll" Then

 Dim MyFittingStation As

CFCSim_ModelingElementInstance

 MyFittingStation =

entity("RollFittingTable")

 Dim Incp As

CFCSim_ModelingElementInstance

 For Each Incp In

MyFittingStation.ChildElements.Values

 If Incp.ElementType = "InPort"

Then

200

 Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.C

onnectionPoints("In"),True)

 ob.DeleteEntity(entity)

 Exit For

 End If

 Next

 Else 'If the further processing is fixed-

fitting

 'Send the entity to the fixed fitting

station in the bay

 Dim MyFixedFittingElement As

CFCSim_ModelingElementInstance

 For Each MyFixedFittingElement In

SimEnvironment.Elements.Values

 If

MyFixedFittingElement.ElementType = "StationElement" Then

 If

MyFixedFittingElement("StationType").Value = "FittingStation"

 If

MyFixedFittingElement("RollOrFixed").Value = "Fixed" Then

 If

MyFixedFittingElement("BayID").Value = ob.Parent("BayID").Value Then

 Dim Incp As

CFCSim_ModelingElementInstance

 For Each

Incp In MyFixedFittingElement.ChildElements.Values

 If

Incp.ElementType = "InPort" Then

 Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.C

onnectionPoints("In"),True)

 ob.DeleteEntity(entity)

201

 Exit For

 End

If

 Next

 End If

 End If

 End If

 End If

 Next

 End If

 End If

 Case "FixedFitting"

 'If NewEntity("ReturnOrNot") = 1 Then

 'Dim MyFixedFittingStation As

CFCSim_ModelingElementInstance

 'Dim Incp As CFCSim_ModelingElementInstance

 'For Each MyFixedFittingStation In

ob.Parent.ChildElements.Values

 'If MyFixedFittingStation.ElementType =

"StationElement" Then

 'If

MyFixedFittingStation("StationType").Value = "FittingStation" Then

 'If

MyFixedFittingStation("RollOrFixed").Value = "Fixed" Then

 'Exit For

202

 'End If

 'End If

 'End If

 'Next

 'For Each Incp In

MyFixedFittingStation.ChildElements.Values

 'If Incp.ElementType = "InPort" Then

 'Incp.OnSimulationTransferIn(NewEntity,ob.ConnectionPoints("Out"),Incp.

ConnectionPoints("In"),True)

 'End If

 'Next

 'ob.DeleteEntity(entity)

 'Else

 ob.TransferOut(NewEntity)

 ob.DeleteEntity(entity)

 'End If

 Case "FixedWelding"

 ob.TransferOut(NewEntity)

 ob.DeleteEntity(entity)

 End Select

 End If

 End Select

End Sub

Public Sub TransferTo(ID As Integer, Ob As CFCSim_ModelingElementInstance,

Entity As CFCSim_Entity)

203

 'To Locate the next destination

 Dim MyBayElement As CFCSim_ModelingElementInstance

 For Each MyBayElement In SimEnvironment.Elements.Values

 If MyBayElement.ElementType = "BayElement" Then

 If MyBayElement("BayID").Value = ID Then

 Exit For

 End If

 End If

 Next

 'Send the entity to the destination

 Dim Incp As CFCSim_ModelingElementInstance

 For Each Incp In MyBayElement.ChildElements.Values

 If Incp.ElementType = "InPort" Then

 Incp.OnSimulationTransferIn(Entity,ob.ConnectionPoints("Out"),Incp.Conn

ectionPoints("In"),True)

 Exit For

 End If

 Next

End Sub

End Module

End Namespace

This is the VB.NET code for the 'StationElement' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

204

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Imports System.Data

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function StationElement_OnCreate(ob As CFCSim_ModelingElementInstance,

x As Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("StationID", "the ID of the fitting

station",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("StationType", "The Type of

Station",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("BayID", "The ID of the bay where the station is

located",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("BayID").Value = 0

 Return True

End Function

Public Function StationElement_OnListBoxInitialize(ob As

CFCSim_ModelingElementInstance, attr As CFCSim_Attribute) As ArrayList

handles Scripting.OnListBoxInitializeEvent

 Dim AttrList As New ArrayList

 If attr.Name = "StationType" Then

 AttrList.Add("CuttingStation")

 AttrList.Add("FittingStation")

 AttrList.Add("WeldingStation")

 End If

205

 If attr.Name = "RollOrFixed" Then

 AttrList.Add("Roll")

 AttrList.Add("Fixed")

 End If

 Return AttrList

End Function

Public Function StationElement_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(135, 50)

 Dim text1 As new GoText

 text1.Text = "Station ID = " & ob("StationID").Value

 text1.FontSize = 7

 text1.Position = new PointF(15, 15)

 Dim text2 As New GoText

 text2.Text = ob("StationType").Value

 text2.FontSize = 7

 text2.Position = new PointF(15, 28)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 g.Add(text2)

 return g

End Function

Public Sub StationElement_OnAttributeChanged(ob As

CFCSim_ModelingElementInstance, attr As CFCSim_Attribute) handles

Scripting.OnAttributeChangedEvent

 If Attr is ob("StationType")

 If ob("StationType").Value = "FittingStation" Then

 ob.AddAttribute("RollOrFixed", "Roll assembly or fixed

assembly",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("FromLaydownArea", "the lay-down area that

feeds spool items or components to the processing

station",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("ToLaydownArea", "the lay-down area that

feeds spool items or components to the processing

station",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("PhysicalLocation_X", "X coordinate of the

physical location of the

206

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_X").Value = 0

 ob.AddAttribute("PhysicalLocation_Y", "Y coordinate of the

physical location of the

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_Y").Value = 0

 Else If ob("StationType").Value = "WeldingStation" Then

 ob("StationID").Value = "WeldingComposite"

 ob.AddAttribute("NumOfWeldingStations", "The number of

welding stations with the

element",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("RollOrFixed", "Roll assembly or fixed

assembly",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("StationLocations", "the locations of all

welding

stations",CFC_AttributeInternalRepresentation.CFC_Array,CFC_AttributeExternal

Representation.CFC_Table,CFC_AttributeAccess.CFC_ReadWrite)

 ob("StationLocations").DataTable.Columns.Add("StationID",

GetType(String))

 ob("StationLocations").DataTable.Columns.Add("PhysicalLocation_X",

GetType(Double))

 ob("StationLocations").DataTable.Columns.Add("PhysicalLocation_Y",

GetType(Double))

 ob("StationLocations").DataTable.Columns.Add("BaySide",

GetType(String))

 ob.AddAttribute("StationLayDownArea", "the laydown area

where the welding station gets the spool

components",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 Else If ob("StationType").Value = "CuttingStation" Then

 ob.AddAttribute("ToLaydownArea", "the Lay-Down Area where

the cutting station will place cut

pipes",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRepr

esentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 End If

 ob.Invalidate()

 End If

 If Attr is ob("RollOrFixed")

 If ob("RollOrFixed").Value = "Fixed" then

 If ob("StationType").Value = "FittingStation" Then

 ob.RemoveAttribute("FromLaydownArea")

 ob.RemoveAttribute("ToLaydownArea")

207

 ob.AddAttribute("LayDownArea", "The LayDown Area of

all final

assemblies",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("StationID").Value = "FinalFittingComposite"

 Else

 ob.RemoveAttribute("StationLocations")

 ob.RemoveAttribute("StationLayDownArea")

 ob.RemoveAttribute("NumOfWeldingStations")

 ob.AddAttribute("LaydownArea","The LayDown Area of

all final

assemblies",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("StationID").Value = "FinalWeldingComposite"

 ob.AddAttribute("PhysicalLocation_X", "X coordinate

of the physical location of the

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_X").Value = 0

 ob.AddAttribute("PhysicalLocation_Y", "Y coordinate

of the physical location of the

station",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("PhysicalLocation_Y").Value = 0

 End If

 End If

 End If

 If Attr is ob("NumOfWeldingStations")

 Dim NumRows As Integer

 Dim MyRow As DataRow

 NumRows = ob("NumOfWeldingStations").Value

 For i As Integer = 0 to NumRows - 1

 MyRow = ob("StationLocations").DataTable.NewRow()

 MyRow.Item("StationID") = ""

 MyRow.Item("PhysicalLocation_X") = 0

 MyRow.Item("PhysicalLocation_Y") = 0

 MyRow.Item("BaySide") = ""

 ob("StationLocations").DataTable.Rows.Add(MyRow)

 Next

 End If

End Sub

End Module

End Namespace

This is the VB.NET code for the 'CuttingStationDecider' Element

208

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function CuttingStationDecider_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("Count", "Number of entities passing the counter",

CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalRepresen

tation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("Count").Value=0

 ob.AddAttribute("CuttingCapacityLimit1", "the capacity limit for the

first cutting

machine",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("CuttingCapacityLimit1").Value = 0

 ob.AddAttribute("CuttingCapacityLimit2", "the capacity limit for the

first cutting

machine",CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExterna

lRepresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob("CuttingCapacityLimit2").Value = 0

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out1", x + 125, y + 10,

TConnectionType.COutput,5)

 ob.AddConnectionPoint("Out2", x + 125, y + 35,TConnectionType.COutput,

5)

 ob.AddConnectionPoint("Out3", x + 65, y + 55,TConnectionType.COutput,5)

209

 Return True

End Function

Public Function CuttingStationDecider_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

 Dim text1 As new GoText

 text1.Text = "CuttingDecider"

 text1.FontSize = 9

 text1.Position = new PointF(20, 15)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub CuttingStationDecider_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

 ob.AddEvent("EnterIn")

End Sub

Public Sub CuttingStationDecider_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, runNum As Int32) handles

Scripting.OnSimulationInitializeRunEvent

 ob("Count").Value=0

End Sub

Public Sub CuttingStationDecider_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 ob.ScheduleEvent(Entity,"EnterIn", 0)

End Sub

210

Public Sub CuttingStationDecider_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 Select Case MyEvent

 Case "EnterIn"

 ob("Count").Value=ob("Count").Value+1

 'Find the size (or diameter) of cut pipes belonging to the

spool

 Dim Size As Integer

 Size = entity("Size")

 Dim NewEntity As CFCSim_Entity

 NewEntity = ob.cloneEntity(entity)

 If entity("PartTypeID") = 2 Then

 ob.TransferOut(NewEntity,ob.ConnectionPoints("Out3"))

 Else If Size <= ob("CuttingCapacityLimit1").Value

 ob.TransferOut(NewEntity,ob.ConnectionPoints("Out1"))

 Else

 ob.TransferOut(NewEntity,ob.ConnectionPoints("Out2"))

 End If

 End Select

End Sub

End Module

End Namespace

This is the VB.NET code for the 'SpoolItem_Generation' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

211

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function SpoolItem_Generation_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("Count", "Number of entities passing the counter",

CFC_AttributeInternalRepresentation.CFC_Numeric,CFC_AttributeExternalRepresen

tation.CFC_Singular,CFC_AttributeAccess.CFC_ReadOnly)

 ob("Count").Value=0

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 85, y + 25, TConnectionType.COutput, 5)

 Return True

End Function

Public Function SpoolItem_Generation_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(75, 50)

212

 Dim text1 As new GoText

 text1.Text = "SpoolItems"

 text1.FontSize = 9

 text1.Position = new PointF(5, 15)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub SpoolItem_Generation_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

 ob.AddEvent("EnterIn")

End Sub

Public Sub SpoolItem_Generation_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, runNum As Int32) handles

Scripting.OnSimulationInitializeRunEvent

 ob("Count").Value=0

End Sub

Public Sub SpoolItem_Generation_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 ob.ScheduleEvent(Entity,"EnterIn", 0)

End Sub

Public Sub SpoolItem_Generation_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 Select Case MyEvent

 Case "EnterIn"

 ob("Count").Value=ob("Count").Value+1

213

 'Creating spool items entity for the spool

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 Dim NewEntity As CFCSim_Entity

 Dim NumberOfSpoolItems As Integer

 Dim NumberOfColumns As Integer

 MySpoolElement = entity("SpoolElement")

 NumberOfSpoolItems = MySpoolElement("SpoolItems").RowCount

 NumberOfColumns = MySpoolElement("SpoolItems").ColumnCount

 'Create spool items entities for the spool

 'Customize these entities according the database

information

 For i As Integer = 0 to NumberOfSpoolItems - 1

 NewEntity = ob.AddEntity()

 For j As Integer = 0 to NumberOfColumns - 1

 NewEntity(MySpoolElement("SpoolItems").ColumnLabel(j)) =

MySpoolElement("SpoolItems").GetValueRC(i, j)

 If MySpoolElement("SpoolItems").ColumnLabel(j)

= "SpoolPartState" Then

 MySpoolElement("SpoolItems").SetValueRC(i,j,"Ready")

 NewEntity(MySpoolElement("SpoolItems").ColumnLabel(j)) = "Ready"

 End If

 Next

 NewEntity("EntityType") = "SpoolItem"

 NewEntity("SpoolElement") = MySpoolElement

 'Mark the pipe items as double end or single end

 If NewEntity("PartTypeID") = 1 Then

214

 For k As Integer = 0 to

MySpoolElement("CuttingActivities").RowCount - 1

 If

MySpoolElement("CuttingActivities").GetValueRC(k,0) =

NewEntity("JobControlNumber") And

MySpoolElement("CuttingActivities").GetValueRC(k,1) = NewEntity("SpoolPartID")

Then

 If

MySpoolElement("CuttingActivities").GetValueRC(k,7) = "Double" Then

 NewEntity("SingleOrDouble") =

2

 Else

 NewEntity("SingleOrDouble") =

1

 End If

 'Exit For

 'If entity("JobControlNumber") =

"B969-00750" or entity("JobControlNumber") = "C342-00093" Then

 'MessageBox.Show(entity("JobControlNumber") & " " &

NewEntity("SpoolPartID") & " " & NewEntity("SingleOrDouble"))

 'End If

 End If

 Next

 End If

 ob.TransferOut(NewEntity)

 Next

 End Select

End Sub

End Module

End Namespace

This is the VB.NET code for the 'Before' Element

215

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Imports System.Data

Imports System.Data.OleDb

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function Before_OnCreate(ob As CFCSim_ModelingElementInstance, x As

Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 50, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 65, y + 25, TConnectionType.COutput,5)

 Return True

End Function

Public Function Before_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(50, 50)

 Dim text1 As new GoText

 text1.Text = "Before"

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

216

 return g

End Function

Public Sub Before_OnSimulationTransferIn(ob As CFCSim_ModelingElementInstance,

entity As CFCSim_Entity, srcPt As CFCSim_ConnectionPoint, dstPt As

CFCSim_ConnectionPoint) handles Scripting.OnSimulationTransferInEvent

 If entity("EntityType") = "Dummy" Then

 ob.TransferOut(entity)

 Exit Sub

 End If

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 Dim SpoolID As String

 Dim SpoolPartID As Integer

 MySpoolElement = entity("SpoolElement")

 SpoolID = entity("JobControlNumber")

 SpoolPartID = entity("SpoolPartID")

 If ob.Parent.ElementType = "StationElement" Then

 Dim StationID As String

 Dim StationType As String

 StationType = ob.Parent("StationType").Value

 Select Case StationType

 Case "CuttingStation"

 StationID = ob.Parent("StationID").Value

 'Record the start time of processing (e.g. cutting, fitting

or welding)

 'Record the ID of the cutting station

 For i As Integer = 0 to

MySpoolElement("CuttingActivities").RowCount - 1

 If MySpoolElement("CuttingActivities").GetValueRC(i,0)

= SpoolID and MySpoolElement("CuttingActivities").GetValueRC(i,1) =

SpoolPartID Then

 If

MySpoolElement("CuttingActivities").GetValueRC(i,10) = 0 Then

 MySpoolElement("CuttingActivities").SetValueRC(i,3,StationID)

 MySpoolElement("CuttingActivities").SetValueRC(i,9,SimEnvironment.SimTi

me)

 entity("ActID") =

MySpoolElement("CuttingActivities").GetValueRC(i,2)

 'MessageBox.Show(entity("ActID"))

 Exit For

 End If

 End If

 Next

 Case "FittingStation"

 'check if it needs more than one fittings

217

 Dim NumOfWelds As Integer

 Dim CompStage As Integer

 For i As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If MySpoolElement("SpoolComponents").GetValueRC(i, 0)

= SpoolID and MySpoolElement("SpoolComponents").GetValueRC(i,1) = SpoolPartID

Then

 NumOfWelds =

MySpoolElement("SpoolComponents").GetValueRC(i,14)

 CompStage =

MySpoolElement("SpoolComponents").GetValueRC(i,6)

 End If

 Next

 If NumOfWelds > 1 Then

 'First, to find all the constituent components of

current Subassemblies

 Dim AllChildSpoolComponents As New ArrayList

 DepthFirstTravers(MySpoolElement("SpoolComponentsItemsRelationship").Da

taTable, SpoolPartID, AllChildSpoolComponents)

 'Second, to find all the ChildSpoolComponents that

are 1)at the same stages; and 2) not fitted yet

 Dim ChildSpoolComponentsAtSameStg As New ArrayList

 Dim ChildSpoolID As Integer

 For k As Integer = 0 to AllChildSpoolComponents.Count

- 1

 ChildSpoolID = AllChildSpoolComponents.Item(k)

 For m As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(m,1) =

ChildSpoolID Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(m,5) =

CompStage And

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(m,7) Is

DBNull.Value Then

 ChildSpoolComponentsAtSameStg.Add(ChildSpoolID)

 End If

 End If

 Next

 Next

 ChildSpoolComponentsAtSameStg.Sort()

 'If SpoolID = "A424-04960SL" Then

 'For i As Integer = 0 to

AllChildSpoolComponents.Count -1

 'MessageBox.Show("SubAssmbly " &

SpoolPartID & " has child component " & AllChildSpoolComponents.Item(i))

 'Next

 'End If

 'Get the samllest PartID from

"AllChildSpoolComponents", which is also the first one in the arraylist

 Dim UnFittedPartID As Integer

218

 UnFittedPartID = ChildSpoolComponentsAtSameStg.Item(0)

 'If SpoolID = "B696-00875" Then

 'MessageBox.Show(UnFittedPartID)

 'End If

 '"1" stands for 'True'; "0" represents 'False'

 entity("MoreThanOneFittings") = 1

 entity("CurrentFittingComponentID") = UnFittedPartID

 Else

 entity("MoreThanOneFittings") = 0

 entity("CurrentFittingComponentID") = SpoolPartID

 End If

 If ob.Parent("RollOrFixed").Value = "Roll" Then

 StationID = ob.Parent("StationID").Value

 Else

 Dim MyFixedFittingStation As

CFCSim_ModelingElementInstance

 MyFixedFittingStation =

entity("CEM_Common_RqstdRes")

 StationID =

MyFixedFittingStation("ResName").Value

 entity("FixedFittingTable") =

MyFixedFittingStation

 End If

 'Record the ID of the fitting station

 'Record the Start time of processing (e.g. cutting, fitting

or welding)

 For i As Integer = 0 to

MySpoolElement("FittingActivities").RowCount - 1

 If MySpoolElement("FittingActivities").GetValueRC(i,0)

= SpoolID And MySpoolElement("FittingActivities").GetValueRC(i,1) =

entity("CurrentFittingComponentID") Then

 MySpoolElement("FittingActivities").SetValueRC(i,9,SimEnvironment.SimTi

me)

 MySpoolElement("FittingActivities").SetValueRC(i,12,StationID)

 End If

 Next

 Case "WeldingStation"

 'check if it needs more than one weldings

 Dim NumOfWelds As Integer

 Dim CompStage As Integer

 For i As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If MySpoolElement("SpoolComponents").GetValueRC(i, 0)

= SpoolID and MySpoolElement("SpoolComponents").GetValueRC(i,1) = SpoolPartID

Then

 NumOfWelds =

MySpoolElement("SpoolComponents").GetValueRC(i,14)

219

 CompStage =

MySpoolElement("SpoolComponents").GetValueRC(i,6)

 End If

 Next

 If NumOfWelds > 1 Then

 'to find all the child parts that have not been

processed yet

 'these child parts must be in the same stage with

current spool component

 Dim AllChildSpoolComponents As New ArrayList

 'The subroutine "DepthFirstTravers" will find all the

constituent spool components of the current one, regardless of whether they

are in different stages or not

 DepthFirstTravers(MySpoolElement("SpoolComponentsItemsRelationship").Da

taTable, SpoolPartID, AllChildSpoolComponents)

 'Now the AllChildSpoolComponents contains all the

child parts and the current spool component itself

 AllChildSpoolComponents.Add(SpoolPartID)

 'MessageBox.Show(SpoolPartID)

 'For j As Integer = 0 to

AllChildSpoolComponents.Count - 1

 'MessageBox.Show(AllChildSpoolComponents(j))

 'Next

 'To check if any of them is in the same stage with

the current spool component

 'To find all the spool components that are in the

same stage with the current component

 Dim CompsAtSameStage As New ArrayList

 For j As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j,5) =

CompStage Then

 CompsAtSameStage.Add(MySpoolElement("SpoolComponentsItemsRelationship")

.GetValueRC(j,1))

 End If

 Next

 'To find all the child components that are in the

same stage with the current component

 'overlap between CompsAtSameStage and

AllChildSpoolComponents

 Dim ChildPartsAtSameStage As New ArrayList

 Dim PartID As Integer

 For j As Integer = 0 to

AllChildSpoolComponents.Count-1

 PartID = AllChildSpoolcomponents(j)

 If CompsAtSameStage.Contains(PartID) Then

 'To avoid duplication

220

 If Not

ChildPartsAtSameStage.Contains(PartID) Then

 ChildPartsAtSameStage.Add(PartID)

 End If

 End If

 Next

 'MessageBox.Show(SpoolPartID)

 'MessageBox.Show(ChildPartsAtSameStage.Count)

 'to Check any of them have not welded yet

 Dim UnweldedPartID As Integer

 'to assign a very large number to UnweldedPartID

 UnweldedPartID = 1000

 For j As Integer = 0 to ChildPartsAtSameStage.Count -

1

 PartID = ChildPartsAtSameStage(j)

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 1) = PartID

and Not MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 7)

Is DBNull.Value Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 7) =

"Fitted" Then

 'Starts with the child

component with the smallest number

 If PartID < UnweldedPartID

Then

 UnweldedPartID = PartID

 End If

 End If

 End If

 Next

 Next

 '"1" stands for 'True'; "0" represents 'False'

 entity("MoreThanOneWelds") = 1

 entity("CurrentWeldingComponentID") = UnweldedPartID

 'MessageBox.Show(SpoolPartID)

 'MessageBox.Show(UnweldedPartID)

 Else

 entity("MoreThanOneWelds") = 0

 entity("CurrentWeldingComponentID") = SpoolPartID

 End If

 'If entity("JobControlNumber") = "B696-00875" Then

 'MessageBox.Show("StartWelding")

 'MessageBox.Show(entity("CurrentWeldingComponentID"))

 'End If

 'Find the weldingstation resource that the entity has

captured

 Dim MyWeldingStationResource As

CFCSim_ModelingElementInstance

221

 MyWeldingStationResource = entity("CEM_Common_RqstdRes")

 StationID = MyWeldingStationResource("ResName").Value

 'Record the ID of the welding station

 'Record the Start time of processing (e.g. cutting, fitting

or welding)

 For i As Integer = 0 to

MySpoolElement("WeldingActivities").RowCount - 1

 If MySpoolElement("WeldingActivities").GetValueRC(i,0)

= SpoolID and MySpoolElement("WeldingActivities").GetValueRC(i,1) =

entity("CurrentWeldingComponentID") Then

 MySpoolElement("WeldingActivities").SetValueRC(i,9,SimEnvironment.SimTi

me)

 MySpoolElement("WeldingActivities").SetValueRC(i,12,StationID)

 End If

 Next

 End Select

 Else If ob.Parent.ElementType = "Handling" Then

 'Creates a ID for the handling activity

 Dim HandlingID As Integer = 0

 'If there is no record in the "HandlingActivities" attribute

 If MySpoolElement("HandlingActivities").RowCount = 0

 HandlingID = 1

 Else

 For i As Integer = 0 to

MySpoolElement("HandlingActivities").RowCount - 1

 If HandlingID <

MySpoolElement("HandlingActivities").GetValueRC(i,2) Then

 HandlingID =

MySpoolElement("HandlingActivities").GetValueRC(i,2)

 End If

 Next

 HandlingID = HandlingID + 1

 End If

 entity("HandlingID") = HandlingID

 'To find the starting point and destination of this handling

activity

 Dim FromArea As String

 Dim ToArea As String

 Dim StationType As String

 StationType = ob.Parent.Parent("StationType").Value

 Select Case StationType

 Case "CuttingStation"

 FromArea = ob.Parent.Parent("StationID").Value

 ToArea = ob.Parent.Parent("ToLaydownArea").Value

 Case "FittingStation"

 If ob.Parent.Parent("RollOrFixed").Value = "Roll" Then

222

 If ob.Parent("HandlingType").Value =

"FromLayDownArea" Then

 FromArea =

ob.Parent.Parent("FromLaydownArea").Value

 ToArea = ob.Parent.Parent("StationID").Value

 Else If ob.Parent("HandlingType").Value =

"ToLayDownArea" Then

 FromArea = ob.Parent.Parent("StationID").Value

 ToArea =

ob.Parent.Parent("ToLaydownArea").Value

 End If

 Else

 Dim MyLayDownArea1 As CFCSim_ModelingElementInstance

 For Each MyLayDownArea1 In

SimEnvironment.Elements.Values

 If MyLayDownArea1.ElementType =

"LayDownAreaElement" Then

 If

MyLayDownArea1("LayDownAreaType").Value = "Raw Cut Pipes Or Partial Pipe

Components" And MyLayDownArea1("BayID").Value =

ob.Parent.Parent("BayID").Value Then

 FromArea =

MyLayDownArea1("LayDownAreaID").Value

 End If

 End If

 Next

 ToArea = ob.Parent.Parent("LayDownArea").Value

 End If

 Case "WeldingStation"

 If ob.Parent.Parent("RollOrFixed").Value = "Roll" Then

 'When it is roll welding

 If ob.Parent("HandlingType").Value =

"FromLayDownArea" Then

 FromArea =

ob.Parent.Parent("StationLayDownArea").Value

 ToArea = entity("RollWeldingStation")

 Else If ob.Parent("HandlingType").Value =

"ToLayDownArea" Then

 FromArea = entity("RollWeldingStation")

 If entity("State") = 1 Then

 '"1" means the spool is finished, then

send to the end of the bay

 ToArea = "Sp-Cmpl-2-1"

 Else If entity("State") = 2 Then

 '"2" means sending the spool part to

laydown area in the primary assembly

 Dim MyLayDownArea As

CFCSim_ModelingElementInstance

 For Each MyLayDownArea In

SimEnvironment.Elements.Values

 If MyLayDownArea.ElementType =

"LayDownAreaElement" Then

 If

MyLayDownArea("LayDownAreaType").Value = "Raw Cut Pipes Or Partial Pipe

223

Components" And MyLayDownArea("BayID").Value =

ob.Parent.Parent("BayID").Value Then

 ToArea =

MyLayDownArea("LayDownAreaID").Value

 Exit For

 End If

 End If

 Next

 Else If entity("State") = 3 Then

 '"3" means sending the spool part to

laydown area in the final assembly

 Dim MyFixedFittingElement As

CFCSim_ModelingElementInstance

 For Each MyFixedFittingElement In

SimEnvironment.Elements.Values

 If

MyFixedFittingElement.ElementType = "StationElement" Then

 If

MyFixedFittingElement("StationType").Value = "FittingStation" And

MyFixedFittingElement("RollOrFixed").Value = "Fixed" And

MyFixedFittingElement("BayID").Value= ob.Parent.Parent("BayID").Value Then

 ToArea =

MyFixedFittingElement("LayDownArea").Value

 Exit For

 End If

 End If

 Next

 End If

 End If

 Else 'when it is fixed welding

 FromArea = ob.Parent.Parent("LaydownArea").Value

 ToArea = "Sp-Cmpl-2-1"

 End If

 End Select

 'Check if the handling is "FromLayDownArea" or "ToLayDownArea"

and it is in the fiting station

 If ob.Parent("HandlingType").Value = "FromLayDownArea" And

ob.Parent.Parent("StationType").Value = "FittingStation" Then

 'to find its constituent parts

 'to find its assembly stage

 Dim CurrentStage As Integer

 Dim ConstituentParts As New ArrayList

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i, 1) =

SpoolPartID Then

 ConstituentParts.Add(MySpoolElement("SpoolComponentsItemsRelationship")

.GetValueRC(i,3))

 CurrentStage =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,5)

 End If

 Next

224

 Dim HandledParts As New ArrayList

 'Check any of them is in the same stage of the current

spool component; If yes, on handling was involved.

 For j as Integer = 0 to ConstituentParts.Count - 1

 Dim ConstituentPartID As Integer

 ConstituentPartID = ConstituentParts(j)

 'check if it is a spool item

 For h As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 If MySpoolElement("SpoolItems").GetValueRC(h,1)

= ConstituentPartID Then

 HandledParts.Add(ConstituentPartID)

 End If

 Next

 'only in primary assembly, spool components need

handling from laydown area

 If ob.Parent.Parent("RollOrFixed").Value = "Roll"

Then

 'check if it is a spool component

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 1) =

ConstituentPartID And

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 5) <>

CurrentStage Then

 If Not

HandledParts.Contains(ConstituentPartID) Then

 HandledParts.Add(ConstituentPartID)

 End If

 End If

 Next

 End If

 Next

 If HandledParts.Count > 0 then

 Dim ActualFromArea As String

 For m As Integer = 0 to HandledParts.Count - 1

 ActualFromArea = FromArea

 'check if the part is a raw fitting

 For i As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 If

MySpoolElement("SpoolItems").GetValueRC(i, 1) = HandledParts(m) And

MySpoolElement("SpoolItems").GetValueRC(i, 3) = 2 Then

 'If SpoolID = "B696-00875" Then

 'MessageBox.Show(HandledParts(m) & " is a raw fitting")

 'End If

225

 Dim MyFittingLayDownArea As

CFCSim_ModelingElementInstance

 For Each MyFittingLayDownArea In

SimEnvironment.Elements.Values

 If

MyFittingLayDownArea.ElementType = "LayDownAreaElement" Then

 If

MyFittingLayDownArea("BayID").Value = ob.Parent.Parent("BayID").Value And

MyFittingLayDownArea("LayDownAreaType").Value = "Raw Fittings" Then

 ActualFromArea =

MyFittingLayDownArea("LayDownAreaID").Value

 'If SpoolID =

"B696-00875" Then

 'MessageBox.Show(ActualFromArea & " is the lay down area")

 'End If

 End If

 End If

 Next

 End If

 Next

 'To create a record in the "HandlingActivities"

attribute

 Dim MyRow As DataRow

 MyRow =

MySpoolElement("HandlingActivities").DataTable.NewRow()

 MyRow.Item("JobControlNumber") = SpoolID

 MyRow.Item("SpoolPartID") = HandledParts(m)

 MyRow.Item("HandlingID") = HandlingID + m

 MyRow.Item("Type") = ""

 MyRow.Item("StartTime") =

SimEnvironment.SimTime

 MyRow.Item("Duration") = 0

 MyRow.Item("FinishTime") = 0

 MyRow.Item("FromArea") = ActualFromArea

 MyRow.Item("ToArea") = ToArea

 MyRow.Item("NumberOfPersonnel") = 1

 MyRow.Item("NumberOfCrane") = 1

 MySpoolElement("HandlingActivities").DataTable.Rows.Add(MyRow)

 Next

 End If

 Else

 'To create a record in the "HandlingActivities" attribute

 Dim MyRow As DataRow

 MyRow =

MySpoolElement("HandlingActivities").DataTable.NewRow()

 MyRow.Item("JobControlNumber") = SpoolID

 MyRow.Item("SpoolPartID") = SpoolPartID

 MyRow.Item("HandlingID") = HandlingID

 MyRow.Item("Type") = ""

226

 MyRow.Item("StartTime") = SimEnvironment.SimTime

 MyRow.Item("Duration") = 0

 MyRow.Item("FinishTime") = 0

 MyRow.Item("FromArea") = FromArea

 MyRow.Item("ToArea") = ToArea

 MyRow.Item("NumberOfPersonnel") = 1

 MyRow.Item("NumberOfCrane") = 1

 MySpoolElement("HandlingActivities").DataTable.Rows.Add(MyRow)

 End If

 End If

 ob.TransferOut(entity)

End Sub

Public sub DepthFirstTravers(MyDataTable As System.Data.DataTable,

CurrentComponentID As Integer, AllChildSpoolComponents As ArrayList)

 'datatable only refers to "SpoolComponentsItemsRelationship" in

Spool_Element

 'to find all the child parts of the current spool component

 Dim ChildParts As New ArrayList

 For i As Integer =0 to MyDataTable.Rows.Count - 1

 If MyDataTable.Rows.Item(i)("ComponentID") = CurrentComponentID

Then

 ChildParts.Add(MyDataTable.Rows.Item(i)("PartID"))

 End If

 Next

 Dim MyRow As System.Data.DataRow

 For Each MyRow In MyDataTable.Rows

 Dim MyRowCompID As Integer

 MyRowCompID = MyRow.Item("ComponentID")

 If ChildParts.Contains(MyRowCompID) Then

 DepthFirstTravers(MyDataTable, MyRowCompID,

AllChildSpoolComponents)

 End If

 Next

 'At the bottom level, the constituent parts should be spool items,

which are not listed in "SpoolComponentsItemsRelationship"

 'At this point of time, the recursion will stop.

 'Also from now on, The subroutine starts to collect child component IDs

all the way from the bottom level to the top level

 If Not AllChildSpoolcomponents.Contains(CurrentComponentID) Then

 AllChildSpoolcomponents.Add(CurrentComponentID)

 End If

End Sub

End Module

End Namespace

227

This is the VB.NET code for the 'After' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function After_OnCreate(ob As CFCSim_ModelingElementInstance, x As

Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 50, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 65, y + 25, TConnectionType.COutput,5)

 Return True

End Function

Public Function After_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(50, 50)

 Dim text1 As new GoText

 text1.Text = "After"

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

228

 g.Add(text1)

 return g

End Function

Public Sub After_OnSimulationTransferIn(ob As CFCSim_ModelingElementInstance,

entity As CFCSim_Entity, srcPt As CFCSim_ConnectionPoint, dstPt As

CFCSim_ConnectionPoint) handles Scripting.OnSimulationTransferInEvent

 If entity("EntityType") = "Dummy" Then

 ob.TransferOut(entity)

 Exit Sub

 End If

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 Dim SpoolID As String

 Dim SpoolPartID As Integer

 MySpoolElement = entity("SpoolElement")

 SpoolID = entity("JobControlNumber")

 SpoolPartID = entity("SpoolPartID")

 Dim StartTime As Double

 Dim Duration As Double

 If ob.Parent.ElementType = "StationElement" Then

 Dim StationID As String

 Dim StationType As String

 Dim Location_X As Double

 Dim Location_Y As Double

 StationType = ob.Parent("StationType").Value

 Select Case StationType

 Case "CuttingStation"

 StationID = ob.Parent("StationID").Value

 Location_X = ob.Parent("PhysicalLocation_X").Value

 Location_Y = ob.Parent("PhysicalLocation_Y").Value

 'Record the finish time and duration of processing (e.g.

cutting, fitting or welding)

 For i As Integer = 0 to

MySpoolElement("CuttingActivities").RowCount - 1

 If MySpoolElement("CuttingActivities").GetValueRC(i,0)

= SpoolID and MySpoolElement("CuttingActivities").GetValueRC(i,1) =

SpoolPartID Then

 If

MySpoolElement("CuttingActivities").GetValueRC(i,2) = entity("ActID") Then

 StartTime =

MySpoolElement("CuttingActivities").GetValueRC(i,9)

 Duration = SimEnvironment.SimTime -

StartTime

229

 MySpoolElement("CuttingActivities").SetValueRC(i,10,Duration)

 MySpoolElement("CuttingActivities").SetValueRC(i,11,SimEnvironment.SimT

ime)

 Exit For

 End If

 End If

 Next

 'Update the state of the spool item (to 'Cut')

 'Update the physical location of the spool item

 For j As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 If MySpoolElement("SpoolItems").GetValueRC(j,0) =

SpoolID and MySpoolElement("SpoolItems").GetValueRC(j,1) = SpoolPartID Then

 MySpoolElement("SpoolItems").SetValueRC(j,8,"Cut")

 MySpoolElement("SpoolItems").SetValueRC(j,9,Location_X)

 MySpoolElement("SpoolItems").SetValueRC(j,10,Location_Y)

 End If

 Next

 entity("ActivityJustFinished") = "Cutting"

 Case "FittingStation"

 StationID = ob.Parent("StationID").Value

 Location_X = ob.Parent("PhysicalLocation_X").Value

 Location_Y = ob.Parent("PhysicalLocation_Y").Value

 If ob.Parent("RollOrFixed").Value = "Roll" Then

 'First of all, to determine which component has just

been fitted

 Dim CurrentFittedCompID As Integer

 CurrentFittedCompID =

entity("CurrentFittingComponentID")

 'If SpoolID = "A424-04960SL" Then

 'MessageBox.Show(CurrentFittedCompID)

 'End If

 'Record the finish time and duration of processing

(e.g. cutting, fitting or welding)

 For i As Integer = 0 to

MySpoolElement("FittingActivities").RowCount - 1

 If

MySpoolElement("FittingActivities").GetValueRC(i,0) = SpoolID and

MySpoolElement("FittingActivities").GetValueRC(i,1) = CurrentFittedCompID

Then

 StartTime =

MySpoolElement("FittingActivities").GetValueRC(i,9)

 Duration = SimEnvironment.SimTime -

StartTime

230

 MySpoolElement("FittingActivities").SetValueRC(i,10,Duration)

 MySpoolElement("FittingActivities").SetValueRC(i,11,SimEnvironment.SimT

ime)

 Exit For

 End If

 Next

 'Update the state of the spool component (to 'Fitted')

 'Update the physical location of the spool component

 For j As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If

MySpoolElement("SpoolComponents").GetValueRC(j,0) = SpoolID And

MySpoolElement("SpoolComponents").GetValueRC(j,1) = CurrentFittedCompID Then

 MySpoolElement("SpoolComponents").SetValueRC(j,11, "Fitted")

 MySpoolElement("SpoolComponents").SetValueRC(j,12, Location_X)

 MySpoolElement("SpoolComponents").SetValueRC(j,13, Location_Y)

 Exit For

 End If

 Next

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,1) =

CurrentFittedCompID Then

 MySpoolElement("SpoolComponentsItemsRelationship").SetValueRC(k,7,"Fitt

ed")

 End If

 End If

 Next

 entity("ActivityJustFinished") = "RollFitting"

 'When the current spool component is fitted, it means

that all its constituent components, if it has, are all fitted as well

 If CurrentFittedCompID = SpoolPartID Then

 entity("MoreThanOneFittings") = 0

 End If

 Else 'when it is fixed fitting

 'First of all, to determine which component has just

been fitted

 Dim CurrentFittedCompID As Integer

 CurrentFittedCompID =

entity("CurrentFittingComponentID")

231

 'Record the finish time and duration of processing

(e.g. cutting, fitting or welding)

 For i As Integer = 0 to

MySpoolElement("FittingActivities").RowCount - 1

 If

MySpoolElement("FittingActivities").GetValueRC(i,0) = SpoolID and

MySpoolElement("FittingActivities").GetValueRC(i,1) = CurrentFittedCompID

Then

 StartTime =

MySpoolElement("FittingActivities").GetValueRC(i,9)

 Duration = SimEnvironment.SimTime -

StartTime

 MySpoolElement("FittingActivities").SetValueRC(i,10,Duration)

 MySpoolElement("FittingActivities").SetValueRC(i,11,SimEnvironment.SimT

ime)

 Exit For

 End If

 Next

 'Update the state of the spool component (to 'Fitted')

 'Update the physical location of the spool component

 For j As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If

MySpoolElement("SpoolComponents").GetValueRC(j,0) = SpoolID And

MySpoolElement("SpoolComponents").GetValueRC(j,1) = CurrentFittedCompID Then

 MySpoolElement("SpoolComponents").SetValueRC(j,11, "Fitted")

 MySpoolElement("SpoolComponents").SetValueRC(j,12, Location_X)

 MySpoolElement("SpoolComponents").SetValueRC(j,13, Location_Y)

 Exit For

 End If

 Next

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,1) =

CurrentFittedCompID Then

 MySpoolElement("SpoolComponentsItemsRelationship").SetValueRC(k,7,"Fitt

ed")

 End If

 End If

 Next

 entity("ActivityJustFinished") = "FixedFitting"

 'When the current spool component is fitted, it means

that all its constituent components, if it has, are all fitted as well

232

 If CurrentFittedCompID = SpoolPartID Then

 entity("MoreThanOneFittings") = 0

 End If

 End If

 Case "WeldingStation"

 If ob.Parent("RollOrFixed").Value = "Roll" Then

 'First of all, to determine which component has just

been welded

 Dim CurrentWeldedCompID As Integer

 CurrentWeldedCompID =

entity("CurrentWeldingComponentID")

 'Record the finish time and duration of processing

(e.g. cutting, fitting or welding)

 For i As Integer = 0 to

MySpoolElement("WeldingActivities").RowCount - 1

 If

MySpoolElement("WeldingActivities").GetValueRC(i,0) = SpoolID and

MySpoolElement("WeldingActivities").GetValueRC(i,1) = CurrentWeldedCompID

Then

 StartTime =

MySpoolElement("WeldingActivities").GetValueRC(i,9)

 Duration = SimEnvironment.SimTime -

StartTime

 MySpoolElement("WeldingActivities").SetValueRC(i,11,Duration)

 MySpoolElement("WeldingActivities").SetValueRC(i,10,SimEnvironment.SimT

ime)

 Exit For

 End If

 Next

 'Find the physical location of the weld station

 Dim WeldingStationID As String

 WeldingStationID = entity("RollWeldingStation")

 For m As Integer = 0 to

ob.Parent("StationLocations").RowCount - 1

 If ob.Parent("StationLocations").GetValueRC(m,0)

= WeldingStationID Then

 Location_X =

ob.Parent("StationLocations").GetValueRC(m,1)

 Location_Y =

ob.Parent("StationLocations").GetValueRC(m,2)

 End If

 Next

 'Update the state of the spool component (to 'Welded')

 'Update the physical location of the spool component

233

 For j As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If

MySpoolElement("SpoolComponents").GetValueRC(j,0) = SpoolID And

MySpoolElement("SpoolComponents").GetValueRC(j,1) = CurrentWeldedCompID Then

 MySpoolElement("SpoolComponents").SetValueRC(j,11, "Welded")

 MySpoolElement("SpoolComponents").SetValueRC(j,12, Location_X)

 MySpoolElement("SpoolComponents").SetValueRC(j,13, Location_Y)

 Exit For

 End If

 Next

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,1) =

CurrentWeldedCompID Then

 MySpoolElement("SpoolComponentsItemsRelationship").SetValueRC(k,7,"Weld

ed")

 End If

 End If

 Next

 entity("ActivityJustFinished") = "RollWelding"

 'When the current spool component is welded, it means

that all its constituent components, if it has, are all welded as well

 If CurrentWeldedCompID = SpoolPartID Then

 entity("MoreThanOneWelds") = 0

 End If

 'Check whether the spool is finished

 Dim ParentSpoolPartID As Integer

 Dim RollOrFixed As String

 Dim FinishedOrNot As Boolean = True

 'See if it is a component of another spoolcomponent

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,3) =

SpoolPartID Then

 FinishedOrNot = False

234

 ParentSpoolPartID =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,1)

 RollOrFixed =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,6)

 Exit For

 End If

 End If

 Next

 If FinishedOrNot Then 'If it is the final spool

 '"1" represents the spool is finished

 entity("State") = 1

 Else 'If it needs further processing

 'Check if the further processing is roll-

fitting

 If RollOrFixed = "Roll" Then

 '"2" represents needing roll assembly

 entity("State") = 2

 'MessageBox.Show(entity("State"))

 Else 'If the further processing is fixed-

fitting

 entity("State") = 3

 End If

 End If

 Else 'if it is fixed welding

 'First of all, to determine which component has just

been welded

 Dim CurrentWeldedCompID As Integer

 CurrentWeldedCompID =

entity("CurrentWeldingComponentID")

 'Record the finish time and duration of processing

(e.g. cutting, fitting or welding)

 For i As Integer = 0 to

MySpoolElement("WeldingActivities").RowCount - 1

 If

MySpoolElement("WeldingActivities").GetValueRC(i,0) = SpoolID and

MySpoolElement("WeldingActivities").GetValueRC(i,1) = CurrentWeldedCompID

Then

 StartTime =

MySpoolElement("WeldingActivities").GetValueRC(i,9)

 Duration = SimEnvironment.SimTime -

StartTime

 MySpoolElement("WeldingActivities").SetValueRC(i,11,Duration)

 MySpoolElement("WeldingActivities").SetValueRC(i,10,SimEnvironment.SimT

ime)

 Exit For

 End If

 Next

 'Find the physical location of the weld station

 Location_X = ob.Parent("PhysicalLocation_X").Value

 Location_Y = ob.Parent("PhysicalLocation_Y").Value

235

 'Update the state of the spool component (to 'Welded')

 'Update the physical location of the spool component

 For j As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If

MySpoolElement("SpoolComponents").GetValueRC(j,0) = SpoolID And

MySpoolElement("SpoolComponents").GetValueRC(j,1) = CurrentWeldedCompID Then

 MySpoolElement("SpoolComponents").SetValueRC(j,11, "Welded")

 MySpoolElement("SpoolComponents").SetValueRC(j,12, Location_X)

 MySpoolElement("SpoolComponents").SetValueRC(j,13, Location_Y)

 Exit For

 End If

 Next

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,0) = SpoolID

Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,1) =

CurrentWeldedCompID Then

 MySpoolElement("SpoolComponentsItemsRelationship").SetValueRC(k,7,"Weld

ed")

 End If

 End If

 Next

 entity("ActivityJustFinished") = "FixedWelding"

 'When the current spool component is welded, it means

that all its constituent components, if it has, are all welded as well

 'it also means that the spool is finished

 If CurrentWeldedCompID = SpoolPartID Then

 entity("MoreThanOneWelds") = 0

 entity("State") = 1

 End If

 End If

 End Select

 Else If ob.Parent.ElementType = "Handling" Then

 If ob.Parent("HandlingType").Value = "FromLayDownArea" And

ob.Parent.Parent("StationType").Value = "FittingStation" Then

 'to find its constituent parts

236

 'to find its assembly stage

 Dim CurrentStage As Integer

 Dim ConstituentParts As New ArrayList

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i, 1) =

SpoolPartID Then

 ConstituentParts.Add(MySpoolElement("SpoolComponentsItemsRelationship")

.GetValueRC(i,3))

 CurrentStage =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,5)

 End If

 Next

 Dim HandledParts As New ArrayList

 'Check any of them is in the same stage of the current

spool component; If yes, on handling was involved.

 For j as Integer = 0 to ConstituentParts.Count - 1

 Dim ConstituentPartID As Integer

 ConstituentPartID = ConstituentParts(j)

 'check if it is a spool item

 For h As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 If MySpoolElement("SpoolItems").GetValueRC(h,1)

= ConstituentPartID Then

 HandledParts.Add(ConstituentPartID)

 End If

 Next

 'check if it is a spool component

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 1) =

ConstituentPartID And

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k, 5) <>

CurrentStage Then

 If Not

HandledParts.Contains(ConstituentPartID) Then

 HandledParts.Add(ConstituentPartID)

 End If

 End If

 Next

 Next

 'record the duration of each handling

 Dim HandlingID As Integer

 HandlingID = entity("HandlingID")

 For m As Integer = 0 to HandledParts.Count - 1

 HandlingID = HandlingID + m

 For n As Integer = 0 to

MySpoolElement("HandlingActivities").RowCount - 1

237

 If

MySpoolElement("HandlingActivities").GetValueRC(n,2) = HandlingID Then

 StartTime =

MySpoolElement("HandlingActivities").GetValueRC(n,4)

 Duration = SimEnvironment.SimTime -

StartTime

 MySpoolElement("HandlingActivities").SetValueRC(n,5,Duration)

 MySpoolElement("HandlingActivities").SetValueRC(n,6,SimEnvironment.SimT

ime)

 End If

 Next

 Next

 Else

 'record the duration of handling

 For i As Integer = 0 to

MySpoolElement("HandlingActivities").RowCount - 1

 If

MySpoolElement("HandlingActivities").GetValueRC(i,0) = SpoolID And

MySpoolElement("HandlingActivities").GetValueRC(i,1) = SpoolPartID Then

 If

MySpoolElement("HandlingActivities").GetValueRC(i,2) = entity("HandlingID")

Then

 StartTime =

MySpoolElement("HandlingActivities").GetValueRC(i,4)

 Duration = SimEnvironment.SimTime -

StartTime

 MySpoolElement("HandlingActivities").SetValueRC(i,5,Duration)

 MySpoolElement("HandlingActivities").SetValueRC(i,6,SimEnvironment.SimT

ime)

 Exit For

 End If

 End If

 Next

 'Update the current phisical location

 End If

 End If

 ob.TransferOut(entity)

End Sub

End Module

End Namespace

This is the VB.NET code for the 'Assembly' Element

238

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Structure SpoolComponent

 Dim SpoolComponentID As Integer

 Dim SpoolPartID_1 As Integer

 Dim SpoolPartID_2 As Integer

End Structure

239

Public Function Assembly_OnCreate(ob As CFCSim_ModelingElementInstance, x As

Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddFile("AssemblyFile",CFC_FileType.QUEUE)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out1", x + 110, y + 25,

TConnectionType.COutput,5)

 ob.AddConnectionPoint("Out2", x + 65, y + 55,TConnectionType.COutput,5)

 Return True

End Function

Public Function Assembly_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(100, 50)

 Dim text1 As new GoText

 text1.Text = "Assembly Element"

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

240

Public Sub Assembly_OnSimulationInitialize(ob As

CFCSim_ModelingElementInstance) handles Scripting.OnSimulationInitializeEvent

 ob.AddEvent("CheckPossibleAssembly")

End Sub

Public Sub Assembly_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 If entity("EntityType") = "SpoolItem" or entity("EntityType") =

"SpoolComponent" Or entity("EntityType") = "Dummy1" Then

 ob.ScheduleEvent(entity,"CheckPossibleAssembly",0)

 'MessageBox.Show("A SpoolItem Enters In!")

 End If

 If entity("EntityType") = "Dummy" Then

 ob.TransferOut(entity, ob.ConnectionPoints("Out2"))

 End If

End Sub

Public Sub Assembly_OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, myEvent As String, entity As CFCSim_Entity)

handles Scripting.OnSimulationProcessEventEvent

 If Not entity("EntityType") = "Dummy1" Then

 'Add the entity into the 'AssemblyFile'

 Dim Priority As Integer

 Priority = entity("Priority")

 ob.File("AssemblyFile").Add(entity, Priority)

 End If

 'Determine the 'stage' of assembly

 Dim CurrentAssemblyStage As Integer

 Dim Stages As New ArrayList

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 Dim SpoolID As String

241

 MySpoolElement = entity("SpoolElement")

 SpoolID = entity("JobControlNumber")

 'If SpoolID = "B696-00875" And Not entity("EntityType") = "Dummy1" Then

 'Dim FR As String

 'FR = ob.Parent("RollOrFixed").Value

 'MessageBox.Show(entity("SpoolPartID") & " at " & FR & " Stage")

 'End If

 'To find the minimum value in the 'Stages' arraylist

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i, 7) Is

DBNull.Value Then

 Stages.Add(MySpoolElement("SpoolComponentsItemsRelationship").GetValueR

C(i, 5))

 End If

 Next

 CurrentAssemblyStage = 100 ' a very large number

 For j As Integer = 0 to Stages.Count - 1

 If CurrentAssemblyStage > Stages(j) Then

 CurrentAssemblyStage = Stages(j)

 End If

 Next

 'MessageBox.Show("SpoolID " & SpoolID & " is at " &

CurrentAssemblyStage)

 'To find possible subassembly at this stage. Subassembly means the

spool components that come out of this stage, not any of the intermediate

spool components

242

 'For example, if 18 (1, 13) and 19 (10, 18), or to say if comp 18 is

composed by 1 and 13; while comp 19 is formed by 10 and 18, then only comp 19

is the subassembly and comp 18 is just the intermediate spool components

 'and to find the IDs of possible subassemblies and their constituent

parts

 Dim SpoolComID As Integer = 0

 Dim WhetherOrNotSubassembly As Boolean

 Dim SubassemblyAtCurrStg As New ArrayList

 'Find spool components that are 1) a subassembly; 2) at the current

stage; 3) not finished yet

 For i As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 WhetherOrNotSubassembly = True

 'Belongs to the current assembly stage

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,0) = SpoolID

And MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i, 5) =

CurrentAssemblyStage And

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i, 7) Is

DBNull.Value Then

 'find the spool components for which the fitting is not

finished yet

 SpoolComID =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(i,1)

 'If the current spool component is NOT a constituent

part of any other spool components at the same stage

 For j As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j, 5) =

CurrentAssemblyStage Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(j, 3) =

SpoolComID Then

 WhetherOrNotSubassembly = False

243

 End If

 End If

 Next

 'If yes, add to SubassemblyAtCurrStg. Otherwise, it

is not a subassembly

 If WhetherOrNotSubassembly Then

 If Not SubassemblyAtCurrStg.Contains(SpoolComID)

Then

 SubassemblyAtCurrStg.Add(SpoolComID)

 End If

 End If

 End If

 Next

 'If SpoolID = "B696-00875" Then

 'MessageBox.Show("B696-00875 has " & SubassemblyAtCurrStg.Count &

" Subassembly")

 'For i As Integer = 0 to SubassemblyAtCurrStg.Count - 1

 'MessageBox.Show("At Stage " & CurrentAssemblyStage & ",

B696-00875 has Subassembly " & SubassemblyAtCurrStg.Item(i))

 'Next

 'End If

 'ReadySubassemblies means subassemblies that can be assembled right now

 'Dim ReadySubassemblies As New ArrayList

 Dim SubasssemblyID As Integer

 For i As Integer = 0 to SubassemblyAtCurrStg.Count - 1

 Dim PreconditionsForSubassembly As New ArrayList

 SubasssemblyID = SubassemblyAtCurrStg.Item(i)

244

 'To check if the Subasssembly has more than one welds

 Dim NumOfWelds As Integer

 For j As Integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If MySpoolElement("SpoolComponents").GetValueRC(j, 0) =

SpoolID and MySpoolElement("SpoolComponents").GetValueRC(j,1) =

SubasssemblyID Then

 NumOfWelds =

MySpoolElement("SpoolComponents").GetValueRC(j,14)

 End If

 Next

 If NumOfWelds > 1 Then

 'First, to find all the constituent components of current

Subassemblies

 Dim AllChildSpoolComponents As New ArrayList

 DepthFirstTravers(MySpoolElement("SpoolComponentsItemsRelationship").Da

taTable, SubasssemblyID, AllChildSpoolComponents)

 'preconditions to start assemble the subassembly include:

 '1)Constituent Spool component(s) from the immediately

previous stage;

 '2)Constituent Spool item(s) that are required at the

current stage

 'These two types are included in the "PardID" of

Constituent Spool component(s) at the same stage

 'Second, to find all the ChildSpoolComponents that are at

the same stages

 Dim ChildSpoolComponentsAtSameStg As New ArrayList

 Dim ChildSpoolID

 For k As Integer = 0 to AllChildSpoolComponents.Count - 1

 ChildSpoolID = AllChildSpoolComponents.Item(k)

245

 For m As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(m,1) =

ChildSpoolID Then

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(m,5) =

CurrentAssemblyStage Then

 ChildSpoolComponentsAtSameStg.Add(ChildSpoolID)

 End If

 End If

 Next

 Next

 'Should include the ID of the Subassebly as well

 ChildSpoolComponentsAtSameStg.Add(SubasssemblyID)

 'Third, to find the constituent parts of all these spool

components

 Dim ChildSpoolParts As New ArrayList

 Dim ChildSpoolComponentID As Integer

 For n As Integer = 0 to ChildSpoolComponentsAtSameStg.Count

-1

 ChildSpoolComponentID =

ChildSpoolComponentsAtSameStg.Item(n)

 For p As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(p,1) =

ChildSpoolComponentID Then

 ChildSpoolParts.Add(MySpoolElement("SpoolComponentsItemsRelationship").

GetValueRC(p,3))

246

 End If

 Next

 Next

 'Fourth, to rule out intermediate spool components (which

are also spool components) at the current stage

 Dim ChildPartID As Integer

 For q As Integer = 0 to ChildSpoolParts.Count - 1

 ChildPartID = ChildSpoolParts.Item(q)

 If Not

ChildSpoolComponentsAtSameStg.Contains(ChildPartID) Then

 'To avoid repetition

 If Not PreconditionsForSubassembly.Contains

(ChildPartID) Then

 PreconditionsForSubassembly.Add(ChildPartID)

 End If

 End If

 Next

 Else

 'Just to find its constituent parts at the same stage

 For k As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(k,1) =

SubasssemblyID Then

 PreconditionsForSubassembly.Add(MySpoolElement("SpoolComponentsItemsRel

ationship").GetValueRC(k,3))

 End If

 Next

 End If

247

 'To find existing spool parts in the 'AssemblyFile'

 Dim Ent As CFCSim_Entity

 Dim AvailableSpoolParts As New ArrayList

 With ob.File("AssemblyFile")

 'Whether or not the 'LayDownFile' is empty

 If .Length <> 0 Then

 .MoveFirst()

 'Find the ID of spool with highest priority in the

file

 While (.EOF =False And .Length > 0)

 Ent = .Entity

 If Ent("JobControlNumber") = SpoolID Then

 AvailableSpoolParts.Add(Ent("SpoolPartID"))

 End If

 .MoveNext()

 End While

 End If

 End With

 'Find subassembly or spool components that can be assembled right

now

 Dim WhetherOrNotReady As Boolean

 WhetherOrNotReady = True

 Dim PreconditionPartID As Integer

 For j As Integer = 0 to PreconditionsForSubassembly.Count -1

 PreconditionPartID = PreconditionsForSubassembly.Item(j)

 'If SpoolID = "B696-00875" Then

 'MessageBox.Show(SubasssemblyID & " needs item " &

PreconditionPartID)

248

 'End If

 If Not AvailableSpoolParts.Contains(PreconditionPartID)

 WhetherOrNotReady = False

 Exit For

 End If

 Next

 If WhetherOrNotReady Then

 'If all the preconditions have been satisfied

 'Then, Generate entity that represents these spool components and

remove the corresponding spool parts from the 'AssemblyFile'

 'If SpoolID = "B969-01361"

 'Dim M As String

 'For a As Integer = 0 to

PreconditionsForSubassembly.Count - 1

 'M = M & PreconditionsForSubassembly.Item(a) &

", "

 'Next

 'MessageBox.Show("Subassembly " & SubasssemblyID & "

can be assembled now; it preconditions include " & M)

 'End If

 'Generate the spool component entity

 Dim NewEntity As CFCSim_Entity

 NewEntity = ob.AddEntity()

 For m As integer = 0 to

MySpoolElement("SpoolComponents").RowCount - 1

 If MySpoolElement("SpoolComponents").GetValueRC(m,0)

= SpoolID And MySpoolElement("SpoolComponents").GetValueRC(m, 1) =

SubasssemblyID Then

 For n As integer = 0 to

MySpoolElement("SpoolComponents").ColumnCount - 1

249

 NewEntity(MySpoolElement("SpoolComponents").ColumnLabel(n)) =

MySpoolElement("SpoolComponents").GetValueRC(m, n)

 Next

 NewEntity("EntityType") = "SpoolComponent"

 NewEntity("SpoolElement") = MySpoolElement

 'If the current station is a roll fitting

station

 If ob.Parent("RollOrFixed").Value = "Roll" Then

 NewEntity("RollFittingTable") = ob.Parent

 Else 'If it is a fixed fitting station

 NewEntity("FixedFittingTable") =

ob.Parent

 End If

 'when it is in the final assembly stage, check

if the spool assembly requires handling from Lay down area

 NewEntity("NeedHandlingOrNot") = 0

 If ob.Parent("StationType").Value =

"FittingStation" And ob.Parent("RollOrFixed").Value = "Fixed" Then

 For p As Integer = 0 to

MySpoolElement("SpoolItems").RowCount - 1

 If

PreconditionsForSubassembly.Contains(MySpoolElement("SpoolItems").GetValueRC(

p,1))Then

 NewEntity("NeedHandlingOrNot")

= 1

 End If

 Next

 End If

250

 'Before transfering out the NewEntity, we

should check if it is the last assembly at the current stage.

 'If it is the case, we have to check if there

are possible assemblies in the next stage

 'First, finding the last spool part ID at

current stage

 If ob.Parent("RollOrFixed").Value = "Roll" Then

 'First of all, check if it is the final

stage of the spool(i.e. meaning the spool is already finished)

 Dim FinalStage As Integer

 FinalStage = 1

 For p As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If FinalStage <

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(p, 5) Then

 FinalStage =

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(p, 5)

 End If

 Next

 Dim LastSpoolCompAtCurrStg As Integer = 0

 'Find the maximum Spool Component ID at

the current stage

 For n As Integer = 0 to

MySpoolElement("SpoolComponentsItemsRelationship").RowCount - 1

 If

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(n, 5) =

CurrentAssemblyStage Then

 If LastSpoolCompAtCurrStg <

MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(n,1) Then

 LastSpoolCompAtCurrStg

= MySpoolElement("SpoolComponentsItemsRelationship").GetValueRC(n,1)

 End If

 End If

251

 Next

 '"Dummy1" is a dummy entity that is used

to check if there is any possible assembly in the next stage

 If NewEntity("SpoolPartID") =

LastSpoolCompAtCurrStg Then

 'If it is the final stage and final

assemnbly, or to say it is the spool already, there is no need to send

'Dummy1' entity, since there is no more assembly

 If Not CurrentAssemblyStage =

FinalStage Then

 Dim DummyEnt As CFCSim_Entity

 DummyEnt = ob.AddEntity()

 DummyEnt("SpoolElement") =

NewEntity("SpoolElement")

 DummyEnt("JobControlNumber")

= NewEntity("JobControlNumber")

 DummyEnt("EntityType") =

"Dummy1"

 ob.ScheduleEvent(DummyEnt,"CheckPossibleAssembly",0)

 End If

 End If

 End If

 ob.TransferOut(NewEntity,

ob.ConnectionPoints("Out1"))

 'MessageBox.Show(NewEntity("SpoolPartID"))

 Exit For

 End If

 Next

 'Remove the IDs of the spool parts in the 'AssemblyFile'

252

 With ob.File("AssemblyFile")

 'Whether or not the 'LayDownFile' is empty

 If .Length <> 0 Then

 .MoveFirst()

 'Find the ID of spool with highest priority in

the file

 While (.EOF =False And .Length > 0)

 Ent = .Entity

 If Ent("JobControlNumber") = SpoolID Then

 If

PreconditionsForSubassembly.Contains(Ent("SpoolPartID"))Then

 .Remove(Ent)

 Else

 .MoveNext()

 End If

 Else

 .MoveNext()

 End If

 End While

 End If

 End With

 End If

 Next

 'MessageBox.Show(CanbeAssembledSpoolComponents.Count)

End Sub

Public sub DepthFirstTravers(MyDataTable As System.Data.DataTable,

CurrentComponentID As Integer, AllChildSpoolComponents As ArrayList)

 'datatable only refers to "SpoolComponentsItemsRelationship" in

Spool_Element

253

 'to find all the child parts of the current spool component

 Dim ChildParts As New ArrayList

 For i As Integer =0 to MyDataTable.Rows.Count - 1

 If MyDataTable.Rows.Item(i)("ComponentID") = CurrentComponentID

Then

 ChildParts.Add(MyDataTable.Rows.Item(i)("PartID"))

 End If

 Next

 Dim MyRow As System.Data.DataRow

 For Each MyRow In MyDataTable.Rows

 Dim MyRowCompID As Integer

 MyRowCompID = MyRow.Item("ComponentID")

 If ChildParts.Contains(MyRowCompID) Then

 DepthFirstTravers(MyDataTable, MyRowCompID,

AllChildSpoolComponents)

 End If

 Next

 'At the bottom level, the constituent parts should be spool items,

which are not listed in "SpoolComponentsItemsRelationship"

 'At this point of time, the recursion will stop.

 'Also from now on, The subroutine starts to collect child component IDs

all the way from the bottom level to the top level

 If Not AllChildSpoolcomponents.Contains(CurrentComponentID) Then

 AllChildSpoolcomponents.Add(CurrentComponentID)

 End If

End Sub

End Module

End Namespace

254

This is the VB.NET code for the 'StationIdleCheck' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function StationIdleCheck_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 50, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 65, y + 25, TConnectionType.COutput,5)

 Return True

End Function

Public Function StationIdleCheck_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(50, 50)

 Dim text1 As new GoText

 text1.Text = "IdleCheck"

 text1.FontSize = 7

 text1.Position = new PointF(10, 20)

255

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub StationIdleCheck_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 If entity("EntityType")="Dummy" Then

 Dim MyWaitingFile As CFCSim_ModelingElementInstance

 'check whether the waiting file is empty

 For each MyWaitingFile in ob.Parent.ChildElements.Values

 If MyWaitingFile.ElementType = "WaitingFile" Then

 If MyWaitingFile.File("Waiting_File").Length = 0 Then

 entity("AvailableOrNot") = "Avail"

 Else

 entity("AvailableOrNot") = "NotAvail"

 End If

 ob.TransferOut(Entity)

 End If

 Next

 Else If entity("EntityType")= "SpoolComponent" Then

 Dim MyWaitingFile As CFCSim_ModelingElementInstance

 'check whether the waiting file is empty

 For each MyWaitingFile in ob.Parent.ChildElements.Values

 If MyWaitingFile.ElementType = "WaitingFile" Then

 If MyWaitingFile.File("Waiting_File").Length = 0 Then

 'If it is empty, send a dummy entity to laydown

area so that it would send a new spool to the fitting station

 Dim NewDummyEntity As CFCSim_Entity

 NewDummyEntity = ob.AddEntity()

 NewDummyEntity("EntityType") = "Dummy"

 NewDummyEntity("RequestFittingStation") =

ob.Parent("StationID").Value

 NewDummyEntity("RequestLayDownArea") =

ob.Parent("FromLaydownArea").Value

 NewDummyEntity("AvailableOrNot") = "Avail"

 ob.TransferOut(NewDummyEntity)

 End If

 End If

 Next

 ob.TransferOut(entity)

 End If

256

End Sub

End Module

End Namespace

This is the VB.NET code for the 'Handling' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function Handling_OnCreate(ob As CFCSim_ModelingElementInstance, x As

Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddAttribute("HandlingType", "Number of entities passing the

counter",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalRe

presentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 Return True

End Function

Public Function Handling_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

257

 Dim text1 As new GoText

 text1.Text = "Handling"

 text1.FontSize = 9

 text1.Position = new PointF(20, 15)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Function Handling_OnListBoxInitialize(ob As

CFCSim_ModelingElementInstance, attr As CFCSim_Attribute) As ArrayList

handles Scripting.OnListBoxInitializeEvent

 Dim AttrList As New ArrayList

 If attr.Name = "HandlingType" Then

 AttrList.Add("FromLayDownArea")

 AttrList.Add("ToLayDownArea")

 End If

 Return AttrList

End Function

End Module

End Namespace

This is the VB.NET code for the 'CraneDecider' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

258

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function CraneDecider_OnCreate(ob As CFCSim_ModelingElementInstance, x

As Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 100, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out1", x + 125, y + 10,

TConnectionType.COutput,5)

 ob.AddConnectionPoint("Out2", x + 125, y + 35,TConnectionType.COutput,

5)

 Return True

End Function

Public Function CraneDecider_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(120, 50)

259

 Dim text1 As new GoText

 text1.Text = "CraneDecider"

 text1.FontSize = 9

 text1.Position = new PointF(20, 15)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub CraneDecider_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 If ob.Parent("HandlingType").Value = "FromLayDownArea" Then

 'To find which welding station it captured

 Dim MyWeldingStationResource As CFCSim_ModelingElementInstance

 MyWeldingStationResource = entity("CEM_Common_RqstdRes")

 entity("RollWeldingStation") =

MyWeldingStationResource("ResName").Value

 End If

 Dim SideOfBay As String

 For i As Integer = 0 to ob.Parent.Parent("StationLocations").RowCount -

1

 If ob.Parent.Parent("StationLocations").GetValueRC(i,0) =

entity("RollWeldingStation") Then

 SideOfBay =

ob.Parent.Parent("StationLocations").GetValueRC(i,3)

 'MessageBox.Show(SideOfBay)

 Exit For

260

 End If

 Next

 If SideOfBay = "Left" then

 ob.TransferOut(entity, ob.ConnectionPoints("Out1"))

 Else

 ob.TransferOut(entity, ob.ConnectionPoints("Out2"))

 End If

End Sub

End Module

End Namespace

This is the VB.NET code for the 'WeldingResReminder' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

261

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function WeldingResReminder_OnCreate(ob As

CFCSim_ModelingElementInstance, x As Double, y As Double) As Boolean handles

Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 50, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 65, y + 25, TConnectionType.COutput,5)

 Return true

End Function

Public Function WeldingResReminder_OnGraphicsInitialize(ob As

CFCSim_ModelingElementInstance) As GoObject handles

Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(50, 50)

 Dim text1 As new GoText

 text1.Text = "Reminder"

 text1.FontSize = 7

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

262

Public Sub WeldingResReminder_OnSimulationTransferIn(ob As

CFCSim_ModelingElementInstance, entity As CFCSim_Entity, srcPt As

CFCSim_ConnectionPoint, dstPt As CFCSim_ConnectionPoint) handles

Scripting.OnSimulationTransferInEvent

 Dim WeldingResourceID As String

 WeldingResourceID = entity("RollWeldingStation")

 'change the entity attributes

 'one of the attributes is "CEM_Common_RqstdRes"

 Dim MyResourceElement As CFCSim_ModelingElementInstance

 For Each MyResourceElement In SimEnvironment.Elements.Values

 If MyResourceElement.ElementType = "Resource" Then

 If MyResourceElement("ResName").Value = WeldingResourceID

Then

 entity("CEM_Common_RqstdRes") = MyResourceElement

 Exit For

 End If

 End If

 Next

 'Another attribute is "CEM_Common_RqstElmnt"

 Dim MyResourceRequestElement As CFCSim_ModelingElementInstance

 For Each MyResourceRequestElement In

ob.Parent.Parent.ChildElements.Values

 If MyResourceRequestElement.ElementType = "Capture" Then

 If MyResourceRequestElement.Parent.ElementType =

"StationElement" Then

 entity("CEM_Common_RqstElmnt") =

MyResourceRequestElement

263

 'MessageBox.Show("OK")

 Exit For

 End If

 End If

 Next

 ob.TransferOut(entity)

End Sub

End Module

End Namespace

This is the VB.NET code for the 'End' Element

'Simphony.NET Template Code

'Force explicit variable declaration and have automatic conversion of data

types

Option Explicit

Option Strict Off

'Imports for commonly used namespaces

Imports System

Imports System.Collections

Imports System.Diagnostics

Imports System.Math

Imports Simphony.NET

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Imports Northwoods.Go

Imports System.Data

Imports System.Data.OleDb

Namespace SimphonyScript

Public Module Script

'Your functions here

Public Function End_OnCreate(ob As CFCSim_ModelingElementInstance, x As

Double, y As Double) As Boolean handles Scripting.OnCreateEvent

 ob.OnCreate(x,y,True)

 ob.SetNumCoordinates(2)

264

 ob.Coordinates(0) = new System.Drawing.PointF(x, y)

 ob.Coordinates(1) = new System.Drawing.PointF(x + 50, y + 50)

 ob.AddConnectionPoint("In" , x - 15, y + 25, TConnectionType.CInput, 5)

 ob.AddConnectionPoint("Out", x + 65, y + 25, TConnectionType.COutput,5)

 ob.AddAttribute("CuttingActivityTableName", "The table name of

'cutting' activity in the

database",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("FittingActivityTableName", "The table name of

'fitting' activity in the

database",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("WeldingActivityTableName", "The table name of

'welding' activity in the

database",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("HandlingActivityTableName", "The table name of

'handling' activity in the

database",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalR

epresentation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 ob.AddAttribute("OutputDatabaseFileAddress","The address of the

database to which the simulation model will send the resulting schedule

to",CFC_AttributeInternalRepresentation.CFC_Text,CFC_AttributeExternalReprese

ntation.CFC_Singular,CFC_AttributeAccess.CFC_ReadWrite)

 return true

End Function

Public Function End_OnGraphicsInitialize(ob As CFCSim_ModelingElementInstance)

As GoObject handles Scripting.OnGraphicsInitializeEvent

 Dim r As new GoRectangle

 r.Size = new SizeF(50, 50)

 Dim text1 As new GoText

 text1.Text = "End"

 text1.FontSize = 9

 text1.Position = new PointF(15, 20)

 Dim g As new GoGroup

 g.Add(r)

 g.Add(text1)

 return g

End Function

Public Sub End_OnSimulationTransferIn(ob As CFCSim_ModelingElementInstance,

entity As CFCSim_Entity, srcPt As CFCSim_ConnectionPoint, dstPt As

CFCSim_ConnectionPoint) handles Scripting.OnSimulationTransferInEvent

 'If entity("JobControlNumber") = "B696-00875" Then

 'MessageBox.Show("Spool " & entity("JobControlNumber") & " Comes

In!")

265

 'End If

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 MySpoolElement = entity("SpoolElement")

 Dim StartTime As Double

 Dim FinishTime As Double

 Dim CycleTime As Double

 'To find the starting point of processing the current spool

 StartTime = 1000000

 For i As Integer = 0 to MySpoolElement("CuttingActivities").RowCount -

1

 If StartTime > MySpoolElement("CuttingActivities").GetValueRC(i,

9) Then

 StartTime =

MySpoolElement("CuttingActivities").GetValueRC(i, 9)

 End If

 Next

 'To find the finishing poing of processing the current spool

 FinishTime = 0

 For i As Integer = 0 to MySpoolElement("WeldingActivities").RowCount -

1

 If FinishTime <

MySpoolElement("WeldingActivities").GetValueRC(i,10) Then

 FinishTime =

MySpoolElement("WeldingActivities").GetValueRC(i,10)

 End If

 Next

 'Calculate the cycle time

 CycleTime = FinishTime - StartTime

 MySpoolElement("Duration").Value = CycleTime

 'Update the state of the spool

 MySpoolElement("SpoolState").Value = "Completed"

 'To find how many handlings involved during the fabrication

 Dim NumOfHandlings As Integer

 NumOfHandlings = MySpoolElement("HandlingActivities").RowCount

 MySpoolElement("NumOfHandling").Value = NumOfHandlings

 ob.TransferOut(entity)

End Sub

Public Sub End_OnSimulationPostRun(ob As CFCSim_ModelingElementInstance,

runNum As Int32, m_status As CFC_Simulationstatus) handles

Scripting.OnSimulationPostRunEvent

 Dim cn As OleDb.OleDbConnection

 'Dim MydataAdapter3 As OleDb.OleDbDataAdapter

 'Dim MydataAdapter4 As OleDb.OleDbDataAdapter

 Dim DatabaseAddress As String

 Dim CuttingTableName As String

 Dim FittingTableName As String

 Dim WeldingTableName As String

266

 Dim HandlingTableName As String

 'To get the table name for each type of actvity

 CuttingTableName = ob("CuttingActivityTableName").Value

 FittingTableName = ob("FittingActivityTableName").Value

 WeldingTableName = ob("WeldingActivityTableName").Value

 HandlingTableName = ob("HandlingActivityTableName").Value

 DatabaseAddress = ob("OutputDatabaseFileAddress").Value

 'to define the connection

 cn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=" & DatabaseAddress)

 '***************Cutting

Data***

 'to define the DataAdapter for cutting

 Dim MydataAdapter1 As OleDb.OleDbDataAdapter

 MyDataAdapter1 = New OleDbDataAdapter("SELECT * FROM " &

CuttingTableName & ";",cn)

 Dim cd1 As New OleDbCommandBuilder(MyDataAdapter1)

 'To create a datatable to hold information from database

 Dim MyDestinationDataTable1 As New DataTable()

 Dim SourceRow1 As DataRow

 Dim DestinationRow1 As DataRow

 'to send the 'Cutting' schedule information back to the database

 Try

 cn.open()

 'To get the original data from database

 MyDataAdapter1.Fill(MyDestinationDataTable1)

 'Update it with data in simulation

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 For Each SourceRow1 In

MySpoolElement("CuttingActivities").DataTable.Rows

 For Each DestinationRow1 In

MyDestinationDataTable1.Rows

 'to find the corresponding row in the

destination datatable

 If

DestinationRow1.Item("JobControlNumber") = SourceRow1.Item("JobControlNumber")

And DestinationRow1.Item("SpoolPartID") = SourceRow1.Item("SpoolPartID") And

DestinationRow1.Item("CuttingID") = SourceRow1.Item("CuttingID") Then

 DestinationRow1.Item("StartTime")=

SourceRow1.Item("StartTime")

 DestinationRow1.Item("Duration")=

SourceRow1.Item("Duration")

267

 DestinationRow1.Item("FinishTime")=

SourceRow1.Item("FinishTime")

 End If

 Next

 Next

 End If

 Next

 MyDataAdapter1.Update(MyDestinationDataTable1)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 cn.Close()

 End Try

 '******************Fitting

Data***

 'to define the DataAdapter for fitting

 Dim MydataAdapter2 As OleDb.OleDbDataAdapter

 MyDataAdapter2 = New OleDbDataAdapter("SELECT * FROM " &

FittingTableName & ";",cn)

 Dim cd2 As New OleDbCommandBuilder(MyDataAdapter2)

 'To create a datatable to hold information from database

 Dim MyDestinationDataTable2 As New DataTable()

 Dim SourceRow2 As DataRow

 Dim DestinationRow2 As DataRow

 'to send the 'Fitting' schedule information back to the database

 Try

 cn.open()

 MyDataAdapter2.Fill(MyDestinationDataTable2)

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 For Each SourceRow2 In

MySpoolElement("FittingActivities").DataTable.Rows

 For Each DestinationRow2 In

MyDestinationDataTable2.Rows

 'to find the corresponding row in the

destination datatable

 If

DestinationRow2.Item("JobControlNumber") = SourceRow2.Item("JobControlNumber")

And DestinationRow2.Item("WeldID") = SourceRow2.Item("WeldID") And

DestinationRow2.Item("FittingID") = SourceRow2.Item("FittingID") Then

 DestinationRow2.Item("StartTime")=

SourceRow2.Item("StartTime")

 DestinationRow2.Item("Duration")=

SourceRow2.Item("Duration")

 DestinationRow2.Item("FinishTime")=

SourceRow2.Item("FinishTime")

268

 DestinationRow2.Item("FittingTableID")=

SourceRow2.Item("FittingTableID")

 End If

 Next

 Next

 End If

 Next

 MyDataAdapter2.Update(MyDestinationDataTable2)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 cn.Close()

 End Try

 '***************Welding

Data***

 'to define the DataAdapter for fitting

 Dim MydataAdapter3 As OleDb.OleDbDataAdapter

 MyDataAdapter3 = New OleDbDataAdapter("SELECT * FROM " &

WeldingTableName & ";",cn)

 Dim cd3 As New OleDbCommandBuilder(MyDataAdapter3)

 'To create a datatable to hold information from database

 Dim MyDestinationDataTable3 As New DataTable()

 Dim SourceRow3 As DataRow

 Dim DestinationRow3 As DataRow

 'to send the 'Fitting' schedule information back to the database

 Try

 cn.open()

 MyDataAdapter3.Fill(MyDestinationDataTable3)

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 For Each SourceRow3 In

MySpoolElement("WeldingActivities").DataTable.Rows

 For Each DestinationRow3 In

MyDestinationDataTable3.Rows

 'to find the corresponding row in the

destination datatable

 If

DestinationRow3.Item("JobControlNumber") = SourceRow3.Item("JobControlNumber")

And DestinationRow3.Item("WeldID") = SourceRow3.Item("WeldID") And

DestinationRow3.Item("WeldingID") = SourceRow3.Item("WeldingID") Then

 DestinationRow3.Item("StartTime")=

SourceRow3.Item("StartTime")

 DestinationRow3.Item("Duration")=

SourceRow3.Item("Duration")

269

 DestinationRow3.Item("FinishTime")=

SourceRow3.Item("FinishTime")

 DestinationRow3.Item("WeldingMachineID")=

SourceRow3.Item("WeldingMachineID")

 End If

 Next

 Next

 End If

 Next

 MyDataAdapter3.Update(MyDestinationDataTable3)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 cn.Close()

 End Try

 '*******************Handling

Data***

 'to define the DataAdapter for fitting

 Dim MydataAdapter4 As OleDb.OleDbDataAdapter

 MyDataAdapter4 = New OleDbDataAdapter("SELECT * FROM " &

HandlingTableName & ";",cn)

 Dim cd4 As New OleDbCommandBuilder(MyDataAdapter4)

 Dim MyDataTable4 As New DataTable()

 Dim MyDataTable5 As New DataTable()

 Try

 cn.open()

 MyDataAdapter4.Fill(MyDataTable4)

 'To delete the existing data

 If Not MyDataTable4.Rows.Count = 0 Then

 For i As Integer = 0 to MyDataTable4.Rows.Count - 1

 MyDataTable4.Rows(i).Delete

 Next

 MyDataAdapter4.Update(MyDataTable4)

 End If

 'Send the resulting information back

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 MyDataTable5 =

MySpoolElement("HandlingActivities").DataTable

 MydataAdapter4.Update(MyDataTable5)

 End If

 Next

 Catch ex As Exception

 MessageBox.Show(ex.Message)

270

 Finally

 cn.Close()

 End Try

 '****************Update the spool

information**

 Dim MydataAdapter5 As OleDb.OleDbDataAdapter

 MyDataAdapter5 = New OleDbDataAdapter("SELECT * FROM Spool;",cn)

 Dim cd5 As New OleDbCommandBuilder(MyDataAdapter5)

 Dim MyDestinationDataTable5 As New DataTable()

 Dim DestinationRow5 As DataRow

 Dim SpoolID As String

 Dim SpoolFinishTime As Double

 Dim SpoolDuration As Double

 Try

 cn.open()

 MyDataAdapter5.Fill(MyDestinationDataTable5)

 Dim MySpoolElement As CFCSim_ModelingElementInstance

 For Each MySpoolElement In SimEnvironment.Elements.Values

 If MySpoolElement.ElementType = "Spool_Element" Then

 SpoolID = MySpoolElement("JobControlNumber").Value

 SpoolDuration = MySpoolElement("Duration").Value

 SpoolFinishTime = 0

 For i As Integer = 0 to

MySpoolElement("WeldingActivities").RowCount - 1

 If SpoolFinishTime <

MySpoolElement("WeldingActivities").GetValueRC(i,10) then

 SpoolFinishTime =

MySpoolElement("WeldingActivities").GetValueRC(i,10)

 End If

 Next

 For Each DestinationRow5 In

MyDestinationDataTable5.Rows

 'to find the corresponding row in the

destination datatable

 If DestinationRow5.Item("JobControlNumber") =

SpoolID Then

 DestinationRow5.Item("FinishDate")=

SpoolFinishTime

 DestinationRow5.Item("Duration")=

SpoolDuration

 DestinationRow5.Item("SpoolState")=

"Completed"

 End If

 Next

 End If

 Next

 MyDataAdapter5.Update(MyDestinationDataTable5)

 Catch ex As Exception

271

 MessageBox.Show(ex.Message)

 Finally

 cn.Close()

 End Try

End Sub

End Module

End Namespace

272

Appendix B

The part of the algorithm for pipe spool fabrication sequencing

import string

from string import*

import itertools

from itertools import*

define axis

xAxis=0

yAxis=1

zAxis=2

nAxis=3

weld class

class weld:

 def __init__(self,id,location,axs):

 self.id=id

 self.loc=location

 self.stg=0

 self.done=False

 self.rollAxs=axs

part class

class part:

 def __init__(self,id,location,dimensions):

 self.id=id

 self.loc=location

 self.dim=dimensions

assembly class

class assembly:

 def __init__(self):

 # since Location involves three coordinates (x, y, z) so a list is

need

 self.locMax=[]

 self.locMin=[]

 self.P={}

 self.W={}

 # create the P dictionary indexed by parts

 def prtsIndx(self):

 # add parts that appear in Welds dictionary

 for w,P in self.W.iteritems():

 for p in P:

 if p not in self.P:

 self.P[p]=[]

 # for each part added, update its weld list

 for prt,w in self.P.iteritems():

 for k,P in self.W.iteritems():

 if prt in P:

 w.append(k)

 # get max dimensions for the assembly

 def maxDim(self):

 if self.locMax <> [] and self.locMin <> []:

273

 return self.locMin, self.locMax

 else:

 # get lowest and highest coordinates for bounding box

 Rx=[]

 Ry=[]

 Rz=[]

 Lx=[]

 Ly=[]

 Lz=[]

 for p in self.P:

 Rx.append(p.loc[0])

 Ry.append(p.loc[1])

 Rz.append(p.loc[2])

 Lx.append(p.loc[0]+p.dim[0])

 Ly.append(p.loc[1]+p.dim[1])

 Lz.append(p.loc[2]+p.dim[2])

 #the first element in the list is the minimum coordinates on X

axis

 #the second element is the minimum coordinates on Y axis

 self.locMin.append(min(Rx))

 self.locMin.append(min(Ry))

 self.locMin.append(min(Rz))

 self.locMax.append(max(Lx))

 self.locMax.append(max(Ly))

 self.locMax.append(max(Lz))

 return self.locMin, self.locMax

 # update the assembly data structure

 def update(self):

 self.prtsIndx()

 self.maxDim()

SplitAt (assembly A, weld W)

split A at weld W and return two sub-assemblies A1, A2

def SplitAt (A,wld):

 A1=assembly()

 A2=assembly()

 p1=A.W[wld][0]

 p2=A.W[wld][1]

 A1P=set([p1]) # set of parts in A1 start with one from the given weld

 A1.P[p1]=[]

 A2P=set([p2]) # set of parts in A2 start with another from the given weld

 A2.P[p2]=[]

 change = True

 while change: # loop until no more changes to A2

 change=False

 for w,P in A.W.iteritems(): # loop welds and associated parts in A

 if w <> wld: # skip split weld

 # if weld has parts shared with A2 part set and weld not in

A2 weld list, add it

 if A2P.intersection(P) <> set() and w not in A2.W:

 A2P=A2P.union(P)

 A2.W[w]=P

 change=True

 for w,P in A.W.iteritems(): # find welds for A1

274

 # if weld not the split weld and not in A2, add it to A1

 if w <> wld and w not in A2.W:

 A1.W[w]=P

 A1.update()

 A2.update()

return A1, A2

GetWeldType(A1,A2,Wld,clrnc)

make sure Wld not in A1 or A2

get roll axis for Wld

get MaxClrnc needed for A1 and A2 and roll axis

if MaxClrnc less than or equal clrnc then roll else position

def GetWeldType (A1,A2,wld,clrnc):

 if wld in A1.W or wld in A2.W:

 return "error: weld is part of one of the assemblies"

 else:

 rolldistances=[]

 #rollneed= execluding roll axis, max of difference between

 #weld location on other two axis and the min and max locations of A1

and A2

 for i in range(nAxis): # use 3 later after adding z axis

 if i <> wld.rollAxs:

 rolldistances.append(abs(A1.locMax[i]-wld.loc[i]))

 rolldistances.append(abs(wld.loc[i]-A1.locMin[i]))

 rolldistances.append(abs(A2.locMax[i]-wld.loc[i]))

 rolldistances.append(abs(wld.loc[i]-A2.locMin[i]))

 rollneed=max(rolldistances)

 if rollneed<=clrnc:

 return 1

 else:

 return 2

def GetWeldType2 (A,clrnc):

 if len(A.W) > 1:

 return "error: too many welds"

 if len(A.W)==1: # one weld

 wld=A.W.keys()[0]

 rolldistances=[]

 for i in range(nAxis):

 if i<>wld.rollAxs:

 rolldistances.append(abs(A.locMax[i]-wld.loc[i]))

 rolldistances.append(abs(wld.loc[i]-A.locMin[i]))

 rollneed=max(rolldistances)

 if rollneed<=clrnc:

 return 1

 else:

 return 2

 else:

 return 0 # no welds exist

MinCost (assembly A)

returns minimum total cost in terms of number of position and roll welds

returns also an ordered list of welds representing the sequence to

follow to acheive that cost

def MinCost(A,clrnc,stg): # return total cost and a list of weld sequence

 # initial values for weld with minimum cost

 # start with any weld and minimum cost = maximum integer

275

 # initialize weld sequence to empty list

 minCst=2147483647

 minWld=None

 prvSqnce=[]

 wldSqnce=[]

 stg-=1

 if len(A.W)==0:

 minCst=0

 # the condition should be changed to when all welds in A are on the same

axis, then they can be processed at the same stage

 # except when position welding is required

 # The assumption that only two parts and one weld can be processes at one

time is FALSE!!

 elif len(A.W)==1:

 minCst=GetWeldType2(A,clrnc)

 minWld=A.W.keys()[0].id

 else:

 for wld in A.W:

 A1,A2= SplitAt(A,wld)

 cost1,w1,s1=MinCost(A1,clrnc,stg)

 cost2,w2,s2=MinCost(A2,clrnc,stg)

 cost3=GetWeldType(A1,A2,wld,clrnc)

 totalcost=cost1+cost2+cost3

 #print "w:",wld.id,totalcost

 if totalcost < minCst:

 minCst=totalcost

 minWld=wld.id

 prvSqnce=[s1,s2]

 wldSqnce.append(stg)

 wldSqnce.append(minWld)

 wldSqnce.extend(prvSqnce)

 #print minCst, minWld, wldSqnce,stg

return minCst,minWld, wldSqnce

def main():

 pass

if __name__ == '__main__':

 main()

The part for inputting the configuration and geometry of a specific pipe

spool and outputting the optimal fabrication sequence

Parts

p7 = part(7, [449,0,171], [229,0,0])

p1 = part(1, [249,0,171], [200,0,0])

p5 = part(5, [329,0,171], [0,0,50])

p6 = part(6, [21,0,171], [228,0,0])

p11 = part(11, [0,0,150], [21,0,42])

p13 = part(13, [0,0,100], [0,0,50])

p15 = part(15, [0,0,0], [0,0,100])

p4 = part(4, [0,0,192], [0,0,100])

p14 = part(14, [0,0,292], [0,0,62])

276

p3 = part(3, [0,0,354], [0,0,330])

p10 = part(10, [0,0,684], [0,0,40])

p2 = part(2, [0,0,724], [0,0,1692])

p12 = part(12, [0,0,2416], [0,0,100])

p8 = part(8, [0,0,2516], [0,0,50])

p9 = part(9, [0,0,2566], [68,0,68])

Welds

wldList=[]

w1 = weld(1, [0,0,2566], SS.zAxis)

wldList.append(w1)

w2 = weld(2, [0,0,2516], SS.zAxis)

wldList.append(w2)

w3 = weld(3, [0,0,2416], SS.zAxis)

wldList.append(w3)

w4 = weld(4, [0,0,724], SS.zAxis)

wldList.append(w4)

w5 = weld(5, [0,0,684], SS.zAxis)

wldList.append(w5)

w6 = weld(6, [0,0,354], SS.zAxis)

wldList.append(w6)

w7 = weld(7, [0,0,292], SS.zAxis)

wldList.append(w7)

w8 = weld(8, [0,0,192], SS.zAxis)

wldList.append(w8)

w9 = weld(9, [21,0,171], SS.xAxis)

wldList.append(w9)

w10 = weld(10, [249,0,171], SS.xAxis)

wldList.append(w10)

w11 = weld(11, [329,0,171], SS.zAxis)

wldList.append(w11)

w12 = weld(12, [449,0,171], SS.xAxis)

wldList.append(w12)

w13 = weld(13, [0,0,150], SS.zAxis)

wldList.append(w13)

w14 = weld(14, [0,0,100], SS.zAxis)

wldList.append(w14)

MA19 = assembly()

MA19.loc=[0,0,0]

MA19.W={w1:[p8,p9],w2:[p8,p12],w3:[p2,p12],w4:[p2,p10],w5:[p3,p10],w6:[p3,p14

],w7:[p4,p14],w8:[p4,p11],w9:[p6,p11],w10:[p1,p6],w11:[p1,p5],w12:[p1,p7],w13

:[p11,p13],w14:[p13,p15]}

def main():

 Assembly=MA19

 MinCost,MinWeld,AssemblSeq=SS.MinCost(Assembly,clrnc,0)

 print MinCost

 #print len(AssemblSeq)

 sqnceList=SS.ParseWldSqnce(AssemblSeq)

print sqnceList

pass

if __name__ == '__main__':

 main()

277

Appendix C

VB.NET code for the main windows form of the CDRASS system

Imports System.Diagnostics.Process

Imports System.Threading

Imports Simphony

Imports Simphony.Simulation

Imports Simphony.Modeling

Imports System.Data

Imports System.Data.OleDb

Imports System.Windows.Forms.DataVisualization.Charting

Public Class Form1

 Implements IDiscreteEventModel

 Private MyEngine As New DiscreteEventEngine

 Private MyScenarios As New List(Of IDiscreteEventScenario)

 Public MyDataSet As New DataSet

 Public Sub New()

 ' This call is required by the designer.

 InitializeComponent()

 'Read data from Database

 ReadInformationFromDataBase()

 Dim MyScenario As New Scenario(MyEngine, MyDataSet)

 MyScenarios.Add(MyScenario)

 'Initialization.

 MyEngine.InitializeEngine()

 'Start the simulation

 Cursor = Cursors.WaitCursor

 MyEngine.Simulate(Me)

 Cursor = Cursors.Default

 'Initialize Chart

 'InitializeChart()

 End Sub

 Public Sub FinalizeModel() Implements

Simphony.Simulation.IDiscreteEventModel.FinalizeModel

 'DataGridView1.DataSource =

MyDataSet.Tables("tblResourceUsagePerHour")

 DataGridView1.DataSource = MyDataSet.Tables("tblResourceUsagePerDay")

278

 DataGridView2.DataSource = MyDataSet.Tables("tblWorkAreaUsagePerDay")

 DataGridView3.DataSource = MyDataSet.Tables("tblWAWPTotalFloat")

 DataGridView4.DataSource = MyDataSet.Tables("tblWAWPPredecessors")

 DataGridView5.DataSource =

MyDataSet.Tables("tblResourceCapturedPerWAWP")

 WriteResultMethod()

 InitializeChart()

 DisplayChart()

 End Sub

 Public Sub InitializeModel() Implements

Simphony.Simulation.IDiscreteEventModel.InitializeModel

 End Sub

 Public ReadOnly Property Scenarios As

System.Collections.Generic.IEnumerable(Of

Simphony.Simulation.IDiscreteEventScenario) Implements

Simphony.Simulation.IDiscreteEventModel.Scenarios

 Get

 Return MyScenarios

 End Get

 End Property

 Public Sub ReadInformationFromDataBase()

 Dim cn As OleDbConnection

 Dim MyDataAdapter As OleDbDataAdapter

 Dim DBAddress As String = Me.DBAddressTxt.Text

 Dim MyPrimaryKeycolumns As DataColumn()

 'Get data from StiteInstallationDBModifiedJuly132011

 cn = New OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data

Source=" & DBAddress)

 Try

 cn.Open()

 'Get Construction Area Info

 MyDataAdapter = New OleDbDataAdapter("Select * from

tblConstructionArea;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblConstructionArea")

 'DataGridView1.DataSource =

MyDataSet.Tables("tblConstructionArea")

 '**************************************

 'Get Project Info

 MyDataAdapter = New OleDbDataAdapter("Select * from

tblProjectParameters;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblProjects")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblProjects").Columns("ProjectNumber")

 'The property 'PrimaryKey' of a datatable is actually an array of

columns

 MyDataSet.Tables("tblProjects").PrimaryKey = MyPrimaryKeycolumns

 '**************************************

 'Get Classification Info

279

 MyDataAdapter = New OleDbDataAdapter("Select * from

tblClassification;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblClassification")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblClassification").Columns("ClassificationID")

 MyDataSet.Tables("tblClassification").PrimaryKey =

MyPrimaryKeycolumns

 '**************************************

 'Get Work Area Info

 MyDataAdapter = New OleDbDataAdapter("Select * from tblWorkArea;",

cn)

 'tblModules correspond to tblMain in ModuleYard Database

 MyDataAdapter.Fill(MyDataSet, "tblWorkArea")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblWorkArea").Columns("WADesignator")

 MyDataSet.Tables("tblWorkArea").PrimaryKey = MyPrimaryKeycolumns

 '**************************************

 'Get Workpackage Info

 MyDataAdapter = New OleDbDataAdapter("Select * from

Query_Workpackage;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblWorkpackages")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblWorkpackages").Columns("WPID")

 MyDataSet.Tables("tblWorkpackages").PrimaryKey =

MyPrimaryKeycolumns

 'DataGridView1.DataSource = MyDataSet.Tables("tblWorkpackages")

 '**************************************

 'Get WorkPackagePredecessors Info

 MyDataAdapter = New OleDbDataAdapter("Select * from

tblWPPredecessors;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblWPPredecessors")

 '**************************************

 'Get Construction Work Area Info

 MyDataAdapter = New OleDbDataAdapter("Select * From

tblConstructionWorkArea;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblConstructionWorkArea")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblConstructionWorkArea").Columns("CWAName")

 MyDataSet.Tables("tblConstructionWorkArea").PrimaryKey =

MyPrimaryKeycolumns

 '**************************************

 'Get WorkAreaWorkpackage Info

 MyDataAdapter = New OleDbDataAdapter("Select * From

Query_WorkAreaWorkpackage;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblWAWP")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblWAWP").Columns("WAWPID")

 MyDataSet.Tables("tblWAWP").PrimaryKey = MyPrimaryKeycolumns

280

 Dim WAWPTotalFloat As DataColumn = New

DataColumn("WAWPTotalFloat")

 WAWPTotalFloat.DataType = System.Type.GetType("System.Double")

 MyDataSet.Tables("tblWAWP").Columns.Add(WAWPTotalFloat)

 Dim WAWPEstDuration As DataColumn = New

DataColumn("WAWPEstDuration")

 WAWPEstDuration.DataType = System.Type.GetType("System.Double")

 MyDataSet.Tables("tblWAWP").Columns.Add(WAWPEstDuration)

 'Find the number of work area that a work package crosses

 Dim WorkpackageAndNumberOfWorkAreas As New Dictionary(Of Integer,

Integer)

 For Each Row As DataRow In

MyDataSet.Tables("tblWorkpackages").Rows

 Dim WPID As Integer = CInt(Row.Item("WPID"))

 Dim NumberOfWorkAreas As Integer = 0

 For Each Row1 As DataRow In MyDataSet.Tables("tblWAWP").Rows

 If CStr(Row1.Item("WAWPWorkpackageID")) = WPID Then

 NumberOfWorkAreas = NumberOfWorkAreas + 1

 End If

 Next

 WorkpackageAndNumberOfWorkAreas.Add(WPID, NumberOfWorkAreas)

 Next

 'The duration of WAWP is derived from dividing the work package

by the number of work areas

 For Each Row As DataRow In MyDataSet.Tables("tblWAWP").Rows

 Dim WPID As Integer = CInt(Row.Item("WAWPWorkpackageID"))

 Dim NumberOfWorkAreas As Integer =

WorkpackageAndNumberOfWorkAreas(WPID)

 Dim WAWPDuration As Double

 If MyDataSet.Tables("tblWorkpackages").Rows.Contains(WPID)

Then

 If Not

MyDataSet.Tables("tblWorkpackages").Rows.Find(WPID).Item("WPDurationOverride")

Is DBNull.Value Then

 WAWPDuration =

CDbl(MyDataSet.Tables("tblWorkpackages").Rows.Find(WPID).Item("WPDurationOver

ride"))

 End If

 End If

 Row.Item("WAWPEstDuration") = WAWPDuration /

NumberOfWorkAreas

 Next

 'DataGridView1.DataSource = MyDataSet.Tables("tblWAWP")

 '**************************************

 'Get Calendar Info

 MyDataAdapter = New OleDbDataAdapter("Select * From tblCalendar;",

cn)

 MyDataAdapter.Fill(MyDataSet, "tblCalendar")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblCalendar").Columns("Cal ID")

281

 MyDataSet.Tables("tblCalendar").PrimaryKey = MyPrimaryKeycolumns

 MyDataAdapter = New OleDbDataAdapter("SELECT * FROM

tblCalendar_Detail ORDER BY DateID;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblCalendar_Detail")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblCalendar_Detail").Columns("Date")

 MyDataSet.Tables("tblCalendar_Detail").PrimaryKey =

MyPrimaryKeycolumns

 '**************************************

 'Get Resource Info

 MyDataAdapter = New OleDbDataAdapter("Select * From tblCraft", cn)

 MyDataAdapter.Fill(MyDataSet, "tblResource")

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) =

MyDataSet.Tables("tblResource").Columns("Craft")

 MyDataSet.Tables("tblResource").PrimaryKey = MyPrimaryKeycolumns

 '**************************************

 'Get Time Dependent Resource Limit

 MyDataAdapter = New OleDbDataAdapter("Select * From

tblCraftAvailability;", cn)

 MyDataAdapter.Fill(MyDataSet, "tblResourceAvailability")

 Catch ex As Exception

 Throw New ArgumentException(ex.Message)

 Finally

 cn.Close()

 End Try

 'convert WP relationships to WAWP relationships

 ConvertWPRelsToWAWPRels(MyDataSet.Tables("tblWPPredecessors"),

MyDataSet.Tables("tblWAWP"))

 'DataGridView1.DataSource = MyDataSet.Tables("tblWAWPPredecessors")

 End Sub

 Public Sub ConvertWPRelsToWAWPRels(ByVal tblWPPredecessors As DataTable,

ByVal tblWAWP As DataTable)

 'Create a datatable to contain precedence relationships between WAWPs

 Dim MyPrimaryKeycolumns As DataColumn()

 Dim tblWAWPPredecessors As DataTable =

MyDataSet.Tables.Add("tblWAWPPredecessors")

 tblWAWPPredecessors.Columns.Add("WAWPID",

Type.GetType("System.Int32")) 'Successor

 tblWAWPPredecessors.Columns.Add("WAWPPredID",

Type.GetType("System.Int32"))

 tblWAWPPredecessors.Columns.Add("WAWPRel1",

Type.GetType("System.String")) '"FS" "SS"

 tblWAWPPredecessors.Columns.Add("WAWPLag1",

Type.GetType("System.Double"))

 tblWAWPPredecessors.Columns.Add("WAWPRel2",

Type.GetType("System.String")) '"FF"

282

 tblWAWPPredecessors.Columns.Add("WAWPLag2",

Type.GetType("System.Double"))

 tblWAWPPredecessors.Columns.Add("SimPredStart",

Type.GetType("System.String"))

 tblWAWPPredecessors.Columns.Add("EstimatedPredFinish",

Type.GetType("System.String"))

 MyPrimaryKeycolumns = New DataColumn(1) {}

 MyPrimaryKeycolumns(0) = tblWAWPPredecessors.Columns("WAWPID")

 MyPrimaryKeycolumns(1) = tblWAWPPredecessors.Columns("WAWPPredID")

 tblWAWPPredecessors.PrimaryKey = MyPrimaryKeycolumns

 For Each WorkAreaWorkPackageRow As DataRow In tblWAWP.Rows

 Dim WAWPID As Integer =

CInt(WorkAreaWorkPackageRow.Item("WAWPID"))

 Dim WAWPWorkpackageID As Integer =

CInt(WorkAreaWorkPackageRow.Item("WAWPWorkpackageID"))

 Dim WAWPWorkAreaID As Integer =

CInt(WorkAreaWorkPackageRow.Item("WAWPWorkAreaNumber"))

 'Find its predecessor WAWP

 For Each PredecessorRow As DataRow In tblWPPredecessors.Rows

 Dim WPPredecessorID As Integer

 If PredecessorRow.Item("WPID") = WAWPWorkpackageID Then

 'Get the predecessor WPID first

 WPPredecessorID = CInt(PredecessorRow.Item("WPPredID"))

 'Get the corresponding predecessor WAWPID which is in the

same area with current WAWP

 Dim WAWPPredecessorIDs As New List(Of Integer)

 For Each WAWPRow As DataRow In tblWAWP.Rows

 If CInt(WAWPRow.Item("WAWPWorkpackageID")) =

WPPredecessorID Then

WAWPPredecessorIDs.Add(CInt(WAWPRow.Item("WAWPID")))

 End If

 Next

 For Each WAWPPredecessorID In WAWPPredecessorIDs

 Dim NewRow As DataRow = tblWAWPPredecessors.NewRow

 If Not PredecessorRow.Item("WPRel1") Is DBNull.Value

Then

 If Not PredecessorRow.Item("WPRel2") Is

DBNull.Value Then

 NewRow.Item("WAWPID") = WAWPID

 NewRow.Item("WAWPPredID") = WAWPPredecessorID

 NewRow.Item("WAWPRel1") =

PredecessorRow.Item("WPRel1")

 NewRow.Item("WAWPLag1") =

PredecessorRow.Item("WPLag1")

 NewRow.Item("WAWPRel2") =

PredecessorRow.Item("WPRel2")

 NewRow.Item("WAWPLag2") =

PredecessorRow.Item("WPLag2")

 NewRow.Item("SimPredStart") = ""

 NewRow.Item("EstimatedPredFinish") = ""

 tblWAWPPredecessors.Rows.Add(NewRow)

 Else

 NewRow.Item("WAWPID") = WAWPID

283

 NewRow.Item("WAWPPredID") = WAWPPredecessorID

 NewRow.Item("WAWPRel1") =

PredecessorRow.Item("WPRel1")

 NewRow.Item("WAWPLag1") =

PredecessorRow.Item("WPLag1")

 NewRow.Item("SimPredStart") = ""

 NewRow.Item("EstimatedPredFinish") = ""

 tblWAWPPredecessors.Rows.Add(NewRow)

 End If

 Else

 NewRow.Item("WAWPID") = WAWPID

 NewRow.Item("WAWPPredID") = WAWPPredecessorID

 NewRow.Item("WAWPRel2") =

PredecessorRow.Item("WPRel2")

 NewRow.Item("WAWPLag2") =

PredecessorRow.Item("WPLag2")

 NewRow.Item("SimPredStart") = ""

 NewRow.Item("EstimatedPredFinish") = ""

 tblWAWPPredecessors.Rows.Add(NewRow)

 End If

 Next

 End If

 Next

 Next

 'Taking out the excessive precedence relationships

 Dim ExcessivePredRelDic As New Dictionary(Of Integer, Integer)

 For Each WAWPPrecedenceRelRow As DataRow In tblWAWPPredecessors.Rows

 Dim WAWPID As Integer = CInt(WAWPPrecedenceRelRow.Item("WAWPID"))

 Dim WAWPWorkAreaID As Integer =

CInt(tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkAreaNumber"))

 Dim WAWPPredID As Integer

 Dim WAWPPredWorkAreaID As Integer

 Select Case WAWPID

 Case 7 To 12 'Module Support Structure

 WAWPPredID = CInt(WAWPPrecedenceRelRow.Item("WAWPPredID"))

 'find WAWP Predecessor's work are

 WAWPPredWorkAreaID =

CInt(tblWAWP.Rows.Find(WAWPPredID).Item("WAWPWorkAreaNumber"))

 If WAWPWorkAreaID <> WAWPPredWorkAreaID Then

 ExcessivePredRelDic.Add(WAWPID, WAWPPredID)

 End If

 Case 46 To 47 'Hydrotesting on top of 007ABC or 014AB

 WAWPPredID = CInt(WAWPPrecedenceRelRow.Item("WAWPPredID"))

 'find WAWP Predecessor's work are

 WAWPPredWorkAreaID =

CInt(tblWAWP.Rows.Find(WAWPPredID).Item("WAWPWorkAreaNumber"))

 If WAWPWorkAreaID <> WAWPPredWorkAreaID Then

 ExcessivePredRelDic.Add(WAWPID, WAWPPredID)

 End If

 Case 53 To 54 'Insulation on top of 007ABc or 014AB

 WAWPPredID = CInt(WAWPPrecedenceRelRow.Item("WAWPPredID"))

 'find WAWP Predecessor's work are

 WAWPPredWorkAreaID =

CInt(tblWAWP.Rows.Find(WAWPPredID).Item("WAWPWorkAreaNumber"))

 If WAWPWorkAreaID <> WAWPPredWorkAreaID Then

 ExcessivePredRelDic.Add(WAWPID, WAWPPredID)

284

 End If

 End Select

 Next

 For Each kvp As KeyValuePair(Of Integer, Integer) In

ExcessivePredRelDic

 ' Create an array for the key values to find.

 Dim FindTheseVals(1) As Object

 FindTheseVals(0) = kvp.Key

 FindTheseVals(1) = kvp.Value

 'find the corresponding data row

 Dim ExcessivePredRelRow As DataRow =

tblWAWPPredecessors.Rows.Find(FindTheseVals)

 If Not (ExcessivePredRelRow Is Nothing) Then

 tblWAWPPredecessors.Rows.Remove(ExcessivePredRelRow)

 End If

 Next

 End Sub

 Public Sub InitializeChart()

 ResourceLoadingChart1.Series.Clear()

 ResourceLoadingChart2.Series.Clear()

 'Resource Loading Chart for Piling

 ResourceLoadingChart1.ChartAreas.Item(0).AxisX.Interval = 1

 ResourceLoadingChart1.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 ResourceLoadingChart1.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 ResourceLoadingChart1.Titles.Add("Piling Manpower Loading Curve")

 ' Set chart title font

 ResourceLoadingChart1.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 ResourceLoadingChart1.Titles(0).ForeColor = Color.White

 ' Set chart title color

 ResourceLoadingChart1.Titles(0).BackColor = Color.Red

 ' Set axis title

 ResourceLoadingChart1.ChartAreas.Item(0).AxisY.Title = "Manpower"

 ' Set Title font

 ResourceLoadingChart1.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 ' Set Title color

 ResourceLoadingChart1.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 ResourceLoadingChart1.Series.Add("MPiling")

 ResourceLoadingChart1.Series("MPiling").ChartType =

SeriesChartType.Column

 'Resource Loading Chart for Electrical

 ResourceLoadingChart2.ChartAreas.Item(0).AxisX.Interval = 1

 ResourceLoadingChart2.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 ResourceLoadingChart2.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 ResourceLoadingChart2.Titles.Add("Electrician Manpower Loading Curve")

285

 ' Set chart title font

 ResourceLoadingChart2.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 ResourceLoadingChart2.Titles(0).ForeColor = Color.White

 ' Set chart title color

 ResourceLoadingChart2.Titles(0).BackColor = Color.Red

 ' Set axis title

 ResourceLoadingChart2.ChartAreas.Item(0).AxisY.Title = "Manpower"

 ' Set Title font

 ResourceLoadingChart2.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 ' Set Title color

 ResourceLoadingChart2.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 ResourceLoadingChart2.Series.Add("MELectrical")

 ResourceLoadingChart2.Series("MELectrical").ChartType =

SeriesChartType.Column

 ''Resource Loading Chart for Piping

 ResourceLoadingChart3.ChartAreas.Item(0).AxisX.Interval = 1

 ResourceLoadingChart3.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 ResourceLoadingChart3.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 ResourceLoadingChart3.Titles.Add("Pipe fitter Manpower Loading Curve")

 ' Set chart title font

 ResourceLoadingChart3.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 ResourceLoadingChart3.Titles(0).ForeColor = Color.White

 ' Set chart title color

 ResourceLoadingChart3.Titles(0).BackColor = Color.Red

 ' Set axis title

 ResourceLoadingChart3.ChartAreas.Item(0).AxisY.Title = "Manpower"

 ' Set Title font

 ResourceLoadingChart3.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 ' Set Title color

 ResourceLoadingChart3.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 ResourceLoadingChart3.Series.RemoveAt(0)

 ResourceLoadingChart3.Series.Add("MPiping")

 ResourceLoadingChart3.Series("MPiping").ChartType =

SeriesChartType.Column

 'Resource Loading Chart for Insulation

 ResourceLoadingChart4.ChartAreas.Item(0).AxisX.Interval = 1

 ResourceLoadingChart4.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 ResourceLoadingChart4.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 ResourceLoadingChart4.Titles.Add("Insulation Manpower Loading Curve")

 ' Set chart title font

 ResourceLoadingChart4.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 ResourceLoadingChart4.Titles(0).ForeColor = Color.White

286

 ' Set chart title color

 ResourceLoadingChart4.Titles(0).BackColor = Color.Red

 ' Set axis title

 ResourceLoadingChart4.ChartAreas.Item(0).AxisY.Title = "Manpower"

 ' Set Title font

 ResourceLoadingChart4.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 ' Set Title color

 ResourceLoadingChart4.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 ResourceLoadingChart4.Series.RemoveAt(0)

 ResourceLoadingChart4.Series.Add("MInsulation")

 ResourceLoadingChart4.Series("MInsulation").ChartType =

SeriesChartType.Column

 'Resource Loading Chart for Iron worker

 ResourceLoadingChart5.ChartAreas.Item(0).AxisX.Interval = 1

 ResourceLoadingChart5.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 ResourceLoadingChart5.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 ResourceLoadingChart5.Titles.Add("Iron Worker Manpower Loading Curve")

 ' Set chart title font

 ResourceLoadingChart5.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 ResourceLoadingChart5.Titles(0).ForeColor = Color.White

 ' Set chart title color

 ResourceLoadingChart5.Titles(0).BackColor = Color.Red

 ' Set axis title

 ResourceLoadingChart5.ChartAreas.Item(0).AxisY.Title = "Manpower"

 ' Set Title font

 ResourceLoadingChart5.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 ' Set Title color

 ResourceLoadingChart5.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 ResourceLoadingChart5.Series.RemoveAt(0)

 ResourceLoadingChart5.Series.Add("MIronWorker")

 ResourceLoadingChart5.Series("MIronWorker").ChartType =

SeriesChartType.Column

 ''For 011AB

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisX.Interval = 1

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 'ResourceLoadingChart6.Titles.Add("011AB Work Area")

 '' Set chart title font

 'ResourceLoadingChart6.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 'ResourceLoadingChart6.Titles(0).ForeColor = Color.White

 '' Set chart title color

 'ResourceLoadingChart6.Titles(0).BackColor = Color.Red

 '' Set axis title

287

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisY.Title = "Number Of

Craft Persons"

 '' Set Title font

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 '' Set Title color

 'ResourceLoadingChart6.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 'ResourceLoadingChart6.Series.RemoveAt(0)

 'ResourceLoadingChart6.Series.Add("011AB")

 'ResourceLoadingChart6.Series("011AB").ChartType =

SeriesChartType.Column

 ''For 012ABC

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisX.Interval = 1

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 'ResourceLoadingChart7.Titles.Add("012ABC Work Area")

 '' Set chart title font

 'ResourceLoadingChart7.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 'ResourceLoadingChart7.Titles(0).ForeColor = Color.White

 '' Set chart title color

 'ResourceLoadingChart7.Titles(0).BackColor = Color.Red

 '' Set axis title

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisY.Title = "Number Of

Craft Persons"

 '' Set Title font

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 '' Set Title color

 'ResourceLoadingChart7.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 'ResourceLoadingChart7.Series.RemoveAt(0)

 'ResourceLoadingChart7.Series.Add("012ABC")

 'ResourceLoadingChart7.Series("012ABC").ChartType =

SeriesChartType.Column

 ''For 005AB

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisX.Interval = 1

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 'ResourceLoadingChart8.Titles.Add("005AB")

 '' Set chart title font

 'ResourceLoadingChart8.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 'ResourceLoadingChart8.Titles(0).ForeColor = Color.White

 '' Set chart title color

 'ResourceLoadingChart8.Titles(0).BackColor = Color.Red

 '' Set axis title

288

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisY.Title = "Number Of

Craft Persons"

 '' Set Title font

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 '' Set Title color

 'ResourceLoadingChart8.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 'ResourceLoadingChart8.Series.RemoveAt(0)

 'ResourceLoadingChart8.Series.Add("005AB")

 'ResourceLoadingChart8.Series("005AB").ChartType =

SeriesChartType.Column

 ''For 006AB

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisX.Interval = 1

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 'ResourceLoadingChart9.Titles.Add("006AB")

 '' Set chart title font

 'ResourceLoadingChart9.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 'ResourceLoadingChart9.Titles(0).ForeColor = Color.White

 '' Set chart title color

 'ResourceLoadingChart9.Titles(0).BackColor = Color.Red

 '' Set axis title

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisY.Title = "Number Of

Craft Persons"

 '' Set Title font

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 '' Set Title color

 'ResourceLoadingChart9.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 'ResourceLoadingChart9.Series.RemoveAt(0)

 'ResourceLoadingChart9.Series.Add("006AB")

 'ResourceLoadingChart9.Series("006AB").ChartType =

SeriesChartType.Column

 ''Resource Loading Chart for Cable Tray

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisX.Interval = 1

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisX.IntervalType =

DateTimeIntervalType.Days

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisX.LabelAutoFitStyle =

LabelAutoFitStyles.LabelsAngleStep90

 'ResourceLoadingChart10.Titles.Add("Building Cladding Manpower

Loading Curve")

 '' Set chart title font

 'ResourceLoadingChart10.Titles(0).Font = New Font("Arial", 12,

FontStyle.Bold)

 'ResourceLoadingChart10.Titles(0).ForeColor = Color.White

 '' Set chart title color

 'ResourceLoadingChart10.Titles(0).BackColor = Color.Red

 '' Set axis title

289

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisY.Title = "Manpower"

 '' Set Title font

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisY.TitleFont = New

Font("Arial", 12, FontStyle.Bold)

 '' Set Title color

 'ResourceLoadingChart10.ChartAreas.Item(0).AxisY.TitleForeColor =

Color.Gray

 'ResourceLoadingChart10.Series.RemoveAt(0)

 'ResourceLoadingChart10.Series.Add("MClad")

 'ResourceLoadingChart10.Series("MClad").ChartType =

SeriesChartType.Column

 'Resource Loading Chart for Module Prep/Fina Inspection

 End Sub

 Private Sub DisplayChart()

 'For Piling

 Dim MPilingXArray As New List(Of Date)

 Dim MPilingYArray As New List(Of Integer)

 'For Electrical

 Dim MELectricalArray As New List(Of Date)

 Dim MELectricalYArray As New List(Of Integer)

 'For Piping

 Dim MPipingXArray As New List(Of Date)

 Dim MPipingYArray As New List(Of Integer)

 'For Insulation

 Dim MInsulationXArray As New List(Of Date)

 Dim MInsulationYArray As New List(Of Integer)

 'For Iron Worker

 Dim MIronWorkerXArray As New List(Of Date)

 Dim MIronWorkerYArray As New List(Of Integer)

 ''For HVAC

 'Dim HVACXArray As New List(Of Date)

 'Dim HVACYArray As New List(Of Integer)

 ''For Instrumentation

 'Dim InstrXArray As New List(Of Date)

 'Dim InstrYArray As New List(Of Integer)

 ''For Insulation

 'Dim InsulXArray As New List(Of Date)

 'Dim InsulYArray As New List(Of Integer)

 ''For Heat Tracing

 'Dim TracXArray As New List(Of Date)

 'Dim TracYArray As New List(Of Integer)

 ''For Cable Tray

 'Dim CladXArray As New List(Of Date)

 'Dim CladYArray As New List(Of Integer)

290

 For Each ResUsageRow As DataRow In

MyDataSet.Tables("tblResourceUsagePerDay").Rows

 Dim ResName As String = CStr(ResUsageRow.Item("ResourceName"))

 Select Case ResName

 Case "PIL"

 'For Steel Structure

 MPilingXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 MPilingYArray.Add(CInt(ResUsageRow.Item("Usage")))

 Case "EL"

 MELectricalArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 MELectricalYArray.Add(CInt(ResUsageRow.Item("Usage")))

 Case "PF"

 MPipingXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 MPipingYArray.Add(CInt(ResUsageRow.Item("Usage")))

 Case "INS"

MInsulationXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 MInsulationYArray.Add(CInt(ResUsageRow.Item("Usage")))

 Case "IW"

MIronWorkerXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 MIronWorkerYArray.Add(CInt(ResUsageRow.Item("Usage")))

 'Case "MHVAC"

 ' HVACXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 ' HVACYArray.Add(CInt(ResUsageRow.Item("Usage")))

 'Case "MInstr"

 ' InstrXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 ' InstrYArray.Add(CInt(ResUsageRow.Item("Usage")))

 'Case "MInsul"

 ' InsulXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 ' InsulYArray.Add(CInt(ResUsageRow.Item("Usage")))

 'Case "MTrac"

 ' TracXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 ' TracYArray.Add(CInt(ResUsageRow.Item("Usage")))

 'Case "MClad"

 ' CladXArray.Add(CDate(ResUsageRow.Item("Date")).Date)

 ' CladYArray.Add(CInt(ResUsageRow.Item("Usage")))

 End Select

 Next

 'Dim XArray(NumOfDays) As DateTime

 'Dim YArray(NumOfDays) As Integer

 'Dim i As Integer

 'For Each ResUsageRow As DataRow In

MyDataSet.Tables("tblResourceUsagePerDay").Rows

 ' If ResUsageRow.Item("ResourceName") = "MPipFab" Then

 ' XArray(i) = CDate(ResUsageRow.Item("Date")).Date

 ' YArray(i) = CInt(ResUsageRow.Item("Usage"))

 ' 'MessageBox.Show(XArray(i))

 ' End If

 'Next

ResourceLoadingChart1.Series("MPiling").Points.DataBindXY(MPilingXArray,

MPilingYArray)

291

ResourceLoadingChart2.Series("MELectrical").Points.DataBindXY(MELectricalArra

y, MELectricalYArray)

ResourceLoadingChart3.Series("MPiping").Points.DataBindXY(MPipingXArray,

MPilingYArray)

ResourceLoadingChart4.Series("MInsulation").Points.DataBindXY(MInsulationXArr

ay, MInsulationYArray)

ResourceLoadingChart5.Series("MIronWorker").Points.DataBindXY(MIronWorkerXArr

ay, MIronWorkerYArray)

 'ResourceLoadingChart6.Series("MHVAC").Points.DataBindXY(HVACXArray,

HVACYArray)

 'ResourceLoadingChart7.Series("MInstr").Points.DataBindXY(InstrXArray,

InstrYArray)

 'ResourceLoadingChart8.Series("MInsul").Points.DataBindXY(InsulXArray,

InsulYArray)

 'ResourceLoadingChart9.Series("MTrac").Points.DataBindXY(TracXArray,

TracYArray)

 'ResourceLoadingChart10.Series("MClad").Points.DataBindXY(CladXArray,

CladYArray)

 End Sub

 Public Sub WriteResultMethod()

 Dim cn As OleDbConnection

 Dim MyDataAdapter As OleDbDataAdapter

 Dim MyCommandBuilder As OleDbCommandBuilder

 Dim DBAddress As String = Me.DBAddressTxt.Text

 'Get data from StiteInstallationDBModifiedJuly132011

 cn = New OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data

Source=I:\SiteInstallationDBPopulatedSeptember262012.accdb")

 Try

 cn.Open()

 MyDataAdapter = New OleDbDataAdapter("Select * From

tblWorkAreaWorkpackage;", cn)

 MyCommandBuilder = New OleDbCommandBuilder(MyDataAdapter)

 MyDataSet.Tables("tblWAWP").Columns.Remove("WADesignator")

 MyDataSet.Tables("tblWAWP").Columns.Remove("WAWPTotalFloat")

 MyDataSet.Tables("tblWAWP").Columns.Remove("WAWPEstDuration")

 'DataGridView1.DataSource = MyDataSet.Tables("tblWAWP")

 MyDataAdapter.Update(MyDataSet.Tables("tblWAWP"))

 MyDataAdapter = New OleDbDataAdapter("Select * from

tblWorkpackage;", cn)

 MyCommandBuilder = New OleDbCommandBuilder(MyDataAdapter)

MyDataSet.Tables("tblWorkpackages").Columns.Remove("ClassificationDescription

")

 MyDataAdapter.Update(MyDataSet.Tables("tblWorkpackages"))

 Catch ex As Exception

 Throw New ArgumentException(ex.Message)

292

 Finally

 cn.Close()

 End Try

 End Sub

End Class

VB.NET code for the simulation scenario

Imports Simphony

Imports Simphony.Simulation

Imports Simphony.Modeling

Imports System.Data

Imports System.Data.OleDb

Imports System.Linq

Imports System.Math

'Imports System.Windows.Forms.DataVisualization.Charting

Imports System.Diagnostics

Public Class Scenario

 Inherits DiscreteEventScenario

 Private TimeAdvanceStep = 1 'Each time step is 1 hour

 Private Converter As Integer = 1 '3600 'Converts a time step to a number

of simulation time units; For example, Each simulation time unit represents a

second; Each time step (= 1 hour) will be 3600 time units

 'Define all related events

 Private SimTimeTickEvent As New Action(Of Entity)(AddressOf SimTimeTick)

 'Declare all attributes

 Private ReadOnly MyEngine As DiscreteEventEngine

 Private MyDataSet As New DataSet

 Private tblProjects, tblWorkArea, tblResource, tblCalendar,

tblCalendarDetail, tblWorkpackages, tblWorkAreaWorkpackage,

tblWorkpackagePredecessor, tblWAWP, tblWAWPPredecessors, tblWAWPTotalFloat,

tblResourceAvailability, tblResourceUsagePerDay, tblResourceUsagePerHour,

tblWorkAreaUsagePerDay, tblWorkAreaUsagePerHour, tblClassification,

tblResourceCapturedPerWAWP As DataTable

 'Update Both Arrival WAWP Lists and Completed WAWP Lists

 'Private UnifiedWaitingList As New List(Of WorkAreaWorkpackageEntity)

 Private CompletedWAWPList As New List(Of WorkAreaWorkpackageEntity)

 Private CompletedWAWPIDList As New List(Of Integer)

 Private ArrivedWAWPList As New List(Of WorkAreaWorkpackageEntity)

 Private ArrivedWAWPIDList As New List(Of Integer)

 Private ResourceCapturedWAWPList As New List(Of WorkAreaWorkpackageEntity)

 Private MyWAWPs As New Dictionary(Of Integer, WorkAreaWorkpackageEntity)

 'TotalCrewResource & Waiting file

 Private TotalCrewResource As CrewResource

 Private MyTrucks As Resource

 Private ReadOnly CrewResourceList As New List(Of CrewResource)

 Private ReadOnly WorkAreaCongestionResourceList As New List(Of

CongestionResource)

 'Private ReadOnly CrewResources As New Dictionary(Of String, CrewResource)

 Private ResourceAvailQuantityPair As New Dictionary(Of String, Integer)

 Private ResourceMinPercentPair As New Dictionary(Of String, Double)

 Private ResourceMaxPercentPair As New Dictionary(Of String, Double)

293

 'Private ResourceWaitingLists As New Dictionary(Of String, List(Of

WorkAreaWorkpackageEntity))

 Private ProjectStartDate As Date

 'Set up local time for entity arrival event

 Private CurrentSimTime As Integer = 0

 Private NumWAWPArrived As Integer

 Private NumWAWPCompleted As Integer

 Private TotalNumOfWAWPs As Integer

 Private SuccWAWPIDs, PredWAWPIDs As New List(Of Integer)

 Public Sub New(ByVal MyEngine As DiscreteEventEngine, ByVal MyDataSet As

DataSet)

 Me.MyEngine = MyEngine

 Me.MyDataSet = MyDataSet

 End Sub

 Public Overrides Function InitializeScenario() As Integer

 'Initialize Resources

 tblResource = MyDataSet.Tables("tblResource")

 tblResourceAvailability = MyDataSet.Tables("tblResourceAvailability")

 tblClassification = MyDataSet.Tables("tblClassification")

 For Each MyResourceRow As DataRow In tblResourceAvailability.Rows

 If Not

ResourceAvailQuantityPair.ContainsKey(MyResourceRow.Item("Craft")) Then

 Dim MyCrewResourceName As String =

CStr(MyResourceRow.Item("Craft"))

 Dim MaxRes As Integer =

CInt(MyResourceRow.Item("AvailableAmount"))

 'Create CrewResources

 Dim MyCrewResource As New CrewResource(MyCrewResourceName,

MaxRes)

 MyCrewResource.TaskDesc =

CStr(tblResource.Rows.Find(MyCrewResourceName).Item("CraftDescription"))

 MyCrewResource.OriginalQuantity = MaxRes

 ''Manpower is increased at a rate that must not exceed

certain limits

 ''MyCrewResource.RampUp = CDbl(MyResourceRow.Item("Resource

ramp up")) * 50

 ''MyCrewResource.Level = MyResourceRow.Item("Level")

 ''MyCrewResource.NonManPower =

MyResourceRow.Item("NonManPower")

 ''MyCrewResource.NonYardActivity =

MyResourceRow.Item("NonYardActivity")

 ''MyCrewResource.ZeroFreeFloatActivity =

MyResourceRow.Item("ZeroFreeFloatActivity")

 Dim NormalCraftSize As Integer

 Dim MaxCraftSize As Integer

 Dim MinCraftSize As Integer

 ''Find the MinCraftSize and MaxCraftSize of each trade

 For Each ClassificationRow As DataRow In

tblClassification.rows

 If CStr(ClassificationRow.Item("Craft")) =

MyCrewResourceName Then

294

 If Not ClassificationRow.Item("MaxCraftSize") Is

DBNull.Value Then

 NormalCraftSize =

CInt(ClassificationRow.Item("NormalCraftSize"))

 MaxCraftSize =

CInt(ClassificationRow.Item("MaxCraftSize"))

 MinCraftSize =

CInt(ClassificationRow.Item("MinCraftSize"))

 Exit For

 End If

 End If

 Next

 MyCrewResource.MinPercent = MinCraftSize / NormalCraftSize

 MyCrewResource.MaxPercent = MaxCraftSize / NormalCraftSize

 'Initialize the ResourceAvailQuantityPair list

 ResourceAvailQuantityPair.Add(MyCrewResourceName, MaxRes)

 ResourceMinPercentPair.Add(MyCrewResourceName,

MyCrewResource.MinPercent)

 ResourceMaxPercentPair.Add(MyCrewResourceName,

MyCrewResource.MaxPercent)

 CrewResourceList.Add(MyCrewResource)

 End If

 Next

 ''Define TotalCrewResources

 'Dim MaxManPerShift As Integer =

CInt(tblProjects.Rows(0).Item("MaxManPerShiftOnsite"))

 'Dim MaxTotalCrewResQuan = MaxManPerShift * 100

 'TotalCrewResource = New CrewResource("TotalCrewResource",

MaxTotalCrewResQuan)

 'TotalCrewResource.TaskDesc = "TotalCrewResource"

 'TotalCrewResource.OriginalQuantity = MaxTotalCrewResQuan

 'ResourceAvailQuantityPair.Add("TotalCrewResource",

MaxTotalCrewResQuan)

 'Define Work Spcae Congestion Resources

 tblWorkArea = MyDataSet.Tables("tblWorkArea")

 For Each WorkAreaRow As DataRow In tblWorkArea.Rows

 Dim MyWorkAreaID As Integer =

CInt(WorkAreaRow.Item("WorkAreaNumber"))

 Dim MyWorkAreaName As String =

CStr(WorkAreaRow.Item("WADesignator"))

 'the maximum number of craft people in a work area

 Dim MyWorkAreaCongestionLimit As Integer = 100

 Dim MyWorkAreaCongestionResource As New

CongestionResource(MyWorkAreaName, MyWorkAreaCongestionLimit)

 MyWorkAreaCongestionResource.WorkAreaDesignator =

CStr(WorkAreaRow.Item("WADesignator"))

 'Belong to which construction work area

 MyWorkAreaCongestionResource.WAConstructionWorkArea =

CStr(WorkAreaRow.Item("WAConstructionWorkArea"))

 MyWorkAreaCongestionResource.OriginalCongestionLimit =

MyWorkAreaCongestionLimit

295

 WorkAreaCongestionResourceList.Add(MyWorkAreaCongestionResource)

 'Initialize the ResourceAvailQuantityPair list

 ResourceAvailQuantityPair.Add(MyWorkAreaName,

MyWorkAreaCongestionLimit)

 Next

 'For Each WorkAreaCongestionResource As CongestionResource In

WorkAreaCongestionResourceList

 ' MessageBox.Show(WorkAreaCongestionResource.Name & " " &

WorkAreaCongestionResource.Quantity)

 'Next

 'Initialize start time

 tblCalendar = MyDataSet.Tables("tblCalendar")

 tblProjects = MyDataSet.Tables("tblProjects")

 ProjectStartDate = CDate(tblProjects.Rows(0).Item("Start"))

 Dim ProjectCalID As Integer =

CInt(tblProjects.Rows(0).Item("DefCalendarID"))

 Dim StartHour As Double =

CDate(tblCalendar.Rows.Find(ProjectCalID).Item("StartTime").ToString).Hour +

CDate(tblCalendar.Rows.Find(ProjectCalID).Item("StartTime").ToString).Minute

/ 60

 ProjectStartDate = CDate(ProjectStartDate.AddHours(StartHour))

 Return MyBase.InitializeScenario()

 End Function

 Public Overrides Function InitializeRun(ByVal runIndex As Integer) As

Double

 'Initialize all the datatables, except for three datatables that have

already been initialized in InitializeScenario Function

 tblWorkpackages = MyDataSet.Tables("tblWorkpackages")

 tblWorkAreaWorkpackage = MyDataSet.Tables("tblWAWP")

 tblWorkpackagePredecessor = MyDataSet.Tables("tblWAWPPredecessors")

 tblCalendarDetail = MyDataSet.Tables("tblCalendar_Detail")

 tblWAWP = MyDataSet.Tables("tblWAWP")

 tblWAWPPredecessors = MyDataSet.Tables("tblWAWPPredecessors")

 TotalNumOfWAWPs = MyDataSet.Tables("tblWAWP").Rows.Count

 'Trigger Arrival List Updating event

 Dim TriggerEntity As New Entity

 MyEngine.ScheduleEvent(TriggerEntity, SimTimeTickEvent, 0)

 'Find WAWPs that have successors and WAWPs that are succeeding to

some other WAWPs

 For Each Row As DataRow In tblWorkpackagePredecessor.Rows

 If Not SuccWAWPIDs.Contains(Row.Item("WAWPID")) Then

 SuccWAWPIDs.Add(Row.Item("WAWPID"))

 End If

 If Not PredWAWPIDs.Contains(Row.Item("WAWPPredID")) Then

 PredWAWPIDs.Add(Row.Item("WAWPPredID"))

 End If

 Next

 CalculateTotalfloat(tblWorkpackages, tblWAWP, tblWAWPPredecessors)

296

 tblWAWPTotalFloat = MyDataSet.Tables("tblWAWPTotalFloat")

 tblResourceUsagePerDay =

MyDataSet.Tables.Add("tblResourceUsagePerDay")

 tblResourceUsagePerDay.Columns.Add("ResourceName",

Type.GetType("System.String"))

 tblResourceUsagePerDay.Columns.Add("Date",

Type.GetType("System.DateTime"))

 tblResourceUsagePerDay.Columns.Add("Usage",

Type.GetType("System.Double"))

 tblResourceUsagePerHour =

MyDataSet.Tables.Add("tblResourceUsagePerHour")

 tblResourceUsagePerHour.Columns.Add("ResourceName",

Type.GetType("System.String"))

 tblResourceUsagePerHour.Columns.Add("Date",

Type.GetType("System.DateTime"))

 tblResourceUsagePerHour.Columns.Add("Usage",

Type.GetType("System.Int32"))

 tblWorkAreaUsagePerDay =

MyDataSet.Tables.Add("tblWorkAreaUsagePerDay")

 tblWorkAreaUsagePerDay.Columns.Add("WorkAreaName",

Type.GetType("System.String"))

 tblWorkAreaUsagePerDay.Columns.Add("Date",

Type.GetType("System.DateTime"))

 tblWorkAreaUsagePerDay.Columns.Add("Usage",

Type.GetType("System.Double"))

 tblWorkAreaUsagePerHour =

MyDataSet.Tables.Add("tblWorkAreaUsagePerHour")

 tblWorkAreaUsagePerHour.Columns.Add("WorkAreaName",

Type.GetType("System.String"))

 tblWorkAreaUsagePerHour.Columns.Add("Date",

Type.GetType("System.DateTime"))

 tblWorkAreaUsagePerHour.Columns.Add("Usage",

Type.GetType("System.Int32"))

 tblResourceCapturedPerWAWP =

MyDataSet.Tables.Add("tblResourceCapturedPerWAWP")

 tblResourceCapturedPerWAWP.Columns.Add("WAWPID",

Type.GetType("System.Int32"))

 tblResourceCapturedPerWAWP.Columns.Add("ResName",

Type.GetType("System.String"))

 tblResourceCapturedPerWAWP.Columns.Add("ResQtyCaptured",

Type.GetType("System.Int32"))

 tblResourceCapturedPerWAWP.Columns.Add("Date",

Type.GetType("System.DateTime"))

 Return 1000000

 End Function

 Public Sub SimTimeTick(ByVal TriggerEntity As Entity)

 'The first step is to update the completion status of every WAWP

entity and Release resource captured in the last time step

 CurrentSimTime = MyEngine.TimeNow

297

 Dim CurrentDateTime As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'If DateTime.Compare(#12/7/2012 3:00:00 PM#, CurrentDateTime) <= 0

Then

 ' MessageBox.Show("Debugging")

 'End If

 'At the beginning of the simulation, it is not necessary at all to

update the completion status of WAWP entities

 'Resource releasing is included in WAWPStatusUpdate subroutine

 If CurrentSimTime <> 0 Then

 WAWPStatusUpdate()

 End If

 'Record Daily resource usage

 If CurrentDateTime.Hour = 17 Then

 For Each MyResource As CrewResource In CrewResourceList

 Dim ResName As String = MyResource.Name

 'If ResName = "EL" And CurrentDateTime = #10/22/2012 5:00:00

PM# Then

 ' MessageBox.Show("OK!")

 'End If

 Dim TotalUsage As Integer = 0

 For Each ResUsageRow As DataRow In

tblResourceUsagePerHour.Select("ResourceName = '" & ResName & "'")

 If CDate(ResUsageRow.Item("Date")).Date =

CurrentDateTime.Date Then

 TotalUsage = TotalUsage +

CInt(ResUsageRow.Item("Usage"))

 End If

 Next

 'Dim abc = From r In tblResourceUsagePerHour

 ' Where (CDate(r.Item("Date")).Date =

CurrentDateTime.Date) And (r.Item("ResourceName") = ResName)

 ' Select r.Item("Usage")

 'Dim bcd = abc.ToArray().Sum(Function(x) x)

 'Assume 10 working hours per day

 Dim AverageUsagePerDay As Double = TotalUsage / 10

 'If ResName = "MSteel" And AverageUsagePerDay > 5000 Then

 ' MessageBox.Show("OK!")

 'End If

 Dim ResUsagePerdayRow As DataRow =

tblResourceUsagePerDay.NewRow

 ResUsagePerdayRow.Item("ResourceName") = ResName

 ResUsagePerdayRow.Item("Date") = CurrentDateTime

 ResUsagePerdayRow.Item("Usage") = AverageUsagePerDay

 tblResourceUsagePerDay.Rows.Add(ResUsagePerdayRow)

 Next

 For Each MyWorkArea As CongestionResource In

WorkAreaCongestionResourceList

 Dim WorkAreaName As String = MyWorkArea.Name

 Dim TotalUsage As Integer = 0

298

 For Each WorkAreaUsageRow As DataRow In

tblWorkAreaUsagePerHour.Select("WorkAreaName = '" & WorkAreaName & "'")

 If CDate(WorkAreaUsageRow.Item("Date")).Date =

CurrentDateTime.Date Then

 TotalUsage = TotalUsage +

CInt(WorkAreaUsageRow.Item("Usage"))

 End If

 Next

 'Assume 10 working hours per day

 Dim AverageUsagePerDay As Double = TotalUsage / 10

 Dim WorkAreaUsagePerDayRow As DataRow =

tblWorkAreaUsagePerDay.NewRow

 WorkAreaUsagePerDayRow.Item("WorkAreaName") = WorkAreaName

 WorkAreaUsagePerDayRow.Item("Date") = CurrentDateTime

 WorkAreaUsagePerDayRow.Item("Usage") = AverageUsagePerDay

 tblWorkAreaUsagePerDay.Rows.Add(WorkAreaUsagePerDayRow)

 Next

 End If

 'Check if Current Simulation Time is within working time range

 'If NOT, step 2--Arrival List update and step 3--Resource Allocate

will be skipped

 Dim WhetherExecuteRoutine As Boolean = False

 If ArrivedWAWPList.Count <> 0 Then

 Dim WhetherAWorkingDay As Boolean = True

 Dim WhetherAWorkingHour As Boolean = True

 For i As Integer = 0 To ArrivedWAWPList.Count - 1

 Dim CalID As Integer = ArrivedWAWPList.Item(i).CalendarID

 CheckWorkingDay_WorkingHour(CalID, CurrentDateTime,

WhetherAWorkingDay, WhetherAWorkingHour)

 'After 17:00 pm, it is not working time any more. therefore,

should stop updating the arrival list or allocating resource

 If CurrentDateTime.Hour = 17 Then

 WhetherAWorkingHour = False

 End If

 'If it is a working day and within working hours, continue

 If WhetherAWorkingDay And WhetherAWorkingHour Then

 WhetherExecuteRoutine = True

 Exit For

 End If

 Next

 Else

 'When Arrival List is empty, check the overall project working

days and working hours

 'If it is true then still carry out 'WAWPArrivalListUpdate' and

'ResourceAllocate'

 Dim WhetherAWorkingDay As Boolean = True

 Dim WhetherAWorkingHour As Boolean = True

 Dim CalID As Integer =

CInt(tblProjects.Rows(0).Item("DefCalendarID"))

 CheckWorkingDay_WorkingHour(CalID, CurrentDateTime,

WhetherAWorkingDay, WhetherAWorkingHour)

 If WhetherAWorkingDay And WhetherAWorkingHour Then

 WhetherExecuteRoutine = True

 End If

 End If

299

 If CurrentSimTime = 0 Then

 WhetherExecuteRoutine = True

 End If

 If Not WhetherExecuteRoutine Then

 Dim TriggerEntity1 As New Entity

 MyEngine.ScheduleEvent(TriggerEntity1, SimTimeTickEvent, 1 *

Converter)

 Exit Sub

 End If

 'The second step is to update the arrival list of WAWP entities

 WAWPArrivalListUpdate()

 'The third step is to Allocate resource to WAWP entities

 ResourceAllocate()

 'The fourth step is to forward to the next time tick

 If NumWAWPCompleted < TotalNumOfWAWPs And CurrentSimTime < 1000000

Then

 Dim TriggerEntity1 As New Entity

 MyEngine.ScheduleEvent(TriggerEntity1, SimTimeTickEvent, 1 *

Converter)

 End If

 'Debug.WriteLine("Current Time is " & CurrentDateTime.ToString)

 'Debug.WriteLine(NumWAWPCompleted & " WAWPs have been completed!")

 End Sub

 Public Sub WAWPStatusUpdate()

 Dim CurrentDateTime As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 '**************************Debug

point************************************

 'If CurrentDateTime.ToString = "7/26/2011 5:00:00 PM" Then

 ' MessageBox.Show("OK!")

 'End If

 '**************************Debug

point************************************

 For i As Integer = 0 To ResourceCapturedWAWPList.Count - 1

 Dim CurrentWAWPEntity As WorkAreaWorkpackageEntity =

ResourceCapturedWAWPList.Item(i)

 'check if it is in a working day and if it is withinworking hours

 'We check it for every entity, coz they might use different

calendar

 Dim CalendarID As Integer = CurrentWAWPEntity.CalendarID

 Dim WhetherAWorkingDay As Boolean = True

 Dim WhetherAWorkingHour As Boolean = True

 CheckWorkingDay_WorkingHour(CalendarID, CurrentDateTime,

WhetherAWorkingDay, WhetherAWorkingHour)

 'For progress updating, 7 am is not considered as working hour.

it just marks the start of working time of a working day. 8 am is considered

the first time to get progress

 If CurrentDateTime.Hour = 7 Then

300

 WhetherAWorkingHour = False

 End If

 'If it is a working day and it is within working hours, then

update the progress

 If WhetherAWorkingDay And WhetherAWorkingHour Then

 'Update the WAWP completion status

 'Get the Resouce Amount it has captured in the previous time

step

 Dim WAWPID As Integer = CurrentWAWPEntity.WAWPID

 Dim ReqResName As String = CurrentWAWPEntity.ReqRes

 Dim ReqResAmountCaptured As Integer =

CurrentWAWPEntity.CurrentReqResNameQtyPair(ReqResName)

 'Record how much resource it has captured

 Dim NewDataRow As DataRow =

tblResourceCapturedPerWAWP.NewRow()

 NewDataRow.Item("WAWPID") = WAWPID

 NewDataRow.Item("ResName") = ReqResName

 NewDataRow.Item("ResQtyCaptured") = ReqResAmountCaptured

 NewDataRow.Item("Date") = CurrentDateTime

 tblResourceCapturedPerWAWP.Rows.Add(NewDataRow)

 'Calculate the manhours just achieved in the previous time

step

 CurrentWAWPEntity.ManHoursCompleted =

CurrentWAWPEntity.ManHoursCompleted + 1 * ReqResAmountCaptured

 '**************************Debug

point************************************

 'If WAWPID = 212002 Then

 ' MessageBox.Show(WAWPID & " Manhours have been completed

is " & CurrentWAWPEntity.ManHoursCompleted)

 'End If

 '**************************Debug

point************************************

 'Check If it is completed

 Dim OriginalDuration As Double =

CalculateDurationFromDaysToHours(CalendarID,

CurrentWAWPEntity.DurationOverride)

 Dim NormReqResAmount As Integer =

CurrentWAWPEntity.ReqResAmount

 Dim TotalManHoursToBeAchieved As Double = NormReqResAmount *

OriginalDuration

 If CurrentWAWPEntity.ManHoursCompleted >=

TotalManHoursToBeAchieved Then

 'Record the finish date

 CurrentWAWPEntity.SimFinish =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'Update the WAWP table

 If tblWAWP.Rows.Contains(CurrentWAWPEntity.WAWPID) Then

301

tblWAWP.Rows.Find(CurrentWAWPEntity.WAWPID).Item("WAWPSimulationStart") =

CurrentWAWPEntity.SimStart

tblWAWP.Rows.Find(CurrentWAWPEntity.WAWPID).Item("WAWPSimulationFinish") =

CurrentWAWPEntity.SimFinish

 End If

 'Update the corresponding WP table

 Dim WPID As Integer = CurrentWAWPEntity.WPID

 If tblWorkpackages.Rows.Contains(WPID) Then

 If Not

tblWorkpackages.Rows.Find(WPID).Item("WPSimStart") Is DBNull.Value Then

 If

DateTime.Compare(CDate(tblWorkpackages.Rows.Find(WPID).Item("WPSimStart")),

CurrentWAWPEntity.SimStart) > 0 Then

tblWorkpackages.Rows.Find(WPID).Item("WPSimStart") =

CurrentWAWPEntity.SimStart

 End If

 Else

 tblWorkpackages.Rows.Find(WPID).Item("WPSimStart")

= CurrentWAWPEntity.SimStart

 End If

 If Not

tblWorkpackages.Rows.Find(WPID).Item("WPSimFinish") Is DBNull.Value Then

 If

DateTime.Compare(CDate(tblWorkpackages.Rows.Find(WPID).Item("WPSimFinish")),

CurrentWAWPEntity.SimFinish) < 0 Then

tblWorkpackages.Rows.Find(WPID).Item("WPSimFinish") =

CurrentWAWPEntity.SimFinish

 End If

 Else

tblWorkpackages.Rows.Find(WPID).Item("WPSimFinish") =

CurrentWAWPEntity.SimFinish

 End If

 End If

 'Remove from Arrrival List

 ArrivedWAWPList.Remove(CurrentWAWPEntity)

 ArrivedWAWPIDList.Remove(CurrentWAWPEntity.WAWPID)

 'UnifiedWaitingList.Remove(CurrentWAWPEntity)

 ''Remove from resource waiting lists too!!!

'ResourceWaitingLists(ReqResName).Remove(CurrentWAWPEntity)

 'Add to completed list

 If Not CompletedWAWPList.Contains(CurrentWAWPEntity) Then

 CompletedWAWPList.Add(CurrentWAWPEntity)

 NumWAWPCompleted = NumWAWPCompleted + 1

 End If

 If Not

CompletedWAWPIDList.Contains(CurrentWAWPEntity.WAWPID) Then

 CompletedWAWPIDList.Add(CurrentWAWPEntity.WAWPID)

 End If

302

 End If

 End If

 Next

 'Record Resource Usage (including workingdays and nonworkingdays)

 For Each MyResource As CrewResource In CrewResourceList

 Dim ResName As String = MyResource.Name

 Dim AvailQty As Integer = ResourceAvailQuantityPair(ResName)

 If CurrentDateTime.Hour = 7 Then

 AvailQty = FindCurrentResourceLimit(ResName, CurrentDateTime)

 End If

 Dim Usage As Integer = FindCurrentResourceLimit(ResName,

CurrentDateTime) - AvailQty

 Dim ResUsageDataRow As DataRow = tblResourceUsagePerHour.NewRow

 ResUsageDataRow.Item("ResourceName") = ResName

 ResUsageDataRow.Item("Date") = CurrentDateTime

 ResUsageDataRow.Item("Usage") = Usage

 tblResourceUsagePerHour.Rows.Add(ResUsageDataRow)

 'If ResName = "MSteel" And Usage > 5000 Then

 ' MessageBox.Show("OK!")

 'End If

 Next

 For Each MyWorkArea As CongestionResource In

WorkAreaCongestionResourceList

 Dim WorkAreaName As String = MyWorkArea.WorkAreaDesignator

 Dim AvailWorkArea As Integer =

ResourceAvailQuantityPair(WorkAreaName)

 Dim Usage As Integer = MyWorkArea.OriginalCongestionLimit -

AvailWorkArea

 Dim WorkAreaUsageDataRow As DataRow =

tblWorkAreaUsagePerHour.NewRow

 WorkAreaUsageDataRow.Item("WorkAreaName") = WorkAreaName

 WorkAreaUsageDataRow.Item("Date") = CurrentDateTime

 WorkAreaUsageDataRow.Item("Usage") = Usage

 tblWorkAreaUsagePerHour.Rows.Add(WorkAreaUsageDataRow)

 Next

 'Release Resource

 For Each MyResource As CrewResource In CrewResourceList

 Dim ResName As String = MyResource.Name

 Dim AvailQty As Integer = FindCurrentResourceLimit(ResName,

CurrentDateTime)

 ResourceAvailQuantityPair(ResName) = AvailQty

 Next

 'release work space

 For Each MyCongestionResouce As CongestionResource In

WorkAreaCongestionResourceList

 Dim WorkAreaName As String = MyCongestionResouce.Name

 Dim Limit As Integer = MyCongestionResouce.Quantity

 ResourceAvailQuantityPair(WorkAreaName) = Limit

303

 Next

 End Sub

 Public Function FindCurrentResourceLimit(ByVal ResName As String, ByVal

CurrentTime As Date) As Integer

 Dim Limit As Integer

 For Each LimitRow As DataRow In tblResourceAvailability.Select("Craft

= '" & ResName & "'")

 Dim StartDate As Date = CDate(LimitRow.Item("StartDate"))

 Dim EndDate As Date = CDate(LimitRow.Item("EndDate"))

 If DateTime.Compare(CurrentTime, StartDate) >= 0 And

DateTime.Compare(CurrentTime, EndDate) <= 0 Then

 Limit = CInt(LimitRow.Item("AvailableAmount"))

 End If

 Next

 Return Limit

 End Function

 Public Sub CheckWorkingDay_WorkingHour(ByVal CalendarID As Integer, ByVal

CurrentDateTime As Date, ByRef WhetherAWorkingDay As Boolean, ByRef

WhetherAWorkingHour As Boolean)

 'Check if it is a working day

 Dim CalendarDesc As String =

CStr(tblCalendar.Rows.Find(CalendarID).Item("Calendar Description"))

 If tblCalendarDetail.Rows.Contains(CurrentDateTime.ToShortDateString)

Then

 If

tblCalendarDetail.Rows.Find(CurrentDateTime.ToShortDateString).Item(CalendarD

esc) = 0 Then

 WhetherAWorkingDay = False

 Else

 WhetherAWorkingDay = True

 End If

 End If

 'Check if it is within working hours

 Dim StartTimeOfWorkingDay As Date

 Dim EndTimeOfWorkingDay As Date

 Dim HoursPerDay, StartHour As Double

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 StartTimeOfWorkingDay =

CDate(CurrentDateTime.ToShortDateString).AddHours(StartHour)

 EndTimeOfWorkingDay =

CDate(CurrentDateTime.ToShortDateString).AddHours(StartHour + HoursPerDay)

 If DateTime.Compare(CurrentDateTime, StartTimeOfWorkingDay) < 0 Or

DateTime.Compare(CurrentDateTime, EndTimeOfWorkingDay) > 0 Then

 WhetherAWorkingHour = False

 Else

 WhetherAWorkingHour = True

 End If

 End Sub

 Public Sub WAWPArrivalListUpdate()

 'Update the list of arrived WAWP

304

 'Schedule Arrival of WAWPs (Entities) that have NO predecessors or

that all predecessors are finished already

 Dim UnfinishedFirstWAWPs, ReadyWAWPs As New List(Of Integer)

 'Find WAWPs that have NO predecessors

 For i As Integer = 0 To PredWAWPIDs.Count - 1

 'Have NO predecessors

 If Not SuccWAWPIDs.Contains(PredWAWPIDs.Item(i)) Then

 'NOT finished and NOT included in the arrival list yet

 If Not CompletedWAWPIDList.Contains(PredWAWPIDs.Item(i)) And

Not ArrivedWAWPIDList.Contains(PredWAWPIDs.Item(i)) Then

 If Not UnfinishedFirstWAWPs.Contains(PredWAWPIDs.Item(i))

Then

 UnfinishedFirstWAWPs.Add(PredWAWPIDs.Item(i))

 End If

 End If

 End If

 Next

 If UnfinishedFirstWAWPs.Count <> 0 Then

 For i As Integer = 0 To UnfinishedFirstWAWPs.Count - 1

 Dim WAWPID As Integer = UnfinishedFirstWAWPs.Item(i)

 Dim WPID As Integer =

tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkpackageID")

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStart")

Is DBNull.Value Or Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyfinish")

Is DBNull.Value Then

 'Check both ES condition and EF condition, coz they don't

have any predecessor

 Dim EarlyStartFromESConstraint As Date =

FindEarlyStartFromESConstraint(WAWPID)

 Dim EarlyStartFromEFConstraint As Date =

FindEarlyStartFromEFConstraint(WAWPID)

 Dim CurrentDateTime As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'using '<=' instead of '=' is because ESDate might be one

of holidays (non-working days) which will be skipped by this simulation model

 If DateTime.Compare(EarlyStartFromESConstraint,

CurrentDateTime) <= 0 And DateTime.Compare(EarlyStartFromEFConstraint,

CurrentDateTime) <= 0 Then

 CreateWAWPEntity(WAWPID)

 End If

 Else

 'If no early start or early finish constraint, then

create WAWPEntity right away

 CreateWAWPEntity(WAWPID)

 End If

 Next

 End If

 'Find WAWPs that all predecessors have been at least started

 Dim PossibleReadyWAWPList As New List(Of Integer)

 Dim NotReadyWAWPList As New List(Of Integer)

 For Each Row As DataRow In tblWAWPPredecessors.Rows

 Dim WAWPID As Integer = Row.Item("WAWPID")

 Dim WhetherOrNotReady As Boolean = True

305

 'Not consider those that have been completed or those that have

been proved not ready to start or those that have already been included in

arrival list

 If Not CompletedWAWPIDList.Contains(WAWPID) And Not

NotReadyWAWPList.Contains(WAWPID) And Not ArrivedWAWPIDList.Contains(WAWPID)

Then

 'all predecessors should have at least been started

 'And for predecessors that have FF or FS relationship, they

should have estimated finish date

 For Each Row1 As DataRow In

tblWAWPPredecessors.Select("WAWPID = '" & WAWPID & "'")

 'Every predecessor should have a start date

 If Row1.Item("SimPredStart") = "" Then

 WhetherOrNotReady = False

 Exit For

 End If

 'For 'FS' predecessors, they should have estimated finish

date

 If Not Row1.Item("WAWPRel1") Is DBNull.Value Then

 If CStr(Row1.Item("WAWPRel1")) = "FS" Then

 If Row1.Item("EstimatedPredFinish") = "" Then

 WhetherOrNotReady = False

 Exit For

 End If

 End If

 End If

 'for 'FF' predecessors, they should have estimated finish

date

 If Not Row1.Item("WAWPRel2") Is DBNull.Value Then

 If CStr(Row1.Item("WAWPRel2")) = "FF" Then

 If Row1.Item("EstimatedPredFinish") = "" Then

 WhetherOrNotReady = False

 Exit For

 End If

 End If

 End If

 Next

 If WhetherOrNotReady Then

 If Not PossibleReadyWAWPList.Contains(WAWPID) Then

 PossibleReadyWAWPList.Add(WAWPID)

 End If

 Else

 NotReadyWAWPList.Add(WAWPID)

 End If

 End If

 Next

 'Find Earliest possible start date from precedence relationships and

from Early start constraint

 'This check is performed in every time step. it is beneficial to the

cases when predecessors' durations are variable.

 For i As Integer = 0 To PossibleReadyWAWPList.Count - 1

 Dim WAWPID As Integer = PossibleReadyWAWPList.Item(i)

 'Find corresponding WP

306

 Dim WPID As Integer

 If tblWAWP.Rows.Contains(WAWPID) Then

 WPID = tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkpackageID")

 End If

 'Find its own duration and calendar ID

 Dim WAWPDuration As Double

 Dim WAWPCalendarID As Integer

 If tblWorkpackages.Rows.Contains(WPID) Then

 WAWPCalendarID =

CInt(tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID"))

 End If

 If tblWAWP.Rows.Contains(WAWPID) Then

 WAWPDuration =

CDbl(tblWAWP.Rows.Find(WAWPID).Item("WAWPEstDuration"))

 End If

 WAWPDuration = CalculateDurationFromDaysToHours(WAWPCalendarID,

WAWPDuration)

 'From predecessors

 Dim EarliestPossibleStartDate As Date = #1/1/2000#

 For Each Row As DataRow In tblWAWPPredecessors.Select("WAWPID =

'" & WAWPID & "'")

 'Get Predecessor Info

 Dim WAWPPredID As Integer = CInt(Row.Item("WAWPPredID"))

 Dim WAWPPredSimStart As Date = CDate(Row.Item("SimPredStart"))

 Dim WAWPPredEstimatedFinish As Date =

System.DateTime.MinValue

 If Not Row.Item("EstimatedPredFinish") = "" Then

 WAWPPredEstimatedFinish =

CDate(Row.Item("EstimatedPredFinish"))

 End If

 Dim Rel1 As String = ""

 Dim Rel2 As String = ""

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 Rel1 = CStr(Row.Item("WAWPRel1"))

 End If

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 End If

 Dim Lag1 As Double = 0

 Dim Lag2 As Double = 0

 If Not Row.Item("WAWPLag1") Is DBNull.Value Then

 Lag1 = CStr(Row.Item("WAWPLag1"))

 End If

 If Not Row.Item("WAWPLag2") Is DBNull.Value Then

 Lag2 = CStr(Row.Item("WAWPLag2"))

 End If

 'Get Predecessor duration

 Dim WAWPPredDuration As Double =

MyWAWPs(WAWPPredID).DurationOverride

 Dim WAWPPredCalendarID As Integer =

MyWAWPs(WAWPPredID).CalendarID

 WAWPPredDuration =

CalculateDurationFromDaysToHours(WAWPPredCalendarID, WAWPPredDuration)

307

 '**************************Debug

point************************************

 'Dim SimTimeNow1 As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'If WAWPID = 324003 And DateTime.Compare(SimTimeNow1,

#6/14/2011 12:00:00 PM#) >= 0 Then

 ' MessageBox.Show("the start time of 106001 is estimated

as " & EarliestPossibleStartDate & " at time " & SimTimeNow1)

 'End If

 '**************************Debug

point************************************

 'Calculate the 'Lastest' early start date (from predecessor)

 If Not Rel1 = "" Then

 If Rel1 = "SS" Then

 'If the relationship is 'SS', calculate

EarlyStartDeterminedByRel1 From start time

 Dim EarlyStartDeterminedByRel1 As Date =

CalculateSuccessorTaskStartDate(WAWPPredSimStart, Rel1, Lag1,

WAWPPredCalendarID, WAWPPredDuration, WAWPDuration)

 If DateTime.Compare(EarliestPossibleStartDate,

EarlyStartDeterminedByRel1) < 0 Then

 EarliestPossibleStartDate =

EarlyStartDeterminedByRel1

 End If

 ElseIf Rel1 = "FS" Then

 'If the relationship is 'FS', calculate

EarlyStartDeterminedByRel1 From estimated finish time

 Dim EarlyStartDeterminedByRel1 As Date =

CalculateSecondDate(WAWPPredEstimatedFinish, Lag1, WAWPPredCalendarID)

 If DateTime.Compare(EarliestPossibleStartDate,

EarlyStartDeterminedByRel1) < 0 Then

 EarliestPossibleStartDate =

EarlyStartDeterminedByRel1

 End If

 End If

 End If

 If Not Rel2 = "" Then

 If Rel2 = "FF" Then

 'If the relationship is 'FF', calculate

EarlyStartDeterminedByRel1 From estimated finish time

 Dim EarlyStartDeterminedByRel2 As Date =

CalculateSecondDate(WAWPPredEstimatedFinish, Lag2 - WAWPDuration,

WAWPPredCalendarID)

 If DateTime.Compare(EarliestPossibleStartDate,

EarlyStartDeterminedByRel2) < 0 Then

 EarliestPossibleStartDate =

EarlyStartDeterminedByRel2

 End If

 End If

 End If

 Next

 'Convert Current Sim Time to date

 Dim SimTimeNow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

308

 '**************************Debug

point************************************

 'If WAWPID = 324003 And DateTime.Compare(SimTimeNow, #6/14/2011

12:00:00 PM#) >= 0 Then 'And DateTime.Compare(EarliestPossibleStartDate,

#5/17/2011 1:00:00 PM#) <> 0 Then

 ' MessageBox.Show("the start time of 324003 is estimated as "

& EarliestPossibleStartDate & " at time " & SimTimeNow)

 'End If

 '**************************Debug

point************************************

 'From ES constraint

 Dim EarlyStartFromESConstraint As Date =

FindEarlyStartFromESConstraint(WAWPID)

 If DateTime.Compare(EarliestPossibleStartDate,

EarlyStartFromESConstraint) < 0 Then

 EarliestPossibleStartDate = EarlyStartFromESConstraint

 End If

 'From EF constraint

 Dim EarlyStartFromEFConstraint As Date =

FindEarlyStartFromEFConstraint(WAWPID)

 If DateTime.Compare(EarliestPossibleStartDate,

EarlyStartFromEFConstraint) < 0 Then

 EarliestPossibleStartDate = EarlyStartFromEFConstraint

 End If

 'if the earliest possible start date is at 5:00:00 pm which is

the end of that day, the system will automatically convert it to 7:00:00 am

of the next working day

 If EarliestPossibleStartDate.Hour = 17 Then

 EarliestPossibleStartDate =

FindTheNextWorkingDay(WAWPCalendarID, EarliestPossibleStartDate)

 End If

 'One of reasons for useing '<=' instead of "=", is beacause the

early start of a workpackage could be holidays, so when simulation jumps over

these holidays and if the condition is defined as ESSimTime =

MyEngine.TimeNow, then some of these workpackages might be overlooked!!!

 'Aonther reason is that because the simulation will jump over

5:00:00pm and directly to 7:00:00 am of the next working day

 If DateTime.Compare(EarliestPossibleStartDate, SimTimeNow) <= 0

Then

 ReadyWAWPs.Add(WAWPID)

 End If

 Next

 If ReadyWAWPs.Count <> 0 Then

 For i As Integer = 0 To ReadyWAWPs.Count - 1

 Dim WAWPID As Integer = ReadyWAWPs.Item(i)

 If Not ArrivedWAWPIDList.Contains(WAWPID) And Not

CompletedWAWPIDList.Contains(WAWPID) Then

 CreateWAWPEntity(WAWPID)

 '**************************Debug

point************************************

 'If WAWPID = 57 Then

309

 ' Dim SimTimenow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 ' MessageBox.Show("WAWPEntity " & WAWPID & " arrives

at " & SimTimenow)

 'End If

 '**************************Debug

point************************************

 End If

 Next

 End If

 End Sub

 Public Function FindTheNextWorkingDay(ByVal CalendarID As Integer, ByVal

OriginalDate As Date) As Date

 'Find Calendar Description

 Dim CalendarDesc As String = ""

 If tblCalendar.Rows.Contains(CalendarID) Then

 CalendarDesc =

CStr(tblCalendar.Rows.Find(CalendarID).Item("Calendar Description"))

 End If

 'First Find the next working day

 Dim IndexOfOriginalDate As Integer

 If tblCalendarDetail.Rows.Contains(OriginalDate.ToShortDateString)

Then

 IndexOfOriginalDate =

tblCalendarDetail.Rows.IndexOf(tblCalendarDetail.Rows.Find(OriginalDate.ToSho

rtDateString))

 End If

 Dim TheNextWorkingDay As Date

 Dim Workinghours As Integer = 0

 While Workinghours = 0

 IndexOfOriginalDate = IndexOfOriginalDate + 1

 Workinghours =

CInt(tblCalendarDetail.Rows(IndexOfOriginalDate).Item(CalendarDesc))

 TheNextWorkingDay =

tblCalendarDetail.Rows(IndexOfOriginalDate).Item("Date")

 End While

 'Add Start hour to the next working day

 Dim StartHour, HoursPerDay As Double

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 TheNextWorkingDay = TheNextWorkingDay.AddHours(StartHour)

 Return TheNextWorkingDay

 End Function

 Public Function CalculateDurationFromDaysToHours(ByVal CalendarID As

Integer, ByVal Duration As Double) As Double

 Dim ShiftsPerDay As Integer

 Dim WorkHoursPerShift As Integer

 If tblCalendar.Rows.Contains(CalendarID) Then

 ShiftsPerDay =

CInt(tblCalendar.Rows.Find(CalendarID).Item("Shifts per Day"))

310

 WorkHoursPerShift =

CInt(tblCalendar.Rows.Find(CalendarID).Item("Hours per Shift"))

 End If

 Duration = Duration * ShiftsPerDay * WorkHoursPerShift

 Return Duration

 End Function

 Public Sub CreateWAWPEntity(ByVal WAWPID As Integer)

 'Create WAWP entities

 'Add them to the arrival list

 Dim WAWP As New WorkAreaWorkpackageEntity

 WAWP.WAWPID = WAWPID

 InitializeWAWPEntity(WAWP)

 'Distinguish fully-completed, partially-completed or zero-completed

entities

 Dim OriginalDuration As Double =

CalculateDurationFromDaysToHours(WAWP.CalendarID, WAWP.DurationOverride)

 Dim NormReqResAmount As Integer = WAWP.ReqResAmount

 Dim TotalManHoursToBeAchieved As Double = NormReqResAmount *

OriginalDuration

 If WAWP.ManHoursCompleted = TotalManHoursToBeAchieved Then

 CompletedWAWPList.Add(WAWP)

 CompletedWAWPIDList.Add(WAWP.WAWPID)

 NumWAWPCompleted = NumWAWPCompleted + 1

 Else '0 =< completion percent < 100

 ArrivedWAWPList.Add(WAWP)

 ArrivedWAWPIDList.Add(WAWP.WAWPID)

 'Dim ReqResName As String = WAWP.ReqRes

 'ResourceWaitingLists(ReqResName).Add(WAWP)

 'Dim WorkAreaName As String = "WorkArea" &

WAWP.WorkAreaID.ToString

 'ResourceWaitingLists(WorkAreaName).Add(WAWP)

 'UnifiedWaitingList.Add(WAWP)

 NumWAWPArrived = NumWAWPArrived + 1

 End If

 'ActiveWAWPList.Add(WAWP)

 MyWAWPs.Add(WAWP.WAWPID, WAWP)

 End Sub

 Public Sub InitializeWAWPEntity(ByRef WAWP As WorkAreaWorkpackageEntity)

 Dim WAWPID As Integer = WAWP.WAWPID

 Dim WAWPDataRow As DataRow

 'Get WAWP info from tblWAWP

 If MyDataSet.Tables("tblWAWP").Rows.Contains(WAWPID) Then

 WAWPDataRow = MyDataSet.Tables("tblWAWP").Rows.Find(WAWPID)

 Else

 Throw New ArgumentException("WorkAreaWorkpackage does not exist!")

 End If

 WAWP.WAWPName = CStr(WAWPDataRow.Item("WAWPName"))

 WAWP.WPID = CInt(WAWPDataRow.Item("WAWPWorkpackageID"))

 WAWP.WorkAreaID = CInt(WAWPDataRow.Item("WAWPWorkAreaNumber"))

 WAWP.WorkAreaName = CStr(WAWPDataRow.Item("WADesignator"))

 WAWP.DurationOverride = CDbl(WAWPDataRow.Item("WAWPEstDuration"))

 If WAWPDataRow.Item("WAWPManHours") Is DBNull.Value Then

 WAWP.Manhours = 0

 Else

 WAWP.Manhours = CDbl(WAWPDataRow.Item("WAWPManHours"))

311

 End If

 If WAWPDataRow.Item("WAWPQauntity") Is DBNull.Value Then

 WAWP.KeyQty = 0

 Else

 WAWP.KeyQty = CDbl(WAWPDataRow.Item("WAWPQauntity"))

 End If

 'Get info from tblWP

 Dim WPDataRow As DataRow

 If MyDataSet.Tables("tblWorkpackages").Rows.Contains(WAWP.WPID) Then

 WPDataRow =

MyDataSet.Tables("tblWorkpackages").Rows.Find(WAWP.WPID)

 Else

 Throw New ArgumentException("Workpackage does not exist!")

 End If

 WAWP.ConstructionWorkArea =

CStr(WPDataRow.Item("WPConstructionWorkArea"))

 WAWP.ClassificationID = CInt(WPDataRow.Item("WPClassification"))

 WAWP.ClassificationDesc =

CStr(WPDataRow.Item("ClassificationDescription"))

 WAWP.CalendarID = CInt(WPDataRow.Item("WPCalendarID"))

 WAWP.Interruptible = CBool(WPDataRow.Item("WPInteruptable"))

 WAWP.WhetherOrNotCaptedRes = False

 'User input priority

 If Not WPDataRow.Item("WPPriority") Is DBNull.Value Then

 WAWP.Priority = CInt(WPDataRow.Item("WPPriority"))

 End If

 'find required resource

 If tblClassification.Rows.Contains(WAWP.ClassificationID) Then

 WAWP.ReqRes =

CStr(tblClassification.Rows.Find(WAWP.ClassificationID).Item("Craft"))

 'Assume that for each craft the normal request amount is 10

 WAWP.ReqResAmount = 10

 End If

 'Calculate hours have been completed

 If WAWPDataRow.Item("PercentComplete") Is DBNull.Value Then

 WAWP.ManHoursCompleted = 0

 Else

 WAWP.ManHoursCompleted =

CInt(WAWPDataRow.Item("PercentCompleted")) / 100 *

CalculateDurationFromDaysToHours(WAWP.CalendarID, WAWP.DurationOverride) *

WAWP.ReqResAmount

 End If

 'Note that not all workpackages would have a Early Start Constraint.

For those who do not have ES constraint, Only precedence relationship governs

its start!!!

 If Not WPDataRow.Item("WPEarlyStartOverride") Is DBNull.Value Then

 WAWP.ES = CDate(WPDataRow.Item("WPEarlyStartOverride"))

 Else

 If Not WPDataRow.Item("WPEarlyStart") Is DBNull.Value Then

 WAWP.ES = CDate(WPDataRow.Item("WPEarlyStart"))

 End If

 End If

 If Not WPDataRow.Item("WPLateFinishOverride") Is DBNull.Value Then

312

 WAWP.LF = CDate(WPDataRow.Item("WPLateFinishOverride"))

 Else

 If Not WPDataRow.Item("WPLateFinish") Is DBNull.Value Then

 WAWP.LF = CDate(WPDataRow.Item("WPLateFinish"))

 End If

 End If

 If Not WPDataRow.Item("WPEarlyFinish") Is DBNull.Value Then

 WAWP.EF = CDate(WPDataRow.Item("WPEarlyFinish"))

 End If

 'Priority related_1

 'Add the calculated Late Finish Date (in TotalFloatCalculation

Function)

 'This Calculated Late Finish is used to prioritize entities

 WAWP.TotalFloat =

CInt(tblWAWPTotalFloat.Rows.Find(WAWP.WAWPID).Item("TF"))

 WAWP.CalculatedLF =

CDate(tblWAWPTotalFloat.Rows.Find(WAWP.WAWPID).Item("LF"))

 WAWP.CalculatedES =

CDate(tblWAWPTotalFloat.Rows.Find(WAWP.WAWPID).Item("ES"))

 'Priority related_2

 'Calculate the number of successors that the current WAWP has

 Dim SuccessorList As New List(Of Integer)

 'FindAllSuccessorsToAWorkAreaWorkpackage subroutine does not consider

'SS' or 'SF' relationship and should be fixed!

 FindAllSuccessorsToAWorkAreaWorkpackage(WAWP.WAWPID, SuccessorList)

 WAWP.NumOfSuccessors = SuccessorList.Count

 'Initialize the amount of resource that the WAWP has captured,

usually zero!!

 WAWP.CurrentReqResNameQtyPair.Add(WAWP.ReqRes, 0)

 WAWP.CurrentReqResNameQtyPair.Add(WAWP.WorkAreaName, 0)

 'Calculate the priority for the WAWP entity

 CalculatePriority(WAWP)

 'Find Precedence info for the WAWP entity

 FindPreds(WAWP)

 FindSuccs(WAWP)

 End Sub

 Public Sub FindPreds(ByRef WAWP As WorkAreaWorkpackageEntity)

 Dim WAWPID, WAWPPredID As Integer

 Dim Rel1, Rel2 As String

 Dim Lag1, Lag2 As Double

 WAWPID = WAWP.WAWPID

 For Each Row As DataRow In

MyDataSet.Tables("tblWAWPPredecessors").Select("WAWPID = '" & WAWPID & "'")

 Rel1 = ""

 Rel2 = ""

 Lag1 = 0

 Lag2 = 0

 'Find a predecessor

313

 'Get the WAWPID of the predecessor

 WAWPPredID = CInt(Row.Item("WAWPPredID"))

 'Get the Rel1 info

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 Rel1 = CStr(Row.Item("WAWPRel1"))

 Lag1 = CDbl(Row.Item("WAWPLag1"))

 End If

 'Get the Rel2 info

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 Lag2 = CDbl(Row.Item("WAWPLag2"))

 End If

 'Add the predecessor into 'WAWPPreds' attribute

 If WAWP.WAWPPreds.ContainsKey(WAWPID) Then

 'Not the first time to add predecessors

 If Not WAWP.WAWPPreds(WAWPID).Contains(WAWPPredID) Then

 WAWP.WAWPPreds(WAWPID).Add(WAWPPredID)

 'Add relationship type

 WAWP.WAWPPredRel1.Add(WAWPPredID, Rel1)

 WAWP.WAWPPredRel2.Add(WAWPPredID, Rel2)

 'Add Lags

 WAWP.WAWPPredLag1.Add(WAWPPredID, Lag1)

 WAWP.WAWPPredLag2.Add(WAWPPredID, Lag2)

 Else

 Throw New ArgumentException("Error in WAWPPredecessor!")

 End If

 Else

 'it is the first time to add predecessors

 Dim WAWPPreds As New List(Of Integer)

 WAWPPreds.Add(WAWPPredID)

 WAWP.WAWPPreds.Add(WAWPID, WAWPPreds)

 'Every Predecessor has Only ONE Rel1 or/and Rel2 at most

 WAWP.WAWPPredRel1.Add(WAWPPredID, Rel1)

 WAWP.WAWPPredRel2.Add(WAWPPredID, Rel2)

 'Add Lags

 WAWP.WAWPPredLag1.Add(WAWPPredID, Lag1)

 WAWP.WAWPPredLag2.Add(WAWPPredID, Lag2)

 End If

 Next

 End Sub

 Public Sub FindSuccs(ByRef WAWP As WorkAreaWorkpackageEntity)

 Dim WAWPID, WAWPSuccID As Integer

 Dim Rel1, Rel2 As String

 Dim Lag1, Lag2 As Double

 WAWPID = WAWP.WAWPID

 For Each Row As DataRow In

MyDataSet.Tables("tblWAWPPredecessors").Select("WAWPPredID = '" & WAWPID &

"'")

 Rel1 = ""

 Rel2 = ""

 Lag1 = 0

 Lag2 = 0

 If Row.Item("WAWPPredID") = WAWPID Then

 WAWPSuccID = CInt(Row.Item("WAWPID"))

314

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 Rel1 = CStr(Row.Item("WAWPRel1"))

 Lag1 = CDbl(Row.Item("WAWPLag1"))

 End If

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 Lag2 = CDbl(Row.Item("WAWPLag2"))

 End If

 If WAWP.WAWPSuccs.ContainsKey(WAWPID) Then

 If Not WAWP.WAWPSuccs(WAWPID).Contains(WAWPSuccID) Then

 WAWP.WAWPSuccs(WAWPID).Add(WAWPSuccID)

 WAWP.WAWPSuccRel1.Add(WAWPSuccID, Rel1)

 WAWP.WAWPSuccRel2.Add(WAWPSuccID, Rel2)

 WAWP.WAWPSuccLag1.Add(WAWPSuccID, Lag1)

 WAWP.WAWPSuccLag2.Add(WAWPSuccID, Lag2)

 Else

 Throw New ArgumentException("Error in WAWPSuccessor!")

 End If

 Else

 Dim WAWPSuccs As New List(Of Integer)

 WAWPSuccs.Add(WAWPSuccID)

 WAWP.WAWPSuccs.Add(WAWPID, WAWPSuccs)

 WAWP.WAWPSuccRel1.Add(WAWPSuccID, Rel1)

 WAWP.WAWPSuccRel2.Add(WAWPSuccID, Rel2)

 WAWP.WAWPSuccLag1.Add(WAWPSuccID, Lag1)

 WAWP.WAWPSuccLag2.Add(WAWPSuccID, Lag2)

 End If

 End If

 Next

 End Sub

 Public Function FindEarlyStartFromESConstraint(ByVal MyWAWPID As Integer)

As Date

 Dim WPID, CalendarID As Integer

 Dim ESDateFromESConstraint As Date = DateTime.MinValue

 'find WP (at this point of time, WAWP has not been generated. thus,

have to use datatable)

 If tblWAWP.Rows.Contains(MyWAWPID) Then

 WPID = CInt(tblWAWP.Rows.Find(MyWAWPID).Item("WAWPWorkpackageID"))

 End If

 'find ES and Calender ID

 If tblWorkpackages.Rows.Contains(WPID) Then

 CalendarID =

CInt(tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID"))

 If Not

tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStartOverride") Is DBNull.Value

Then

315

 ESDateFromESConstraint =

CDate(tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStartOverride"))

 Else

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStart")

Is DBNull.Value Then

 ESDateFromESConstraint =

CDate(tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStart"))

 End If

 End If

 End If

 Dim StartHour, HoursPerDay As Double

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 'By default, a date is supposed to start at 12:00 am

 ESDateFromESConstraint = ESDateFromESConstraint.AddHours(StartHour)

 Return ESDateFromESConstraint

 End Function

 Public Function FindEarlyStartFromEFConstraint(ByVal MyWAWPID As Integer)

As Date

 Dim WPID, CalendarID As Integer

 Dim Duration As Double

 Dim ESDateFromEFConstraint As Date = DateTime.MinValue

 Dim EFDate As Date = DateTime.MinValue

 'find WP (at this point of time, WAWP has not been generated. thus,

have to use datatable)

 If tblWAWP.Rows.Contains(MyWAWPID) Then

 WPID = CInt(tblWAWP.Rows.Find(MyWAWPID).Item("WAWPWorkpackageID"))

 End If

 'find EF and Calender ID

 If tblWorkpackages.Rows.Contains(WPID) Then

 CalendarID =

CInt(tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID"))

 Duration =

CDbl(tblWorkpackages.Rows.Find(WPID).Item("WPDurationOverride"))

 'convert from days to hours

 Duration = CalculateDurationFromDaysToHours(CalendarID, Duration)

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyFinish") Is

DBNull.Value Then

 EFDate =

CDate(tblWorkpackages.Rows.Find(WPID).Item("WPEarlyFinish"))

 End If

 End If

 'find start hour

 Dim StartHour, HoursPerDay As Double

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 'If Early Finish Constraint exists

 If Not EFDate = DateTime.MinValue Then

 'For finish time, it should add StartHour + HoursPerDay

 EFDate = EFDate.AddHours(StartHour + HoursPerDay)

 ESDateFromEFConstraint = CalculateSecondDate(EFDate, -1 *

Duration, CalendarID)

 End If

316

 If ESDateFromEFConstraint.Hour = 17 Then

 ESDateFromEFConstraint = FindTheNextWorkingDay(CalendarID,

ESDateFromEFConstraint)

 End If

 Return ESDateFromEFConstraint

 End Function

 Public Sub FindStartHour_HoursPerDay(ByVal CalendarID As Integer, ByRef

HoursPerDay As Double, ByRef StartHour As Double)

 If tblCalendar.Rows.Contains(CalendarID) Then

 HoursPerDay = CDbl(tblCalendar.Rows.Find(CalendarID).Item("Hours

per Shift")) * CDbl(tblCalendar.Rows.Find(CalendarID).Item("Shifts per Day"))

 StartHour =

CDate(tblCalendar.Rows.Find(CalendarID).Item("StartTime")).Hour +

CDate(tblCalendar.Rows.Find(CalendarID).Item("StartTime")).Minute / 60

 Else

 Throw New ArgumentException("Calendar ID does not exist in

Calendar Table")

 End If

 End Sub

 Public Sub CalculatePriority(ByRef WAWPEntity As

WorkAreaWorkpackageEntity)

 ''Based on free float

 'Dim TimeNow As Integer = MyEngine.TimeNow

 'Dim WAWPLateFinishDate As Date = WAWPEntity.LF

 ''Use default duration (or it could also use default manhours)

 'Dim WAWPDuration As Double = WAWPEntity.DurationOverride

 'Dim WAWPCalendarID As Integer = WAWPEntity.CalendarID

 'WAWPDuration = CalculateDurationFromDaysToHours(WAWPCalendarID,

WAWPDuration)

 ''Calculate LateStart date

 'Dim WAWPLateStartDate As Date =

CalculateSecondDate(WAWPLateFinishDate, -1 * WAWPDuration, WAWPCalendarID)

 ''Convert it to simulation time

 'Dim WAWPLateStartSimulationTime As Integer =

WAWPLateStartDate.Subtract(ProjectStartDate).TotalHours * Converter

 ''Calculate free float

 'Dim FF As Integer = Max(WAWPLateStartSimulationTime - TimeNow, 0)

 'Dim Priority As Integer = Round(100000 / (1 + FF))

 'WAWPEntity.Priority = Priority

 ''MessageBox.Show(WAWPEntity.WAWPID & " has priority of " & Priority)

 'Use current float model

 'Get the Late finish date

 Dim WAWPLateFinishDate As Date = WAWPEntity.CalculatedLF

 'Get the Time NOW

 Dim SimTimenow As Date = ProjectStartDate.AddHours(MyEngine.TimeNow /

Converter)

 'Calculate the balance duration or the duration required to complete

the WAWP

 'There are two situations at this point: 1) WAWP that has not started

yet; 2) WAWP that has been allocated resources earlier

 Dim WAWPDuration As Double

317

 Dim WAWPCalendarID As Integer = WAWPEntity.CalendarID

 If WAWPEntity.WhetherOrNotCaptedRes = False Then

 'For WAWP that has not started yet, use the default duration

 WAWPDuration = WAWPEntity.DurationOverride

 WAWPDuration = CalculateDurationFromDaysToHours(WAWPCalendarID,

WAWPDuration)

 Else

 'For WAWP that has been allocated resources earlier

 Dim WAWPEstimedFinishDate As Date = WAWPEntity.SimEstimatedFinish

 WAWPDuration = CalculateSpanBetweenDates(SimTimenow,

WAWPEstimedFinishDate, WAWPCalendarID)

 End If

 'Calculate Current Float

 Dim WAWPCurrentFloat As Integer

 If DateTime.Compare(WAWPLateFinishDate, SimTimenow) >= 0 Then

 WAWPCurrentFloat = CalculateSpanBetweenDates(SimTimenow,

WAWPLateFinishDate, WAWPCalendarID) - WAWPDuration

 Else

 WAWPCurrentFloat = CalculateSpanBetweenDates(WAWPLateFinishDate,

SimTimenow, WAWPCalendarID) - WAWPDuration

 End If

 'Calculate priority

 Dim WAWPPriority As Integer

 WAWPPriority = 100000 + -1 * WAWPCurrentFloat

 WAWPEntity.Priority = WAWPPriority

 End Sub

 Public Sub ResourceAllocate()

 'Clear the ResourceCapturedWAWPList

 ResourceCapturedWAWPList.Clear()

 'At the beginning of every time step, each WAWP entity has captured

ZERO resource

 For i As Integer = 0 To ArrivedWAWPList.Count - 1

 Dim WAWPEntity As WorkAreaWorkpackageEntity =

ArrivedWAWPList.Item(i)

 Dim ReqResName As String = WAWPEntity.ReqRes

 'Right now Has captured 0 resource

 WAWPEntity.CurrentReqResNameQtyPair(ReqResName) = 0

 Dim WorkAreaName As String = WAWPEntity.WorkAreaName

 WAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) = 0

 Next

 'Allocate both resource and work area through the unified waiting

list

 If ArrivedWAWPList.Count = 0 Then

 Exit Sub

 End If

 ''Calculate priority based on 'Current Float'

 'For Each WAWPEntity As WorkAreaWorkpackageEntity In ArrivedWAWPList

 ' CalculatePriority(WAWPEntity)

 'Next

 ArrivedWAWPList.Sort()

318

 'Identify currentWAWPList only includes WAWPs that are currently in

progress (or have been processed in the previous time steps)

 'Since no interruption is allowed, then we can use

"WhetherOrNotCaptedRes" to check if the WAWP entity is current or not

 Dim CurrentWAWPList As New List(Of WorkAreaWorkpackageEntity)

 For Each CurrentWAWP As WorkAreaWorkpackageEntity In ArrivedWAWPList

 If CurrentWAWP.WhetherOrNotCaptedRes = True Then

 CurrentWAWPList.Add(CurrentWAWP)

 End If

 Next

 'Allocation part 1

 'Assign Minimum Amount of Resource and required work area to Current

WAWPs

 If CurrentWAWPList.Count <> 0 Then

 For Each CurrentWAWPEntity As WorkAreaWorkpackageEntity In

CurrentWAWPList

 '**************************Debug

point************************************

 'Dim SimTimenow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'If DateTime.Compare(SimTimenow, #11/12/2012 7:00:00 AM#) >=

0 Then

 ' MessageBox.Show("WAWPEntity " & CurrentWAWPEntity.WAWPID

& " arrives at " & SimTimenow)

 'End If

 '**************************Debug

point************************************

 'find MinPercent

 Dim NormReqResAmount As Integer =

CurrentWAWPEntity.ReqResAmount

 Dim ReqResName As String = CurrentWAWPEntity.ReqRes

 Dim MinResPercent As Double =

ResourceMinPercentPair(ReqResName)

 Dim MinResAmount As Integer = CInt(MinResPercent *

NormReqResAmount)

 Dim WorkAreaName As String = CurrentWAWPEntity.WorkAreaName

 Dim NumOfWorkers As Integer = MinResAmount

 'Record how much resource it has captured

 CurrentWAWPEntity.CurrentReqResNameQtyPair(ReqResName) =

MinResAmount

 CurrentWAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) =

NumOfWorkers

 'Update the available resource quantity

 Dim AvailResQty As Integer =

ResourceAvailQuantityPair(ReqResName)

 AvailResQty = AvailResQty - MinResAmount

 ResourceAvailQuantityPair(ReqResName) = AvailResQty

 'Update the work area congestion limit

 Dim AvailWorkAreaLimit As Integer =

ResourceAvailQuantityPair(WorkAreaName)

 AvailWorkAreaLimit = AvailWorkAreaLimit - NumOfWorkers

 ResourceAvailQuantityPair(WorkAreaName) = AvailWorkAreaLimit

319

 'Add to ResourceCapturedList

 ResourceCapturedWAWPList.Add(CurrentWAWPEntity)

 Next

 End If

 'Allocation part 2

 'All WAWPs (including Current and Newly Arrived ones) will compete

for the rest of the available resource

 'Here, Greed algorithm is used

 GreedyResourceAllocationMethod(ArrivedWAWPList)

 'Record or Update estimated finish date for all WAWP entities that

have captured the resource

 ArrivedWAWPList.Sort()

 For Each CurrentWAWPEntity As WorkAreaWorkpackageEntity In

ArrivedWAWPList

 'If CurrentWAWPEntity.WAWPID = 59 Then

 ' MessageBox.Show("Debugging")

 'End If

 Dim ReqResName As String = CurrentWAWPEntity.ReqRes

 If CurrentWAWPEntity.CurrentReqResNameQtyPair(ReqResName) > 0

Then

 'Calculate the estimated finish date for each WAWP that

captured the resource

 Dim EstimatedFinishDate As Date =

CalculateEstimatedSimFinish(CurrentWAWPEntity)

 '**************************Debug

point************************************

 'Dim SimTimenow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'If CurrentWAWPEntity.WAWPID = 312003 And

DateTime.Compare(SimTimenow, #6/16/2011 11:00:00 AM#) >= 0 Then

 ' MessageBox.Show("312003 estimated finish date is " &

EstimatedFinishDate & " at time " & SimTimenow)

 'End If

 '**************************Debug

point************************************

 CurrentWAWPEntity.SimEstimatedFinish = EstimatedFinishDate

 'Inform this finish date to those successors that have 'FS'

or 'FF' relationship with it

 For Each Row As DataRow In

tblWAWPPredecessors.Select("WAWPPredID = '" & CurrentWAWPEntity.WAWPID & "'")

 Row.Item("EstimatedPredFinish") =

CStr(EstimatedFinishDate)

 Next

 End If

 Next

 Debug.WriteLine("***Break line***")

 Debug.WriteLine("Arrived WAWPs")

 For i As Integer = 0 To ArrivedWAWPIDList.Count - 1

 Debug.WriteLine(ArrivedWAWPIDList.Item(i))

 Next

 Debug.WriteLine("Resource Captured WAWPs")

 For i As Integer = 0 To ResourceCapturedWAWPList.Count - 1

 'Debug.WriteLine(ResourceCapturedWAWPList.Count)

 Debug.WriteLine(ResourceCapturedWAWPList.Item(i).WAWPID)

 Next

320

 Debug.WriteLine("Completed WAWPs")

 For i As Integer = 0 To CompletedWAWPIDList.Count - 1

 Debug.WriteLine(CompletedWAWPIDList.Item(i))

 Next

 End Sub

 Public Sub GreedyResourceAllocationMethod(ByRef ArrivedWAWPList As

List(Of WorkAreaWorkpackageEntity))

 '"greedy" means it tends to satisfy higher priority WAWP entity (to

its normal resource level) before it continues with lower priority WAWP

entities

 'Sort the WAWP List according to Calculated Late Finish and Number of

Successors

 ArrivedWAWPList.Sort()

 'Allocate the resource and workarea that is left from the Allocation

Step 1

 For Each WAWPEntity As WorkAreaWorkpackageEntity In ArrivedWAWPList

 '**************************Debug

point************************************

 'Dim SimTimeNow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'If WAWPEntity.WAWPID = 41 Then

 ' MessageBox.Show(WAWPEntity.WAWPID & " arrives at " &

SimTimeNow)

 'End If

 'If DateTime.Compare(SimTimeNow, #11/12/2012 7:00:00 AM#) >= 0

Then

 ' MessageBox.Show("WAWPEntity " & WAWPEntity.WAWPID & "

arrives")

 'End If

 '**************************Debug

point************************************

 'find the amount of resource available and the work area

congestion limit

 Dim ResName As String = WAWPEntity.ReqRes

 Dim AvailResQty As Integer = ResourceAvailQuantityPair(ResName)

 Dim WorkAreaName As String = WAWPEntity.WorkAreaName

 Dim AvailWorkArea As Integer =

ResourceAvailQuantityPair(WorkAreaName)

 Dim CombinedLimit As Integer = Min(AvailResQty, AvailWorkArea)

 '**************************Debug

point************************************

 'If ResName = "PF" Then

 ' If AvailWorkArea < AvailResQty And AvailWorkArea >= 8 Then

 ' Dim SimTimeNow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 ' MessageBox.Show("WAWP ID " & WAWPEntity.WAWPID & " is

limited by congest limit at time " & SimTimeNow)

 ' End If

 'End If

 '**************************Debug

point************************************

 'Save time to go through the whole list

 'If CombinedLimit = 0 Then

321

 ' GoTo NextWAWP

 'End If

 'Decide how much resource it can capture

 'The amount of resouce to be requested should be re-calculated

ONLY WHEN the WAWP happen to have 'FF' predecessor AND there is a possibility

that this 'FF' might be violated (due to delay of the predecessors)

 'Note that these estimated finish dates are determined or updated

in the previous time step, NOT the current one!!!

 Dim RequestedResourceAmount As Integer

 'Check if the WAWP has a 'FF' predecessor

 Dim WhetherOrNotHasFFPredecessor As Boolean = False

 For Each DataRow As DataRow In tblWAWPPredecessors.Select("WAWPID

= '" & WAWPEntity.WAWPID & "'")

 If Not DataRow.Item("WAWPRel2") Is DBNull.Value Then

 If CStr(DataRow.Item("WAWPRel2")) = "FF" Then

 WhetherOrNotHasFFPredecessor = True

 Exit For

 End If

 End If

 Next

 'Get the normal amount it can request

 Dim NormReqResAmount As Integer = WAWPEntity.ReqResAmount

 If WhetherOrNotHasFFPredecessor Then

 RequestedResourceAmount =

CalculateAmountOfResourceToBeRequested(WAWPEntity) -

WAWPEntity.CurrentReqResNameQtyPair(ResName) 'minus the amount that has been

captured in the allocation part 1

 Else

 RequestedResourceAmount = NormReqResAmount -

WAWPEntity.CurrentReqResNameQtyPair(ResName)

 End If

 'Also find its minimum resource requirement

 Dim MinResPercent As Double = ResourceMinPercentPair(ResName)

 Dim MinResAmount As Integer = CInt(MinResPercent *

NormReqResAmount)

 '**************************Debug

point************************************

 'If WAWPEntity.WAWPID = 312003 And DateTime.Compare(SimTimeNow,

#6/16/2011 11:00:00 AM#) >= 0 Then

 ' MessageBox.Show("The WAWP 312003 want to capture " &

RequestedResourceAmount & " at time " & SimTimeNow & " the available amount

is " & AvailResQty)

 'End If

 '**************************Debug

point************************************

 'Check if it is possible to allocate resource to current WAWP

 If CombinedLimit >= RequestedResourceAmount Then

 'Update the amount of resource the WAWP has captured

 WAWPEntity.CurrentReqResNameQtyPair(ResName) =

WAWPEntity.CurrentReqResNameQtyPair(ResName) + RequestedResourceAmount

 'Update the available resource quantity

322

 ResourceAvailQuantityPair(ResName) = AvailResQty -

RequestedResourceAmount

 'Update the work space the WAWP has captured

 WAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) =

WAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) + RequestedResourceAmount

 'Update the work area congestion limit

 ResourceAvailQuantityPair(WorkAreaName) = AvailWorkArea -

RequestedResourceAmount

 ElseIf CombinedLimit < RequestedResourceAmount And

CombinedLimit >= MinResAmount - WAWPEntity.CurrentReqResNameQtyPair(ResName)

And CombinedLimit > 0 Then

 '**************************Debug

point************************************

 'Dim SimTimeNow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'MessageBox.Show("WAWP ID " & WAWPEntity.WAWPID & " is

limited by congestion limit at time " & SimTimeNow)

 '**************************Debug

point************************************

 'if still satisfy the minimum resource requirement, then

assign all the resource left to the current WAWP entity

 WAWPEntity.CurrentReqResNameQtyPair(ResName) =

WAWPEntity.CurrentReqResNameQtyPair(ResName) + CombinedLimit

 'Update the available resource quantity

 ResourceAvailQuantityPair(ResName) = AvailResQty -

CombinedLimit

 'Update the work area congestion limit

 WAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) =

WAWPEntity.CurrentReqResNameQtyPair(WorkAreaName) + CombinedLimit

 ResourceAvailQuantityPair(WorkAreaName) = AvailWorkArea -

CombinedLimit

 Else

 'Dim SimTimeNow As Date =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 'MessageBox.Show("WAWP ID " & WAWPEntity.WAWPID & " is

limited by congestion limit at time " & SimTimeNow)

 GoTo NextWAWP

 End If

 'Record the simulation start date if it is a newly arrived WAWP

entity

 If WAWPEntity.WhetherOrNotCaptedRes = False Then

 WAWPEntity.WhetherOrNotCaptedRes = True

 WAWPEntity.SimStart =

ProjectStartDate.AddHours(MyEngine.TimeNow / Converter)

 For Each Row As DataRow In

tblWAWPPredecessors.Select("WAWPPredID = '" & WAWPEntity.WAWPID & "'")

 If Row.Item("SimPredStart") = "" Then

 Row.Item("SimPredStart") = CStr(WAWPEntity.SimStart)

 End If

 Next

 End If

323

 'For recording the estimated finish date, it should be done after

the whole Greedy Resource Allocation Method has been performed

 'So it is moved to ResourceAllocate subroutine

 'Add it to ResouceCapturedList

 If Not ResourceCapturedWAWPList.Contains(WAWPEntity) Then

 ResourceCapturedWAWPList.Add(WAWPEntity)

 End If

NextWAWP:

 Next

 End Sub

 Public Function CalculateAmountOfResourceToBeRequested(ByVal WAWPEntity

As WorkAreaWorkpackageEntity) As Integer

 ''True' means FF precedence relationship is maintained; while 'False'

means FF precedence relationship has been violated

 Dim WhetherOrNotMaintained As Boolean = True

 'Calculate manhours left

 Dim WAWPID As Integer = WAWPEntity.WAWPID

 Dim WPID As Integer = WAWPEntity.WPID

 Dim WAWPCalendarID As Integer = WAWPEntity.CalendarID

 Dim ResName As String = WAWPEntity.ReqRes

 Dim NormReqResAmount As Integer = WAWPEntity.ReqResAmount

 'Dim AlreadyCapResAmount As Integer =

WAWPEntity.CurrentReqResNameQtyPair(ResName)

 Dim OriginalDuration As Double =

CalculateDurationFromDaysToHours(WAWPCalendarID, WAWPEntity.DurationOverride)

 Dim TotalManHoursToBeAchieved As Double = NormReqResAmount *

OriginalDuration

 Dim ManHoursHaveAchieved As Double = WAWPEntity.ManHoursCompleted

 Dim ManHoursLeft As Double = TotalManHoursToBeAchieved -

ManHoursHaveAchieved

 '**************************Debug

point************************************

 'Dim SimTimenow As Date = ProjectStartDate.AddHours(MyEngine.TimeNow

/ Converter)

 'If WAWPID = 312003 And DateTime.Compare(SimTimenow, #6/16/2011

11:00:00 AM#) >= 0 Then

 ' MessageBox.Show("312003 manhours left is " & ManHoursLeft & " at

time " & SimTimenow)

 'End If

 '**************************Debug

point************************************

 'Suppose we can capture 100% of resource

 Dim PossibleDurationLeft As Double = ManHoursLeft / NormReqResAmount

 Dim PossibleFinishDate As Date =

CalculateSecondDate(ProjectStartDate.AddHours(MyEngine.TimeNow),

PossibleDurationLeft, WAWPCalendarID)

 'find Finish date constraint

 Dim FinishDateFromFFConstraint As Date = System.DateTime.MinValue

 For Each Row As DataRow In tblWAWPPredecessors.Select("WAWPID = '" &

WAWPID & "'")

 Dim WAWPPredID As Integer = Row.Item("WAWPPredID")

 Dim WAWPPredEstimatedFinish As Date

324

 If Not Row.Item("EstimatedPredFinish") = "" Then

 WAWPPredEstimatedFinish =

CDate(Row.Item("EstimatedPredFinish"))

 End If

 Dim WAWPPredCalendarID As Integer =

MyWAWPs(WAWPPredID).CalendarID

 Dim Rel2 As String = ""

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 End If

 Dim Lag2 As Double = 0

 If Not Row.Item("WAWPLag2") Is DBNull.Value Then

 Lag2 = CStr(Row.Item("WAWPLag2"))

 End If

 Dim EstFinDate As Date = System.DateTime.MinValue

 If Rel2 <> "" Then

 If Rel2 = "FF" Then

 EstFinDate = CalculateSecondDate(WAWPPredEstimatedFinish,

Lag2, WAWPPredCalendarID)

 End If

 End If

 If DateTime.Compare(FinishDateFromFFConstraint, EstFinDate) < 0

Then

 FinishDateFromFFConstraint = EstFinDate

 End If

 Next

 'Check if FF Precedence Constarint(s) will be maintained or not

 If DateTime.Compare(PossibleFinishDate, FinishDateFromFFConstraint) <

0 Then

 WhetherOrNotMaintained = False

 End If

 If WhetherOrNotMaintained Then

 Return NormReqResAmount

 Else

 'find the Correct duration left from now

 Dim CurrentSimDate = ProjectStartDate.AddHours(MyEngine.TimeNow /

Converter)

 Dim DurationLeft As Double =

CalculateSpanBetweenDates(CurrentSimDate, FinishDateFromFFConstraint,

WAWPCalendarID)

 'calculate the amount of resource that can be captured

 Dim ResourceAmount As Integer = CInt(ManHoursLeft / DurationLeft)

 Return ResourceAmount

 End If

 End Function

 Public Sub CalculateTotalfloat(ByVal tblWorkpackages As DataTable, ByVal

tblWAWP As DataTable, ByVal tblWAWPPredecessors As DataTable)

 'Create a new datatable to contain the total float information

 Dim tblTotalFloatCal As DataTable =

MyDataSet.Tables.Add("tblWAWPTotalFloat")

 Dim MyPrimaryKeycolumns As DataColumn()

 tblTotalFloatCal.Columns.Add("WAWPID", Type.GetType("System.Int32"))

 tblTotalFloatCal.Columns.Add("ES", Type.GetType("System.DateTime"))

325

 tblTotalFloatCal.Columns.Add("EF", Type.GetType("System.DateTime"))

 tblTotalFloatCal.Columns.Add("LS", Type.GetType("System.DateTime"))

 tblTotalFloatCal.Columns.Add("LF", Type.GetType("System.DateTime"))

 tblTotalFloatCal.Columns.Add("TF", Type.GetType("System.Double"))

 MyPrimaryKeycolumns = New DataColumn(0) {}

 MyPrimaryKeycolumns(0) = tblTotalFloatCal.Columns("WAWPID")

 tblTotalFloatCal.PrimaryKey = MyPrimaryKeycolumns

 'First WAWPs are those who have no predecessor

 Dim FirstWAWPIDs As New List(Of Integer)

 Dim LastWAWPIDs As New List(Of Integer)

 Dim WAWPHasPerformedForwardCal As New List(Of Integer)

 Dim WAWPHasPerformedBackwardCal As New List(Of Integer)

 For i As Integer = 0 To PredWAWPIDs.Count - 1

 If Not SuccWAWPIDs.Contains(PredWAWPIDs.Item(i)) Then

 If Not FirstWAWPIDs.Contains(PredWAWPIDs.Item(i)) Then

 FirstWAWPIDs.Add(PredWAWPIDs.Item(i))

 End If

 End If

 Next

 'Forward Calculation for WAWPs that do not have any predecessor

 For i As Integer = 0 To FirstWAWPIDs.Count - 1

 Dim WAWPID As Integer = FirstWAWPIDs.Item(i)

 Dim WPID, WAWPCalendarID As Integer

 Dim WAWPDuration As Double

 If tblWAWP.Rows.Contains(WAWPID) Then

 WPID = tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkpackageID")

 WAWPDuration =

tblWAWP.Rows.Find(WAWPID).Item("WAWPEstDuration")

 End If

 If tblWorkpackages.Rows.Contains(WPID) Then

 WAWPCalendarID =

tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID")

 WAWPDuration =

CalculateDurationFromDaysToHours(WAWPCalendarID, WAWPDuration)

 End If

 Dim ES As Date = ProjectStartDate ' at least the early start date

should be later than project start date

 Dim EarlyStartFromESConstraint As Date

 Dim EarlyStartFromEFConstraint As Date

 'if the WAWP has ES constraint, use its ES as its start date;

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStart") Is

DBNull.Value Then

 EarlyStartFromESConstraint =

FindEarlyStartFromESConstraint(WAWPID)

 If DateTime.Compare(ES, EarlyStartFromESConstraint) < 0 Then

 ES = EarlyStartFromESConstraint

 End If

 End If

 'if the WAWP has EF constraint, use its EF to calculate its

possible start date;

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPEarlyFinish") Is

DBNull.Value Then

326

 EarlyStartFromEFConstraint =

FindEarlyStartFromEFConstraint(WAWPID)

 If DateTime.Compare(ES, EarlyStartFromEFConstraint) < 0 Then

 ES = EarlyStartFromEFConstraint

 End If

 End If

 If ES.Hour = 17 Then

 ES = FindTheNextWorkingDay(WAWPCalendarID, ES)

 End If

 Dim EF As Date = CalculateSecondDate(ES, WAWPDuration,

WAWPCalendarID)

 Dim NewRow As DataRow = tblTotalFloatCal.NewRow

 NewRow.Item("WAWPID") = WAWPID

 NewRow.Item("ES") = ES

 NewRow.Item("EF") = EF

 NewRow.Item("LS") = DBNull.Value

 NewRow.Item("LF") = DBNull.Value

 NewRow.Item("TF") = DBNull.Value

 tblTotalFloatCal.Rows.Add(NewRow)

 If Not WAWPHasPerformedForwardCal.Contains(WAWPID) Then

 WAWPHasPerformedForwardCal.Add(WAWPID)

 End If

 Next

 'Forward Calculation Continue

 Dim TotalNumOfWAWP As Integer = tblWAWP.Rows.Count

 Dim WAWPHasAnalyzedInForwardCal As New List(Of Integer)

 Do

 For i As Integer = 0 To WAWPHasPerformedForwardCal.Count - 1

 Dim WAWPPredID As Integer = WAWPHasPerformedForwardCal.Item(i)

 'If WAWPPredID = 102001 Then

 ' MessageBox.Show("OK!")

 'End If

 Dim WAWPPredES As Date

 Dim WAWPPredEF As Date

 If tblTotalFloatCal.Rows.Contains(WAWPPredID) Then

 WAWPPredES =

CDate(tblTotalFloatCal.Rows.Find(WAWPPredID).Item("ES"))

 WAWPPredEF =

CDate(tblTotalFloatCal.Rows.Find(WAWPPredID).Item("EF"))

 End If

 If Not WAWPHasAnalyzedInForwardCal.Contains(WAWPPredID) Then

 For Each Row In tblWAWPPredecessors.Select("WAWPPredID =

'" & WAWPPredID & "'")

 'Find a succesor

 Dim WAWPID As Integer = Row.Item("WAWPID")

 Dim WAWPES As Date = DateTime.MinValue

 Dim WAWPEF As Date

 'Find its duration

 Dim WPID, WAWPCalendarID As Integer

 Dim WAWPDuration As Double

 If tblWAWP.Rows.Contains(WAWPID) Then

 WPID =

tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkpackageID")

327

 WAWPDuration =

tblWAWP.Rows.Find(WAWPID).Item("WAWPEstDuration")

 End If

 If tblWorkpackages.Rows.Contains(WPID) Then

 WAWPCalendarID =

tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID")

 WAWPDuration =

CalculateDurationFromDaysToHours(WAWPCalendarID, WAWPDuration)

 End If

 'Calculate the Early start and Early finish from

precedence relationship

 Dim Rel1 As String = ""

 Dim Rel2 As String = ""

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 Rel1 = CStr(Row.Item("WAWPRel1"))

 End If

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 End If

 Dim Lag1 As Double = 0

 Dim Lag2 As Double = 0

 If Not Row.Item("WAWPLag1") Is DBNull.Value Then

 Lag1 = CStr(Row.Item("WAWPLag1"))

 End If

 If Not Row.Item("WAWPLag2") Is DBNull.Value Then

 Lag2 = CStr(Row.Item("WAWPLag2"))

 End If

 If Not Rel1 = "" Then

 If Rel1 = "SS" Then

 WAWPES = CalculateSecondDate(WAWPPredES, Lag1,

WAWPCalendarID)

 ElseIf Rel1 = "FS" Then

 WAWPES = CalculateSecondDate(WAWPPredEF, Lag1,

WAWPCalendarID)

 End If

 End If

 If Not Rel2 = "" Then

 If Rel2 = "FF" Then

 WAWPEF = CalculateSecondDate(WAWPPredEF, Lag2,

WAWPCalendarID)

 If DateTime.Compare(WAWPES,

CalculateSecondDate(WAWPEF, -1 * WAWPDuration, WAWPCalendarID)) < 0 Then

 WAWPES = CalculateSecondDate(WAWPEF, -1 *

WAWPDuration, WAWPCalendarID)

 End If

 End If

 End If

 If WAWPES.Hour = 17 Then

 WAWPES = FindTheNextWorkingDay(WAWPCalendarID,

WAWPES)

 End If

 'Check early start and searly finish constraint

 Dim EarlyStartFromESConstraint As Date

 Dim EarlyStartFromEFConstraint As Date

328

 If Not

tblWorkpackages.Rows.Find(WPID).Item("WPEarlyStart") Is DBNull.Value Then

 EarlyStartFromESConstraint =

FindEarlyStartFromESConstraint(WAWPID)

 If DateTime.Compare(WAWPES,

EarlyStartFromESConstraint) < 0 Then

 WAWPES = EarlyStartFromESConstraint

 End If

 End If

 If Not

tblWorkpackages.Rows.Find(WPID).Item("WPEarlyFinish") Is DBNull.Value Then

 EarlyStartFromEFConstraint =

FindEarlyStartFromEFConstraint(WAWPID)

 If DateTime.Compare(WAWPES,

EarlyStartFromEFConstraint) < 0 Then

 WAWPES = EarlyStartFromEFConstraint

 End If

 End If

 WAWPEF = CalculateSecondDate(WAWPES, WAWPDuration,

WAWPCalendarID)

 'Record the Early start and Early finish

 If Not tblTotalFloatCal.Rows.Contains(WAWPID) Then

 Dim NewRow As DataRow = tblTotalFloatCal.NewRow

 NewRow.Item("WAWPID") = WAWPID

 NewRow.Item("ES") = WAWPES

 NewRow.Item("EF") = WAWPEF

 NewRow.Item("LS") = DBNull.Value

 NewRow.Item("LF") = DBNull.Value

 NewRow.Item("TF") = DBNull.Value

 tblTotalFloatCal.Rows.Add(NewRow)

 Else

 'update with the maximum early start and early

finish

 Dim DataRow As DataRow =

tblTotalFloatCal.Rows.Find(WAWPID)

 If DateTime.Compare(DataRow.Item("ES"), WAWPES) <

0 Then

 DataRow.Item("ES") = WAWPES

 End If

 If DateTime.Compare(DataRow.Item("EF"), WAWPEF) <

0 Then

 DataRow.Item("EF") = WAWPEF

 End If

 End If

 Next

 WAWPHasAnalyzedInForwardCal.Add(WAWPPredID)

 'Check every successor of the current WAWP to see if it

has fulfilled all the precedence relationships

 'If yes, it should be included in

WAWPHasPerformedForwardCal, meaning it ES and EF has been determined

 For Each Row1 In tblWAWPPredecessors.Select("WAWPPredID =

'" & WAWPPredID & "'")

 Dim WAWPID As Integer = Row1.Item("WAWPID")

 Dim WhetherOrNotDetermined As Boolean = True

329

 For Each DataRow2 As DataRow In

tblWAWPPredecessors.Select("WAWPID = '" & WAWPID & "'")

 Dim EachWAWPPredID As Integer =

CInt(DataRow2.Item("WAWPPredID"))

 If Not

WAWPHasAnalyzedInForwardCal.Contains(EachWAWPPredID) Then

 WhetherOrNotDetermined = False

 Exit For

 End If

 Next

 If WhetherOrNotDetermined Then

 WAWPHasPerformedForwardCal.Add(WAWPID)

 End If

 Next

 End If

 Next

 Loop While WAWPHasPerformedForwardCal.Count < TotalNumOfWAWP

 'Backward Calculation

 'First all the WAWPs that do not have any successor

 For i As Integer = 0 To SuccWAWPIDs.Count - 1

 If Not PredWAWPIDs.Contains(SuccWAWPIDs.Item(i)) Then

 If Not LastWAWPIDs.Contains(SuccWAWPIDs.Item(i)) Then

 LastWAWPIDs.Add(SuccWAWPIDs.Item(i))

 End If

 End If

 Next

 For i As Integer = 0 To LastWAWPIDs.Count - 1

 Dim WAWPID As Integer = LastWAWPIDs.Item(i)

 Dim WPID, WAWPCalendarID As Integer

 Dim WAWPDuration As Double

 Dim DueDate As Date

 If tblWAWP.Rows.Contains(WAWPID) Then

 WPID = tblWAWP.Rows.Find(WAWPID).Item("WAWPWorkpackageID")

 WAWPDuration =

tblWAWP.Rows.Find(WAWPID).Item("WAWPEstDuration")

 End If

 If tblWorkpackages.Rows.Contains(WPID) Then

 WAWPCalendarID =

tblWorkpackages.Rows.Find(WPID).Item("WPCalendarID")

 WAWPDuration =

CalculateDurationFromDaysToHours(WAWPCalendarID, WAWPDuration)

 'If WP has a late-finish constraint, the late finish date

should be at least later than its early finish date

 If Not tblWorkpackages.Rows.Find(WPID).Item("WPLateFinish")

Is DBNull.Value Then

 DueDate =

tblWorkpackages.Rows.Find(WPID).Item("WPLateFinish")

 Else

 'in case when WP does not have a Late-finish constraint,

use its early finish date obtained in the forward calculation round

 DueDate = tblTotalFloatCal.Rows.Find(WPID).Item("EF")

 End If

 End If

 Dim StartHour, HoursPerDay As Double

330

 FindStartHour_HoursPerDay(WAWPCalendarID, HoursPerDay, StartHour)

 DueDate = DueDate.AddHours(StartHour + HoursPerDay)

 If tblTotalFloatCal.Rows.Contains(WAWPID) Then

 'Should equal to DueDate

 tblTotalFloatCal.Rows.Find(WAWPID).Item("LF") =

tblTotalFloatCal.Rows.Find(WAWPID).Item("EF")

 If

CalculateSecondDate(tblTotalFloatCal.Rows.Find(WAWPID).Item("LF"), -1 *

WAWPDuration, WAWPCalendarID).Hour = 17 Then

 tblTotalFloatCal.Rows.Find(WAWPID).Item("LS") =

FindTheNextWorkingDay(WAWPCalendarID,

CalculateSecondDate(tblTotalFloatCal.Rows.Find(WAWPID).Item("LF"), -1 *

WAWPDuration, WAWPCalendarID))

 Else

 tblTotalFloatCal.Rows.Find(WAWPID).Item("LS") =

CalculateSecondDate(tblTotalFloatCal.Rows.Find(WAWPID).Item("LF"), -1 *

WAWPDuration, WAWPCalendarID)

 End If

 tblTotalFloatCal.Rows.Find(WAWPID).Item("TF") =

CalculateSpanBetweenDates(tblTotalFloatCal.Rows.Find(WAWPID).Item("LS"),

tblTotalFloatCal.Rows.Find(WAWPID).Item("ES"), WAWPCalendarID)

 End If

 If Not WAWPHasPerformedBackwardCal.Contains(WAWPID) Then

 WAWPHasPerformedBackwardCal.Add(WAWPID)

 End If

 Next

 'Backward Calculation continues

 Dim WAWPHasAnalyzedInBackwardCal As New List(Of Integer)

 Do

 For i As Integer = 0 To WAWPHasPerformedBackwardCal.Count - 1

 Dim WAWPSuccID As Integer =

WAWPHasPerformedBackwardCal.Item(i)

 Dim WAWPSuccLS As Date

 Dim WAWPSuccLF As Date

 If tblTotalFloatCal.Rows.Contains(WAWPSuccID) Then

 WAWPSuccLS =

CDate(tblTotalFloatCal.Rows.Find(WAWPSuccID).Item("LS"))

 WAWPSuccLF =

CDate(tblTotalFloatCal.Rows.Find(WAWPSuccID).Item("LF"))

 End If

 If Not WAWPHasAnalyzedInBackwardCal.Contains(WAWPSuccID) Then

 For Each Row In tblWAWPPredecessors.Select("WAWPID = '" &

WAWPSuccID & "'")

 Dim WAWPPredID As Integer = Row.Item("WAWPPredID")

 'If WAWPPredID = 110001 Then

 ' MessageBox.Show("OK!")

 'End If

 Dim WAWPPredLS As Date = DateTime.MaxValue

 Dim WAWPPredLF As Date

 'Find its duration

 Dim WPPredID, WAWPPredCalendarID As Integer

 Dim WAWPPredDuration As Double

 If tblWAWP.Rows.Contains(WAWPPredID) Then

 WPPredID =

tblWAWP.Rows.Find(WAWPPredID).Item("WAWPWorkpackageID")

331

 WAWPPredDuration =

tblWAWP.Rows.Find(WAWPPredID).Item("WAWPEstDuration")

 End If

 If tblWorkpackages.Rows.Contains(WPPredID) Then

 WAWPPredCalendarID =

tblWorkpackages.Rows.Find(WPPredID).Item("WPCalendarID")

 WAWPPredDuration =

CalculateDurationFromDaysToHours(WAWPPredCalendarID, WAWPPredDuration)

 'MessageBox.Show(WAWPPredDuration)

 End If

 'Calculate the Late start and Late finish

 Dim Rel1 As String = ""

 Dim Rel2 As String = ""

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 Rel1 = CStr(Row.Item("WAWPRel1"))

 End If

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 Rel2 = CStr(Row.Item("WAWPRel2"))

 End If

 Dim Lag1 As Double = 0

 Dim Lag2 As Double = 0

 If Not Row.Item("WAWPLag1") Is DBNull.Value Then

 Lag1 = CStr(Row.Item("WAWPLag1"))

 End If

 If Not Row.Item("WAWPLag2") Is DBNull.Value Then

 Lag2 = CStr(Row.Item("WAWPLag2"))

 End If

 If Not Rel1 = "" Then

 If Rel1 = "SS" Then

 WAWPPredLS = CalculateSecondDate(WAWPSuccLS,

-1 * Lag1, WAWPPredCalendarID)

 ElseIf Rel1 = "FS" Then

 WAWPPredLS = CalculateSecondDate(WAWPSuccLS,

-1 * Lag1 - WAWPPredDuration, WAWPPredCalendarID)

 End If

 End If

 If Not Rel2 = "" Then

 If Rel2 = "FF" Then

 If DateTime.Compare(WAWPPredLS,

CalculateSecondDate(WAWPSuccLF, -1 * Lag2 - WAWPPredDuration,

WAWPPredCalendarID)) > 0 Then

 WAWPPredLS =

CalculateSecondDate(WAWPSuccLF, -1 * Lag2 - WAWPPredDuration,

WAWPPredCalendarID)

 End If

 End If

 End If

 WAWPPredLF = CalculateSecondDate(WAWPPredLS,

WAWPPredDuration, WAWPPredCalendarID)

 If WAWPPredLS.Hour = 17 Then

 WAWPPredLS =

FindTheNextWorkingDay(WAWPPredCalendarID, WAWPPredLS)

 End If

332

 'Record the Late start and Late finish

 If tblTotalFloatCal.Rows.Contains(WAWPPredID) Then

 'update with the minimum late start and late

finish

 Dim DataRow As DataRow =

tblTotalFloatCal.Rows.Find(WAWPPredID)

 If DataRow.Item("LF") Is DBNull.Value Then

 DataRow.Item("LF") = WAWPPredLF

 ElseIf DateTime.Compare(DataRow.Item("LF"),

WAWPPredLF) > 0 Then

 DataRow.Item("LF") = WAWPPredLF

 End If

 If DataRow.Item("LS") Is DBNull.Value Then

 DataRow.Item("LS") = WAWPPredLS

 ElseIf DateTime.Compare(DataRow.Item("LS"),

WAWPPredLS) > 0 Then

 DataRow.Item("LS") = WAWPPredLS

 End If

 DataRow.Item("TF") =

CalculateSpanBetweenDates(DataRow.Item("ES"), DataRow.Item("LS"),

WAWPPredCalendarID)

 End If

 Next

 WAWPHasAnalyzedInBackwardCal.Add(WAWPSuccID)

 'Check every predecessor of the current WAWP to see if it

has checked all successors

 For Each Row1 As DataRow In

tblWAWPPredecessors.Select("WAWPID = '" & WAWPSuccID & "'")

 Dim WAWPPredID As Integer = Row1.Item("WAWPPredID")

 Dim WhetherOrNotDetermined As Boolean = True

 For Each Row2 As DataRow In

tblWAWPPredecessors.Select("WAWPPredID = '" & WAWPPredID & "'")

 Dim EachWAWPSuccID As Integer =

Row2.Item("WAWPID")

 If Not

WAWPHasAnalyzedInBackwardCal.Contains(EachWAWPSuccID) Then

 WhetherOrNotDetermined = False

 Exit For

 End If

 Next

 If WhetherOrNotDetermined Then

 WAWPHasPerformedBackwardCal.Add(WAWPPredID)

 End If

 Next

 End If

 Next

 Loop While WAWPHasPerformedBackwardCal.Count < TotalNumOfWAWP

 tblTotalFloatCal.DefaultView.Sort = "WAWPID"

 End Sub

 Public Function CalculateEstimatedSimFinish(ByVal MyWAWPEntity As

WorkAreaWorkpackageEntity) As Date

 'Calculate the part of manhours that haven't achieved yet

 Dim WAWPID As Integer = MyWAWPEntity.WAWPID

 Dim WAWPCalendarID As Integer = MyWAWPEntity.CalendarID

333

 Dim OriginalDuration As Double =

CalculateDurationFromDaysToHours(WAWPCalendarID,

MyWAWPEntity.DurationOverride)

 Dim ResName As String = MyWAWPEntity.ReqRes

 Dim NormReqResAmount As Integer = MyWAWPEntity.ReqResAmount

 Dim TotalManHoursToBeAchieved As Double = NormReqResAmount *

OriginalDuration

 Dim ManHoursHaveAchieved As Double = MyWAWPEntity.ManHoursCompleted

 Dim ManHoursLeft As Double = TotalManHoursToBeAchieved -

ManHoursHaveAchieved

 'Get the Resouce Amount it has captured right now

 Dim ReqResAmount As Integer =

MyWAWPEntity.CurrentReqResNameQtyPair(ResName)

 'Calculate the duration to finish the WAWP

 Dim DurationLeft As Double = CDbl(ManHoursLeft / ReqResAmount)

 '**************************Debug

point************************************

 'Dim SimTimenow As Date = ProjectStartDate.AddHours(MyEngine.TimeNow

/ Converter)

 'If WAWPID = 106001 And DateTime.Compare(SimTimenow, #6/3/2011

10:00:00 AM#) >= 0 Then

 ' MessageBox.Show("106001 manhours left is " & ManHoursLeft & " at

time " & SimTimenow & " and the balance duation is " & DurationLeft)

 'End If

 '**************************Debug

point************************************

 'Calculate the estimated finish date

 Dim CurrSimDate As Date = ProjectStartDate.AddHours(MyEngine.TimeNow

/ Converter)

 Dim EstimatedSimFinish As Date = CalculateSecondDate(CurrSimDate,

DurationLeft, WAWPCalendarID)

 Return EstimatedSimFinish

 End Function

 Public Sub FindAllSuccessorsToAWorkAreaWorkpackage(ByVal CurrentWAWPID As

Integer, ByRef SuccessorsOfCurrentWAWPIDList As List(Of Integer))

 'It is a depth first traverse algorithm

 'Only successors that have 'FS' or 'FF' relationship will be impacted;

Successors that have 'SS' relationship will not be impacted

 'remove its finish date information from tblWAWPPredecessors

datatable

 'And find all its impacted successors

 Dim ImpactedSuccessorIDList As New List(Of Integer)

 For Each Row As DataRow In tblWAWPPredecessors.Select("WAWPPredID =

'" & CurrentWAWPID & "'")

 'Remove the estimated finish date

 If Not Row.Item("EstimatedPredFinish") = "" Then

 Row.Item("EstimatedPredFinish") = ""

 End If

 'If it is 'FS', the successor will be interrupted as a result

334

 If Not Row.Item("WAWPRel1") Is DBNull.Value Then

 If CStr(Row.Item("WAWPRel1")) = "FS" Then

 ImpactedSuccessorIDList.Add(CInt(Row.Item("WAWPID")))

 End If

 End If

 'If it is 'FF', the successor will also be interrupted as a

result

 If Not Row.Item("WAWPRel2") Is DBNull.Value Then

 If CStr(Row.Item("WAWPRel2")) = "FF" Then

 ImpactedSuccessorIDList.Add(CInt(Row.Item("WAWPID")))

 End If

 End If

 Next

 'Find if there is any succeeding WAWP to the successors (identified

in the last step)

 For i As Integer = 0 To ImpactedSuccessorIDList.Count - 1

 Dim CurrentSuccessorID As Integer =

ImpactedSuccessorIDList.Item(i)

 If SuccWAWPIDs.Contains(CurrentSuccessorID) Then

 'If the successor has its own succeeding WAWP, then it

repeats the same procedure

 FindAllSuccessorsToAWorkAreaWorkpackage(CurrentSuccessorID,

SuccessorsOfCurrentWAWPIDList)

 End If

 Next

 'Regardless, it is one of current WAWP's successors

 'In this way, WAWP itself is considered as one of successors

 If Not SuccessorsOfCurrentWAWPIDList.Contains(CurrentWAWPID) Then

 SuccessorsOfCurrentWAWPIDList.Add(CurrentWAWPID)

 End If

 End Sub

 Private Function CalculateSecondDate(ByVal FirstDate As Date, ByVal

Interval As Double, ByVal CalendarID As Integer) As Date

 'FirstDate =< < secondDate

 Dim i, DateID1, TotalHoursInFirstDay As Integer

 Dim sum, dt, HoursLeftInFirstDay As Double

 Dim MySecondDate As Date

 Dim StartHour, HoursPerDay As Double

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 'Set hours between StartHour and StartHour+HoursPerDay

 If FirstDate.Hour < StartHour Then

 ' if it happens before the start hour, then the first date should

be a day before it shows

 ' the time should be backward one day, and dt (amount of time)

before the end of the working time

 dt = FirstDate.Hour + FirstDate.Minute / 60 - StartHour

 FirstDate = FirstDate.AddHours(-FirstDate.Hour - 24 + (StartHour

+ HoursPerDay))

 'FirstDate = FirstDate.AddHours(-dt - 24 + (StartHour +

HoursPerDay))

335

 ElseIf FirstDate.Hour > StartHour + HoursPerDay Then

 'if it happens after the knock-off time, then the dt is useless

and set the datetime to the end of the working time

 dt = FirstDate.Hour + FirstDate.Minute / 60 - StartHour -

HoursPerDay

 FirstDate = FirstDate.AddHours(-dt)

 End If

 Dim CalendarDescription As String =

tblCalendar.Rows.Find(CalendarID).Item("Calendar Description").ToString

 If tblCalendarDetail.Rows.Contains(FirstDate.ToShortDateString) Then

 DateID1 =

CInt(tblCalendarDetail.Rows.Find(FirstDate.ToShortDateString).Item("DateID").

ToString)

 Else

 Throw New ArgumentException("FirstDate does not exist in

Calendar_Detail")

 Return FirstDate

 End If

 sum = 0

 TotalHoursInFirstDay = CInt(tblCalendarDetail.Rows(DateID1 -

1).Item(CalendarDescription).ToString)

 If Interval >= 0 Then

 'there are two situations: (1) the firstdate is a working day; (2)

the firstdate is a non-working day

 If TotalHoursInFirstDay > 0 Then

 'If start time is later than the starthour in the calendar

 If FirstDate.Hour + FirstDate.Minute / 60 + FirstDate.Second

/ 360 > StartHour Then

 'the actual working time will be less than

HoursLeftInFirstDay

 HoursLeftInFirstDay = TotalHoursInFirstDay -

(FirstDate.Hour + FirstDate.Minute / 60 + FirstDate.Second / 360 - StartHour)

 Else

 'otherwise it equals to HoursLeftInFirstDay

 HoursLeftInFirstDay = TotalHoursInFirstDay

 End If

 Else

 HoursLeftInFirstDay = 0

 End If

 sum = HoursLeftInFirstDay

 i = DateID1

 'sum is total working hours with one more day after the end date

 Do Until sum >= Interval

 i = i + 1

 sum = sum + CDbl(tblCalendarDetail.Rows(i -

1).Item(CalendarDescription))

 Loop

 MySecondDate = CDate(tblCalendarDetail.Rows(i - 1).Item("Date"))

336

 Dim DurLastDay As Integer = CInt(tblCalendarDetail.Rows(i -

1).Item(CalendarDescription).ToString)

 Dim HourLastDay As Double = Interval - (sum - DurLastDay)

 'Calculate the closing time of the last day

 MySecondDate = MySecondDate.AddHours(StartHour + HourLastDay)

 Else

 If TotalHoursInFirstDay > 0 Then

 If FirstDate.Hour + FirstDate.Minute / 60 + FirstDate.Second

/ 360 > StartHour Then

 HoursLeftInFirstDay = (FirstDate.Hour + FirstDate.Minute

/ 60 + FirstDate.Second / 360 - StartHour)

 Else

 HoursLeftInFirstDay = 0

 End If

 Else

 HoursLeftInFirstDay = 0

 End If

 sum = -HoursLeftInFirstDay

 i = DateID1

 Do Until sum < Interval

 i = i - 1

 If i > 0 Then

 sum = sum - CDbl(tblCalendarDetail.Rows(i -

1).Item(CalendarDescription))

 Else

 Throw New ArgumentException("error in negative interval")

 End If

 Loop

 MySecondDate = CDate(tblCalendarDetail.Rows(i - 1).Item("Date"))

 Dim DurLastDay As Integer = CInt(tblCalendarDetail.Rows(i -

1).Item(CalendarDescription).ToString)

 Dim HourLastDay As Double = -Interval - (-sum - DurLastDay)

 MySecondDate = MySecondDate.AddHours(StartHour + DurLastDay -

HourLastDay)

 End If

 Return MySecondDate

 End Function

 Private Function CalculateSpanBetweenDates(ByVal FirstDate As Date, ByVal

SecondDate As Date, ByVal CalendarID As Integer) As Double

 'Calculate the Actual working hours between two dates, which

 ' FirstDate =< < secondDate

 Dim DateID1, DateID2 As Integer

 Dim sum As Double

 Dim CalendarDescription As String =

tblCalendar.Rows.Find(CalendarID).Item("Calendar Description").ToString

 Dim StartHour, HoursPerDay As Double

337

 FindStartHour_HoursPerDay(CalendarID, HoursPerDay, StartHour)

 If tblCalendarDetail.Rows.Contains(FirstDate.ToShortDateString) Then

 DateID1 =

CInt(tblCalendarDetail.Rows.Find(FirstDate.ToShortDateString).Item("DateID").

ToString)

 Else

 Throw New ArgumentException("FirstDate does not exist in

Calendar_Detail")

 Return 0

 End If

 If tblCalendarDetail.Rows.Contains(SecondDate.ToShortDateString) Then

 DateID2 =

CInt(tblCalendarDetail.Rows.Find(SecondDate.ToShortDateString).Item("DateID")

.ToString)

 Else

 Throw New ArgumentException("SecondDate does not exist in

Calendar_Detail")

 Return 0

 End If

 sum = CInt(tblCalendarDetail.Compute("Sum([" & CalendarDescription &

"])", ("DateID >=" & Min(DateID1, DateID2) & " And DateID <=" & Max(DateID1,

DateID2))).ToString)

 'If the start time is later than the start hour of the first day,

then actual working time should be less

 Dim DurFirstDay As Integer = CInt(tblCalendarDetail.Rows(DateID1 -

1).Item(CalendarDescription).ToString)

 If FirstDate.Hour + FirstDate.Minute / 60 + FirstDate.Second / 360 >

StartHour Then

 sum = sum - Min(FirstDate.Hour - StartHour, DurFirstDay)

 End If

 'If the end time is before the end of working time, then actual

working time should be less

 Dim DurLastDay As Integer = CInt(tblCalendarDetail.Rows(DateID2 -

1).Item(CalendarDescription).ToString)

 If SecondDate.Hour + SecondDate.Minute / 60 + SecondDate.Second / 360

< StartHour + DurLastDay Then

 sum = sum - Min(StartHour + DurLastDay - SecondDate.Hour,

DurLastDay)

 End If

 If sum = 0 Then

 sum = SecondDate.Subtract(FirstDate).TotalHours

 End If

 Return sum

 End Function

 Private Function CalculateSuccessorTaskStartDate(ByVal

PredecessorStartDate As Date, ByVal Rel As String, ByVal Lag As Double, ByVal

CalendarID As Integer, ByVal PredecessorDuration As Double, ByVal

TaskDuration As Double) As Date

338

 Dim TaskESDate As Date

 Select Case Rel

 Case "SS"

 TaskESDate = CalculateSecondDate(PredecessorStartDate, Lag,

CalendarID)

 Case "SF"

 TaskESDate = CalculateSecondDate(PredecessorStartDate, Lag -

TaskDuration, CalendarID)

 Case "FS"

 TaskESDate = CalculateSecondDate(PredecessorStartDate,

PredecessorDuration + Lag, CalendarID)

 Case "FF"

 TaskESDate = CalculateSecondDate(PredecessorStartDate,

PredecessorDuration + Lag - TaskDuration, CalendarID)

 Case Else

 Throw New ArgumentException("error in logic")

 End Select

 Return TaskESDate

 End Function

End Class

VB.NET code for the simulation entity

Imports Simphony.Simulation

Public Class WorkAreaWorkpackageEntity

 Inherits Entity

 Implements IComparable(Of WorkAreaWorkpackageEntity)

 Public WAWPID, WPID, WorkAreaID, ClassificationID, Priority, CalendarID,

ReqResAmount, NumOfSuccessors, TotalFloat As Integer

 Public KeyQty, Manhours, DurationOverride, SimDuration, ManHoursCompleted

As Double

 Public WAWPName, WorkAreaName, ClassificationDesc, ReqRes,

ConstructionWorkArea As String

 Public ES, EF, LF, CalculatedLF, CalculatedES, SimStart, SimFinish,

SimEstimatedFinish As Date

 Public Interruptible, WhetherOrNotCaptedRes As Boolean

 'Precedence relationships

 Public CurrentReqResNameQtyPair As New Dictionary(Of String, Integer)

 Public WAWPPreds, WAWPSuccs As New Dictionary(Of Integer, List(Of

Integer))

 'Public WAWPPredEstimatedFinish As New Dictionary(Of Integer, Date)

 'Every Predecessor (or successor) will just one Rel1 or/and Rel2

 Public WAWPPredRel1, WAWPPredRel2, WAWPSuccRel1, WAWPSuccRel2 As New

Dictionary(Of Integer, String)

 Public WAWPPredLag1, WAWPPredLag2, WAWPSuccLag1, WAWPSuccLag2 As New

Dictionary(Of Integer, Double)

 Private Enum DateComparisonResult As Integer

 Earlier = -1

 Later = 1

 TheSame = 0

 End Enum

339

 Private Enum NumComparisonResult As Integer

 'the more successors it has, the more front it should be placed in

the waiting list

 Less = 1

 More = -1

 TheSame = 0

 End Enum

 Public Function CompareTo(ByVal other As WorkAreaWorkpackageEntity) As

Integer Implements System.IComparable(Of WorkAreaWorkpackageEntity).CompareTo

 ''first by minimum total float

 'Dim result As Integer

 'If Me.TotalFloat < other.TotalFloat Then

 ' result = -1

 'ElseIf Me.TotalFloat > other.TotalFloat Then

 ' result = 1

 'Else

 ' result = 0

 'End If

 'If result = 0 Then

 ' 'comparison =

CType(Me.CalculatedES.CompareTo(other.CalculatedES), DateComparisonResult)

 ' 'If CInt(comparison) = 0 Then

 ' If Me.WAWPID < other.WAWPID Then

 ' Return -1

 ' Else

 ' Return 1

 ' End If

 ' 'Else

 ' 'Return CInt(comparison)

 ' 'End If

 'Else

 ' Return result

 'End If

 'First, compare Calculate Total float

 'Second, compare The number of successors

 'Third, compare whether the entity has started or not; already

started entities have higher priority than those haven't started

 'Fourth, compare the WAWPID. the larger, the higher priority

 Dim Comparison As Integer

 If Me.TotalFloat < other.TotalFloat Then

 Comparison = -1

 ElseIf Me.TotalFloat > other.TotalFloat Then

 Comparison = 1

 Else

 Comparison = 0

 End If

 Return Comparison

 'Dim Comparison As DateComparisonResult

 'Comparison = CType(Me.CalculatedLF.CompareTo(other.CalculatedLF),

DateComparisonResult)

 'If CInt(Comparison) = 0 Then

340

 ' Dim Comparison1 As NumComparisonResult

 ' Comparison1 =

CType(Me.NumOfSuccessors.CompareTo(other.NumOfSuccessors),

NumComparisonResult)

 ' If Comparison1 = 0 Then

 ' If Me.WhetherOrNotCaptedRes <> other.WhetherOrNotCaptedRes

Then

 ' If Me.WhetherOrNotCaptedRes = True Then

 ' Return -1

 ' Else

 ' Return 1

 ' End If

 ' Else

 ' If Me.WAWPID > other.WAWPID Then

 ' Return -1

 ' Else

 ' Return 1

 ' End If

 ' End If

 ' Else

 ' Return CInt(Comparison1)

 ' End If

 'Else

 ' Return CInt(Comparison)

 'End If

 ''Use pre-calculated (or pre-defined) priority values

 'Dim result As Integer

 'If Me.Priority > other.Priority Then

 ' result = -1

 'ElseIf Me.Priority < other.Priority Then

 ' result = 1

 'Else

 ' result = 0

 'End If

 'If result = 0 Then

 ' 'If there is a tie

 ' 'The less Id is, the higher priority it has

 ' If Me.WAWPID < other.WAWPID Then

 ' Return -1

 ' Else

 ' Return 1

 ' End If

 'End If

 'Return result

 End Function

End Class

341

VB.NET code for the crew resource

Imports Simphony

Imports Simphony.Simulation

Public Class CrewResource

 Inherits Resource

 Public TaskDesc As String

 Public OriginalQuantity, RampUp As Integer

 Public MinPercent, MaxPercent As Double

 Public Level, NonManPower, NonYardActivity, ZeroFreeFloatActivity As

Boolean

 Public Sub New(ByVal name As String, ByVal Quantity As Integer)

 MyBase.New(name, Quantity)

 End Sub

End Class

VB.NET code for the congestion resource

Imports Simphony

Imports Simphony.Simulation

Public Class CongestionResource

 Inherits Resource

 Public WorkAreaID, WAPriority, OriginalCongestionLimit As Integer

 Public WorkAreaDesignator, WAConstructionWorkArea As String

 Public WALength, WAWidth, WAHeight, WASouthWestPointX, WASouthWestPointY,

WASouthWestPointZ, WAAngle As Double

 Public Sub New(ByVal name As String, ByVal Quantity As Integer)

 MyBase.New(name, Quantity)

 End Sub

End Class

342

Appendix D

Complete List of Work Packages for Case Study

Work

Pack

age

No.

(1)

Description

(2)

Quanti

ty

(man

hours)

(3)

Work Areas

(4)

Predecesso

rs

(FS)

(5)

Craft Personnel

Requirements

Trad

e

(6)

Norma

l Crew

Size

(7)

Min

Cre

w

Size

(8)

1 Piling@011AB012ABC 40 011AB, 012ABC  PIL 10 8

2 Piling@006AB005AB 40 005AB, 006AB 1 PIL 10 8

3 Piling@014AB007ABC 40 007ABC, 014AB 2 PIL 10 8

4 ModuleSupportStructure@011AB 40 011AB 1 IW 10 8

5

ModuleSupportStructure@012AB

C 40 012ABC 1 IW 10 8

6 ModuleSupportStructure@005AB 40 005AB 2 IW 10 8

7 ModuleSupportStructure@006AB 40 006AB 2 IW 10 8

8

ModuleSupportStructure@007AB

C 40 007ABC 3 IW 10 8

9 ModuleSupportStructure@014AB 40 014AB 3 IW 10 8

10 1600-PR-011A 20 011AB 4 IW 10 8

11 1600-PR-011B 20 011AB 10 IW 10 8

12 1610-PR-005 20 011AB 11 IW 10 8

13 1600-PR-012A 20 012ABC 5,12 IW 10 8

14 1600-PR-012B 20 012ABC 13 IW 10 8

343

15 1600-PR-012C 20 012ABC 14 IW 10 8

16 1610-PR-004 20 012ABC 15 IW 10 8

17 1600-PR-005A 20 005AB 6,16 IW 10 8

18 1600-PR-005B 20 005AB 17 IW 10 8

19 1610-PR-002 20 005AB 18 IW 10 8

20 1610-PR-003 20 005AB 19 IW 10 8

21 1600-PR-006A 20 006AB 7,20 IW 10 8

22 1600-PR-006B 20 006AB 21 IW 10 8

23 1610-PR-001 20 006AB 22 IW 10 8

24 1600-PR-007A 20 007ABC 8,23 IW 10 8

25 1600-PR-007B 20 007ABC 24 IW 10 8

26 1600-PR-007C 20 007ABC 25 IW 10 8

27 1600-PR-014A 20 014AB 26,9 IW 10 8

28 1600-PR-014B 20 014AB 27 IW 10 8

29 PipingBetw011AB012ABC 60 011AB 11,15 PF 10 8

30 PipingBetw012ABC005AB 60 005AB 15,18 PF 10 8

31 PipingBetw005AB006AB 60 006AB 18,22 PF 10 8

32 PipingBetw006AB007ABC 60 007ABC 22,26 PF 10 8

33 PipingBetw007ABC014AB 60 014AB 26,28 PF 10 8

34 PipingSilencerFrameTopOf007C 20 007ABC 26 PF 10 8

35 PipingSilencerFrameTopOf014B 20 014AB 28 PF 10 8

36 Silencer@007ABC 60 007ABc 34 PF 10 8

37 Silencer@014AB 30 014AB 35 PF 10 8

38 HydrotesingBetw011AB012ABC 30 011AB 29(-2 days) PF 10 8

344

39 HydrotesingBetw012ABC005AB 30 012ABC 30(-2 days) PF 10 8

40 HydrotesingBetw005AB006AB 30 005AB 31(-2 days) PF 10 8

41 HydrotesingBetw006AB007ABC 30 006AB 32(-2 days) PF 10 8

42 HydrotesingBetw007ABC014AB 30 007ABC 33(-2 days) PF 10 8

43

HydrotestingSilencerOnTopOf00

7ABC014AB 80 007ABC, 014AB 36,37 PF 10 8

44 InsulationBetw011AB012ABC 20 011AB 38(-1 day) INS 10 8

45 InsulationBetw012ABC005AB 20 012ABC 39(-1 day) INS 10 8

46 InsulationBetw005AB006AB 20 005AB 40(-1 day) INS 10 8

47 InsulationBetw006AB007ABC 20 006AB 41(-1 day) INS 10 8

48 InsulationBetw007ABC014AB 20 007ABC 42(-1 day) INS 10 8

49

InsulationSilencerOntopOf007AB

C014AB 40 014AB 43(-1 day) INS 10 8

50

ElectricalCableTray@011AB012

ABC 20 011AB, 012ABC 44 EL 10 8

51

ElectricalCableTray@005AB006

AB007ABC014AB 40

005AB,006AB,007A

BC,014AB

45,46,47,48,

50,49 EL 10 8

345

Appendix E

PDDL Domain File for Pipe Spool Fabrication Sequencing Experiment 1

(define (domain pipespool)

 (:requirements :strips :typing)

 (:types assembly weldpt)

 (:predicates

 (belong ?w - weldpt ?p - assembly)

 (fitted ?w - weldpt)

 (representative ?p - assembly))

 (:action roll-fitting

 :parameters (?p1 ?p2 - assembly ?w1 - weldpt)

 :precondition (and (belong ?w1 ?p1)

 (belong ?w1 ?p2)

 (representative ?p1)

 (representative ?p2)

 (not(fitted ?w1))

 (not(= ?p1 ?p2)))

 :effect (and

(fitted ?w1)(representative ?p1)(not(representative ?p2))

 (forall (?w2 - weldpt)

 (when (belong ?w2 ?p2)

 (belong ?w2 ?p1))))

)

)

PDDL Problem File for Pipe Spool Fabrication Sequencing Experiment 1

(define (problem pipespool2)

 (:domain pipespool)

346

 (:objects p1 p2 p3 - assembly w1 w2 - weldpt)

 (:init (not(fitted w1))

 (not(fitted w2))

 (belong w1 p1)

 (belong w1 p2)

 (belong w2 p2)

 (belong w2 p3)

 (representative p1)

 (representative p2)

 (representative p3)

)

 (:goal (and (representative p1)(fitted w1)(fitted w2)))

)

PDDL domain File for Pipe Spool Fabrication Sequencing Experiment 2

(define (domain pipespool)

 (:requirements :strips :typing)

 (:types assembly weldpt)

 (:constants x y z - axis)

 (:predicates

 (belong ?w - weldpt ?p - assembly)

 (fitted ?w - weldpt)

 (representative ?p - assembly)

 (on ?w - weldpt ?a - axis))

 (:action roll-fitting-x

 :parameters (?p1 ?p2 - assembly ?w1 - weldpt)

 :precondition (and (belong ?w1 ?p1)

 (belong ?w1 ?p2)

 (representative ?p1)

347

 (representative ?p2)

 (not(fitted ?w1))

 (on ?w1 x)

 (not(= ?p1 ?p2))

)

 :effect (and (fitted ?w1)

(representative ?p1)(not(representative ?p2))

 (forall (?w2 - weldpt)

 (when (belong ?w2 ?p2)

 (belong ?w2 ?p1)))))

 (:action roll-fitting-y

 :parameters (?p1 ?p2 - assembly ?w1 - weldpt)

 :precondition (and (belong ?w1 ?p1)

 (belong ?w1 ?p2)

 (representative ?p1)

 (representative ?p2)

 (not(fitted ?w1))

 (on ?w1 y)

 (not(= ?p1 ?p2))

)

 :effect (and (fitted ?w1)

(representative ?p1)(not(representative ?p2))

 (forall (?w2 - weldpt)

 (when (belong ?w2 ?p2)

 (belong ?w2 ?p1)))))

 (:action roll-fitting-z

 :parameters (?p1 ?p2 - assembly ?w1 - weldpt)

 :precondition (and (belong ?w1 ?p1)

 (belong ?w1 ?p2)

348

 (representative ?p1)

 (representative ?p2)

 (not(fitted ?w1))

 (on ?w1 z)

 (not(= ?p1 ?p2))

)

 :effect (and (fitted ?w1)

(representative ?p1)(not(representative ?p2))

 (forall (?w2 - weldpt)

 (when (belong ?w2 ?p2)

 (belong ?w2 ?p1))))))

PDDL problem File for Pipe Spool Fabrication Sequencing Experiment 2

(define (problem pipespoolB969-SS00520)

 (:domain pipespool)

 (:objects p1 p2 p3 p4 p5 p6 p7 p8 - assembly w1 w2 w3 w4 w5 w6 w7 - weldpt)

 (:init (not(fitted w1))

 (not(fitted w2))

 (not(fitted w3))

 (not(fitted w4))

 (not(fitted w5))

 (not(fitted w6))

 (not(fitted w7))

 (belong w1 p1)

 (belong w1 p7)

 (belong w2 p2)

 (belong w2 p7)

 (belong w3 p2)

 (belong w3 p8)

349

 (belong w4 p3)

 (belong w4 p8)

 (belong w5 p3)

 (belong w5 p6)

 (belong w6 p6)

 (belong w6 p4)

 (belong w7 p4)

 (belong w7 p5)

 (representative p1)

 (representative p2)

 (representative p3)

 (representative p4)

 (representative p5)

 (representative p6)

 (representative p7)

 (representative p8)

 (on w1 x)

 (on w2 y)

 (on w3 y)

 (on w4 z)

 (on w5 z)

 (on w6 z)

 (on w7 z))

 (:goal (and (representative p1)(fitted w1)(fitted w2)(fitted w3)(fitted

w4)(fitted w5)(fitted w6)(fitted w7))))

PDDL domain File for Pipe Spool Fabrication Sequencing Experiment 3

(define (domain pipespool)

 (:requirements :adl :equality :strips :typing :negative-preconditions)

350

 (:types assmbly wldpt axs clrnc);; assmbly, weldpoint, axis, axis type,

availabale clearance for the spool

 (:constants x y z - axs)

 (:predicates

 (belong ?w - wldpt ?p - assmbly) ;; weld point belongs to assembly

 (welded ?w - wldpt) ;; weld point is welded

 (active ?p - assmbly) ;; assembly is still active. when two

assemblies are welded only one of them remain active

 (on ?w - wldpt ?ax - axs) ;; a weld point exists on an axis

type and axis number. e.g. x1, x2, .. or y1, y2 ...

 (equal ?p1 - assmbly ?p2 - assmbly)

)

 (:functions

 (rfx ?p - assmbly) ;; x,y coordinates for lowest corner of

an assembly

 (rfy ?p - assmbly)

 (lnx ?p - assmbly) ;; x,y dimensions of assembly bounding

rectangle

 (lny ?p - assmbly)

 (avlblclrnc ?c - clrnc) ;; value of available clearance

 (dx ?w - wldpt) ;; x,y coordinates for welding points

 (dy ?w - wldpt)

)

 (:action roll-x-P1-P2-1

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (not (belong ?w2 ?p1))

351

 (not (belong ?w3 ?p1))

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the

one closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p1) (lnx ?p1)) (+ (rfx ?p2)

(lnx ?p2))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w2 ?p1)

 (belong ?w3 ?p1)

 (assign (lnx ?p1) (- (+ (rfx ?p2) (lnx ?p2)) (rfx ?p1)))) ;;

lenx p1 = refx p2 + lenx p2 - refx p1

)

 (:action roll-x-P1-P2-2

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (not (belong ?w2 ?p1))

 (belong ?w3 ?p1)

352

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the

one closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p1) (lnx ?p1)) (+ (rfx ?p2)

(lnx ?p2))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w2 ?p1)

 (assign (lnx ?p1) (- (+ (rfx ?p2) (lnx ?p2)) (rfx ?p1)))) ;;

lenx p1 = refx p2 + lenx p2 - refx p1

)

 (:action roll-x-P1-P2-3

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (belong ?w2 ?p1)

 (not (belong ?w3 ?p1))

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

353

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the

one closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p1) (lnx ?p1)) (+ (rfx ?p2)

(lnx ?p2))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w3 ?p1)

 (assign (lnx ?p1) (- (+ (rfx ?p2) (lnx ?p2)) (rfx ?p1)))) ;;

lenx p1 = refx p2 + lenx p2 - refx p1

)

 (:action roll-x-P1-P2-4

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (belong ?w2 ?p1)

 (belong ?w3 ?p1)

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

354

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the

one closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p1) (lnx ?p1)) (+ (rfx ?p2)

(lnx ?p2))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (assign (lnx ?p1) (- (+ (rfx ?p2) (lnx ?p2))

(rfx ?p1)))) ;; lenx p1 = refx p2 + lenx p2 - refx p1

)

 (:action roll-x-P2-P1-1

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (not (belong ?w2 ?p2))

 (not (belong ?w3 ?p2))

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the one

closest to the origin (lowest x)

355

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p2) (lnx ?p2)) (+ (rfx ?p1)

(lnx ?p1))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w2 ?p1)

 (belong ?w3 ?p1)

))

 (:action roll-x-P2-P1-2

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (not (belong ?w2 ?p2))

 (belong ?w3 ?p2)

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the one

closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

356

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p2) (lnx ?p2)) (+ (rfx ?p1)

(lnx ?p1))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w2 ?p1)

))

 (:action roll-x-P2-P1-3

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (belong ?w2 ?p2)

 (not (belong ?w3 ?p2))

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the one

closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p2) (lnx ?p2)) (+ (rfx ?p1)

(lnx ?p1))) ;; if max x limit of bounding box of p1 is less than p2

357

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

 (belong ?w3 ?p1)

))

 (:action roll-x-P2-P1-4

 :parameters (?p1 ?p2 - assmbly ?w1 ?w2 ?w3 - wldpt ?c - clrnc)

 :precondition (and (belong ?w1 ?p1) ;; w1 belongs to p1 and p2

 (belong ?w1 ?p2)

 (not(equal ?p1 ?p2))

 (belong ?w2 ?p2)

 (belong ?w3 ?p2)

 (active ?p1) ;; p1 and p2 are active

 (active ?p2)

 (not(welded ?w1)) ;; w1 not welded yet

 (on ?w1 x) ;; w1 on given axis

 (<= (rfx ?p1)(rfx ?p2)) ;; consider p1 as the one

closest to the origin (lowest x)

 (<= (- (+ (lny ?p1) (rfy ?p1)) (dy ?w1))

(avlblclrnc ?c)) ;; difference between y coordinate of weld and

 (<= (- (+ (lny ?p2) (rfy ?p2)) (dy ?w1))

(avlblclrnc ?c)) ;; max and min y limits of the bounding rectangle

 (<= (+ (rfx ?p2) (lnx ?p2)) (+ (rfx ?p1)

(lnx ?p1))) ;; if max x limit of bounding box of p1 is less than p2

)

 :effect (and (welded ?w1)

 (active ?p1)

 (not(active ?p2))

358

))

)

PDDL problem File for Pipe Spool Fabrication Sequencing Experiment 3

(define (problem pipespool1)

 (:domain pipespool)

 (:requirements :typing :fluents :adl :equality)

 (:objects p1 p2 - assmbly w1 w2 w3 - wldpt c - clrnc)

 (:init (not(welded w1))

 (not(welded w2))

 (not(welded w3))

 (belong w1 p1)

 (belong w1 p2)

 (belong w2 p2)

 (belong w3 p2)

 (not (belong w2 p1))

 (not (belong w3 p1))

 (active p1)

 (active p2)

 (on w1 x)

 (on w2 x)

 (on w3 y)

 (= (rfx p1) 0)

 (= (rfy p1) 0)

 (= (lnx p1) 400)

 (= (lny p1) 0)

 (= (rfx p2) 400)

 (= (rfy p2) 0)

 (= (lnx p2) 220)

359

 (= (lny p2) 920)

 (= (avlblclrnc c) 1200)

 (= (dx w1) 114)

 (= (dy w1) 0)

 (= (dx w2) 506)

 (= (dy w2) 0)

 (= (dx w3) 620)

 (= (dy w3) 114)

 (equal p1 p1)

 (equal p2 p2)

)

 (:goal (and (welded w1)(welded w2)(welded w3)))

)

PDDL domain File for module installation Experiment 1 and Experiment 2

(define (domain modulesequencing)

 (:requirements :conditional-effects :equality :strips :typing :negative-

preconditions :fluents :disjunctive-preconditions)

 (:types module) ;; module

 (:constants x y z - axs)

 (:predicates

 (placed ?m - module) ;; module is placed in its final location

 (base ?m - module) ;; base module (bottom one)

 (AdjZ ?m ?m0 - module) ;; module m is on top of m0

 (AdjX ?m ?m0 - module) ;; module m is to the Left of m0

 (AdjY ?m ?m0 - module);; module m is in front of m0

)

 (:action place_1

 :parameters (?m ?m2 - module)

360

 :precondition (and (base ?m) ;; or m is a base module

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_2

 :parameters (?m ?m1 ?m2 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_3

 :parameters (?m ?m3 - module)

 :precondition (and (base ?m) ;; or m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

361

)

 :effect (and (placed ?m))

)

 (:action place_4

 :parameters (?m ?m1 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_5

 :parameters (?m ?m2 ?m3 - module)

 :precondition (and (base ?m) ;; or m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_6

362

 :parameters (?m ?m1 ?m2 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

)

PDDL problem File for module installation Experiment 2 (Experiment 1 is slightly different)

(define (problem cubeOf9modules)

 (:domain modulesequencing)

 (:requirements :typing :fluents)

 ;; m z,x,y z(AdjZ), x(AdjX), y(AdjY)

 (:objects m014A m014B m007A m007B m007C m006A m006B PR001 m005A m005B PR002

- module)

 (:init (base m014A)

 (base m007A)

 (base m006A)

 (base m005A)

 (AdjZ m014B m014A)

 (AdjZ m007B m007A)

 (AdjZ m007C m007B)

 (AdjZ m006B m006A)

363

 (AdjZ PR001 m006B)

 (AdjZ m005B m005A)

 (AdjZ PR002 m005B)

 (AdjX m014A m007A)

 (AdjX m014B m007B)

 (AdjX m007A m006A)

 (AdjX m007B m006B)

 (AdjX m007C PR001)

 (AdjX m006A m005A)

 (AdjX m006B m005B)

 (AdjX PR001 PR002)

 (placed m006A)

 (placed m006B)

)

 (:goal (and (placed m014A)(placed m014B)(placed m007A)(placed m007B)(placed

m007C)(placed m006A)(placed m006B)(placed PR001)(placed m005A)(placed

m005B)(placed PR002)))

)

PDDL domain File for module installation Experiment 3, Experiment 4 and Experiment 5

(define (domain modulesequencing)

 (:requirements :conditional-effects :equality :strips :typing :negative-

preconditions :fluents :disjunctive-preconditions)

 (:types module) ;; module

 (:constants x y z - axs)

 (:predicates

 (placed ?m - module) ;; module is placed in its final location

 (base ?m - module) ;; base module (bottom one)

364

 (AdjZ ?m ?m0 - module) ;; module m is on top of m0

 (AdjX ?m ?m0 - module) ;; module m is to the Left of m0

 (AdjY ?m ?m0 - module);; module m is in front of m0

)

 (:action place_1

 :parameters (?m ?m2 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_2

 :parameters (?m ?m1 ?m2 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_3

 :parameters (?m ?m3 - module)

365

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_4

 :parameters (?m ?m1 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_5

 :parameters (?m ?m2 ?m3 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

366

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_6

 :parameters (?m ?m1 ?m2 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_7

 :parameters (?m ?m4 - module)

 :precondition (and (base ?m) ;; or m is a base module

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

367

 (:action place_8

 :parameters (?m ?m1 ?m4 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_9

 :parameters (?m ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_10

 :parameters (?m ?m1 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

368

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_11

 :parameters (?m ?m4 ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_12

 :parameters (?m ?m1 ?m4 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

369

 :effect (and (placed ?m))

)

 (:action place_13

 :parameters (?m ?m3 ?m4 ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_14

 :parameters (?m ?m1 ?m3 ?m4 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

370

 (:action place_15

 :parameters (?m ?m1 ?m3 ?m4 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

)

PDDL problem File for module installation Experiment 5 (Experiment 3 and Experiment 4 are

slightly different)

(define (problem cubeOf9modules)

 (:domain modulesequencing)

 (:requirements :typing :fluents)

 ;; m z,x,y z(AdjZ), x(AdjX), y(AdjY)

 (:objects m014A m014B m007A m007B m007C m006A m006B PR001 m005A m005B PR002

m011A m011B m012A m012B m012C m013A m013B m013C m004A m004B m143A m143B -

module)

 (:init (base m014A)

 (base m007A)

 (base m006A)

 (base m005A)

 (base m011A)

371

 (base m012A)

 (base m013A)

 (base m004A)

 (base m143A)

 (AdjZ m014B m014A)

 (AdjZ m007B m007A)

 (AdjZ m007C m007B)

 (AdjZ m006B m006A)

 (AdjZ PR001 m006B)

 (AdjZ m005B m005A)

 (AdjZ PR002 m005B)

 (AdjZ m011B m011A)

 (AdjZ m012B m012A)

 (AdjZ m012C m012B)

 (AdjZ m013B m013A)

 (AdjZ m013C m013B)

 (AdjZ m004B m004A)

 (AdjZ m143B m143A)

 (AdjX m014A m007A)

 (AdjX m014B m007B)

 (AdjX m007A m006A)

 (AdjX m007B m006B)

 (AdjX m007C PR001)

 (AdjX m006A m005A)

 (AdjX m006B m005B)

 (AdjX PR001 PR002)

 (AdjX m005A m012A)

 (AdjX m005B m012B)

 (AdjX PR002 m012C)

372

 (AdjY m011A m012A)

 (AdjY m011B m012B)

 (AdjY m012A m013A)

 (AdjY m012B m013B)

 (AdjY m012C m013C)

 (AdjY m013A m004A)

 (AdjY m013B m004B)

 (AdjY m004A m143A)

 (AdjY m004B m143B)

 (placed m006A)

 (placed m006B)

 (placed m013A)

 (placed m013B)

)

 (:goal (and (placed m014A)(placed m014B)(placed m007A)(placed m007B)(placed

m007C)(placed m006A)(placed m006B)(placed PR001)(placed m005A)(placed

m005B)(placed PR002)(placed m011A)(placed m011B)(placed m012A)(placed

m012B)(placed m012C)(placed m013A)(placed m013B)(placed m013C)(placed

m004A)(placed m004B)(placed m143A)(placed m143B)))

)

PDDL domain File for module installation Experiment 6, Experiment 7 and Experiment 8

(define (domain modulesequencing)

 (:requirements :conditional-effects :equality :strips :typing :negative-

preconditions :fluents :disjunctive-preconditions)

 (:types module) ;; module

 (:constants x y z - axs)

 (:predicates

373

 (placed ?m - module) ;; module is placed in its final location

 (base ?m - module) ;; base module (bottom one)

 (AdjZ ?m ?m0 - module) ;; module m is on top of m0

 (AdjX ?m ?m0 - module) ;; module m is to the Left of m0

 (AdjY ?m ?m0 - module);; module m is in front of m0

)

 (:action place_0

 :parameters (?m ?m1 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_1

 :parameters (?m ?m2 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

374

 (:action place_2

 :parameters (?m ?m1 ?m2 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_3

 :parameters (?m ?m3 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_4

 :parameters (?m ?m1 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

375

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_5

 :parameters (?m ?m2 ?m3 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_6

 :parameters (?m ?m1 ?m2 ?m3 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (or(not(placed ?m2))(not(placed ?m3)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

376

 :effect (and (placed ?m))

)

 (:action place_7

 :parameters (?m ?m4 - module)

 :precondition (and (base ?m) ;; or m is a base module

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m)))

 (:action place_8

 :parameters (?m ?m1 ?m4 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_9

 :parameters (?m ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

377

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_10

 :parameters (?m ?m1 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_11

 :parameters (?m ?m4 ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

378

 :effect (and (placed ?m))

)

 (:action place_12

 :parameters (?m ?m1 ?m4 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_13

 :parameters (?m ?m3 ?m4 ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_14

 :parameters (?m ?m1 ?m3 ?m4 ?m5 - module)

379

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (or(not(placed ?m4))(not(placed ?m5)))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_15

 :parameters (?m ?m1 ?m3 ?m4 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m4))(AdjY ?m ?m4))

 (and(not (=?m ?m3))(AdjX ?m3 ?m))

 (not (exists (?m2 - module)(AdjX ?m ?m2)))

 (not (exists (?m5 - module)(AdjY ?m5 ?m)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m))

)

 (:action place_16

 :parameters (?m ?m2 ?m5 - module)

 :precondition (and (base ?m) ;; m is a base module

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

380

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m)

)

)

 (:action place_17

 :parameters (?m ?m1 ?m2 ?m5 - module)

 :precondition (and (and (AdjZ ?m ?m1)(not (=?m ?m1))(placed ?m1)) ;;

m is on top of ?m1

 (and(not (=?m ?m5))(AdjY ?m5 ?m))

 (and(not (=?m ?m2))(AdjX ?m ?m2))

 (not (exists (?m3 - module)(AdjX ?m3 ?m)))

 (not (exists (?m4 - module)(AdjY ?m ?m4)))

 (not(placed ?m)) ;; m is not placed

)

 :effect (and (placed ?m)))

)

PDDL domain File for module installation Experiment 8 (Experiment 6 and Experiment 7 are

slightly different)

(define (problem cubeOf9modules)

 (:domain modulesequencing)

 (:requirements :typing :fluents)

 ;; m z,x,y z(AdjZ), x(AdjX), y(AdjY)

 (:objects m014A m014B m007A m007B m007C m006A m006B PR001 m005A m005B PR002

m011A m011B m012A m012B m012C m013A m013B m013C m004A m004B m143A m143B PR112

PR113 PR114 PR115 - module)

381

 (:init (base m014A)

 (base m007A)

 (base m006A)

 (base m005A)

 (base m011A)

 (base m012A)

 (base m013A)

 (base m004A)

 (base m143A)

 (base PR112)

 (base PR113)

 (base PR114)

 (AdjZ m014B m014A)

 (AdjZ m007B m007A)

 (AdjZ m007C m007B)

 (AdjZ m006B m006A)

 (AdjZ PR001 m006B)

 (AdjZ m005B m005A)

 (AdjZ PR002 m005B)

 (AdjZ m011B m011A)

 (AdjZ m012B m012A)

 (AdjZ m012C m012B)

 (AdjZ m013B m013A)

 (AdjZ m013C m013B)

 (AdjZ m004B m004A)

 (AdjZ m143B m143A)

 (AdjZ PR115 PR114)

 (AdjX m014A m007A)

 (AdjX m014B m007B)

382

 (AdjX m007A m006A)

 (AdjX m007B m006B)

 (AdjX m007C PR001)

 (AdjX m006A m005A)

 (AdjX m006B m005B)

 (AdjX PR001 PR002)

 (AdjX m005A m012A)

 (AdjX m005B m012B)

 (AdjX PR002 m012C)

 (AdjX m143A PR112)

 (AdjX PR112 PR113)

 (AdjX PR113 PR114)

 (AdjY m011A m012A)

 (AdjY m011B m012B)

 (AdjY m012A m013A)

 (AdjY m012B m013B)

 (AdjY m012C m013C)

 (AdjY m013A m004A)

 (AdjY m013B m004B)

 (AdjY m004A m143A)

 (AdjY m004B m143B)

 (placed m005A)

 (placed m005B)

 (placed m004A)

 (placed m004B)

 (placed PR113)

)

 (:goal (and (placed m014A)(placed m014B)(placed m007A)(placed m007B)(placed

m007C)(placed m006A)(placed m006B)(placed PR001)(placed m005A)(placed

383

m005B)(placed PR002)(placed m011A)(placed m011B)(placed m012A)(placed

m012B)(placed m012C)(placed m013A)(placed m013B)(placed m013C)(placed

m004A)(placed m004B)(placed m143A)(placed m143B)(placed PR112)(placed

PR113)(placed PR114)(placed PR115)))

)

