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Abstract

Monoclonal antibodies (mAbs) have become indispensable assets in modern medicine, neces-

sitating advancements in large-scale production to meet the growing market demand. This

thesis focuses on two critical aspects of mAb production: state estimation in the upstream

process and the control and optimization of the downstream process.

Accurate state estimation is vital for optimizing the mAb production process and reducing

costs. Therefore, this work presents guidelines for sensor selection to enhance state estimation

accuracy, and illustrates an effective variable selection technique for simultaneous state and

parameter estimation in the upstream process. Subsequently, a Moving Horizon Estimation

(MHE) framework is developed and applied to three case studies to demonstrate the efficiency

of estimating some parameters in addition to the states, with the Root Mean Squared Error

(RMSE) serving as the evaluation criterion.

The switching of the downstream capture columns are pivotal for ensuring the continuity

of the integrated continuous mAb production process. However, due to the discrete nature

of the switching operation, advanced process control algorithms such as economic model

predictive control (EMPC) are computationally difficult to implement. To address this issue,

computationally-efficient approaches are explored to improve EMPC implementation. The

first approach uses a sigmoid function to relax the discrete decision variables into continuous

ones, which makes the optimization problem easier to solve. The second approach involves

training a ReLU neural network to replace the original nonlinear model, leading to the

conversion of the integer nonlinear program (INLP) into an integer linear program (ILP).
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This modification facilitates a quicker solution to the optimization problem. Additionally,

we explore a reinforcement learning (RL) method, which seeks to identify the most effective

policy for addressing the optimization problem. Comparatively, all three techniques are

evaluated against the conventional switching approach, which relies on a fixed switching

product breakthrough rule. The integration of improved state estimation in the upstream

process and optimized control strategies in the downstream process presents a comprehensive

framework for enhancing mAb production efficiency.
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Chapter 1

Introduction

1.1 Motivation and Research Overview

Monoclonal antibodies (mAbs) are monospecific and homogeneous antibodies that are de-

veloped in a laboratory to enhance the body’s natural immune response against pathogens

[6]. Due to their unique properties, they serve as powerful tools in the advancement of

therapeutic treatments [7]. Over the years, they have become vital in the field of medicine,

and have been applied in the treatment of diverse diseases including cancer and infectious

diseases such as COVID-19 [6],[3],[8],[9]. However, the cost of treatments involving mAbs

can be significantly high due to the necessity for high doses and the expensive production

process [10]. Consequently, optimizing the production of mAbs has become imperative in

order to minimize expenses and make these treatments more accessible.

Most of the processes for mAb production rely on batch operation, which involves using

a batch or fed-batch bioreactor to provide nutrients for cells in order to facilitate antibody

production. This is followed by several batch purification steps [3]. Batch processes, however,

present several challenges, including difficulties in scaling up, limited adaptability to meet

dynamic market demands, poor yield, and the additional expenses associated with storing

and handling intermediate products. As a result of these drawbacks, there has been a growing
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interest in the continuous production of mAbs which has the potential to eliminate time-

consuming and labor-intensive procedures, enhance product quality, and improve overall

profitability [3], [11], [12]. The continuous production of mAbs can be divided into two

primary stages: the upstream and downstream processes. The upstream process entails

antibody production within a perfusion bioreactor, where a continuous supply of nutrients

is introduced. The downstream process involves purifying the produced antibodies through

a number of chromatography steps [4].

In the context of control, buffer tanks play a critical role by serving as an intermediary

step between the continuous operation units of the upstream and downstream processes.

They help regulate and manage fluctuations in flow rates, pressure, and other state variables

[13]. The application of advanced sensor technologies, such as mass and Raman spectroscopy,

allows for online or at-line measurement of cell characteristics, substrate concentrations, and

metabolic byproduct concentrations thereby enabling effective control strategies [14], [15].

Feedback control in different scenarios can be achieved using either a proportional integral

derivative (PID) controller or a model predictive controller (MPC), depending on the specific

requirements. The implementation of the PID controller is relatively simple, widespread

and faster in terms of computational time, while MPC offers more advanced capabilities

for complex processes and utilizes process models and optimization tools to forecast the

response of manipulated variables, albeit at the cost of increased computational time. De-

spite the remarkable technological advancements in control and automation facilitated by

high-performance computing, these developments have primarily occurred outside the phar-

maceutical industry, and biomanufacturing processes predominantly rely on classical control

systems [12] as evidenced in studies such as [16], where a PID controller was utilized to

regulate dissolved oxygen in vaccine production. However, there is a rising interest in imple-

menting advanced process control (APC) strategies, such as model predictive control (MPC),

within continuous biomanufacturing [17], [18]. For instance in [19], MPC was formulated to

maximize the production of monoclonal antibodies and to showcase its superiority over the
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utilization of a PID controller.

Through the accurate estimation of state variables, processes can be efficiently moni-

tored and controlled to achieve desired yield and product quality, while minimising resource

utilisation. A number of studies have documented the application of the Extended Kalman

Filter (EKF) in the field of biotechnological processes for state estimation [20], [21], [22].

While this technique has proven valuable in many applications, it is not without limitations.

One challenge that arises when using EKF in highly nonlinear systems such as the one de-

scribing the mAb production process is that it may lead to reduced estimation accuracy [23].

Incorporating state constraints in bioprocesses is of utmost importance [24] as it ensures

that operations are conducted within predefined boundaries. It enables various factors to be

taken into consideration, including the maximum allowable levels of impurities, production

capacity, and other safety factors. The utilization of Moving Horizon Estimation (MHE)

presents notable advantages compared to EKF, particularly in its capacity to effectively

handle nonlinear dynamics and incorporate constraints [25]. These advantages serve as a

strong motivation for employing MHE in the context of this paper.

Achieving accurate state estimation also relies on the concept of observability. By placing

the sensors strategically, it is possible to obtain measurements from which we can extract

sufficient information to reconstruct the entire state information of a system. In the work

by Liu et al. [26], a sensitivity-based approach was introduced for determining the optimal

sensor combination for state estimation problems. The algorithm seeks to determine an op-

timal sensor subset that ensures that the entire state information can be reconstructed. The

approach was applied to a wastewater treatment plant and a four continuous stirred-tank

reactor to assess its efficiency. The algorithm involves several steps, including the construc-

tion of a sensitivity matrix, the use of successive orthogonalization, and the application of

the degree of observability to identify the optimal sensor subset that satisfies the full rank

condition.

Given that MHE is a model-based technique, enhancing the accuracy of the model is
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important and parameter estimation is one way to enhance model accuracy. In [27], a particle

swarm optimization (PSO) algorithm was developed and used for parameter estimation

in the mAb production process. One drawback of this algorithm is its associated high

search complexity. As the search space increases, the computational effort required to find

the optimal solution also grows, impacting the efficiency of the algorithm [28], [29]. A

common approach is to estimate the sates and parameters simultaneously. It often involves

augmenting the parameters as additional states of the system. However, this augmentation

can introduce challenges, as it may lead to a loss of observability in the system, even with

the use of the optimally-selected sensors. The augmented system may have more variables

than can be accurately estimated, making it necessary to select a subset of variables for

estimation. In [30], an algorithm for variable selection in augmented systems is proposed. It

identifies the subset of variables that can be accurately estimated by effectively extracting

information from the measured output. The selected variables are then estimated using

MHE.

In Chapter 3 of this work, the objective is to estimate the states of the upstream process.

To achieve this, we begin by addressing sensor placement, aiming to determine the mini-

mum sensor combination and their optimal locations. Additionally, we focus on estimating

a select set of parameters within the model to maximize the information extracted from

the available measurements. Since the evaluation of each possible sensor combination would

not be practical for a large-scale system such as the system under consideration, the sensor

selection algorithm developed in the work by Liu et al. [26] is applied. Furthermore, simul-

taneous state and parameter estimation is performed by first augmenting the parameters of

the system as additional states, and employing the variable selection technique used in [30]

to select the variables to be estimated.

Chapter 4 focuses on optimizing the capture step of the downstream process, which is es-

sential to achieving the integrated, continuous manufacturing of mAbs. Usually, two or more

chromatography columns are employed for this step. For instance, in the work by Steinebach
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et al. [31], two columns were used to achieve the sequential countercurrent loading of mAbs

for maximum resin utilization. Other studies have also utilized multiple columns for the

same purpose, employing techniques such as simulated moving bed chromatography (SMB),

sequential multi-column chromatography (SMCC), and periodic counter-current chromatog-

raphy (PCC) [32], [33], [34]. In this work, we focus on the use of twin chromatography

capture columns, as described by Gomis et al. [3]. The capture columns are operated such

that while one column is loaded with product from upstream, the contents of the second

column are eluted into the subsequent downstream component. The columns are switched

when the loading column reaches a fixed predetermined percentage product breakthrough

at the column outlet. However, to ensure maximum product yield and effective resource

utilization, the optimization and control of the switching operation is crucial.

The downstream model used in this work involves complex nonlinear equations. It also

involves spatial discretization which leads to a large number of states. Furthermore, due

to the discrete nature of the switching operation, the optimization problem is formulated

as a nonlinear integer problem. This poses an extra challenge for the implementation of

EMPC because an integer nonlinear program (INLP) needs to be solved online at each

sampling time, which is computationally-demanding and slow. To overcome these difficulties,

this work investigates and proposes computationally-efficient approaches to improve EMPC

implementation for controlling and optimizing the switching step.

In the first approach, a sigmoid activation function is used to relax the discrete decision

variables into continuous decision variables, making the optimization problem easier to solve.

The second approach involves training a ReLU neural network to replace the original nonlin-

ear model, leading to the conversion of the INLP into an integer linear program (ILP). This

modification facilitates a quicker solution to the optimization problem. Additionally, this

work explores an RL method, which seeks to identify the most effective policy for addressing

the optimization problem. Comparatively, all three techniques are evaluated against the

conventional switching approach, which relies on a fixed switching product breakthrough
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rule. The assessment centers around product loss and the overall cost incurred, providing

insights into their relative performance.

1.2 Thesis Outline and Contributions

The outline and contributions of the thesis is organized as follows:

In Chapter 2, the upstream and downstream models for the mAb production process are

presented.

Chapter 3 presents a detailed consideration of sensor placement for continuous mAb

production processes. The findings offer valuable guidelines for selecting suitable sensors in

similar continuous mAb production setups. Additionally, a state estimation framework using

MHE is introduced for continuous mAb production processes. This framework effectively

extracts maximum information from measurements to improve state estimation accuracy.

In Chapter 4, the focus shifts to optimization strategies for enhancing the switching

operation of the capture columns in the downstream process. Extensive simulation results

are presented, comparing different approaches in terms of product loss and cost. The effect

of various factors such as the weights used in the optimization problem design, predic-

tion horizon, and noise are also investigated. The aim is to identify the most efficient and

cost-effective methods for controlling the switching operation in the integrated continuous

production system.

The collective efforts presented in this thesis contribute to the advancement of mAb

production processes, both in terms of improving sensor placement for better state estimation

and optimizing the downstream operation for increased efficiency.
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Chapter 2

Mathematical Models for Upstream

and Downstream Processes

This chapter presents the upstream and downstream models of the monoclonal antibody

(mAb) production process. The upstream model is originally sourced from the work of

Kontoravdi et al. [1], [2], while the downstream model is derived from the work of Gomis

Fons et al. [3]. The models were adapted and modified for the purpose of this thesis.

2.1 Upstream System Description and Problem

Formulation

The diagram presented in Figure 2.1 illustrates the upstream system of a continuous mAb

production process, and is a modified version from [4]. The system primarily consists of

a well-stirred bioreactor and a microfiltration unit/cell retention device. The buffer tank,

introduced for smoother operation [35], is located between the upstream and downstream

process components and is considered in this work alongside the upstream components.

In this setup, the bioreactor employs perfusion culture, where nutrients such as glucose

and glutamine are continuously supplied with a flow rate represented by Fin, to create an
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Figure 2.1: A schematic diagram of the upstream process for mAb production.

optimal environment for mAb production by a mammalian cell culture in the bioreactor.

Specifically, the GS-NSO cell culture system as described in [36] is considered here. During

the production of the desired mAbs, the cell culture undergoes metabolic activities which

lead to the production of the key metabolites: lactate and ammonia.

The effluent stream, comprising the cells, mAbs, and metabolites exits the bioreactor at

a flow rate denoted as F1, into the microfiltration unit. The microfiltration unit recycles the

cells back into the bioreactor through the recycle stream with a flow rate of Fr. This recycling

process ensures the maintenance of a high cell density within the bioreactor. The remaining

content of the stream is allowed to pass on into the buffer tank with a flow rate denoted

as F2. A cooling jacket is used around the bioreactor to regulate the temperature of the

bioreactor components [4]. Finally, the stream from the buffer tank, containing the product,

metabolites, and any toxic by-products is directed downstream for product purification. The

mathematical model of the upstream process is based on the work by [1], [2], [4].

2.1.1 Bioreactor Modelling

The bioreactor model encompasses three key aspects: cell growth and death, cell metabolism,

and mAb production. To describe cell growth and death, as well as cell metabolism, a Monod
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kinetics model from [36] was employed, and the dynamic model for the upstream system was

developed under the following assumptions:

1. The content within the bioreactor is homogeneously mixed.

2. The enthalpy change resulting from cell death is negligible.

3. The dilution effect is negligible.

4. No heat is lost to the external environment.

5. The temperature of the recycled stream and the reaction mixture are equivalent.

6. The buffer tank level, volume of the bioreactor, and volume of the cell retention device

remain constant throughout the process.

To describe the growth of cells, Equations (2.1) - (2.2) are used [36]:

dXv1

dt
= µXv1 − µdXv1 −

Fin

V1

Xv1 +
Fr

V1

(Xvr −Xv1) (2.1)

dXt1

dt
= µXv1 −

Fin

V1

Xt1 +
Fr

V1

(Xtr −Xt1) (2.2)

They represent the conversion of viable cells and total cells within the culture [4], where X is

the cell concentration in cells/L, µ is the specific growth rate in min−1, and µd is the specific

death rate in min−1. The subscripts v and t signify viable and total cells, and the subscript

1 represents the bioreactor throughout the paper. V1 represents the bioreactor volume in L,

Fin is the volumetric flow rate of nutrients into the bioreactor, Fr is volumetric flow rate of

the recycle stream, and Fout is the volumetric flow rate out of the bioreactor in L/min.

The specific cell growth rate depends on temperature, the concentrations of glucose and

glutamine, as well as the metabolites lactate and ammonia. It can be calculated using the

following Monod kinetic equations [36]:
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µ = µmaxflimfinh (2.3)

flim =

(

[GLC]1
Kglc + [GLC]1

)(

[GLN ]1
Kgln + [GLN ]1

)

(2.4)

finh =

(

KIlac
KIlac + [LAC]1

)(

KIamn

KIamn + [AMN ]1

)

(2.5)

where µmax is the maximum specific growth rate in min−1, and flim and finh are the nutrient

limitation function and the product inhibition function respectively. The concentrations of

glucose, glutamine, lactate, and ammonia are represented by [GLC], [GLN ], [LAC], and

[AMM ] respectively, and measured in mM . The Monod constant in mM for glucose, glu-

tamine, lactate and ammonia are also denoted as Kglc, Kgln, KIlac and KIamm respectively.

The specific death rate is given by Equation (2.6), under the assumption that cell death is

only a function of the accumulation of ammonia, and n is assumed to be greater than 1

to give a sharper increase in specific death of cells, with increasing ammonia concentration.

The maximum cell death rate, µd,max, was also fixed as a constant.

µd =
µd,max

1 +
(

Kd,amm

[AMM ]1

)n ; n > 1 (2.6)

µmax = 0.0016T − 0.0308 (2.7)

In [4], a linear regression analysis was performed utilizing data sourced from [37] to es-

tablish a linear correlation between temperature and the maximum cell growth rate. This

relationship is expressed by Equation (2.7), where T denotes the temperature of the biore-

actor contents in ◦C. The dataset used for this analysis was obtained at the temperatures

of 33◦C and 37◦C.

The heat balance equation for the bioreactor is given by [4]:

dT

dt
=

Fin

V1

(Tin − T ) +
−∆H

ρcp
(µXv1) +

U

V1ρcp
(Tc − T ) (2.8)

where Tin is the temperature of media entering the bioreactor in ◦C, ∆H is the heat of
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reaction due to cell growth in J/mol, ρ is the density of the reaction mixture in g/L, cp is

the specific heat capacity of the reaction in J/(g◦C), U is the overall heat transfer coefficient

in J/(hr◦C), and Tc is the temperature of coolant in the cooling jacket in ◦C. The first term

in Equation (2.8) accounts for the heat transfer resulting from the inflow of the feed into

the bioreactor. It takes into consideration the temperature difference between the incoming

feed and the current temperature of the bioreactor contents. The second term represents the

heat consumption due to cell growth, and the last term represents the external heat transfer

due to the cooling jacket.

As the cells in the bioreactor consume nutrients, undergo growth, and engage in metabolic

activities, they generate two main metabolites, namely, lactate and ammonia. The mass

balance equations for the nutrients, glucose and glutamine, in the bioreactor can be described

using Equations (2.9) - (2.13):

d[GLC]1
dt

= −QglcXv1 +
Fin

V1

([GLC]in − [GLC]1) +
Fr

V1

([GLC]r − [GLC]1) (2.9)

Qglc =
µ

YX,glc

+mglc (2.10)

d[GLN ]1
dt

= −QglnXv1 −Kd,gln[GLN ]1 +
Fin

V1

([GLN ]in − [GLN ]1)

−
Fr

V1

([GLC]1 − [GLN ]1) (2.11)

Qgln =
µ

YX,gln

+mgln (2.12)

mgln =
α1[GLN ]1

α2 + [GLN ]1
(2.13)

where YX,glc and YX,gln are the yield of cells on glucose and glutamine respectively in

cell/mmol, Kd,gln is the constant for glutamine degradation inmin−1, andmglc is the mainte-

nance coefficient of glucose. α1 and α2 are the constants of glutamine maintenance coefficient.

The mass balance equations for lactate and ammonia in the bioreactor can also be described

11



using Equations (2.14) - (2.17):

d[LAC]1
dt

= QlacXv1 −
Fin

V1

[LAC]1 +
Fr

V1

([LAC]r − [LAC]1) (2.14)

Qlac = Ylac,glcQglc (2.15)

d[AMM ]1
dt

= QammXv1 +Kd,gln[GLN ]1 −
Fin

V1

[AMM ]1 +
Fr

V1

([AMM ]r − [AMM ]1) (2.16)

Qamm = Yamm,glnQgln (2.17)

where Ylac,glc and Yamm,gln are the yield of lactate from glucose and the yield of ammonia

from glutamine respectively in mmol/mmol.

The production rate of the mAbs in the bioreactor is described using Equations (2.18) -

(2.19):

d[mAb]1
dt

= Xv1QmAb −
Fin

V1

[mAb]1 +
Fr

V1

([mAb]r − [mAb]1) (2.18)

QmAb = Qmax
mAbexp

[

−
1

2

(

pH − pHopt

wmAb

)2
]

(2.19)

where Qmax
mAb denotes the maximum specific productivity measured in mg/cell/h. wmAb de-

notes the pH-dependent productivity constant, and pHopt denotes the optimal culture pH as

shown in [38]. The pH value in Equation (2.19) is assumed to be a function of state, and its

model is given by Equations (2.20) - (2.21):

pH =θ1 − log10(θ2[AMM ] + θ3) (2.20)

pH =7.1697− log10(0.074028[AMM ] + 0.968385) (2.21)

where the constants θ1 and θ2 were obtained from nonlinear regression [4].

2.1.2 Microfiltration

As the stream leaving the bioreactor enters the cell retention device, the cells are separated

from the remaining contents of the stream. It is assumed that in the separation process no

12



reactions occur. The concentration of each variable in the recycle stream is given as follows

[4]:

Xvr = ηrecXv1
F1

Fr

(2.22)

Xtr = ηrecXt1
F1

Fr

(2.23)

[GLC]r = ηret[GLC]1
F1

Fr

(2.24)

[GLN ]r = ηret[GLN ]1
F1

Fr

(2.25)

[LAC]r = ηret[LAC]1
F1

Fr

(2.26)

[AMM ]r = ηret[AMM ]1
F1

Fr

(2.27)

[mAb]r = ηret[mAb]1
F1

Fr

(2.28)

where (ηrec) is the cell recycle rate and (ηret) is the retention rate of glucose, glutamine,

lactate, ammonia, and mAb [39]. The mass balance for glucose, glutamine, lactate, ammonia,

and mAb concentrations around the cell retention device can be expressed by Equations

(2.29) - (2.35):

dXv2

dt
=

F1

V2

(Xv1 −Xv2)−
Fr

V2

(Xvr −Xv2) (2.29)

dXt2

dt
=

F1

V2

(Xt1 −Xt2)−
Fr

V2

(Xtr −Xt2) (2.30)

d[GLC]2
dt

=
F1

V2

([GLC]1 − [GLC]2)−
Fr

V2

([GLC]r − [GLC]2) (2.31)

d[GLN ]2
dt

=
F1

V2

([GLN ]1 − [GLN ]2)−
Fr

V2

([GLN ]r − [GLN ]2) (2.32)

d[LAC]2
dt

=
F1

V2

([LAC]1 − [LAC]2)−
Fr

V2

([LAC]r − [LAC]2) (2.33)

d[AMM ]2
dt

=
F1

V2

([AMM ]1 − [AMM ]2)−
Fr

V2

([AMM ]r − [AMM ]2) (2.34)

d[mAb]2
dt

=
F1

V2

([mAb]1 − [mAb]2)−
Fr

V2

([mAb]r − [mAb]2) (2.35)
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where the subscript 2 denotes the cell retention device. It is assumed that the volume of

the contents in the cell retention device, V2, is constant. Additionally, Xv2 and Xt2 are the

concentrations of viable cells and total cells respectively in the cell retention device.

2.1.3 Buffer Tank Model

Following the retention of cells by the microfiltration unit, the remaining contents of the

stream, which has a high mAb concentration, flow into the buffer tank. The rate of change

of mAb concentration in the buffer tank can be described by Equations (2.36) - (2.37):

dc

dt
=

Fin,bf

(Ach)([cin,bf ]− [c])
(2.36)

Ac = π(
D

2
)2 (2.37)

where Fin,bf represents the inlet flow rate of the buffer tank in L/min, h represents the buffer

tank level which is assumed to be constant, and [cin,bf ] represents the inlet concentration of

mAb in mg/L. [c] denotes the concentration of mAb in the buffer tank in mg/L, and D

represents the diameter of the buffer tank which is fixed.

The parameters used in the model described by Equations (2.1) - (2.37) are listed in

Table 2.1. The values are obtained from literature or calculated by steady-state design. For

instance, the constant buffer tank level used, as well as the fixed volumes of the bioreactor and

cell retention device were obtained at steady-state operation. Furthermore, the parameters

used in the equations describing mAb synthesis, cell growth, death and metabolism in the

bioreactor were obtained from the works by Papathanasiou et al. [36] and Villiger et al. [38].

The cell recycle rate and the retention rates of the mAbs, nutrients and metabolites around

the cell retention device were also obtained from the work by Clincke et al. [39]. Table 2.1

also provides a list of the inputs utilized in the simulations conducted in the subsequent

sections.
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Table 2.1: Inputs under nominal conditions and parameters of the model [4].

Parameter Unit Value Parameter Unit Value

Kd,amm mM 1.76 −∆H J/mol 5.0× 105

Kd,gln hr−1 (9.6× 10−3)/60 ρ g/L 1560.0
Kglc mM 0.75 cp J/(g◦C) 1.244
Kgln mM 0.075 U J/(h◦C) 4× 102

KIamm mM 28.48 Tin
◦C 37.0

KIlac mM 171.76 mglc mmol/cell/min 4.9× 10−14/60

n − 2 α1 mML/cell/min 3.4× 1013/60

Yamm,gln mmol/mmol 0.45 ηrec - 92%
Ylac,glc mmol/mmol 2.0 ηret - 20%
YX,glc cell/mmol 2.6× 108 V1 L 3× 103

YX,gln cell/mmol 8.0× 108 V2 L 2.976× 103

α2 mM 4.0 h dm 15
µd,max min−1 0.06/60 D dm 5
Qmax

mAb mg/(cell · hr) (6.59× 10−10)/60

Input Unit Value Input Unit Value

Fin L/min 2.161× 101 GLCin mM 2.199× 10−3

F1 L/min 2.161× 101 GLNin mM 1.306× 101

Fr L/min 5.501× 10−3 Tc
◦C 4.069× 101

F2 L/min 2.161× 101 Foutbf L/min 2.161× 101

2.1.4 Problem Formulation

The continuous-time model in Section 2.1 is discretized using the fourth-order Runge-Kutta

method with a sampling time of ∆ = 60 minutes, and represented by Equations (2.38) -

(2.39) for simplicity.

x(k + 1) = F (x(k), u(k), P (k)) + wx(k) (2.38)

y(k) = H(x(k)) + v(k) (2.39)

In Equation (2.38), the system state vector x(k) ∈ X ⊂ R
16 comprises 16 elements, repre-

senting the state variables listed in Table 2.2. The input vector u(k) ∈ U ⊂ R
8 consists of

8 elements and represents the inputs to the system. The parameter vector P (k) ∈ P ⊂ R
27

has 27 elements, the process noise vector wx(k) ∈ W ⊂ R
16 accounts for disturbances in
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Table 2.2: States for the upstream process model.
State Unit Definition
Xv1 cell/L concentration of viable cells in bioreactor
Xt1 cell/L total concentration of cells in bioreactor
GLC1 mM glucose concentration in bioreactor
GLN1 mM glutamine concentration in bioreactor
LAC1 mM lactate concentration in bioreactor
AMM1 mM ammonia concentration in bioreactor
mAb1 mg/L mAb concentration in bioreactor
Xv2 cell/L concentration of viable cells in cell separator
Xt2 cell/L total concentration of cells in cell separator
GLC2 mM glucose concentration in cell separator
GLN2 mM glutamine concentration in cell separator
LAC2 mM lactate concentration in cell separator
AMM2 mM ammonia concentration in cell separator
mAb2 mg/L mAb concentration in cell separator
T ◦C temperature of bioreactor mixture
c mg/L mAb concentration in buffer tank

the system, and the nonlinear state equation is denoted by F . Equation (2.39) describes

the measured output vector y(k) ∈ Y ⊂ R
Ny , which comprises Ny measurements obtained

through the sensor selection process. The measurement noise vector v(k) ∈ V ⊂ R
Ny rep-

resents the errors associated with the measurement process, and H represents the output

equation that relates the system states to the measured outputs.

The main objective of this work is to estimate the states of the system described in

Equations (2.38) - (2.39). To achieve this, the sensor placement problem is first considered,

with the aim of determining the minimum number of sensors for which the system is observ-

able, as well as the optimal sensor locations. The following section provides a comprehensive

overview of the selection process for the optimal set of sensors for state estimation. We

present the algorithm used for sensor selection and reveal the sensors that are ultimately

chosen.
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Figure 2.2: High-level flow diagram of mAb production.

2.2 Downstream System Description and Problem For-

mulation

This section provides a concise overview of the downstream production process, with a focus

on the operation of the capture column.

2.2.1 Overview of Production Process

The continuous integrated production of mAbs comprises the upstream and downstream

processes. As depicted in Figure 2.2, a buffer tank is used between the two processes to

ensure that disruptions in upstream operations do not significantly affect downstream oper-

ations [3]. While the upstream process is responsible for mAb production, the downstream

process is responsible for the purification of the produced mAbs leaving the upstream process

components. The downstream process involves the following steps: capture, virus inactiva-

tion, cation exchange chromatography (CEX) in bind-and-elute mode and anion exchange

chromatography (AEX) in flow-through mode. The downstream process configuration used

in this work is taken from the studies by Gomis Fons et al. [3].

The capture step is a chromatography step and is discontinuous by nature. Therefore,

a set of twin protein A chromatography columns are used to achieve continuity. This step

is implemented such that while one of the twin columns (column A) is in loading mode,

the other column (column B) is in elution mode as depicted in Figure 2.3 and the rest

of the downstream processes are carried out [3]. This means that by the time column A

is fully loaded, column B is empty of product and has undergone regeneration. The two

columns then switch roles so that column A will be connected to the rest of the downstream
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Figure 2.3: Schematic diagram of the downstream process [4].

units and its contents eluted into the VI-loop, whereas column B will be connected to the

upstream units and loaded [4]. Any virus present in the stream are inactivated during

the virus inactivation step to prevent further mAb degradation. The CEX and AEX steps

effectively remove other undesirable components or contaminants from the stream, ensuring

the collection of a purified final product.

The twin chromatography columns used for the capture step are packed with protein

A resins or beads, which have an affinity for the mAbs.As the product-saturated stream

from upstream enters the capture column, the mAbs bind to the beads until the beads

become fully saturated, preventing further adsorption. During elution mode, a buffer is

employed to wash out (elute) the adsorbed mAbs from the capture column into the VI

loop. In Figure 2.4, the red line represents the loading mode of the capture column and

the blue line represents the elution mode of the capture column. Column 1 and column 2

represent the twin chromatography columns employed in the capture step. The switching of

these columns is facilitated by two versatile valves, V1 and V2. As depicted in the diagram,

failing to switch the columns frequently enough results in excess product from upstream

being wasted. Conversely, switching too frequently may not allow sufficient time for mAb

adsorption onto the beads. Hence, it is crucial to determine the optimal time for column

switching to achieve the best performance.
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Figure 2.4: Schematic diagram depicting the switching of capture column [3].

2.2.1.1 Capture Column - Loading Mode

To understand the modelling of the capture process, we refer to the capture column as

depicted in Figure 2.5. From the figure, the capture column is shown to be packed with

protein A resins. The porous nature of the resins provides a large surface area for the

binding of the antibodies.

The modeling of the capture step considers three key types of mass transfers within

the column. The first is the convection flow resulting from the bulk movement of the fluid

through the column in the axial direction. The second is the dispersion of mAb along the

axial direction of the column as shown in the second subfigure. The third is the intra-

particle diffusion within the beads [4]. The general rate model (GRM) by Perez-Almodovar

and Carta [40] is used to describe the loading of the column using the following equation,

which describes the mass transfer along the axial coordinate of the column:

∂c

∂t
= Dax

∂2c

∂z2
−

v

ϵc

∂c

∂z
−

1− ϵc
ϵc

3

rp
kf (c− cp|r=rp) (2.40)
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Figure 2.5: Schematic diagram of the capture column [5].

In Equation (2.40), z represents the axial coordinate of the column. c represents the concen-

tration of mAb in the mobile phase which changes with time t, Dax is the axial dispersion

coefficient and v is the superficial fluid velocity. ϵc denotes the extra-particle column void, kf

is the mass transfer coefficient and rp is the radius of the porous particles. Furthermore, the

term ∂2c
∂z2

describes the movement of mAb through the column due to the concentration dif-

ference within the column. The term ∂c
∂z

also represents the change in concentration of mAb

along the z axis due to convection flow. The last term, kf (c − cp|r=rp), is used to describe

the mass transfer between the mobile phase c and the surface of the beads cp|r=rp . It should

be noted that the general rate model is used under the assumption that the transfer along

the radial direction of the column is negligible and the transfer along the axial direction of

the column and the radial direction in the beads is considered [4]. The following equations
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are the boundary conditions for Equation (2.40):

∂c

∂z
=

v

ϵcDax

(c− cF ) at z = 0 (2.41a)

∂c

∂z
= 0 at z = L (2.41b)

where cF denotes the harvest mAb concentration from upstream. The mass balance for the

diffusion of mAb inside the beads is represented by the following equation:

∂cp
∂t

= Deff
1

r2
∂

∂r
(r2

∂cp
∂r

)−
1

ϵp

∂(q1 + q2)

∂t
(2.42)

where cp is the concentration of mAb along the radial coordinate of the beads, Deff is the

effective pore diffusivity, r is the distance from the current location to the center of the

particle and q1 and q2 are the adsorbed mAb concentrations for the slow and fast-binding

sites of the beads respectively. The boundary conditions for Equation (2.42) are given as:

∂cp
∂r

= 0 at r = 0 (2.43a)

∂cp
∂r

=
kf

Deff

(c− cp) at r = rp (2.43b)

and the rates of change of the concentration of adsorbed mAbs (q1 and q2) are also given by

the following equation:

∂qi
∂t

= ki[(qmax,i − qi)cp|r=rp−
qi
K

] for i = 1, 2 (2.44)

where ki is the adsorption kinetic constant, qmax is the column capacity, and K is the

Langmuir equilibrium constant. In this work, we assume the porous beads have two binding

sites; a fast-binding one and a slow-binding one. As a result, two indices are employed to

represent these two sites, one representing the fast-binding site and the other representing

the slow-binding site [4]. It should be noted that the optimization work focuses on the
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loading mode of the capture column, and thus, the elution mode model is not considered.

2.2.1.2 Compact Form of Capture Column Model

The model equations given by Equations (2.40)-(2.44) are partial differential equations

(PDEs). The equations were discretized to convert to ordinary differential equations (ODEs)

using the two point central difference method and the ODEs were solved using numerical

methods. The beads within the column were discretized into 5 segments along the radial

direction, resulting in a total of 5 cp states. Consequently, the capture column has a total

of 8 states. Furthermore, along the axial direction, the column is divided into 75 equal

parts, leading to a grand total of 600 states. The compact form of the capture column

model can be represented by Equation (2.45), where Equation (2.45b) represents the system

state vector and Equation (2.45c) represents the continuous input vector which contains

the inlet mAb concentration and flow rate which have the constant values 49.9219 mg/L

and 21.6129 L/min respectively. These values were obtained from the upstream process at

steady state.

x(k + 1) = f(x(k), uc(k)) (2.45a)

x(k) ∈ R
600 (2.45b)

uc(k) ∈ R
2 (2.45c)

The modelling of the capture column with the switching operation is given by Equation

(2.46a):

x(k + 1) = f(x(k), uc(k))[1− ud] (2.46a)

ud(k) ∈ R (2.46b)

where ud is the discrete input which is either 0 or 1.
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Chapter 3

State Estimation of Upstream

Processes

In this chapter, state estimation is performed for the upstream mAb process. We begin by

considering sensor placement to select the most estimable states for estimation. We also

investigate the effect of estimation some parameters in addition.

3.1 Sensor Selection for State Estimation

The problem of optimal sensor selection is encountered in various areas such as robotics,

healthcare, and industrial process control. While an exhaustive search of all possible sensor

combinations may be feasible for small-scale systems, it becomes computationally inefficient

for large-scale systems, where the complexity grows exponentially with the number of can-

didate sensors. Addressing this issue requires a reliable sensor selection scheme that offers

improved performance and lower computational complexity [41], [42]. In this work, we apply

a sensitivity-based approach for optimal sensor selection to the upstream process of mAb pro-

duction. This approach, developed by Liu et al. [26], was utilized to determine the optimal

number and placement of sensors in a wastewater treatment plant. The algorithm involves

constructing the sensitivity matrix and employing orthogonalization and degree of observ-

23



ability for sensor selection. To begin, we take a look at the construction of the sensitivity

matrix, and the sensor placement process.

3.1.1 Construction of the Sensitivity Matrix

Observability plays a crucial role in state estimation as it determines the possibility of de-

ducing the internal states of a system based on the measurements of a subset of those states.

The sensitivity matrix, in the context of nonlinear systems, is a valuable tool for assessing

observability. The work presented in [30] sheds light on the relation between the sensitivity

matrix and the observability of dynamical nonlinear systems. Moreover, it elucidates the cor-

relation between the observability matrix and observability in linear systems. Through these

insights, a deeper understanding of the relationship between observability and the sensitivity

matrix can be gained. Here, we delve into the use of the sensitivity matrix for evaluating the

observability of a discrete-time nonlinear system. Considering the discrete-time nonlinear

system described by Equations (2.38) - (2.39), the sensitivity matrix, Sy,x(0)(k), at sampling

time k can be constructed as shown in Equation (3.1):

Sy,x(0)(k) =













S11(k) · · · S1n(k)

...
. . .

...

Sm1(k) · · · Smn(k)













∈ R
m×n (3.1)

where each column represents the sensitivity of the different outputs to a specific state

element. The individual entries of the matrix, which can be denoted as Sij(k), can be

calculated using Equation (3.2a). Furthermore, Equation (3.2b) expresses the sensitivity of

the state x(k) with respect to the initial state x(0), as mentioned in [26].

Si,j(k) =
∂yi(k)

∂xj(0)
=

∂hi

∂xj

(k)Sx,x(0)(k) (3.2a)

Sx,x(0)(k) =
∂x(k)

∂x(0)
(3.2b)
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Figure 3.1: A schematic flow diagram of sensor selection process.

The normalized sensitivity matrix from sampling time 0 to k can be constructed as Equation

(3.3). If the observability matrix, S(k, 0), is full rank along the entire trajectory from

sampling time 0 to k, then the nonlinear system is locally observable along the trajectory.

This implies that the current states x(k) can be fully estimated using input and output data

[30], [43].

S(k, 0) =



















Sy,x(0)(0)

Sy,x(0)(1)

...

Sy,x(0)(k)



















∈ R
(k+1)m×n (3.3)
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3.1.2 Procedure to Determine Minimum Number and Optimal

Placement of Sensors

The sensitivity matrix is normalized to ensure that the magnitudes of its elements are on

a consistent scale. The norm of each column of the sensitivity matrix is used as a measure

of the degree of observability. Larger norms indicate greater sensitivity of the output to

the corresponding state. However, the direct use of the norms is limited by the potential

linear dependence among some columns. To address this, successive orthogonalization is

applied to identify the strongly linearly independent columns. Starting with the sensor

corresponding to the column with the smallest norm, sensors are successively removed for

states that contribute the least to the overall system observability. The process continues

until removing another sensor would render the system unobservable. The orthogonalization

procedure used to rank the columns by magnitude, and the final algorithm used to obtain

the minimum sensor set have been detailed in [26].

To derive the ultimate minimum sensor set, the procedure in Figure 3.1 is implemented.

Given the initial sensor set containing all the sensors, the sensors are removed one at a

time. For each sensor removed from the set, the rank of the normalized sensitivity matrix is

checked to ensure that the system is still observable. If the matrix is rank deficient, the degree

of observability is set to zero. If the matrix is full rank, the total degree of observability

is calculated based on the remaining sensors in the set. This ensures that the algorithm

considers only observable systems moving forward. The total degree of observability is the

sum of the norms of the columns of the normalized sensitivity matrix, where the norms

of the matrix have been obtained and ordered using orthogonalization to eliminate linear

dependence. The sensor which when removed from the set results in the highest degree of

observability is chosen and removed permanently from the set. This is because that sensor

contributes the least to the overall observability of the system. This process continues until

the further removal of any sensor would cause the system to lose observability. Consequently,

the algorithm terminates at the step where for all the remaining sensors, the degree of
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Table 3.1: Sensor selection process for mAb process.
m U (S(m)) rank degreemax sensorrem
16 {} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 16 64.025 None
15 {2} {1,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 16 61.994 2
14 {2,1} {3,4,5,6,7,8,9,10,11,12,13,14,15,16} 16 59.894 1
13 {2,1,3} {4,5,6,7,8,9,10,11,12,13,14,15,16} 16 57.717 3
12 {2,1,3,7} {4,5,6,8,9,10,11,12,13,14,15,16} 16 55.255 7
11 {2,1,3,7,14} {4,5,6,8,9,10,11,12,13,15,16} 16 53.096 14
10 {2,1,3,7,14,6} {4,5,8,9,10,11,12,13,15,16} 16 50.628 6
9 {2,1,3,7,14,6,15} {4,5,8,9,10,11,12,13,16} 16 48.032 15
8 {2,1,3,7,14,6,15,5} {4,8,9,10,11,12,13,16} 16 45.289 5
7 {2,1,3,7,14,6,15,5,4} {8,9,10,11,12,13,16} 16 42.367 4

m U (S(m)) rank D(Sm) sensor taken out
6 {2,1,3,7,14,6,15,5,4,8} {9,10,11,12,13,16} 15 36.777 → 0 8
6 {2,1,3,7,14,6,15,5,4,9} {8,10,11,12,13,16} 14 34.325 → 0 9
6 {2,1,3,7,14,6,15,5,4,10} {8,9,11,12,13,15} 15 36.777 → 0 10
6 {2,1,3,7,14,6,15,5,4,11} {8,9,10,12,13,16} 15 36.777 → 0 11
6 {2,1,3,7,14,6,15,5,4,12} {8,9,10,11,13,16} 15 36.777 → 0 12
6 {2,1,3,7,14,6,15,5,4,13} {8,9,10,11,12,16} 15 36.777 → 0 13
6 {2,1,3,7,14,6,15,5,4,16} {8,9,10,11,12,13} 13 31.845 → 0 16

observability has been set to zero due to rank deficiency.

3.1.3 Minimum Sensor Set Selection

Consider the mAb process described in Section 2.1 and its compact representation

given by Equations (2.38) - (2.39). We assume the presence of commercially-available

sensors, as discussed in [44], [45], [46], capable of measuring all 16 states represent-

ing temperature and the concentrations of the nutrients, metabolites, and mAbs. To

initiate the sensor selection process, we begin with the original full sensor set de-

noted as S(16), which comprises all 16 sensors. The initial set S(16) is defined as

{Xv1, Xt1, GLC1, GLn1, LAC1, AMM1,mAb1, Xv2, Xt2, GLC2, GLN2, LAC2, AMM2,mAb2,

T, c} which can be simplified as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} for convenience.

Table 3.1 illustrates the step-by-step removal of sensors using the sensor selection algo-

rithm to determine the final optimal minimum sensor set. Following the algorithm, for each

sensor removed, the degree of observability for the remaining set is calculated and the corre-

sponding sensor for the set with the highest degree of observability is removed. This removal

is performed because the removed sensor contributes the least to the overall observability of

the system. In Table 3.1, m represents the number of sensors remaining in the sensor set,
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U denotes the set of removed sensors, rank is the rank of the sensitivity matrix which is

constructed based on the current sensor set combination. degreemax is the maximum degree

of observability at each step of the removal process and for which the corresponding sen-

sor is permanently removed, sensorrem indicates the sensor corresponding to the maximum

degree of observability and which is removed permanently at the current step. D(Sm) also

represents the degree of observability for a particular sensor taken out.

We initiate the sensor selection algorithm with the full sensor set S(16), which exhibits

a total degree of observability of 64.025 and a full-rank sensitivity matrix. The algorithm

proceeds sequentially by removing one sensor at a time from the set of 16 sensors. For each

iteration, the sensitivity matrix is reconstructed and its rank is assessed. If the rank of the

sensitivity matrix is less than 16, indicating rank deficiency, the degree of observability is set

to zero. Conversely, if the rank is 16, the degree of observability remains effective. Analyzing

the degrees of observability for each sensor removal, we find that removing sensor 2 yields

the highest degree of observability at 61.994. Hence, sensor 2 is permanently eliminated from

the set as it contributes the least to the overall observability of the system.

Moving forward, we proceed to the next step of the algorithm with a sensor set of 15

sensors. The objective is to remove one more sensor to obtain an optimal set containing 14

sensors. After evaluating the degrees of observability for each sensor removal, it is observed

that removing sensor 1 leads to the maximum degree of observability. Consequently, sensor

1 is removed permanently from the set. Following a similar procedure, sensors 3, 7, 14, 6,

15, 5, and 4 are subsequently removed permanently from the set, one after another.

After the removal of sensor 4, the remaining set consists of sensors {8, 9, 10, 11, 12, 13, 16}.

Upon removing sensor 8, the sensitivity matrix is rank deficient, therefore the degree of ob-

servability, D(Sm), is set to 0 and sensor 8 is not permanently removed. Similar observations

are made for sensors 9, 10, 11, 12, 13, and 16, therefore none of these sensors is removed per-

manently as the removal of any of these sensors results in a rank-deficient sensitivity matrix.

Thus, the algorithm terminates at m = 7, and the final optimal minimum sensor set is S(7) =
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{8, 9, 10, 11, 12, 13, 16}, which corresponds to {Xv2, Xt2, GLC2, GLN2, LAC2, AMM2, c}.

3.2 State Estimation Method

The sensors selected in Section 3.1.3 play a crucial role in obtaining measurements which

when combined with the process model, enable the reconstruction of the system’s states.

However, relying solely on state estimation may not capture all the valuable information

embedded within the measurements. To fully exploit the available information, it is advan-

tageous to also estimate some parameters. This approach enhances the algorithm’s resilience

to model uncertainty and improves overall estimation performance. Simultaneous state and

parameter estimation has garnered significant attention, as it offers the capability to achieve

better estimation outcomes [30], [47], [48].

Estimating parameters in complex systems usually presents a challenge, as there are

often more parameters than can be reliably estimated. Consequently, it becomes crucial

to determine a subset of parameters that can be accurately estimated. How to select the

appropriate subset of parameters becomes a significant question to address [49]. To determine

which parameters should be included for estimation, variable selection is employed. First,

the parameters are augmented as extra states of the original system. Next, the sensitivity

matrix for the augmented system, Sa, is constructed and normalized. Subsequently, the rank

of the normalized sensitivity matrix is checked. If the sensitivity matrix is not full rank, it

indicates that not all the elements of the augmented system can be uniquely estimated, and

it becomes important to identify the subset of elements that can be estimated accurately.

Using orthogonalization, the norms of the columns of Sa are evaluated and the column

with the largest norm is selected and denoted as Xj. Next, the residual information matrix

is calculated. The column of Sa which corresponds to the largest norm in the residual matrix

is taken and added to Xj to form Xj+1. The cut-off criterion for algorithm termination is the

rank of the sensitivity matrix. Columns are added successively in this order until the rank of

29



Xj is equal to the rank of Sa and the algorithm is terminated. The variables corresponding

to the columns of Xj+i are identified as the most estimable variables which correspond to

the strongly linearly-independent columns of the sensitivity matrix. This variable selection

procedure used can be found in [30], where it is illustrated with an example.

Here, the variable selection process considers a total of 18 parameters, which are the

parameters of interest and are listed as follows: {Kd,amm, Kd,gln, Kglc, Kgln, KIamm, KIlac,

n, Xv2, Yamm,gln, Ylac,glc, YX,glc, YX,gln, α2, µd,max, Q
max
mAb, −∆H, ρ, cp, U}. To estimate

the states and parameters simultaneously, the parameters are augmented as extra states by

combining Equation (3.4) with Equation (3.5).

x(k + 1) = F (x(k), u(k), p(k)) + wx(k) (3.4)

p(k + 1) = p(k) + wp(k) (3.5)

Equation (3.4) represents the state equation, considering the parameters of interest which

are represented by the vector p(k) ⊂ R
18 ∈ P (k). Equation (3.5) represents the parameter

equation, where wp(k) ∈ Wp ⊂ R
18 is a vector representing process noise and containing

18 elements. The parameters, represented by the vector p, are assumed to be constant.

The augmented state vector is represented by X, where X = [xT , pT ]T . The discrete-time

representation of the augmented system is shown in Equations (3.6) - (3.7):

X(k + 1) = Fa(X(k), u(k)) + wa(k) (3.6)

y(k) = Ha(X(k)) + v(k) (3.7)

where the subscript ‘a’ represents the augmented system. In Equation (3.6), X(k) ∈ Xa ⊂

R
34 represents the augmented system state vector, u(k) ∈ U ⊂ R

8 represents the input

vector, and wa(k) ∈ Wa ⊂ R
34 represents the process noise vector. Equation (3.7) describes

the measured output vector y(k) ∈ R
7, which contains the measurements obtained from the

7 selected sensors, and the measurement noise vector is represented by v(k) ∈ V ⊂ R
7.
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Through Singular Value Decomposition (SVD) analysis, the rank of the normalized sen-

sitivity matrix of the augmented system was determined to be 21. Therefore, the variable

selection algorithm terminates after the selection of the first 21 most estimable variables. The

selected variables consist of all 16 states and 5 of the parameters. The chosen parameters are:

{Qmax
mAb, Kd,amm, ρ, µd,max, Kgln}. The 21 selected variables are estimated using MHE, which

is an estimation technique in which the estimation problem is formulated as an optimization

problem [50], [51], [52]. The MHE formulation at sampling time k for the simultaneous state

and parameter estimation of the augmented system is given by Equations (3.8a) - (3.8f):

min
X̂(k−N),..,X̂(k),ŵa(k−N),..,ŵa(k−1)

∥

∥

∥
X̂(k −N)− X̄(k −N)

∥

∥

∥

2

P−1
+

k−1
∑

j=k−N

∥ŵa(j)∥
2
Q−1

+
k

∑

j=k−N

∥v̂(j)∥2R−1 (3.8a)

s.t X̂(j + 1) = Fa(X̂(j), u(j)) + ŵa(j), j ∈ [k −N, k − 1] ⊂ Z (3.8b)

v̂(j) = y(j)−Ha(X̂(j)), j ∈ [k −N, k] ⊂ Z (3.8c)

X̄(k −N) = X̂(k −N |k −N) (3.8d)

X̂(j) ∈ Xa, v̂(j) ∈ V, j ∈ [k −N, k] ⊂ Z (3.8e)

ŵa(j) ∈ Wa, j ∈ [k −N, k − 1] ⊂ Z (3.8f)

The objective of MHE optimization is to minimize the mismatch between the predicted

and actual measurements, which is represented by the term ∥v̂∥2R−1 in Equation (3.8a). The

term v̂ is defined in Equation (3.8c), and the caret sign ˆ indicates an estimated variable. The

process disturbance is also accounted for by the term ∥ŵa∥
2
Q−1 in Equation (3.8a), and ŵa is

defined in Equation (3.8f). The arrival cost, which represents the information from the initial

state of the model to the beginning of the estimation window, is given by
∥

∥

∥
X̂ − X̄

∥

∥

∥

2

P−1
. Here,

N denotes the length of the estimation window, and X̂ and ŵa are the decision variables of

the optimization problem. X̂ represents the estimated variable and is defined in Equation

(3.8e). X̂(k − N |k − N) represents the estimated state, X̂, at time instant k − N , and
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X̄ is given by Equation (3.8d). The matrices P , Q, and R are the covariance matrices for

state uncertainty, process noise, and measurement noise, respectively. Furthermore, MHE

incorporates constraints on the states, parameters, and model uncertainties in Equations

(3.8e) - (3.8f).

3.3 State Estimation Results

In this section, the focus is on performing state estimation using the selected sensors deter-

mined by the sensor placement algorithm described in Section 3.1. The MHE technique is

employed to estimate all 16 states of the system using the nominal parameter values provided

in Table 2.1. The estimation results are then examined by comparing the estimated state

trajectories with the actual state trajectories.

Furthermore, to investigate the effect of estimating some parameters in addition to the

states, three different cases are analyzed. In Case 1, state estimation alone is conducted,

and in Case 2, all 16 states and 18 parameters are estimated simultaneously. In Case 3, only

the selected variables (16 states and 5 parameters) obtained through the variable selection

algorithm described in Section 3.2 are estimated, representing the proposed approach. In

all three cases, some bias was added to the parameters of the plant model, whereas the

nominal parameters were used for the estimator. The initial parameter guess for MHE are

the nominal parameter values.

The evaluation of the estimation results in all three cases involves comparing the Root

Mean Squared Errors (RMSEs) and plotting the estimated and actual values. Addition-

ally, the error evolution for all three cases is analyzed to assess the estimation performance

comprehensively.
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Figure 3.2: Plot of the actual states and their estimates based on the minimum sensor set.

3.3.1 Simulation Settings

To begin, state estimation is performed using the nominal parameters listed in Table 2.1. For

the MHE estimator, the weighting matrices are diagonal matrices, where the state covariance

matrix, P = diag{[502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502, 502]},

and the process covariance matrix and measurement covariance matrix are given by Q and

R respectively: Q = diag{[6.25 × 1012, 6.25 × 108, 0.2025, 6.25 × 10−8, 6.25 × 10−6, 1.6 ×

10−7, 2.25×10−6, 6.25×10−6, 2.5×1011, 5.625×10−5, 4×10−8, 2.25×10−6, 1.41×10−7, 6.25×

10−6, 2.25 × 10−6, 2.5 × 10−9]}, R = diag{[2.26 × 10−7, 2.26 × 10−7, 2.26 × 10−7, 7.31 ×

10−9, 7.31× 10−9, 8.15× 10−9, 7.31× 10−9]}. Using a moving horizon length of 40 for MHE,

the results obtained were plotted in Figure 3.2, where the red line represents the actual state

trajectories and the blue line represents the estimates. Since the estimated states are able to

closely track the actual state trajectory, it can be concluded that the sensor selection algo-

rithm was effective in selecting the minimum number of sensors, and their optimal locations

for estimation.

Furthermore, to asses the benefit of estimating some parameters in addition, estimation
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is performed for the three cases mentioned above, and the state trajectories are compared

in Figure 3.3. In the plots, the red line represents the actual state trajectories, the blue line

represents the estimates from Case 1, the black line represents the estimates from Case 2,

and the green line represents the estimates from Case 3. The estimated parameters were

also plotted and compared in Figure 3.4. The average RMSE for all three cases over time,

from k = 0 to k = Nsim − 1 was calculated using Equations (3.9a) - (3.9b) and compared in

Table 3.2.

RMSEx =
1

Nsim

Nsim−1
∑

k=0

√

√

√

√

1

Nx

Nx
∑

i=1

(

x̂i(k)− xi(k)

xi(k)

)2

(3.9a)

RMSEp =
1

Nsim

Nsim−1
∑

k=0

√

√

√

√

1

Np

Np
∑

i=1

(

p̂i(k)− pi(k)

pi(k)

)2

(3.9b)

Equation (3.9a) represents the RMSE for the states, and Equation (3.9b) represents the

RMSE for the parameters, where Nsim represents the total number of simulation steps,

Nx represents the total number of states, xi denotes the actual states, and x̂i denotes the

estimated states. Similarly, Np represents the total number of parameters, pi denotes the

true parameters, and p̂i denotes the estimated parameters.

From Table 3.2, we see that estimating parameters in addition to the states(Case 2 and

Case 3) leads to better estimation performance. This is evident from the fact that Case

1 exhibits the poorest performance. The better performance of the proposed approach,

Case 3, compared to Case 2 shows that estimating more than the selected variables of the

augmented system leads to a degradation in state estimation performance. Table 3.2 clearly

demonstrates that the proposed approach, Case 3, yields the most favorable outcome as

evidenced by its lowest RMSE values for both the states and parameters. The parameter

RMSE recorded in Case 1 is constant because in Case 1 no parameters are estimated, and

the RMSE calculation is based on the true parameters used in the plant and the nominal
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Case x0 RMSEx RMSEθ

Case 1 0.95xs 0.02773
0.97xs 0.02777
1.1xs 0.02858 0.048646
1.15xs 0.02850
1.2xs 0.02875

Average 0.02827 0.04865

Case 2 0.95xs 0.01750 0.01745
0.97xs 0.01462 0.01733
1.1xs 0.01363 0.01679
1.15xs 0.01315 0.01676
1.2xs 0.01281 0.01664

Average 0.01434 0.01699

Case 3 0.95x0 0.01597 0.00765
0.97x0 0.01336 0.00769
1.1x0 0.01317 0.00789
1.15x0 0.01284 0.00777
1.2x0 0.01262 0.00769

Average 0.01359 0.00774

Table 3.2: Average RMSE considering different initial states in all three cases.

parameters used in the estimator. The true parameters are represented as:

θtrue = θnominal + 10%× θnominal (for unselected parameters) (3.10a)

θtrue = θnominal + 1%× θnominal (for selected parameters) (3.10b)

To quantify the improvement percentage of the state RMSE for Case 3 compared to Case 1

and Case 2, we utilize Equations (3.11a) - (3.11b):

Improvement percentage =

(

RMSEx(Case 1)−RMSEx(Case 3)

RMSEx(Case 1)

)

× 100 (3.11a)

Improvement percentage =

(

RMSEx(Case 2)−RMSEx(Case 3)

RMSEx(Case 2)

)

× 100 (3.11b)

Considering the average state RMSE, Case 3 shows a 51.92% and 5.2% improvement over

Case 1 and Case 2 respectively. Similarly, Considering the average parameter RMSE, Case 3

shows a 54.4% improvement over Case 2. The error evolution for the states and parameters
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Figure 3.3: Plot of the actual states and estimates for all three cases.

were also plotted and compared in Figures 3.5 and 3.6 respectively.

3.4 Summary

In conclusion, the results presented in Table 3.2 exhibit the superiority of the proposed

approach, Case 3, in terms of estimation performance. Case 3 consistently exhibits the

lowest RMSE values for both the states and parameters, indicating the benefit of estimating

the additional parameters selected through the variable selection procedure.

Conversely, Case 1, which solely focuses on state estimation without considering param-

eter estimation, demonstrates the poorest performance, as reflected by its highest RMSE.

This emphasizes the importance of including parameter estimation in achieving improved

estimation results.
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Figure 3.4: Plot of nominal parameters and estimates for Case 2 and Case 3.
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Figure 3.5: State error evolution in all three cases.

Furthermore, comparing Case 3 to Case 2 in which all variables of the augmented system

are estimated, we see that estimating all the parameters alongside the states can lead to

a degradation in estimation performance. The average RMSE of Case 3 is found to be

lower than that of Case 2, indicating the potential adverse effect of estimating unobservable

parameters.

Quantifying the improvement percentage of Case 3 over Case 1 and Case 2 in terms of

state RMSE, we observe an impressive 51.92% improvement over Case 1 and a modest 5.2%

improvement over Case 2. Similarly, comparing the parameter RMSE of Case 3 to Case 2,
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Figure 3.6: Parameter error evolution in Case 2 and Case 3.

Case 3 exhibits a noteworthy 54.4% improvement. The plotted error evolution for the states

and parameters, as shown in Figures 3.5 and 3.6 respectively, further supports the findings

and provides a visual representation of the performance differences between the cases.

In summary, the inclusion of parameter estimation, as demonstrated in Case 3, enhances

the overall estimation performance. By leveraging a selective approach that considers both

state and parameter estimation, more accurate and reliable estimation results can be ob-

tained, enabling better understanding and control of the system under consideration.
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Chapter 4

Control of Downstream Process

This chapter focuses on the control of the downstream process in mAb production. The

downstream process includes critical steps such as capture, virus inactivation, polishing, and

filtration, all of which are essential for refining the mAb product. Particular attention is

given to optimizing the switching operation at the capture step, as it plays a crucial role in

achieving continuity of the fully-continuous integrated production process.

The traditional approach to switching relies on fixed thresholds based on product break-

through values, which may result in inefficient product loss and increased costs. To address

this, this chapter explores the implementation of three distinct control techniques: the sig-

moid function approximation approach, the ReLU approximation approach, and the RL

approach.

The effectiveness of each method is evaluated based on product loss, cost optimization,

and computational efficiency. Additionally, the impact of noise, as well as the weight factors

influencing product loss and the switching action, are thoroughly investigated. The results

provide valuable insights into the performance and robustness of each control approach,

paving the way for enhanced downstream process control in mAb production.
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4.1 Traditional Control Method

In many industries, profitability serves as the primary factor influencing decision-making.

Therefore, it becomes crucial to adjust processes to optimize specified parameters and bring

them closer to their optimal values while ensuring that environmental, safety, and customer

requirements are met. In the absence of proper process control and optimization, a process

may run below its maximum efficiency and may be more expensive to operate [53], [54].

The conventional operation of the capture column relies on a fixed switching strategy,

where the switching event takes place once a predetermined percentage product breakthrough

is observed. This approach lacks optimization measures to minimize product loss and cost.

In a study conducted by Warikoo et al. [34], ultraviolet (UV) sensors were strategically

placed at the capture column inlet feed and outlet. The decision to switch was determined

based on the UV absorbance difference between these points, which indicated the attain-

ment of a predefined percentage product breakthrough threshold. For instance, the study

mentions a 3% product breakthrough value [34], while another study [3] mentions a 1%

product breakthrough threshold. In this work, a 1% breakthrough threshold was used for

the simulation of the traditional approach.

This work aims to enhance the operation of the capture step through the implementation

of EMPC. However, EMPC implementation for integer optimization problems is known to be

challenging. To overcome this challenge, we investigate two distinct approaches to improve

the implementation of EMPC, namely, a sigmoid function approximation approach, and a

ReLU approximation approach. Furthermore, a third approach which explores the use of

RL is also explored, since it is able to handle the discrete action space. The subsequent

sections provide a comprehensive overview of the problem formulation for the two EMPC

optimization approaches and a detailed description of all three approaches.
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4.2 Optimization-Based Control Problem Formulation

Given that the primary control objective is to prevent unnecessary product loss, the opti-

mization problem is formulated to minimize product loss. Switching is triggered when the

mAb concentration at the capture column outlet starts to rise. The EMPC formulation for

the integer nonlinear problem is presented below:

min
ud
i

k+N−1
∑

i=k

(

Wsxout,i +Wdu
d
i

)

(4.1a)

s.t xi+1 = f(xi, u
c
i)[1− ud

i ]; i = k, .., k +N − 1 (4.1b)

xk = x(k) (4.1c)

ud
i ∈ {0, 1}; i = k, .., k +N − 1 (4.1d)

where Equation (4.1a) represents the cost function, and Equations (4.1b)-(4.1d) represent

the constraints. N represents the prediction horizon, xout denotes the concentration of mAb

at the column outlet, and Ws is the weight on xout. ud
i represents the discrete decision

variable, which is binary and has a value of 0 or 1. It represents the decision to either switch

or not switch, with 0 representing the decision not to switch and 1 representing the decision

to switch. Furthermore, Wd represents the weight on the discrete decision variable.

Equation (4.1b) represents the system state equation, which is multiplied by the term

[1 − ud
i ]. In this equation, xi denotes the system states, and uc

i represents the continuous

inputs of the system. The multiplication of the state equation by [1− ud
i ] ensures that when

ud
i = 0, the states continue to increase with time. Conversely, when ud

i = 1, the term [1−ud
i ]

becomes 0, causing the states to go to zero. This is akin to resetting or switching the column.

Practically, very frequent column switching would keep xout at zero, however, this is

undesirable since it does not allow sufficient time for the product to reach the column outlet

before switching occurs. Optimal operation requires the mAbs to have enough residence time

to bind to the beads within the column during the loading process, as excessive switching

41



would result in the underutilization of the columns. To address this issue, the penalty on

the switching action, Wd, was introduced. By adjusting the value of Wd, the frequency of

switching can be controlled. Increasing or reducing Wd and Ws enables the fine-tuning of

the switching behavior.

4.2.1 Sigmoid Function Approximation Approach

Sigmoid functions have a wide range of applications and are applied in numerous areas such

as computer science, engineering, finance and physics [55]. They are bounded between 0 and

1, differentiable, and have a characteristic s-shape [56]. They are widely used as activation

functions in neural networks to convert a real number to a probability, and can be used in

logistic regression to predict the outcome of binary classification problems.

In the work by Agyeman et al. [57], a sigmoid function was used to simplify a mixed-

integer MPC problem in order to enhance the computational efficiency of an irrigation sched-

uler. In the work by Shao et al. [58], a sigmoid function-based integral-derivative observer

was applied to an autopilot design, and in the work by Khairunnahar et al. [59], a sigmoid

function was used in logistic regression to classify malignant and benign tissue to improve

breast cancer detection in women.

Without the implementation of the sigmoid activation function, determining the optimal

discrete decision variable that minimizes the cost function would necessitate the utilization

of a nonlinear integer solver like the Basic Open-source Nonlinear Mixed Integer program-

ming (BONMIN) solver to solve the integer problem [60]. However, this approach typically

demands significant computational resources and considerable time. Incorporating a sigmoid

function allows for the utilization of continuous decision variables within defined boundaries.

This transformation converts the original integer optimization problem into a continuous

optimization problem, which can be addressed more efficiently using a continuous nonlinear

solver such as the Interior Point Optimizer (IPOPT) solver [61]. By solving the nonlin-

ear optimization problem, a continuous decision variable is obtained, which is subsequently
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approximated as either 0 or 1 prior to its application to the actual system. The sigmoid

function is mathematically defined as:

σ(r) =
1

1 + e−βr
(4.2)

where β is the slope of the sigmoid curve whose numerical value was chosen as 15, and r

is the continuous decision variable selected within the range rmin ≤ r ≤ rmax, where rmin

and rmax were chosen as -10 and 10 respectively. The solver selects a continuous variable,

r, within this range as the optimal solution. The selected r value is applied to the sigmoid

function, which returns an output between 0 and 1. The output is represented by σ(r).

When σ(r) ≥ 0.5, it is assigned a discrete value of 1 before it is applied to the actual system.

Similarly, when σ(r) < 0.5, it is assigned a discrete value of 0 and applied to the system.

The optimisation problem can therefore be re-written as:

min
r

k+N−1
∑

i=k

(Wsxout,i +Wdσi(r)) (4.3a)

s.t xi+1 = f (xi, u
c
i) [1− σi(r)] ; i = k, .., k +N − 1 (4.3b)

rmin ≤ r ≤ rmax (4.3c)

xk = x(k) (4.3d)

A plot of the sigmoid function is shown in Figure 4.1.

4.2.2 Rectified Linear Unit Approach

Artificial neural networks (ANNs) are data-driven models designed to identify relationships

within datasets. Unlike traditional regression models, ANNs possess the capability to learn

and represent complex nonlinear relationships [62], [63]. The architecture of an ANN consists

of interconnected nodes organized into layers. The basic building block is the neuron, which

receives inputs, performs a mathematical computation, and generates an output for the
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Figure 4.1: Plot of sigmoid function.

subsequent layer. Neurons are activated when the weighted sum of inputs exceeds a threshold

value. Once activated, the neuron applies a transfer function to the signal before passing it

to neighboring nodes [62].

Transfer functions come in various forms, with nonlinear functions proving more valuable

for handling a wide range of data patterns [64], [65]. While the sigmoid and hyperbolic

tangent (tanh) functions have long been popular, they suffer from the vanishing gradient

problem. In contrast, the ReLU transfer function has gained attention for its superior

performance in training ANNs [65].

By employing the ReLU activation function, we can convert the original nonlinear op-

timization problem into an Integer Linear Program (ILP) by leveraging the integer linear

formulation of ReLU neural networks. This transformation, done using the optimization

and machine learning toolkit (OMLT) [66], allows us to efficiently solve the resulting ILP to

global optimality using readily available solvers such as Gurobi [67]. The ILP formulation is

based on the fact that a ReLU network can be described by a set of integer linear constraints.

The ReLU activation function is defined as ReLU(x) = max(0, x), which returns the same x

input if x is positive, and returns 0 for negative values of x. Figure 4.2 presents a plot of the

ReLU function. The ReLU neural network for this system can be represented by Equations
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(4.4a)

zℓ+1 = max (Wℓzℓ + bℓ, 0) ; ℓ = 0, . . . , L− 1 (4.4b)

yt = xout,t+1 (4.4c)

where z0 represents the input to the neural network, which includes the state of interest xout

and the two continuous inputs from Equation (2.45c) at the current and previous time steps.

zℓ+1 denotes the output vector of the (ℓ + 1)th hidden layer, and yt is the output of the

neural network, representing xout at the next time step. Wℓ and bℓ are the weight matrix and

bias vector of the (ℓ + 1)th hidden layer, respectively. For the (ℓ + 1)th layer in the ReLU
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network described by Equation (4.4b), let mℓ and m̄ℓ denote the lower and upper bounds on

the input such that mℓ ≤ Wℓzℓ + bℓ ≤ m̄ℓ. The ReLU activation function can be expressed

using the following integer linear constraints:

zℓ+1 = max (Wℓzℓ+1 + bℓ, 0) ⇐⇒















































zℓ+1 ≥ Wℓzℓ+1 + bℓ

zℓ+1 ≤ Wℓzℓ+1 + bℓ − diag(mℓ)(1− tℓ)

zℓ+1 ≥ 0

zℓ+1 ≤ diag(m̄ℓ)tℓ

where tℓ ∈ {0,1} is a vector of binary variables for the (ℓ+1)th layer. For further information

on this transformation, refer to the work by Tjeng et al. [68] and Chen et al. [69].

To train the ReLU neural network, a dataset of 50,000 data points was generated for the

continuous inputs uc(k) ∈ R
2 in Equation (2.45c). Additionally, open-loop simulations using

the first principles downstream model described in Chapter 2 provided a corresponding set

of 50,000 data points for xout. This input/output dataset was used to train the ReLU neural

network. The ReLU network architecture consists of two hidden layers with 200 and 160

nodes, respectively. The training process utilized current and past time steps to predict the

next time step. Default learning rate and batch size values (0.001 and 32, respectively) from

the Keras library were used, and a total of 80 epochs were executed. The performance of

the selected ReLU model was evaluated through single-step ahead and multiple-step ahead

prediction plots in Figure 4.3, where the red and blue lines represented the predicted and

actual state trajectories respectively. The data-driven model obtained through training the

ReLU neural network is utilized by the EMPC to predict the discrete decision variable.

Subsequently, the resulting solution is applied to the actual model for implementation. The
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Figure 4.3: ReLU model performance.

optimization problem can then be represented as:

min
ud
i

k+N−1
∑

i=k

(

Wsyi+1 +Wdu
d
i

)

(4.6a)

s.t yi+1 = fNN(yi, yi−1, u
c
i , u

c
i−1)[1− ud

i ]; i = k, .., k +N − 1 (4.6b)

yk = y(k) (4.6c)

ud
i ∈ {0, 1}; i = k, .., k +N − 1 (4.6d)

where yi+1 is the output of the neural network, and fNN is the neural network.

4.3 Reinforcement Learning Approach

RL represents a class of data-driven learning algorithms where an agent learns a closed-loop

policy π(u|x) by interacting with the environment. The environment is formulated as a

Markov decision process (MDP), in which the agent’s actions influence the system’s state

and result in rewards. A typical data tuple required by RL consists of the current state xk,

the action prescribed by the agent uk, the resulting reward rk+1, and the next state xk+1.

47



The state transition dynamics of the MDP are represented by the conditional probability

P (rk+1, xk+1|xk, uk). In this work, the transition dynamics are described by the nonlinear

system given by Equation (2.46).

Following [70], the RL problem can be formulated as finding the optimal policy π∗ that

maximizes the expected return Gk given the current state xk and action uk:

π∗ = argmax
π

Eπ[Gk|xk, uk] (4.7)

where Gk represents the accumulated reward r. In the context of mAb switching operation,

the reward r is defined in Equation (4.8), following the same idea of the optimization problem

in Equation (4.1a).

rk = Wsxout,k +Wdu
d
k (4.8)

4.4 Simulation Results

4.4.1 Comparison of All Approaches

In this section, we compare the simulation results of the four different approaches. A pre-

diction horizon of 20 was used in the simulations involving EMPC (sigmoid and ReLU).

Additionally, a step size of 60 minutes and 50 simulation steps were used across all cases,

and the weights Ws and Wd were chosen as 1 and 0.5 respectively. For RL, the Proximal

Policy Optimization (PPO) was selected as the agent. The design of the agent is summarized

in Table 4.1. Due to the stochasticity nature of the RL training process, 20 RLs were trained

with the same parameters, and the one with the best performance was reported in the rest

of the work.

The results for all four cases are presented in Table 4.2, where Timesim represents simula-

tion time, PL represents product loss, and T C represents total cost. Among the optimization

approaches, the sigmoid approach had the longest simulation time, taking 6 hours to com-
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Parameters Values

Episode 10,000
Steps per episode 200

Batch size 10
Learning rate 1e-4

Discounted factor 0.99

Table 4.1: RL agent design parameters.

Method Timesim PL(mg/L) T C Switches

Sigmoid 6 h 0.0145 2.01 4
ReLU 1 h, 9 m 0.2421 1.74 3
RL 1.0713 s 0.3472 1.63 2

Traditional 0.1718 s 2.7161 3.71 2

Table 4.2: Comparison of all four approaches.

plete the closed-loop simulation of 50 steps. On the other hand, the traditional approach

took only 0.1718 seconds because it involves no optimization. Furthermore, since the RL

policy was obtained offline and directly implemented online, there was no optimization con-

ducted online. As a result, the simulation time was significantly reduced, taking only 1.07

seconds to complete.

In terms of product loss, the sigmoid approach saved more product at the column outlet

compared to the ReLU and RL approaches. However, this came at the expense of higher

cost, as the sigmoid approach proposed more switching actions. The ReLU approach, while

saving less product than the sigmoid approach, still outperformed the RL approach in terms

of product loss. However in terms of cost, the RL approach shows the best results since it

exhibited the lowest cost among the three proposed approaches. Overall, it is evident that

the proposed approaches outperformed the traditional approach since they provided better

results in terms of product loss and cost optimization.

Moving forward, we decided to focus on evaluating the ReLU and RL approaches in more

detail due to their significantly faster simulation times compared to the sigmoid approach.

This will allow us to explore the impact of various factors on the simulation results more

efficiently. First, the effect of different EMPC prediction horizons is investigated for the
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Horizon Timesim PL(mg/L) T C Switches Steps

1 2.14 m 1.57692 2.52833 2 18,36
3 3.76 m 0.55275 2.05275 3 16,32,48
4 4.54 m 0.55275 2.05275 3 16,32,48
5 5.11 m 0.24205 1.74205 3 15,30,45
10 9.60 m 0.24205 1.74205 3 15,30,45
20 1h, 9 m 0.24205 1.74205 3 15,30,45
30 2 days, 12h 0.24205 1.74205 3 15,30,45

Table 4.3: Effect of different horizons.

ReLU approach and analyzed in Table 4.3. The subsequent simulation results reported in

Subsection 4.4.2 are based on 50 simulation steps.

4.4.2 Effect of Different Factors on Simulation Results - ReLU

4.4.2.1 Impact of Different Prediction Horizons

The effect of different horizons on the simulation results can be analysed using Table 4.3.

The results indicate that a smaller horizon leads to delayed switching, resulting in higher

product loss and increased cost. On the other hand, as the horizon value increases, the

controller gains the ability to look further into the future, enabling quicker decision-making.

Consequently, this facilitates early switching, leading to reduced product loss and lower

overall cost. For instance, for a horizon of 3, switching occurs first at the 16th step, whereas

for a horizon of 5, the first switch occurs at the 15th step.

After analyzing the results, a horizon value of 10 was selected for subsequent simulations.

This value strikes a balance between minimizing product loss and cost while still allowing the

controller to make timely decisions based on a reasonable forecasting window. By optimizing

the horizon value, the ReLU approach can achieve more efficient control and better overall

performance in terms of product loss and cost optimization.
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Ws Wd Timesim PL(mg/L) Switches Steps

0.9 0.1 11.27 m 0.09631 3 14,28,42
0.7 0.3 9.68 m 0.24205 3 15,30,45
0.5 0.5 9.60 m 0.55275 3 16,32,48
0.3 0.7 11.11 m 1.15787 2 17,34
0.1 0.9 11.21 m 1.15787 2 17,34

Table 4.4: Effect of weights Wd and Ws.

4.4.2.2 Impact of Different Weights

The impact of varying the weights, Ws and Wd, was investigated to assess their influence

on the simulation results. A prediction horizon of 10 was used for the simulations, and the

results were presented in Table 4.4, displaying the variations in simulation time, product

loss, number of switches, and switching steps for different weight combinations.

A smaller switching penalty, represented by a smaller value of Wd, allows for more fre-

quent switching. Consequently, when the penalty is smaller, switching commences at an

earlier step, resulting in reduced product loss. As the weights differ in each case, a direct

comparison of the cost is not feasible. Instead, we can focus on comparing the effects of the

weights on switching and product loss. Generally, it is observed from Table 4.4 that a higher

value of Ws and a lower value of Wd result in a smaller number of switches and minimal

product loss. In contrast, a lower value of Ws and a higher value of Wd lead to a reduction

in the number of switches, but with an associated increase in product loss.

Moving forward, the weights Ws and Wd were selected as 0.7 and 0.3, respectively, based

on a careful consideration of their impact on the optimization process. A weight of 0.7 was

assigned to Ws, which controls the penalty for product loss. This weight was chosen to be

relatively high, indicating the importance of minimizing product loss in the system. By plac-

ing a greater emphasis on reducing product loss, the optimization algorithm is incentivized

to make decisions that prioritize maintaining product quality.

Furthermore, the weight on Wd was set to 0.3, indicating the penalty associated with

switching actions. This weight was selected to strike a balance between minimizing unneces-
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Figure 4.4: Plots of xout, cost and ud
i for selected weights.

sary switches and optimizing the utilization of system resources. With a moderate penalty

for switching, the algorithm is encouraged to find an efficient trade-off between the number

of switches and overall system performance.

By assigning weights of 0.7 and 0.3 to Ws and Wd respectively, the chosen values re-

flect a strategic approach to address the dual objectives of minimizing product loss while

maximizing resource efficiency. It is expected that the selected weights will facilitate effec-

tive decision-making, leading to improved performance and cost-effectiveness in subsequent

simulations and practical implementations. Plots of the cost, ud
i and xout for the selected

weights can be found in Figure 4.4.

4.4.2.3 Impact of Process Noise

In this section, the impact of process noise on the system performance is investigated by

adding randomly-generated noise of 0 mean and different standard deviations to the two

constant continuous inputs, uc
i , defined in Equation (2.45c). The simulations are conducted

using a horizon of 10, and weights of 0.7 and 0.3 for Ws and Wd respectively. The results
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Noisestd PLave(mg/L) T Cave Steps

2 0.19261 1.03482 14,28,42
15,29,44

3 0.22476 1.05733 16,31,46
14,29,44
15,29,44

4 0.22320 1.05624 16,31,47
13,28,43
15,30,45
15,29,44

5 0.21808 1.05264 16,32,47
15,30,45
15,29,44
14,27,42

Table 4.5: Effect of process noise.

of the simulations under the different levels of noise are summarized in Table 4.5, where

Noisestd represents the standard deviation of the noise used, PLave denotes the average

product lost, and T Cave represents the average total cost. For each standard deviation of

noise, five simulations were run, and the average product lost and average total cost were

calculated and recorded in the table.

In the presence of process noise, the switching behavior is not as perfectly periodic as it is

in the noise-free cases reported in Tables 4.3 - 4.4, and switching may occur a step earlier or

later than anticipated. The noise introduces some level of variability in the system, resulting

in fluctuations in the total product lost and total cost. The analysis of the impact of process

noise provides valuable insights into the robustness and performance of the system under

realistic operating conditions. It highlights the need for appropriate control strategies to

mitigate the effects of noise and maintain desired performance levels.

4.4.2.4 Impact of Measurement Noise

To analyse the effect of measurement noise, randomly generated noise of zero mean, normal

distribution and varying standard deviations was added to the outlet mAb concentration,

xout. The simulation results under different levels of measurement noise are summarized in
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α Noisestd PLave(mg/L) T Cave Steps

10−4 2 0.242053 1.742053 15,30,45
10−4 4 0.242053 1.203960 15,30,45
10−4 5 0.242053 1.069437 15,30,45
10−4 6 0.242053 1.069437 15,30,45
10−4 10 0.242053 1.069437 15,30,45
10−3 10 0.110225 0.977039 14,28,42

14,28,40
15,29,43

10−3 12 0.096796 1.26775 6,16,30,40,50
15,18,32,46
14,17,32,43
14,28,42

Table 4.6: Effect of measurement noise.

Table 4.6, where α represents the multiplication factor used to adjust the intensity of the

noise level.

As the standard deviation of the measurement noise increases, the system exhibits ro-

bustness in maintaining a periodic switching pattern, similar to the noise-free case. The

average product lost remains relatively constant, indicating the controller’s ability to adapt

to the measurement noise, nevertheless, slight variations in the total cost are observed due

to the influence of the noise.

As the noise level is further increased by adjusting α, however, it can be observed that the

switching pattern becomes less periodic. This suggests that the controller’s performance may

be impacted by higher levels of measurement noise, leading to deviations from the expected

behavior.

4.4.3 Effect of Different Factors on Simulation Results - RL

In this section, the same study was conducted to examine the effects of different weights,

process noises, and measurement noises on the RL controller. Because the RL design did

not involve the prediction horizon, we decided not to conduct a study on it.

54



Ws Wd Timesim PL(mg/L) Switches Steps

0.9 0.1 0.87 s 0.096 3 14,28,42
0.7 0.3 0.87 s 0.24 3 15,30,45
0.5 0.5 0.81 s 1.58 2 18,36
0.3 0.7 0.84 s 2.72 2 19,38
0.1 0.9 0.81 s 11.25 2 22,44

Table 4.7: Effect of weights Wd and Ws for RL.

4.4.3.1 Impact of Different Weights

Using the same experimental design applied to ReLU with weights Ws and Wd, we inves-

tigated the effect of five different weight pairs. The results are summarized in Table 4.7.

Similar to the ReLU approach, an increase in the value of Wd resulted in a greater penalty

on the switching action, leading to a decreasing trend in the number of switches. For the

last three cases, the number of switches was the same. However, as Wd increased from 0.5 to

0.9, the first switch happened at a later time step, from the 18th to the 22nd. Consequently,

there were more production losses as the mAb escaped from the capture column outlet due

to fewer and delayed switches. Also, we can observe from the last column that the switching

was periodic because there was no disturbance considered. Moving forward, the experiments

are conducted with Ws and Wd set to 0.7 and 0.3, respectively.

4.4.3.2 Impact of Process Noise

For the capture column, the inlet flow rate and concentration of mAb from the buffer tank

are identified as disturbances, and the noises were simulated with a mean of 0 and a standard

deviation ranging from 2 to 4. For each noise level, 5 simulations were conducted, and the

average production loss and total cost are reported in Table 4.8. With noisier disturbances,

both the production loss and total cost increased, indicating that the performance of the

trained RL controller was affected by the presented disturbances. The switching steps are

summarized in the last column of the table, and it shows that the periodic pattern in Table

4.7 is not preserved anymore due to the stochasticity. With a higher noise standard deviation,
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Noisestd PLave(mg/L) T Cave Steps

2 0.39 1.69 15,30,45
15,30,47
15,31,46
15,31,47
16,31,46

3 0.40 1.70 15,30,44
15,31,47
16,29,44
16,31,48
16,32,47

4 0.63 1.71 15,30,44
15,31,47
16,29,44
16,31,48
18,36

5 0.71 1.75 15,30,44
15,32,49
16,29,44
16,31,48
18,36

Table 4.8: Effect of process noise for RL.

the first step to switch happened at or after the 15th step, resulting in more production loss.

4.4.3.3 Impact of Measurement Noise

The study of the impact of measurement noise on RL performance was conducted, and the

experimental setup and results are summarized in Table 4.9. Interestingly, given that the

magnitude of α is higher than that in the EMPC case, the results for the 3 cases are the

same as the deterministic case. This implies that the effect of the measurement noise is

negligible with the given α and standard deviation. One possible reason is that the policy

obtained by RL takes the whole state space as the input. When only the measured state,

xout, is subjected to the measurement noise, the modification to the state space is minimal.

On the contrary, EMPC, as expressed in Equation (4.6), explicitly considers xout and hence

will be more responsive to the measurement noise.
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α Noisestd PLave(mg/L) T Cave Steps

1 2 0.24 1.62 15,30,45
1 3 0.24 1.62 15,30,45
1 4 0.24 1.62 15,30,45

Table 4.9: Effect of measurement noise for RL.

4.5 Summary

The analysis of the simulation results from the different approaches provides valuable in-

sights into the performance and effectiveness of each approach. The proposed approaches

outperformed the traditional approach in terms of product loss and cost optimization. The

sigmoid approach, while saving more product at the column outlet, resulted in higher cost

and took a significantly longer time for computation. On the other hand, the ReLU approach

showed a balance between product loss and cost, outperforming the RL approach in terms

of product loss. However, the RL approach exhibited the best results with the lowest overall

cost.

The impact of different factors such as prediction horizon, noise, and the weights on

product loss and switching action on the simulation results were investigated on the ReLU,

revealing that a smaller horizon led to delayed switching, increased product loss, and higher

cost. Increasing the horizon allowed for earlier switching, resulting in reduced product loss

and lower cost. Based on these findings, a horizon value of 10 was selected as a suitable

compromise between minimizing product loss and cost while maintaining timely decision-

making.

The impact of varying the weights, Ws and Wd, was thoroughly examined to understand

their influence on the simulation results. The analysis revealed that the selection of weights

significantly affects the system behavior, particularly in terms of the number of switches and

product loss. A smaller Wd allows for more frequent switching, resulting in reduced product

loss. Conversely, higher values of Ws and lower values of Wd lead to a smaller number of

switches and minimal product loss. Considering these findings, the weights Ws and Wd
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were carefully chosen as 0.7 and 0.3, respectively. A weight of 0.7 for Ws emphasizes the

importance of minimizing product loss. On the other hand, a weight of 0.3 for Wd strikes a

balance between minimizing unnecessary switches and optimizing resource utilization. This

approach ensures efficient decision-making that aligns with the dual objectives of minimizing

product loss and maximizing resource efficiency.

The effect of process noise was also analyzed, indicating that the presence of noise dis-

rupted the periodic switching behavior observed in the noise-free cases, with fluctuations in

product loss and cost due to the influence of the noise.

Additionally, the impact of measurement noise was examined, showing that the system

exhibited robustness in maintaining a periodic switching pattern even under higher levels of

measurement noise. The average product loss remained relatively constant, highlighting the

controller’s ability to adapt to the noise. However, at much higher noise levels for the ReLU

case, deviations from the expected behavior were observed, indicating potential challenges

in the controller’s performance.

For the studies on RL, a similar observation was made while varying Ws and Wd as

in the ReLU case. Regarding the impact of process noise, worse economic performance

was observed as higher process noise was introduced to the system. However, in the case

of measurement noise, since the noise was applied to only one state out of the full state

space, the RL agent did not detect it, resulting in the same results as the deterministic case.

By understanding these factors and their impact, more efficient control strategies can be

developed to enhance the system’s performance and robustness.

In conclusion, the proposed approaches demonstrate improved performance compared

to the traditional approach. The analysis of different factors provides valuable insights for

optimizing control strategies and addressing challenges such as process and measurement

noise. This research contributes to the development of effective control methods in the

context of the studied system, with potential applications in various industries.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The combined findings from both the estimation and control works provide valuable insights

into enhancing the overall performance and understanding of the system under considera-

tion. In the estimation work, Case 3 emerges as the superior approach, demonstrating the

importance of including parameter estimation alongside state estimation. By leveraging a se-

lective approach that considers both variables, more accurate and reliable estimation results

can be achieved, leading to improved system understanding and control.

In the control work, the proposed approaches outperform the traditional method, high-

lighting their effectiveness in minimizing product loss and optimizing costs. The sigmoid ap-

proach, while efficient in saving product, incurs higher costs and longer computation times.

The ReLU approach strikes a balance between product loss and cost, outperforming the RL

approach in terms of product loss. However, the RL approach exhibits the best results with

the lowest overall cost. The impact of factors such as prediction horizon, noise, and weights

on product loss and switching action were thoroughly investigated, providing critical insights

for developing efficient control strategies.
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5.2 Future Work

• Consideration of cost in sensor selection process: The sensor selection process can be

further enhanced by incorporating cost considerations. Currently, the sensor selection

focuses on optimizing the observability of system states. However, in real-world appli-

cations, the cost of sensors can be a critical factor. Introducing cost constraints into

the sensor selection problem adds complexity but can lead to more practical and cost-

effective solutions. This area merits further study to develop sensor selection strategies

that strike a balance between observability and affordability.

• State estimation of downstream process: The downstream process model involves a

larger number of states due to spatial discretization. Estimating this significant num-

ber of states accurately can be challenging and requires robust estimation techniques.

Future research can focus on developing advanced state estimation algorithms that can

handle the increased complexity of the downstream process.

• Experimental validation and implementation: The proposed control and estimation

strategies can be experimentally validated in real mAb production systems. Imple-

menting these techniques in actual industrial settings will provide valuable insights into

their effectiveness and practicality. Collaborating with industry partners for real-world

validation can bridge the gap between research and industrial applications, leading to

impactful advancements in mAb production processes.
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65



bidelli, and Miroslav Soos. Controlling the time evolution of mab n-linked glycosylation-

part ii: Model-based predictions. Biotechnology progress, 32(5):1135–1148, 2016.
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