
Optimal Allocation of Information Granularity to the Inputs of Granular Neural

Networks

by

Elaheh Akhoundi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

c© Elaheh Akhoundi, 2014

Abstract

In this thesis, we propose a design process to construct granular neural networks with gran-

ular inputs and numeric network parameters. The proposed granular network is formed on

the basis of a numeric neural network whose inputs are augmented using probabilistic infor-

mation granules. The design problem is formulated as an optimization problem which aims

to allocate a given level of information granularity to the inputs of the network such that the

specificity of the network outputs gets maximized. The resulting optimization problem is

solved analytically and the derived solution determines the optimal granularity levels corre-

sponding to the input features of the granular neural network. The proposed design process

is then used to construct granular neural networks for several synthetic and real datasets.

ii

Dedicated to My Beloved Husband, Ali

iii

Acknowledgements

I use this opportunity to express my gratitude to everyone who supported me to bring my

work to a successful completion.

First of all, I owe many thanks to my supervisors, Professor Witold Pedrycz and Pro-

fessor Marek Reformat for supervising my research in two years of my M.Sc. program and

for all their invaluable assistance and guidance.

I would also like to thank the members of my evaluation committee: Professor Petr

Musilek from the Electrical and Computer Engineering Department and Professor Josef

Szymanski from the Civil and Environmental Engineering Department of the University of

Alberta. In addition, I thank Pinder Bains for organizing the thesis defence session.

Finally, I wish to express my love and gratitude to my parents for their endless love and

my most heartfelt thanks go to my husband Ali for his endless love and support. Without

his support, trust and encouragement, I would not have been able to complete my thesis

successfully.

iv

Table of Contents

1 Introduction 1

1.1 From Numeric to Granular Neural Networks 1

1.2 Motivation . 2

1.3 Objectives and Summary of Contributions 3

1.4 Thesis Organization . 4

2 Background and Literature Review 5

2.1 Neural Networks . 5

2.1.1 Multi-Layer Perceptrons . 5

2.1.2 Radial Basis Function Networks 6

2.1.3 Comparison Between MLPs and RBFNs 7

2.2 Granular Models . 7

2.2.1 Information Granule and its Quantification 8

2.2.2 Applications of Granular Models 8

2.3 Design of Granular Neural Networks . 9

3 An Analytical Approach to Optimal Granularity Allocation in GNNs 12

3.1 Granulating Inputs Using Random Variables 12

3.2 Formulation of Granularity Allocation as An Optimization Problem 14

3.2.1 The Objective Function of the Optimization Problem 15

3.2.2 The Constraint of The Optimization Problem 16

3.3 Derivation of The Optimal Standard Deviations For The Inputs 19

3.4 Evaluation of coefficients ai for Different Neural Network Architectures . . 24

3.4.1 MLP Networks with One Hidden Layer 24

3.4.2 MLP Networks with Two Hidden Layers 25

3.4.3 RBFNs . 26

3.5 Concluding Remarks . 27

4 Experimental Results 29

4.1 Experimental Results on Synthetic Data Sets 30

4.2 Experimental Results on Real Data Sets 48

v

5 Conclusion 68

5.1 Summary of Contributions . 68

5.2 Future Works . 69

Bibliography 70

Appendix A: Derivation of the Solution of Optimization Problem (3.9) 72

vi

List of Tables

4.1 Parameters and performances of the constructed NNs for synthetic data #1 . 31

4.2 Parameters and performances of the constructed NNs for the synthetic data

#2 . 36

4.3 Parameters and performances of the constructed NNs for the synthetic data

#3 . 39

4.4 Parameters and performances of the constructed NNs for the synthetic data

#4 . 42

4.5 Parameters and performances of the constructed NNs for the synthetic data

#5 . 45

4.6 The levels of total information granularity ǫ allocated to the inputs of the

GNNs for different data sets . 48

4.7 Performance and the parameters of constructed networks for Auto MPG data 49

4.8 Performance and the parameters of constructed networks for Boston hous-

ing data . 52

4.9 Performance and the parameters of constructed networks for Bodyfat data . 55

4.10 Performance and the parameters of constructed networks for Servo data . . 58

4.11 Performance and the parameters of constructed networks for Engine data . . 61

4.12 Performance and parameters of constructed networks for Mackey-Glass data 64

vii

List of Figures

2.1 The architecture of MLP with two hidden layers 6

2.2 The architecture of RBFN . 7

3.1 The structure of a MLP network with one hidden layer. 24

3.2 The structure of a MLP network with two hidden layer. 26

3.3 The structure of a RBFN. 27

4.1 The 3D representation of the 2D function g1 30

4.2 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for synthetic data #1 31

4.3 Effect of standard deviation perturbation on objective function for synthetic

data #1 . 33

4.4 Optimal standard deviations when training, testing, or the combined data

set are used for synthetic data #1 . 34

4.5 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for synthetic data #1 35

4.6 The 3D representation of the 2D function g2 36

4.7 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for synthetic data #2 37

4.8 Effect of standard deviation perturbation on objective function for synthetic

data #2 . 37

4.9 Optimal standard deviations when training, testing, or the combined data

set are used for synthetic data #2 . 38

4.10 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for synthetic data #2 38

4.11 The 3D representation of the 2D function g3 39

4.12 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for synthetic data #3 40

4.13 Effect of standard deviation perturbation on objective function for synthetic

data #3 . 40

4.14 Optimal standard deviations when training, testing, or the combined data

set are used for synthetic data #3 . 41

viii

4.15 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for synthetic data #3 41

4.16 The 3D representation of the 2D function g4 42

4.17 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for synthetic data #4 43

4.18 Effect of standard deviation perturbation on objective function for synthetic

data #4 . 43

4.19 Optimal standard deviations when training, testing, or the combined data

set are used for synthetic data #4 . 44

4.20 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for synthetic data #4 44

4.21 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for synthetic data #5 45

4.22 Effect of standard deviation perturbation on objective function for synthetic

data #5 . 46

4.23 Optimal standard deviations when training, testing, or the combined data

set are used for synthetic data #5 . 46

4.24 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for synthetic data #5 47

4.25 Scatter plots of the output of the network versus data for Auto MPG data . . 49

4.26 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for Auto MPG data 50

4.27 Effect of standard deviation perturbation on objective function for Auto

MPG data . 50

4.28 Optimal standard deviations when training, testing, or the combined data

set are used for Auto MPG data . 51

4.29 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Auto MPG data 51

4.30 Scatter plots of the output of the network versus data for Boston housing data 52

4.31 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for Boston housing data 53

4.32 Effect of standard deviation perturbation on objective function for Boston

housing data . 53

4.33 Optimal standard deviations when training, testing, or the combined data

set are used for Boston housing data . 54

4.34 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Boston housing data 54

4.35 Scatter plots of the output of the network versus data for Bodyfat data . . . 55

ix

4.36 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for Bodyfat data 56

4.37 Effect of standard deviation perturbation on objective function for Bodyfat

data . 56

4.38 Optimal standard deviations when training, testing, or the combined data

set are used for Bodyfat data . 57

4.39 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Bodyfat data 57

4.40 Scatter plots of the output of the network versus data for Servo data 58

4.41 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for servo data 59

4.42 Effect of standard deviation perturbation on objective function for Servo data 59

4.43 Optimal standard deviations when training, testing, or the combined data

set are used for Servo data . 60

4.44 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Servo data 60

4.45 Scatter plots of the output of the network versus data for Engine data 61

4.46 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for Engin data 62

4.47 Effect of standard deviation perturbation on objective function for Engine

data . 62

4.48 Optimal standard deviations when training, testing, or the combined data

set are used for Engine data . 63

4.49 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Engine data 63

4.50 Scatter plots of the output of the network versus data for Mackey-Glass data 64

4.51 Comparison of the optimal allocations of standard deviations to the inputs

for different network architectures for Mackey-Glass data 65

4.52 Effect of standard deviation perturbation on objective function for Mackey-

Glass data . 65

4.53 Optimal standard deviations when training, testing, or the combined data

set are used for Mackey-Glass data . 66

4.54 Comparison of the optimal allocations of standard deviations to the inputs

for different network parameters for Mackey-Glass data 66

x

List of Symbols

Symbol Definition . First Use

n Number of input features . 12

y Numeric output . 12

g Input-output relationship of a NN 12

x Numeric input vector . 12

E(·) Expectation operator . 13

X Granular input vector . 13

σ
2 Variance vector of input random variables 13

Y Output random variable . 14

σy Variance of output random variable 14

M Number of input-output data points 14

I Average of output variances 15

ε Total granularity level . 16

PX Probability mass function . 17

H Entropy of a discrete random variable 17

h Entropy of a continuous random variable 17

pX Probability density function 17

H Hessian matrix . 20

xi

List of Abbreviations

Abbreviation Description . First Use

NN Neural Network . 1

GNN Granular Neural Network . 3

MLP Multi-Layer Perceptron . 4

RBFN Radial Basis Function Network 4

PDF Probability Density Function 17

xii

Chapter 1

Introduction

Neural Networks (NNs) form a significant class of nonlinear and adaptable systems and are

widely used in numerous areas of application. A NN acquires knowledge from its environ-

ment in a learning process and adapts its interneuron connection weights (synaptic weights)

to the changes in the environment [1]. When the NN is properly trained, it generalizes the

knowledge obtained to the inputs it has not encountered before and produces reasonable

corresponding outputs [1]. The fact that NNs “learn by example” makes them appealing

candidates to be used to solve complex problems where we have incomplete understanding

of the underlying systems but training data is readily available [2]. As a result, NNs have

been widely used in different application areas including time series prediction, function

approximation, pattern recognition, speech synthesis and clustering [1, 2].

1.1 From Numeric to Granular Neural Networks

Traditionally, NNs were considered as numeric constructs which realize a certain nonlinear

mapping [3, 4]. In this setting, all the networks parameters, inputs and the resulting out-

puts were considered to be numeric. In other words, one could essentially view a NN as

a numerical mapping from a numeric input space to a numeric output space. In practice,

however, it is very useful to generalize the application of NNs to granular mappings. By

constructing granular mappings, one takes into account the fact that the precise numeric

outputs resulting from numeric models are not realistic, since numeric models cannot ide-

ally represent the phenomena they are dealing with [5]. So, instead of numeric values, one

can use information granules in building models, in order to quantify the lack of numeric

precision and the limited knowledge about the underlying phenomena [6].

Information granules can be viewed as linked collections of objects (like data points)

that are drawn together because of their similarity, indistinguishability or functionality [4].

1

One can characterize an information granule by its specificity. Specificity is a measure

to quantify how detailed (specific) an information granule is and is related to the number

of elements in the granule [5]. A higher specificity implies a smaller information granule

which contains a smaller number of elements in it.

There are several methods to construct granular mappings and to quantify informa-

tion granularity. Interval analysis, fuzzy sets and probability theory are among the most

commonly-used approaches for information granulation [4]. In these approaches, one re-

places the numeric parameters to be granulated with intervals, fuzzy sets and random vari-

ables, respectively.

To realize a granular mapping, one needs to determine how to measure the goodness

of the mapping. There are two criteria to determine how good a granular mapping is,

the coverage criterion and the specificity criterion. Based on the coverage criterion, one

uses a certain inclusion measure to quantify the extent to which target values are included

in the corresponding output information granules. In case when the specificity criterion

is used, we measure the specificity of the output information granules to determine the

goodness of the granular mapping. The more specific the output information granules are,

the better the mapping is [5, 6]. Once we selected the criterion to measure the goodness

of a granular mapping, we can formulate the problem of allocation of a certain level of

information granularity to the parameters or to the input dimensions as an optimization

problem. The optimization problem aims to either maximize the overall inclusion level or

the overall specificity level of the mapping based on the criterion selected [5, 6].

1.2 Motivation

Analysis of granular mappings is useful in several applications. This thesis in particular,

focuses on the application of granular mappings for sensitivity analysis of NNs. Generally

speaking, in sensitivity analysis, we are interested in the behavior of the outputs of a system

when either its parameters or inputs deviate from their expected numeric values. In other

words, sensitivity analysis determines which inputs or parameters of a model are the main

drivers of the model, and it can be used to design systems with more reliable outputs. In

case of NNs, we aim to know that variations in which input features or which interneuron

connection weights lead to more significant changes in the NN outputs. The answer to this

question gives a very useful insight on how precisely the inputs or parameters of a NN must

be determined or estimated.

2

The case in which the specificity criterion is used to optimize the granularity allocation

to the mapping parameters can be viewed as a version of sensitivity analysis, where our

goal is to determine how the different parameters of a mapping can be modified (varied)

with as limited as possible impact on the specificity of its outputs. By designing a granular

mapping based on the specificity criterion, we obtain the optimal granularity allocation to

the parameters or the inputs. The parameters which are given lower granularity levels (lower

specificity) in the optimization process are those who exhibit lower sensitivity. Therefore, a

precise estimation of their values is not critical. Similarly, using the specificity criterion to

determine the granularity levels allocated to the inputs makes it possible to rank the input

dimensions in order of the output sensitivity to their variations. This provides us with an

insight on how precisely each one of the inputs of the mapping must be specified to have

accurate outputs. This is particularly significant in decision making models, where the input

values need to be estimated based on a limited amount of information and resources, and it

is extremely helpful to identify how precisely an input value must be estimated [5, 6].

1.3 Objectives and Summary of Contributions

In this thesis, we construct granular mappings for NNs by allocating a certain level of infor-

mation granularity to the input dimensions of the network. In other words, the parameters

of the network (weights, biases, activation function parameters) remain numeric while its

inputs become granular. We call the resulting NN a Granular Neural Network (GNN) . In

our analysis, we use the specificity criterion to derive the optimal allocation of a predeter-

mined granularity level to the input dimensions. As was mentioned in Sec. 1.2, the solutions

to this problem are particularly useful in sensitivity analysis of NNs to variations in their

inputs. Our approach in this thesis is to first train a numeric NN using the training data and

then granulate its numeric inputs using independent random variables from the same family

of distributions (like normal distributions or uniform distributions). In this work, we allow

different input random variables to be assigned different granularity levels, but we assume

that their distributions are symmetric around their mean values.

In this thesis, we formulate the problem of allocation of information granularity to

the inputs of a GNN as a constraint optimization problem using the specificity criterion.

We justify the use of entropy to quantify the granularity level associated with the input

random variables and we use it to formulate the constraint of the optimization problem. We

make the resulting optimization problem more mathematically tractable by providing an

3

approximation to its objective function. The solution to the resulting optimization problem

is derived which determines the standard deviations of the input random variables. Optimal

standard deviations are given in terms of the parameters of three different NN architectures,

namely Multi-Layer Perceptron (MLP) with one and two hidden layers and Radial Basis

Function Network (RBFN) . In the experimental part of this thesis, we use our theoretical

results to design GNNs using synthetic and real data sets. For those data sets, we investigate

the relationship between the granularity level allocated to each input dimension and the

variability of the output along that dimension. Based on the experimental evidences we

obtain, we conclude that lower granularity level (higher standard deviation) is allocated to

input dimensions that we there are lower output variations along them. We also compare

the optimal standard deviations when training and testing data are used to derive the optimal

allocations and we show that the results in both cases are almost identical. We investigate

the effect of the parameters of the GNN architectures (like the number of neurons in the

network) on the resulting optimal values of standard deviations, and we show that as far

as the GNNs are trained properly, their internal parameters have no significant effect on

the optimal standard deviation values. Finally, we investigate the effect of perturbing the

standard deviations from their optimal values on the specificity level of the GNN output.

1.4 Thesis Organization

This thesis is organized in five chapters. In Chapter 2, we provide the background knowl-

edge and review some of the existing works in the GNN literature. In Chapter 3, we math-

ematically formulate our optimization problem and derive the solutions to that problem for

different GNN architectures. In Chapter 4, we present and analyze experimental results ob-

tained by applying our theoretical findings to several synthetic and real data sets. Chapter 5

reviews our contributions and introduces potential future works.

4

Chapter 2

Background and Literature Review

2.1 Neural Networks

Artificial neural networks are significant adaptable systems that have the ability to learn

from data examples [1]. Once they are trained, they can use the knowledge obtained through

the learning phase to predict the outputs for unseen data. NNs are parallel distributed com-

putational models made up of highly interconnected simple processing units [1]. The pro-

cessing units are called neurons and they represent the nodes of the network. The intercon-

nections between these nodes determine the information flow in the network and its global

behavior. Although a NN is formed from simple units, it can characterize the behavior of

complex systems [1]. Moreover, the parallel distributed architecture of NNs makes it possi-

ble to implement them on parallel digital processors, which allows for solving problems fast

and efficiently [2]. Because of these features, NNs are commonly used in different applica-

tion areas including complex boundary decision problems, pattern recognition, prediction,

industrial process control. In this thesis, we consider two most popular neural networks

architectures, namely MLPs and RBFNs.

2.1.1 Multi-Layer Perceptrons

Multi-layer perceptrons are one of the most popular neural networks architectures used in

many applications today. MLPs belong to the feed-forward neural networks and are com-

monly used in function approximation problems. According to the universal approximation

theorem [7], there always exists a MLP with one hidden layer that can approximate any

nonlinear, continuous, and multi-dimensional function with any accuracy. The architectural

graph of a MLP with two hidden layers and one output layer is shown in Fig. 2.1. In this

figure, each neuron (except input neurons) receives the stimuli (input) from the neurons

in the previous layer. Then, a weighted summation of these inputs is passed through the

5

neuron activation function to produce the output of the neuron [1].

Figure 2.1. The architecture of MLP with two hidden layers [8].

2.1.2 Radial Basis Function Networks

Radial basis function networks are feed-forward neural networks with a single hidden layer

and radial basis activation functions such as Gaussian function. RBFNs have been used in

different approximation problems and the universal approximation theorem is also proved

for these networks [9]. The three layered structure of a RBFN is shown in Fig. 2.2. Each

hidden neuron of RBFN has a bell shaped radial-basis activation function centred on a

vector in the feature space. Here, first the Euclidean distance between an input vector and

the center of each hidden neuron is calculated. Then, the radial basis function is applied

to this distance, and its resulting output is a measure of closeness of the input vector to the

center of the hidden neuron. The final outputs of an RBFN are weighted sums of the outputs

of the hidden layer [1].

6

Figure 2.2. The architecture of RBFN [10].

2.1.3 Comparison Between MLPs and RBFNs

Both MLP networks and RBF networks belong to the feed-forward neural networks as

the input signals just flow in one direction. However, the activation functions of these

two networks work in different ways. In MLPs, the activation function of each neuron

is applied to the inner product of the input vector and the weight vector corresponding to

that neuron [11]. On the other hand, in RBFNs, the activation function is applied to the

distance between the input vector and the center of that hidden neuron [11]. As a result

of this difference, RBFNs construct local approximations to the a nonlinear function while

the approximations obtained by MLP networks are global [11]. Therefore, MLP networks

have good generalization ability even in the areas of the input space where there is not

enough training data [1, 11]. As the last point, RBFNs usually need more hidden neurons

to achieve the similar accuracy to MLPs that is because of local nature of RBFN activation

functions [11].

2.2 Granular Models

As was mentioned before, conventional NNs were numeric models as their inputs, param-

eters and the resulting outputs were all numeric. Unfortunately, the outputs given by nu-

meric NNs are not completely realistic, because of the modeling errors and the shortage of

information about the underlying phenomena [4]. As a result of the need for having more

realistic models, the concept of granular modeling of NNs is proposed. In characterization

7

of granular neural networks or GNNs, we give up on numeric models and admit granu-

lar parameters to quantify the lack of accuracy in the model [6]. By admitting a specific

amount of information granularity to the parameters or the inputs of numeric models, the

resulted model can be a better representation of the underlying phenomena. To construct

GNNs, the numeric inputs or the numeric parameters of the network must be replaced by

information granules through a granularity allocation process. In the following, we will

review the concept of information granularity and its application for modeling purposes.

2.2.1 Information Granule and its Quantification

The term information granularity first time was used by Zadeh [12] in the framework of

fuzzy sets. Information granule is a collection of objects that are similar or indistinguishable

according to some criteria [13].

One can characterize an information granule by its specificity. Specificity shows how

detailed an information granules is [5]. As the term implies, a higher specificity corresponds

to a case when smaller number of elements exist in the information granule (more specific

elements).

Information granules can be represented using several methods namely, intervals [14],

fuzzy sets [15], random sets and probability theory. In interval analysis, one replaces the

numeric parameter to be granulated with an interval. The broader the interval is, the less

specific is the information granule. Similarly, one can use fuzzy sets to form information

granules. Fuzzy cardinality can be used as a measure of granularity [4]. When probability

theory is used for information granulation, we replace the numeric data by random vari-

ables. In this case, the standard deviations (variances) of the random variables are directly

connected to the sizes of the corresponding probabilistic information granules. So, a higher

standard deviation corresponds to admitting more objects in the information granule and

therefore a lower specificity. Note that once a parameter is granulated, the values in the

corresponding (interval, fuzzy or probabilistic) set lose their identity and they are assumed

to be indistinguishable from each other [4].

2.2.2 Applications of Granular Models

Granular models are useful in various applications and analysis. Two examples of such

applications are [4, 6]:

• Knowledge transfer: They can arise as a manifestation of knowledge transfer in appli-

cations where very limited experimental evidence or data is available. In such a case,

8

the small data available is not sufficient to construct a reliable and realistic model.

However, one can rely on an existing model which deals with a close problem and is

developed based on a large body of experimental evidences, then, adjust it to the cur-

rent situation. In such a scenario, we can quantify the effect of the partial relevance

between the existing model and the current situation by making the parameters of the

model granular to make the model more general.

• Non-stationary phenomena: Another application of granular models is in the model-

ing of non-stationary phenomena where the system exhibits temporal changes. Up-

dating the model continuously to accommodate these variations can lead to consid-

erable development overhead. However, one can alternatively account for these tem-

poral changes by using granular parameters for the system.

2.3 Design of Granular Neural Networks

In general, four different kinds of GNNs can be envisioned depending on the size of data

and network information granules [4, 6]:

• high granularity of both data and the network parameters

This is the case for conventional NNs where the input data to the network and the

connections of the network are numeric. The training methods for this networks can

be easily found in the literature [1].

• low granularity of data and high granularity of network parameters

Here, the input data to the network are nonnumeric while the network itself has nu-

meric parameters. As a result, the output of this network will be granular.

• high granularity of data and low granularity of the network parameters

In this case, the input data are numeric, however, the network itself has granular

connections. The network output will be granular as well.

• low granularity of both data and network parameters

Here, we have nonnumeric inputs as well as nonnumeric parameters. The outputs of

these networks have also low granularity.

In this thesis, we are concerned with the second type of GNNs which have low granularity

of input data and high granularity of network parameters. As discussed in Sec. 1.2, this

9

case can be used when we are interested in the sensitivity analysis of the network output to

variations in its inputs.

After the type of the GNN is determined, one can follow two different approaches for its

design: design from scratch and design based on a numeric NN. In the design from scratch,

the GNN is constructed on the basis of some numeric or granular data [4, 14, 15].

In [4], a design process for GNNs is outlined in two fundamental phases. First, the

input data to the network are made condensed in the form of information granules. Second,

the network is trained using the resulting granular data instead of the original data. In [14],

the architecture of NNs with interval weights is discussed where both the outputs of the

network and the targets are in the form of intervals. Here, the cost function is defined based

on these interval outputs and interval targets. Then, a new learning algorithm, which is

similar to BP (Back-Propagation), is derived to minimize the cost function during learning

phase of the NN. Therefore, in this work, the network itself is basically granular by having

interval weights. What is done in [15] is similar to the studies presented in [14]. However,

in [15], the weights of the network are made granular using fuzzy sets. In addition, the

network can also handle the granular inputs in terms of fuzzy sets.

The second approach to design GNNs is on the basis of a numeric NN [3]. In this ap-

proach, one first constructs a numeric NN to fit a given numeric input-output relationship.

Then, either the network connections or the network inputs are augmented using informa-

tion granules. In fact, a given level of information granularity is admitted to the parameters

and then the optimal allocation of this information granularity is found using a proper opti-

mization method [5].

In this thesis, we follow the second approach for designing GNNs. The work done

in [3] is the most closely related work to this thesis. In [3], a GNN is designed on the

basis of a numeric NN by replacing the network weights with information granules in the

form of intervals. The lengths of these intervals are obtained such that they maximize the

coverage of the resulting GNN (coverage criterion). The optimization is performed using

single-objective version of particle swarm optimization. Our work in this thesis is different

from the work in [3] in four ways. First, we granulate the inputs of the network to con-

struct GNNs and we keep the network parameters numeric, while in [3], the weights of the

network are granulated. Second, in this thesis we use probability sets to granulate numeric

values while intervals are used in [3] for constructing information granules. Third, our

design process is based on the specificity criterion while [3] used coverage criterion for op-

timizing the granularity allocation. Fourth, the optimization process in [3] is accomplished

10

by evolutionary optimization algorithms, while in this thesis, we derive analytic solutions

to the optimization problem.

11

Chapter 3

An Analytical Approach to Optimal

Granularity Allocation in GNNs

In this chapter, we mathematically investigate the design process of GNNs with granular

inputs and numeric parameters. Our approach to design the GNN is to first build a numeric

NN and then augment its inputs by making them granular using random variables. These

random variables can have any symmetric distribution. As an essential design asset, the op-

timal allocation of a given level of information granularity is found such that the specificity

of the network output maximizes.

In the following, first, we explain the way that the inputs of the network are made gran-

ular using random variables. Then, we formulate the problem of allocation of information

granularity to the inputs as an optimization problem. In particular, we discuss mathemat-

ical formulation of both the cost function of the optimization problem and its constraint.

Finally, we analytically derive the solution to the optimization problem and we discuss the

evaluation of the optimal solution for different NN architectures.

The theoretical results obtained in this chapter are used as a basis for the experimental

explorations in Chapter 4.

3.1 Granulating Inputs Using Random Variables

In this section, we discuss the procedure of granulating the inputs of a function through a

probabilistic approach by using random variables. Suppose that we have an n-dimensional

function

y = g(x) (3.1)

where x = (x1, x2, ..., xn) represents the n-dimensional input vector. In particular, g(·)
can be the input-output relationship of a NN. To granulate the numeric vector x, we replace

12

each one of its entries with a random variable and we set the mean of the random variable

equal to the numeric value of that entry. In other words, we replace xi with a random

variable Xi such that E(Xi) = xi, for i = 1, ..., n, where E(·) is the expectation operator.

We choose the n random variables to be independent, so the resulting granular input vector

X = (X1,X2, ...,Xn) is formed by n independent random variables with the mean vector

x = (x1, x2, ..., xn) and the variance vector σ
2 = (σ2

1 , σ
2
2 , ..., σ

2
n). Note that σi = 0

corresponds to the case that the i-th input is a numeric value. Increasing σi decreases the

specificity or the granularity level of the i-th input.

When random variables are used to granulate data, our approach in choosing the dis-

tributions of the random variables and their corresponding parameters determines the al-

location protocol. Generally, one can follow different protocols in granularity allocation

process, depending on the diversity considered in setting the allocation parameters. The

protocols discussed here are generalizations of the granulation protocols discussed in [6]

when interval analysis is used to make information granules.

• Random Allocation: A random allocation protocol randomly assigns a given total

granularity level to different inputs. This allocation protocol is obviously sub-optimal

but it can be used as a reference to comment on how superior other allocation proto-

cols perform compared to a purely random approach.

• Uniform vs. Non-uniform Allocation: In uniform allocation, we select the random

variables to have identical distributions around their means. This means that except

for their mean values (which are set equal to the corresponding numeric data), all

other parameters of the distributions used are similar. For example, we only allow

for equal variances σ2
1 = σ2

2 = ... = σ2
n in the allocation process. It is needless to

say that no parameter optimization is involved in this protocol and one simply gives

equal variances to the distributions such that the total granularity level becomes equal

to the predetermined given value. In a non-uniform allocation protocol, however, we

allow the distributions to have different parameters. Clearly, parameter optimization

is required when a non-uniform protocol is used, in order to maximize an objective

function (like output coverage or specificity level). One also notes that the term

“uniform” here does not refer to uniform distribution for the random variables, but

refers to uniform allocation of granularity to different random variables.

• Symmetric vs. Asymmetric Allocation: In a symmetric allocation protocol, the distri-

bution of each random variable is chosen to be symmetric around its expected value

13

(mean). Examples of symmetric distributions are normal, uniform or Laplace dis-

tributions. On the other hand, a non-symmetric allocation protocol allows for using

distributions that are not necessarily symmetric around their mean values. Gamma

random variables are examples of random variables with asymmetric distributions.

An asymmetric protocol provides higher degrees of freedom in the allocation pro-

cess, but it requires to enter measures like skewness to quantify the asymmetry level

of distributions around their means values [16] in the allocation problem.

In this thesis, we follow a non-uniform but symmetric granularity allocation protocol. In

other words, we choose the random variables from a symmetric family of distributions, but

we allow them to have different distribution parameters.

As the last remark, one notices that by making the input vector x granular, the corre-

sponding output also becomes granular. In other words, the output will also be a random

variable Y = g(X) instead of a deterministic numeric value y = g(x). We denote the stan-

dard deviation of the output distribution by σy and it reflects the specificity level of the

output information granule, the smaller σy is, the more specific is the output information

granule.

3.2 Formulation of Granularity Allocation as An Optimization

Problem

Assume that X(1), ...,X(M) are M different n-dimensional granular input vectors with cor-

responding n-dimensional mean vectors x(1), ..., x(M) and variance vectors σ2(1), ...,σ2(M)
.

Since we allocate granularity along input dimensions, different input vectors have the same

variance along a specific dimension, therefore, σ2 = σ
2(1) = ... = σ

2(M)
. This means

that the i-th entries of all the input vectors have the same variance. One notes that this does

not mean a uniform granularity allocation protocol, because here different entries of a fixed

variance vector are different. In fact, the variances are different along input dimensions but

not along time. For m = 1, ...,M , Y (m) denotes the output random variable corresponding

to the m-th granular input vector X(m), and we use σ2
y(m) to represent its variance.

Now, given the M input vectors and a given level of total information granularity ε,

we aim to find the optimal allocation of ε among the n input dimensions such that the

output becomes as specific as possible (specificity criterion). Formally speaking, our goal

is to find the optimal variance vector σ
2 = (σ2

1 , σ
2
2 , ..., σ

2
n) that minimizes the average

of the M output variances, given the constraint that σ2 introduces a certain amount of

14

information granularity to the inputs. To formulate this problem as an optimization problem

with parameters σ1, ..., σn, we determine the mathematical forms of the objective function

and the constraint in Secs. 3.2.1 and 3.2.2, respectively.

3.2.1 The Objective Function of the Optimization Problem

As mentioned before, we use the specificity criterion to design the GNN with granular

inputs, therefore, our goal is to choose σ1, ..., σn to allocate a given level of information

granularity to the input dimensions such that the average output variance minimizes. The

average output variance can be written as

I =
1

M

M
∑

m=1

σ2
y(m) (3.2)

where M is the number of available input-output pairs. Note that derivation of the rela-

tionship between the objective function I and the optimization parameters σ2
1 , ..., σ

2
n is not

always straightforward. This is particularly the case when we are dealing with NNs where

the output of the network is a complicated non-linear mathematical function of the inputs.

As a result, it is very useful to approximate the objective function in (3.2) with a more

mathematically tractable function. To do this, we approximate the variance of a function of

random variables in terms of the variances of its inputs using [17, eq. 6.115], which leads

to

σ2
y(m) ≈

n
∑

i=1

(

∂g

∂xi
|x=x(m)

)2

σ2
i , m = 1, ...,M (3.3)

where g(·) is the NN output function in terms of the inputs, and ∂g
∂xi
|x=x(m) is ∂g

∂xi
calculated

at the m-th input vector. Here, we have used the fact that the input random variables are

independent. This approximation becomes more precise as values of σ2
i get smaller. Using

(3.3) in the objective function (3.2), we approximate the objective function by

I(σ2) ≈ 1

M

M
∑

m=1

σ2
y(m) =

1

M

M
∑

m=1

n
∑

i=1

(

∂g

∂xi
|x=x(m)

)2

σ2
i . (3.4)

By changing the order of summations in (3.4), we have

I(σ2) ≈ 1

M

n
∑

i=1

(

M
∑

m=1

(

∂g

∂xi
|x=x(m)

)2
)

σ2
i . (3.5)

In (3.5), the expression inside the outer parenthesis is a constant value (independent of

variances) for each i and we denote it by

ai =
1

M

M
∑

m=1

(

∂f

∂xi
|x=x(m)

)2

. (3.6)

15

Therefore, the objective function can be approximated by

I(σ2) ≈
n
∑

i=1

aiσ
2
i . (3.7)

So, we use (3.7) as the objective function of our optimization problem.

3.2.2 The Constraint of The Optimization Problem

Another significant step towards the formulation of our optimization problem is to quantify

the total granularity level allocated to the input dimensions and set it equal to a given value ε.

So, by changing ε one controls the total granularity level allocated to the input information

granules.

Using Variance as Granularity Measure

The first candidate to quantify the granularity level associated with a random variable is its

variance. In this case, we can write the total granularity level allocated to the inputs as the

sum of the variances and therefore the constraint becomes

n
∑

i=1

σ2
i = ε. (3.8)

This constraint together with the objective function (3.7) leads to the optimization problem

minimize
σ

2=(σ2
1 ,...,σ

2
n)

I(σ2) =

n
∑

i=1

aiσ
2
i

subject to

n
∑

i=1

σ2
i = ε, σ2

i ≥ 0 ∀i.
(3.9)

(3.9) is a linear programming optimization problem with one linear equality constraint

(see [18, Ch. 4]). One notes that the optimization problem (3.9) can be interpreted as a

investment problem, where σ
2 represents the allocation of the total budget ε to different

assets i with the corresponding return of −ai. We are interested in maximizing the total

return which is equivalent to minimizing
∑n

i=1 aiσ
2
i . Since the return values are known, it

is obvious that the optimal solution to this problem is to invest all the budget ε on the asset

with the highest return (i.e., smallest ai). In other words, the solution to (3.9) is to allocate

all ε to the input which has the smallest corresponding value of ai. A formal proof of this

result is given in Appendix A.

The use of the optimization problem (3.9) is very restricted in practical applications.

In particular, one important application of granular models was in sensitivity analysis. In

16

sensitivity analysis using GNNs, we are interested to comment on the precision required

in estimating each input value based on the optimal granularity level allocated to it (see

Sec. 1.2). In this case, a higher granularity level allocated to an input dimension implies

that higher precision is required in determination or estimation of its value to keep the out-

puts precise. However, the solutions to (3.9) do not give us much insight for sensitivity

analysis, because (3.9) allocates all the granularity budget to one input dimension that has

the smallest coefficient ai and zero granularity to the other dimensions. For example, an

optimal variance vector looks like σ
2 = (0, ε, 0, 0, ..., 0) which does not provide us with

any information about the relative sensitivity of the output to the inputs that are given gran-

ularity level 0.

Using Entropy as Granularity Measure

We observed that the use of the sum of variances as the total granularity level of the inputs

led to a solution to granularity allocation problem whose application was very limited in

practice. Therefore, in this part, we introduce another measure for the granularity level of

the inputs.

In probability and information theory, the uncertainty associated with a discrete random

variable is characterized by its entropy. For discrete random variables entropy is defined as

H(X) = −
∑

i

PX(xi) lnPX(xi) (3.10)

where PX(·) represents the probability mass function of the discrete random variable X.

Note that for discrete random variables, H(X) ≥ 0 where H(X) = 0 corresponds to the

case that X takes just one value and therefore we have zero uncertainty about the value of

the random variable X. In an analogous way, the entropy of a continuous random variable

is defined as

h(X) = −
∫ ∞

−∞

pX(x) ln pX(x) dx (3.11)

where pX(·) is the probability density function (PDF) of the continuous random variable

X. For a discrete random variable X, the entropy H(X) is positive and it is used as the

measure of uncertainty about X. For continuous random variables, however, entropy can

take any value from −∞ to +∞ and it can be used to measure the changes in uncertainty.

So, when dealing with a continuous random variable, we measure its uncertainty level with

respect to a reference random variable [16, Ch. 14, Note 1]. For instance, consider two

zero-mean normal random variables with variances σ2
1 and σ2

2 > σ2
1. The entropy of a

17

normal random variable with mean µ and variance σ2 is [16, eq. 14.84]

h(X) =
1

2
ln
(

2πeσ2
)

. (3.12)

So, our uncertainty about X2 compared to X1 is h(X2) − h(X1) = ln σ2
σ1

> 0. This

means that more uncertainty is associated with the normal random variable with the higher

variance.

The entropy of a random variable is invariant to translation, i.e., [16, 19]

h(X + µ) = h(X). (3.13)

So, changing the mean of a random variable does not change its entropy. However, en-

tropy varies by changing the variance of a random variable. In general, a higher spread

of a random variable around its mean associates with a higher entropy (higher uncertainty

level). This fact relates the entropy of a random variable with its variance. Mathemati-

cally speaking, assume that Xref is a random variable with variance 1. Then, X = σXref

has the same distribution form but its variance is σ2. Following the scaling property of

entropy [16, eq. 14.115], the entropies of X and Xref are related as

h(X) = h(Xref) + lnσ. (3.14)

In other words, the uncertainty about X compared to the reference Xref with variance 1 is

h(X) − h(Xref) = lnσ. (3.15)

Finally, the total uncertainty of a number of independent random variables is equal to the

sum of the entropies of individual random variables [16, Sec. 14.3]. This property is very

useful for formulation of our problem, as we have used independent random variables to

granulate the inputs and we are interested in the total uncertainty level associated with them.

Now, we return to the original optimization problem and we use the entropy to mea-

sure the granularity level allocated to each input random variable. Since the input random

variables are independent, the total uncertainty level given to input random variables is the

sum of their individual uncertainties. Using the reference distribution Xref with variance 1

from the same distribution family as Xis, we formulate the constraint of the optimization

problem as the total uncertainty given to the inputs

n
∑

i=1

[h(Xi)− h(Xref)] =

n
∑

i=1

lnσi = ε. (3.16)

where we used (3.15) to write the last equality.

18

Finally, using (3.16) and (3.7) we write the resulting optimization problem as

minimize
σ

2=(σ2
1 ,...,σ

2
n)

I(σ2) =

n
∑

i=1

aiσ
2
i

subject to

n
∑

i=1

lnσi = ε

(3.17)

where ais are calculated using (3.6).

In the next section, we derive the optimal solution of the optimization problem (3.17).

3.3 Derivation of The Optimal Standard Deviations For The In-

puts

To solve the optimization problem in (3.17), we first use ln a+ ln b = ln(ab) to rewrite the

constraint (3.16) as
n
∏

i=1

σi = eε , α. (3.18)

By using (3.18) to write σn in terms of other values of σi, the n-dimensional constrained

optimization problem (3.17) can be converted to a (n − 1)-dimensional unconstrained op-

timization problem

minimize
σ2
1 ,...,σ

2
n−1

I ′(σ2
1 , ...σ

2
n−1) = a1σ

2
1 + a2σ

2
2 + ...+ an−1σ

2
n−1 + an

α2

σ2
1σ

2
2 ...σ

2
n−1

. (3.19)

To solve (3.19), our first step is to find the critical points of I ′, i.e., the points that make

all the function’s partial derivatives zero. The second step is to use the second derivative

test to determine whether each critical point of the function is a maximum, a minimum or

a saddle point. For a function of more than one variable, this test is based on evaluation of

the Hessian matrix at the critical points. In particular, assuming that all the second order

partial derivatives of the function are continuous on a neighbourhood of a critical point, if

the Hessian matrix at the critical point is positive definite, the point is a local minimum [20].

In linear algebra, a symmetric n× n real matrix A is said to be positive definite if xTAx is

positive for every non-zero column vector x of n real numbers [21]. All the eigenvalues of

a positive definite matrix are positive [21]. In the following two subsections, we accomplish

these two steps to solve the optimization problem (3.19).

1. Finding the Critical Points of the Objective Function

To find the critical points of I ′, we find σ1, σ2, ..., σn−1 that simultaneously make all the

19

partial derivatives zero. The derivatives of I ′ with respect to its variables are

∂I ′

∂σ1
= 2a1σ1 −

2anα
2

σ3
1

∏n−1
k=1
k 6=1

σ2
k

∂I ′

∂σ2
= 2a2σ2 −

2anα
2

σ3
2

∏n−1
k=1
k 6=2

σ2
k

...
...

∂I ′

∂σn−1
= 2an−1σn−1 −

2anα
2

σ3
n

∏n−1
k=1

k 6=n−1
σ2
k

.

Setting all the derivatives equal to zero, we have

σ4
i

n−1
∏

k=1
k 6=i

σ2
k =

(

an

ai

)

α2, i = 1, ..., n − 1. (3.20)

By solving the system of (n − 1) equations and by considering the fact that standard devi-

ation is non-negative, we calculate the unknowns as

σi = 2n

√

√

√

√α2

n
∏

k=1

ak

ai
, i = 1, ..., n − 1. (3.21)

(3.21) gives the critical points of function I ′ in its domain R
n−1
+ . Now that we have the

critical points of I ′, we can proceed to the second step, which is the second derivative test.

2. Second Derivative Test

To do the second derivative test, one first needs to calculate the Hessian matrix of the

function I ′ at its critical points to determine if they are maximums, minimums or saddle

points [20]. Hessian matrix is a square matrix and its computation requires the evaluation

of the second-order partial derivatives of the function. Given the real-valued function I ′, if

all second-order partial derivatives of I ′ exist and are continuous over the function domain,

then the Hessian matrix of I ′ is

H(I ′) =

∂2I′

∂σ2
1

∂2I′

∂σ1∂σ2
. . . ∂2I′

∂σ1∂σn−1

∂2I′

∂σ2∂σ1

∂2I′

∂σ2
2

. . . ∂2I′

∂σ2∂σn−1

...
...

. . .
...

∂2I′

∂σn−1∂σ1

∂2I′

∂σn−1∂σ2
. . . ∂2I′

∂σ2
n−1

. (3.22)

Using the expression for I ′ given in (3.19), we evaluate the partial derivatives of I ′ as

∂I ′

∂σi
= 2aiσi −

2anα
2

σ3
i

∏n−1
k=1
k 6=i

σ2
k

(3.23)

20

and therefore
∂2I ′

∂σ2
i

= 2ai +
6anα

2

σ4
i

∏n−1
k=1
k 6=i

σ2
k

. (3.24)

Evaluation of (3.24) in the critical points yields

∂2I ′

∂σ2
i

= 8ai (3.25)

where we have used (3.20) to write (3.25).

In a similar way, we use (3.23) to evaluate the rest of the partial derivatives as

∂2I ′

∂σi∂σj
=

∂2I ′

∂σj∂σi
=

4anα
2

σ3
i σ

3
j

∏n−1
k=1

k 6=i,k 6=j

σ2
k

. (3.26)

Again, we evaluate (3.26) at the critical points which gives

∂2I ′

∂σi∂σj
=

∂2I ′

∂σj∂σi
= 4ai

σi

σj
= 4
√
aiaj (3.27)

where we have used (3.20) and (3.21), respectively. Substitution of (3.25) and (3.27) in

(3.22) gives the Hessian matrix of I ′ at the critical point as

H(I ′) = 4

2a1
√
a1a2 . . .

√
a1an−1√

a2a1 2a2 . . .
√
a2an−1

...
...

. . .
...

√
an−1a1

√
an−1a2 . . . 2an−1

(3.28)

Now we complete the second derivative test by determining if the Hessian matrix in (3.28)

is positive definite. To do this, we need to show that xTH(I ′)x is positive for every non-zero

column vector x of n− 1 real numbers. We prove H(I ′) is positive definite as

xTH(I ′)x =
[

x1 x2 . . . xn−1

]

× 4

2a1
√
a1a2 . . .

√
a1an−1√

a2a1 2a2 . . .
√
a2an−1

...
...

. . .
...

√
an−1a1

√
an−1a2 . . . 2an−1

×

x1

x2

...

xn−1

= 4

(

n−1
∑

i=1

2aix
2
i

)

+

n−2
∑

i=1

n−1
∑

j=i+1

2
√
aiajxixj

= 4

(

n−1
∑

i=1

aix
2
i

)

+

(

n−1
∑

i=1

√
aixi

)2

 > 0 (3.29)

Therefore, we have shown that the Hessian matrix at the critical point is positive definite.

In other words, the critical point of the objective function I ′ is a minima of the function.

21

In summary, we derived the optimal amounts of standard deviations that minimize the

objective functions I ′ as

σi = 2n

√

√

√

√α2

n
∏

k=1

ak

ai
, i = 1, ..., n − 1. (3.30a)

The same values of σi, i = 1, ..., n − 1, minimize I in the original optimization problem

(3.17). The optimal value of σn can be evaluated by substitution of (3.30a) in (3.18) as

σn =
α

σ1σ2...σn−1
= 2n

√

√

√

√α2

n
∏

k=1

ak

an
. (3.30b)

The solution for σn has the same form as the solutions in (3.30a) which is expected because

of the symmetry of the original optimization problem to the input variances. Using (3.30a)

and (3.30b), we summarize the optimal solution of (3.17) as

σ∗
i = 2n

√

√

√

√α2

n
∏

k=1

ak

ai
, i = 1, ..., n (3.31)

Eq. (3.31) gives the optimal standard deviations and it is the solution to the optimization

problem (3.17).

Discussion:

Eq. (3.31) gives us a good insight about the process of allocation of information granularity

to different inputs. According to (3.6), the coefficient ai characterizes the average variabil-

ity of the network output to the changes in the input xi. Therefore, the optimal value σi,

which is inversely proportional to ai, increases as the average variability of output in the

direction of xi decreases. In other words, the more the function changes along one input,

the less standard deviation is allocated to it.

The following algorithm shows the way for calculating the optimal standard deviations.

Given the mean values of the input random variables which are equal to the correspond-

ing numeric inputs and the standard deviations (3.31), we can derive the parameters of the

input random variables based on the distribution family they belong to. For example, let’s

consider three distributions for the input random variables:

22

Require: ε , M , (x(m), y(m)) m = 1, ...,M ,

1: α← eε

2: g ← train a numeric NN to fit the given data set

3: for i = 1 to n do

4: ai ← 1
M

∑M
m=1

(

∂g
∂xi
|x=x(m)

)2

5: for i = 1 to n do

6: σi ← 2n

√

α2
∏n

k=1
ak
ai
,

return σis

• Normal Distributions: Assume that the input random variables have normal distribu-

tions denoted by N (µi, σ
2
i) with the PDF

pXi
(x) =

1
√

2πσ2
i

exp

(

−(x− µi)
2

2σ2
i

)

(3.32)

So, we have µ∗
i = xi, and the standard deviations σ∗

i are readily given by (3.31).

• Uniform Distributions: As the second example, we consider uniform distributions

denoted by U(ci, di) where

pXi
(x) =

{ 1
d−c

ci 6 x 6 di
0 otherwise

(3.33)

and its mean and standard deviation are given by

E(Xi) =
ci + di

2
(3.34a)

V ar(Xi) =
(di − ci)

2

12
(3.34b)

Setting E(Xi) = xi and substituting (3.31) in (3.34b), we obtain the optimal param-

eters of the uniform distributions as

c∗i = xi −
√
3σ∗

i (3.35a)

d∗i = xi +
√
3σ∗

i . (3.35b)

• Laplace Distributions: A laplace distribution L(α, β) is characterized by two param-

eters, location parameter γ and scale parameter β. The Laplace PDF is

pXi
(x) =

1

2βi
exp

(

−x− ui

βi

)

(3.36)

and its mean and variance are given as

E(Xi) = γi (3.37a)

V ar(Xi) = 2β2
i . (3.37b)

23

Figure 3.1. The structure of a MLP network with one hidden layer.

So, the optimal parameters of a Laplace distribution are

γ∗i = xi (3.38a)

β∗
i =

σi∗√
2
. (3.38b)

3.4 Evaluation of coefficients ai for Different Neural Network

Architectures

In Sec. 3.2, we formulated an optimization problem to distribute a given amount of informa-

tion granularity among the inputs of a function g(·), so that the output becomes as specific

as possible. In the optimization problem (3.17), the coefficients {ai}ni=1 , which are defined

in (3.6), are determined by function g(·). When dealing with neural networks, the input-

output function depends on the architecture of the neural network chosen. In this section,

we derive the coefficients ai for three different neural network architectures, namely MLP

networks with one and two hidden layers and RBFN.

3.4.1 MLP Networks with One Hidden Layer

The structure of a MLP network with one hidden layer is shown in Fig. 3.1. Suppose that

all the hidden neurons have hyperbolic tangent sigmoid transfer function

f(t) =
2

1 + e−2t
− 1 (3.39)

24

and also assume that the single output neuron has a linear transfer function. In this case, the

relationship between the output and the inputs of the neural network is

y = g(x) =

h+1
∑

j=1

Wj

(

2

1 + exp(−2(∑n+1
i=1 xiwij))

− 1

)

. (3.40)

In equation (3.40), {Wj}hj=1 are the weights between the hidden layer and the output layer,

and wij represents the weight between the i-th input and the j-th neuron of the hidden layer.

The bias of output neuron and the biases of hidden neurons are considered in the vector W

and matrix w, respectively.

According to equation (3.21), for finding the optimal standard deviations, we need to

calculate the derivative of g with respect to each one of its inputs. This yields

∂g

∂xi
= 4

h
∑

j=1

Wjwij
Aj

(1 +Aj)2
(3.41)

where Aj , exp
(

−2∑n+1
i=1 xiwij

)

. Substitution of (3.41) in (3.6) gives the coefficients ai

which are required to compute the optimal solution in (3.21) for a MLP network with one

hidden layer.

3.4.2 MLP Networks with Two Hidden Layers

In this section, we consider a MLP network with two hidden layers. Similar to the previous

section, we assume the activation functions of all the hidden neurons are hyperbolic tangent

sigmoid and the activation function of the single output neuron is a linear function. The

relationship between the output and the inputs of the considered neural network is

g(x) =

h2+1
∑

j=1

Wj

2

1 + exp
(

−2∑h1+1
k=1 vkj

(

2
1+exp(−2

∑
n+1
i=1 xiwik)

− 1
)) − 1

(3.42)

where h1 and h2 are the number of hidden neurons in the first and the second hidden layers,

respectively. wik represents the weight between the i-th input node and the k-th neuron

in the first hidden layer, and vkj shows is the weight between the k-th neuron in the first

hidden layer and the j-th neuron in the second hidden layer. Finally, vector W denotes the

weights between the second hidden layer and the output layer. The derivative of g with

respect to xi is

∂g

∂xi
= 16

h2
∑

j=1

(

Wj
Bj

(1 +Bj)2

h1
∑

k=1

(

wikvkj
Ak

(1 +Ak)2

)

)

(3.43a)

25

Figure 3.2. The structure of a MLP network with two hidden layer.

where

Ak = exp

(

−2
n+1
∑

i=1

xiwik

)

(3.43b)

Bj = exp

(

−2
h1+1
∑

k=1

vkj

(

2

1 +Ak

− 1

)

)

. (3.43c)

Eq. (3.43) can be used in (3.6) to compute the coefficients ai for a MLP network with two

hidden layers.

3.4.3 RBFNs

The structure of a RBFN is shown in Fig. 3.3. Each neuron in the hidden layer of the RBFN

has a Gaussian activating function whose output is inversely proportional to the distance

between an input and the center of the neuron. So, for the j-th hidden neuron we have

fj(x) = exp(−b2j (‖x− cj‖)2) (3.44)

where x is the input vector, cj is the n-dimensional center vector of the j-th hidden neuron

and bj characterizes the spread of the j-th Gaussian function (j = 1, ..., h). In (3.44),

‖x− cj‖ =
√
∑n

i=1(xi − wij)2 is the Euclidean distance between the n-dimensional input

vector and the center of the j-th hidden neuron. Note that the values of parameters cj and

bj are determined in the training phase of the network.

The relationship between the output and the inputs of the RBFN can be written as

g(x) =

h+1
∑

j=1

Wj exp
(

−b2j‖x− cj‖2
)

(3.45)

26

Figure 3.3. The structure of a RBFN.

In equation (3.45), W is the vector of weights between hidden layer and output layer. The

bias of the single output neuron is also included in W .

The derivative of g(x) along each of its input dimensions xi is

∂g

∂xi
= −2

h
∑

j=1

Wj(xi − cij)b
2
j exp

(

−b2j‖x− cj‖2
)

(3.46)

and cij is the i-th entry of vector cj . Again, one can use (3.46) in (3.6) to compute the

coefficients ai when RBFN architecture is used to construct the GNN.

3.5 Concluding Remarks

In this chapter, we formulated the problem of finding optimal allocation of information

granularity to the inputs of a GNN as an optimization problem. We summarized the opti-

mization problem in (3.17), where the objective function was expressed as a linear com-

bination of the variances of the input distributions, and the constraint of the optimization

problem was derived by using the entropy of input random variables as a measure of the

granularity level associated with them. The optimal values of the standard deviations of the

input random variables were derived analytically in (3.31) as the solution to the optimiza-

tion problem. Finally, we discussed evaluation of the optimal standard deviations when

RBFN or MLP with one or two hidden layers were used to construct the GNN. In the next

27

chapter, we use the theoretical results of this chapter for the design of GNNs on the basis of

NNs constructed to fit several synthetic and real data sets.

28

Chapter 4

Experimental Results

In Chapter 3, we investigated the problem of optimal allocation of information granularity

to the inputs of GNNs. In this chapter, we apply the theoretical results derived in Chapter 3

to design GNNs based on NNs constructed to fit several synthetic and real data sets. In

particular, we use a total of five synthetic and six real data sets in our experiments. For each

data set, three NN architectures are used to fit the data, namely MLP networks with one

and two hidden layers and RBFN. Then, the NNs are made granular using independent nor-

mal random variables with the optimal standard deviations given by (3.31). The resulting

GNNs with different architectures are compared to each other, and the relationship between

the granularity levels allocated to input dimensions and the output variations along those

dimensions is investigated. In addition, for each data set, we perform the following three

tasks:

1. The optimal granularity allocation for each GNN is slightly perturbed. The effect of

this perturbations on the objective function is investigated.

2. The optimal vector of standard deviations is obtained for different input data, namely

training data, testing data, and a combined set of both training and testing data.

3. The effect of NN parameters (such as the number of neurons in the hidden layers) in

the resulting optimal granularity levels is investigated.

For all the following data sets, 75% of the entire data is used as training data and the rest as

testing data. In addition, the training function used for all the NNs updates the weights and

the biases according to Levenberg-Marquardt optimization.

The experimental results for synthetic and real data sets are presented in Secs. 4.1 and

4.2, respectively.

29

0
5

10
15

20
25

30

−20

−10

0

10

20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2

Figure 4.1. The 3D representation of the 2D function g1. Blue points show the superim-

posed training and testing data.

4.1 Experimental Results on Synthetic Data Sets

This section contains the experimental results on synthetic data sets. To perform our analy-

sis for synthetic data, we generate five data sets using five different functions. The synthetic

data sets are generated based on a uniform distribution over the input spaces of the func-

tions. For each data set, we have generated 600 input-output pairs for our experiments,

where 75% of the input-output pairs (450 data points) are used as training data and the rest

(150 data points) are used for testing. The value of ε for the first four data sets is set to −5
and it is equal to −6 for the last data set.

A. Synthetic Data #1

The function used to generate the first synthetic data is

g1(x1, x2) = sin
(x1

2

)

sin
(x2

4

)

, 0 ≤ x1 ≤ 8π,−4π ≤ x2 ≤ 4π. (4.1)

Fig. 4.1 shows the 3D representations of g1(x1, x2) for the specified ranges of parameters.

The blue points on Fig. 4.1 show the superimposed training and testing data.

• Construction of Numeric NNs

After splitting the data into training and testing, we have trained different neural

30

networks to fit the data. The correlation coefficient R2 is used as the performance

measure of the constructed networks. R2 ranges from 0 to 1, the closer R2 is to 1

the better the model fits the data. Table 4.1 shows the parameters of different NN

architectures used to fit the data as well as their corresponding amounts of R2 for

training and testing data sets.

1 hidden layer MLP 2 hidden layers MLP RBFN

No. of input neurons 2 2 2

No. of first hidden neurons 15 15 54

No. of second hidden neurons - 20 -

Spread - - 10

R2 on training data set 0.999997 0.999934 0.999848

R2 on testing data set 0.999988 0.999795 0.999609

Table 4.1. Parameters and performances of the constructed NNs for synthetic data #1

• Comparison of Optimal Standard Deviations For Different NNs Architectures

Now, we calculate the optimal allocation of information granularity to different input

features of data set #1. As mentioned before, to make the constructed NNs granular,

we use independent normal random variables with the standard deviations given by

(3.31). To calculate the standard deviations, we first compute the coefficients ai using

(3.41), (3.43) or (3.46) depending on the network input-output relationship of the NN

architecture used. We also derive ais using the original function form (4.1) and use

the resulting optimal standard deviations as a reference to comment on the accuracy

of optimal standard deviations when NNs are used to fit data.

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN
Reference function

Figure 4.2. Comparison of the optimal allocations of standard deviations to the input fea-

tures for different network architectures.

31

Fig. 4.2 shows the resulting optimal values of standard deviations allocated to differ-

ent features when different NNs architectures are used. As we observe, all different

network architectures led to almost the same optimal values for the standard devi-

ations. The resulting standard deviations are very close to the standard deviations

obtained by the reference function. This result is very interesting, because the math-

ematical forms of the input-output relationships of these NNs and the original func-

tion used to generate the data set are fundamentally different (see (3.40), (3.42) and

(3.45)). Nonetheless, since the NNs are precisely trained to the data sets as the values

of R2 are very close to 1, they behave similar to the reference function which was

used to generate the data set. This same behavior leads to similar results for optimal

allocation of information granularity when various network architectures are used.

According to Fig. 4.1 and (4.1), the variations of the output is two times slower

along the first input feature compared to the second input feature. In Fig. 4.2, we

observe that the standard deviation given to the first feature is considerably more

than the standard deviation given to the second feature. So, as a very significant point

we observe that more uncertainty is allocated to the feature that the function shows

smoother variations along its dimension.

• Task1: Results for Perturbation Analysis

As the next step, we disturb the optimal vector of standard deviations and see how

much the objective function (3.7) increases. Fig. 4.3 shows the effect of standard

deviation perturbation on the objective function. In this figure, the horizontal axis is

the amount of standard deviation disturbance. For each value of d, we calculate the

average of objective function for 1000 randomly chosen vectors in the interval [(1−
d)σ, (1 + d)σ]. As expected, we see that the objective function is a monotonically

32

increasing function of the disturbance level.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55
x 10

−4

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.3. Effect of standard deviation perturbation on objective function.

• Task2: Results For Training, Testing and Combined Data

From (3.31), one recalls that the optimal values of standard deviations depend on

the numeric values of the input data. In Fig. 4.4, we compare the optimal standard

deviation obtained when training, testing or a random combination of training and

testing data are used to determine the optimal standard deviations. This study is

important because the trained networks have not seen the testing data and one needs

to know how similar the optimal standard deviations are in these two cases. For all

GNN architectures, we observe that the amount of the resulting standard deviations

for the training, testing, and combined data are close to each other. So, the standard

deviations obtained by using training data can be used for testing data as well, without

any considerable impact on the performance of the GNN.

33

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) MLP with one hidden layer

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) MLP with two hidden layers

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.4. Optimal standard deviations when training, testing, or the combined data set are

used.

• Task3: Results For Different Network Paramaters

In previous parts, we discussed the sensitivity of the optimal standard deviation val-

ues, first to the GNN architecture used, and second, to the type of data used for deriva-

tion of the optimal standard deviatins (whether it is the training or testing data). In

both cases, we observed that different scenarios led to almost the same allocations for

standard deviations. To further investigate the robustness of the optimal values, we

consider their variations to different values of NN parameters as well. In Fig. 4.5, we

compare the optimal allocations for different number of neurons in the hidden layers

of the MLP networks, and different spread values for RBFN. Again, we observe that

the optimal values allocated to each feature remains almost the same when different

NN parameters are used. These results show the robustness of the optimal results to

the changes of parameters.

34

1 2
0

0.05

0.1

0.15

0.2

feature No.

σ
i

network with h=10
network with h=15
network with h=20

(a) MLP with one hidden layer

1 2
0

0.05

0.1

0.15

0.2

feature No.

σ
i

network with h

1
=10 and h

2
=5

network with h
1
=15 and h

2
=10

network with h
1
=20 and h

2
=10

(b) MLP with two hidden layers

1 2
0

0.05

0.1

0.15

0.2

feature No.

σ
i

network with spread=5 and h=50
network with spread=7 and h=40
network with spread=10 and h=45

(c) RBFN

Figure 4.5. Comparison of the optimal allocations of standard deviations to the input fea-

tures for different network parameters.

For the other synthetic data sets, we follow the same procedure as what we did for synthetic

data #1 and present the results. We will discuss our observations for all synthetic data sets

at the end of this section.

35

B. Function #2

For generation of synthetic data #2 we use function

g2(x1, x2) = x21 + x22, −10 ≤ x1, x2 ≤ 10 (4.2)

with the 3D representation in Fig. 4.6.

−10

−5

0

5

10

−10

−5

0

5

10
0

50

100

150

200

x
1

x
2

Figure 4.6. The 3D representation of 2D function g2. Blue points show the superimposed

training and testing data.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

No. of input neurons 2 2 2

No. of first hidden neurons 5 5 10

No. of second hidden neurons - 5 -

Spread - - 50

R2 on training data set 1 1 1

R2 on testing data set 1 1 1

Table 4.2. Parameters and performances of the constructed NNs for the synthetic data #2

36

• Comparison of Optimal Variances For Different Architectures

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN
Reference function

Figure 4.7. Comparison of the optimal standard deviations for different network architec-

tures.

This data set has the same level of output variations along its input dimensions. In

Fig. 4.7, we observe that the standard deviations allocated to the input features are

almost the same.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.106

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.8. Effect of standard deviation perturbations on objective function.

37

• Task2: Results For Training, Testing and Combined Data

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(a) MLP with one hidden layer

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) MLP with two hidden layers

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.9. Optimal standard deviations for training, testing and combined data sets.

• Task3: Results For Different Network Paramaters

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

network with h=4
network with h=5
network with h=6

(a) MLP with one hidden layer

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

network with h

1
=3 and h

2
=2

network with h
1
=4 and h

2
=2

network with h
1
=5 and h

2
=5

(b) MLP with two hidden layers

1 2
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

network with spread=40 and h=8
network with spread=50 and h=10
network with spread=55 and h=15

(c) RBFN

Figure 4.10. Comparison of optimal standard deviations for different network parameters.

38

C. Function #3

For generation of synthetic data #3 we use function

g3(x1, x2) = 10(x22 − x1)
2 + (1− x1)

2, −10 ≤ x1, x2 ≤ 10 (4.3)

with the 3D representation in Fig. 4.11.

−10

−5

0

5

10

−10

−5

0

5

10
0

2

4

6

8

10

12

14

x 10
4

x
1

x
2

Figure 4.11. The 3D representation of 2D function g3. Blue points show the superimposed

training and testing data.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

No. of input neurons 2 2 2

No. of first hidden neurons 10 5 38

No. of second hidden neurons - 10 -

Spread - - 20

R2 on training data set 1 1 1

R2 on testing data set 1 1 1

Table 4.3. Parameters and performances of the constructed NNs for the synthetic data #3

39

• Comparison of Optimal Variances For Different Architectures

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN
Reference function

Figure 4.12. Comparison of the optimal standard deviations for different network architec-

tures.

Fig. 4.11 shows that g3 varies almost linearly along x1 and it has quadratic changes

along x2. Therefore, this function changes faster with x2 compared to x1. We observe

in Fig. 4.12 that more standard deviation is allocated to x1.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42
x 10

4

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.13. Effect of standard deviation perturbations on objective function.

40

• Task2: Results For Training, Testing and Combined Data

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) MLP with one hidden layer

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) MLP with two hidden layers

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.14. Optimal standard deviations for training, testing and combined data sets.

• Task3: Results For Different Network Paramaters

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

network with h=8
network with h=10
network with h=12

(a) MLP with one hidden layer

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

network with h

1
=5 and h

2
=10

network with h
1
=10 and h

2
=10

network with h
1
=5 and h

2
=15

(b) MLP with two hidden layers

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

feature No.

σ
i

network with spread=20 and h=30
network with spread=20 and h=40
network with spread=30 and h=50

(c) RBFN

Figure 4.15. Comparison of optimal standard deviations for different network parameters.

41

D. Function #4

For generation of synthetic data #4 we use function

g4(x1, x2) = 4
sin(x1)

x1

sin(x2
4)

x2
, −7.5 ≤ x1 ≤ 7.5, 0 ≤ x2 ≤ 15 (4.4)

with the 3D representation in Fig. 4.16.

−10

−5

0

5

10

0

5

10

15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

Figure 4.16. The 3D representation of 2D function g4. Blue points show the superimposed

training and testing data.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

No. of input neurons 2 2 2

No. of first hidden neurons 30 20 50

No. of second hidden neurons - 30 -

Spread - - 3

R2 on training data set 0.999944 0.999981 0.99981

R2 on testing data set 0.999924 0.999913 0.99978

Table 4.4. Parameters and performances of the constructed NNs for the synthetic data #4

42

• Comparison of Optimal Variances For Different Architectures

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Reference function

Figure 4.17. Comparison of the optimal standard deviations for different network architec-

tures.

As we observe in Fig. 4.16, in the specified ranges of parameters, the changes of

function g4(x1, x2) along input x1 is more than the changes of function in the direc-

tion of x2. Fig. 4.17 shows the optimal value of σ1 is smaller than the optimal value

of σ2.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

−5

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.18. Effect of standard deviation perturbations on objective function.

43

• Task2: Results For Training, Testing and Combined Data

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(a) MLP with one hidden layer

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(b) MLP with two hidden layers

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(c) RBFN

Figure 4.19. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Parameters

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

network with h=20

network with h=25

network with h=30

(a) MLP with one hidden layer

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

network with h

1
=15 and h

2
=20

network with h
1
=20 and h

2
=20

network with h
1
=20 and h

2
=30

(b) MLP with two hidden layers

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

network with spread=3 and h=30

network with spread=5 and h=40

network with spread=7 and h=30

(c) RBFN

Figure 4.20. Comparison of optimal standard deviations for different network parameters.

44

E. Function #5

For generation of synthetic data #5 we use function

g5(x1, x1, x3) = 0.8 sin
(x1

8

)

sin
(x2

4

)

sin
(x3

2

)

, 0 ≤ x1 ≤ 10,−5 ≤ x2, x3 ≤ 5.

(4.5)

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

No. of input neurons 3 3 3

No. of first hidden neurons 20 15 70

No. of second hidden neurons - 20 -

Spread - - 10

R2 on training data set 0.999726 0.998826 0.999457

R2 on testing data set 0.999779 0.995244 0.998884

Table 4.5. Parameters and performances of the constructed NNs for the synthetic data #5

• Comparison of Optimal Variances For Different Architectures

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN
Reference function

Figure 4.21. Comparison of optimal standard deviations for different network architectures.

From the mathematical form of g5(·) in (4.5), one notes that g5(·) varies along x3

two times faster than x2 and it varies along x2 two times faster than x1. Interestingly,

if we rank the input features by the amount of standard deviations allocated to them

(Fig. 4.21), we observe that feature 3 is given the smallest standard deviation while

45

feature 1 is allocated the highest standard deviation. In other words, the faster the

output variations are along an input dimension, the smaller standard deviation is given

to that dimension.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55
x 10

−5

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.22. Effect of standard deviation perturbations on objective function.

• Task2: Results For Training, Testing and Combined Data

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) MLP with one hidden layer

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) MLP with two hidden layers

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.23. Comparison of optimal standard deviations for training, testing and combined

data sets.

46

• Task3: Results For Different Network Paramaters

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

network with h=10
network with h=15
network with h=20

(a) MLP with one hidden layer

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

feature No.

σ
i

network with h

1
=10 and h

2
=10

network with h
1
=10 and h

2
=15

network with h
1
=15 and h

2
=10

(b) MLP with two hidden layers

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

feature No.

σ
i

network with spread=5 and h=50
network with spread=7 and h=40
network with spread=10 and h=50

(c) RBFN

Figure 4.24. Comparison of optimal standard deviations for different network parameters.

Discussion of Experimental Results on Synthetic Data Sets

Based on the experimental results obtained for synthetic data sets, we observe that when

NNs are properly trained (R2 is close to one), the following points are true:

• The faster the output data changes along an input dimension, the smaller the standard

deviation (higher granularity) is allocated to that input dimension.

• No matter which GNN architectures is used, the optimal standard deviations (granu-

larity levels) allocated to the input random variables remain almost the same.

• Using training data, testing data or a mixture of the training and testing data in the

allocation process leads to almost the same optimal standard deviations.

• As far as NNs are properly trained, variation of their network parameters (like the

number of neurons in hidden layers) does not affect the optimal standard deviations

for the input random variables.

47

4.2 Experimental Results on Real Data Sets

This subsection contains the experimental results on GNNs constructed for real data sets.

For the experiments in this section, we use Auto MPG, Boston, Bodyfat, Servo, Engine,

and Mackey-Glass data sets [22]. A short description about each data set is provided in its

corresponding subsection. Similar to our experiments on synthetic data sets, for each real

data set, we first construct numeric NNs with different architectures. The parameters and

performance metrics (R2) of the resulting numeric NNs are provided and the scatter plots

corresponding to each NN are presented. After constructing numeric NNs, we augment

their inputs by granulating them using normal random variables. We compare the optimal

standard deviations when different NN structures are used. Note that unlike the synthetic

data, for real data sets we do not have any reference function to compare the results with.

Since different data sets have different number of input neurons, the value of ǫ is chosen

differently for each one. The values of epsilon for different data sets are reported in Table

4.6.

Auto MPG Boston Bodyfat Servo Engine Mackey-Glass

-25 -40 -25 -5 -5 -10

Table 4.6. The levels of total information granularity ǫ allocated to the inputs of the GNNs

for different data sets

We also perform the three tasks described in Sec. 4.1 on each GNNs constructed for the real

data sets. In the remainder of this section, we first present all the experimental results we

obtained, and then, we summarize and discuss our observations.

48

A. Automobile Miles-Per-Gallon (MPG) Data

This data set has seven input features and its output is the amount of fuel consumption of a

car in miles per gallon. After removing incomplete data points, we have 392 input-output

pairs where 294 pairs are chosen for training and 98 pairs for testing.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 7 7 7

First hidden neurons No. 15 10 70

Second hidden neurons No. - 5 -

Spread - - 185

R2 on training data 0.895252 0.881189 0.921261

R2 on testing data 0.838109 0.765013 0.746824

Table 4.7. Performance and the parameters of constructed networks for Auto MPG data

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

Data

N
e

u
ra

l
N

e
tw

o
rk

(c) RBFN

10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

Data

N
e

u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.25. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

49

• Comparison of Optimal Variances For Different Architectures

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.26. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

If we rank the input features in (decreasing) order of the variance levels allocated to

them, we observe that all three architectures have led to almost the same rankings.

If we look at the amount of standard deviations allocated to each input feature, we

see that the results for MLP with one and two hidden layers are almost the same.

Specifically speaking, according to Fig. 4.28, we see that these two kind of networks

allocate most of the standard deviations to the features 4, 2, and 3, respectively, and

other features’ portions are almost nothing. However, RBFN considers other features

as well and distributes uncertainty more uniformly among input features.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8
x 10

−4

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.27. Effect of standard deviation perturbations on objective function.

50

• Task2: Results For Training, Testing and Combined Data

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) One hidden layer MLP

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) Two hidden layer MLP

1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.28. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

feature No.

σ
i

network with h=10
network with h=15
network with h=20

(a) One hidden layer MLP

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature No.

σ
i

network with h

1
=5 and h

2
=5

network with h
1
=10 and h

2
=5

network with h
1
=5 and h

2
=10

(b) Two hidden layer MLP

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

feature No.

σ
i

network with spread=185 and h=70
network with spread=170 and h=85
network with spread=185 and h=85

(c) RBFN

Figure 4.29. Comparison of optimal standard deviations for different network parameters.

51

B. Boston Housing Data

This data set concerns the median value of owner-occupied home in Boston area. The

number of input-output pairs for this data is 506 where each input is a vector of 13 variable.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 13 13 13

First hidden neurons No. 15 30 85

Second hidden neurons No. - 30 -

Spread - - 120

R2 on training data 0.926253 0.895901 0.920047

R2 on testing data 0.800941 0.833183 0.851525

Table 4.8. Performance and the parameters of constructed networks for Boston housing

data

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Data

N
e

u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Data

N
e

u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Data

N
e

u
ra

l
N

e
tw

o
rk

(c) RBFN

5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

Data

N
e

u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Data

N
e

u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

50

Data

N
e

u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.30. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

52

• Comparison of Optimal Variances For Different Architectures

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature No.

σ
i

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.31. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

Similar to our observation for Auto MPG data, we observe that both MLP archi-

tectures lead to very similar rankings of the features in order of the variance levels

allocated. The feature ranking for RBFN is also similar to MLP networks. The rank-

ing is better preserved for features that are given the highest and the lowest variances

and gets more irregular for features with medium variance levels. Again, here, we

see that there exists some features that MLPs do not give them almost anything (such

as features 4 and 5) although RBFN allocate them some value. In summary, the three

networks allocate the most amount of standard deviations to the features 12, 10, 2,

and 7, and almost nothing is given to feature 6.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3

4

5

6

7

8

9

10

11
x 10

−4

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.32. Effect of standard deviation perturbations on objective function.

53

• Task2: Results For Training, Testing and Combined Data

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(a) One hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(b) Two hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.33. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature No.

σ
i

network with h=10

network with h=15

network with h=20

(a) One hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature No.

σ
i

network with h

1
=20 and h

2
=15

network with h
1
=30 and h

2
=20

network with h
1
=30 and h

2
=30

(b) Two hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

feature No.

σ
i

network with spread=120 and h=70
network with spread=120 and h=85
network with spread=110 and h=90

(c) RBFN

Figure 4.34. Comparison of optimal standard deviations for different network parameters

and for training data.

54

C. Bodyfat Percentage Data

This data set contains the percentage of body fat, age, height, weight and circumference

measurements for ten various body parts of 252 men. The goal is estimating the body fat

percentage using the provided body measurements.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 13 13 13

First hidden neurons No. 2 3 24

Second hidden neurons No. - 3 -

Spread - - 150

R2 on training data 0.736916 0.7483 0.776243

R2 on testing data 0.727712 0.738665 0.705003

Table 4.9. Performance and the parameters of constructed networks for Bodyfat data

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

Data

N
e

u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

Data

N
e

u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

Data

N
e

u
ra

l
N

e
tw

o
rk

(c) RBFN

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

Data

N
e

u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

Data

N
e

u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.35. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

55

• Comparison of Optimal Variances For Different Architectures

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.36. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

In Table 4.9, we observe that R2 on training and testing data is between 0.7 and

0.8, which is lower than the R2 values for the previous two data sets. In Figs. 4.36

and 4.39, we observe how this lower performance has affected the optimal standard

deviations for different architectures and different network parameters. Unlike the

previous data sets, we can observe some differences in the rankings of the features in

order of the granularity levels allocated to them when we use different architectures

or when we change the parameters of the networks. Despite the differences in the

rankings, we still observe that some features are given large standard deviations (like

features 1 and 2) and some features are given small standard deviations (like features

3, 4, 6, 11, 13) regardless of the architecture used. This implies a consistent trend in

granularity allocation using the proposed granulation process.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

1

1.5

2

2.5

3

3.5
x 10

−3

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.37. Effect of standard deviation perturbations on objective function.

56

• Task2: Results For Training, Testing and Combined Data

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) One hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) Two hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.38. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature No.

σ
i

network with h=2
network with h=3
network with h=4

(a) One hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

feature No.

σ
i

network with h

1
=2 and h

2
=2

network with h
1
=2 and h

2
=3

network with h
1
=3 and h

2
=3

(b) Two hidden layer MLP

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

feature No.

σ
i

network with spread=160 and h=25
network with spread=150 and h=24
network with spread=150 and h=22

(c) RBFN

Figure 4.39. Comparison of optimal standard deviations for different network parameters

and for training data.

57

D. Servo Data

This data set deals with the simulation of a servo system. The output which is the the rise

time of the system can be treated as a multi-variable function of four input variable. This

data contains 167 instances.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 4 4 4

First hidden neurons No. 10 5 13

Second hidden neurons No. - 10 -

Spread - - 5

R2 on training data 0.894815 0.912314 0.835501

R2 on testing data 0.886201 0.854826 0.767038

Table 4.10. Performance and the parameters of constructed networks for Servo data

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

Data

N
e

u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Data

N
e

u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

Data

N
e

u
ra

l
N

e
tw

o
rk

(c) RBFN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

Data

N
e

u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Data

N
e

u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

Data

N
e

u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.40. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

58

• Comparison of Optimal Variances For Different Architectures

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

feature No.

σ
i

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.41. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

According to Fig. 4.41, all three different networks allocate most of standard devi-

ations to the features 1, 2, and 4, and feature 3 receives the minimum amount of

standard deviation.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01

0.015

0.02

0.025

0.03

0.035

0.04

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.42. Effect of standard deviation perturbations on objective function.

59

• Task2: Results For Training, Testing and Combined Data

1 2 3 4
0

0.05

0.1

0.15

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) One hidden layer MLP

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) Two hidden layer MLP

1 2 3 4
0

0.05

0.1

0.15

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.43. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

network with spread=5 and h=10
network with spread=7 and h=13
network with spread=5 and h=13

(a) One hidden layer MLP

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

feature No.

σ
i

network with h

1
=5 and h

2
=5

network with h
1
=5 and h

2
=10

network with h
1
=10 and h

2
=5

(b) Two hidden layer MLP

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature No.

σ
i

network with spread=5 and h=10
network with spread=7 and h=13
network with spread=5 and h=13

(c) RBFN

Figure 4.44. Comparison of optimal standard deviations for different network parameters

and for training data.

60

E. Engine Data

Engine data set is obtained from the operation of an engine. There are two outputs for this

data, namely torque and emission levels although we consider just the first output. The

inputs are engine speed and fueling levels.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 2 2 2

First hidden neurons No. 15 15 75

Second hidden neurons No. - 5 -

Spread - - 0.3

R2 on training data 0.999432 0.999563 0.999621

R2 on testing data 0.999462 0.999531 0.999583

Table 4.11. Performance and the parameters of constructed networks for Engine data

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(c) RBFN

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Data

N
e

u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.45. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

61

• Comparison of Optimal Variances For Different Architectures

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

feature No.

σ
i

MLP with 1 hidden layer

MLP with 2 hidden layers

RBFN

Figure 4.46. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

Table 4.11 shows that the networks are trained very well as their R2 values on both

training and testing data are very close to 1. Therefore, in Fig. 4.46, we observe that

three networks lead to almost same result which is larger standard deviations is given

to feature 2 compared to feature 1.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

10

11

12
x 10

−3

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.47. Effect of standard deviation perturbations on objective function.

62

• Task2: Results For Training, Testing and Combined Data

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(a) One hidden layer MLP

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(b) Two hidden layer MLP

1 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

feature No.

σ
i

Training dataset

Testing dataset

Combined datset

(c) RBFN

Figure 4.48. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

feature No.

σ
i

network with h=25

network with h=30

network with h=35

(a) One hidden layer MLP

1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

feature No.

σ
i

network with h

1
=20 and h

2
=20

network with h
1
=15 and h

2
=20

network with h
1
=20 and h

2
=30

(b) Two hidden layer MLP

1 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

feature No.

σ
i

network with spread=80 and h=80

network with spread=70 and h=90

network with spread=80 and h=100

(c) RBFN

Figure 4.49. Comparison of optimal standard deviations for different network parameters

and for training data.

63

F. Mackey-Glass Time Series

Mackey-Glass time series is a well known time series prediction problem. The time series

forecasting is defined as the process of predicting one or more future observations of time

series given the subset of past observations. This process is done to predict the entire of

time series. So , a data can be input in one time and it can be output in another time. In

other words, there is no fixed discrimination between input and output. On the other hand,

the machine learning algorithms use fixed-length feature vectors corresponds to a specific

output variable. Therefore, the most essential and important preprocessing step in time

series forecasting is converting the time series into a suitable form for machine learning

algorithms. Here, we have used time delay embedding to convert time series to input-output

pairs [23]. The amount of delay and dimension for this time series is calculated 13 and 3,

respectively. So, the number of input neurons for this network is equal to 3.

• Construction of Numeric NNs

1 hidden layer MLP 2 hidden layers MLP RBFN

Input neurons No. 3 3 3

First hidden neurons No. 30 20 100

Second hidden neurons No. - 30 -

Spread - - 80

R2 on training data 0.999553 0.999581 0.999586

R2 on testing data 0.999528 0.999467 0.999577

Table 4.12. Performance and parameters of constructed networks for Mackey-Glass data

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(a) One hidden layer MLP

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(b) Two hidden layer MLP

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(c) RBFN

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(d) One hidden layer MLP

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(e) Two hidden layer MLP

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data

N
e
u
ra

l
N

e
tw

o
rk

(f) RBFN

Figure 4.50. Scatter plots of the output of the network versus data: (a), (b), (c) training data

(d), (e), (f) testing data

64

• Comparison of Optimal Variances For Different Architectures

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

feature No.

σ
i

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.51. Comparison of the optimal standard deviations for different network architec-

tures and for training data.

Here, again, we see that the networks are trained very well and therefore, the resulting

standard deviations for different GNNs are very similar.

• Task1: Results for Perturbation Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−5

d

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

MLP with 1 hidden layer
MLP with 2 hidden layers
RBFN

Figure 4.52. Effect of standard deviation perturbations on objective function.

65

• Task2: Results For Training, Testing and Combined Data

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(a) One hidden layer MLP

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(b) Two hidden layer MLP

1 2 3
0

0.005

0.01

0.015

feature No.

σ
i

Training dataset
Testing dataset
Combined datset

(c) RBFN

Figure 4.53. Comparison of optimal standard deviations for training, testing and combined

data sets.

• Task3: Results For Different Network Paramaters

1 2 3
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

network with h=15
network with h=20
network with h=25

(a) One hidden layer MLP

1 2 3
0

0.005

0.01

0.015

0.02

0.025

feature No.

σ
i

network with h

1
=15 and h

2
=5

network with h
1
=15 and h

2
=10

network with h
1
=10 and h

2
=10

(b) Two hidden layer MLP

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

feature No.

σ
i

network with spread=0.3 and h=80
network with spread=0.5 and h=100
network with spread=0.3 and h=75

(c) RBFN

Figure 4.54. Comparison of the optimal standard deviations for different network parame-

ters and for training data.

66

Discussion of Experimental Results on Real Data Sets

Based on the experimental results obtained for real data sets, we observe that:

• As the values of R2 get closer to 1 for different NN architectures, their optimal stan-

dard deviation allocations become more similar to each other. Moreover, the standard

deviations of GNNs with higher R2 values are less sensitive to both the changes of

the network parameters (like the number of neurons in hidden layers) and the input

data (whether training, testing or a mixture of them) used. The NNs constructed for

the Engine data and Mackey-glass time series are examples with R2 values close to

1.

• Despite the differences in the standard deviations allocated when different architec-

tures are used, for all data sets some features receive larger standard deviations re-

gardless of the network architecture. Similarly, for all network structures some fea-

tures are allocated small amounts of standard deviation. This implies that in general,

the optimal granularity allocation procedure we proposed leads to consistent results.

• The standard deviations resulting from MLP networks with one and two hidden layers

are closer to each other compared to the standard deviations obtained for RBFN. In

general, when RBFN structure is used, the granulation process leads to a smoother

(more uniform) allocation of standard deviations over the input features. This point

is more clear for Auto MPG and Boston data sets.

67

Chapter 5

Conclusion

5.1 Summary of Contributions

In this thesis, we investigated the process of designing GNN on the basis of a numeric NN

whose inputs were augmented using random variables. The design process we proposed

aimed to optimally allocate a given level of information granularity to the input features

of a GNN such that the specificity of its output maximizes. In our work, we followed a

nonidentical but symmetric granularity allocation paradigm which allowed different input

random variables to be assigned different granularity levels while their distributions were

symmetric around their expected values. We used the entropy of the input random variables

as a measure to characterize the granularity level associated with input features, and we

formulated our design problem as an optimization problem with the standard deviations of

the input distributions as the parameters to be optimized.

Based on the solution we derived for the optimization problem, we can summarize our

proposed design process in three steps as follows. In the first step, we train a numeric NN

with a predetermined architecture to fit a given data set. In the second step, we compute the

variability coefficients {ai}ni=1 given in (3.6) corresponding to the constructed NN. Each of

these coefficients basically characterizes the average variability level of the network output

to the changes in an input feature. As the last step, we determine the optimal standard

deviation of each input distribution by substitution of the variability coefficients obtained

in the second step in the analytical formula (3.31).

The second part of this thesis was devoted to experiments on constructing GNNs for

synthetic and real data sets using our proposed design process. In particular, we applied

our proposed method to five synthetic data sets and six real data sets. Our experimental

explorations provided us with a number of interesting observations. First, we observed that

smaller standard deviation levels were allocated to the random variables corresponding to

68

the input dimensions that the function exhibits faster changes along them. This observation

is consistent with our intuition to the problem, because to minimize the changes to the GNN

output, one has to limit the variations of those input features that cause fast changes of the

output. As the second point, we observed that the optimal standard deviations for different

NNs architectures were similar to each other when the performances of the trained networks

were very high. Third, we observed that when the networks were trained very well to fit the

data, our proposed design was very robust to changes of the network architectures, networks

parameters, and to the input data (training or testing) used to derive the standard deviations.

5.2 Future Works

The research project we accomplished in this thesis can be followed by two closely related

projects as will be discussed below:

1. In this thesis, we used the specificity criterion as the measure of goodness of a GNN

and using this measure we formulated our design problem. In this work, we did not

comment on the performance of the proposed design based on the coverage criterion.

2. In this work, we constructed GNN by granulating the inputs of a numeric NN using

random variables, however, we kept the network parameters numeric. Another way

to construct GNNs is to granulate the weights of the numeric NNs while keeping

the inputs numeric. Investigation of GNNs with granular network parameters, where

granulation is maid using random variables, is a interesting potential research direc-

tion. Such an analysis can be very useful to understand the effect of deviation of the

network parameters from their expected values as a result of noise or disturbances.

69

Bibliography

[1] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper Saddle River,

New Jersey: Pearson Education, 2009.

[2] M. H. Hassoun, Fundamentals of Artificial Neural Networks. MIT Press, 2003.

[3] M. Song and W. Pedrycz, “Granular neural networks:concepts and development

schemes,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 542 –553, April

2013.

[4] W. Pedrycz and G. Vukovich, “Granular neural networks,” vol. 36, no. 1-4, pp. 205

–224, February 2001.

[5] W. Pedrycz, “Allocation of information granularity in optimization and decision-

making models: Towards building the foundations of granular computing,” European

Journal of Operational Research, vol. 232, no. 1, pp. 137–145, January 2014.

[6] ——, Granular Computing: Analysis and Design of Intelligent Systems. CRC Press,

2013.

[7] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Con-

trol Signals Systems, vol. 2, February 1989.

[8] S. Kenji, Artificial Neural Networks - Architectures and Applications. InTech, 2013.

[9] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function net-

works,” Neural Computation, 1991.

[10] Z. Karakehayov, Data Acquisition Applications. InTech, 2012.

[11] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave Design. Artech

House, 2007.

[12] L. A. Zadeh, “Fuzzy sets and information granularity,” Advances in Fuzzy Set Theory

and Applications, 1979.

[13] A. Skowron and J. Stepaniuk, “Towards discovery of information granules,” Proceed-

ings of Third European Conference on Principles and Practice of Knowledge Discov-

ery in Databases, vol. 1704, no. 1, pp. 542–547, September 1999.

70

[14] H. Ishibuchi and H. Tanaka, “An architecture of neural networks with interval weights

and its application to fuzzy regression analysis,” Fuzzy Sets Syst., vol. 57, no. 1, pp.

27–39, July 1993.

[15] K. K. Ishibuchi, H. and H. Tanaka, “A learning algorithm of fuzzy neural networks

with triangular fuzzy weights,” Fuzzy Sets Syst., vol. 71, no. 3, pp. 277–293, May

1995.

[16] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes,

4th ed. McGraw-Hill, 2002.

[17] B. M. Ayyub and R. H. McCuen, Probability, Statistics, and Reliability for Engineers

and Scientists, 3rd ed. CRC Press, 2011.

[18] S. Boyd and L. Vandenberghe, Convex Optimization, 7th ed. Cambridge University

Press, 2009.

[19] J. A. Thomas and T. Cover, Elements of Information Theory, 2nd ed. Wiley, 2012.

[20] M. Grasselli and D. Pelinovsky, Numerical Mathematics. Jones and Bartlett Publish-

ers, 2008.

[21] K. M. Abadir and R. M. Jan, Matrix Algebra. Cambridge University Press, 2005.

[22] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/.

[23] H. K. R. Hegger1 and T. Schreiber, Practical Implementation of Nonlinear Time Series

Methods: The TISEAN package. American Institute of Physics, 1999.

71

Appendix A: Derivation of the

Solution of Optimization Problem

(3.9)

In this appendix, we derive the solution to the optimization problem (3.9); i.e.,

minimize
σ

2=(σ2
1 ,...,σ

2
n)

I(σ2) =
n
∑

i=1

aiσ
2
i

subject to

n
∑

i=1

σ2
i = ε, σ2

i ≥ 0 ∀i.
(A.1)

To begin, we sort ais in increasing order

a(1) = a(2) = a(k) < a(k+1) ≤ a(k+2) ≤ ... ≤ a(n) (A.2)

where the superscripts represent the rank of the coefficients ai. Therefore,

n
∑

i=1

aiσ
2
i ≥ a(1)

n
∑

i=1

σ2
i = aminε (A.3)

where amin = a(1). Denoting the variance corresponding to the coefficient a(i) with σ2(i),

we have (A.3) with equability if and only if

σ2(1) + σ2(2)...+ σ2(k) = ε (A.4a)

σ2(k+1)
= σ2(k+2)

= ... = σ2(n) = 0. (A.4b)

So, the minimum value of the cost function is aminε. Also, the optimal values of σ2
i are 0 if

ai > amin and for the rest of σis, in which ai = amin, all positive combinations that add up

to ε are optimal.

72

