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A bstract

For new and aging engineering structures in aerospace and marine industries, imple­

mentation of an effective health monitoring system can replace the schedule-based 

inspection/maintenance of structures by condition-based maintenance. This thesis is 

focused on the systematic investigation of a structural health monitoring technique 

for quantitatively identifying embedded cracks in structures. A piezoelectric actua­

tor/sensor system is used to generate high-frequency elastic wave propagation and 

a reverse wave technique is developed to locate the damage’s position, shape and 

dimension using the obtained sensor signals.

A theoretical model of piezoelectric actuators surface-bonded to and/or embedded 

in structures is adopted and developed to describe their electromechanical behavior, 

and the outgoing wave propagation in the host structure is analytically obtained to 

understand the effects of the different parameters of the actuator upon the resulting 

wave field. For a surface bonded actuator, only the deformation along the longitudinal 

direction is considered due to the free surface. However, for an embedded actuator, 

a model involving the deformation in both the transverse and longitudinal directions 

of the actuators is developed. The single actuator solution is then implemented into 

the Pseudo-Incident Wave (PsIW) method to study the wave propagation induced by 

multiple actuators. When the outgoing wave reaches the surface of existing damages, 

the scattering wave propagation will be generated, which is recorded as sensor signals. 

A one-dimensional sensor model is then used, from which received strain field can be 

determined by using voltage output of the sensor.

The second part of this thesis is to develop a new and innovative technique to inter­

pret the obtained sensor signals to quantitatively locate the cracks in the structures. 

A reverse wave technique is developed to form the image of the cracks by ’’moving”
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the recorded sensor signals to their actual spatial locations. To achieve this, the ob­

tained wave signals are used as boundary conditions to induce reversed elastic wave 

propagation, from which the sizes, shapes and positions of existing cracks can be de­

termined through the developed imaging technique for both the harmonic wave and 

transient wave cases. The main advantage of this technique is that complicated mode 

conversion phenomena caused by the crack reflection and wave propagation distor­

tions in the medium are corrected by the back propagation operation, which made 

this method favorable for detection of multiple cracks of various shapes.
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C hapter 1 

In troduction

1.1 Background

Integrity of critical engineering structures such as large-scale space structures, air­

craft, satellites, nuclear reactors, etc., needs to be monitored constantly to prevent 

catastrophic and expensive failure. In order to respond to any possible damage lead­

ing to failure of the structures, damages should be detected, evaluated, if possible 

monitored, even though the structures might be in services. Traditional nondestruc­

tive testing/evaluation (NDT/NDE) techniques, such as X-radiographic detection 

(X-ray) and hydro-ultrasonics (C-scan), are impractical for in service inspection of 

large structures because these techniques usually are based on laboratory testing and 

require bulky instruments (Thomas, 1995; Chang, 1995; Giurgiutiu and Zagrai, 2002; 

Giurgiutiu et ah, 2002a,b; Kessler, et ah, 2002a,b). Especially for some structures 

such as aerospace vehicles and buried pipeline, the health monitoring system requires 

to perform on in-service structures in isolated environments without manual interfer­

ence. The replacement of our present-day manual inspection with automatic health 

monitoring would substantially reduce the associated life cycle costs. Hence, there 

is a need for reliable structural health monitoring (SHM) system that can automati­

cally process data, assess structural condition, and find information of the embedded

1
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damages. Motivated by this need, significant efforts of integrating monitoring compo­

nents such as sensors and actuators to form a SHM system, either surface mounted or 

embedded into the structures, have been made to monitor adverse ’’change” to detect 

incipient damage before catastrophic failure occurs (Boiler, 1998,2000). Currently, ef­

forts are focussed on: (1) the development of specialized health monitoring actuators 

and sensors; and (2) the construction of automated health monitoring systems.

Among the available options for online structural health monitoring systems, 

piezoelectric sensors offer special opportunities for developing sensor arrays for SHM 

system, because they are quick in response, with high linearity, small, inexpensive and 

easily wired into sensor arrays. A SHM system with built in piezoelectric sensors, 

which is usually called smart SHM system, has attracted much attention due to their 

low cost in the past decade (Hickman et ah, 1991; Tzou et ah, 1991; Gandhi and 

Thompson, 1992; Ha et ah, 1992; Kudva et ah, 1993; Varadan et ah, 1993; Ashley, 

1995; Charles et ah, 1995; Ayres et ah, 1996; Wu, 1999; Koh et ah, 2001; Maalej et 

ah, 2002; Mall, 2002). Besides sensors, piezoelectric actuators, whose function is to 

excite diagnostic signals, can also be integrated into the structures to build an active 

SHM system. Comparing with conventional passive SHM system (without built in 

actuators), which can only tell what happened to the structure, i.e. load and strain 

history, the active SHM system is able to interrogate the structure and find out ” how 

it feels” , i.e. the state of its health. Moreover, a major advantage of the active SHM 

over a passive one is that the active SHM system is subjected to a prescribed actuation 

and thus increases the possibility of deducing the structure status from the collected 

sensor data by choosing suitable monitoring system signals. Implementation of such 

an active SHM system can replace the schedule-based inspection/maintenance of a 

structure by condition-based maintenance (Mai, 2001; Duune et ah, 2001).

A primary issue in constructing an active SHM system is to choose suitable mon­

itoring signals. In general, any wave field such as mechanical (waves in fluids and

2
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solids), electromagnetic (electric currents, radar, X-rays) or quantum mechanical 

(particle beams) fields could be used to monitor the structural health. Each type 

of wave field has its advantages and disadvantages for inspection and a choice should 

be made on the basis of the required precautions for the inspection technique, its 

sensitivity for the relevant material and/or geometrical parameters, and on the ease 

of operation. Elastic waves in structures, which are sensitive to the change of the 

geometry and the material parameter, can propagate over long distances and have 

been considered as a principal candidate of potential signals in the active SHM sys­

tem (Biemans, 1999; Gobin et ah, 2000; Mast, 2001; Dalton et al., 2001; Bakker, 

2003). Elastic wave based testing can potentially detect varies of damages such as 

corrosion, delamination and cracks not only on the surface but also inside the struc­

tures. However, the difficulties of applying ultrasonic elastic wave based monitoring 

lie on that the signals are not instinctually interpretable due to their dispersive char­

acteristics and complicated mode conversion phenomena due to wave reflection (Fu, 

1987; Alleyne and Cawley, 1992a,b; D atta and Kishore, 1996; Anchenbach, 2002). 

This difficulty is further augmented due to the interaction between host structures 

and incorporated piezoelectric actuators/sensors and complicated electromechanical 

behaviour in a smart SHM. Many investigations have been conducted in the field of 

active smart SHM and these researches could be divided into three major categories:

(a) Modelling piezoelectric actuators/sensors in structures to analyze complicated 

dynamic electromechanical behaviour;

(b) Integrating and optimizing piezoelectric actuators/sensors for desired wave 

propagation and wave reception;

(c) Developing robust diagnosis algorithm to extract health status information 

from the received sensor signals.

3
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1.2 E lastic wave generation and reception

Traditional technique of generating and receiving elastic waves for structural health 

monitoring begun in the 1950s (Kino et ah, 1980; Pao, 1983; Bar-Cohen, 2000; Bar- 

Cohen and Lih, 2000). The elastic wave based testing usually requires two trans­

ducers as a transmitter and a receiver separately, or just one that functions as both 

transmitter and receiver, depending on whether the testing scheme is pitch-catch or 

pulse-echo configuration. In most cases the wave transducers are made of piezoelectric 

materials, which are capable of generating large strains under electric loads and have 

excellent dynamic response characteristics. Wu and Gong (1993) employed steel ball 

impact to generate a transient elastic wave and identified a void or inclusion in plate 

structures by the measured elastic wave signals using conical transducers. In some 

acoustic emission studies, lead break was used to emulate the source of elastic waves 

(Gorman and Prosser, 1996; Hsu et al., 1997). In the past decade, Electro-magetic 

acoustic transducers (EMATs) and optical fiber sensors were also used to generate 

and receive elastic waves respectively (Guo et ah, 1997). Especially, studies of laser 

based ultrasonic elastic wave testing are growing rapidly. Unlike other conventional 

methods, laser based ultrasonic testing does not require couplant or immersion of the 

specimen in liquids and provides a method to realize non-contact ultrasonic testing 

(Kromine et al., 2000; Sohn et ah, 2001). However, one of the disadvantages of the 

above ultrasonic wave based NDT technique is that a test is usually executed point 

by point, thus is time consuming and not suitable for in-service testing.

Recently, many researchers have studied the technique of generating and collect­

ing diagnostic elastic waves using bonded piezoelectric actuators/sensors and thus 

realizing continuous monitoring of the structural integrity. Piezoelectric materials 

used are in several forms such as piezoceramics (PZT), piezopolymers, piezoelectric 

fibers, piezoelectric films, and so on. In Tracy and Chang’s study (1998), distributed

4
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piezoelectric ceramic disks were surface mounted on a composite structure to gener­

ate and receive the diagnostic signals for impact damage detection. The experimental 

results showed very promising features of integrated actuators/sensors technique for 

structural health monitoring purposes. Surface bonded piezoelectric ceramics was 

also used to generate different modes of Lamb waves for damage detection (Lin and 

Yuan, 2000, 2001a,b). Comparing with piezoelectric ceramics, piezoelectric polymer 

film has higher dielectric voltage constants and is recognized as better sensor material. 

It is also flexible and could be easily cut into any shape to fit a complex structural 

shape. Polyvinylidene Fluoride (PVDF) was bonded on the specimen to excite Lamb 

waves (Monkhouse et al., 1997). Their experimental results showed that Lamb waves 

ranging from 0.5 to 4MHz could be efficiently generated. In this design, interdigital 

electrode patterns on the PVDF substrate were controllable for generating desirable 

Lamb mode shapes to suppress the dispersive effect, which has been a major barrier 

to the interpretation of Lamb wave signals. Selecting interdigital electrode pattern 

to generate desired flexible and longitudinal waves was also studied by Moetakef’s 

group (Moetakef, 1996). In this study, the phased array of piezoelectric transducers 

combines the functions of several conventional transducers in a single casing. The 

problem was modelled by finite element method and a comparison was provided with 

the experimental results. Piezoelectric sensors and actuators may also be embed­

ded inside structures rather than mounted on the surface (Moulin et ah, 1999). In 

the work by Moulin and his colleagues, a piezoelectric element was embedded into 

a carbon-epoxy composite plate and acted as an actuator to generate elastic waves. 

The displacement wave field on the plate surface was predicted by a hybrid finite 

element-normal mode expansion method and the wave was verified experimentally by 

an optical measurement.

5
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1.3 M odelling piezoelectric actuators and sensors

Building a model for the structures integrated with piezoelectric actuators and sensors 

to understand their electromechanical dynamic behaviour and simulate their result­

ing wave propagation is a prerequisite for achieving the goal of damage identification. 

Piezoelectric materials attached to or embedded in structures may largely influence 

structural behaviour. The efficiency of actuation and sensing is related to not only 

the material properties of piezoelectric materials but also those of the host struc­

ture and the applied loading frequency. The most important parameters should be 

identified and analyzed to qualify the proposed actuators/sensors technology (Im and 

Atluri, 1989; Crawley, 1994; Aldraihem and Khdeir, 2000). Due to the presence of 

the materials discontinuity between the actuators/sensors and the host structure, a 

complicated stress field is generated, especially for the position near the edges of the 

actuators/sensors, where stress concentration will occur. For example, the induced 

stress concentration near the ends of an actuator may result in undesired peeling- 

off of the actuator from the host structure, which may result in a reduction of the 

load transfer capability of the structure, and hence the actuator may lose its ability 

to perform its role. An accurate assessment of the coupled electromechanical be­

haviour of piezoelectric structures would, therefore, necessitate the detailed study of 

the load transfer between the piezoelectric actuators/sensors and the host structure 

for ensuring the efficiency of actuation and sensing.

To avoid the difficulties associated with the complicated interfaces between the 

actuators and the host medium, some simplified actuator models have been used to 

simulate the actuation process of embedded and surface-bonded thin sheet actuators. 

The pin-force model was first developed for a cantilever beam with a layer of PVDF 

bonded on one side only (Bailey and Hubbard, 1985). The modelling was based on 

a force equilibrium between the actuator and the beam. A constant actuator force 

output proportional to the applied voltage was obtained. A more extensive model was

6
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later proposed by Crawley and de Luis (1987) to analyze a beam-like structure with 

surface bonded and embedded thin sheet piezoelectric actuators to study the load 

transfer between the actuators and the host beam. In this analysis, the axial stress in 

the actuator was assumed to be uniform across its thickness and the host structure was 

treated as a Bernoulli-Euler beam. This model was further modified using a Bernoulli- 

Euler model of a piezoelectric actuator by considering the linear strain distribution 

along its thickness (Crawley and Anderson, 1990). This model was developed for both 

embedded and surface bonded actuators and is often called the ’’consistent strain” 

model. Im and Atluri (1989) modified the actuator model presented by Crawley and 

de Luis (1987) by considering both the axial and the transverse shear forces in the 

beam. A refined actuator model based on a second order axial normal stress field was 

presented for a beam structure with symmetrically surface-bonded actuator patches 

(Lin and Rogers, 1993a,b). This model was developed using a plane stress formulation 

and solved by the principle of stationary complementary energy. A model assuming 

a linear stress variation through the thickness of the actuators and structure was 

developed by Dimitriadis et al. (1991). In this spherical pure bending model, the 

equivalent moment to out-of-phase actuation is based on the moment equilibrium 

about the neutral axis. Richard and Cudney (1993) presented an analytical model 

for multiple layer piezoelectric actuators in which Timoshenko’s beam theory led 

to equations of motion for lateral vibration that included rotary inertia and shear 

deformation effects. Twist, shear and torsion can be generated for the piezoelectric 

actuator applied to an anisotropic composite structure. A integrated theory was used 

to model the bending/twisting/shearing actuation of laminated beams (Lee and Sun, 

1994).

Plate and shell models have also been extensively used in modelling the piezo­

electric structures. A consistent plate model was developed by Crawley and Lazarus 

(1991). This model is a simple extension from the one-dimensional beam model to

7
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the two-dimensional plate model. Lee and Moon (1989) applied the classical laminate 

plate theory to the design of piezoelectric laminate for bending and torsion modal 

control. Wang and Rogers (1991) modified the classical laminated plate theory to 

model actuator-induced bending and extension of laminated plates under static load­

ing. This work provided a theoretical basis of general application of induced strain 

actuators. The vibration control of a simply supported rectangular plate was studied 

by Batra and Liang (1996). Thin layers of PZT ceramic were attached to the top and 

bottom of the rectangular plate, which was assumed to be vibrated at a frequency 

close to one of its natural frequencies, to achieve the control. For structures with 

curvatures such as rings and shells, analytical models based on layered shell theory 

have been proposed to consider the coupling between the in-plane and out-of-plane 

displacements. An analytical model for multi-layered thin shells with distributed 

piezoelectric actuators was proposed by Tzou and Gadre (1989). In this work, the 

theoretical development is based on Love’s thin shell theory in which the transverse 

shear deformation and the rotary inertia are neglected, and the governing equations 

are established based on Hamilton’s principle. An analytical model for thick com­

posite piezoelectric shells was proposed by Tzou and Zhong (1993). Other typical 

examples for modelling piezoelectric actuators include the works by Hagood et al. 

(1990); Tauchert (1992); Mitchell and Reddy (1995); Bank and Smith (1995, 1996); 

Han and Lee (1998); Reddy (1997, 1999); Zhou et al. (2000); Yang and Ngol (1999); 

Wang and Huang (2000); Benjeddou et al., (2000); Wang and Shen (2001); Wang 

and Quek (2002); Ryu and Wang (2002). For more complex structures, analytical 

modelling becomes strenuous, and numerical methods, such as finite element analy­

sis, should be considered to resolve such problems. A finite element model based on 

the theory of elasticity and the Maxwell’s electrical theory of piezoelectrics has been 

developed by Ha et al. (1992) using the variational principle. Tzou and Ye (1994) de­

veloped a three dimensional thin hexahedron piezothermoelastic element for general
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treatment of piezoelectric systems and their deformation control.

Many researchers have used piezoelectric sheet elements as sensors in active con­

trollable systems (Lee and Moon, 1991; Qui and Tani, 1995; Hoummady et al., 1997; 

Lim et al., 1999) and in structural health monitoring systems (Samuel and Pines,1997; 

Chiu, 1997,2000; Wang and Chen, 2000; Giurgiutiu et al, 2000), since such piezo­

electric sensors have advantages such as compactness, sensitivity over a large strain 

bandwidth in the monitored structure. PVDF films were used by Hubbard (1991) for 

the application to vibration control of beam structures as sensors. Wang (1996) used 

a PZT wafer to excite a structure and an array of PVDF film sensors to pick up the 

forced vibration response to generate the different mode shapes through multi-point 

signal precessing. Lee and Moon (1989) developed PVDF film with special shapes, 

modal sensors, to sense specific vibration models. The experimental results agreed 

quite well with the theoretical predictions. Lee and Osullivan (1991) studied various 

types of generalized piezoelectric strain rate sensors by combining the effective surface 

electrode and appropriate skew angle.

In contrast to the study of the global response of the piezoelectric structures, 

much less attention has been paid to the local wave field around sensors and actua­

tors, especially the behaviour of the resulting wave propagation. Wang and Meguid 

(2000) developed a one-dimensional actuator model to examine the coupled elec­

tromechanical behaviour of a thin piezoceramic actuator embedded in or bonded to 

an elastic medium under in-plane mechanical and electrical loadings, in which the 

dynamic load transfer and the local stress field around the actuator are studied. In 

this thesis, this model is used to consider the static coupled electromechanical be­

haviour of a piezoelectric actuator bonded to an orthotropic elastic medium. The 

effects of the geometry, the material mismatch, the material anisotropy and interfa­

cial debonding upon the load transfer between the actuator and the host structure

9
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are determined and discussed. The dynamic actuator model is further used and mod­

ified to consider dynamic electromechanical behaviour of actuators surface-bonded 

to and/or embedded in an isotropic elastic medium. The wave propagation gen­

erated by surface-bonded and embedded piezoelectric actuators is then analytically 

studied. The interaction between actuators is simulated by using newly developed 

Pseudo-Incident Wave method. The numerical simulation conducted indicates the 

effects of the geometry of the actuators, the material combination and the loading 

frequency upon the resulting wave propagation. The basic properties of the wave 

field is demonstrated by the analytical solution of the wave field far away from the 

actuators.

In most of the sensor models used, the coupling between the sensors and the host 

structures have not been properly studied in detail. Especially, the effect of this cou­

pling upon sensor signals has not received much attention. It should be mentioned 

that the sensitivity and fidelity of piezoelectric sensors are central to the function of 

a smart structure as they are used for the structural health monitoring. Recently, 

Sirohi and Chopra (2000) investigated the behavior of piezoelectric PZT and PVDF 

as strain sensors surface-bonded to a beam structure. In this study, correction fac­

tors to account for sensor-structure interaction effects were analytically derived and 

experimentally validated over a low frequency range of 5-500Hz. Dynamic mecha- 

noelectrical (sensing) behaviour of embedded piezoelectric sensors was also studied 

by using finite element method (FEM) for frequencies up to 5KHz (Varadan et al., 

1997). By the use of dynamic piezoelectric theory and Mindlin plate theory for flex­

ural wave propagation, the study of piezoelectric sensor for detecting flexural waves 

was conducted to show the sensitivity of bonded sensors (Veidt et al., 2001). It was 

demonstrated that for high frequency cases a dynamical piezoelectric sensor model 

should be used to consider dynamic sensing effects.

10
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1.4 D am age Identification

After obtaining the sensor signals, the most important and the most difficult issue is 

the interpretation of the sensor signals for identifying the embedded damages. Dam­

age identification algorithm is dependent on the process of generation and reception 

of elastic waves. Preliminary method of interpreting ultrasonic signals is to compare 

some characteristic parameters between virgin and damaged structures and draw con­

clusions based on the comparison (Ludwig and Lord, 1988; Schulz et al., 1999). These 

parameters to be used for interpretation could be wave speed, arrival time, ampli­

tude, attenuation, mechanical impedance, etc., either in time domain or in frequency 

domain. W ith a series of advancements related to material science and other inter­

disciplinary fields, different diagnosis algorithms are developed, which cover a wide 

range from conventional techniques, such as modal analysis and optimization, to ar­

tificial neural network (ANN), etc. (Tracy et al., 1996). Modal analysis is the most 

common technique principally because it is simple to implement on any size structure 

using vibration characteristics of the structure as an indication of structural damage 

(Pearson et al., 2001). Changes in normal modes can be correlated with loss of stiff­

ness in a structure, and usually analytical models or response history tables are used 

to predict the corresponding information of damage. However, some damages are too 

small to affect the global dynamics and hence cannot be readily detected by conven­

tional low-frequency vibration methods. ANN is a typical technique for classifying 

the obtained monitoring information and near real-time diagnosis could be realized 

once the network has been well trained. W ith the help of contemporary computa­

tion power, the data required to train the neural network could be obtained from 

numerical simulation, which could save extensive labor of acquiring large amount of 

experimental data (Takadoya et al., 1992; Okafor et al., 1996). This method seems 

to be highly promising for handling a large number of sensor signals. The time of 

flight technique (TOFT) is one of the successful interpretation techniques to locate

11
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the position of a crack by using the travel time of waves in the received data directly 

(Carino et al., 1986; Lorenz et al, 1991; Capineri et al., 1995; De Hoop, 1995). To 

use the received data more efficiently, an extended technique from the conventional 

time of flight, multi-path time of flight technique (MTOFT), which considers multiple 

wave reflection, is recently developed to characterize surface breaking crack in a plate 

structure (Bakker et al., 2003).

W ith the development of smart materials and adaptive structures, some authors 

have tried to locate the damage using obtained piezoelectric sensor signals to form 

different in service structural health monitoring systems because of their advantages 

in low costs, continuous monitoring ability and comparatively high frequency exci­

tations induced by piezoelectric actuators (Boiler, 1998). Significant progress has 

been made in the development of smart structure for aerospace application. Keilers 

and Chang (1995a, b) used piezoelectrics built into laminated structures to detect a 

delamination. In this study, they set up a numerical beam model and employed it 

with measured voltage frequency response function (FRF) from an attached sensor to 

identify the delamination location. Banks et al. (1995) put forward an optimization 

model for a cantilever beam based on a least-square error minimization procedure 

to locate damages using sensor signals in time domain. By combining the above 

two proposed methods and solving nonlinear optimization programming problems, 

a two stage identification method using the obtained sensor signals has been pro­

posed to predict damage locations and extents in the composite structure (Fukunga 

et al., 2001). Acoustic emission (AE) is elastic radiation generated by the rapid 

release of energy from sources within a material. These elastic waves are detected 

and converted to voltage signals by small piezoelectric sensors mounted to a conve­

nient surface of the material. By comparing amplitude distribution, the signal arrival 

time and signal energy at different sensors within the sensor matrix, the actual lo­

cation of the flaw site can be defined (Nam et al., 1999; Park et al., 2000). This

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



technique is sensitive enough to detect newly formed crack surfaces down to a few 

hundred micrometers and less. The electro-mechanical (E/M) impedance method for 

structural health monitoring is a new technology utilizing the emitter-detector prop­

erties of active material sensors and the structural mechanical impedance (Rogers and 

Giurgiutiu, 1997). The method has been shown to be especially effective at ultrasonic 

frequencies, which properly capture the changes in local dynamics due to incipient 

structural damage. W ith an array of surface bonded PZT or PVDF sensor, the de­

tection of disbond under a repair patch was also successfully conducted by using this 

method (Koh et al., 2001). Lamb wave techniques may prove suitable for structural 

health monitoring applications since they are able to travel long distances in plates 

and laminated structures, can be applied with low power, conformable piezoelectric 

actuators and sensors, and can provide useful information about the state of a struc­

ture during operation. The piezoceramics used for this method could also be used 

as multipurpose actuators or sensors by simply changing the driving frequency. The 

most successful work using Lamb waves for damage detection has been performed by 

Cawley’s group (Monkhouse et al., 1997). Utilizing interdigital PVDF transducers 

to generate highly focused and directional waves without higher-mode interference, 

they have inspected various metallic specimens with encouraging results. The use of 

embedded piezoelectric wafer active sensors for in situ structural health monitoring 

of thin wall structure was recently studied by Giurgiutiu’s group (2002a,b). Based 

on their study, the developed electro-mechanical impedance method is suitable for 

near field damage detection, while guided ultrasonic Lamb waves in conjunction with 

the pulse-echo technique are suitable for far field damage detection. These above 

mentioned methods are suitable for certain types of damages in some degrees, how­

ever, they usually can recognize only the existence of the damages and very limited 

quantitative information about the damages could be obtained.

Recently, to establish the quantitative relation between the received sensor signals
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and unknown damages in materials, efforts have been made to propagate the received 

scattering waves back to the damages, thus to realize quantitative damage identi­

fication, since the scattering waves contain information of the embedded damages 

(Anchenbach, 2000). One technique is using a sensor array to focus ultrasonic waves 

at a specific point inside the material for damage identification. Focussing is achieved 

by controlling the relative time delay between sensor elements. Fink (1992,1993) pro­

vided a detailed review on different focussing techniques, especially the usage of time 

reversed focussing technique in solids. Similar concept has also been used by Deutsch, 

et al. (1997) in surface crack detection using self-focussing of Lamb waves. In their 

study, a cross correlation technique is used to determine the time-of-flight differences 

of back-scattered signals received by elements of a sensor array. The determined time 

difference was then used to adjust the signals sent out by the sensor array to focus 

on position of the defect, which is determined by the observation of the maximum 

amplitude of the back propagated displacement and stress components. Among these 

methods, the reverse wave method is specifically interesting, which uses the reversed 

scattering wave in conjunction with an imaging algorithm and can predict distributed 

damages.

1.5 Reverse wave m ethod

Since the equations for elastic wave propagation only contain second-order time 

derivatives, the elastic waves have the invariant properties under time reversal, and 

can ultimately converge at the original source just as if time was going backwards. 

The main advantage of this method is that wave distortions caused by the geometries 

of cracks and wave propagation in the medium are corrected by the back propagation 

operation, which made this method favorable for detection of multiple cracks of vari­

ous shapes. This method also has limits: it was developed for homogeneous structure 

applications and focuses on crack detection by using scattering wave propagation.

14
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Migration technique, which conducted the reverse wave propagation by using sur­

face signals, has been developed and widely used in geophysics (Claerout, 1985). 

Based on the signals recorded by a linear array of geophones (receivers), the image 

of subsurface reflectors is formed by moving or ’migrating’ the recorded wave field to 

their actual spatial locations. Over the past thirty years, research on the migration 

technique has attained a maturity and is indispensable as an advanced interpreta­

tion method for the reflective wave field (Claerbout, 1976; Schneider, 1978; Kuo and 

Dai, 1984; Chang and Mcmechan, 1984; Wiggins, 1984; Sun and Mcmechan, 1986; 

Miller et al., 1987; Berkhout 1987; Esmersoy and Oristaglia, 1988; Wappenaar and 

Haime, 1990; Docherty, 1991, Zhu and Lines, 1998). Due to the similarity of the 

data collection method in SHM system and geophysics, the concept of migration 

technique could be modified and implemented in SHM to process the recorded sensor 

signals and image damages in structures, although the area under investigation and 

the range of frequency differs between geophysical prospecting and damage identi­

fication. Liu, Tsai and Wu (1997) introduced the migration concept into the NDE 

of concrete structures. In their study, a surface crack was a priori assumed, thus 

all the imaging process was simplified to find the first arrival time and converted it 

into the distance by timing the wave propagation velocity. This technique also was 

systematically studied recently to interpret Lamb waves for identifying damages in a 

plate with some success (Chien, 1997; Lin and Yuan, 2000, 2001a,b).

In this thesis, to quantitatively determine information of the embedded cracks 

in structures using high frequency scattering elastic waves, a reverse elastic wave 

technique is proposed for homogeneous elastic media. The reversed elastic wave 

propagation will be obtained by solving an elastodynamic boundary problem for both 

harmonic wave and transient wave. The corresponding image algorithm is developed 

to find the information of the embedded cracks. For the case of harmonic wave, an 

image algorithm is developed by using a cross correlation principle. For the case of
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transient wave, an imaging algorithm based on longitudinal (P) and transverse (S) 

waves’ travel times is proposed.

1.6 R esearch objectives and thesis organization

The main objectives of the thesis are to conduct a theoretical study of developing 

a crack detection technique using bonded piezoelectric actuators/sensors and quan­

titatively determine the information of embedded cracks using the received sensor 

signals. A typical crack detection system with an array of surface bonded and/or em­

bedded piezoelectric actuators/sensors is suggested as shown in Figure 1.1. Attached 

piezoelectric elements act as both actuators and sensors. An electric field is applied 

to one of the piezoelectric actuators and induces diagnostic elastic wave signals. If 

the waves encounter the surface of a crack, they will be reflected. When the reflected 

waves reach the sensors, the strain change sensed will generate a voltage output, 

which will be recorded as raw monitoring data. In this study, the newly developed 

actuator and sensor models (Wang and Meguid, 2000) will be used to describe the 

complicated dynamic electromechanical behaviour, the resulting wave propagation 

and wave reception. In addition, a reverse wave technique is provided to extract the 

information of the embedded crack from the obtained sensor signals. In the present 

thesis, the method is developed for the case of structures with homogeneous isotropic 

material.

The main content of this study is covered in Chapter 2 through Chapter 7. In 

Chapter 2, the aim is to use a developed actuator model (Wang and Meguid, 2000) 

to analyze the general electromechanical behaviour of piezoelectric actuators surface- 

bonded to anisotropic elastic media. The validity of the actuator model is studied. 

Typical examples are provided to show the effects of the geometry, the material com­

bination and the material anisotropy upon the load transfer. The study is further
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extended to treat the interfacial debonding between the actuator and the host struc­

ture. To simulate the elastic wave propagation, in Chapters 3 and 4, the developed 

piezoelectric actuator model (Wang, 2000) is modified to consider the dynamic be­

haviour of surface bonded and/or embedded piezoelectric actuator. The effects of the 

different material combinations and the loading frequency upon the resulting wave 

propagation are investigated. The explicit forms of wave field near the actuator and 

far away from the actuator are further obtained to show the basic properties of the 

resulting wave. The wave field induced by multiple actuators is studied by imple­

menting the Pseudo Incident Wave (PsIW) method (Wang and Meguid, 1997). The 

cumulative results generated by the previous chapters are then used in Chapter 5, 

which provides a study of elastic wave propagation in a cracked elastic medium in­

duced by an embedded piezoelectric actuator. The main objective is to determine the 

characteristics of the crack using the information of scattering waves, which can be 

measured by a sensor system. A reverse wave technique is developed for detecting and 

imaging multiple cracks in plane elastic media using complete transient surface signals 

in Chapter 6. The focus of this study is to develop a quantitative understanding of 

the relation between surface signals and the location and characteristics of embedded 

cracks. As a continuation of Chapter 6, Chapter 7 focuses on the possibility of using 

piezoelectric sensor signals to quantitatively detect the cracks. A one-dimensional 

sensor model is used to determine received strain field from the sensor’s voltage out­

put. The feasibility of the proposed crack detection technique has been substantiated 

by the developed reverse wave technique. Chapter 8 summarizes the contributions 

and conclusions of this study and proposes some perspective topics for the future 

research.
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piezoelectric actuator/sensor system
i—  - |  |  I-------------------------1 | ------------------------ 1 | --------------------------

Figure 1.1: An active SHM system
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C hapter 2

M odelling and A nalysis o f a 
P iezoelectr ic  A ctuator

In this chapter, we examine the static electromechanical behaviour of a thin piezoce- 

ramic actuator surface bonded to an anisotropic elastic medium with a finite thickness 

under inplane mechanical and electrical loading. Based on the developed one dimen­

sional actuator model (Wang and Meguid, 2000), the actuator is characterized by an 

electroelastic line model with the poling direction being perpendicular to its length. 

The purpose of the current work is to study the validity of using this actuator model 

to simulate the load transfer between actuators and an anisotropic host medium for 

general cases. The theoretical formulations, governing this electromechanically cou­

pled problem, are derived based upon the use of Fourier transform and solving the 

resulting singular integral equations in terms of an interfacial shear stress. Typical 

examples are provided to show the effects of the geometry, the material combination 

and the material anisotropy of the composite upon the load transfer. The study is 

further extended to treat the interfacial debonding between the actuator and the host 

medium.
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2.1 Form ulation of the problem

Consider now the plane strain problem of a piezoceramic actuator bonded to a fi­

nite homogeneous anisotropic elastic medium, as illustrated in Figure 2.1. The host 

medium is assumed to be orthotropic with the principal elastic axes being parallel 

to y and z axes, respectively. The poling direction of the piezoelectric actuator is 

assumed to be along the z-axis. The half length, the thickness of the actuator and 

the thickness of the host medium are denoted as a , h and H , respectively. An electric 

field E z is applied along the poling direction of the actuator by applying a voltage 

(AV) between the upper and the lower electrodes of the actuator, with E z — —A V /h .  

Because of the piezoelectric property of the piezoceramics, the actuator will deform 

in both y and z directions and, therefore, induce deformation of the whole structure.

2.1 .1  T he actu ator m odel

A piezoelectric material produces strains when an electric field is applied, conversely, 

it generates electric displacement when it is strained. While the former property 

is used in actuation, the later is used in sensing. The mechanical and electrical 

properties of the piezoceramic materials can be described as

K }  =  [<?]{?} -  [ea}{E}, {D} = [ea]{£a} +  [A“]{£} (2.1.1)

where

£ i j  =  \ i Ut j  +  E i =  ~ V E  b  J =  X> V’ Z

the superscript 'a' represents the actuator, {er} and {e} are the stress and the strain 

fields, {D}, {E}  and V  represent the electric displacement, the electric field intensity 

and the potential, respectively, [c] is a matrix containing the elastic stiffness parame­

ters for a constant electric potential, [e] represents a tensor containing the piezoelectric 

constants and [A] represents the dielectric constants at a constant strain.
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The conventional piezoelectric materials are often characterized as a piezoelectric 

crystal structure with orthotropic structure properties and in-plane isotropy. Thus, 

Equation (2.1.1), based on the coordinate system used in Figure 2.1, can be expanded 

as (Park and Sun, 1994)
/  \

r aC11 r ac 12 c 13 0 0 0
t  \

£ a c X 0 0 p ae 31

° y
r a12 r aC11 c 13 0 0 0 £ ay 0 0 P a31
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+

\aA11 0 0 f Ex '

0 \a22 0 \ Ev > (2.1.3)

0 0 \°
33

cii -  c12 superscript ’T ’ denotes the transpose of the matrix.

Because of the finite thickness and length of the actuator, determining local stress 

field using analytical solutions of the original problem may not be feasible. For a 

thin piezoelectric actuator, for which the thickness is very small compared with its 

length, the applied electric field will mainly result in an axial deformation. The axial 

stress and displacement can then be assumed to be uniform across the thickness of 

the actuator and the interfacial shear stress (r) transferred between the actuator and 

the host medium can be replaced by a distributed body force along the actuator. 

Accordingly, the actuator can be modelled as an electroelastic line subjected to the 

applied electric field and the distributed axial force, r , as shown in Figure 2.2. The 

transverse stress is assumed to be cr“ =  0 due to the free surface of the actuator. For
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the plane strain problem with s“ =  0, the relation between the stress, the strain and

the electric field of this actuator can be obtained by using the constitutive Equations

(2.1.2) and (2.1.3) as (Wang and Meguid, 2000)

Cy =  Ea£y — eaE z (2.1.4)

Dz — ea£y + A aE z (2.1.5)

where

(ca )2
E a — c  —  plane strain

ckc
ea = e“3 — plane strain (2.1.6)

c'33„

Co

(ca
Aa =  Ag3 H-----^ — plane strain

-33

are effective material constants.

According to this one dimensional actuator model, by using the equilibrium con­

dition,

dcr“(y) r ( y )
" - +  - 7 ^  =  0 (2.1.7)ay h

and the traction free conditions at the ends of the actuator,

ay(v) =  \y\ = a (2.1.8)

the axial stress in the actuator can be expressed in terms of the shear stress r  as

< (y )  =  (2-1-9)

with

/  r ( £ K  =  0 (2-1.10)
J  —a

The resulting axial strain can then be expressed in terms of r  by substituting 

Equation (2.1.9) into (2.1.4) as

£y(y) = - j ^ £  T(t;w + YaEz’ \y\<a (2 -L n )
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2 .1 .2  E lastic  m ed ium  deform ation

Consider now the deformation of the host orthotropic elastic medium with the prin­

cipal elastic axes being parallel to y and z axes. The host medium will be deformed 

by the piezoelectric actuator through the interfacial shear stress at z — 0. For a plane 

problem, the constitutive equation is as follows
- | /  \

[ £y
(2 .1 .12)

Using the strain-displacement relation and substituting the constitutive relation 

into the equilibrium equations give

n... r P n
(2.1.13)

\
Gy C ll C12 0 f 1

> = C12 C22 0

’
O y Z ^ 0 0 C33 I £ v z ,

Cll
d2uy d2uv d2uz

r j  2  +  C 2 2  a  2  +  ( C l 2  +  C 3 3 ) — — -  =  0oyA oz1 oyoz

( f t  i t  eft’l l  ( f t

^ w + ^ + ( ^ +C33)^ i = 0  (2X14)

where uz and uy represent the displacement components along z and y directions.

Applying Fourier transform with respect to y defined by
 ̂ poo POO

uy(s,z) = —  /  uy{y, z)elsydy, uv{ y , z )=  /  uy(s, z)e~tsyds (2.1.15)
00 J - 00

1 r
uz(y,z)etsydy, uz( y , z ) =  uz(s, z)e lsyds (2.1.16)

the equilibrium equations in the Fourier transform domain can be expressed as

C33
d2uy
dz2

d2uz

2—-  cn s uy -  is(c12 +  c33) —  = 0
dz

du„
C22 -  c33s2uz -  is(c12 +  C33) ^  =  0

(2.1.17)

(2.1.18)

From these equations, the general solution in Fourier transform domain can be 

obtained as

Gi e~zi + H (e~ Z2 +  G j eZl +  G2 c33 <  - ( y / c n c22 — C12)

u,, = <
(Gi +  Hiz0)e Zo +  (G2 +  H2z0)eZ0 c33 — ~ ( y / c n c22 -  ci2) ^   ̂

( G 3 cos z 4  + Hi  sin z4)e~23 

+(G ^ cos z4 +  H2 sin z4)eZ3 1
C33 > -^y\JCWCTl — C12)
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and

~ s,[cnc*  - {ci2 + C33)2] (2'L20>

It should be noted that an isotropic medium will satisfy the relation c33 — ^ (v /cnC22 — Ci2)- 

In above equations,

zo = Pa\s\z,zi =  (3\\s\z, z2 = (32\s\z,z3 =  /?3|s|^, r̂4 =  /34|s|^

A> =  v ^ i ; &  =  +  y Q  -  u2, (32 =  \ j u  1 -  y Q  -  it2

l y f u i  +  Ul l y / U 2 ~ U l

=  V 2 V 2
_  cl lc22 +  c33 — (Cl2 +  C33)2 _  C11

1/.̂  —  , U2 — ----
2C22C33 C22

G+ H I ,  G+ H$, Gu Hr, G2, H2, G~x , t f f ,  G j, are unknown functions of s to

be determined from the boundary conditions of the problem.

For the elastic medium, the boundary conditions at two free surfaces should be

satisfied as

<yyz(y,Q) = {  T^  \y \ < a  } ffz(J/)o) =  o, (2.1.21)
( 0 otherwise

ayz(y,H) = 0, az(y,H) = 0 (2.1.22)

Using above boundary conditions, the unknown functions in (2.1.19) and (2.1.20)

can be determined and the resulting strain along z =  0 can be obtained by conducting

inverse Fourier transform as:

2 f a t (£) 1 f a f°° — 2
£v{y, °) =  J  Jo lF (s) -  | j ] T(0  sin[s (£ -  y)]dsd£ (2.1.23)

where E  is an effective elastic modulus of the host medium given by

2K1K 2(f32 - ( 3 1) 1 -------
C33 < - ( V C11C22 — C12){Ki + K 2)(ci2 + C33) 2

2 K 2 1
B = i  J T i f e  +  c )  c3s - - ( y w S - c 12) ( 2124)

t ^ K , 2 + G )  . 1, ,-------
c 33 >  x ( V c l l c 22 — C12) 

K l ( c i 2  +  C33)
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with

K \  ~  — { c 22C330 2 — C l l ° 2 2  +  C12 +  c 12c 3 3 )j B 2 =  ( c 22c 33 ^1  — c l l c 22 +  c 12 +  c 12c 33)

K \  =  2 c22C330 q , B 2 =  C22C33P 0 — C11C22 +  C42 +  C12C33 

K \  =  2 /? 3 /?4 C22C33, K 2 — 0 2 2 ^3 3 (/^3 — 1̂ 4 )  ~  c l l c 22 +  c 12 +  c 12c 13

and F (s) is a function of s given by

[/l(s) + 2̂ (-s) + / (̂s) + l](ci2 + C33)

F{s)

where

c 33 <  TV( \ / Cl l C22 — C12)0 lK 1[f2( s ) - f 3( s ) \+ 0 2K 2[f1( s ) - l }  2 '
_  _  ( A + / 2 K C 4 2 + J 3 3 )    =  _  )

^ i ( / 2 - / 3)=- ( ^ i +  ^ 2 ) ( /2 +  1) 2 l V1122
=  ( / !  + / 3 ) ( C 12= + C 3 3 )  =  C 3 3 > J ( V ^ - Cl 2)

/ j K u  -  / 2K 22 +  / 3K 33 -  B 44 2

— + 1 ) -------1 —(— — 1) — 1
f M  =  2E2 V i j 2£?4£?2 V i J 

' E 1E 0 do Eo 02

_  _  A W  = 1W .A W  -  ( |  + _ 0 j l

B 2(B 4 +  B 5) +  -Bo2[^4^5  +  B 2(B 3 +  B 5) -  B 3B 6]
/ l ( s) =  - E02K 1( K 3 + K 5 -  2 K 2 +  E0 K 3 -  E02K

/ 2OO =
EQ2K 2(K 3 -  K 5) + b3b6 + k 2( k 4 -  b6) -  k 4k ,  

K x( K 3 + K 5 -  2K 2 + E02K 3 -  E02K 5) 

7 (s) = B4 + B6 + Eq2(2 K 2 + K 4 -  Ke) 
h[S)  E02(K 3 + B5 -  2B2 + E02K 3 -  £027T5)

_ % ( % oE 4 _ - T ^ 8) + % ^ 13K 3 + % %  - T i T g -  % % )  

—K1K4K7 — K 2K 3K 7 + K \ K 3K 8 — K \ K 3K 8 + K 2K 3K§ + B1B4B9

7  (s) =  + J x ^ x o %  -  % o %
- T { F AT 7 -  % T 5%  +  T { F 3T 8 -  +  B 2B 3B 9 +

/i ( s )  =

/sOO =  —
K 2{K7K A +  B 6B 7 -  B 3B 8) +  K xK 6K 8 -  K w ( K 2K 3 +  B 4B 4)

I I 4̂ 7  -  W r  +  f i f 3f 8 -  +  T 2T 3T 9 + B , ^ 47?9
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with

E0 = e ^ 11, Ex = e ^ H, E2 = e ^ H, E3 -  e^ H,

K 3 =  /30 H K x \ s \  +  K 2 , K 4 =  f o H K M - K * ,

K 5 =  (30H~Ki\s\ +  K 2  +  K u K 6  = - P 0H K lS + K 2  +  K x ,

K 3 — —K i  cos(/54ijr|s|) -  K 2 sin(/?4.ff |s|),

K 4 = —K i  sin(/?4H |s|) +  K 2 cos(/?4if |s |) ,

%  =  { - % c o s ( ( 3 4 H \ s \ )  +  T 2sm(p4H\s\)]/E32,

%  = [ - T 1sm(f34H \ s \ ) - W 2cos(/34H\s\)]/E32,

%  =  p j f  4 -  (34% )  c os ( / 3 4 H \ s \ )  +  (f34%  +  f o % )  sm(f34H\s\)],

K 8 = \{-(53K 2 -  (34K \)  cos(/34# |s |)  +  {f33K x -  (34K 2) sin(/34# |s |)] ,

%  =  i(-(33%  +  f a % )  cos((34H \ s \ )  +  (f54%  +  (33T 2) sin(f34H\s\)]/E32,

% 0 =  [ ( - p 3%  -  f34%)cos((34H\s\) +  (-(33T 4 +  /34T 2) sm((34H\s\)]/E32.

For all three phases presented in Equations (2.1.24) and (2.1.25), F(s) tends 
2

to =  when s tends to infinity regardless the thickness of the host medium. This 
E

result indicates, as expected, that the singular behaviour of the current problem is

independent of the thickness of the host medium. For the case where the shear

modulus c33 is very small, c33 — > 0, E  tends to zero. For the case where c33 — ► 00 ,

E  tends to infinity. It is also interesting to note that for the case of elastic medium
— 2

with infinite thickness, based on the relation of lim F(s) =  = ,  the resulting strain
H — >oo E

field along the interface can be obtained as

£y(y, 0) =  4 =  (2 .1.26)n E  J - a y -  f

which shows that the load transfer of the orthotropic host structure is governed by 

only one parameter E  for this case. For an isotropic host medium, which corresponds 

to c33 — 11 ——, parameter E  can be further simplified as E  = E / ( l  — v2) with E  

and v being the Young’s modulus and the Poisson ratio, respectively.
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2.2 Governing equations

Consider general case of an elastic medium with thickness H,  the compatibility of 

deformation between the actuator and the host structure indicates that

£y \ac tu a to r  ^ y \h o s t  \ y \  ^  0 (2 .2 . 1)

Substituting (2.1.11) and (2.1.23) into (2.2.1) gives

ra poo1 f a /*°° _  2
~  /  iF (s ) -  =dr (£) sin[s(^ -  y)}dsd£
7T J-a Jo E

2 r  r (0  1
T-(Od£ = ~ 1 , \ y \ < a (2 .2 .2 )

7tE  J - a y  - £  hEa J _ a Ea

To determine interfacial shear stress r , the singular integral Equations (2.2.2) and 

(2.1.10) can be normalized to give

/ I P 00 C\ '

i  J o  ~ ~  S i n ^ ^  ~  ^ dsd<^

f  H 0 d (  =  9  M  <  1l-i v~C
T(()d(  =  0

/ - i

(2.2.3)

where

r(r?) = T(art)/aB, y = y/a  
7tE

q =  77iT> °B =  e0E2,u =  a/h
2-C/a

(2.2.4)

Since Equation (2.2.3) is a singular integral equation of the first kind, the solution 

of it involves a square-root singularity (Muskhelishvili, 1953) at \rj\ = 1. Accordingly, 

the solution of equation (2.2.3) can be generally expressed in terms of the first kind 

of Chebyshev polynomials, T) ,as

1
T(ri) =

where d0 = 0 due to

i=o

J  r (0d£  = 0.

(2.2.5)
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By truncating the Chebyshev polynomial expansion to the JVth term and satisfying 

the integral equation in (2.2.3) at the following collocation points along the actuator,

^  ^  cos ' k = l , 2 , - - - , N  (2.2.6)

the unknown coefficients dj can be determined by solving the following algebraic 

equations

{ f°° — 2
(~ l)n / [F{s) -  = ] Jj(so) cos(sar]k)ds j  =  2n +  1

r00-  2(_ l)n+ i J  _  —] J ^ sa) sin{sar]k)ds j  = 2n

k — 1
n  sin(j —— —7T) , _  i

— f ^ i — t1 +  S si n^ = ~ q^ '  k = 1’2’- - ’N  (2-2-7)
i=1 sin^ATTY7r)

with Jj (j = 1, 2 • • •) being the Bessel functions of the first kind. The interfacial 

shear stress can then be determined using Equation (2.2.7). The singular behaviour 

of the interfacial shear stress at the right tip of the actuator is characterized by the 

following shear stress singularity factor (SSSF) S

N

S  =  lim[\/27r(o -  y)r{y)] — a s V a i x d j  (2.2.8)
y —*a • ^

j= i

2.3 Stress distribution

Using the current actuator model, the electrically induced stress field in the host 

medium can be obtained analytically. According to the general solution given by 

equations (2.1.19) and (2.1.20) and elastic constitutive relation, the stress distribution 

in the host medium can be obtained in terms of interfacial shear stress r  by conducting 

inverse Fourier transform.

For the case where c33 < (y/cnC22 — C12)/2, the induced stress field is

1 pa poo
cry = — /  [A'3e_/3isz +  K 4e~P2SZ] sin[s(u -  y)]r(u)dsdu (2.3.1)
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ax = — I I [K5e ^ISZ +  K qe ^2SZ]sin[s(u -  y)]r(u)dsdu (2.3.2)
7r a JQ

CyZ
7T

i r a  r oc

/  [K7e~hsz + Kse-*1™] cos[s{u -  y)}T{u)dsdu  (2.3.3)
a JO

where

c n K i  4- cx2K q0 x cn K 2 +  cX2K w02 T. cX2K x +  c22Kg0x
3 “  v  ’ 4 ~  K ’ 5 “  V ----------A n  F 11 F 11

7̂  c12-̂ 2 +  c22KlO02 rz 01 Tr —02F% —   ,^ 7  — ~----- -rvs —
-̂ 11 ’ 01 ~ 02^ 0 1 —02 

_  0 i K xK 2 _  —02K xK 2 _  (A ~  02)Ki K2
<̂33(^12 +  ^33) ’ C33(ci2 +  C33) ’ (ci2 +  C33)

Using the solution of r  given by (2.2.5) and the following known integral results,

[  Ji{as) c o ^ M l e - N *  =  +  |;/|)!p/2 (2.3.4)

r j>{as) + [ ^ ^ 4 + w <2A5)

where

_  2 I _ 2  Dsln IS _|_
jR =  [(z2 — y2 +  a2)2 +  dyA2]1/4, B  = —| arccos------ —-------\ ,A  — — arctan 2

tf2 " f ? c o s ^  +  |z|

The integration in equations (2.3.1), (2.3.2) and (2.3.3) can be completed and these 

stress components can be expressed in explicit forms as

a  = f v /  ( - 1) " ^ 3Fw ( ^ ’0i) +  K4F+ ( ^ A 2)] j  =  2n +  1
^  ( - m K s F ^ u e ^  + K . F ^ O , ) }  j  = 2n

az = Y ^ d A  ( - 1^ K sF^ i A )  + ^ ( 0 2 , 0 2)} j  =  2n +  1

3 = 1 ( - l r ^ ^ ^ i , ^ )  +  t f 6F2j(<fc,02)] j  =  2n

^  f ( - l ) " +1[-^7-p2i(A, A) +  KsF2j{0 2 , 0 2)\ j  — 2n +  l  (2 3 8)
^  ^  J' 1 ( - i m 7F y (A ,A ) + i f 8Fy(02,02)] j  =  2n

where

F i M u  Oi)  =  a t + i c o s ( A j  -  g i / 2 ) ^ .  =  0)  1;  2  
L \i

j? (a a \  j+is in (0d -  Oi/2)F2j{0i,9i) =  a3+ -------- —-------- sgn(y),i =  0,1,2
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with

«, — -arctan( , ),»2 =  -arctan(-
I M 2 -  \y\2 +  a2 | / M 2 -  \y\2 + a2'

h  =  _  a r c t ^ M / M l " ' , ) .  =  -  arctaa(- ^  Sin(92/2) +  l!/l ’
KRi  sin(6*i/2) +  \ ^ z \  ’ i?2 sin(02/2) +  | / M '

Ri  = 4 y  ( f t2*2 -  y2 +  a2)2 +  4(52y2z2, R 2 = 4 y  {p22z2 -  V2 + a2)2 +  4(322y2z2

Ai =  i?i[(i?i cos(0i/2) +  |/M ) 2 +  (# i sin(0i/2) +  \y\)2}j/2 

A2 =  i?2[(i?2cos(6l2/2) +  | M ) 2 +  (/?2 sin(02/2) +  |y|)2]j/2

For C33 =  {\fc\\C22 — ci2) /2 , the similar procedure can be conducted to obtain

stress components in explicit forms as

( (—1 )n[KiFij{(f)Q, 90) — z K i — Fij{4>Q, 0O)] j  =  2n +  1
^  =  -  - i  ( 2 - 3 - 9 )

1=1 [ ( - l ) n[K3F2j(cf>o, do) ~  z K 4— F2j(fa, 9o)] j  = 2n

f  (—l)n[KsFij((l)o,0o) — zK6Tr-Fij(<f>o,9o)] j  — 2n + l
=  X >  i  -  ~ di  ( 2 - 3 - 1 0 )

j=i (—l) n[-K"5-f12j(</>0) $0) — zK 6— F2j((j)o, 0O)] j  = 2n

00 , ( _ 1)-+i[K7F2.((/)O)0o) _ ^ 8| _ jp2.(0Oj0o)] j  =  2n +  lE i \ -*-/ i-11 2 ? \ r u ;  ^ u /  o r-> -‘•z y v Y 'u j^ u /j  j  — •12 1
ds i  _  g S z  (2 .3 .11)

>1 I (-l)" [K ’r F u ( A ,A ) - z K 8^ -F 1J-(A,,e„)] j  =  2n

where

-e? _  c33[(ci2/5o2 +  c\\)K\  — 2c22iF2/302] _  c33(ci2/3o2 +  cn)
-^3 — =  2-------------------> ^ 4  — ------- -T=--------

(30K 2 P0K 2

k 5 =  o , x 6 =  ~ , k 7 =  l , 7f 8 =  - 1
Po

with

=  _  arctan( , A fr =  -  arctan(- %Si"("»/2) +  ^
• |M 2 - M 2 +  «2 ’ i?0sin(6lo/2) +  \f30z\'

R o = 4 (/302z2 -  y2 + a2)2 +  4(302y2z2 

A0 =  Ro[(Ro cos(0o/2) +  |/?o^|)2 +  ( ^ osin(0o/2) +  |y|)2p /2
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For c33 > { ^ c n c22 -  ci2)/2,

( ( — l )n[K3F3j((l>3, 03, 04, 04) +  K 4F4j((j)3, 03, 04, 04)] j  =  2n +  1 
ry =  /  *4? 1 =  =  (2.3.12)

I  ( - i r [ ^ 3F5i (</>3, 03, 04, 04) +  ^ 4 ^ ( 0 3 ,  ^3, 04, 04)] j  = 271

OO
=

V ^ .  f (~1)"[-K’5-F13j(03, 03, 04, 04) +  K eF4j((j)3, 03, 04, 04)] j  — 2n +  1  ̂

/=! \  ( —l)"[-^5F5j(03, 03, 04, 04) +  106-P6j(03, 03 , 04, 04)] j  =  2nJ

j  ( — l) n+1 [-^7-03^(03, 03, 04, 04 ) 4- KgF4j (03, 03, 04, 04)] j  — 2n +  1 ^ 

, (~ l)n[-^7F5j(03, 03, 04, 04) +  KgFgj{4>g, 03, 04, 04)] j  = 2nj = 1 V 

where

TJ? _  C33[c12(/?32 — (342) K i — 2/?3/34Ci2^2 +  CllXj]K 3 — -------------------------------- = --------------------------------------------------------

^ 9 ( C l 2 +  C33)

c33[ci2(/332 — f342) K 2 +  2f33f34c\2Ki + cn ili]
-h.4 —-------------------- = -----------------------------------

K  9 ( 0 1 2  +  C33)

W  -  n 17 — 1 1? — 1 17 — 17 - At(-K’l +  ^ 2  )K 5 — U , K 6 —  — —  , A 7 — 1 ,  K g  —  —  —  , K  9 — ----------------- ;-----------------
0 4  P 4 C12 +  C33

with

P 1 7+ifCos(03j - 0 3/2) , cos(04j  -  04/2 ) 1
3j 2° [ A3 A4 J

p 1 7+lrsin(03j  -  03/2) sin(04j  — 04/2) /a
FH = ~ 7 a [---------*---------- sgn([34z + y) + ---------   sgn(f34z -  y)}

A  ZA3 LA4

F5j —
7+lrcos(03j  -  03/ 2) cos(04j  -  04/ 2), 

a [ A A J
r  1 7+lrsin(03j  -  03/2) sin(04j  — 04/2)
6j =  -  2 ̂ -------------- sgn(j34z + y )    sgn((34z -  y)]

2|042 +  y ||0 3.z| 2 |042 — y ||0 32!|
3 ~ - " CallW l2 _l&~~ +  S/lJ +  «J )’ '* =  - arCte,1<|A z |2 „ | /5l 2 _ 9 |2 + 04
=  _  arcta fl3Sm (^/2) +  |f t2  +  a | = _  R i M « f )  + \ l 3 . z - v \ ) 

i23sin(03/2) +  |Az| R4sm(84/2 ) +  \(33z\

^3 = 4 V (03 V  -  (04z +  y)2 +  a2)2 +  4032(042 +  y)2z2

i?4 = 4 V(032̂ 2 -  (04^ -  y)2 + a2)2 +  4032(04^ -  y)2z 2 

A3 =  R 3[(R3 cos(03/ 2 ) +  103-̂ |)2 4- (R3 sin(03/2) 4- \fi4z +  y\)2]F2 

A4 =  tf4[(#4cos(04/2) +  |032|)2 +  (R4 sin(04/2) +  |f34z -  y |)2]j/2
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2.4 Interfacial D ebonding

Weak interfacial bonding may result in partial debonding between the actuator and 

the host medium, which will change the load transfer and may result in degradation 

of the structure. In this section, attention will be focussed on determining the effect 

of debonding upon a surface bonded actuator. The actuator considered occupies the 

region t t < y < tr , and is assumed partially debonded in dt < y < dr. as illustrated 

in Figure 2.3.

Similar to the case involving a perfectly bonded actuator, by making use of the 

equilibrium equation (2.1.7) and the traction free condition at the two ends of the 

actuator, the axial strain in the actuator can be expressed in terms of r  as (Wang 

and Meguid, 2000)

is the axial stress in the debonded part of the actuator.

By using the general solution of the host medium, the strain along z =  0 in the 

host material can be expressed in terms of r  as

£ y \ y ) \  actuator  —

where

(2.4.2)

P tr  r o c  ___ 2

+ / / [F(s) — = } t ( u )  sin[s(u — y)]dsdu)
Jdr Jo E

(2.4.3)
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The compatibility of deformation between the actuator and the host structure 

indicates that

£ y  | actuator £ y  \ host M V  ^  d r <L y  t T) Z  0 (2.4.4)

and

U y ( d r )\ actuator V y  ( d l ) j actuator  Uy ( d T , 0) | host (dp 0)\host (2.4.5)

Substituting (2.4.1) and (2.4.3) into (2.4.4) and (2.4.5) gives the following nor­

malized singular integral equations in terms of the interfacial shear stress,

"i n-i r*l poo

_1 Vi -  c ' 7-1 rjr -  C 2 ^  I
Tl( 0 d(  , f 1 Tr (C K  E  f L f co^ - t 2 ,

+  J  1 rjr ^  1 J  J  A O )  ~  ( 0  sm Is (C -

/ m
r l ( ( ) d (  =  q \rji\ <  I

-tcr j I [r [S) -  = j r  -  Tfrjjasat,] -t- < ^  (2.4.6)
1 0 ' - q v r / T r ( ( ) d (  = q \r)r \ <  1

J  r?r

A  r1 a o  
J i J - 1  m  -

_ E
~  ~2

+vrc.

Vi

/vT f1 / ° °   9
J  l J o  ~~ sin[s(C -  rn)}dsd(dr]r

1  / 'O O  c\

/  [F(s) -  = K (C ) sin[s(C -  Tjr)}dsd(dr]r\ 
1 Jo &

=  2g(u -  Vi -  u r ) [ - < 7 *  +  1]

r(C)^C
c

drji +  ur
-1 r 1 T r ( ( ) d (  

7 - 1  V r  -  C
dr/r

-1 /»1 /»0O

and

cr
r r (C K  =  -

-1/ / m  =
The normalized stresses are given by

t'(C) =  r(a*C +  yi)/crB, Tr(() = r (a rC +  ?/r)/TB, cr* =

with

v i ^  ( y -  yi)/ch r)r = ( y -  yr)/cr , u  =  a//i, v t = ct/h,  vr =  cr/h  
1 1 1  

c 2 ^  2 ^ r )
1 / .  , 1/  . x  * v — vr  ̂ v  — Vi

yi =  +  **)> Vr =  r ( i r  +  d r ) ,  Vi =  2 --------------- 1, y* = -- 2 ----------- +  1
2 2 vi vr

(2.4.7)

(2.4.8)

(2.4.9)

<2.4.10)
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Similar to the case where the actuator is perfectly bonded to the host medium, 

the interfacial shear stress will be square-root singular at the ends of the debonding 

part and at the tips of the actuator. Therefore, the general solutions of t 1 and r r , in 

(2.4.6), (2.4.7) and (2.4.8), can be expressed in terms of the following expansion of 

Chebyshev polynomials,

1 ^  1 
XV/Tjfo), t'(») = - =
j= 0  V 'lr  j = 0

- LAJ UU

r l(m) = Tr(Vr) =  - = = £ ^ ( 7 / , . )  (2.4.11)
V-*- Vl j - 0 V Vr j—0

(J (J
According to Equation (2.4.8), dl0 =  and dra = ------ .

7T qvi nqvr
If the Chebyshev polynomial expansions are truncated to the JVth term, and 

Equation (2.4.6) is satisfied at the following collocation points at each bonded segment 

of the actuator given by

k — 1
Vik = Vrk = Vk =  cos N  _  1?r, k = l , 2 , - - - , N  (2.4.12)

Equation (2.4.6) reduces to 

k — 1
n  sin(?'—— - it) , * n  -----------

£ 4 — i— t1 +  7 7 sin( j v r i ^ ]  +  Y . drM k  - ! ) 1/2 +  v*rk\J/ \ / v ;k2 - 1 

j=1 ^ j v T I 7̂  j=1
( r 00  2

"  ( - 1 ) " /  [F(s) -  =\Jj(sci)cos{scirik)ds j  = 2n + 1
-I1 )  Jo „

+ ~ Z ^ di 'i 77 r °  —

j=i I (-1 )  y  [F(s) -  = ] J j (sci)sin(scir7fc)ds j  =  2n

/“» _  2
( -1 )” / [F(s) -  = ] Jj(scr ) cos(scrr]*k)ds j  =  2n +  1

V -  2(_l)«+ i J  _  _ ]  J^scy) sin{scrr}*rk)ds j  =  2n

/*°o  2 z*00 2
+^*{-^7 Jo iF (s) -  = \ J 0 (sci) sm(scii]k)ds -  J  [F(s) -  =}J0(scr) sm{scrrj*rk)ds}

+ 7~ { .....+  q[1 ~ k = 2’ ' ' '  - N  (2A13)n VrVVrk ~  1 i V _ 1

<
l=i
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N

EJO &
f ° °  —  2

~l T  JQ [F (S) ~ ^ ] Jj(SCl) C0s(sQ7?;fc)ds
p°° _  2

~ 1) n+1 J o iF (s ) -  sin(scl77,*fc)d4
7-' /»nn ^

!s j  =  2n +  1
./O J-/

/‘°° _  2 
" 1)"+1 J o iF (s ) -  sin(scl77,*fc)ds j  =  2n

P? TOO _ Q |*0O 2
+ cr* { - ^  iF {s) ~  =}Jo{sci) sin {sCl7j*lk)ds -  J  [F(s) -  = ] J0(scr ) sin(scr?7fc)ds}

r 1 A - l ,  ,

: +  g j y _  1 ) =  ~ g /7r» * =  1,2,--- (2.4.14)

In addition,

+  o*^____ 1

^ vi\R k77 Viy/1

don, Equation (2.4.7) becomes

i - 1

a * {- * +  y jv i2 -  Mlv* +  V V 2 — 1|] — 2( v - v i -  vr)q}

~Ea P * f ° °  — 2
+ct*[— y  j  [F{s) -  =}J0(sci) sin(scirji)dsdrji

~Ec r~3 r°° 2
— 2 1 J  J  [F{s) -  =}Jo{scr)sm(scrrjr)dsdrjr]

n°° — 2
[-F(s) -  =]Jj(sci) cosisci^dsdrn j  = 2n +  1

2 ' poo _  9
i=i I f -1  T + J  J  [F(s) -  ^ ] J j (sci)sin(scirn)dsdrii j  = 2n

n oo 2

[F(s) — = ] Jj(scr) cos(scrrjr)dsdrjr j  — 2n +  1 
E

2 /  >".7 1 r_1 r00   2
/ / [E(s) — = ] Jj(scr) sm{scrr]r)dsdrjr j  = 2n
fri* Jo E

N

E c rVr TT
N

+ E 4 { 7ri;«(- 1 )J’y i [fa? -  1)1/2 -  Vi}j / \ J v ?  -  1 drn

*  f - i
+  ' y 2 (Fj { ~ 7rVr  /  [ f a ?  “  1 ) 1 /2 ~  V r]3 / ' J v  r ~  l d V r )  =  2 q ( v  -  V t -  Vr )  (2.4.15)

.7=1

* 2v  - v r - V i  +  vrrjk 2v - V r - V i -  vtrikwhere r)rk = ---------------------------- , ^  = ---------
vi
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From these equations, the unknown coefficients d lj  and d j  can be determined. The 

resulting SSSF at the left and the right tips of the actuator can be expressed in terms 

of dlj and d j  as

N  N

Si =  aBy/c iT r^2 ( - iyd j ,  Sr = aBy/c/rr^  dj (2.4.16)
j = 0 j —0

In addition, the SSSF at the left and the right ends of the debonding part can be 

obtained as

N  N

Sdi =  dlj, Sdr = <JBJ c r7 T ^ ( -1 )J^  (2.4.17)
j = 0 j = 0

2.5 A nalysis and D iscussion

The numerical simulation described in this section is conducted to investigate the 

effects of the pertinent parameters upon the coupled electromechanical property of 

an anisotropic structure with a surface bonded piezoelectric actuator subjected to an 

inplane electric load.

2.5 .1  V alidation  o f th e  actu ator m odel

To verify the validity of the present actuator model to predict the load transfer, 

the commercially available structure analysis software ANSYS is used to numerically 

analyze the stress field near a perfectly bonded actuator. In the current analysis, the 

material constants of the actuator and the matrix are given by (Park and Sun, 1994) 

Actuator (PZT-4 )

c£} =  13.9 x 10w {Pa),c($  = 6.78 x l0 lo{Pa),c{$  = 7.43 x 1010(Pa) 

c $  =  11.5 x 1010(Pa), =  2.56 x 10lo(Pa)

4 i } =  -5 .2 (C /m 2),e($  = 15.1 (C /m 2),e{$  = 12.7 (C /m 2)

=  6.45 x 10~9{ C / V m ) , X ^  =  5.62 x 10~9(C/Vm)
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Two different host media were considered as 

Orthotropic medium

4V =  13.92 x 1010(P a),4 2  =  160.7 x 1010(Pa)

4V =  7.07 x 1010 (-Pa), 4V =  6.44 x 10lo(Pa)

Isotropic medium

F (2) =  15.4 x 10u (P a),i/(2) = 0.3

The length of the actuator is assumed to be a =  lOh and thickness of the host
—  2

medium is assumed to be infinity, in which lim F(s) — = .  The orthotropic and
H — >oo E

—  TV E
isotropic media have the same effective modulus E,  which results in q =  —— =

2 Ea
3.019. Figure 2.4 shows the comparison of the interfacial shear stress r* =  t / gb 

distribution determined using the proposed model with the corresponding results from 

finite element method (FEM). The proposed analytical model predicts that interfacial 

stress uniquely depends on q in considering the effect of the material properties. It is 

very interesting to mention that FEM results from orthotropic and isotropic media 

give very close interfacial stress distributions. The discrepancy between the analytical 

prediction and the FEM results may be caused by the one-dimensional assumption 

of the actuator.

In the proposed model, the transverse normal stress az is ignored. FEM analysis 

has been conducted to examine this assumption. Figure 2.5 shows the effects of the 

length of the actuator upon a* = gz/ ob for H  — 8h for q =  2. For very short 

actuator v = a /h  =  2 and 5, significant a* can be observed even at the centre 

of the actuator. However, for v = 10 and 20, a* is significant only in the region 

close to the tip of the actuator, where high stress concentration exists. Figure 2.6 

shows the effects of the thickness of the host medium upon a* for the same material 

combination in Figure 2.5 with v = a/h  — 10. It can be observed that the axial 

stress distribution cr* exists mainly near the tip of the actuator, which will increase
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with the increase of the thickness of the host medium and eventually approach to

coverage when H  > 8h. Another important parameter, which represents the actuation

process, is the maximum axial stress in the actuator. Figure 2.7 shows the comparison
1

of the maximum axial stress cr^ax — <ym a x / ^ B ,  &m ax =  — t  /  T(l/)ĉ /> determined 
J - a

from the proposed model with FEM results for the case presented in Figure 2.5. It 

can also be observed that when H /h  approaches eight, the result of the proposed 

model shows good agreement with that from FEM. In addition, compared results in 

Figure 2.6 and 2.7, it can be found that the normal stress <7* is much smaller than 

axial stress crĵ ax, which shows that normal stress can be ignored for thin actuator 

(v > 10). In conclusion, those comparisons indicate that the actuator model can 

provide reasonable prediction of the interfacial stress distribution (load transfer) for 

thin actuators (v > 10) which are bonded to the host medium with H > 8h.

2.5 .2  S tress d istr ib u tion  along th e  interface

Figure 2.8 shows the distribution of the interfacial shear stress between the actua­

tor and the host medium for v = 10 and H  =  8h. The material constants of the 

orthotropic host medium are

c£> =  13.92 x 10lo(Pa)

=  7.07 x 10w (Pa),c{̂  =  6.44 x 10lo(Pa)

Different values of c22 are used in the analysis, which correspond to different material 
7tE

combination q = 7-^-. For the case where the actuator is relatively stiff, q = 0.2 for
2Aa

example, high shear stress level in the interior part of the actuator is observed. For 

softer actuator, q — 5, interfacial shear stress is mostly concentrated at the tips of the 

actuator, which corresponds to the so-called ’pin-force’ model. Figure 2.9 shows the 

effect of the thickness of the host medium upon the interfacial shear stress distribution 

for a  — 10 and q = 2. It is observed that the interfacial shear stress increases with
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the increase of the thickness of the host medium and approaches a stable distribution 

which corresponds to the case of an infinite host medium. It can be concluded that 

when H  > 15h the effect of the thickness of the host medium upon the interfacial 

shear stress can be ignored.

2 .5 .3  E ffective m odulus E

One of the most important parameters governing the load transfer between the ac­

tuator and the host material is the effective modulus of the host medium E  given 

by Equation (2.1.24). Figure 2.10 shows the effect of material anisotropy of the

host medium upon the normalized effective modulus E* =  E / c n  for —  =0.15 and
cn

H  =  15h. At this case, the thickness effect of the host medium can be ignored. It 

is observed that the effective modulus E  is very sensitive to the shear modulus c33. 

For cases where c22/c n  is small (< 0.3 for example), c22 shows a significant effect 

upon E,  which corresponds to the case where c33 > ^ ( \ / cn c22 — c32). In comparison,
^ ^2  _  £33

Figure 2.11 shows the effect of the Poisson ratio uvz =  —  upon E  for —  =  0.1 and
C11 cn

H  =  15h. It is interesting to note that the effective modulus is relatively insensitive
C22to the change of the Poisson ratio for —  > 0.5.
Cll

2.5 .4  Singular stress field around th e  actuator

The singular stress field near the tip of the actuator can be obtained by using the 

substitution that

y = a + rcos9 ,z  — rsin9  (2.5.1)

and considering the asymptotic property of Equations (2.3.1)-(2.3.14) when r  — ► 0.

For c33 < (v/c11c22 — c12) /  2, the singular stress field is given by

v/ttt V ’
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+ K 6M p 2je2)}
Oz =  o ------------- m

_ o [K7f2{Pl,0i) + K 8f 2{p2,^2)]
O y z  /-------

v r7r
where

/l(A,9i) = 5in<lftl/2) ,_>« e.) = , cos(lftl/2> ,•■ = o, 1,:
4\Jcos2 6 + Pi sin2 9 4 \ / cos2 6 + pt sin2 9

h  =  arcte„ (^ ) ,  h  =  „2 =  arc{all(f t f ^
cos 9 cos w cos #

For c33 =  (yfcnC22 — C12) / 2, the singular field is

_  c  [ ^ 3 / i ( / 3 o ,  # 0 ) — Ki<iifi{Pa, do) — K i a 2 -ggfi(Po, # 0 )]

f f y ~ b  7 ^

Oz =  s
\—Keaif i(P0,60) — Kea2-ggfi(Po,60)]

rir

d__ Q [ K i f 2 {Po, do) — K sa i f 2 (Po, d0) — K 8a2 -Qgf2{Po) #o)] 
^  ~  y/rn

where ai =  sin20 , a2 =  sin d cos 6.

For C33 > (i/cn c22 — c12)/2, the singular field is

c [T3J 1 (d3 ,e4 ) + T j 2 ( 0 3 , 9 i )}
o„ — &---------------

r 7r

c [K5f 1(93,94) + K 6f 2(93,94)]
Oz — j ------------- r7r

J K r f ^ d ^  + K s f ^ O , ) }
Oyz O

where

rir

/1 (6*3, #4) — ^[h{&3) +  /3 (6*4)], /  2 (^3, #4) — ^[-M^4) _  TlO^)]

7 3( M )  =  | [ / 4(6>3) +  / 4(04)] J 4(03A )  =  | [ / 3(6»3) -  / 3(04)]

m )  _  sind^l/2)
4 7  Pi s™2 0 +  (A  cos $ +  sin $)2

/„(«,) =    i =  3,4
4 7  Pi sin 0 +  {Pa cos 61 +  sin 9)2

6, = a rc t^ f  =  arctan( f t™ *  ,
/ - i n m “  /J  I L i  /•< r-< 1 v - \^/34 sin 9 +  cos 0 /?4 sin 0 — cos 0 y
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Figure 2.12 shows the angular distribution of the normalized singular stress field

/  =  v/~~ B a with different angle 0 around the tip of the actuator, where o represents 
o

(jrr,aee and arg, respectively. In this figure —  =  11.53, —  =  0.46 and H  =  15h.
cn cn

^ _  V 11 22 assumeci to be 0.25,1,4, respectively, representing the three
2C33

phases discussed before. As expected, the maximum shear stress always occurs at

0 = 180°, i.e. along the interface, the maximum agg occurs around 6 — 40° — 60°

ahead of the actuator, while for arr, the maximum is at about 0 = 130° — 150°.

Figure 2.13 shows the normalized shear stress singularity factor S* =  S / ob

for —  =  0.040, —  — 0.044, correspondingly, q =  3.019 and H  = 15h. It shows 
C22 c2 2

a significant effect of the material anisotropy cn /c22 upon the singular stress field 

around the tip of the actuator. W ith the increase of the length of the actuator (a /h ), 

the singular field will approach a steady state, as evidenced by the fact that S* tends 

to a constant for large a/h.

2.5 .5  S tress d istr ib u tion  in host m edium

Figure 2.14 shows the normalized stress distribution a* =  Oy/aB in the host medium

for v = 10, —  =  11.53, —  =  0.46, —  =  0.51 and H = 15h. av was found highly 
cn cu  cn

localized in an area near the tip of the actuator. Figure 2.15 shows the correspond­

ing results for a*z = ayz/aB- For z =  0.5h and 1.0h, ayz undergoes a very sharp 

reduction around the tip of the actuator before it goes back to its ’normal’ value. To 

further consider this issue, detailed FEM analysis was conducted, which did predict 

the same phenomenon. The numerical results for 2 =  0.5h is compared with the 

corresponding analytical solution in Figure 2.16. A good agreement can be observed. 

This phenomenon had also been observed in other material combinations.
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2.5 .6  A x ia l stress and SSSF in central d ebon ded  actu ator

For the general case of central debonding, the debonded part will not experience in­

terfacial shear stress. However, its effect upon the load transfer will not disappear. 

In this case, the debonded region will affect the structure by applying a compressive 

(tensile) stress to the remaining parts of the actuator. Figure 2.17 shows the nor­

malized compressive axial stress a* — \crd\/as,  in the debonded part of the actuator 

for the case where v = 10 , q = 2 and H  =  15 h with d = d\ = dr. A significant 

effect of the anisotropic property of the host medium is observed. The axial stress 

a* in debonded part will decrease with the increase of the debonded region. Debond­

ing along the actuator/host medium interface may also dramatically affect the load 

transfer between the actuator and the host structure. Figure 2.18 shows the shear 

stress singularity factor (S* =  S / a B\firh) at the ends of the debonding located at 

\y\ < d, for the case considering in Figure 2.17. A dramatic increase of S* can be 

observed with increasing d/a. The results indicate that the electrically induced cen­

tral debonding of the actuator is an unsteady process, i.e. as soon as the debonding 

starts to grow, it will keep expanding until full debonding occurs, which is different 

from the self-arrest edge debonding case.
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H

Figure 2.1: An actuator surface bonded to an orthotropic elastic medium

©
a ay+day

-►   ►  ►  ►  ►

dy

host medium

Figure 2.2: An actuator model for surface bonded actuator
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host medium

host m edium

Figure 2.3: An actuator with a central debonding
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Figure 2.4: Comparison of the interfacial shear stress distribution with FEM results

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.1

-  v=2
—  v=5 

v=10
—  v=20

ND

- 0.1

- 0.2
-0 .5 0.5

y/a

Figure 2.5: The normal stress along the interface for different v
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Figure 2.6: The normal stress along the interface for different H
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Figure 2.7: Comparison of the maximum axial stress in the actuator with FEM results
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Figure 2.8: The normalize shear stress along the interface for different q

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.1

- -  H=5h 
H=8h 

- -  H=15h 
—  H=lnfinity0.05

0

-0.05

- 0.1
-0 .5 0 0.5 1

y/a

Figure 2.9: The normalize shear stress along the interface for different H
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Figure 2.10: Effects of the material anisotropy on the effective modulus
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Figure 2.11: Effects of the Poisson ratio on the effective modulus

0.5

'■A.'-0 .5

-1 .5

30 120 150 180
0

Figure 2.12: Angular distribution of the normalized stress
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Figure 2.13: Normalized SSSF
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Figure 2.14: Normal stress distribution in the host medium
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Figure 2.15: Shear stress distribution in the host medium
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Figure 2.16: Comparison of the analytical shear stress distribution with FEM results
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Figure 2.17: The axial stress in a debonded actuator
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Figure 2.18: The normalized SSSF at the end of the interfacial debonding
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C hapter 3 

W ave P ropagation  w ith  Surface 
B onded  A ctuators

This chapter provides an analytical and numerical study to simulate the wave prop­

agation in an elastic half plane with surface-bonded piezoceramic actuators under 

high-frequency electric loads. This solution is based on the developed one dimen­

sional actuator model (Wang, 2000), and the resulting wave propagation induced by 

a single actuator is mainly focussed by using integral transform method and solving 

the resulting integral equations. The single actuator solution is then implemented 

into a Pseudo-Incident Wave method (PsWI) (Wang and Meguid, 1997) to study the 

wave propagation induced by multiple actuators. Three aspects of the work are ex­

amined. The first is concerned with the determination of the effects of the geometry, 

the material mismatch and the loading frequency upon the resulting waveform, while 

the second is concerned with the effect of the interaction between actuators upon 

the induced wave propagation. Finally, the behaviour of the surface Rayleigh wave 

and far field waveform generated by the surface-bonded piezoelectric actuators are 

investigated.
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3.1 Form ulation of the Problem

Consider the plane strain problem of M thin piezoceramic actuators surface-bonded 

to a homogeneous and isotropic elastic insulator, as illustrated in Figure 3.1(a). The 

half length and the thickness of actuator n are denoted as an and hn, respectively. 

The position of the centre of actuator n is described by its coordinate in the global 

coordinate system, (y°, 0). A local coordinate system (yn, zn) will be used to describe 

actuator n with its origin at the centre of the actuator. It is assumed that the poling 

direction of the actuators is along the z-axis. A voltage between the upper and 

the lower electrodes of actuator n is applied, which results in an electric field A” of 

frequency lj along the poling direction of the actuator, E™ =  (V~ — V+)/hn. To study 

the resulting wave propagation, only the steady state response of the system will be 

considered. In this case, the displacement, strain, stress and electric fields of the 

system will generally involve a time factor exp(—iuit). For the sake of convenience, 

this factor will be suppressed and only the amplitude of the field variables will be 

considered.

3.2 W ave Propagation due to  a Single A ctuator

Let us first consider the case where only one actuator is attached to the host medium. 

The actuator will extend(contract) when an electric field is applied and consequently 

results in the deformation of the host elastic medium. Detailed description of this 

process involves the analysis of complicated local stress distribution around the actu­

ator. Because the thickness of the actuator used is very small in comparison with its 

length, the applied electric field will mainly result in a deformation along the axial 

direction. Accordingly, the actuator can be modelled as an electroelastic line sub­

jected to the applied electric field and a distributed axial force, r , as shown in Figure 

3.1(b), where r  is the interfacial shear stress transferred between the actuator and
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the host structure.

3.2.1 T h e dyn am ic actu ator  m odel

The attention will be focussed on cases where high frequency electric field is applied, 

which results in a wave propagation with the typical wave length comparable to 

the length of the actuator. In this case, the inertia effect of the actuator must be 

considered. According to the actuator model, the equation of motion of the actuator 

can be expressed as (Wang, 2000)

where pa is the mass density of the actuator. The axial stress in the actuator can be 

expressed in terms of the axial displacement (it“) and the electric field (Ez) as

where E a and ea are effective material constants given in Equation (2.1.6).

The two ends of the surface-bonded actuator can be assumed to be traction free,

i.e.

Base on the actuator model and boundary conditions, the axial strain of the 

actuator for an applied r  can be obtained by solving Equation (3.2.1) as

- f  - +  T{y)/h +  pau 2uay =  0 (3.2.1)

-  -  e Ec'aJ-Jz (3.2.2)

ay = °> \y\ = a- (3.2.3)

(3.2.4)

where

(3.2.5)
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is the axial strain of a free actuator caused by E z and

Ez&a
£o =  k a -  u / c a, ca =  y jE a/pa (3.2.6)

with ka and ca being the wave number and the axial wave speed of the actuator, 

respectively.

3 .2 .2  E lastod yn am ic governing equation

The dynamic plane strain displacement field in a homogeneous isotropic elastic medium 

is governed by (Achenbach, 1973),

<9$ dty (9<f> chi'
Uy = +  Uz = ~d^~~f r j  (3-2 }

where $  and T are two displacement potentials which satisfy

(V2 +  K 2)§ = 0, (V2 +  fc2)T =  0 (3.2.8)

d2 d2
in which the Laplacian operator V 2 stands for +  —— and K  and k are two wave

ay1 oz1

numbers defined as

K  =  uj/ cl, k = lo/ ct

with cl and ct being the longitudinal and transverse shear wave speeds of the elastic 

medium, respectively.

An incident wave and/or an applied electric field will result in a wave propagating

in the elastic matrix. The general solution of the induced wave can be determined by

solving the governing equations using the Fourier transform with respect to y, which 

is defined in Equations (2.1.15) and (2.1.16), as

uy = - i s A ( s ) e - az -  (3B{s)e~Pz (3.2.9)

uz = —aA{s)e~az +  isB{s)e~^z (3.2.10)
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A(s) and B (s )  are two unknown functions of s, and a  and (3 are given by

Vs2 -  K 2 |s|>K
a = { f3 = <

- 1V K 2 -  s2 |s|<K

\Js2 — k2 |s|>k

(3.2.11)

—W k 2 — s2 | s| <k

which ensure that the induced stress field satisfies the radiation condition of the prob­

lem. The outgoing wave in the host medium should satisfy the following conditions 

along its surface,

J  <ry*(2/ ,0 ) = - t  \y\ < a ,q 0 1 0 .
< , <rz{y, 0) =  0 (3.2.12)
[ °yz(y, o) =  0 \y\> a

Making using of the general solution of uy and uz and the boundary conditions, the

unknown parameters A(s) and B(s)  can be determined in terms of r. Therefore, the

resulting dynamic strain in the host medium along the surface can be obtained as

sv(y,o)\host = [  —̂ 7 ^ - /  'K 0™ iG /-£)d£] (3.2.13)
2 ^  J - a V - Z  J-a

where fi is the shear modulus of the elastic medium, A0 =  2(1 — v) with v being the 

Poisson’s ratio, and

2 k2sB
m ' i y - Q = l  h 0[(2S» - ^ - 4 SW ] +1)5in8(!' “ {)<iS’ (3'2' 14)

The kernel of the integration in (3.2.14) becomes singular when (2s2 — k2 ) 2 — As2a/3 

approaches zero, which corresponds to the well-known Rayleigh wave speed. This 

singular property will be used in the following discussion to determine the behaviour 

of Rayleigh wave propagation.

In general cases, an actuator will be subjected to an incident mechanical wave 

induced by applied load or other actuators. The continuity of deformation between 

the actuator and the host structure indicates that

£av{y) = £v(y) + £l(y) \y\ < «< 2 = 0 (3 .2.15)

where ey is the outgoing wave and the superscripts ’a ’ and ’I ’ represent the actuator 

and the incident wave, respectively. By substituting Equations (3.2.4) and (3.2.13)
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into Equation (3.2.15), the following integral equation can be obtained

sin ka(a + y) f a f v
- q v  ---- -------  / cos ka(£-a)T(£)du  + qv / cos ka(£ -  y)T{£)d£

sin2fc0a J_a J_a

, r ^ R
J-a y - £

where

r(O m i ( y -€)<% =  £js(p) - £v  \ y \ < a (3.2.16)

7tE  -= E  a
q = W . ' E  = — i ' v = h

with E  being the Young’s modulus of the host medium. e1 is the strain of the incident 

field and ee  is the electric load given by (3.2.5).

Equation (3.2.16) is a first kind of singular integral equation. The general solution

of r  can be expressed in terms of Chebyshev polynomials, such that
00

T(y) =  ^ 2 c3Ti ( y / a) / V 1 - y 2/ a2 (3.2.17)
j =  0

rwhere cq = 0 due to / r(£)d£ = 0.
J —a

If the expansions in (3.2.17) are truncated to the N th  term and Equation (3.2.16) 

is satisfied at the following collocation points

V1 =  acos[^  _ 117rl’ ; =  1i 2, (3.2.18)

N  linear algebraic equations in terms of {c} =  { c q ,  c2, ■ • • , c j v } t  can be obtained as

[ A M  = {F}  (3.2.19)

where the matrix [A] is given by

oo ■ r ■ —1 Zl 00 /»7r. sin 7 cos rr v-^ / r— . „ ^
Au — — 7r > Cj  -------—j— +  qv > c,- / cos fca(cos9 — 7? ) cos( jO)ad

sin [cos-1»/'] ^  Jcos-iv

V '' nir-  i\i 2k2~s(3 sin[/ca(?/ +  1)1 R v ,+7T> Cj- /  P /(S ,V )(-------------------  — +  l )d s -g U ---- 1 ^ > C,-P?
io A0[(2s2 - k ) 2 -  As2a(3} sm(2ka) ^

In above equations,

rf = yl/a , K  =  ffa, k =  ka, ka = kaa, s = sa
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with J j (j = 1,2 ■ • •) being the Bessel functions of the first kind, a, (3  can be obtained 

from a, (3  directly, with s, K,  k being replaced by s, K,  k, respectively.

The loading matrix {F} is given by

From these equations, the unknown coefficients in {c}, which represent the inter­

facial shear stress r , can be determined. Based on the solution of interfacial shear 

stress, the singular behaviour near the tips of the actuator can be characterized by a 

shear stress singularity factor (SSSF), S, defined by

with subscript 'r' and 'V representing right and left tips of the actuator, respectively.

3 .2 .3  W ave propagation  and far field so lu tion

By inverse Fourier transform to the general solutions (3.2.9) and (3.2.10) and using 

the elastic constitutive relation, the general solutions of the induced wave can be 

obtained as

{F} = {eE} +  {e7} (3.2.20)

with

N

(3.2.21)N

Si = lim [y/2i7(a + y)T(y)]  =y^- a ^ J

N
— l)n H{(s, z) Jj(sa) cos(sy)ds j — 2n + l

l ) n+1 (s, z) Jj(sa) sin(sy)ds j  = 2n

(3.2.22)
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N

°z{y,z) =
j - 1

Cj

N

°yz(y,z) = J 2 l 
j=1

(—l)n / H ^ s ,  z )J j (sa )  cos(sy)ds j  =  2n +  1

(_l)«+ i / H ^ s ,  z)Jj(sa) sin(sy)ds j  = 2 n

f r°°
(—1)” / # 3(5, z) Jj{sa) sin(sy)ds j  = 2n +  1

Jo

(3.2.23)

(3.2.24)
rCC

(—l) n / H^(s, z)Jj(sa) cos(sy)ds j  = 2 n
Jo

where i / f  (s, z ) ,# ! ^ ,  z ),H^(s, z ) are given by

2s/3[(£;2 +  2a2)e~az — (2s2 — fc2)e_^z]
/ ^ ( s , z )  =

tf*(s,z)

H*(s,z)

(2s2 — /32)2 — 4s2a/?

2s/?(2s2 — k 2)(e~/3z — e~az) 
(2s2 — /?2)2 — 4s2a/3

4s2a/3e~“z — (2s2 — k2 )2e~i3z
(2s2 — /32)2 — 4s2a/3

Although the resulting waveform is very complicated as Equations (3.2.22)-(3.2.24), 

the fundamental behaviour of the propagating wave can be predicted from wave field 

far away from the actuator. For any far field point in the polar coordinate, its position 

can be represented as

y = R cos#, z = R sin 0 , 0 < 9 < it (3.2.25)

where R  denotes the distance from the center of the actuator, 6  denotes the position 

angle with respect to y axis. Making using of the relation of

e y = cos sy +  i sm sy

the typical stress wave (Jy(y, z) in the far field can be rewritten as

(3.2.26)

/c

-<

- /

2Nj Jj(sa)sp(k2 + 2a2 )e -R(asind- iscoae'> 
yyy’ ' v ' I (2s2 —/?2)2 — 4s2a/3

2NjJj(sa)s(3(2s2 -  fc2)e-.R(/3sin0-iscoS0) 

(2s2 — (32) 2 — 4s2aj3
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where aR represents the Rayleigh wave field due to the singularity of the above integral 

and

For R »  1, the Rayleigh wave aR, which will decay exponentially with the dis­

tance from the free surface, will be ignored in the far field solution. The existence of 

Rayleigh wave along the free surface will be discussed in the next subsection. For equa­

tion (3.2.27), since the exponential functions e- R(0sm^-'lscose) and e - R { a s m 9 - t s c o s 9 )  a r e  

rapidly changing functions compared with kernel functions in the above obtained in­

tegral, the dominant contribution to the integral comes from the neighborhood of 

the point s =  s0, where (/3sin6  — is cos#) or (asin#  — is cos#) is the smallest, and 

the accuracy of that dominant contribution improves with increasing R. The method 

of steepest descent (Achenbach, 1973) takes advantage of this fact by deforming the 

integration path so that it goes through the saddle point so along the path of steepest 

decent. For example, for the power function Ao(s) =  a  sin # — is cos #, the saddle point

s0 of function can obtained by =  0 as s0 =  K  cos 9. Around the saddle point,
ds

the function A0(s) has the form

Similarly, for function Ai(s) =  /?sin# — is cos#, the saddle point si =  A: cos# along 

the path of steepest decent can be found and the real variable ti can be introduced 

as

(3.2.28)

Since along the steepest decent path, the value of A0(s) — A(s)|i=So should be real and

positive, the real variable f0 can be introduced as

(3.2.29)

^(s ®i)̂ Â  (s)|s=81 = t l
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Therefore, the Equation (3.2.27) can be reduced to

r oo J

al(y ,z )  = GQ{s)\s=Soe -RX̂ ^  /  e- Rt\ ^ ) d t 0
o

r  (3 -2 -3 1 )7-00

where

2 NjJAsa)s/3(k2 + 2a2)e~R(-asirie- iscos9'>
° » 'S) -  '  (2s2 -  f t 1)2 -  4s2a/3 ■ <3-2-32)

2N}JAsa)s(5(2s2 -  k2)e~R^ s{ne~iscose">
° - W =  ' ----------- ' <3^ 33>

Based on the fact that £§ and t\ are real function, the direction of the steepest decent

path at s =  so and s =  si can be determined using

a rfi,[Ao(s)|s=Soe2̂ 0] =  0, a r3 [A'1'(s ) |a==Sle2,0“1] =  0 (3.2.34)

7r
as 9So =  9si = — —. Making use of the following relation

/
OO _

e~Rt2dt = ( - ) s  (3.2.35)
■OO ^

the analytical solution for far field elastic wave can be determined as

N
C7fy =

3 =  1

where

+  f 2 (j, 8 ) ^ e«kR-V}  (3.2.36)

9 iU ^ )  m 92(j,0)

m(9) =  (2K 2 cos2 9 — k2 ) 2 +  4/c3 sin 9 cos2 9\/k2 — K 2 cos2 9

)V k 2 cos2 9 — K 2 k cos 9 > K

—W K 2 — k2 cos2 9 kcos9 < K  

9i{j,0) =  —2K i J j ( K cos 9) cos9sm9\ /k 2 — K 2 cos2 9(k2 -  2 K 2 sin2 9)

9 2 {j,Q) — ‘2k2iJj(k cos 9) sin2 9 cos 9(2 k2 cos2 9 — k2)
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Similarly, the far field solution of stress components az and ayz can be obtained as
N

where

4  =  +  (3.2,37)
3 =  1

a>, =  (3.2.38)
j - 1

( - l ) r

N 2 = (
2 i

( - i  r

j  = 2 n +  1 

j  = 2 n

and

AW-#) -  w 1 /4° , s ) = h m ' m e )  = w  A ( i i* ) = 9Jm
9 z{j, Q) =  2K iJ j ( K  cos 0) sin 9 cos k2 — X 2 cos2 9(2K2 cos2 0 — fc2) 

9 4 {ji0 ) =  —2k2iJj(kcos9) sin2 9 cos9(2k2 cos2 9 — k2) 

9${j) 0) — —4iK 3J j (K  cos 0) sin2 0 cos2 0\/fc2 — K 2 cos2 9

9e{j)0) — ~ Jj{k cos 9) sin 9 {2ti2 cos2 9 — k2) 2

However, for some specific positions y — 0 and z — > oo, at which the phase of 

Aq(-z) and Ai(z) becomes zero, the method of steepest descents will break down. For

this case, an simplified solutions can be directly obtained as

E<
3 =  1 

N

E<
3 = 1

N

3 =  1

r Ŵ3(i) - i K z  , ^ ( j )

, ^ ( j )
av* =  2 ^ ciL— ~ e ^ e

(3.2.39)

(3.2.40)

(3.2.41)

where

^ i ( j )  =
2N j J j i K W k 2 -  K 2k2K  

(2K2 -  k2) 2
,W 2 (j) = 2 N M k ) , W 6 {j) = N 2Jj(k),

7 o 2N j J ^ V k ^ l O K  _  / 4
vy3{J)  -  --------777175---- 777-------- , vv4{ j )  =  ----(2K 2 -  k2) (2K 2 -  k2) 2
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3.3 R ayleigh W ave Propagation

Because of the existence of the free surface, the Rayleigh wave, which propagates 

along the surface, will be generated. This wave shows no decay during propagation 

for ideal linear elastic medium and, therefore, is useful for detecting surface defects. 

To evaluate the behaviour of the Rayleigh wave generated, let consider the stress ay 

along the free surface,
roo

(—1)" / f(s)Jj(sa)  cos(sy)ds j  =  2n +  1 
Jo

(3.3.1)
roo

(_ l)«+ i / f(s)Jj(sa)sin(sy)ds j  = 2n 
Jo

where

CJ

f ( s) =  4(fc2 -  K2W  (3 3 2)
/ U  (2s2 — k 2) 2 — 4s2a/3 1 j

It is well known that F(s) — (2s2 — k2 ) 2 — 4s2a(3 approaches zero at a special value

s =  sr , i.e. the integral becomes singular when s — > sr, where sr =  — , with cr
cr

being the speed of the Rayleigh wave, /( s )  can be rewritten around s =  sr as

f{s)  w , s — ♦ (3.3.3)

with

A(k2 — K 2 )sf3.
gr =  .. ; H\a=Sr 3.3.4

F  (s)

This singular term represents the contribution of the Rayleigh wave. The resulting 

Rayleigh wave can be separated from (3.3.1) using path integration method and the 

integral path shown in Figure 3.2. The resulting Rayleigh wave can be obtained as,

a*(y,  0) =  Aei{SrV+e) (3.3.5)

where

N { (-1)"* j  =  2n +  1
Ae l9 = ir'^2 cj 9 rJj(sra) < (3.3.6)

j=1 ( ( - l ) n+1 j  = 2n
with A  and 9 being the amplitude and phase angle of the resulting Rayleigh wave.
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3.4 Interaction betw een A ctuators

For the case where multiple actuators are involved, the interaction between actuators 

significantly affects the load transfer between the actuators and the host structure. 

Let us consider a system of M  surface bonded actuators. Because of the interaction 

between different actuators, the incident wave for actuator n includes, in addition to 

the initial incident wave wave from other actuators epn. Therefore, for actuator n 

subjected to an electric field E", the total incident wave can be expressed as (Wang, 

2000)

£ln = Sn + £n (3.4.1)

The total pseudo incident field of actuator n can be obtained by summing up

outgoing waves from all other actuators as
M

£y n = ^ 2 £ym{yn + yn-y°m ,0), n =  1, 2, • • • , Af (3.4.2)

sym used in Equation (3.4.2) can be expressed in terms of (c}m, using single actuator 

solution (3.2.19), as

% J y ,o )  =  [£ (y ,o )]{ c r  (3.4.3)

where

with

[T{t)] = {T1 ( t ) M t ) , - , T N(Z)} (3.4.5)

being the Chebeshev polynomials.

According to the single actuator solution given by (3.2.19), the Chebeshev polyno­

mial expansion coefficients of actuator n, {c}n =  {c", c%, ■ ■ ■ , c^}T, can be determined 

by

[A}n{c}n = {F}n (3.4.6)
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[A\n can be obtained directly from matrix [A] with k a. q, v being replaced by the 

corresponding values of actuator n, A;", qn, vn, respectively. And {F }n is the general 

loads at the collocation points of actuator n, given by

{ F }n = {sE}n +  w r (3.4.7)

i n  w h i c h  { z E} n i s  t h e  e l e c t r i c  l o a d i n g  a c t i n g  o n  c o l l o c a t i o n  p o i n t s ,  

yln = a n c o s [ - ^ — ^ -7 r ] ,  l =  

a n d  {eJ}n i s  t h e  l o a d i n g  i n d u c e d  by t o t a l  i n c i d e n t  w a v e ,  g i v e n  by

(3.4.8)

jr'* —e E j  -
C O s K v i  Tn e :
cos k

P"4/ 1' —-------— fr)3
7 n  ’ 3 c n E n ^71

(3.4.9)

with rjl = y{ /an.

Substituting (3.4.1), (3.4.2), (3.4.7) and (3.4.9) into (3.4.6), the following algebraic 

equations can be obtained,

M

[A]"{C}" -  ] T [ Q P re{c; r  =  N ] n +  [Qo]
m^n

(3.4.10)

where [Q]mn and [Q0]n are given by

[Qo]n =
E r

M l

K M )  1
K M n )\

KM)}

(3.4.11)

and

\ r \ \m n  _____  a
M  “  e n E n

[R M n  + r f n - r L M  

[Rmivl +  Kn ~ VL  0)] (3.4.12)

[R m ( V n  + V n ~  V ™ , 0 )}

where rĵ  — y°/an. The Chebyshev polynomial expansion coefficients

{c}n can be determined by solving linear equations (3.4.10). The resulting wave prop­

agation can be obtained by superimposing the wave generated by different actuators.
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Especially, the resulting Rayleigh wave can be determined as:

M

<r*(y, 0) =  Aei(-SrV+e) =  A kei{Sry- SrV̂  (3.4.13)
fc=1

where A  and 9 are the amplitude and phase angle of the resulting wave, and

( - l ) " i  j  = 2 n + 1N

A k = i r Y cj9rJj{srak)
3 =  1

(3.4.14)

(-1)™+! j  =  2 n

with c ■ being the Chebyshev polynomial expansion coefficients corresponding to ac­

tuator k, given by (3.4.10).

3.5 R esults and D iscussion

This section will be devoted to the discussion of the load transfer from piezoelectric 

actuators to the host structure and the behaviour of the resulting wave propagation 

under different geometric and loading conditions.

3.5 .1  V alidation  o f th e  M odel

To verify the validity of the current method, consider first the quasistatic behaviour 

of actuators bonded to an elastic host medium. The PZT-4 piezoelectric actuator is 

used and the host medium is assumed to be 

Host medium

E  =  2.64 x 10lo(Pa), v =  0.3

Figure 3.3 shows the normalized interfacial shear stress distribution caused by a single 

actuator, r* =  t / ct# ,  <tb — eaEz for the case where v — a/h  =  20, q — i:E /2Ea =  0.5. 

The result is compared with that obtained from finite element analysis using ANSYS. 

In the current analysis, forty terms in Chebyshev polynomial expansions have been
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used. In view of the excellent agreement observed between the two solutions, the 

number of terms used is retained for the remainder of the study.

Figure 3.4 shows the comparison of the normalized local stress distribution t*z = 

Tyz/crs in the host medium (z = 0.5a) with that from finite element analysis using 

ANSYS for cases where two surface-bonded actuators of equal length are involved, 

with v =  a / h  =  20, q = 0.5 and 2e =  0.5a, 2e being the distance between the two 

actuators. The comparison indicates that the current model can provide reasonable 

prediction of the stress field due to interacting actuators.

3.5 .2  D yn am ic Load Transfer

Figure 3.5 shows the normalized dynamic shear stress distribution r* =  r / a B along 

the interface between an actuator and the matrix for the case where v = 20, q = 0.5 

and pa/Ph  =  1, with pa and pB being the mass density of the actuator and the host 

medium, respectively. The loading frequency (ka) shows significant effects upon the 

load transfer, as evidenced by the increase of the stress level in the region of y = 0.1a ~  

0.7a with increasing ka.  Similar phenomenon is observed for the dynamic interfacial 

stress caused by two surface-bonded actuators of the same length, as depicted in 

Figure 3.6 for the case where 2e =  0.5a, with 2e being the distance between the 

actuators.

Figure 3.7 shows the effect of the material mismatch upon the dynamic interfacial 

stress distribution for the case where ka  =  10, v = 20, and pa/ P h =  1. A higher stress 

concentration is observed for lower material combination q, corresponding to a stiffer 

actuator. This result indicates the need to properly select the material combination 

to increase the actuation efficiency and, at the same time, not to adversely affect the 

local stress distribution.

Another interesting issue is the local stress field around the tips of the actuators. 

The variation of the normalized SSSF S* =  S / a By^ra of a single actuator with
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the loading frequency ka  is depicted in Figure 3.8 for the case where v = 20 and 

P a / P H  — 1- It is observed that the material combination q has significant effects upon 

the singular stress at the tip of the actuator. It is interesting to note that S* is not 

sensitive to the loading frequency until ka approaches 15.

Figure 3.9 shows the dynamic S* at the right tips of two surface-bonded actuators 

of equal length subjected to an electric field E z of frequency to for the case where 

q = 0.5, v = 20, pa/Ph  =  1 and 2e =  0.5a. The interaction between the actuators 

increases the stress singularity at the inner tips of the actuators (the right tip of 

the first actuator) for ka  < 4. For the outer tips of the actuators( the right tip of 

the second actuator), S* is close to that of the single actuator solution for the lower 

frequency (ka  < 2). However, for higher frequency (ka > 2), significant interacting 

effect is observed.

Figure 3.10 shows the dynamic S* at the right tips of three actuators of the same 

length subjected to an electric field E z of frequency u> for the case where q =  0.5, 

v — 20, pa/pH  =  1 and 2e =  0.5a. For lower frequencies (ka  < 2), S* of the first 

actuator is close to that of the second. S* of the third actuator is similar to that 

at the outer tips of two interacting actuators, as shown in Figure 3.9. Those results 

indicate that the interaction effects of the first actuator upon the third one is very 

small and can be ignored.

3.5 .3  R esu ltin g  W ave P rop agation

Figure 3.11 and Figure 3.12 shows the amplitude of the resulting elastic wave from 

a single actuator a* =  <jv/<jb and t*z — t vz/(jb in the matrix for the case where 

ka — 3.0, v =  a / h  — 20, q =  0.5, pa/ Ph  =  1- High stress concentration can 

be observed around the tips of the actuator. The stresses will be reduced with the 

distance from the actuator and eventually generate a Rayleigh wave, which propagates 

with a constant amplitude along the surface of the matrix.
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The stresses a* and t *z, generated by two actuators of the same length, are de­

picted in Figure 3.13 and Figure 3.14, respectively, for the case where ka — 3.0, 

q = 0.5, v — 20, pa/Ph =  1 and 2e =  0.5a, with 2e being the distance between 

the actuators. Comparing with the result of the single actuator, more complicated 

waveform is generated. Similar to the single actuator case, a wave propagating along 

the surface can be observed, which becomes the Rayleigh wave eventually.

Rayleigh wave propagation is characterized by (3.3.5) and (3.4.13). Figures 3.15 

shows the amplitude of the resulting Rayleigh wave ay* =  o^/ctb for the case 

ka — 3.0, q =  0.5, v =  20, pa/ Ph  = 1- It is interesting to mention that both 

the position of the actuators and the loading frequency have significant effects upon 

the the amplitude and phase angle of the resulting wave propagation. For example, 

for the case where 2e — 0.5a and ka = 2.0, the amplitude of the Rayleigh wave re­

sulted by two actuators is about two times of that of the single actuator. However, 

when loading frequency is increased to ka  = 5.0, the amplitude of the Rayleigh wave 

resulted by two actuators is smaller than that of the single actuator. Although the 

resulting amplitude of the Rayleigh wave is low for lower frequencies (ka < 1.0), 

significant increase in <jy can be achieved by using a higher frequency (ka = 2.0, for 

example). Proper combination of the loading frequency and the size and position of 

the actuators is important in increasing the amplitude of the resulting Rayleigh wave. 

For ka  =  5.0, two actuators with 2e =  0.5a will result in a high amplitude, which will 

be significantly reduced when 2e =  1.0a is used.

3 .5 .4  Far field waveform

The wave field far away from the surface bonded actuator, a/* = a / / ctb, is in­

vestigated to show the basic properties of the generated wave propagation. Figure 

3.16 shows the comparison of the obtained asymptotic analytical solutions, which are
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given in Equations (3.2.36)-(3.2.38) and (3.2.39)-(3.2.41), with those from the numer­

ical results from Equations (3.2.22)-(3.2.24) for the case where ka = 4.0, q — 0.5, 

v  =  20 and pa/ Ph — 1- The very good agreement shows the accuracy of the obtained 

asymptotic solutions. Figures 3.17 and 3.18 show the far field by using the obtained 

asymptotic solution for the case where q = 0.5, u =  20 and pa/ Ph  — 1- The loading 

frequencies ka = 4 and ka = 10 are used, respectively. It can be found that the main 

energy of wave field is along the direction 6  — 40 — 45°. It is interesting to mention 

that the direction of the main energy of far field is not sensitive to the change of the 

loading frequency, which shows the basic properties of generated wave propagation 

by surface bonded actuator with the current actuator input.
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Figure 3.1: Actuators surface-bonded to an elastic medium
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Figure 3.2: Path of integration
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Figure 3.3: The normalized interfacial shear stress
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Figure 3.4: The normalized shear stress distribution
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Figure 3.5: The normalized interfacial shear stress: one actuator
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Figure 3.6: The normalized interfacial shear stress: two actuators
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Figure 3.7: Effects of material combination upon the interfacial shear stress
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Figure 3.8: The shear stress singularity factor S *: one actuator
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Figure 3.9: The shear stress singularity factor S *: two actuators
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Figure 3.10: The shear stress singularity factor S*: three actuators
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Figure 3.11: Normalized local stress distribution a* caused by one actuator

0.14

0.12 H

0.1 -\
0.08

0.06 -4
0.04

J
0.02 H

z/a

-10

-10

Figure 3.12: Normalized local stress distribution r* caused by one actuator
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Figure 3.13: Normalized local stress distribution a* caused by two actuators
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Figure 3.14: Normalized local stress distribution t * caused by two actuators
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Figure 3.15: The amplitude of the resulting Rayleigh wave
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Figure 3.16: The comparison of the far field stress distribution a I*
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Figure 3.17: The far field stress distribution a ?* in the host medium: ka = 4

Figure 3.18: The far field stress distribution in the host medium: ka =  10
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C hapter 4 

W ave P ropagation  w ith  E m bedded  
A ctuators

This chapter provides a theoretical analysis of the elastic wave propagation in an 

elastic medium induced by embedded piezoceramic actuators under dynamic electric 

loads. A modified actuator model involving the deformation in both the transverse 

and longitudinal directions of the actuators is developed to study the wave propaga­

tion induced by multiple actuators. The formulation of the problem is established 

using the analytical solution of the single actuator problem and the Pseudo-Incident 

Wave method (PsIW) (Wang and Meguid, 1997). The resulting wave field is deter­

mined by solving the resulting integral equations in terms of the interfacial shear 

stress and transverse displacement of the actuators. Numerical simulation is con­

ducted to evaluate the effects of the geometry, the loading frequency, and the interac­

tion between actuators upon the resulting wave propagation. Especially, the far field 

waveform is obtained to show the basic properties of the resulting wave propagation.

4.1 Electrom echanical behaviour of an actuator

Consider the two-dimensional plane strain problem of M  thin-sheet parallel piezoce­

ramic actuators subjected to applied electric fields, which are embedded in a homoge­

neous and isotropic elastic insulator, illustrated in Figure 4.1. Plane strain model is
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used to simulate the cases where the width of the actuator is large in comparison with

of the host structure. Therefore, the host structure is modelled as an infinite medium. 

The half length and the thickness of actuator A n are denoted an and hn, respectively. 

The position of the centre of actuator A n is given by z°) in the global coordinate 

(y,z).  A local coordinate system (yn, zn) is used to describe actuator A n with its 

origin at the centre of the actuator. It is assumed that the poling direction of the 

actuator is along its thickness. A voltage between the upper and the lower electrodes 

of actuator A n is applied, which results in an electric field of frequency oj along the 

poling direction of the actuator, E z = (V~ — V+)/hn. For the steady state response 

of the system discussed in this paper, the time factor exp(—icut), which applies to all 

field variables, will be suppressed.

4.1 .1  M od ellin g  o f  th e  em b ed d ed  actuator

When an electric field is applied to an actuator along its thickness, the actuator will 

be deformed in both the axial and transverse directions. Because of the continuity of 

deformation between the actuator and host medium, complicated dynamic stress field 

will be generated in this material system. Wang (2000) developed a one dimensional 

actuator model to consider dynamic load transfer between actuator and the host 

medium. But in this model, the transverse deformation is neglected. In the current 

study, the effect of transverse strain s°z will be included. In this modified model, it is 

assumed that the stress and strain components cr“, <j“, e“, eaz and displacement are 

uniformly distributed across the thickness, and the actuator can be regarded as a one­

dimensional electromechanical element. The coupled electromechanical behaviour of 

an actuator can be described by the following general constitutive relations

its length. The dimension of the actuator is assumed significantly smaller than that

(4.1.2)

(4.1.1)
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where c“x, d^, Cg3, e^ , and ê g are elastic and piezoelectric constants of the actuators, 

and £ y ( y )  and £ % { y )  are the axial and transverse strains of the actuator.

According to this model, the interfacial normal and shear stresses transferred 

between the actuator and the host medium can be replaced by distributed body 

forces acting along the actuator, as shown in Figure 4.2, in which, r  and az represent 

the interfacial shear and normal stresses transferred between the actuator and the 

host medium. The axial and transverse deformations of the actuator are governed by 

the following equations

dcr“ „
+ r{y)/h + pauj uay =  0, (4.1.3)

n / \ U “ +  — U a ~
e“(y) =  — - fe-  > (4-1.4)

with pa being the mass density of the actuator, uaz+, ua~ being the displacements at 

the upper and lower surfaces of the actuator and h being its thickness.

In the current model, since all the load transfer between actuator and the host 

medium can be attributed to t , the two ends of the actuator can be assumed to be 

traction free, i.e.

a.“ =  0, \y\ = a.

By making use of the constitutive relations and boundary conditions, the axial 

strain and the transverse stress of the actuator can be obtained in terms of r  and

ut+ — vft as

£y(y) = £e (v ) -  [  cos ka(£ -  y ) ^ - d ^
J - a  ^ 1 1

V l d n a u  / - . ~ a M m  (“ 'L5)

K ( « )  = M v )  + cos _ a R

p ^ co8 ka^ ~ y ^  + ^ uz+ ~ uT )  (4-L6)
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with ka and ca being the wave number and the axial wave speed of the actuator given

by

ka = u / c a,Ca -- ^ C l J p a (4-l-7)

In Equations (4.1.5) and (4.1.6),

P{y) =  r(y) + h c h (u®+ -  ua~),aE(y) = ca31sE(y) -  e%zE z (4.1.8)

and

=
ch  cos kaa

is the strain caused by the free vibration of the actuator.

4 .1 .2  D eform ation  o f th e  h ost m ed ium

According to this model, the deformation of an actuator will result in an interfa­

cial shear stress r  and a transverse displacement uaz+ — ua~ =  uz(y,0 +) — uz(y, 0~). 

Correspondingly, the host medium will have a crack-like opening at the site of the 

actuator. The deformation in z-direction can be represented by the rate of the change 

of uz(y, 0+) — uz(y, 0“ ) along the direction of the actuator

r (y) =  - u*(2/>°- )]> \v\ < a (4.1.10)

and the displacement in y-direction is continuous across the thickness of the actuator,

i.e.

u. (:y,0+) = u y(y,0-).  (4.1.11)

In addition, the interfacial shear stresses at the upper and the lower surfaces of the 

’crack’ should satisfy

ayz (2/,0+) -  cryz(y,0 ) =  r, \y\ < a. (4.1.12)
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For the whole plane problem, general solutio of deformation in the host medium 

can be determined by solving the governing equations (3.2.8) using Fourier transform 

as

! 4>+ =  A +(s)e~az 4/+ =  B +(s)e~Pz z > 0

(4.1.13)

4>_ =  A~(s)eaz 41 _ — B~(s)e/3z z < 0

>l+(s), B +(s), .A_ (s) and B~(s)  are four unknown functions of s. Making using 

of the general solution (4.1.13) and the above boundary conditions, the unknown 

parameters A+(s), B +(s), -A~(s) and B~(s)  can be determined in terms of r  and the 

’crack’ opening uz+ — uaz~. Therefore, the resulting dynamic strain and stress in the 

host medium along the surface can be obtained as

£v(y,o)\host = - - ^ [ f  r(0«i(y - + y J  T ( C ) M y  -  (4.1.14)
<7z{y,0)\host = —^ [ J  T{Qn2(y -  Qd£ + fi J  T{^)ns{y -  (4.1.15)

where y  is the shear modulus of the host medium and

1 sis2 — a(3) ,
n\{y -  Q = J  -------------sin s ( £ - y ) d s  (4.1.16)

1 f aos(- 'y  + 2 ap)  . /A ,
{ y - 0  = - j ^ l  ------- -------- sm s ( ( - y ) d s  (4.1.17)

, ^  1 { j 2 ~  ^s2a(3)
n 3 ( y - Q = M  ----------------- sm s(£ — y)ds (4.1.18)K j o sa

with 7  =  s2 +  (32.

The ’crack’ opening T and the shear stress r  can be determined from the continuity 

conditions between the actuator and the host medium, given by

£y(y) = £y(y , 0 ) + 4 (y > 0)’

<raz(y) = <Jz(y,0) + orIz (y,0), \ y \ < a  (4.1.19)

where sv(y, 0), az(y, 0) are the outgoing waves given by (4.1.14) and (4.1.15) and

the terms with superscripts 'a' and T  represent the actuator and the incident field,
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respectively. By substituting Equations (4.1.5), (4.1.6), (4.1.14) and (4.1.15) into

Equation (4.1.19), the following integral equations can be obtained

1
2 lT/I ,

sin ka(a + y) f a 
he^  sin 2 kaa J_a

-  0  + -  O R

[  [T(0  +  c3ir (0] cos ka(£, -  a)d£

+  h ^ J  [T{°  + Ĉ r(01 C°S ka{  ̂~ y)d* =  £e{v) ~ ^ 0)l ^ < a t4'1'20)

~ h  T r m«/ —(X «/ —Cl

c$i sin ka(a + y)
hc^  sin 2kaa [r (0  +  c3ir (0] cos ~ a)d£

+ Ju? /  [r ^ )  +  c3ir ( 0 ] cos^ a ( ^ - y ) ^  =  (ji j ( y ) - crf(y .0)) |S/| < a (4.1.21)

Equations (4.1.20) and (4.1.21) involve a square-root singularity for both r  and 

F at the ends of the actuator. Therefore, the general solutions of r  and T can be

expressed in terms of Chebyshev polynomials as

00 00

r (y )  =  Y ^ A j T j { y / a ) / ^ l  -  y 2/ a 2,T{y)  =  ^  B j T j i y / a ) / ^  1 -  y 2/ a 2 (4.1.22)
j =0 j=0

with Tj being Chebyshev polynomials of the first kind and Aj  and Bj  being unknown 

constants to be determined. The continuity of displacement uz(y, 0) for \y\ > a 

indicates that / T(y)dy — 0, i.e. Bo = 0. If the expansions in (4.1.22) are truncated
J —a

to the N th  term and Equations (4.1.20) and (4.1.21) are satisfied at the following 

collocation points along the length of the actuator, which are defined in (3.4.8), 2N

linear algebraic equations in terms of {c} =  {A0, A1: • • • , A n ~i , B i , B 2, • • • , B N}T can

be obtained as

[<2M  =  {F}  (4.1.23)

where

4-i(V) Af \ v l)
_ 4 - i  fa1) 4 4V ) .
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with

4 V )  = _ g 2 + f  ^ b - c o s - v i  r P}(- _ F-±P)ds
4:/ik sm tcos 1V1] 2f i k  Jo 3 a  2

v r  rT—/ « U7rsin[£;a(?7( +  1)1 _9
/  cos[£;0(cos# — r?)] cos(j9)dd . — Pf

ii J cos-17]1 sin(2/ua)

Af - ji!^ifc” v’;!1 - A  r  P}(̂ ){n-i^l±Mi+r )ds
2 k sm [cos V ] 2 k Jo «

VCW f V rT— /  ̂ 7m / VTTCioSilllka(rf T 1 ) 1  n
+~K~ /  cos [£;a (cost? — 77)] cos(j9)dO-------------- ) 1 — ^ P f

1̂1 Jcos- 1^ 1 cn sin(2fca)

^  r  P i (5, ,)(t ( - ^ - ^ ^
J 2fc sin [cos-1 V] 2 k Jo 3 a

vc3i /’ir ri—/ „ 1 m , .„v U7rc?, sinf/c-T??* +  1)1+ —  / cos[fca(cos0-77)]cos(j0 )d0  , T  Pj
11 J cos 1T}1 1̂1 ®î ( a)

a (4) =  v {K  - k  ) sin [j cos 1 rf] ± v { d ?3) 
3 “ 2 sin [cos

 ̂t/1 ca ^  Ẑ71" __
j —pp H----- jp— / cos[/ca(cos# — 77*)] cos(jd)d9

V  J ^11 J  cos-1  r)1

. 4
k Jo 2as

'UC33 sin [j COS V ]  _  wr(c?3)2 sin [&„(?/ +  1)] 2 
j  c?! sin(2£;a) J

a  and (3 can be obtained from (3.2.11) with s, K  and k being replaced by s, K  and 

k, respectively. In these equations,

rf =  yl/a, K  = Ka, k = ka ka =  kaa, s = sa, v =  —.
h

The general loading {F}  used in equation (4.1.23) is given by

Fi=  £E{rf) -  e1 ^ 1, 0) l = l , 2 , - - - , N

Fl+N = aE{rf) -  cr1 (rjl,0) I =  1, 2, • • • , JV (4.1.24)

From Equation (4.1.23), the unknown coefficient {c} and, therefore, r  and T can

be obtained. The outgoing wave of an actuator is governed by its interfacial stress r
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and its ’crack’ opening F, which can be obtained in terms of the coefficients of the 

Chebyshev polynomial expansion, {c}, as

-j roo  N

**(?/,*) = - 7 3  Ht t s>zn) P j ( s > y ) d s - £ ' Z B j H*(s,z)P}(s,y)ds  (4.1.25)
j =0 J° ^ j=l J°

1 -  ^  ̂  / “C O  N  pQ Q

°z{y,z)  =  -T a  /  ^ 3e(5^ n)pj (s,y)ds -  7^  Y1 B 3 j  Hl(s ,z)P}(s ,y)ds  (4.1.26)
j = 0  J °  3 =  1

ayz{y, *) =  E  ^  r  H e5 (s, z)Pfds  +  E  Bi r  ^ e(s’ (4'L27)
j =  0 ' / °  j = l

where

H*(s, z) -  -  s(de~^z\  H*{s, z) = _ ^ E ± E l e-«bI +  2s/?e- /3|z|
2a 2as

2

# f ( s ,  z) =  - | l e- “iz| +  s ^ e - ^ l ,  tfT(s, z) =  - ^ - e “a|z| -  2s/Je^ 1*1 
2a  2a s

Hl(s ,z )  = s V Q|z| -  Hq(s , z) =  7 ( - e- “|z| 4 - e - ^ 1)

Pi ( s , y)  =  Jj { sa)
(—1)" sin (sy) j  =  2n +  1

( —l) n cos (sy) j  — 2 n 

It should be mentioned that in addition to the singular shear stress r  along the 

interface between the actuators and the host medium, the normal stress along the 

actuator will also be singular, which can be expressed as

crz = —p J —— [  . ^  dt; — y ( K 2 — k2) [  ^  +  higher order terms(4.1.28)
7ik1 2 J_a £ - y  J - a Z - y

The singular behaviour of the interfacial shear stress at the tips of the actuator 

can be characterized by a shear stress singularity factor (SSSF), S, defined by (3.2.21), 

can be expressed in terms of Aj  as being

N  N

Si — i/am E ( ~ Sr — \fcm  E  A? (4.1.29)
j=0 j—0
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Similarly, the singular behaviour of the normal stress az ahead of the actuator can 

be characterized by a normal stress intensity factor (NSIF), N, defined by

N r = lim[v/27r(a -  y)az\ 
y

Ni — lim [^27r(aTy)(Tz]
y —>—a

which can be expressed in terms of Aj  and Bj  as being

N

3 ^ 3

V } 3 =  0 j = l
/---  1 O Ny  CL7T r l  — a V   ̂ . v — ,

Nr =  2C1^ ) [— 2—  +
V '  3=0  j = 1

Following the method for the surface bonded actuator case by assuming,

(4.1.30)

(4.1.31)

(4.1.32)y =  R  cos 0, z =  R  sin 9, 0 < 9 < 2 tt

where R  denotes the distance from the center of the actuator, 9 denotes the position 

angle with respect to y axis, the approximation analytical solution for far field elastic 

wave can be determined by using steepest decent method as

N

a l  =
3=0

j 2 v K e i ( K R _ z
+

N

+  ^ 2 b A M b  0 ) }  

1

J 2 i r K  &i { K R - l
+  f A A  8 ) \

N

a z  =  ' 5 2 A A h ( h 8 ) \
3=0

J 2 n K  e i { K R-3L
] +  M i ,  8 ) \

N

+  Y ^ B j [ f 7 ( j , 9 ) ]

3=1

J 2 * K  e i { K R - K
+

N

=  ^ 2 A A f o t i , 8 ) \ l
3=0

l 2 r r K  e i (K R -  f )
+  f w ( j ,  8 ) y

J ^ e i ( k R - f t ] N 2

N

+  E B A f n ( j >  8 ) \ l
3 = 1

l 27rK  e i (K R ~ ^ )
+  f u ( j ,  8 ) ]

(4.1.33)

^  (4.1.34)

(4.1.35)
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where

i (2K 2 cos 92 — k2) cos 9 J j (K  cos 9) . 2 • 2
^-------- ------------- , f 2 {j ,0 ) = ik2 sin2 0 cos 0Jj(k cos 9)

i(k2 -  2K 2 sin2 9){2K2 cos 92 -  k2) Jj{K  cos 9)

2
(2K 2 cos2 9 — k2)| sin 9 \ J j { K  cos 9)

2K 2 cos 9 

f 4 (j,9) — — 2ik2 sin2 0 cos 9 Jj(k cos 9)

t  ( ■ n\ i{k2 - 2 K 2 cos2 9) cos 9 Jj{K cos 9) . 2 . 2
= ----------------------2-------- -------------= ~ %k sm 9 cos 9Jj (k cos 9)

, , i(k2 - 2 K 2 cos2 9)2J A K  cos 9) , , n l2  2 „ _ .,
f 7 (j,9) = --------------2i f 2cosg  , h { 3 , 0 ) = ^ik sm 9 cos9Jj (kcos9)

£ t ■ a\ t/ 2  2 /ii • f l i r / rx m  ̂ 7 • m (/F2 cos2 6> -  £;2)| sin#| Jj(/ccos6>) 
/<>(.?, 0) =  i f  COS 0|sin0|Jj(X cos0),/io(.7,0) —  ----------

f n ( j , 0 ) =  2

f u { j , 6 ) — (2K 2 cos2 9 — k2)\sin9\Jj(k cos9).

For some specific position y = 0 and z — > 0 0  where the steepest decent method 

will break down, an approximation integral solution can be obtained by solving the 

integral directly as

*  W U ) ^ .  , w 2 ( j ) , kzi „  M j ) -a f  =  -  2 (4.1.36)
j = 0 1^1 j = 1 \z \

<4 =  -  T T ^ ' l  -  (4.1.37)
j = 0 i = 1

<4 * =  -  ^ ^ “ -1 + f * E f l i [5T r 1e - K- +  2 ) h l e - * - ]  (4 ! 3g)
~ \z\ \z\ \z\ \z\j = 0  j = 1 1 1

where

K z = K \ z \, kz =  /c|z|, 

W i(j) =  W2 (j) = Jj(k)N},

W3{J) = Wi{3) =  ^  =  m ^ z ^ N h

W6 (j) = K 2J j (K )N 2, W7 (j) =  (2AT2 -  k 2)J j(k )N 2/2, 

Ws(j) = (2 K 2 -  k2) J j (K )N 2, W9 (j) = (2K 2 -  k2 )J3 (k )N2.
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4.2 M ultiple actuators

For the case where multiple actuators are involved, the interaction between ac­

tuators may significantly affect the load transfer between the actuators and the host 

medium, and, therefore, change the resulting waveform. The interaction effect can 

be simulated using a newly developed Pseudo-Incident Wave technique (Wang and 

Meguid, 1997).

For a specific actuator A n, the total incident wave can be expressed as

4 n = 4  + £Pyn (4-2.1)

Tzn =  (4-2.2)

where eQy and az are the mechanical incident waves due to external loading, e^n and ovzn 

are the unknown pseudo-incident waves from other actuators. The pseudo incident

field of actuator A n can be obtained by summing up outgoing waves from all other

actuators as

M

£yn = £ym{Vn + y°n ~  y°m. Zn ~  Zl ) , (4-2.3)
m^n

M

=  ^O zm iV n  +  y l  ~ y°m, 2° “  Z°m), (4.2.4)
rriŷ n

with n — 1, 2, - - • , M.

According to the single actuator solutions given by (4.1.23), the Chebeshev poly­

nomial expansion coefficients of actuator A n, {c}n = {A q, A” , - - - , A]y_1, 5 " , , • • ■ , B

can be determined by

[Q}n{c}n = {F}n (4.2.5)

where [Q]n can directly obtained from [Q] with ka, q, v, a , (3 being replaced by 

qn, vn, an, /?„, respectively, and

{ F T  =  U e T  + { f i T  (4.2.6)
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with { /e}" and { //}" being the applied electric load and the incident field at the 

collocation points of actuator A n given by

{ h Y

^ i V n ) £yn(yn)

znE(yl) 4 M )

ejs(3/n) < ( y Y )

aL (y i )

O n )

k ^ U v n )  j . 0 « )  ,

The incident wave { //}" of actuator A n can be obtained based on Equations

(4.2.1) and (4.2.2) as

M

{ //}n =  { iM n + ] C [ i * r n{ c r
m^n

(4.2.7)

where

{RoY

4 M )

e ° y M )

VnWn ) 
_0

M > , [R]mn = ^mn)]
\G ^  ̂{jjrnni -^m n )] [ f - ^  ^ ( l /m n j  -^m n)]

(4.2.8)

are the applied mechanical incident wave and the scattering matrix induced by other 

actuators at the collocation points of the actuator A n, with y lmn — y ln +  y° — y^,

z — z  ̂ — z®^mn *m
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In above equations, the matrices [Gw (y,z)],i =  1 ,2,3,4 are given by

o f  =  - j p  / ”  h ( * .  + W e - ^ d s

G f  =  ~  +2*0e-M]ds

° i;l = j f  ~

Substituting (4.2.6), (4.2.7) into (4.2.5), the following algebraic equations can be 

obtained,
M

[Q}n{c}n - Y , l R}mn{cr  = lfE]n + [Ro}n, n — 1,2, - ■ ■ , M  (4.2.9)
rriŷ n

from which {c}n can be determined. The total resulting wave propagation can be ob­

tained by superimposing the wave generated by different actuator which is expressed 

in terms of {c}” .

4.3 R esults and discussion

This section will be devoted to the discussion of the dynamic electromechanical 

behaviour of piezoelectric actuators embedded in an elastic medium under electric 

loading. Specifically, it is desired to determine the effect of different actuator param­

eters and the interaction between actuators upon the generated wave propagation in 

the host medium.

4.3 .1  S ta tic  load transfer

To validate the actuator model, consider first the quasi-static load transfer between 

the actuator and the host medium. The material constants of the actuator are as­

sumed to be PZT-4.

Figure 4.3 shows normalized shear stress distribution, r* =  t / u b , erg =  e^sEz, 

along the interface between the actuator and the host medium with different length- 

to-thickness ratio v =  a/h  =  5,10, 20, respectively, for the case where q =  vrp/c^ =
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0.14. A comparison is made with finite element results using the structural analysis 

software ANSYS. Excellent agreement is observed between the solutions even for a 

short actuator with v = 5.

Figure 4.4 shows the normalized normal stress distribution a* = oz/aB along 

the interface for the same case as presented in Figure 4.3. It is observed that with 

the decrease of v  the transverse stress a z increases, indicating that it is necessary to 

consider the effect of transverse deformation for short actuators. Comparison with 

the corresponding finite element results shows very good agreement.

To evaluate the effect of transverse deformation of the actuator, the shear stress 

a*z = OyzjoB in the host medium distribution along z =  0.5a, is shown in Figure 4.5 

and compared with the finite element result and that from a simplified line model of 

the actuator (Wang and Meguid, 1999), in which the transverse deformation of the 

actuator is ignored, i.e., T =  0. The comparison shows significant improvement of 

the current actuator model in predicting the local stress field.

4 .3 .2  D yn am ic load transfer

Figure 4.6 shows the normalized dynamic shear stress distribution r* =  t/c t#  along 

the interface for the case where v  =  20, q = 1.5, pa/P h =  1, with pa and pu  being 

the mass density of the actuator and the host structure, respectively. It is observed 

that, in the frequency range considered, higher shear stress level can be observed with 

increasing loading frequency.

Figure 4.7 shows the normalized dynamic transverse stress cr* =  ctz/(Tb along the 

interface for the same case as presented in Figure 4.6. It is found that the effect of 

the loading frequency upon the transverse stress a* is much stronger than that for the 

shear stress. Significant transverse stress is observed for high frequencies (ka = 12), 

for example). It should be mentioned that the existence of high transverse stress may 

result in a wave propagating mainly in the direction perpendicular to the actuator,
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which is similar to that generated by traditional piezoelectric transducers.

Another interesting issue is the stress concentration around the tips of the actua­

tor. Figures 4.8 and 4.9 show the normalized shear stress singular factor (SSSF) S* — 

S / ctb' / t̂ o, and the normalized normal stress intensity factor (NSIF) N* =  N / a By/^a 

for the case where v = 20 and pajpH =  1. Those results show the dramatic effects of 

the material combination, q, upon S*. It is interesting to mention that both S* and 

N* are not sensitive to the loading frequency. This result indicates that the variation 

of load transfer with loading frequency happens mainly in the interior region of the 

interface, which is away from the tips.

4.3 .3  In teraction  b etw een  actu ators

The interaction between actuators may significantly change the resulting load 

transfer and the waveform. Figure 4.10 shows the normalized dynamic interfacial 

shear stress, £T =  r / r sm9ie) 0f an actuator interacting with a collinear actuator of 

equal length. Tsmgle is the corresponding shear stress distribution of a single actuator 

and £r represents the disturbance of the shear stress due to the interaction. In this 

case, the two actuators are subjected to the same applied electric field E z, v = 20, 

q =  0.46, pajp h  =  1 and 2e =  0.5a, with 2e being the distance between the inner tips 

of the actuators. The shear stress increases significantly due to the interaction of the 

actuators, especially for relatively high frequencies (ha > 3) and the interior range of 

the actuator.

The effect of interaction between these actuators upon the transverse stress, =  

az/ a szmgle, is shown in Figure 4.11, with aszm9le being the normal stress distribution 

along the interface due to a single actuator. Unlike the shear stress, the interaction 

effect may be reduced with the increase of the loading frequency.

4 .3 .4  W ave propagation

Figure 4.12 shows the amplitude of <r* = azj a B in the elastic matrix caused by
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one actuator subjected to a harmonic electric field, located at \y/a\ < 1 and z /a  =  0, 

for the case where ka = 3.0, v — 20, q = 0.46, pa/pH = 1- In this case, recognizable 

wave propagation in both the axial and transverse directions can be observed. Figure 

4.13 shows the amplitude of a*z =  oz/<jb  in the matrix caused by the same actuator 

for higher loading frequency ka =  20.0. Significantly stronger wave propagation in z- 

direction is observed. This is believed to be caused by the higher transverse stress a z 

along the actuator-matrix interface, as shown in Figure 4.7. Detailed simulation for 

different loading frequency k, material mismatch q and actuator dimension h and a 

indicates that stronger wave propagation in the transverse direction perpendicular to 

the actuator can be generated by (i) using higher frequency loading, (ii) increasing the 

thickness or the length of the actuator while the same E z is applied, (iii) using higher 

material mismatch q. The interfacial transverse stress may play a more important 

role in generating high frequency wave propagation than that of the interfacial shear 

stress.

The normalized stresses a* — crz/<jB, &* — cry/aB caused by two collinear actuators 

of equal length is depicted in Figures 4.14 and 4.15 for the case where k a  = 5.0, v =  20, 

q — 0.46, P a / p H  — 1- The centers of the two actuators are at y / a  = —1.5, z / a  — 

0 and y / a  — 1.5, z / a  — 0 in the global coordinate system. Similar to the single 

actuator cases, stronger wave propagation characterized by higher amplitude of the 

resulting wave in z-direction can be observed. Different waveforms can be generated 

by adjusting the position and size of the actuators. Figure 4.16 shows <r* =  er2/<7b 

distribution caused by three equally spaced collinear actuators of equal length, for 

the cases where k a  — 10.0, v  — 20,  q — 0.46, and p a/ p H  = 1- The centers of the 

three actuators are at y / a  = —6.0,  z / a  = 0, y / a  = 0 , z / a  =  0 and y / a  = 6.0, z / a  =  0 

in the global coordinate system. Because of the symmetry of the problem, only 

the second and the third actuators are included in Figure 4.16. For this specific 

case, the interacting effect becomes very weak as evidenced by the almost symmetric

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



distribution of az around the third actuator. It should be mentioned that the current 

arrangement of actuators enables the generation of wave propagation in a larger area, 

in comparison with that by two actuators.

4 .3 .5  Far field w aveform

Figure 4.17 shows the comparison of a{* — from the obtained asymptotic

analytical solution with that from the numerical result for the case where k a  =  10.0, 

q — 0.5, v  =  20 and p a/ P h  — 1- The very good agreement shows the validate of the 

obtained asymptotic solutions. Figure 4.18 shows the wave field far away from the 

embedded actuator, cr(*, for the case where k a  — 4.0, q = 0.5, v  =  20 and p a/ P h  — 1- 

It can be found that the main wave energy propagates along z  direction. Figure 4.19 

shows the corresponding result for loading frequency k a  =  10.0. It is observed that 

the energy will mainly propagate along 2 direction and the focus range of the wave 

energy will be reduced with the increase of the loading frequency, which shows the 

basic properties of the far field waveform caused by using embedded actuators.
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Figure 4.1: Multiple embedded piezoelectric actuators
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Figure 4.2: Actuator model for embedded actuator
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Figure 4.3: The interfacial shear stress distribution: static state
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Figure 4.4: The interfacial normal stress distribution: static state
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Figure 4.5: The shear stress distribution
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Figure 4.6: The interfacial shear stress distribution: dynamic state
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Figure 4.7: The interfacial normal stress distribution: dynamic state
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Figure 4.8: The normalized shear stress singularity factor S*
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Figure 4.9: The normalized normal stress singularity factor N*
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Figure 4.10: The interaction effect upon the interfacial shear stress
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Figure 4.11: The interaction effect upon the interfacial normal stress

Figure 4.12: The stress distribution <7* in the host medium: ka = 3
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Figure 4.13: The stress distribution <7* in the host medium: ka = 10

Figure 4.14: The stress distribution a* in the host medium for two actuators
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Figure 4.15: The stress distribution a* in the host medium for two actuators

Figure 4.16: The stress distribution cr* in the host medium for three actuators
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Figure 4.18: The far field stress distribution a[* in the host medium: ka = 4
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Figure 4.19: The far field stress distribution in the host medium: ka = 10
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Chapter 5 

Elastic Wave Propagation in a 
Cracked Medium

Based on the results obtained in the previous chapters, the wave propagation in a 

cracked elastic medium induced by an embedded piezoelectric actuator is studied to 

determine the information of embedded cracks using a piezoelectric actuator/sensor 

system. The main objectives of this Chapter are to (i) develop a basic understanding 

of the effects of the crack upon the wave field generated by the actuator, and (ii) 

determine the characteristics of the crack using the information of scattering waves, 

which can be measured by a sensor system. A comprehensive theoretical description is 

given to investigate the dynamic behaviour between the actuator and crack based on 

the newly developed actuator model and Pseudo-Incident Wave method. The reversed 

scattering waves can be obtained by solving an elastodynamic problem using sensor 

signals as boundary conditions. The results are then used in an imaging technique to 

identify cracks.

5.1 Form ulation of the problem

A piezoelectric actuator embedded in a material can generate complicated elastic wave 

propagation, which depends on the geometry of the actuator, the loading frequency 

and the material mismatch between the actuator and the host medium (Wang, 2000).
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To explore the potential of using this type of wave propagation to identify damages, an 

important question to be answered is how to describe the resulting wave propagation 

in damaged medium and whether the generated wave can provide useful information 

for damage identification. The current study will be focussed on this issue, especially 

the interaction between piezoelectric actuators and cracks.

The problem envisaged is the plane strain deformation of a thin piezoceramic 

actuator embedded in an isotropic elastic medium with an arbitrarily located and 

oriented crack, as illustrated in Figure 5.1. Two rectangular coordinate systems (y, 

z) and (£, rj) are employed to characterize the actuator and the crack. The position 

of the centre of the crack is given by (yc, zc) in coordinate system (y , z). The distance 

between the centre of the crack and the centre of the actuator is e. The inclination 

angle and the orientation angle of the crack with respect to the y-axis are 9 and </>. The 

respective half-lengthes of the crack and the actuator are c and a. It is assumed that 

the poling direction of the actuator is along the z-axis. A voltage between the upper 

and the lower electrodes of the actuator is applied, which results in an electric field 

E z of frequency lo along the poling direction of the actuator, E z — (V~ — V +)/h,  with 

V~, V + and h being the electric potentials at the lower and the upper electrodes, and 

the thickness of the actuator. In this paper, the steady state response of the system 

is discussed. The corresponding time factor exp(—iut), which applies to all the field 

variables, will be suppressed and only the amplitudes of them will be considered.

In response to the applied electric field, elastic wave propagation in the host 

medium is generated, which can be described using the PsIW technique. The original 

problem, shown in Figure 5.1(a), can be decomposed into two subproblems shown in 

Figure 5.1(b) and 5.1(c). In subproblem (b) the actuator is subjected to the applied 

electric field and a pseudo-incident wave W f , while in subproblem (c) the crack is 

subjected to a pseudo-incident wave W f .  The pseudo-incident waves can be related 

to the outgoing wave from the actuator W°ut and the scattering wave from the crack
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w ; as

W„p =  W ‘ wr = w:ou t (5.1.1)

5.2 A ctuator-Induced W ave Propagation

Based on the superposition shown in Figure 5.1, the original problem is reduced to 

a single actuator problem and a single crack problem, which are coupled with the 

relation being given by Equation (5.1.1). These two problems will be discussed in the 

following subsections.

5.2.1 O utgoing  w aves from  th e  actuator

Consider now a thin actuator, subjected to an applied electric field E z and a pseudo­

incident wave W%, as shown in Figure 5.1(b). Based on the developed actuator model, 

the axial strain e“(y) and the transverse stress cr“(y) of the actuator can be obtained

in terms of r  and (u“+ — uz~) by conducting a dynamic electromechanical analysis of

the actuator element. The elastic field in the host medium can also be expressed in 

terms of r  and (uz+—uz~) through an elastodynamic analysis. The detailed discussion 

can be found in Chapter 4.

The continuity conditions between the actuator and the host medium can be 

expressed as

£y(y) =  er t(y.°) +  efa(y>°), (5 .2 .1)

<r“(y) =  <7“ *(y, 0) +  apa(y, 0), (5.2.2)

< + -  < -  =  (u t  -  u~z )°ut (5.2.3)

where superscript 'a', 'out' and 'P'  represent the actuator, the outgoing wave in 

the host medium and the pseudo-incident wave field, respectively. Making use of 

the results for e“ and az and the continuity conditions given in (5.2.1)-(5.2.3), the
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following integral equations for determining r  and (u“+ — uaz ) can be obtained

where £ya(y, 0) and <r̂ a(y, 0) are the strain and stress components caused by the 

pseudo-incident wave field at the location of the actuator.

By solving the integral equations, which involve a square-root singularity, us­

ing the Chebyshev polynomials of the first kind, the outgoing wave of the actu­

ator W°ut, which propagates in the host medium and is governed by the interfa­

cial stress r  and the transverse deformation F, can then be obtained in terms of 

{c} =  {cj, c{, ■ ■ ■ , cjv_l5 cf, cl , - -  - , c2n } t  as

~ 2~ J  iT(Oni(y -  0  + HiOMy -  OH

+ hdf1 J  tr ^  + c3ir ( 0 } coska { £ - y H  = £E{ y ) - £ y a(y,0), \y\ < a (5.2.4)
i r>

- i l  [r(0My -  0  + HiOMy -  OH -  J  r(0<J£

+ iT(0 + c3iI'{0}coska{^-yH = (7 E { y ) -<T^a(y,0), \ y \ < a  (5.2.5)

a°ut(y,z) = {[M\y ,z )]}{c}  

a°zut( y , 0  = {[M2(y,z)]}{c} 

^ \ y , 0  = {{M3(y,z)}}{c} >
u°yu\ y , z )  = {{M\y ,z )}}{c}  

u™t(y,z) = {[M5(y,z)}}{c}

(5.2.6)

where

M j(y , z )  =
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f -i roc

“ W o  +  j  =
M*(y ,z )  = {

noo ..2

I “ p / o  [ ^ e‘ “|z| -  2s/0e_/5wlp j?-jvds 7 =  ^ + 1 , . . . ^  

' £ £ ^ f l  /°°[s2e- w  _  2 e-/»i*i]p2_lds j = i , - - - , n

Mf{y ,  z) = <
pooJ  \ j { - e - a^  + e ~ ^ ) } P f _ Nds j  = N  + l , - - - , 2 N

+ fJ.e-P\*\]p*_lds j  = i

M f ( y , z ) = {

M H y , z ) = {

sgn(z)n  
k 2 .

poo

/ b H
10

’ 1 /“"r s2
1uk2 J0 L 2 a

-  n S L e~a\z\
■ k2 Jo 12  a

sgn{z)
y k 2 Jo 2

sgn(z)
k 2 J 0 [2s

with 7 =  s2 + (3 2.

5.2 .2  S catter in g  w aves by th e  crack

Consider now the elastodynamic behaviour of a single crack as shown in Figure 

5.1(c). The crack is assumed to lie on the £-axis with its centre coinciding with the 

origin of coordinate system (£,77). The crack is subjected to a pseudo-incident wave 

W f  with its boundary condition being

*€,,(£, 0) =  - 0 ^ ( 0  <r,(^,0) =  | e | <  c (5.2.7)

uf (e,0+) - ^ ( e , 0 - )  =  0 u7?(e,0+) - u 7)(e,0-) =  0 | £ | > c  (5.2.8)

where cr^ (£), cr̂ c(^) represent the stress components due to the pseudo-incident wave, 

and «$(£, 0+), it|(£, 0“ ), uv(£, 0+), ^ (^ ,0 “) are displacements in £ and 77 directions 

at the upper and the lower surfaces of the crack.
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Introduce the following dislocation density functions

=  ^ K ( C , ° +) -« e (C .° -)] . « (0  =  ^ K ( ^ , ° +) - u , ( ^ , 0 ' ) ]  (5.2.9)

which govern the stress field of the cracked medium (Meguid and Wang, 1995). Con­

ducting elastodynamic analysis of the cracked medium and making use of the conti­

nuity conditions of cr̂  and at 7) =  0 and the boundary conditions given in (5.2.7) 

and (5.2.8), the following singular integral equations in terms of functions m(£) and 

n(£) can be obtained,

f c m(w)  , f c , , f ° ° r ( s 2 +  f32) 2 - 4 s 2a/3 , r /
L  + 1 . m{w) L 1 - 11 sinis(!" - (>]dsdw

=  - 4,r(1g  . I f l <  c (5.2.10)

f c n ( w )  f c ( s 2 +  (32) 2 -  A s 2af3
I-

,  , fC , s f°° i(s +  P ) ~ 4s a(3 nl . r ,dw + J  n(w) J  ̂ [— ■ 2 _  k^ a l] sm[s(w-Z)\dsdw

E  "c

and

4,r(1 , l{| < c (5.2.11)

/ c pc

m(w)dw — 0, / n(w)dw =  0. (5.2.12)
■C J —  C

where E  and v are Young’s modulus and Poisson’s ratio of the host medium.

Since Equations (5.2.10) and (5.2.11) are square-root singular, m{w) and n{w) 

can be expressed in term of Chebyshev polynomials,

N d\   A  d2
™(u>) =  J 2T-2 Ti (w/ c)> n H  = • A J 2l-2Tj {w/c). (5.2.13)

7 ^  V 1 -  w2/c2 ^  V 1 -  w2/ c2

From the orthogonality conditions of the Chebyshev polynomials, Equation (5.2.12) 

reduces to d\ =  0 and d% — 0. If the Equation (5.2.13) is satisfied at N collocation 

points along the length of the crack

i l = c cos(~ ^ tt) , I =  1, 2, • • ■ , N  (5.2.14)
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The following 2N  linear algebraic equations can be reduced as (Meguid and Wang, 

1995)

(5.2.15)

[5] is a known matrix given as

m  =

with

, =  sin [j  cos"1 f°° -f2 - 4 s 2af3
J sin [cos-1 CJo 2{K2 -  k2)s(3

W )  o 

0 9j{vl)

i  }Pi (S,e )ds

a « ‘) = si" ir 1ii i  4 ”sm[cos J0 2( K 2 -  k2)sa

In above equations, {W }  is the applied load with

W    4vr(l V  ) / / f ( f l \  TJf  47t(1 — ; 1 n  ![/[,  o
^   ---------^ ^  (4 b = -------- ^ ^  (4 ), t =  1, 2, • • • , N (5.2.16)E

The scattering wave from the crack can finally be expressed in terms of {c?} =  

{d\ ,dl , ---  , 4 , 4 4  ••• ,d%} as

cc

= {[& ({ ,V)]}{d}

= {\R2(Z,v)}m 
< ^ ( 4 4  =  {[Ra{Z,v)}}{d} 

e f & v )  = {[^4( 4 ,4 } W  

^ c(4,t?) =  {[^5(4,h)]}{^} 

^ ( 4 4  =  {[tf6( 4 4 ] } M

(5.2.17)

where

' sgn(z)Xc 
k2

R)(y, z)  =  <

/*ooJ  [(s2 -  v a 2)e~a\z\ -  (a2 -  us2) e ^ ^ ] P j d s  j  = 1, • • • , N

Xc_ J ~ ( A VC?̂  s2\ -*\*\ _  2(1 -  v ) s (3 e -^ ]P 2_Nds j  = N  + l , - . - , 2 N
sa
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A sgn(z)c
P

p oo
J  7 (e “ Qlz| -  e ~ ^ ) P j d s 3 = 1 , , N

R2j(y,z) = S
- X{\ , 2—  f°°[— e~alzl -  4 s/3e~M}P?_Nds j  = N + l , - - - , 2 N  4k1 Jo as

fJ-sgn(z) 
k2

sgn(z)c
W ~

r°° --v

J  [s2e -a^ - ^ e - ^ } P j d s  j  = l , - . - , N

R4j{y,z)  = <
poo

~ 4 p ] q [ - ^ e' QW- / ?e_/3W]jPf- iv ^  J = N  + 1 , - - - , 2 N

sgn(z)c 
k2

R5j(y,z) =

f°° rw
/  [—a2e~a'[Z'[ +  j - e ~ ^ ]P jd s  j  = 1, • • • , N  

Jo 2

l ~ P  I  [~ 27 e"“'2' +  sPe~ ^ P1-Nds j  = N + l , - - - , 2 N

/ „ foo
2^ 21  -  4*” - " N i = i, • ■ • , »

sgn(2!)

where A

'  k2 j Q

E{ 1 -  „)

[7 ( - e- “lzl +  j  = N  + 1, • • • , 2iV

E
( l - 2 v ) ( l  +  v)'  11 2 ( l  +  i / ) '

5.2 .3  D yn am ic in teraction  b etw een  th e  actu ator and th e  crack

The dynamic interaction between the actuator and the crack may significantly 

affect the resulting waveform. Based on the Pseudo Incident Wave method discussed 

in the above section, as represented by Equation (5.1.1), the continuity condition
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between the actuator and the host medium, Equations (5.2.1) and (5.2.2) can be 

expressed as

eny(y) = e ? { v ) + e 7 M  (5-2.18)

<{y)  = < u\ y )  + < cc{y) (5-2.19)

where £yCc and <jszcc are the scattering wave from the crack, which can be determined 

from Equation (5.2.17) as

slcc(y,°) =  4 C(?’^ ) cos2^ +  £r ( ? ’^ ) sin2^ _ £ S ( ? ^ ) sin ^ COS(?!) (5.2.20)

a7c(y> °) =  <rf (£, rj) sin2 0 +  ^ c(?> V) cos2 <t> + rj)sin 2<t> (5.2.21)

with

£ — — e cos(</> — 0) +  y cos <fi, rj — e sin(0 — 0) — y  sin <f> (5.2.22)

Similarly, for the crack, the boundary condition, given in Equation (5.2.7), can be

rewritten as

< ^ (0  =  - < ( 0  (5.2.23)

^ ( 0  =  - < ( 0  (5-2.24)

where cr^*(£) and a°ut{0  are the outgoing wave from the actuator, given by

< “*(£, 0) =  (y, z) sin2 <f> + a°ut(y, z) cos2 <j> -  a™\y,  z) sin 2(f)

<^*(C> °) =  [<C*(i7> z) -  *)] sin ^ cos ^  +  al f ( y i  z) cos 24>

with

y = ecosO +  (cos<f>, z = e sin 8 +  £ sin <fi (5.2.27)

Substituting Equations (5.2.20) and (5.2.21) into Equations (5.2.4) and (5.2.5),

and Equations (5.2.25) and (5.2.26) into (5.2.10) and (5.2.11), respectively, results in

a system of coupled linear algebraic equations, representing the interaction between
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the actuator and the crack. The Chebyshev polynomial expansion coefficients {c} and 

{d} can then be determined by solving those algebraic equations. The total resulting 

waves in the host medium can then be obtained by superimposing the outgoing wave 

induced by the actuator and the scattering wave by the crack as

with £* =  (y — yc) cos <j> +  (z — zc) sin <f>, rj* — —(y — yc) sin 4> + (z — zc) cos cf>.

5.3 Crack detection  using scattering waves

To theoretically evaluate the possibility of identifying embedded cracks, the re­

sulting wave propagation due to an actuator interacting with a crack is further used 

to simulate sensor signals of a cracked medium in response to an electrically loaded 

piezoelectric actuator. ’Sensors’ are assumed to be arranged along z = z0 and be able 

to provide the displacement distribution. The displacements at the ’sensor’ locations 

given in the previous section are used as the sensor signals. Since the location and 

property of the actuator will always be known, the outgoing wave of the actuator can

= {a"*} +  { a-}  =  [K}{c] +  [T][L]{d} (5.2.28)

where

(y ,z) 
z )

VyziV’Z)

(5.2.29)

with

M l {y, z) 

[K{y,z)} = < M 2(y ,z ) 

I M 3(y,z)

\

(5.2.30)

and

m (5.2.31)
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be determined theoretically when the effect of the crack upon the actuator, which is 

of second order in nature, can be ignored. Therefore, sensor signals corresponding to 

scattering waves from cracks can be obtained by eliminating outgoing waves from the 

’measured signals’. In the following discussion, attention will be focussed on only the 

scattering wave from the crack.

After the displacements caused by the scattering wave from the crack along z =  zq 

are obtained from ’sensor signals’, a reverse process of scattering wave propagation 

will be considered. The conjugate of the displacement field along z = z0 is used as 

the boundary condition to generate a reverse wave propagation, which is given by

uv(y, zo) =  K c(y, 2o)]f , uz(y, zo) =  [< c(y, zo)]1 (5.3.1)

where superscript ' f  represents the conjugate of a complex number. Using the Fourier 

transform with respect to y and solving an elastodynamic boundary problem, the 

conjugate of the displacement field of the reverse wave can be obtained as

r r . , lt 1 sclt (52e -“l ^ l  -  ape-® *-^)  J ^
iuy(y,z )] = -  K  /   5-R-----------cos s (£ -y )d s d £  +tt J_x  J0 s2 -  a(J

^  I) s i n a { i_ y ) i s d i  ( 6 M )
J — oo Jo  ̂ Ot(3

r r( Mt s g n ( z - z 0) [°° t sa(e~a^ - ẑ  -  e - ^ z~z°\) . ^  ^  ,[uz{y,z)y = ----------------  / [u y  ------------------------------ s i n -  y)dsd£+
*  J -oo Jo s ~  a P

I  poo poo ( _  o e - a \ z - z o\ , 2 e - P \ z - z o \ )

~  /  K C] /   2 _  n cos s (£ -y )d s d £  (5.3.3)
J —oo JO

from which the reverse wave can be easily determined.

This reverse wave field is then used to identify cracks based on an imaging process. 

Berkout (1985) and Wapenaar et al. (1987) proposed that the image of a structure 

can be obtained by correlating the reverse scattering waves and the outgoing waves 

from the source. This method is modified in the current study to generate the image 

of cracks using the actuator-induced wave. For any frequency u>, following value, 

which represents the degree of correlation between scattering and outgoing (incident
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for crack) waves, is used to form the image of point (y, z),

< R (y , z ,u )  >= - ^ ^ i f { y , z , u j ) [ u mt(y,z,u})}i (5.3.4)

/ oo poo

/  H°ut(y, z,u>)[\Emt{y, z,u>)]^dydz denotes a scaling factor for
•OO J —OO

frequency ai, [uout(y, z , u>)]̂  denotes the conjugate of u {mt{y,z,uj) =  {u°ut,u°ut}, and 

Mr (y,2,w) =  { u ry , u rz }.

Multiple frequencies will be used to enhance the quality of the image. The final 

image of the structure could be obtained by superimposing the effect of all frequencies,

I (y ,z )  = R e ( ^ 2 <  R(y ,z ,U i)>)  (5.3.5)
i

where Re <> represents the real part of a function.

5.4 R esults and D iscussion

This section will be devoted to determining the effects of different crack parameters 

upon the generated wave propagation in the host medium and identifying cracks by 

using scattering wave signals.

5.4 .1  In teraction  b etw een  actu ator  and crack

To verify the validity of the current method, consider first the quasi-static interaction

between an actuator and a crack with c/a = 1.0, e/a  = 1.0, 9 — 90°, cf> =  0°. The

PZT-4 piezoelectric actuator is used and the material constants of the host medium 

are assumed to be,

Host medium

E  — 3.08 x 1010(Pa), v — 0.3.

Figure 5.2 shows the comparison of the normalized stress distribution crj* =  

ctJ/(Jb, &B — eaEz, along z /a  =  0.5 with that obtained from finite element anal­

ysis using ANSYS for the case where material mismatch q =  n f i / c aV] =  0.46, and the
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length-thickness ratio v = ajh  =  20. The excellent agreement observed between the 

two solutions shows that the proposed actuator model and the Pseudo Incident Wave 

method used are suitable for dealing with the interaction between the actuator and 

the crack.

Consider now the dynamic interaction between a crack and an actuator. The effect 

of the interaction upon the shear stress singularity factor (Wang, 2000) S* =  S/S°  

at the right tip of the actuator for different e /a  and loading frequencies is shown in 

Figure 5.3, for the case where c/a — 1.0, 9 =  90°, <f> — 0°, q = 0.46, v =  20 and 

Pa/Ph — 1, with pa and pB being the mass density of the actuator and the host

structure, respectively. The shear stress singularity factor (SSSF) S is defined as
N

S — lim[\/27r(a — y)r(y)] and can be expressed in terms of {c} as S  =  \fair V  c).
y —>a * ^  J

j = 0
S0 is the SSSF of the actuator in the absence of the crack. A significant increase of S* 

with the increase of the loading frequency for e < 3a can be observed. However, the 

interaction between the actuator and crack can be ignored when the distance between 

them is significantly greater than the length of the actuator and the crack, such as 

e > 5a.

5.4 .2  R esu ltin g  wave propagation

Figure 5.4 shows the stress component a°ut* = cr°ut/ gb of the resulting wave propa­

gation induced by the actuator in the host medium in absence of crack for the case 

where ka =  5, q = 0.46, v — 20, pa/Ph — 1- Significant decay of the wave field 

with increasing distance from the actuator can be observed. It is interesting to men­

tion, however, that the wave field is stronger in z-direction, which is perpendicular 

to the actuator. The result indicates that the piezoelectric actuator could effectively 

illuminate a sector around z-axis.

Figure 5.5 shows the scattering wave propagation a szc* = crszc/ a B in the host 

medium for the case where e/a = 10, c/a = 1, 9 = 90°, </> = 0° caused by the
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incident wave field given in Figure 5. Similar scattering wave propagation can be 

observed for asy° =  osy / ob- It can be found that stronger scattering wave propagation 

appears in the direction perpendicular to the crack. The scattering wave propagation 

asc* __ ascjaB jn mecJium for the case where the actuator and the crack are

perpendicular to each other with e/a = 10, c/a =  1, =  90°, 9 =  90° is depicted

in Figure 5.6. In this case, the strongest scattering wave propagates along ±45° 

directions with respect to z-axis.

5 .4 .3  Crack determ in ation

To demonstrate the feasibility of using actuator-generated-wave to identify cracks, 

simulation is conducted to image an embedded crack by using the numerical results 

discussed above as the ’sensor’ signals. The configurations considered are e /a  =  10, 

c/a = 1, 4> = 90°, 9 = 0°. The outgoing wave and u°ut generated by the 

actuator in the absence of the crack is used as the incident wave for the crack. The 

outgoing field near the position of the crack is shown in Figure 5.7 for ka =  18. 

When this incident wave reaches the surface of the crack, the scattering wave will be 

induced. Displacements at a total of 321 points evenly distributed along z0 = 0 within 

—16a < y < 16a are used to simulate sensor signals. Figure 5.8 shows the reversed 

scattering wave field ur — {uy, urz}. The convergence of the reverse scattering wave 

into the position of the crack (centred at y =  yc, z =  zc) can be clearly observed. 

This result is then used to get the image of the crack based on Equation (5.3.5). A 

series of frequencies ka = 3 +  (i — 1 ) ,i  =  1, • • • ,18 are considered to generate the 

image. Figure 5.9(a) shows the image for one frequency ka =  10, which contains 

the information of the crack but also significant pseudo images. Figure 5.9(b) gives 

the result for ka =  4,6, 8,10,12, showing improved quality of the image. Figure 5.10 

shows the image of the crack based on eighteen frequencies, ka =  3,4, • • • , 20. It 

can be observed that the position, size and orientation of the crack can be clearly
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identified. It should be noted that the image of the crack can be further improved by 

eliminating pseudo images which will change with the use of different frequencies.
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Figure 5.1: Decomposition of elastic waves in the cracked medium
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Figure 5.2: Comparison of the total resulting wave with FEM result
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Figure 5.4: Outgoing wave propagation generated by the actuator
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Figure 5.5: Scattering wave propagation induced by the embedded crack: 0 =  0°
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Figure 5.6: Scattering wave propagation induced by the embedded crack: 6 = 90°
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Figure 5.8: The reversed scattering wave field near the position of the crack
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Figure 5.9: The preliminary image of the crack: (a) based on one frequency result 
(b) based on five frequencies’ results
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Figure 5.10: The final image of the crack for harmonic wave cases
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C hapter 6 

Identification  of E m bedded Cracks 
U sing R everse E lastic W aves

As discussed in Chapter 5, in order to obtain good image results many different load­

ing frequency results should be used, which make this method numerical cumbersome 

and unfavorable for experiment work, ft should be noted that the relation of the 

transient signals and harmonic signals can be established by the Fourier transform, 

from which the summation process for harmonic signals can be replaced by analyzing 

transient wave signals directly. In this Chapter, a theoretical study of identifying 

multiple cracks in plane elastic media using transient surface signals induced by a 

dynamic excitation is presented. The focus of this study is to develop a quantitative 

understanding of the relation between surface signals and the location and character­

istics of embedded cracks. An elastodynamic analysis is first conducted using Fourier 

transform to separate the surface response due to scattering waves by cracks from the 

total surface signals. The obtained scattering wave signals are then used as boundary 

conditions to induce a reverse elastic wave propagation in the elastic medium. An 

imaging technique is used to determine the sizes, shapes and positions of existing 

cracks. Typical numerical simulation results are presented to show the feasibility and 

accuracy of the current method.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1 Form ulation of the problem

Consider a plane strain problem of a homogeneous isotropic elastic half plane with 

embedded cracks, as shown in Figure 6.1(a). A coordinate system (y , z ) is used to 

describe the elastic medium. It is assumed that surface displacements it™, u™ are 

known as sensor signals in —a < y < a, z — 0, which will be used to determine the 

sizes, shapes and locations of the embedded cracks. The half plane model is used to 

simulate the case where the cracks are small in size and, therefore, other boundaries 

are ’far away’ from them. To induce elastic wave propagation, a dynamic excitation 

is applied on the surface of the medium, represented by a force F(t)  as shown in 

Figure 6.1(a). As a result, an incident elastic wave U 7 =  (it7, it7} is induced. When 

the incident wave reaches the cracks, a scattering wave will be generated, which will 

propagate back to the surface of the medium. The resulting displacements along the 

surface are measured as surface signals U m =  {it™, it” }.

To separate the scattering wave by cracks from the total signal, the original prob­

lem will be decomposed into two subproblems b and c, as shown in Figure 6.1. Sub­

problem b represents the scattering wave from the crack U sc =  {usyc,uszc}, which 

travels in an infinite medium. Subproblem c describes the response of the half plane 

to surface loading, U s =  {uy,u sz}. In Figure 6.1(c), F(t) is the applied force and —a, 

—r  are the normal and shear forces corresponding to that induced by subproblem b. 

Correspondingly, the measured signal along the surface can be decomposed into

U m(y,t) = \Js(y,t) + U sc(y,t). (6.1.1)

U sc will be used to identify the characteristics of the cracks.

6.1 .1  Surface signals processing

To determine the scattering wave U sc from the cracks, displacements of the scattering 

field U sc along 2 =  0 are needed as the boundary condition for subproblem 6.1(b).
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This boundary condition can be determined theoretically using measured signals U m 

by conducting a detailed elastodynamic analysis.

The dynamic behaviour of a homogeneous isotropic elastic medium under plane 

strain deformation is governed by the following wave equations (Achenbach, 1973)

1 <92<f> „ 1
* * - ? « = " •  v * - s ^  =  ° «“ •»>

1 , T 1 • r-7? 1 r  d & . , /A +  2awhere the Laplacian operator V stands for —— +  —— with c l = \  --------- and
oy1 ozz y p

ct =  , — being the longitudinal and transverse wave velocities of the elastic medium,
P

respectively. $  and T are two complex displacement potentials, from which displace­

ments can be determined,

<9$ (911/ <9$ chi'
Uy = +  a J ’ Uz = ~d^~~d^  ( -L3)

Fast Fourier Transform (FFT) with respect to time t and Fourier Transform (FT) 

with respect to y will be used in the current study, which are defined by

= jf E /(*) = E fF̂ y “kt (6-1.4)N
n = 0  k = 0

and
1  POO POO

g(s) = ^  J  g(y)elsvdy, g(y) = J  g{s)e~lsvds (6 .1.5)

2tt
where the superscript ’F ’ represents FFT, and ’ represents FT. ujk = tn =

n A t  with A t  being the time step and N  being the the total number of the time steps

used in FFT.

Applying FFT and FT to (6.1.2) results in

f g  + {e  -  ,2 )4  =  0, + (K* -  s*)4 =  0 (6.1.6)

C0 UJ
where k =  — and K  = — are two wave numbers. For the problem shown in Figure 

cl ct
6.1(c), the general solution of the wave due to the surface loading can be determined 

from Equation (6.1.6) as

$ F = A(s)e~az, H F = B(s)e~fiz (6.1.7)
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where A(s) and B ( s ) are unknown functions of s, and

V s2 -  K 2 |s|>K 
a = {  (3 = (6.1.8)

v s 2 — k2 js| >k

- W K 2 -  s2 |s|<K 

The boundary conditions along the surface can be written as

o f  =  - ° F + F f (uj), aFy = —t f (6.1.9)

where F F(u>), a F, f F are the FFT of F(t), FFT and FT of a and r. By making use

of the general solution (6.1.7), the boundary conditions (6.1.9) and the constitutive

relations, the unknown functions A(s) and B(s)  can be obtained in terms of a F, r F 

and F f {oj). Accordingly, the induced surface displacements can be obtained as

{usy)F =  +  P V  +  is Ks2 +  ^ 2) -  2a/3](aF -  F f )} (6.1.10)

(usz)F =  — is [(s2 +  0 1) +  2 oc(3\tf  — a(s2 — (32){aF — F F)} (6.1.11)

where /x is the shear modulus of the host medium and A =  (2s2 — k2)2 — 4s2a(3.

For the scattering wave shown in Figure 16.1(b), the relation between the displace­

ment and stress fields can be similarly established. For the upper half plane z < 0, 

the scattering wave can be determined by solving the governing equation (6.1.6) as

§ F = C(s)e“2, ^ F =  D{Sy z (6.1.12)

where C(s) and D(s ) are unknown functions of s. Making using of this general 

solution, the displacements and stresses along z — 0 can be calculated. The relation 

between them can then be determined as

_ r  =  +  / P -  2aD)  +  w y  -  IP) (6113)
s2 — af3 y s2 — a(3

h uszcY  (6.1.14)—F _  ^ a (s2 -  P2 )  t—sc\F ist*(s2 + 0 1 ~  2af3) F
s2 — af3 v s2 — a/3

Substituting Equations (6.1.10)-(6.1.11) and (6.1.13)-(6.1.14) into Equation (6.1.1), 

the displacements along z — 0 due to the scattering elastic wave from the cracks, U sc,
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shown in Figure 6.1(b), can be obtained in terms of the measured surface displacement 

U m and the applied surface force F  as

1 is(s2 + f32 -  2a(3) F fs[(s2 +  /?2) -  2a/?] F
(“» ) = 2 + ) + 2 a ^ - f P )  (“ » ) + -----------2^A----------F  <6' L15)

.... 1 *«(s2 +  P  -  2«/5) -  0 1) f f  ffi11
K >  ~ 2 M ------- 2{3(s2 -  f!2) + ) ~  2 „ A  F  ( “ ' 16)

The inverse FT of displacements usyc and uszc along z = 0, given by Equations

(6.1.15) and (6.1.16), can be expressed as

KTw = \ k )f(v) + ^  /_j o h o  f  Ansi-y -

+ f ° r ? M ± m ^ M * , *  (6, , 7)
Jo A

« f ( y )  = 1  « T  to) -  ^  2 °° S(̂ f - ^ 2)a/9) sinsfa “
F F f ° ° a ( s 2 - f 3 2) , ,

 /  —— ;rJ - Z cos suds 6.1.18)2vrp io A y \ )

For the case where u™ and li™ are measured in |y| < a, (u™)F and (u™)F can be 

expressed in terms of Chebyshev polynomials as

K T ( y )  =  ^ ^ . ( y / ^ / V l - y V a 2, (6.1.19)
i=o

OO

« ) F (?/) =  ^ 5 , T , ( y / a ) / V l - y V a 2  ( 6 . 1 . 2 0 )

i=o

The coefficients Aj  and B,} can be determined by using the orthogonality properties 

of the Chebyshev polynomials.

The mathematical singularity in above equations has been removed in the numeri­

cal calculation. In the current analysis, 32 terms in Chebyshev polynomial expansions 

have been used. The scattering waves in FFT domain can then be obtained in terms
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of Aj  and Bj  as

2irk2
3=0

N

2txk2 ^  J
3=0

„ l p  K 2 Sin (j A7TT7r)

( - 1)" f
Jo

( _ l ) n+l

00 s(s2 +  (32 -  2aj3) 217/ \ / \J - O i l X  ] Jj(sa)  cos(sy)ds j  — 2n +  1
a

r‘00 s(s2 + f32 — 2a/3) r̂ 2
a

X  ]Jj(sa)sm(sy)ds j  =  2n

F F I'00 s[(s2 + (J2) -  2a(3] o.r 
2nfi IJo

+ x r ~  I — ----   — sinsyds (6.1.21)

si
2/c2 Sin ( -L - tt)

A

K 2 AT

« r w  =  ^ « ) r f e ) + 5 p E B.
sin O tvVi ^) +

j=0 “*“ '«+1

( - l ) n /° ° [sl s2 +  ^  _  # 2] J^ sa ) cos(sy)ds j  = 2n +  1

r
- i ) n + 1  /  

Jo
00 s(s2 +  /?2 -  2a(3) 2 . .

 K  ]Jj(sa)sm(sy)ds j  — 2n(3
F F f ° °  a ( s 2 — f32)

cos syds (6.1.22)
27ry 70 A

with Jj (j = 1,2- ■ ■) being the Bessel functions of the first kind. Inverse FFT is then 

applied to generate the boundary condition of the reverse scattering wave along z  — 0 

at the time domain.

6.1 .2  S im ulation  o f d irect wave propagation

In this study, to deal with the complicated wave-crack interaction phenomena, the 

structural analysis software ANSYS will be used to simulate elastic wave propagation 

in cracked elastic media. Simple bilinear quadrilateral isoparametric element (four 

nodes ’’PLANE42” element) has been chosen for spatial discretization in the present 

investigation with the uniform mesh size.

Modelling elastic wave propagation in a continuous medium through a discretiza­

tion in time and in space may introduce several errors associated with different nu­

merical parameter effect. To avoid some of these errors the spatial and temporal grids
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should be chosen carefully. The accuracy of the transient elastic wave modelling de­

pends strongly on the number of nodes per wave length. In order to reduce grid 

dispersion, at least ten to fifteen nodes per shortest wavelength are required. In addi­

tional, the temporal discretization should be such that the wave does not propagate 

the smallest spatial resolution in one time step, i.e.

where m i n ( A y , A z) is minimum spatial resolution in the structure and cmax is the 

maximum wave propagation velocity in the structure, i.e., longitudinal wave velocity 

for isotropic solids.

To simulate wave propagation over a enough period of time, it is necessary to 

model a very large domain to avoid reflections from boundaries. But this solution is 

not practicable as it requires high storage space and memory for computation. As 

a result, in the analysis of the elastic wave propagation in the half plane domain 

using FEM, three unbounded edges of the computation domain must be truncated 

by artificial boundaries to render the computational domain finite. The boundary 

conditions that eliminate these spurious reflection are known as the Non-Reflecting 

Boundary Conditions (NRBC) for elastic waves. In current study, ’unified boundary 

condition’ (White et ah, 1977) is adopted as

where [cr] =  {ann,ant]T represents the stresses normal and shear to the boundary, 

a and b are the dimensionless parameters. A spring-damper element (’’COMBIN42” 

element in ANSYS) is used to simulate a boundary condition, which enables the 

effective elimination of unwanted reflected waves from the boundary of the finite 

element model.

A t  < -  L
3 c.
2 min

(6.1.23)
-max

(6.1.24)
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6 .1 .3  R everse w ave propagation

Let us focus on the scattering wave from the cracks as shown in Figure 6.1(b). The

determined displacement along z =  0 in the previous section will be used to generate

a reverse wave propagation to simulate the scattering wave.

During this process, instead of increasing time t, the wave field with decreasing 

t from a specific moment t =  T  will be considered. Since governing equation (6.1.2) 

contains only the second order derivative with respect to time t, its format will not 

be changed if a new parameter is introduced,

tr = T  — t (6.1.25)

where tr denotes the reverse time for the process of reverse propagation of waves, 

T  — N  A t  denotes the total time span of the surface signal. tr is measured backwards 

in time domain from t = T  to t = 0. Using tr in Equation (6.1.2), a reverse wave can 

be generated to simulate the scattering wave propagation in the medium caused by 

cracks before it reaches the surface. The reverse propagation of the scattering wave 

can be represented as a boundary value problem with the following boundary and 

initial conditions,

ury{y,Q,tr) = usyc(y,Q,T - t ) ,  urz(y,0, tr) — uszc{y,0,T — t), (6.1.26)

ul(y,z ,  0) =  0, < (y ,z , 0) =  0, (6.1.27)

ury(y,z, 0 ) = 0 ,  urz(y,z, 0) =  0. (6.1.28)

UyC and usz are given by Equations (6.1.15) and (6.1.16) in the previous section. ury

and ur. are initial velocities, i.e. the first derivation of ur„ and ur‘ to tr .z  > y  z

To simplify the problem, this boundary value problem is also solved using the 

finite element software ANSYS to generate the reverse scattering wave. The resulting 

displacements of the scattering wave from the cracks can then be used to identify the 

embedded cracks.
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6 .1 .4  Im aging cracks

To develop an understanding of the quantitative relation between the scattering wave 

and the properties of the cracks, an imaging method based on reverse scattering wave 

propagation is used. In a cracked medium, a scattering wave is excited at the time 

when the incident wave from the source impinges on a point of the crack surface. 

The amplitude of the excited scattering field at this moment corresponds to the 

feature of the crack surface. Based on this idea, the image of a specific point in the 

material is formed by extracting the amplitude of the scattering wave at that point 

when the incident wave arrives. It should be mentioned that unlike the migration 

technique in geophysical applications, where only one type of seismic wave is used, 

both longitudinal (P) and transverse (S) waves need to be included in the current 

study. As a result, two arrival times corresponding to incident P  and S  waves need 

to be considered in identifying cracks.

For homogenous linear material, the time for incident P  wave to reach point (y, z) 

from the excitation source, t 1 , is given by

where (y0,z0) is the position of the source loading. The corresponding time for the 

reverse propagating wave field is then

Similarly, the reverse time for incident S  wave to reach a specific point (y , z) can be 

determined with c/, being replaced by c? in Equations (6.1.29) and (6.1.30).

The image of any point (y , z) can be obtained by extracting the amplitude of the

t [  =  \ / { y ~  V o ) 2 +  ( z -  z 0 ) 2 / c l (6.1.29)

(6.1.30)

displacement field of the scattering wave at this point at the moment of trL — T  — PL 

given by (6.1.30). The resulting image of this point can be expressed as

IL(y,z) = W ( y , z , f L) (6.1.31)
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where \ l =  { |% |l, I'TzIl} is the amplitude of the displacement field of the scattering 

wave. Since either uy or uz can be used to form the image, two possible images can be 

obtained. In addition, if S  incident wave is used two more images can be generated.

For either P  or 5  incident wave, the final image of the cracks is obtained by using 

the amplitude of the scattering displacement field by integrating uy and uz images, 

i.e.

I final(y,z) =  ^ { u y\L+Tf  + (uz \L+T ?  (6.1.32)

A complete image could be obtained by adding up all of these images. This stacking 

process will increase the signal-to-noise ratio.

It should be mentioned that for a pulse-like excitation, as used in the current study, 

P  and S  waves usually propagate separately without overlapping when impinge on the 

embedded cracks. However, since the scattering wave field is generally caused by both 

incident P  and S  waves, during the imaging process using incident P  wave, part of the 

imaging wave energy induced by incident S  wave can also be extracted, which may 

influence the quality of the image. Similarly, some of the scattering wave induced 

by the incident P  wave may affect the image quality using incident S  wave. The 

coupling between P  and S  incident waves may result in pseudo images of the cracks. 

This type of pseudo images can be eliminated by considering different excitation 

conditions. Examples of dealing with P  — S  coupling will be presented in the next 

section.

6.2 N um erical results

This section is devoted to the numerical simulation of identifying different cracks using 

surface signals for determining their positions, dimensions and shapes. Simulation is 

also conducted to show the feasibility of using signals from a limited number of surface 

points for identifying cracks.
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6.2 .1  T h e dynam ic ex c ita tio n  and surface signal

The elastic constants of the material are assumed to be

A =  5.20 x 10w {Pa),p = 2.68 x 10w {Pa),p =  2572{kg/m3)

with A and /i being the Lame’s constants and p the mass density.

To generate an elastic wave propagation, a concentrated normal surface force F(t) 

is applied at y =  0, as shown in Figure 6.1(a). To reduce the possible distortion of 

the waveform during propagation, a narrow band signal is used, which is given by

F(t) =  P[H{t) -  H(t  -  N p / f0)](1 -  cos ) sin27rfot (6.2.1)

where H(t) is the Heaviside step function, / 0 is the central frequency, P  is the am­

plitude of the force, and Np controls the duration of the excitation signal.

The surface response corresponding to this load depends on the geometries of 

embedded cracks. In the current study, the ’measured’ surface signal corresponding 

to different crack geometries is simulated using the FEM to overcome the difficulties 

associated with the complicated crack geometry. The infinite boundary involved in 

the current problem is dealt with using the special element with viscous boundaries 

discussed in section 6.1.2 to eliminate the reflected wave.

The first case considered is a crack of length 6m m  parallel to the surface with its 

centre being at (0mm, 20mm). The excitation load used is defined by f 0 = 1 M H z,  

Np = 1 and P  = 10K N .  A high frequency has been used to ensure reasonable 

resolution of the image. The resulting displacement uz at the loading point and at 

(16mm, 10mm) is shown in Figures 6.2 and 6.3, respectively. Separation of P  and S  

waves is observed in Figure 6.3. Both P  and S  waves retain the original shape of the 

input signal, indicating that the distortion of the waveform is effectively suppressed 

by choosing the narrow band excitation signal given by (6.2.1). By conducting the 

FEM analysis, surface response can be determined. Figure 6.4 shows the results of
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the surface displacements u™ at yi =  —24 +  6 x (i — 1 )mm, i = 1, • • • , 4, in which the 

surface signal corresponding to the applied load is removed.

As discussed in previous sections, shown in Figure 6.1(b), the ’measured signal’ 

can not be used directly in determining the scattering wave. The displacements 

of the scattering field along y = 0 are needed. To achieve this, the resulting surface 

displacements from the FEM analysis are transformed into FFT and FT domain using 

Equations (6.1.4) and (6.1.5). The time span T  used is T  = 20/is. The transformed 

surface signals are then used in Equations (6.1.15) and (6.1.16) to determine usx and 

Uy° of the scattering wave along y — 0. Figure 6.4 shows the comparison between u™ 

and usz at the four surface points mentioned before. It is observed that although the 

shapes of the signals are similar, their amplitudes are significantly different, indicating 

the importance of considering the effect of the surface.

Figure 6.5 shows the displacement components usyc and uszc of the scattering waves 

along y = 0, with the gray scale corresponding to the amplitude of the wave field. 

Due to the symmetry of the problem, only the result for y > 0 is shown. Elastic wave 

mode conversion due to wave reflection is observed, including P P  and P S  waves 

representing the scattering P  and S  waves caused by incident P  wave, and S P  and 

S S  waves representing the scattering P  and S  waves caused by incident S  wave. The 

data given in Figure 6.4 will be used as the boundary conditions of the reverse wave 

in identifying cracks. According to this figure, a time span of 20ys  is long enough to 

ensure that the surface signals in the range \y\ < 24m m  can be completely recorded. 

The hyperbolic curves for the corresponding scattering waves show that a sensor range 

\y\ < 24m m  is large enough for representing the wave propagation. The time span 

and sensor range identified here will be used in the following examples.

6.2 .2  R everse w aves and im aging cracks

Figure 6.6 shows four snapshots of urz in the process of reverse propagation of 

waves at different times by using reverse sensor signals in Figure 6.5 as boundary
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condition. Corresponding wave component urz can also be obtained. As shown in 

Figure 6.6, the reversed scattering waves carry all the energy backwards along the 

same paths over which they previously propagated forward. The energy converges to 

a focus in time and space domain, which represents the information of the crack. The 

dash lines in Figure 6.6 represent the imaging points for incident P  and S  waves at 

the corresponding time.

The images of the cracked medium can be obtained from the scattering field shown 

in Figure 6.6 using Equations (6.1.29) and (6.1.30). In frame (a), the scattering wave 

field begins to propagate towards the cracks, the wavefronts of the corresponding P  

and S  waves are out of the plotted area at this time. In frame (b), the scattering 

wave from crack induced by the incident S  wave is focussed back to the crack and 

the points corresponding to the incident S  wave at this time are imaged (dash line). 

In frame (c), the scattering wave from the crack induced by the incident P  wave is 

focussed back to the crack and the points corresponding to incident P  and S  waves 

at this time are imaged (dash lines). In frame (d), the scattering wave continued its 

downward propagation, which would not be coincident with the incident waves.

Figure 6.7 shows the images by using incident P  and S  waves. Frames (a) and (b) 

are the images for displacement component uz and uy. respectively, using incident P  

wave. Frames (c) and (d) are the corresponding images for uz and uy using incident 

S  wave. Comparing the images in frames (a)-(d), it can be found that the images 

using incident P  wave are different from those using incident S  wave. The existence 

of pseudo images of cracks is because of the coupling between P  and S  waves due 

to the complicated reflection of elastic waves. To eliminate these pseudo images, a 

different excitation force acting at y =  —6m m  along the surface is applied to generate 

new images. Figure 6.8 shows the corresponding images. Comparing these images 

to previous ones, the pseudo images of the crack can be easily identified. After 

eliminating the pseudo images in Figure 6.7 and 6.8 and using Equation (6.1.32),
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the image of the crack can be obtained as shown in Figure 6.9. The dash line in this 

figure represents the real crack position. Figure 6.10 shows the image of a longer crack 

of length 18mm, which is parallel to the surface and its centre is at (0mm, 20mm). 

Surface signals within \y\ < 24m m  are used for imaging the crack. It is interesting to 

see that even for the current case where the sensor range is in the same order of the 

crack length, satisfactory result is obtained. The location of the image of the crack 

is very close to its real position. Some discrepancy in the size and the shape of the 

crack is observed, which may be caused by the finite width of the waveform and the 

distortion of it during propagation.

6 .2 .3  C om p licated  geom etries

Simulation has also been conducted for more complicated crack configurations. Figure 

6.11 shows the image of an inclined crack of length 6m m  with its centre at (0, 20mm)  

and the inclination angle being 45°. The dash line represents the real crack position. 

The image provides a reasonable prediction of the orientation of the crack. However, 

it should be mentioned that even though the migration algorithm itself has no angle 

restrictions, very steeply angled cracks will not produce good images unless the source- 

recorder geometry is such that the response of these cracks can be well recorded.

Figure 6.12 shows the image of a wedge shape crack with its centre being at 

(0, 20mm), half length 8mm and the inclination angle 45°. The dash line represents 

the real crack position. As shown in this figure, the image can provide the most 

information about the kind of crack, although the real wedge is a little bit longer 

than the imaged result. To produce high quality images for this kind of complicated 

shape cracks, the multiplicity of actuators and sensors that are typical of surface 

surveys is required. Another way to improve the image quality is to increase the 

frequency of the excitation. Figure 6.13 shows the image of two collinear cracks of 

length 6mm.  Their centres are located at (—6mm, 20mm) and (6mm, 20mm) and are 

parallel to the surface. Surface signals in \y\ < 30mm are used in the current imaging
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process. Very good agreement between the image of the cracks and their real position 

is observed. The capability to image multiple cracks is a very important property 

of the current reverse wave technique, which make this technique very favorable in 

comparison with other interpretation methods, for which multiple cracks may result 

in difficulties.

6 .2 .4  U se  o f lim ited  signals

In the above examples, extensive numbers of surface signals are used as the boundary 

conditions to generate the reverse scattering wave field. However, in the evaluation 

of a real structure, the number of the surface signals is limited by the number and 

dimension of sensors attached to the surface. To study the availability of the current 

technique for detecting cracks when signals are limited, simulations have been con­

ducted for cases where only discrete signals along the surface are available. Figure 

6.14 shows the scattering wave signals received at 13 equally spaced points along the 

surface with y, =  —24 +  4 x (i — 1 )m m , i  — 1, • • • ,13, caused by a single crack as 

discussed in Figure 6.5.

In order to increase the resolution of the image, a complete ’surface signals’ are 

constructed by interpolation based on the polynomial curve fitting using the least- 

square method. Figure 6.15 shows the image of the crack using the interpolation 

data with the dash line representing the real crack position. The result is similar to 

that shown in Figure 6.9, which is obtained using the signals along the whole area 

of |y| <  24mm. The current result shows the potential of the developed technique 

for identifying embedded cracks using surface signals measured by limited surface 

sensors.
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Figure 6.8: The preliminary image of the crack for force loading at (—6mm, Omm)
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Figure 6.10: The final image of the crack with length 18mm
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Figure 6.15: Image of the crack by using the discrete signals
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Chapter 7

Structural Integrity Analysis with 
a Piezoelectric Acutuator/Sensor 
System

As discussed in Chapter 6, the proposed imaging scheme needs all two components 

of displacement on the measurement surface, and it is very difficult for any device to 

perform this task in the same time. For surface bonded piezoelectric actuator/sensor 

system, the electric voltage or electric potential, which is related to change of me­

chanical strain, is measured. This Chapter provides a theoretical study of a damage 

identification technique, which uses a piezoelectric sensors system attached to an 

elastic medium to quantitatively detect embedded cracks. A reverse wave field is 

generated using surface signals from piezoelectric sensors, which is further used to 

evaluate embedded cracks based on an imaging technique. The simulation is based 

on the use of the Cagniard-de Hoop method. Numerical examples are provided to 

show the feasibility of using surface bonded sensors/actuator system to determine the 

location, size and shape of different embedded cracks.

7.1 Statem ent o f the problem

Because of their capability of capturing signals of wide bandwidth, piezoelectric sen­

sors in forms of thin sheets show great potential in structural health monitoring.
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Because they are small in size, these sensors can be used at almost any position of 

a structure, thus provide rich information at interested points along the surface of 

the structure. In a typical health monitoring system, when elastic waves are gener­

ated, reflected waves from embedded cracks will be captured by these sensors. The 

development of techniques to subtract information of cracks from the stored sensor 

waveforms plays a central role in the quantitative identification of them. In the cur­

rent study, signals from a piezoelectric sensor system are assumed known and are used 

to provide images of embedded cracks in an elastic medium. Thin sheet piezoelectric 

sensors bonded to a structure will be able to provide only the information of the 

tangential deformation at the surface of the structure. Therefore, only strain in the 

tangential direction will be used as the sensor signals.

Consider now a plane strain problem of a half infinite isotropic elastic insulator 

with multiple cracks, as shown in Figure 7.1. A coordinate system (y, z) is used to de­

scribe the elastic medium. In order to detect the cracks in the material a piezoelectric 

actuators/sensors array is surface-bonded. The half length and the thickness of the 

actuator/sensor A n,n  = 1, 2,3, • • • are denoted as an and hn. The actuators/sensors 

are electroded on both sides. The electric potential will, therefore, be uniform across 

the surface of any actuator/sensor.

7.1.1 O ne-d im ensional sensor m odel

When one of the piezoelectric elements, which is used as an actuator, is electrically 

excited by applying a transient electric voltage across its upper and lower electrodes, 

an elastic wave will be generated, which travels into the host medium. This wave will 

be reflected by embedded cracks and eventually reaches the sensors. Sensor signals 

in forms of electric potentials will be generated and recorded.

Because of the difficulties associated with the complicated bonding/interface con­

ditions caused by the actuators/sensors and cracks, Fininte Element (FE) method
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is used to simulate this process to generate the ’sensor signal’ for further usage in 

crack identification. The simulation is based on the commercially available software 

ANSYS using the coupled field element ’’PLANE 13”. A non-reflection boundary 

is used to simulate the infinite medium. The simulation is carefully controlled to 

ensure accuracy and stability of the results. The voltage across the upper and lower 

electrodes of the sensor can be directly determined. Since these electrodes are not 

electrically connected except by the sensor itself, the relation between the measured 

voltage and the strain of the sensor can be obtained based on an open-loop mode of 

the sensor.

For a thin sensor, the axial strain, which will dominately generate the electric 

voltage, can be assumed to be uniform across the thickness of the sensor. Therefore, 

the relation between the electric displacement D z, the axial strain esy and the electric 

field E z can be expressed as

are effective material constants, cf1, cf3, c33, e31, e33 and A33 are elastic and piezoelec­

tric constants of the sensors.

When the sensor operates in an open loop situation and there is no external electric 

field applied (Tzou, 1993),

The electric charge will be collected on the electrodes and will produce an electric 

potential. The voltage across the electrodes of the sensor A n can be obtained by 

integrating the electric filed as

D z — esesy +  A SE Z (7.1.1)

where
Ci 3

e s = ei3 — 6 3 3 —j -  plane strain

(e33)2
As =  A33 -|-----  — plane strain

C33

(7.1.2)

£>2 =  0 (7.1.3)

(7.1.4)
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7 .1 .2  E lastic  wave back propagation

In this study, since the sensors are thin and small in size, the perturbation effects of 

the bonded sensor to the sensed wave field are ignored so that the received sensor 

signal £y can be regarded as the scattering wave field induced by the embedded crack 

£Sy.  The ’measured’ sensor strain will be used to identify the embedded cracks. A 

reverse wave field, which represents the wave field before it reaches the sensors, will 

first be generated using the signals. In this study, the following boundary condition 

problem is suggested to back propagate wave field as

ery(y, o, f )  =  sSyC(y, 0, T  -  t), a rz (y , 0, f )  =  0, (7.1.5)

where T  denotes total time span of the received signals. It should be mentioned that 

since arz =  0 is used as the boundary condition, the generated wave will also include 

partially the effect of the surface, in addition to the scattering wave from the cracks. 

Numerical results indicates that, for impulse type excitation, the use of a rz = 0 will 

mainly disturb the amplitude but not the wave arrival time and propagation path. 

Correspondingly, the location and dimension of the cracks will not be significantly 

affected.

The back propagated wave field can be obtained by solving the elastodynamic 

boundary problem instead of using FEM method, since very neatly analytical solu­

tions for this case can be obtained and strain boundary condition is difficult to apply 

for FEM. Applying the two side Laplace transform with respect to y and one side 

Laplace transform with respect to t, which are defined as (Achenbach, 1973),

/ oo -i /*so+ioo

M e ^ d y ,  f ( y ) =  —  /  f L(s)e*»ds (7.1.6)
-oo J SQ_jrOQ

^  POO 1 Pp[)-\-ioo

f (p)  = /  f ( t )e -*dt ,  f ( t ) =  —  /  f (p)eptdp (7.1.7)
JO z n l  J p o - io o

where the superscripts ’L ’ and represent two side and one side Laplace transform, 

respectively, the governing equations, which is given in (6.1.2), can be reduced to the

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



following ordinary differential equations as

d2$ L ~2
s2)$L =  °> (7 1 -8)dz2 cL 

d2$ L
( ^ - S2) TL =  0 (7.1.9)

dz2

where $  and ik are two complex displacement potentials, cL and ct are the longitu­

dinal and transverse shear wave velocities of the elastic medium, respectively. The 

general solution of equations (7.1.8) and (7.1.9) can be determined as

= E(p,s)e  v 4  s2\ ^ L = F(p,s)e  v 4  *** (7.1.10)

This solution ensures that the induced wave field satisfies the radiation condition 

of the problem. Making using of the above general solutions and boundary condi­

tions, the unknown parameters E(p, s) and F(p, s ) can be determined. The resulting 

displacements in the host medium can then be obtained as

% = - 24(5 T /T "1' _ izA  e-VT'’V  (7.L11)
y p pr) y

(7.1.12)
p v Cl v  i  -  d

where ri —
V

Equations (7.1.11) and (7.1.12) need to be inverted into time-space domain. For 

the first term of Uy, inversion of the two side Laplace transform requires evaluation 

of the following integral

1 r o+iQO -pdjr-'Q^-m)
JyL =  7T- /  Ve V L dp (7.1.13)

JrjQ—ioo

which has branch points q = ±  — . To complete the inversion, path integration will be
cl

produced and cuts are introduced in the complex q plane along the real axis from the 

branch points to infinity. Figure 7.2 shows the branch points, the cuts of the integrand 

as well as the path of integration along the imaginary axis employed in Equation
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(7.1.13). In the following this integral has to be converted into an integration along a 

new path, from which the inverse Laplace transform can be obtained by inspection. 

The desired new path of integration in the 77-plane is defined by

' — rj2z — rjy =  t  (7.1.14)

Equation (7.1.14) can be solved for 77 to obtain

t  „  , . , t 2 1r)L±(r, 6,t) — —  cos6 ±  i (— ---- =-)» sin# (7.1.15)
r  r*

where r 2 =  y2 +  z2 and t an# =  - .  The integration along the vertical path is then
y

transferred to the hyperbola obtained above, as shown in Figure 7.2. For the path, t
r r

runs from 00 to — in the lower branch of the hyperbola and then from — to 00 in
cl cL

the upper branch. So the integration along the imaginary axis can be replaced by an 

integration along the hyperbola as a function of t

L l -  ~ { / ” i t  +  J 71 (7.1.16)
CL  ° °

The above integral can be simplified to

L ,  =  ^  f l h U y  -  (i W y I ' - ' 4  P -1-17)
CL

from which, the inverse Laplace transform Ivl can be obtained as

s i n#cos#, t 2 l x i , t 2 1 .  r T /

-  ? W  -  - )  (7.1.18)

with H  is Heaviside step function.

The second term of u^,  which includes a pole at 77 =  0, can be reduced by inversion 

of the two-sided Laplace transform as

1  /■ 1 7 0 + 7 0 0  rf  A -  _ p (  / _ 1 _ _ J)2 2. _ T O )

v T = ~ 2 m   n---- 6 dV (7'L19)rio—ioo 'I

By defining a path

t  2̂ 1  1

r]T±(r,9, t) = — cos0 i  !( -  j ) i  sin# (7.1.20)
T  T  Crp
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and considering the pole at rj =  0, which is shown in 7.3, Iyx  can be similarly deter­

mined as

I M y , Z,t) = b ( t - - ) [ H ( y ) - H { - y ) }
L  Cj<

sin 9 cos 9 t2 1 i I t2 sin2 6 , t2 1 .  r

Therefore, the reversed wave field in the host medium can be obtained as

COO

ury(r,9,t) = - 2ct  / £ry(r,0,T)[IyL(r,e,t -  t )  + IyT{r,0,t -  T)\dr,  (7.1.22)
JO

poo

urz(r,9,t) = -2 4  / sry(r,0,T)\IzL(r,9,t -  t )  + IzT(r,9,t -  T)}dr  (7.1.23) 
Jo

where

1 , t 2 I s  i r̂ t 2 , . o ^  cos2 <9, rI zL(y , z ,t) = - J - ( l _ - - L )  f[2^ ( c os 20 - s i n 20 ) - ^ l ] / 7 ( t - - )  (7.1.24)
fix r c^ r  c^ c i

IzT(y,z , t )  = ^ ( ^  -  J)-)- 5(cos2 9 — sin2 9 ) ( 2 ^  -  ± - ) H ( t - ^ - )  (7.1.25)

7.2 R esults and discussion

This section is devoted to the numerical simulation of identifying cracks using surface 

sensor signals for determining their positions, dimensions and shapes.

The material constants of piezoelectric actuators and sensors and the structure 

being monitored are assumed to be,

Actuator and sensor

c «  =  3.61 x 109(Pa),c{$  = 1.4 x 109 (Pa), 4 2  =  1.4 x 109(Pa)

4 2  =  1.63 x 109(Pa), 4 2  =  0.59 x 109(Pa)

4 2  =  7.68 x 10-3(C /m 2) ,e ^  =  -30.7  x 10-3(C /m 2), 4 2  -  -11.5 x 10"3(C /m 2)

A$ -  0.061 x 10“9(C /F m ),A 'S3) =  0.067 x 10“9(C '/ym )

Host medium

A =  5.20 x 1010(P a),/r =  2.68 x 10lo(P a),p  = 2572(kg /m 3)
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The voltage applied to the actuator is

V(t) =  V0[H(t) -  H (t -  Np/fo)](l -  cos HEM) sin27r/0t 

with /o =  1 M H z, Np =  1 and Vo =  10V7

7.2.1 Sensor signals

Consider the case where a crack of 6mm long, parallel to the surface and centred 

at (Omm, 20mm). 25 equally spaced actuators/sensors with v = a jh i  =  20, a, = 

0.5mm, yi = —24 +  2 x (i — 1 )m m ,i =  1, - - - , 25 are used. The actuator is at 

(Omm, Omm). Electric potential will be generated at these sensors in response to 

the actuator. The ’measured’ voltage at a sensor will be used to derive the average 

strain of the sensor using Equation (7.1.4). This average strain will be used approxi­

mately as the strain at the centre of the sensor in crack identification. For the sensor 

centred at (Omm, 2mm), Figure 7.4 shows the comparison between the average strain 

obtained from ’measured’ voltage and the real strain at its centre. In this figure, the 

incident waves from the actuator have already been muted by subtracting the wave 

field without crack. The comparison agrees well, which means that one-dimensional 

sensor model can be used to predict strain field of the sensor. In the following dis­

cussion, strain obtained from sensor signals are regarded as the strain at the centre 

of the sensor. Figure 7.5 shows the scattering strain wave field esyc along the mea­

surement surface, in which wave fields at points other than the sensors’ position are 

extrapolated by using polynomial curve fitting. This result will be used as input data 

for reverse wave propagation process.

7.2 .2  R everse w ave techn ique and crack im aging

After the scattering wave field along the surface is obtained, the reverse wave 

field can be obtained by solving the proposed boundary value problem. Figure 7.6 

displays four snapshots of reverse wave component urz at different times. The moment, 

tr =  T  — t, at which the snapshots are taken are tr = 4,14,17, 19/j.s , respectively. In
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Figure 7.6a, the wave field is propagating toward the crack. The scattering wave 

energy from the crack is focussed back to the crack at time tr = 14,17fts for S  

and P  waves in Figure 7.6b,c, respectively,. In Figure 7.6d, the scattering energy 

continued its downward propagation. At each moment, the points which satisfy the 

imaging conditions, which are given in Equation (6.1.29), are imaged by extracting 

the amplitude of the wave field at these points.

Figure 7.7 shows the images by using incident S  and P  waves for the single crack 

case discussed. Frame (a) and (b) are the image results based on displacement com­

ponents urz and ur , respectively, using S  wave image condition. Frame (c) and (d) are 

the image results based on displacement components urz and ur , respectively, using 

P  wave image condition. Comparing the images in frames (a)-(d), it can be found 

that the images by using incident P  wave are different from those by using incident 

S  wave. To uniquely determine the location of the crack, an additional case using 

a different actuator is considered. Figure 7.8 shows the corresponding image results 

for the same problem with position of the actuator at (yo,zo) — (—6mm, 0). After 

compared with the two image results, the pseudo images, which is mainly resulted 

from P  wave image condition, can be easily eliminated. The final image of the crack 

can be obtained as shown in Figure 7.9 based on Equation (6.1.32). The dash line 

superimposed in this figure represents the real crack position. Similar result for a 

longer crack of 18mm, which is centred at (0,20mm), is shown in Figure 7.10. The 

very good agreement shows the feasibility of using the proposed technique to reversely 

propagate scattering wave and image the crack.

7.2 .3  Im aging using different num bers o f sensors

The number of sensors used in a specific area of a health monitoring system is 

usually limited since the dimension of sensors can not be too small. The effect of 

sensor numbers used on the quality of images is shown in Figure 7.11 for the case 

used in Figure 7.9. Frames (a)-(d) are the final image results of the structure for total
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25,17,9,5 equal spaced sensors within the same range (-24mm, 24mm), respectively. 

In frame (a), the image result can clearly identify the information of the embedded 

crack, and the image result in frame (b) is very similar to that in frame (a), which 

shows that distance between the sensors for the current problem is still good enough to 

obtain good information of the embedded crack. In frame (c), the image result begins 

to diffuse around the position of the embedded crack, the more diffuse phenomenon 

can be observed in frame (d), which shows limitation of the sensor’s number used. 

The parameter’s optimization about the number of the sensors and corresponding 

loading frequency used could be further studied to ensure good image results.

7 .2 .4  Im age o f m ultip le cracks

Figure 7.12 shows the image of two collinear cracks of length 6m m. Their centres 

are located at (—6mm, 20mm) and (6mm, 20mm) and are parallel to the surface. 

Very good agreement is observed. It should be mentioned that capability to image 

multiple cracks is an important property of the current reverse wave technique, which 

makes this technique very favorable comparison with traditional pulse-echo methods.
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Figure 7.4: Comparison of the real strain with sensor measurement
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Figure 7.5: Surface signal due to the scattering wave from the crack
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Figure 7.6: The reverse scattering wave
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Figure 7.7: The preliminary image of the crack with actuator at (Omm, Omm)
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Figure 7.8: The preliminary image of the crack with actuator at (—6m m, mm)
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Figure 7.9: The final image of the crack with length 6m m
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Figure 7.10: The final image of the crack with length 18mm
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Figure 7.11: The final image results by using different sensor numbers
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Figure 7.12: Image of the two collinear cracks
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Chapter 8 

Discussion and Conclusions

8 . 1  Conclusions

Throughout this study, three major issues essential to the establishment of a struc­

tural health monitoring system using piezoelectric actuators/sensors are studied (i) a 

one dimensional actuator model has been modified and used to simulate the mechani­

cal field in elastic media due to surface bonded or embedded piezoelectric actuator, (ii) 

the wave propagation induced by different piezoelectric actuators are systematically 

studied through numerical simulation, and (iii) a reverse wave technique is proposed 

as an interpretation method to find the information of embedded cracks.

Specific contributions and conclusions of this study to the field of the research can 

be summarized as follows:

(a) The one dimensional actuator model (Wang and Meguid, 2000) is used to 

consider the static coupled electromechanical behaviour of a piezoelectric actuator 

bonded to an orthotropic elastic medium under plane electric loading. The effects of 

the geometry, the material mismatch, the material anisotropy and interfacial debond­

ing upon the load transfer between the actuator and the host structure are determined 

and discussed.

(b) The one dimensional actuator model (Wang, 2000) is used and modified to 

consider dynamic electromechanical behaviour of actuators surface-bonded to and/or
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embedded in an isotropic elastic medium. The significant effects of loading frequency 

upon interfacial transverse stress between the actuators and the host structure are 

observed, which shows the importance of including the interfacial transverse stress 

for embedded actuators.

(c) The wave propagation generated by surface-bonded and embedded piezoelec­

tric actuators is analytically studied. The interaction between actuators is simulated 

by using newly developed Pseudo-Incident Wave method (Wang and Meguid, 1997). 

The numerical simulation conducted indicates the effects of the geometry of the ac­

tuators, the material combination and the loading frequency upon the resulting wave 

propagation. The basic properties of the wave field is demonstrated by the analytical 

solution of the wave field far away from the actuators.

(d) To use the piezoelectric actuator-generated wave to detect cracks, a reverse 

wave technique is developed to identify embedded cracks in the elastic medium. The 

technique is based on the usage of the scattering waves from the cracks in response 

to the actuators, which can be measured by distributed piezoelectric sensors. This 

technique has been used for both harmonic and transient waves. Images of embedded 

cracks are obtained using newly proposed algorithms. Numerical simulations show 

that the current technique can accurately determine the locations, dimensions, and 

shapes of cracks.

8.2 Future studies

Based on the results of the work done in this thesis, the additional investigations in 

a number of areas, which could be further conducted, are suggested as follows:

(a) The current study is limited to two dimensional models. Considering the fact 

that structures are always three dimensional, further study and detailed simulation 

using 3-D model will be an important topic for a real SHM system. Piezoelectric ac­

tuator and sensor models for three dimensional cases should be developed to generate
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the elastic wave and receive the scattering wave in 3-D structure.

(b) Extensive experimental work is needed to verify the proposed technique and 

proper actuator/sensor systems need to be designed for further studies. The piezoelec­

tric materials are surface-bonded to the structure as actuators and sensors to generate 

and collect the elastic waves, respectively. A waveform generator generates the high 

frequency excitation signal. The excited signal is first amplified by a power amplifier, 

then drives PZT actuators to generate transient waves. PZT sensors will collect the 

waves and convert them into electrical signals and recorded as an input signals to 

find out the information of embedded crack by using the proposed technique.
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