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Abstract

Thin-walled cylinders are often used in civil engineering
structures. Offshore platforms, storage tanks, nuclear reactor vessels,
transmission towers, and material-handling plants are examples of
structures incorporating these tubular members. In cases where
tubes are subjected to transverse loading, failure may occur in a
shear mode due to local buckling. The present study focuses on the

inelastic shear buckling capacity of thin-walled fabricated steel

tubes.

The problem was investigated in two phases, experimental and
numerical. The experimental phase involved testing two specimens
of 1270 mm diameter under different boundary conditions. The tests
were preceded by finite element simulation in order that possible
problems could be identified. Measurement of the geometric
imperfections was made prior to testing and the testing itself was
carried out in both the pre-buckling and the post-buckling ranges.
During the testing the strains and displacements of the specimens
and the supports were carefully monitored. The finite c¢lement
predictions and predictions made using other design equations

compared favorably with the test results.

A parametric study was then carried out to examine the effect
of several factors on the cylinder behavior. The numerical model
used in this analysis consisted of bi-cubic degenerated plate-shell
elements and included the geometric imperfections and the initial

stresses due to forming that are inherent in large-diameter cylinders.



The results of the analysis were compared with test results when

possible.

The numerical phase was followed by two attempts to
introduce design methods for determining the inelastic shear
capacity of transversely loaded cylinders. A regression model was
developed to predict the ultimate shear strength of the available test
results with accuracy better than the current design equations. For
the prediction of the shear capacity beyond the limit point, a truss
model was proposed. The truss model was based on the post-
buckling load-carrying mechanism observed in the tests and
confirmed by the numerical simulation. The proposed model
describes the shear behavior of thin-walled cylinders better than
other pesi-ouckling models. The capacity predicted by the proposed

model can be ased as a conservative predictor of the ultimate shear

capacity.
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1. Introduction

1.1 Background

Large-diameter thin-walled tubular members are used
frequently in civil engineering structures. Because of their efficient
shape, tubular sections have higher torsional rigidity and better
resistance to wind and pressure loads than conventional sections.
Therefore, many structures incorporate these tubular members in
applications such as pipelines, liquid storage tanks, grain storage

bins, nuclear reactor vessels, offshore platforms, transmission towers,

and conveyor galleries.

The cylindrical elements in these structures are subjected to
different types of loads, including longitudinal axial compressive
loads, bending moments, transverse shear, and internal and external
pressure. The investigation reported herein deals with tubes
subjected to transverse loads and which have a radius to thickness
ratio in the range of 100 to 300. Conveyors that handle bulk material
in industrial plants are often housed and supported by large-
diameter fabricated steel cylinders that fall within these parameters.
In this case the cylinder acts as a simple or continuous beam of spans
that may reach 50 m, as shown in Fig. 1.1. The transverse load acting
on this cylinder produces a shear force and bending moment of
considerable magnitude on the cross-section. Due to the slenderness
of the cylinder wall, these forces can cause local buckling at critically

stressed parts of the cylinder.



The strength of thin-walled tubes is, therefore, usually
governed by local buckling strength. Stiffeners around the cross-
section (rings) and along the axis (stringers) can be used to prevent
premature buckling of the cylinder. Depending on the shell radius to
thickness ratio, the radius to unstiffened length ratio, and the
stiffener arrangements, buckling of cylinders under transverse load
can be the result of compressive stresses (flexural buckling) or shear
stresses (shear buckling). This study deals with the local shear
buckling of thin-walled longitudinally unstiffened cylinders

subjected to transverse loads.

The shear buckling capacity of thin-walled cylinders is
influenced by several parameters. In addition to the geometry,
material properties, and boundary conditions of the cylinder, the
level of initial imperfections and residual stresses introduced during
the production process potentially play a role and should be
considered in determining the capacity. However, little research has

been carried out to explore the effect of these parameters.

Currently, North American practice is to use a reduced version
of the elastic buckling stress of cylinders under torsion as the design
basis for cylinders under transverse loads. European specifications
(European Convention for Constructional Steelwork, 1988) use an
interaction équation for the inelastic shear buckling stress. This
equation is also a function of the elastic torsional shear buckling
stress. Another empirical formula is the quadratic interaction
equation proposed by Galletly and Blachut (1985). This equation is

based on the results of a single group of small-scale physical tests.
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The tests consisted of specimens fabricated from gradual-yielding
steel sheets. In practical structures, tubes are usually fabricated from
hot-rolled steel plates (sharp-yielding) and have much larger

diameters than those used in the scaled specimens.

Clearly, there are insufficient theoretical and experimental
studies which address the problem of the shear capacity of large-
diameter thin-walled tubes. Thus, more tests of full-scale cylinders
are essential to establish a satisfactory level of confidence in design
techniques. Also, empirical design formulas and alternate analytical

methods for design are highly desirable.
1.2 Statement of the Problem

The present study investigates the inelastic shear buckling
behavior of large-diameter thin-walled fabricated steel cylinders
subjected to transverse loads. The cylinders under consideration are
longitudinally unstiffened, fabricated from hot-rolled steel plates,

and have a radius to thickness ratio in the range of 100 to 300.

In this report, the characteristics of inelastic shear buckling are
explored both experimentally and numerically. Two models, a
regression model and a truss model, are proposed for the prediction

of the cylinder shear capacity at and beyond the limit point.

1.3 Objectives

This study is a continuation of an investigation of the shear
capacity of large diameter fabricated steel tubes that has been

underway at the University of Alberta since 1984. Preliminary tests
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have been performed by Bailey and Kulak (1984) and numerical
investigations have been carried out by Mok and Eiwi (1986) and

Roman and Elwi (1987).
The present research has the following objectives:

1. To test thin-walled cylinders under transverse shear. The
test specimens should represent material properties and
fabrication procedures that are typical of practical

structures.

2. To use a numerical analysis technique that can simulate the
response of the tested specimens and to extend this analysis
to the prediction of the behavior of any cylinder under the
same general conditions but whose particular parameters

are outside of the scope of the physical tests.

3. To develop an efficient ultimate shear capacity formula
based on a statistical analysis of all the available data and

compare it with the current design approaches.

4. To develop an alternate mechanistic method of design that
depends on the post-buckling strength rather than on the

ultimate strength.
1.4 Layout of the Thesis

Chapter 2 contains a review of the research work done by

others on the buckling of thin-walled tubes, with a clear emphasis on



cylinders subjected to transverse loads. The chapters following

introduce theoretical and experimental investigations of the problem.

The experimental phase of the present study is described in
Chapter 3. Testing of two large-diameter fabricated steel cylinders is

reported in detail and the results of these tests are compared with

other theoretical predictions.

In Chapter 4, a nonlinear finite element analysis of both the
tested specimens and the results of work by others is introduced.
The ability of the numerical model to simulate the actual behavior of
thin-walled fabricated steel tubes is demonstrated and discussed. A

parametric analysis of nine cantilever models is reported.

Sophisticated numerical analyses are generally not convenient
for design purposes, hence attention is also given to empirical
equations. Chapter 5 describes a nonlinear regression analysis of the
experimental and numerical results. From this analysis, an ultimate
shear strength equation is recommended for design. The predictions

of the equation are compared with test results and with other

empirical equations.

Pori-buckling behavior is investigated in Chapter 6. A truss
model, which is based on observations from the experimental and
numerical results, is developed to estimate the stable post-buckling
shear capacity of thin-walled cylinders. Predictions made using this

model are presented in the form of curves suitable for design

purposes.



Chapter 7 summarizes the results of the experimental and
numerical analyses. Two different methods are recommended for the
design of thin-walled fabricated steel cylinders subjected to
transverse loading; an ultimate inelastic shear formula for the

buckling capacity and a truss model for the post-buckling capacity.
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2. Literature Review
2.1 Introduction
2.1.1 Historical Review

In the early decades of this century, mechanical engineering
and aerospace applications provided the need for extensive research
investigation of cylindrical shells. In the 1930's, the National
Advisory Committee for Aeronautics (NACA) sponsored several
studies to investigate the behavior of very thin cylinders under
different loading conditions. In recent years, the extensive use of
offshore platforms has led to research into the behavior of the

cylindrical tube when used as a structural member.

One of the earliest studies on buckling strength of structural
tubes is that by Wilson and Newmark (1933), in which axially
compressed cylinders were tested. In the mid-sixties, a landmark
paper on the strength of structural tubes was presented by Schilling
(1965). In this paper, he summarized much of the preceding work

and presented strength criteria for the design of structural tubes.

After about 1975, the research effort on structural tubes has
been greatly expanded. Most activities have been directed toward
offshore structures, although some have been directed toward the
use of tubes in land-based construction. A comprehensive survey
report on the buckling of both unstiffened and stiffened cylinders
used in offshore structures was sponsored by the Department of

Energy in Britain (Ellinas, 1984.) Another thorough theoretical and



experimental treatise of the elastic buckling of thin-walled

cylindrical shells was performed at Tohcku University (Yamaki,

1984.)

At the present time, fabricated cylinders are the subject of
research in locations such as England, Australia, Norway, Japan, and
North America. For example, investigation of the interaction between
axial load and external pressure in cylindrical shells is continuing at
University of Liverpool (Galletly et al., 1987), studies on buckling
behavior of tanks are proceeding at the University of Sydney (Rotter,
1986), and tests of tubes under combined bending and external
pressure are being conducted at the University of Texas, Austin
(Corona and Kyriakides, 1988). An ongoing research at the University
of Alberta includes an examination of the strength and stability of
large diameter fabricated steel cylinders under axial compression,
bending, and transverse shear (Stephens et al., 1982, Bailey and
Kulak, 1984, Roman and Elwi, 1987). At the University of Wisconsin
Sherman is reviewing the design rules for pipes in flexure (Sherman,
1989) and a study on the local stability of beam and beam-column
cylinders is underway at Purdue University (Chen et al.,, 1989). The
behavior of pipelines and tanks under seismic loading is being

investigated at the University of California, Berkeley (Chalhoub and

Kelly, 1988).
2.1.2 Overview

Thin-walled cylindrical shells have been extensively used in

many branches of engineering. In particular, tubular members



fabricated from steel plates are becoming common in civil
engineering structures. Some examples of structures incorporating
these tubular members are pipelines, liquid storage tanks, grain
storage bins, nuclear reactor vessels, components of offshore

platforms, transmission towers, and conveyor galleries.

Because of their round cross-section, tubular members are
ideal for air tightness, wind resistance, and three-dimensional
loading. The circular cross-section has a superior wind shape factor
as compared to that of a conventional rectangular section. The round
cylinder also provides the most efficient shape available for centrally

loaded columns with no intermediate lateral support.

Cylindrical shells that have a small radius (R) relative to the
wall thickness (t) or length (L) are usually unstiffened. If the
thickness ratio, R/t, or the aspect ratio, R/L, is large enough,
longitudinal and/or ring stiffeners are often used to provide
additional strength. The study reported herein is concerned only

with longitudinally unstiffened cylinders.

In the design of cylindrical shells, as in all types of lightweight
structures, the determination of the buckling load is required. The
shell buckling problem is complex, and in addition, the influence of
initial imperfections, residual stresses, and material properties must

be considered.

Tubes may be subjected to axial compression, bending, torsion,
transverse loading, internal or external pressure, or to any

combination of these loads. The literature review in this chapter is
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directed mainly toward cylinders subjected to transverse loading.
However, a short commentary on cylinders subjected to axial
compression, bending, and torsion is also presented because of the

relationship between these loading types and transverse loading.
2.2 Buckling of Unstiffened Cylinders
2.2.1 Effect of Imperfections and Residual Stresses

The behavior of tubular members is influenced by the level of
geometric imperfections and residual stresses introduced in them
during the production process. Tubular members are either
manufactured or fabricated. A manufactured tube is any tube
produced by piercing, forming and welding, cupping, extruding, or
other related methods in a plant dedicated specifically to the
production of tubes. Fabricated tubes are constructed by cold-rolling

a flat plate into a cylindrical form and then welding the longitudinal

seam.

In general, fabricated cylinders do not receive a finishing
treatment and it is generally expected that they will have larger
magnitudes of imperfections than do manufactured cylinders. For
axially compressed cylinders, where local buckling is strongly
influenced by the level of imperfection, the strength of a fabricated

tube is normally below that of a comparable manufactured tube.

Long large-diameter tubes are usually conmstructed by joining
several short "cans" with circumferential welds. Such circumferential

joints are particularly susceptible to local buckling unless carefully
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made, because they often produce a discontinuity in the form of a
slight depression in the tube. Longitudinal joints may also cause
discontinuity, especially if made by riveting or bolting, but not tc the

same extent as the circumferential joints.

The unfavorable effect of the geometric imperfections on the
buckling strength changes considerably according to the type of
loading, the shape and level of imperfections, and the dimensions of
the tube. This effect can be estimated by either complicated
analytical methods or empirical formulas. Due to the random nature
of the geometric imperfections, empirical formulas are more practical

for design purposes.

Residual stresses in tubes usually arise from the forming and
welding operations that are part of the production process. High
levels of circumferential residual stress are created in a tube if it is
cold-formed and welded longitudinally in a continuous operation
without allowing any springback. If springback is allowed before
welding, the residual stresses will be considerably smaller. It has
been shown (Pascoe, 1971 and Roman and Elwi, 1987) that these
stresses can be predicted with a reasonable degree of accuracy by
simple plastic theory. An example of the residual stress distribution
across the cylinder thickness due to cold-rolling is shown in
Fig. 2.1(a). It can be seen that allowing for springback reduces the

surface stresses considerably.

Longitudinal residual stresses that arise from the shrinkage of

a longitudinal weld in cylinders of the type used in offshore
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structures were investigated by Ross and Chen (1976). A typical
distribution of these stresses around the cylinder perimeter is shown
in Fig. 2.1(b). The distribution has a region of yield tension at the

welds balanced by compression stress adjacent to it.

It can be expected that residual stresses will have a significant
effect on the inelastic buckling strength of tubular members. The
stress-strain curve of a tubular cross-section may change from a
sharp yielding type to a gradual yielding type due to the existence of
residual stresses. For tubes that have a known gradual yielding
stress-strain curve, the inelastic buckling stress can be determined
by using an effective modulus of elasticity, as proposed by Gerard
(1956). However, if the stress-strain curve of the cross-section is
unknown, which is usually the case, then the inelastic effect can be

predicted for specific production techniques by means of empirical

equations.

The material properties (the elastic modulus, E, and the yield
stress, Oy) are usually determined from coupon tension tests. When
used in buckling equations, these values have to be representative of
the behavior of compressed members. The difference between the
material properties measured from coupon test and the actual
properties of the tubular cross-section was investigated by Ross and
Chen (1976). They tested both full-size fabricated welded cylinders
in compression (stub-column test) as well as tension coupons from
the same steel plate. The tensile coupons exhibited sharp yielding
behavior whereas the compression stub column tests exhibited

gradual yielding behavior because they included the influence of the
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residual stress. The compressive yield stresses were slightly lower
than the corresponding static tensile yield stresses. Ross and Chen
reported that the difference is dependent on the method of
production and the size of the tube. After comparing several test
results, Ellinas (1984) suggested that the tensile value is a good
representation of the yield stress for the solution of buckling

problems in offshore-type cylinders.
2.2.2 Cylinders Subjected to Axial Compression

For convenience, axially compressed cylinders may be
classified into three groups according to their buckling behavior:
short, moderate, and long. Buckling of short cylinders is dependent
on both the thickness ratio (R/t) and the aspect'ratio (R/L), in a
manner similar to the buckling behavior of flat plates, whereas
buckling of moderate cylinders is dependent only on the (R/t) ratio.
Buckling of long cylinders is dependent on the slenderness ratio,

(L/r), in a manner similar to the behavior of columns.

The geometries which describe the limits of each group have
been identified by Gerard (1962) as a function of a curvature
parameter, Z, that involves the dimensions of the cylinder and

Poisson's ratio, V. The limits are given by:

Z<285 for short cylinders (2.1)
2. R.Z2
285<Z<6(1-v) (T) for moderate cylinders (2.2)
2. R.2
Z=26(1-v) (T) for long cylinders (2.3)
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PR 2
where Z = (l-uz) (R/t) (L/R) is the curvature parameter.

According to these limits, the moderate length region has
aspect ratios (R/L) between 0.418/t/R and 0.578 ¥/R/t. This is
believed to cover most of the common geometries used in civil
engineering applications, and it is this region that is emphasized in

the following.

The theoretical solution for buckling of axially compressed
cylindrical shells was obtained as early as 1910. The solution was
based on the small displacement theory, also called linear theory,
which requires that the analyzed member be perfectly elastic and
that there be a linear relationship between strains and displacement
derivatives. The small displacement theory can only determine the
buckling load at bifurcation, i.e. it cannot determine the equilibrium
path in the post-buckling region. The elastic buckling stress for
geometrically perfect cylinders accordiag to this classical theory is

given as (Timoshenko and Gere, 1961):

1 E L

Ocre = > R 4
N3v) (2.4)

where G, is the elastic buckling stress.

The results of the numerous experiments made to verify the
theoretical solution showed a large degree of scatter and buckling
loads generally much less than those predicted by Eq. 2.4. Some test

cylinders buckled at stresses as low as 20% of the critical stress given

by Eq. 2.4 (Ellinas, 1984.)

15



In 1934, Donnell realized that the classical theory is inadequate
for analyzing axially compressed cylinders because, unlike columns
and plates, the post-buckling behavior of cylinders is unstable. In
other words, Donnell realized that it was not sufficient to determine
the load at bifurcation, but that an investigation of the post-buckling
behavior was required as well. A schematic presentation of the post-
buckling behavior of three different structural members- plates,
columns, and cylinders, is shown in Fig. 2.2. The behavior of a
corresponding imperfect member in each case is also shown in
Fig. 2.2. Because the post-buckling stress of a perfect cylinder drops
sharply from the bifurcation buckling stress, the maximum stress of

cylinders with small imperfections is well below the classical

buckling stress.

Donnell and Wan (1950) developed a large displacement theory
that introduces the effect of initial imperfections into the stability
analysis. Their solution showed that the reduction in the buckling
stress depends on the imperfection magnitude and the value of the
R/t ratio. They concluded that the initial imperfections are
responsible for the discrepancy between the classical theory and
experiments. To confirm this conclusion, Tennyson (1964)
manufactured four near-perfect shell specimens and found that the

observed buckling loads were very close to the classical theoretical

buckling load.

Arbocz and Babcock (1974, 1976, and 1980) applied more
accurate numerical techniques to simulate statistically random

imperfection amplitudes in the analysis as a double Fourier series.
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They reached a point where the buckling load can be predicted with
considerable accuracy, provided that the actual imperfection profiles

are mapped and used in the calculations.

Pinkney et al. (1983), using finite element analysis, were able
to predict the buckling load of two axially loaded fabricated steel
cylindrical shells with exceilent agreement with the experimental
results obtained by Stephens et al. (1982). In their analysis, the
initial imperfections measured in the actual tests were modeled by

the first buckling mode shape and incorporated into the finite

element model.

Sophisticated analytical or numerical techniques similar to
those mentioned above are generally not suitable for design
purposes, however. As an alternative, empirical and semi-empirical

formulas based on many test results have been developed for the

design of imperfect shells.

The dependency of the buckling strength on the degree and
shape of the imperfections led the writers of design specifications to
classify steel tubes into groups with similar imperfection levels. In
fact, design codes require that their equations be applied with
certain conditions depending on the type of tests used in developing
the equations. For manufactured tubes with sharp yielding materials,
one of the early equations for ultimate strength was that proposed
by Plantema (1946). A conservative modification of Plantema's

formula was also adopted for fabricated cylinders.
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Several formulas were developed for specific classes of
materials and cylinder thickness. A comparative study of design
formulas recommended by the American Iron and Steel Institute
(AISI), American Water Works Association (AWWA), American
Society of Mechanical Engineers (ASME), and European Convention
for Constructional Steelwork (ECCS) codes is reported by Stephens et
al. (1982), who have themselves proposed an equation for fabricated
cylinders of geometries and material properties of the type used in
conveyor galleries. Another excellent compilation of test data and
design equations recommended by the American Institute of Steel
Construction (AISC), Det Norske Veritas (DnV), and British Standards
Institution (BSI) codes is reported by Ellinas et al. (1984).

Stephens et al. (1982) concluded that the ultimate capacity of
fabricated cylinders under axial compression is best approximated
by the AWWA formula if the cylinder wall thickness is less than
6.35 mm (1/4 in) and by the ASME formula if the cylinder wall

thickness is greater than 6.35 mm. The two formulas are shown

below.

The ASME formula for cylinders with wall thicknesses not less

than 6.35 mm is given by:

6. =T A (2.5)
where A =0 ——1—2— E—é
AV3(1-v)
I' =1.0 for A < 0.55
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0.45

I =018+ == for 0.55< A < 1.6
- Bl _<l for A 2 1.6
1+1.15A A
oy = 0207 for 600 < R/t < 1000
O, = smaller of (0lpy; and Olpyy) for R/t < 600
o, = 1.52-0.473 log (R/t)
Oz = 300(G, /E)-0.033

In these equations, O is the critical compressive stress, O is
an imperfection parameter based on Donnell's theory and I is an
empirical reduction factor for plastic buckling. It is obvious that the
ASME formula can be tedious for design purposes. On the other hand,
the easy-to-use AWWA formula for cylinders fabricated from mild

steel with yield stress not less than 200 MPa is given by:
2
Gq = Oy | 0.138 p - 0.00475 p ) for p < 145 (2.6a)
Og = Oy for p > 145 (2.6b)

where p =(E/c,) (R/t). It is to be noted that the AWWA code
recommended this formula for a different thickness range than the

one suggested by Stephens et al.
2.2.3 Cylinders Subjected to Pure Bending

The buckling of cylinders as a result of flexure has not been

explored as fully as has the buckling of cylinders under axial

19



compression. However, the local buckling behavior of the compressed
part of a cylindrical tube in bending is similar to that of a tube under

axial compression, and is usually linked to it.

Early tests of tubes in flexure were performed by Lundquist
(1933), who tested 58 thin-walled Duralumin cylinders in pure
bending. The test specimens had wall thicknesses that ranged from
0.28 to 0.56 mm, radii from 190 to 380 mm, and lengths from 50 to
940 mm. This range of the thickness ratio (R/t between 339 and

1357) is characteristic of aerospace applications.

It was observed that the shape and size of the buckles in the
failed cylinders were approximately the same as those obtained in
axial compression tests of the same R/t ratio. Lundquist reported
that the buckling stresses did not appear to be a function of the R/L
ratio, but were dependent on the R/t ratio and the initial
imperfections. The maximum compressive flexural stresses at failure
were about 30% to 80% more than the compressive stresses of the

axially loaded cylinders having the same R/t ratio.

Donnell (1934) tested about one hundred steel and brass
cylinders. The tests were run on matched cylinders, some of which
were tested in axial compression and some in pure bending. The test
specimens had R/t ratios in the same range as Lundquist's tests but
the cylinders themselves were much smaller. The radius of the test
cylinders ranged from 24 to 72 mm and the thickness from 0.05 to

0.07 mm. The length to radius ratio varied from 1 to 1I5.
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The test results showed that the ratio of the critical stress in
bending to the critical stress in axial compression ranged from 0.86
to 1.69 for the steel cylinders and from 0.80 to 2.62 for the brass
cylinders. Donnell suggested that the critical stress in bending can be
taken as 1.4 times the critical stress in axial compression, which is

the average value of the above ratios.

It should be noted that there is considerable scatter in the test
data reported by Donnell and Lundquist. The scatter was largest for
the brass cylinders and least for the Duralumin cylinders. The
average 40% increase in the bending critical stress suggested by
Donnell and Lundquist should be viewed in the context of the
material and the size of specimens used in the tests. The level of
imperfections and residual stresses in the small specimens may be

significantly different from that in actual large diameter tubes.

Other investigators (Gerard and Becker, 1957) have suggested
that the elastic local buckling stress for bending can be taken
conservatively as 1.3 times the local buckling stress for axial
compression. This was based on test results and some theoretical
considerations. This higher elastic buckling stress for bending results

from the beneficial effect of the stress gradient that exists in

bending.

Seide and Weingarten (1961) also investigated the stability of
circular cylindrical shells under pure bending. Using the small

displacement theory, they proved that the critical compressive stress
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in bending is equal to the critical compressive stress for the axial

load case.

Seide and Weingarten admitted that, without a large
displacement solution for cylinders in bending, no argument about
the flexural buckling stress can be complete. However, they
suggested that the similarity in the experimental buckle
deformations for bending and compression would appear to indicate

similar theoretical post-buckling behavior and similar strength.

This argument can be twisted in favour of the proposed
increased strength for the bending case because the sensitivity of the
compressive stresses to initial imperfections would decrease with the
inherent stress gradient in bending. Consequently, the role of initial
imperfections in reducing the buckling strength would be smaller in
cylinders under pure bending than it would be in cylinders under

uniform compression.

There have been very few tests on large diameter fabricated
steel cylinders under bending. Two of these were carried out by
Stephens et al. (1982). They tested full-scale fabricated cylinders
with‘ dimensions that resemble the tubular members used in the
materials-handling operations of industrial plants. The two test
specimens were fabricated from 3.5 and 5 mm thick steel plates,
respectively. Both had a diameter of 1525 mm and a central length
of 1830 mm. Both cylinders failed at the extreme compressed fiber
near the circumferential weld which was a major source of geometric

imperfection and residual stress.
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Stephens et al. proposed a local buckling ultimate strength
formula for such cylinders under either compression or bending.
Using the limited test data in bending, it was shown that the
proposed equation was as accurate as the equations recommended

by the ASME and the ECCS codes. Stephens’ equation is particularly

suited for design and is given by:

Ox =Gy (1193 7s) for Ys < 0.0036 (2.7a)
Oy = Oy (1-625 +0.489 log Ys) for 0.0036 < Yy < 0.0527 (2.7b)

Cg = Oy for ys 2 0.0527 (2.7¢)

08 1.5
where G, is the critical compression stress and Ys = (E/0) (t/R) is

a non-dimensional factor reflecting material and geometric

properties.

Unlike the ECCS code, which increases the critical compressive
stress for tubes subjected to bending above that for tubes in axial
compression, Stephens et al. suggested that the same critical
compressive stress be used for large diameter fabricated steel
cylinders in bending and axial compression. Stephens’

recommendation was based on the results of the full-scale tests.

Another large size welded fabricated cylinder was tested in
bending by Bailey and Kulak (1984). The test specimen was
fabricated from a 5 mm thick steel plate and had a diameter of
1753 mm and central length of 1219 mm. The cylinder failed with
the typical diamond shaped buckles formed adjacent to the

circumferential weld, similar to the two cylinders tested by Stephens
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et al. The maximum compressive stress calculated from the
measured strains was 99% of that predicted by the Stephens et al.
formula. Bailey and Kulak supported the use of this equation for

fabricated steel tubes with values of Y, in the range of 0.005 to 0.02.
2.2.4 Cylinders Subjected to Torsion

Buckling of thin-walled cylinders loaded in torsion is not
accompanied by immediate collapse, as is the case with axially
compressed cylinders. It was observed (Lundquist, 1932 and Donnell,
1933) that small initial imperfections on the surface of the test
cylinders did not seem to affect the buckle formation or the buckling
strength. Nevertheless, the strengths of tubes tested in torsion tend
to be roughly 15% below the theoretical predictions, apparently as a

result of initial imperfections.

Lundquist (1932) tested 180 Duralumin cylinders in torsion.
The cylinders had R/t ratios that ranged from 323 to 1455 and R/L
ratios that ranged from 0.5 to 2.0. The test specimens were
fabricated by wrapping the Duralumin sheet about two end
bulkheads. A butt strap was fitted and bolted in place to close the
seam and steel bands were used to clamp the Duralumin sheets to
the bulkheads. It was cbserved that short cylinders showed a more

stable failure pattern than the long cylinders.

Lundquist reported that both the nominal shearing stress at
failure and the slope of the buckles decrease as the value of the R/L

ratio decreases for a constant cylinder thickness or as the value of
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the R/t ratio increases for a constant cylinder length. Based on the

test data, the following empirical equation was proposed:

1.37

1, =K, E (tE) (2.8)

where T.is the elastic buckling shear stress and K is a function of the
ratio R/L. Regarding the sensitivity to initial imperfection, Lundquist
commented that the presence of slight imperfections in the cylinder
may cause the buckles to initiate at a smaller load but does not
reduce the strength at failure. It is to be noted that in the absence of

a theoretical solution, Lundquist's comment on the effect of the initial

imperfections can only be approximate.

Batdorf et al. (June, 1947) determined a solution for thin-
walled cylinders loaded in torsion based on Donnell's linear

assumptions. The elastic buckling stress was introduced by:

2 2
(L] t

2 2
12(1-v) L

T. = K; E (2.9)
where K, is a parameter given in the form of logarithmic plots for

cylinders with either simply supported or clamped edges. For
intermediate values of the curvature parameter Z, which corresponds
2
to 50<Z<10(R/t) or 0.309+t/R <R/L<0.138 /R/t, the curves
which define K; are straight lines. In this case, Eq. 2.9 becomes:
5 1

_ t 4 52
T = K, E (E) (L) (2.10)
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where K, is a constant equal to 0.74 for simply supported cylinders
and 0.81 for clamped end cylinders. Batdorf's solution was compared
with previous theoretical solutions and proved to be in somewhat
better agreement with experimental results reported by other
investigators (Lundquist, 1932 and Bridget et. al., 1934). However, it
should be noted that, in this comparison, only a few test specimens
were made of steel. Also, the comparison plot reported by Batdorf
was somewhat optimistic. The difference between the theory and the
data appears to yield reasonable agreement in the logarithmic plot,

but if plotted linearly the difference can reach 40% (Gerard, 1962.)

It was suggested by Gerard (1962) and Schilling (1965) that a
reduction of 15% be applied to Eq. 2.10 to account for the difference
between theory and test. The percentage selected is an average value

taken from the test results.

Yamaki (1984) presented a more complete picture of the pre-
buckling and post-buckling behavior of cylinders subjected to torsion
in the elastic range. In addition to presenting better values for the
constant K, in Eq. 2.10, a reasonably accurate prediction of the post-
buckling equilibrium path and the buckle formation of earlier

experiments was achieved.

The experiments (Yamaki, 1976) were conducted using six
polyester test cylinders with a radius equal to 100 mm, a thickness
equal to 0.25 mm, and lengths ranging from 23 to 161 mm. The
corresponding curvature parameter, Z, for these specimens was 20,

50, 100, 200, 500, and 1000. The critical load measured in the tests
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was between 87% and 94% of the theoretical value, and the number
of buckles was also close or equal to that predicted by the theory.
The post-buckling characteristics of theses tests are plotted together

with the theory in Fig. 2.3.

As shown in Fig. 2.3, the equilibrium torque of the tested
cylinders decreases after buckling. For short cylinders (Z<200), the
equilibrium torque increases after reaching a minimum post-
buckling value. The cylinder with Z=20 did not exhibit any reduction
after buckling. For long cylinders (Z>200), the equitibrium torque
decreases for a large angle of twist before it begins to increase again.
When Z reached 1000, the reduction was almost 60% of the buckling
torque. It is also noted that the theoretical curves are fairly close to

the test curves, both before and after buckling.

Yamaki showed that the shear constant K, in Eq. 2.10 is
dependent or the value of Z as well as on the restrained deformation
and forces at the boundaries. However, his tables showed that the
value of K may be approximately taken as 0.80 for cylinders with Z
values that range from 200 to 1000. The shear constant K,
reproduced from the work tables of Yamaki (1984), is plotted in
Fig. 2.4 for different cylinder geometries. It can be seen from Fig. 2.4
that cylinders with relatively thin walls (R/t>200) and long shear
spans (R/L<1.0) have a value of K; of about 0.80, while cylinders
with relatively thick walls (R/t<200) and short shear spans (R/L>1.0)

have considerably higher values of K, which may reach a value of

1.50.
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To clarify the effect of imperfections on the critical load,
Yamaki introduced an imperfection amplitude into the stability
analysis. The analysis confirmed the dependency of the imperfection

sensitivity on the value of Z and the imperfection amplitude.

Equations 2.8 through 2.10 predict the buckling stress in the
elastic range. In the inelastic range, the buckling strength may be
reduced due to the presence of residual stress. In this case, reduction

factors are needed to account for the plasticity effect.
2.2.5 Cylinders Subjected to Transverse Loading

Failure under transverse shear can result from either local
buckling or yielding of the material or as a combination of both. Local
buckling may occur in a flexural mode or in a shear mode. Extensive
yield may take place close to the neutral axis in zones of low bending
moment and high shear forces, or it may take place in tensile zones
under flexure of longitudinally stiffened tubes. In the following, the
discussion is limited to thin-walled unstiffened tubes. Thus, material

failure as a separate phenomenon is not of interest.

Using simple flexural beam theory, the pre-buckling membrane
stresses in a cylinder are related to the bending moment and
shearing forces as follows:

M=6mtR (2.11)

V=1 ntR (2.12)
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where © is the maximum longitudinal stress due to bending, T is the

maximum shear stress, and where the moment of inertia for a thin-
. 3

walled tube is taken as wt R. It can be seen from Egs. 2.11 and 2.12

that the ratio of 6/t in the pre-buckling range is the same as the

ratio of M/RV.

The earliest test data in the elastic buckling of transversely
loaded cylinders is reported by Lundquist (1935). The test cylinders
had R/t ratios that ranged from 323 to 1455 and R/L ratios that
ranged from 0.5 to 2.0. The specimens were fabricated in the same

way as those described in Section 2.2.4 (Lundquist, 1935).

Lundquist showed that the value of the ratio M/RV s
descriptive of the buckling mode of cylinders under combined shear
and moment. For small values of M/RV (less than 2), failure occurred
in shear by the formation of diagonal buckles on the side of the
cylinder. The size and form of the buckles at failure were similar to
those which were observed for the correspénding cylinders that had
been loaded in torsion. As M/RV approaches zero, the maximum

shearing stress was between 1.20 and 1.38 times the critical shearing

stress in torsion.

For large values of M/RV (more than 3), failure occurred in
bending by a sudden collapse of the region that was in maximum
compression. The buckle size and the maximum longitudinal stress
were similar to the comparable cylinders that had been loaded in

pure bending. At intermediate values of M/RV (between 2 and 3),
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there was a transition from shear to bending mode accompanied by a

reduction in strength.

Based on Lundquist's test results, Schilling (1965) suggested
that the elastic buckling shear stress in transverse shear could be
taken as 1.25 times the critical elastic shear stress in torsion.
However, for the inelastic range, Schilling proposed that no increase
in the shear stress be permitted so as to account for the

corresponding reduction in the buckling strength.

Lu (1965) derived two theoretical bounds for the bending
buckling load of a cantilever cylinder subjected to a concentrated
lcad at the end. The upper bound (C;) was obtained from linear

elastic theory, while the lower bound (0..;) was obtained from finite

displacement theory. The two bounds are:

5. L2536 oot .
crl = 5 E .
N3(1v)
0.6594 t
Oy =—F—== E -

/3(1_02) R (2.14)

Lu did not provide any solution for the critical shear stress, nor did
he elaborate on which of the two critical compressive stresses is

more likely to occur.

Schroder (1972) solved the theoretical buckling problem of
perfect cylindrical shells under transverse loads. Starting with
Donnell's linear assumptions, Schroder derived the governing

differential equations for a perfect cylinder supported at one end
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and loaded at the free end by edge force. The equations were then

solved using the Galerkin integration method.

Schroder showed that perfect cantilever cylinders subjected to
transverse loading may buckle in a shear mode or in a bending mode
depending on the R/L and R/t ratios. For high values of the R/L ratio
(about 0.35 or more), the buckli.ng stress for shear buckling is
considerably smaller than that for bending buckling. By examining
the solution, Schroder concluded that coupling between the two
modes is unlikely to occur. The critical shear stress, expressed in

terms of the geometry and material properties of the cylinder, is

given by:
N t|[R 1
=Nt ({7
R/ \L 3(1_02) (2.15)

in which -ﬁw is a dimensionless parameter which depends on the

values of the ratios R/t and R/L. In the original work by Schroder,
two sets of curves were presented. Each set defines the values of ﬁm
for one of the two buckling modes. The curves that correspond to the
bending mode must be considered not realistic because the profound
effect of the initial imperfections on the critical bending stress was
not included in the analysis. On the other hand, the curves that
correspond to the shear buckling mode can be assumed to be
reasonably accurate because shear buckling appears to be relatively

insensitive to the presence of initial imperfections. Those curves are

plotted in Fig. 2.5.
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Yamaki et al. (1979) carried out an experimental study on the
buckling of clamped cylindrical shells under combined action of
transverse load and internal hydrostatic pressure. The test cylinders
were made of a 0.247 mm thick polyester film rolled on a 100 mm
diameter mandrel and lap-jointed along the longitudinal seam. The
cylinder lengths varied from 22.8 to 228 mm. In order to distribute
the end load, an 18 mm thick Duralumin end plate was attached to

each end of the cylinder

Yamaki et al. found that the ctitical transverse loads obtained
under a condition of zero hydrostatic pressur¢ were between 99%
and 106% of those theoretically predicted by Schroder (Eq. 2.15.) The
theoretical critical stress of fixed cyfinders under torsion (Eq. 2.10
with Yamaki's definition of K;) was also compared to the test results
and found to be in slightly less satisfactory agreement. Yamaki et al.
concluded from the closeness of the two solutions that the elastic
critical shear stress of cylinders under transverse load is nearly

equal to that of cylinders under torsion.

To examine the accuracy of Yamaki's conclusion in the range of
dimensions that are important in this study, Schroder's solution and
Yamaki's solution for the clamped edge condition are plotted together
in Fig. 2.6. The ratio of the critical shear stress tc the elastic modulus
is shown for a selected range of R/L ard R/t ratio. It can be seen
from Fig. 2.6 that the critical torsional shear stress is a fairly good
estimate of the transverse shear stress except im the case of short
stocky cylinders, where the difference is apparent. It should also be

noted that the ratio of the yield shear stress to the elastic modulus
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for steel with a tensile yield strength of 450 MPa is approximately
0.0013. The difference between the two solutions is most important

only below this limit.

Yamaki et al. also compared the results of Lundquist's tests
(1935) to the two theoretical solutions, Eqs. 2.10 and 2.15. Lundquist
reported the load at which wrinkling appeared as well as the failure
load. Yamaki et al. found that the "failure" loads were higher than the
theoretical predictions while the "first wrinkle" loads were lower.
Yamaki et al. questioned the accuracy of Lundquist's data and

criticized the fabrication procedure used in the tests.

Baker and Bennett (1984) investigated the buckling interaction
curves for both unstiffened and ring-stiffened cylinders. They
designed an apparatus that can apply different ratios of axial
compression and shear loads on test specimens. The cylinders, which
were made of 0.38 mm thick Lexan plate and were used repeatedly,
had geometries that are characteristic of nuclear steel containment

vessels. They had a value of R/t equal to 460 and a value of R/L
equal to 0.57.

Baker and Bennett reported that the unstiffened cylinders
demonstrated a smooth transition from the classical diamond-shaped
buckling mode when loaded in axial compression into the diagonal
wave buckling mode when loaded in transverse shear. The study also
showed that the effect of using closely spaced ring stiffeners on the

shear buckling load is very favorable {more than three times the




capacity obtained in the unstiffened test for the particular spacing

and stiffness of the ring stiffeners used in the stiffened test).

The first study of the shear capacity of fabricated steel
cylinders in the plastic range was done by Bailey and Kulak (1984.)
They tested two steel cylinders (referred to as Bl and B2) loaded in
transverse shear. In each case, the cylinder was fixed at bcih ends
and loaded in the middle by a central load. The first specimen, Bl,
was fabricated from 0.76 mm thick steel sheet. It had an R/t value
equal to 251 and an R/L value equal to 0.50. Large deformation was
induced during the welding process in one of the two shearing spans,
but no significant differences in the behavior between the two spans
was observed during the test. Cylinder Bl failed as a consequence of
a series of successive inclined buckles (at 22.5, 26.0, and 29.4 kN,
consecutively) followed by compression buckles at the extreme fiber.
The successive buckling observed in the B1 test is not a typical

behavior for shear tests. The load is expected to drop after the first

buckle.

The second specimen, B2, was fabricated from 5 mm thick steel
plates. For this specimen, R/t was 75 and R/L was 0.50. Buckling
occurred at 967 kN on one side of a shear span, after which the load
dropped. Soon after, another buckle formed at 890 kN on the other
side of the same shear span. The load then dropped to 660 kN where

it stabilized. Both tests showed clearly a stable post-buckling

equilibrium path.
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Bailey and Kulak hypothesized a similarity between the post-
buckling behavior of plate girders and that of thin-walled cylinders
under transverse load. They investigated the possibility of adapting
Basler's tension field theory for plate girders (Basler, 1961) to fit
thin-walled cylinders. Bailey and Kulak suggested a possible form of
the ultimate shear strength equation based on the experimental

observations. This form is expressed as follows:
Vo= k; T, (high R/t ratio) (2.16a)
Vu=kp Ty + ky; Ty (intermediate R/t ratio) (2.16b)
Vu=ky Ty (low R/t ratio) (2.16¢)

where V,is the ultimate shear strength of the cylinder, T, the
tension field shear strength, Ty the yield strength of the cylinder and
ky . k2. kyi, and kyp are functions of R/t ratio and the material
properties. Bailey and Kulak noted that the ratio R/t is an important
factor in determining the failure mode. Cylinders with low values of
the R/t ratio are expected to fail primarily due to yielding, while

cylinders with high values of the R/t ratio may buckle long befere

yielding occurs.

Another shear study in the inelastic range was reported by
Galletly and Blachut, (1985) who tested fourteen short cantilever
cylinders under end loads. The cylinders were made by wrapping
steel sheets around a 150 mm radius mandrel and then welding the

longitudinal seam. Heavy flanges were welded onto the ¢ylinder ends




where the end load was applied. The dimensions, material properties,

and the buckling shear stress of the cylinders are listed in Table 2.1.

As Table 2.1 shows, duplicates were made of the first five
models; G1, G3, G35, G7, and G9. (The duplicates are G2, G4, G6, G8, and
G10, respectively). The largest variation in buckling stresses between
any duplicate pair was 10% (G9 and G10). In addition to these
results, each cylinder was tested twice: after a given cylinder was
buckled the first time, the load was reapplied in the opposite
direction and increased until buckling occurred a second time. By this
repetitive testing in opposite directions, the effect of relatively large
imperfections (the buckles that remained from the first test) could
be examined. For all but one of the cylinders, the second buckling
load was at least 90% of the first one. (These results are not shown in
Table 2.1). Galletly and Biachut therefore concluded that shear
buckling is not very sensitive to the level of initial imperfections in
the tube. Although this conclusion seems reasonable, it must be
noted that formation of permanent buckles in the first test could

have a stiffening effect against buckling when the direction of

loading is reversed.

Galletly and Blachut found that for their tests, the maximum
shear stress can be accurately predicted by a quadratic interaction

equation in the following form:

1 1 1
- = <5 + —= (2.17)
T, T, T,
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where T, is the yield shear stress, T.is the elastic critical shearing
stress of a perfect cylinder in torsion (Eq. 2.10), and T,is the plastic
critical shear stress of the cylinder due to transverse shear loads. The
ratio between the critical shear stress measured in the test and that
predicted by Eq. 2.17 is also given in Table 2.1. In most cases, this
ratio is greater than 1.0, i.e., the predicted value is on the safe side.
The only two tests where the ratio was less than 1.0 (G7 and G9) had
reported higher initial imperfection than the rest of the tests. It
should be noted that Galletly and Blachut used the value 0.74 for the
shear constant in Eq. 2.10. This is conservative for the fixed
boundary condition and the geometries of the tested cylinders
(125 < R/t < 188, and 0.83 < R/L <1.37). A more accurate value of the
shear constant, K, would be 0.825 (see Fig. 2.4.)

The European specifications (European Convention for
Constructional Steelwork, 1988) use an interaction equation similar to
Eq. 2.17 to calculate the inelastic shear buckling stress. This equation

is also a function of the elastic torsional shear buckling stress, as

shown following:

T T
P4 025—Y— = 100 (2.18)

T, 0.65 T,

where the factor before the elastic shear stress (0.65) reflects what
the ECCS suggests as the effect of the geometric imperfections on the
elastic buckling stress. The predictions of the ECCS equation are
generally close to those of Eq. 2.17, but are less conservative for

moderate values of R/t ratio (200 to 300).
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Mok and Elwi (1986) carried out a numerical investigation of
the shear behavior of large diameter cylinders using a nonlinear
finite element analysis program. They examined the effect of loading
conditions and boundary conditions on the buckling mode. Mok and
Elwi used the first buckling mode shape to incorporate initial
imperfections in the numerical analysis. However, they did not
recommend this procedure for further investigations because of the
difficulty of determining the correct scaling factor. The analysis
which employed small size of imperfections agreed well with the
theoretical results by Batdorf et al. (May, 1947) but did not agree

well with the experimental results of Bailey and Kulak (1984).

In addition to the numerical study, Mok and Elwi continued the
work by Bailey and Kulak on the development of a tension-field-
based ultimate shear equation. They derived an ultimate shear
equation that consisted of two components, a beam component and a
tension field component. However, the critical shear stress which
forms an integral part of the beam component was not completely

defined.

Further numerical investigation was carried out by Roman and
Elwi (1987). They traced the equilibrium path in the pre-buckling as
well as the post-buckling range. The initial imperfections were
incorporated naturally in the numerical model with the heip of a
three dimensional degenerated shell element. The analysis also
accounted for the initial residual stresses inherent in thin-walled

cylinders due to cold forming and welding.
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Roman and Elwi confirmed the experimental observations of
Galletly and Blachut that the shear capacity is not very sensitive to
initial imperfections, especially flute-type imperfections. The
analysis also suggested that the residual stresses inherent in some

fabrication techniques may have a significant effect on the ultimate

shear capacity.

Based on the results of their numerical study, Roman and Elwi
proposed an analytical theory for the tension field contribution to the
shear capacity of large diameter cylinders. They developed a truss
model which simulates the load carrying mechanism of the cylinders
in the post-buckling range. In spite of the good agreement between
the model and the numerical analysis, the model did not include
some of the parameters that govern the behavior of transversely
loaded cylinders and, therefore, did not agree satisfactorily with

some of the experimental results.

2.3 Summary

The buckling load of cylindrical shells has been a crucial
problem in the design of these members because of the several
factors that influence the shell capacity. In the elastic range, random
geometric imperfections introduced during the production process
play an important role in developing the critical load. In the inelastic
range, residual stresses developed by forming and welding

techniques can have a detrimental effect on the buckling strength.

Cylinders subjected to axial compression or torsion have been

extensively investigated, both experimentally and analytically.
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Solutions based on large displacement theory are available for each
case. Such solutions assist in determining the role of initial

imperfections on the critical load.

For axially compressed cylinders, empirical formulas based on
numerous test results (Eqs. 2.5 and 2.6) are available for design
purposes. As is the case for cylinders subjected to torsion, the elastic
buckling shear stress is accurately predicted by the theoretical

solution, Eq. 2.10.

Cylinders subjected to pure bending or to transverse shear
have not been examined as thoroughly as have the other loading
cases, perhaps due to their limited applications in offshore
structures. No solution based on the large displacement theory is
available for these loading cases and very few experiments are

reported in these areas.

In the elastic range, theoretical s::lutions based on small
displacement theory do exist for cylinders subjected to pure bending
or transverse shear. For perfect elastic tubes under transverse shear,
Schroder's solution (Eq. 2.15) seems to yield fairly accurate
predictions of the buckling load. The sensitivity of the buckling load
to geometric imperfections can only be estimated from test results

and numerical analyses.

The inelastic buckling of cylinders subjected to transverse
shear was experimentally investigated by Galletly and Blachut who
tested small cantilever models and proposed an interaction equation

for the maximum plastic shear stress, Eq. 2.17. However, this
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equation, which has a rational basis, does not produce the best fit of
the test data, i.e. the error of estimating the shear capacity based on
the test results was not minimized. The predictions of this empirical
equation were, of course, compared only to the results of the small

cantilever tests: full-scale test results should also be used.

The only tests of large diameter fabricated steel tubes under
bending or transverse shear were carried out at the University of
Alberta (Stephens et al. and Bailey and Kulak). The actual effect of
the initial imperfections and residual stresses is correctly
represented in the results of these tests. Initial numerical analyses of

one bending specimen and one shear specimen did not agree

satisfactorily with the test results.

The post-buckling behavior of Bailey's test initiated the search
for a physical model that can predict the post-buckling capacity of
transversely loaded cylindrical shells. The attempts made so far do

not compare well with the few available tests.
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Texp
.\:?del Material t R/t R/L E T T N
NO. (ma) (1000 MPa} | (ypy) {MPa) (MPa)
Gl Mild steel 0.8 188 1.00 200 172 149 1.11
G2 Mild steel 0.8 188 1.00 200 172 142 1.06
G3 Mild steel 1.0 150 1.00 195 134 134 1.12
G4 Mild steel 1.0 150 1.00 195 134 132 1.10
GS Mild steel 1.2 125 1.00 200 164 168 1.13
Gé6 Mild steel 1.2 125 1.00 200 164 161 1.08
G7 |Structural steel| 1.0 150 1.00 190 240 170 0.95
G8 |Structural steel 1.0 150 1.00 190 240 182 1.02
G9 |Structural steel 1.2 125 1.00 195 206 163 0.92
G10 |[Structuralsteel| 1.2 125 1.00 195 206 179 1.0¢
G11 |Structural steel | 1.2 126 1.37 195 206 194 1.06
G12 |Structural steel 1.0 151 1.37 190 240 192 1.06
G13 |Structural steel 1.2 129 0.83 195 206 171 1.01
G14 |Structural steet | 1.0 155 0.83 190 240 172 1.02

Table 2.1 Test results of steel cylinders under transverse edge shear
( after Galletly and Blachut, 1985)
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3. Testing of Fabricated Cylinders Subjected to

Transverse Loadirig
3.1 Introduction

The purpose of the experimental program described herein was
to investigate the shear buckling behavior of large diameter thin-
walled fabricated steel cylinders under transverse loading. Cylinders
of the geometry investigated have a number of civil engineering
applications, for example, as tubular conveyor galleries. Typically,
these members range from about 2500 mm to 4000 mm in diameter
and are fabricated from hot-rolled steel plates of about 5 mm to 8
mm in thickness. This gives a radius to thickness ratio (R/t) in the
range of 150 to 400. Practically all tubes of the proportions described
have ring stiffeners, but longitudinal stiffeners may or may not be
present. This study considers only longitudinally unstiffened

members,

Very few tests have been conducted on members of this
description. One group of tests was cartied out by Bailey and Kulak
(1984). Two specimens, one fabricated from hot-rolled steel plates
and the other fabricated from cold-rolled steel plates, were tested as
a beam with fixed end support. These specimens had R/t ratios of 75
and 250, respectively, and a radius to shear span ratio (R/L) of 0.5.
Another group of cylinders was tesied by Galletly and Blachut
(1985). Fourteen specimens fabricated from cold-rolled steel sheets

were tested as cantilevers. The specimens had R/t ratios ranging
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from 125 to 188 and R/L ratios ranging from 0.83 to 1.37. The radius

of these specimens was held constant at 150 mm.

The tests reported herein were on cylinders fabricated from
hot-rolled steel plates. They had an R/t ratio of 185. One specimen,
S1, was tested as a beam with fixed end suppors and had an R/L
ratio of 0.53, while the second specimen, S2, was tested as a
cantilever and had an R/L ratic equal to 0.76. The nominal diameter
of each of these specimens was 1270 mm. These tests, and one of the
Bailey and Kulak test pieces (R/t=75), arc considered to be the only
available test results that reflect the material, proportions, and
fabrication practice that are representative of fuli-size tubes. (The

Bailey and Kulak specimen is somewhat stockier than usually

encountered in practice, however).
3.2 Test Design

3.2.1 Design Equatiors

Since cylinders under transverse loads may buckle either due
to shear or due to bending, estimates of the critical shear stress (for
shear buckling) and the critical compressive stress (for bending
buckling) are required in order that design of the test specimen can

be carried out in such a way that failure by shear buckling can be

expected.

When the elastic buckling shear stress approaches the yield
shear stress, the cylinder buckles in an elastic-plastic mode at loads

smaller than those predicted by the elastic equation. An estimate of



the inelastic critical shear stress for cylinders under transverse shear
kas bezn proposed by Ga'letly and Blachut (1985). This estimate,

which is based on experimental test results, is calculated as follows:

. 2
Vo[ l

where T, is the inelastic critical shear stress, T, is the shear yield

stress, and T.is a conservative estimate of the elastic buckling shear

stress of cylinders under torsion and is given by:

125 0s

t R
T. = 074 E |— —

; & 3.2
in which 71,is the elastic buckling shear stress, E is the elastic
modulus, R is the cylinder radius, L is the length of the shear span,
and t is the cylinder wail thickness. This is the Batdorf et al. (1947)
solution given by Eg. 2.10 with K as 0.74.

The best estimate for the critical compressive stress for a
cy.inder under transverse shear is probably that proposed by
Stephens et al. (1982) which has been discussed thoroughly in
Section 2.2.3 and represented by Egs. 2.7(a), 2.7(b), and 2.7(c).
However, these researchers also suggested that for cylinders with
wall thickness less than 6 mm, a more conservative estimate of the
critical stress is the AWWA (1979) formula reprcsented by
Egs. 2.6(a) and 2.6(b). Since this estimate is conservative, it can be
interpreted as a lower bound for bending failure and therefore its

use helps in designing the shear failure tests.



Using beam theory, these critical stressus £.n be translated to

critical forces as follows :
2 .
Mg=06s T R t (3.3)

Ve=Ts TR (3.4}

in which M, is the critical bending moment for the compression
buckling mode case and V is the critical shear force for the shear
buckling mode case. As explained in Section 2.2.5, the value of the
G /T ratio, or the M/VR ratio, identifies the buckling rnode. This
ratio can be calculated for specific material and geometrical

properties using Egs. 3.1, 3.2, 2.6 and 2.7.

An R/L ratio around 0.5 is considered to represent practical
cases. The values of the elastic mcdulus and the yield stress are
assumed to be 200x10° MPa aad 300 MPa, respectively. In order to
be able to use hot-rolled steel plates, as would be employed in
practice for large diameter fabricated steel tubes, the cylinder wall
thickness had to be larger than 3.2 mm (1/8 in.). For the commonly
used range of R/t values, a value around 200 was considered
appropriate for the selected wall thickness and the capacity of the
testing equipment available. The selected ratio implies that the
cylinder will buckle in shear in an inelastic mode. The diameter of

the test specimen that results from this R/t ratio is about 1280 mm.

Calculating T, and O, from Egs. 3.1, 3.2, and 2.6, the maximum
M/VR ratio in a span has to be iess than 1.13 to allow for buckling in

a shear mode before buckling in a bending mode. By choosing a



conservative value of the M/VR ratio (1.0), the cylinder had to be
tested either as the fixed-ended beam shown in Fig. 3.1(a) or as the
cantilever beam shown in Fig. 3.1(b). The fixed-ended beam solution,
which has a constant shear, was chosen for its simplicity and
convénience. The specimen tested in that configuration, which also

used constant thickness, was called S1.

When S1 was tested, only one of the two shear spans showed
signs of failure or yielding in shear or bending; ihe other span
recovered completely upon removal of the load. It was decided,
therefore, to modify the specimen by cufting away the damaged span
and testing the remaining intact shear span. This was designated as
specimen S2. It was tested as a cantilever beam with an R/L ratio of
0.76. This is the longest shear span that allows a shear buckling

mode to occur according to the predictor equations.
3.2.2 Finite Element Analysis

In addition to the design equations mentioned a:cve,
numerical analysis was also used to predict the failure load and the
failure mode of specimens S1 and S2. Roman and Elwi (1987) utilized
the finite element method to analyze the problem in hand with a
reasonable degree of confidence. Prior to testing the specimen, a
finite element analysis was carried out to predict the behavior and
capacity of the specimens. The analysis predicted that both

specimens could be expected to fail due to shear buckling.

For Specimen S1, the finite element r+zsh used was a 6x6 mesh

of three dimensional degenerated bi-cubic Lagrangian thin shell



elements which modeled one quarter of the cylinder. The load-
displacement curve and the shape of the deformed mesh were
obtained in the pre-buckling and post-buckling range. The results
are presented in Section 3.3.4. For Specimen S2, a 4x4 mesh which
modeled one half of the cylinder was adopted in a similar manner for
the analysis of S1. The analytical results are compared with the test

values in Section 3.4.4. A detailed description of the numerical

analysis of S1 and S2 is reported in Chapter 4.
3.3 Shear Specimen S1
3.3.1 Specimen Description

Geometry and Fabrication

It is possible that the buckling behavior of a fabricated tube is
affected by the method of construction. Therefore, the fabrication
techniques employed were carefully observed. The specimens were
fabricated by a local steel fabricator using their standard procedure.
Two 3.44 mm thick grade 300W hot-rolled plates (Pl and P2)
meeting CSA Standard G40.21 (specified minimum yield and ultimate
strength of 300 MPa and 450 MPa, respectively) were cold-formed in
rollers to the desired curvature and then joined longitudinally with
full-peneiration groove welds to form two cans. The two cans were
then welded together to form the specimen S1, as shown in  Fig. 3.2,
In one method of fabrication, flat plates are rolled to a radius smaller
than the final radius and released to spring back to the desired
radius, thereby releasing some of the residual stresses created by

rolling. However, in this case the plates were rolled to the desired



curvature, clamped, and then welded without allowing any spring-

back.
Material Properties

Coupons were cut from the base material prior to rolling in
order to determine the elastic modulus and the yield strength of the
material. The 50 mm gage length coupons were prepared in
accordance with the ASTM Standard (1989), and were oriented so
that material properties would be measured parallel to what would
be the longitudinal axis of the specimen. Three coupons taken from
plate P1 (see Fig. 3.2 were tested. They had an average static yield
stress of 337 MPa and an average elastic mcdulus of 218x10° MPa.
The coefficients of variation for these average values were 3.7% and
2.5%, respectively. Three coupons taken from plate P2 had an
average static yield stress of 335 MPa and an average elastic
modulus of 215x10° MPa. The coefficients of variation for these
average values were 4.2%, and 0.8%, respectively. All coupons
demonstrated the sharp yielding plateau characteristic of ot-rolled

steel and had a ductility of approximately 30%.

Initial Imperfection Measurements

The initial geometric imperfections resulting from fabrication,
welding, and preparation of the specimen for testing were carefully
measured in order to determine the imperfection level and the shape

of the fabricated cylinder.



The overall shape deviation of the cross-section was
established by measuring the cylinder out-of-roundness, e, which is

defined as the difference between the maximum diameter, D ,x, and

the minimum diameter, Dp;,:
e = Dpax - Dmin (3.5)

In addition, local bulges and depressions in the cylinder wall
were measured along both longitudinal generators and the
circumference. The surface imperfection was characterized by the
deviation amplitude, w;, defined as the offset between points on the

wall surface and the corresponding points on a perfect cylinder with

average diameter. Thus:

w; = D; - Dy, (3.6)

The apparatus used to measure the imperfections, shown in
Fig. 3.3, permitted the measurement of the specimen radii at discrete
points on the inside surface of the cylinder with respect to an
assumed longitudinal axis. It consisted of an aluminum tube 56 mm
in diameter and 2650 mm long placed between the centers of the
two end fixtures so that it would coincide with the longitudinal axis
of the cylinder and could rotate about it. A linear variable
differential transformer LYDT was mounted at the top of a steel bar
so that total length of the bar and the LVDT probe is as same as the
mean radius of the cylinder (635 mm). This bar was welded normal
to a car which can move on a track along the aluminum tube. The
voltage changes from the LVDT were converted to changes in the

cylinder radius. By pushing the car, the LVDT was able to reach any

~



point on the inside surface along a line parallel to the longitudinal
axiz of the cylinder. By rotating the aluminum tube, the LVDT was
able to reach any point along the inside circumference of the

cylinder.

The first set of measurements consisted of 540 readings. The
radius was measured at 15 stations along the longitudinal axis. At
each station the radius was measured at 36 points equally spaced
about the circumference. The second set of measurements consisted
of 70 readings. These were taken along the longitudinal weld and the
transverse weld seams. The imperfections, measured just before
testing, on each quarter of the cylinder are magnified 20 times and
shown in Fig. 3.4. The four quarters of the cylinder will be named
according to their orientations, e.g. the southwest side of the cylinder
is the quarter which lies between the west set of columns and the
midspan and faces south. For the imperfection measurements taken,
the average radius was 637 mm, the cylinder out-of-roundness (e)

was 14 mm and the average deviation amplitude (w;) was 2.54 mm.

3.3.2 Test Frame

The test set-up used for specimen S1 is illustrated in Fig. 3.5. It
is simply a 2650 mm long cylinder placed horizontally between two
sets of supporting columns, one set at the east and the other at the

west, and loaded at the midspan.

The load was transferred to the cylinder through two 1% mm
thick diaphragms, which were designed to carry 2000 kN vertical

concentrated force from the testing machine and transfer it through



the weld by means of shear flow into the thin wall of the cylinder. At
each end, the cylinder was welded to a 19 mm thick diaphragm.
These end diaphragms were bolted to the supporting columns with
40 ASTM A325 bolts of 25 mm diameter. Each set of supporting
columns consisted of five individual columns. Three of these,
W310X118 sections, were tied to the floor. It was not possible to bolt
the others (W310X79 sections) to the floor, and they were hung from
the diaphragm. The five columns were connected together by two.
horizontal beams (W200X36) bolted to each one of them. To

minimize column rotations, two channels (C250X23) were inserted

longitudinally between the two ends.
3.3.3 Instrumentation

Strain gages

Shear buckling of thin-walled tubes can be significantly
influenced by the residual stresses induced in the cylinder due to
fabrication and installation processes (Roman and Elwi, 1987).
Therefore, an attempt was made to measure the stresses induced by
forcing the specimen into a circular shape, by welding, and by the
test set-up itself. This was done by installing strain gages on the tube
wall prior to attaching the cylinder to the test frame and prior to
welding the diaphragm plates. Moreover, the gages had to be placed
far enough from the weld locations so as not to be damaged by the
weiding process. This distance is governed by the maximum

temperature that the strain gage can withstand and the heat input



from welding, and it can be calculated from a standard heat transfer

equation, (Adams, 1958):
g =4h (!ﬂ) .1
S, 8§tKT 5 (3.7

in which d is the distance between strain gage and weld, S, is the
welding speed (10 mm/sec), P, is the welding efficiency (95%), G is
the welding voltage (21 volt), I, is the welding current intensity
(140 amp), K is the thermal conductivity (0.052 Cal./mm.sec.°C), h is
the thermal diffusivity (13.54 mm2/sec), and T is the peak

temperature for the strain gages (100 °C). Substitution of these

values in the above equation gives d equal to 113 mm.

The tube was first placed vertically so that the cross-section
would take its free shape. Using a level and a plumb-bob, twelve
longitudinal generators 30 degrees apart were drawn on the outside
tube surface. Electrical resistance strain gages (N11-FA-5-120-11)

were then mounted on the outside surface of the cylinder.

The strain gages were grouped in four groups or “rings". Two
rings were placed near the ends and two near the middle. Each ring
consisted of one pair of strain gage:s at each of the twelve generators
and each pair was oriented in the longitudinal and circumferential
~rections except at the neutral axis where rosettes were used
instead. An additional eight rcsettes were mounted at the middle of
the shear spans, where zero bending moment was expected, on both
the inner and the outer surfaces of the specimen. A total of 120

strain gages were applied. Their locations are illustrated in Fig. 3.6.



All data from the strain gages and LVDT's were recorded using
a Fluke 2400 data acquisition system through which the signals were
conditioned, convérted from analog to digital form, and stored on
disk. With this recording equipment, a large number of virtually

simultaneous readings were taken.

The strain gages were connected to the Fluke and initial
readings as well as measurements of the diamater were taken. The
initial cross section had an ellipse-like si.ig# with a difference

between the maximum and the minimum diameter equal to 55 mm.

Displacement measurement devices

The bending moment distribution and the midspan deflection
of the fixed end cylinder are senmsitive to the support movements.
Although the end fixtures were intended to model fixed end
conditions, small rotations were inevitable. Therefore, eight LVDT's
(L1 through L8), as shown in Fig. 3.7, were mounted normal to the
corners of the end diaphragms to measure their rotations. Six dial
gages (D1 through D6) were also mounted in the plane of the end
diaphragms to measure the vertical and horizontal displacements.
Four dial gages (D7 through D10) were mounted normal to the
columns to measure their rotation in case the bolts holding the

columns to the diaphragms stretched under loading.

The vertical displacement at the midspan is considered the
most important measurement; therefore, four vertical LVDT's (L9
through L12) were mounted at the centerline and the bottom of the

middle diaphragms. Although care was taken to center the specimen
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under the loading head and between the end supports, two LVDT's
(L13 and L14) were mounted on the middle diaphragm to detect any
sway movement from. the cylinder, and two (L15 and L16) were
mounted normal to the middle diaphragms to measure theit

rotations. All the LVDT's and the dial gages are shown in Fig. 3.7.

3.3.4 Spacers

In order to make the cylinder cross section as close as possible
to a circular shape, 50x100 mm wood posts with the same length as
the inside diameter of the tube were inserted at the ends and the
middle of the tube. The tube was then turned over on its side and
the posts were adjusted until the difference between the maximum

and minimum diameters was reduced to 14 mm.

3.3.5 Welding

The 'loads and reactions were transferred to the cylinder
through four plates or diaphragms. The middle diaphragms were
aligned, centered, and welded to the cylinder using the shielded
metal-arc welding process. The end diaphragms were first bolted !;3
the supporting columns, then welded to the cylinder using the i -
shielded arc welding process. The welding details are show.. ;p

Fig. 3.8.

A set of strain readings was taken after the welding of the tube
to the diaphragms had been completed. The longitudinal and
circumferential stresses induced due to insertion of the spacers and

to the welding process are shown in Fig. 3.9. The weld was left to cool
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to room temperature before the supporting columns were tied to the

floor.
3.3.6 Testing Procedure

After initial imperfections were measured and the specimen
was installed in the test frame, a set of strain gage readings was
taken to evaluate all the stresses induced in the specimen before
testing. These stresses were not significantly different from those
shown in Fig. 3.9, which were measured before the specimen was
installed. The load was applied using an MTS 6000 universal testing
machine. A trial load of 400 kN (25% of the expected maximum load)

was applied and released several times to check the instrumentation

and the support behavior.

The cylinder was loaded gradually in 100 kN increments. A
every load step, dial gage and LVDT readings were recorded. The
testing machine was on displacement control mode in order to be
able to trace the behavior in the post-buckling stage. The load vs.
central displacement curve was plotted using the instrumentation of
the MTS machine and separately traced using LVDT L12. When the
load reached 1300 kN, the cylinder started to show nonlinear
displacement. The loading interval was then decreased to 50 kN. At a
load level of 1700 kN, the cylinder buckled at the northwest side
with a loud detonation. The whitewash which had been applied to
the specimen before testing did not flake anywhere prior to this. The
buckle consisted of two diagonal waves (locations 1 and 2 in

Fig. 3.10) inclined at about 23 and 25 degrees to the longitudinal axis
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of the cylinder. Upon buckling, the load dropped to 1490 kN, then
started to increase again at about the previous rate until it reached
1563 kN when a second buckle occurred at the southwest side of the
specimen. It also consisted of two diagonal waves, inclined at about
24 and 27 degrees. The load dropped to 1290 kN, recovered to
1380 kN, and then stayed nearly constant. When the vertical
displacement at midspan approached 5.0 mm, a single depression
buckle occurred at 115 mm from the west middle diaphragm
(location 3 in Fig. 3.10) together with three small buckles at the
extreme compression fiber of the centrai test section between the
two middle diaphragms (location 4 in Fig. 3.10). However, the load
remained constant with continuing deformation. The test was
terminated when the central vertical displacement had reached
slightly over twice its magnitude at the time of buckling. The central
displacement had almost the same value before buckling for the four
different LVDT's (L9, L10, Lil and L12}, Fig. 3.10 shows a sci.iematic
of both the shear buckles and the subsequent compression buckles,
while the deformed shape of one half of the cylinder as plotted from
the finite element analysis is shown in Fig. 3.11. Photos of the
buckled shape of specimen S1 from both the north side and the south

side are shown in Figs. 3.12(a) and 3.12(b).

3.3.7 Test Results

The load applied from the MTS machine was plotted against the
vertical displacement of the cylinder neutral axis at the location of
the loading diaphragm. The displacement was taken as the average

of LVDT's L9 and L10, then corrected for the support deformation.
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The first correction was made to adjust for the end support rotation
which was measured by LVDT's L1 ¢ vough L8. A second correction
was made to adjust for the vertical settlement of the supporting
columns, as measured by the dial gages D1 and D? #4adeling the
specimen as a beam with fixed ends, the m:.sured support
deformations were used to calculate the change in the displacement
at the LVDT locations. The correctior. resulted in a decrease the
measured central deflection by 0 ™0436 mm/kN up to the .ate
load, at which time the reduction was 20% of the measureu value.
The corrected load vs. displacement cur. as measured in the test
and the calculated displacement from the finite element analysis are
both showa in Fig. 3.13. The load vs displacement curve of the test is
linear befure rcaching about 800 kN, following which the slope
gradually ilattens. The slope of the lcad vs. displacement curve
predicted by finite element analysi, is slightly larger than the actual
slope. The ultimate load measured in the test is 1700 kN. The

ultimate load predicted by the finite element analysis is 1716 kN.

Shear stresses measured prior to buckling from the rosettes
located close to the supports and at the theoretical zero-moment
locations are plotted in Fig. 3.14 (end rosettes) and Fig. 3.15 (mid-
span rosettes). The stresses were calculated from the measured
strain assuming piane stress reiationships. Figure 3.14 shows that the
west span had slightly higher values of shear stresses thazn the cast
span (a difference of about 8% at the ultimate load). Similar
observations can be seen in Fig. 3.15 for the mid-span rosettes

located at the south side of the specimen. One exception to this
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c...erion is the rosettes located at the north side of the specimen,
where the readings indicates that the stresses in the unbuckled side
(the north-east side) wcre about 10% larger than those measured :x
the buckled side (the north-west side) at the time of buckling. The
only explanation that can be offered in this case is that these two
rosettes were not accurate. Figure 3.15 also shows that the sh-ar
stresses at the inner surface of the ncirtheast and southwest quarters

of the specimen are .:ualler than those at the outer surface.

The longitudinal strain distributions around the cross-section
near the fixed ends and the middle diaphragms are shown in
Figs. 3.16(a) and 3.1%{%), respectively. It is noticed that the second
pair of strain ages from top and boitom gave readings which were
particularly smaller than the theoretical predictions based on the

beam theory. An attempt tu explain this difference is described

below (Section 3.3.8).

The longitudinal strain distribution along the top and bottom
generators of the cylinder is shown in Figs. 3.17(a) and 3.17(b),
respectively. It is clear that the strain readings at the middle gages
are larger than those of the end gages: this is a direct effect of the

end fixture rotation.

3.3.8 Discussion

Test specionen &1 had an elastic linear response under
t:ansverse loads up to a proportional load limit, after which the slope
of the load vs. displacement curve was slightly smaller than the slope

before the proportionzi joad. The ultimate load was reached when
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buckiing occurred. Beyond the ultimate load, the carrying capacity
dropped ad stayed stable at a lower load level (about 82% of the
vliimate load;. The stability of the carrying capacity was
accompanied by ine development of a teasion field in the direction of
the buckies 5 iw=~. the middle diaphragm and the supporting
diaphragm. This post-buckling capacity was maintained until the

compression buckles occurred near the middle diaphragm.

The best prediction of ihe ultimate load was achicved by the
fiqite element model, which estimated the failure load to withit 1%
of the actual load. The buckling mode predicted by the numerical
analysis was a shear mode similar to the observ: mode in the test.
However, the number of buckles appeared in the deformed finite
elemnent mesh (three buckles) did not agree with the number of

buckles which actually occurred in the test (two buckles).

The relative movement between the east and the west
supports may have caused the shear force to differ from one span to
the other. Figure 3.18 shows the shear force diagram that
corresponds to the measured settlement and rotations at the
supports. The shear force that existed on the west span according to
this figure is 966 kN. The maximum shear force predicted by Eqgs. 3.1
and 3.4 is 772 kN which is 20% smaller than the west span shear
force. A better agreement is obtained from the numerical model

where the predicted shear force is 858 kN or 11% smaller than the

west span shear force.
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The shear stress in the west shear span was larger than the
shear stress in the east span, probably because of some eccentricity
in the applied load or because the deformations at the east support
were larger than those at the west support. These factors added
more shear to the west span of the specimen and presumably
triggered buckling in it. The difference between the shear stress
measured at the inside an' the outside surface of the specimen can
be attributed to the presence of a cross bending moment associated

with the initiation of the buckles.

Both the finite element analysis and the previcus tests
(Stephens et al., 1982, and Bailey and Kulak, 1984) showed liniear
strain distribution througia the cross section before buckling.
However, in this test, some strain gages seemed to give unreasonable
readings (Fig. 3.16). It was noted in Section 3.3.3 that the amount of
heat transmitted to the strain gages is dependent on the welding
speed which was controlled manually and might not have been
constant at all times. A speed higher than 10 mm/sec may overheat

some of the strain gages and affect their performance.

In addition to the overheating effect, the longitudiral simains o
the end diaphragm were sensitive to the support deformations. This
could have resulted from the fact that the supporting columns
attached near these strain gages were less stiff than the supporting
columns near the other gages. A numerical analysis of an elastic
cylinder with boundary conditions reflecting relaxed end fixture
deformation was carried out (see Fig. 3.19). In this analysis, the\

deformations of the ocations attached to the less stiff coiumns were
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allowed. The results of the analysis in the region close to the end
diaphragm shuwed that a very small displacement in the longitudinal
direction was enough to significantly reduce the longitudinal strain at
this location. The longitudinal stress distribution near the support

and the corresponding longitudinal displacement distribution are

.shown in Fig. 3.19.

Thus, despiic the fact that the gages placed clese to the end
diaphragms were useful in measuring the stresses generated by
welding and test set-up, their usefulness in measuri~7 th. t. . end
stresses was diministed ia the light of the bc: .wury condition

changes shown in Fig. 3.18. Their usefulness was further reduced

according to the above analysis.
3.4 Shear Specimen S2
3.4.1 Specimen Description

Specimen S2 was propared by cutting the undamaged span of
S1 about 1400 mm from the east support. This part did not show any
signs of failure or yielding during the first test and recovered
completely upon removal of the load. The east end fixture was left
attached to the specimen to be used as a part of the set-up for S2.
The material properties of S2 correspond to Pl coupons. The initial

imperfection and overall geometry are, of course, the same as for the

east span of SI.
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3.4.2 Test Frame

Specimen S2 was tested as a cantilever beam, as shown in
Fig. 3.20. The overturning moment of the cantilever was supported
by a triangular frame composed of the end fixture, bracing members,
and reaction columns. The moment was transferred from the end
fixture to the bracing members and hence to the reaction frame. The
end fixture was the east end fixture of specimen S1, which consisted
of wrce long columns resting on the floor and two short columns
hung between thzs:. The five columns were bolted to the end
diaphragm from one side and to two horizontal beams from the other
side. The bracing members consisted of three inclined channels
(C250X23) and three horizontal beams (W200X31). These six
members were bolted at one end to the three long columns and at
the other end to the reaction columns. The three reaction columns
(W310X118) were connected together and prestressed to the floor to

support the horizontal movement of the test frame.

A universal testing machine was used to apply load to the
cylinder through a 19 mm thick diaphragm. The loading diaphragm
was welded to the cylinder at a distance 825 mm from the end plates
using the gas-shielded arc welding process. In order to increase its
stability, the loading diaphragm was connected to a dummy
diaphragm which remained from the first test set-up. Two rollers
300 mm wide were placed above the loading diaphragm to allow for

the horizontal component of the edge rotation. A 37 mm thick
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horizontal plate and eight 25 mm thick stiffeners were used to seat

and center the rolicrs above the diaphragm.
3.4.3 Instrumentation
Strain gages

A ring of twelve rosettes 30 degrees apart around the
circumference was mounted at a distance 65 mm from the end
diaphragm. Anocther ring of four rosettes was mounted at the middle

of the shear span. The strain gage locations are shown in Fig. 3.21.

Displacement measurement devices

The rotation of the end support was mezsured by two LVDT's
(L1 and L2) and a dial gage (D1) at the twop, bottom, and middle,
respectively, of the end diaphragm. The vertical settlement of the

columns was measured by one LVDT (L3) attached to the bottom of

the end diaphragm.

The vertical displacement of the cylinder at the loading
diaphragm was measured by two LVDT's (L4 and L5) at the neutral

axis of the cross section and one LVDT (L6) at the bottom of the

loading diaphragm.

Ovalling of the cylinder was measured at the middle of the
shear span by two LVDT's (L7 and L8) in the horizontal direction and

another two (L9 and L10) in the vertical direction.

The rotation of the loading diaphragm at the neutral axis was

measured by a rotational gage (R1) and the change in the diaphragm
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width was measured by two LVDT's (L11 and LIX). The LVDT

locations are shown in Fig. 3.22.
3.4.4 Estimated Failure Load

Unlike the situation for Specimen S1, the bending moment and
shear force diagrams in S2 are easily calculated because the system
is statically determinate. The expected failure load in a shear
buckliny mode for Specimen S2 is 968 kN according to Eq. 3.1 and
the exj«::=d failure load in a bending buckling mode is 745 kN or
1142 kN according tc Eq. 2.6 or Eq. 2.7. Also, the finite element
analysis predicted failure due to shear buckling at an ultimate load
of 1054 kN. Although Eq. 2.6 (the AWWA formula) anticipates failure
in a bending mode rather than a shear mode, its conservative nature
together with the predictions of Eq. 2.7, Eq. 3.1, and the finite
element analysis minimizes this possibility. The conservative nature
of the AWWA formula can be easily seen from the results of
specimen S1. The maximum load resulting in bending failure of
specimen S1, as predicted by this equation under the conditions
shown in Fig. 3.18, is 1435 kN, which is smaller than the actual

failure load measured in the test (1700 kN) and which occurred in a

shear mode.
3.4.5 Testing procedure

The inside and outside surfaces of the specimen were painted
with whitewash. The strain gages and the LVDT's were connected to

the data acquisition system. The load was applied up to 400 kN and
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removed several times to check the instrumentation and the sapw.xt

behavior.

The loading started in increments of 50 i.N. After each load
step, a set of readings was taken from all the instrumentation. When
the load reached 500 kN, the increment was decreased to 30 kN. At a
load level of about 700 kN the slope of the load vs vertical
displacement curve, plotted simultaneously by the MTS machine,
started to show nonlinear behavior. The loading increment was
decreased to 20 kN. At a load level of about 830 kN the nonlinearity

increased and the increment was decreased to 15 kN until the

ultimate load was reached.

At a load of 940 kN the cylinder buckled at the north side and
the whitewash flaked along two diagonal lines (shown in Fig. 3.23 as
1 and 2) that were inclined at 21 and 27 degrees from the horizontal.
The load dropped to 790 kN, then started to increase at a rate much
smaller than that which was predicted before the first buckle. When
it reached 920 kN, the cylinder buckled again at the same side, but at
a location below the first two buckles (shown as 3), and the load
dropped to 720 kN. The load was removed and the displacement
which had occurred prior to the first buckling was recovered. Fig.
323 shows a schematic of the shear buckles while the deformed
shape of one half of the cylinder as plotted from the finite element
analysis is shown in Figs. 3.24. Photos of the buckled shape of

specimen S2 from both the outside and the inside surface are shown

in Figs. 3.25(a) and 3.25(b;.
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3.4.6 Test Results

The load applied from the MTS machine is plotted in Fig. 3.26
against the vertical displacement of the cylinder neutral axis at the
loading diaphragm. The displacement was taken as the average of
LVDT's L4 and L5 and corrected for boundary conditions. The first
correction was made to adjust for the end support rotation as
measured by LVDT's L1 and L2 and the dial gage D1. The rotation
was linear with the ...d aund resulted in 2.15 mm vertical
displacement i u!timate load at the loading diaphragm. The second
correction was made to adjust for the vertical settlement of the
supporting columns as measured by LVDT L3 and resuited in
0.84 mm vertical displacement at cltimate load at the middle
diaphragm. The total correction resulted in a decrease of the
measured central deflection by 0.0032 mm/kN up tc the ultimate
load, at which time the reduction was 65% of the measured value.
The corrected load vs. displacement curve from the test is compared

to the response predicted by the finite element analysis in Fig. 3.26.

The shear stresses measured from the four rosettes at the
neutral axis are plotted in Fig. 3.27. The buckled side of the specimen
(the north side) appears to have slightly larger shear stresses than
the other side. The ditference was significant only just before

reaching the buckling load, however.

Ovalling of the cross section is depicted in Fig. 3.28. The
increase in the hcrizontal diameter and the decrease in the vertical

diameter are plotted against the load. At the ultimate load level, the
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vertical diameter decreased by 0.10% and the horizontal diameter
increased by 0.25%. These small values of diameter change support

the application of the beam theory in the case of S2 before buckling.

The longitudinal strains measured from the strain gages around
the cross section are plotted in Fig. 3.29. The strain distribution
before buckling is almosi [inear except for the second reading from
the top and bottom. These correspond to the strain gages at 30, 150,
210 and 330 degrees. As a'ready descrit.d for Specimen S1, the end
diaphragm at these location: wai atizcned to two short W310X79
columns which were supported by the more rigid columns that were
seated on the floor. Although the short columns were rigidly
connected to the long ones through *wo horizontal’ W200X36 beams,
this connection inevitably allowed for a small movement. This
movement was enough to reduce the measured strain according to

the comerical analysis shown in Fig. 3.19.

3.4.7 Discussion

Specimen S2 demonstrated a linear response under transverse
loading ujp to a load level of 800 kN. The carrying capacity dropped
after it reached an ultimate load of 940 kN. The tension field, which
appeared after buckling, had the same direction as the buckles. The

post-buckling load of S2 was about 80% of the ultimate load.

The best prediction of the ultimate load was achieved by
Eq. 3.1 which estimated the failure load within 3%. The behavior of
specimen S2 can be traced by the finite element analysis. Although

the numerical model predicted the slope of the load-displacement
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curve and the deformed shape of the buckles specimen fairly :“esely,
the ultimate load predicted by the finite element model wus 12%

larger than the ultimate load attained in the test.

The shear stress measured at different locations of the
specimen confirms the presence of a constant shear stress on both
halves of the circular cross-cection. However, the shear stresses in
the buckled half of the specimen increased rapidly just before
buckling. This increase can only be related to the initiation of the

buckles.

The linearity of the longitudinal strain around the cross-section
can be observed in Fig. 3.29. The odd readings of the second pair of
strain gages from top and bottorr are explained by the change in the

boundary conditions as discussed in Section 3.3.8.
3.5 Summary

Two large-diameter fabricated steel cylinders were tested
under transverse shear. Both specimens failed in an inelastic shear
buckling mode. Before buckling, the behavior of the specimens was
linearly elastic up to a proportional load level. Following this, the
response became gradually non-linear until inelastic buckling

occurred.

The ultimate load for both snecimens is reasonably estimated
by the interaction equation proposed by Galletly and Blachut, Eq. 3.1.
The finite element method can also be used to provide a good

estimate of the failure load and to simulate the deformed shape.
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After buckling, the carrying capacity of each specimen dropped
by approximately 20%, after which it remained stable. This suggests
a significan* secondary post-buckling capacity. This post-buckling
behavior, wnich has also been observed by other investigators
(Bailey and Kulak, 1984), is used to develop a post-buckling shear

capacity formula for thin-walled cylinders under transverse shear as

described in Chapter 6.
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Fig. 3.4(a) The measured imperfection on the north-east-quarter of
the cylinder (magnified 20 times)
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Fig. 3.4(b) The measured imperfection on the south-east quarter of
the cylinder (magnified 20 times)
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Fig. 3.4(c) The measured imperfection on the north-west quarter of
the cylinder (magnified 26 times)
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Fig. 3.4(d) The measured imperfection on the south-west quarter of
the cylinder (magnified 20 times)
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Fig. 3.8 Welding Details at the diaphragms of specimen S1
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Fig. 3.9(a) Distribution of longitudinal stresses generated by welding and test set-up
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Fig. 3.9(b) Distribution of longitudinal stresses generated by welding and test set-up
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Fig. 3.9(c) Distribution of circumferential stresses generated by welding and test set-up
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Fig. 3.9(d) Distribution of circumferential stresses generated by welding and test set-up
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Fig. 3.10 Schematic of the buckles in specimen S1

Fig. 3.11 Buckled shape of the finite element model
( displacements magnified 10 times)
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Fig. 3.12(b) Buckled shape of the south side of Specimen S1
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Fig. 3.14 Shear stress from the end rosettes
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Fig. 3.15 Shear stress from the midspan rosettes
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Fig. 3.16(a) Strain distribution at the end diaphragm
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Fig. 3.16(b) Strain distribution at middle diaphragm
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Fig. 3.18 Stress resultant diagrams for S1 including support movements
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Fig. 3.19 Numerical analysis of the effects of relaxed boundary conditions
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Fig. 3.22 Instrumentation for specimen S2
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Fig. 3.23 Schematic of the buckles in specimen S2

Fig. 3.24 Buckled shape of the finite element model
( displacements magnified 10 times)
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Fig. 3.28 Ovalling of the cross section at midspan
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Fig. 3.29 Longitudinal strain distribution at end diaphragm
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4. Numerical Analysis

4.1 Introduction

In Chapter 3, the behavior of thin-walled cylinders under
transverse load was experimentally investigated for a limited range
of cylinder geometries. Alternatively, theoretical approaches are of
more general use in studying the same problem. It was shown in
Chapter 2 that analytical solutions, based on solving the governing
differential equations for shells, are available for the case of ideal
cantilever cylinders subjected to transverse shear (Schroder, 1972).
However, the complexity of the shell buckling problem limits such
solutions to linear elastic perfect cylinders. Consequently, the
solution is restricted because some factors which may affect the
behavior and the capacity of cylinders cannot be included. Some of
these factors are the initial imperfections inherent in real cylinders,
the cold bending stresses introduced in cylinders during fabrication
processes, and the effect of different types. of boundary conditions.
Experimental investigation is possibly the best approach to study
these effects. However, this approach is costly. In the course of this

work, two full-scale specimens were tested.

An alternative approach is to use numerical analysis, namely
the finite element method. This method has been used successfully in
modeling different types of structures including thin and thick shells
and plates. For example, Roman and Elwi (1987) analyzed thin-
walled cylinders under transverse shear using a finite element

model. Their study included both the effect of different types of
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initial imperfections and the effect of initial stresses that exist in
fabricated steel cylinders due to longitudinal seam welding and cold
bending. Such factors are difficult to investigate by solution of the
differential equations of the shell. The numerical analysis can also
help to determine the stress and strain distributions after buckling,

which are hard to evaluate experimentally.

The objective of the finite element analysis presented in this
chapter is to examine the inelastic buckling behavior of transversely
loaded thin-walled cylinders. In the following sections, the effects of
boundary conditions, actual measured geometric imperfections, and
initial stresses on buckling behavior are discussed, the numerical
model is compared with the physical tests, the relationships between
the shear capacity and different geometric variables are explored,
and the development of tension field mechanism in the post-buckling
region is investigated. The finite element program NISA80 (Hafner et
al., 1981 and Stegmuller, 1984) has been chosen as the numerical
analysis tool for the problem. A description of the program and the

options available are briefly presented in the following.

4.2 NISA80 Code

NISA80 (Nonlinear Incremental Structural Analysis) is, as the
name implies, a nonlinear finite element program for the analysis of
large-displacement large-strain problems. The program can trace the
equilibrium path of nonlinear structures from an initial state up to
the limit point and beyond it to the post-buckling stage. It can also

perform eigenvalue analysis on nonlinear element groups. NISA80
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includes a truss element, a two-dimensional degenerated curved
beam element, a beam element with thin-walled open cross-section,
a two-dimensional plane stress plane strain axisymmetric element,
and a family of thiee dimensional degenerated plate shell elements.

Only the degenerated shell elements are of interest here.

The degree of success expected from the finite element analysis
in simulating the behavior of real shell structures is dependent on,
among other things, the ability of the chosen element to model the
curved shape of the shell and its complicated behavior throughout
the equilibrium path. Therefore, a brief introduction of the

degenerated elements is presented in the following.

In the -early 1970's, three-dimensional isoparametric
degenerated elements were introduced to model the behavior of
general arbitrary shapes of shells and plates (Ahmad et al., 1970).
The element avoided the normality (Kirchhoff) conditions by
choosing separate interpolation functions for the displacements and
the rotations. The degenerated element was derived from a full
three-dimensional form, the hexahedral element, by prescribing
linear displacement variation across the thickness and suppressing
the strain energy due to stresses normal to the shell middle plane.
Since the strain normal to the shell surface was assumed to be
negligible, the displacements throughout the element were uniquely
defined by five degrees of freedom for each node: three

displacements and two rotations, as shown in Fig. 4.1(a).
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Although degenerated elements have been effectively used in
thick shell simulations (Ahmad et al., 1970), they demonstrated an
excessive- stiffness when used in thin shells, mostly because they
were not capable of representing pure bending without shear or
membrane effects. Shear or membrane locking is present in most
curved elements, but is less pronounced in elements with higher
order interpolation polynomials, as for example in the 16-node bi-
cubic element. To overcome the locking problem, several schemes
have been proposed, for example using elements with shear-strain
constraint (Crisfield, 1984 and Huang and Hinton, 1984) or elements
that are based on discrete Kirchhoff theory (Kui et al.,, 1985 and
Bathe and Ho, 1981), but the most common method is to use uniform
or selective reduced integration (Zienkiewicz et al., 1971 and Pawsey
and Clough, 1971). In 1977, Ramm modified and extended the use of
quadratic and cubic degenerated elements to arbitrary large rotation

problems.

Among the family of degenerated elements available in
NISA80, the fully integrated bi-cubic Lagrangian element is
recommended by Stegmuller et al. (1984). Ramm (1986) also
confirmed that the 16-node element is reliable, but noted that some
membrane locking may still be present if full integration is used.
Roman and Elwi (1987) have used the bi-cubic element with both
4x4 and 3x3 integration schemes to model transversely loaded
cylinders. No shear locking was encountered and the results obtained
using full integration (4x4) were the same as those obtained using

reduced integration (3x3), except that the former was much more
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costly. Based on these experiences, the 16-node bi-cubic Lagrangian
degenerated plate shell element with uniform 3x3 reduced
integration is used in the present study to model thin-walled
cylinders under transverse shear loads. The nodal degrees of
frec 'om of the plate shell element are described in Fig. 4.1(b). The
rotations 0, and O are defined as the change in the angles ¢ and ¥
shown in Fig. 4.1(b). Angle ¥ is measured from the surface normal to

the X axis and angle ¢ is measured from the projection of the normal

on ZY plane to the Y axis.

The NISA80 code contains different types of incremental
displacement formulations. In addition to small displacement
formulation, it incorporates a total Lagrangian formulation and an
updated Lagrangian formulation. Total Lagrangian is useful in large-
displacement small-strain problems, whereas updated Lagrangian is
more general in the sense that it can be used for large-displacement
large-strain problems. For the magnitude of deformations
experienced in testing specimens S1 and S2 (Chapter 3), the total

Lagrangian formulation was considered to be sufficient in this case.

The program accommodates elastic and elastic-plastic strain-
hardening material models. The resulting nonlinear stress
distribution across the thickness is accommodated by using the
Simpson integration rule. The number of integration points used in
the present study is five points, which is the minimum of the
number of points recommended by Stegmuller (five, seven, or nine).

Although the material nonlinearity would have been modeled more
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accurately using seven, or nine points, the solution time would have

increased accordingly.

The NISA80 program employs two main solution strategies:
load control and displacement control. Load control is applied
through the modified Newton-Raphson or the standard Newton-
Raphson iterative strategy, while the displacement control is applied
through a modified constant-arc-length iterative strategy (Ramm,
1981). The latter method is especially recommended for tracing
nonlinear descending e¢quilibrium paths, which cannot be done using

the more common load control methods.

The solution strategy used in this study was varied along the
equilibrium path. A modified Newton-Raphson method was found to
be suitable before reaching the limit load because the response was
almost linear in this range. In the neighborhood of the limit load, the
Newton-Raphson iteration diverges. Therefore, the solution strategy
was switched to the constant-arc-length method. At the limit load,
the initial arc length was reduced in order to achieve convergence in
this highly nonlinear part of the equilibrium path. As the cylinder
capacity stabilizes in the post-buckling region, convergence could be

achieved with a larger arc length.
4.3 Preliminary Analysis

The objective of the preliminary analysis is to search for the
most accurate way to model the boundary conditions. Two different
cases need to be investigated: one for cylinders with fixed-ends and

the other for cantilever cylinders.
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The effect of a fixed-end boundary condition, e.g. specimen S1
(Fig. 3.5), on the buckling mode was studied by Mok and Elwi (1986).
They found that coupling some nodal degrees of freedom at the
loading diaphragm and at the symmetric edge leads to the desired
diagonal buckling mode. The suggested representation of the
boundary conditions is detailed in Table 4.1. It can be seen that
coupling the translational Z displacement at the loaded nodes ensures
that the circular shape of the cross section remains undistorted
during loading, which is what would be expected if infinitely stiff
loading diaphragms were used. Using the above representation of the

fixed boundary conditions, the buckling load and mode can be closely

predicted.

The boundary conditions at the loading diaphragm for
cantilever cylinders, e.g. specimen S2 (Fig. 3.18), cannot be
represented by coupling the translational Z displacement due to the
rotation of the loading edge. Instead, the loading diaphragm may be
represented by relatively thick elements or by fixing the shape of
the cross-section at the diaphragm location. Four possible models,
(CNT1, CNT2, CNT3, and CNT4) are proposed and shown in Fig. 4.2.
The boundary conditions of these models are shown in Table 4.2. All
the models have a radius of 635 mm, shear span of 835 mm, and a
thickness of 3.44 mm. The material model is assumed elastic
perfectly plastic with elastic modulus of 217x10® MPa and a yield
stress of 337 MPa. The transverse load is applied in the vertical

direction at all the nodal points on the loading diaphragm.
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The load vs. displacement curves for the four models are
shown in Fig. 4.3. During the solution phase, numerical difficulties
were observed in models CNT2 and CNT4 and the ultimate load could
not be reached. On the other hand, the equilibrium paths of models
CNT1 and CNT3 were completely traced. It can be shown that the
ultimate load, the stiffness, and the buckling shape of models CNTI1
and CNT3 are close to each other. It was decided to adopt the
representation of CNT1 for cantilever boundary conditions because
the vertical displacement of different locations on the loading
diaphragm of specimen S2, which had the same geometric and
material properties as the CNT series, was closest to the values

obtained using model CNTI.
4.4 Models of Tested Cylinders

Previous studies have used the degenerated bi-cubic element
in the context of the NISA80 program to simulate the behavior of
thin-walled fabricated steel cylinders under transverse shear or pure
bending (Petrick, 1985, Mok and Elwi, 1986, and Roman and Elwi,
1987). When the results of these numerical analyses were compared
with results of tests that have the same conditions, the agreement
was not satisfactory. One major difference was the apparent stiffness
of the finite element model compared to the actual test. This problem
was discussed in Chapter 3, where the discrepancy was attributed to
the inevitable support rotations during the experiment. To avoid
such unknown boundary conditions, the support movements have to
be monitored throughout the test and thén used to correct the

measured specimen displacements.
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Another reason for the disagreement between the finite
element model and the test is failure to include the geometric
imperfections and the initial stresses that exist in the real structure.
Petrick (1985) and Mok and Elwi (1986) used an eigenmode scaling
technique to incorporate the initial imperfections into the analysis.
They extracted a scaling factor from the first buckling mode shape
and the measured imperfections in the tests. The scaling factor was
then used with the eigenvectors to describe the initial imperfections
in the model. This technique resulted in models that gave higher
ultimate load and greater stiffness than those measured in the tests.
A better and more natural method is to incorporate the initial

imperfections actually measured in the specimens into the model

geometry (Roman and Elwi, 1987).

In the following sections, the fixed-ends and the cantilever
models are used to predict the response of the test specimens S1 and

S2 (Chapter 3) and the four other experiments reported by Galletly
and Blachut (1985).

4.4.1 Specimen S1

The dimensions and boundary conditions of specimen S1 are
shown in Fig. 3.5. Because of symmetry, only one quarter of the
specimen needs to be modeled. The model, M1-S1, consists of 36
elements arranged as shown in Fig. 4.4. The boundary conditions
used in M1-S1 are described in Table 4.1. The geometric

imperfections were measured for each quarter of the test specimen
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(see Fig. 3.4) and the one with the largest average imperfections, the

south-west quarter, was incorporated into the model MI1-S1.

The cold bending stresses inhereﬁt in the real structures due to
fabrication processes are introduced in the MI1-S1 model. Roman and
Elwi (1987) used temperature gradient through the shell thickness to
produce an initial state of stress. They calculated the temperature
gradients needed to produce strains equivalent to bending a flat
plate to form a cylindrical shape and introduced these temperatures
in the finite element model. Assuming a state of plane strain in the
longitudinal direction of the cylinder, the relationships between the
stress and strain in both the circumferential and the longitudinal
directions can be derived and used to check the results. Following the
same procedure, the required temperature gradient for specimen S1
is calculated as -231.5 degrees at the outer surface of the element to
+231.5 degrees at the inner surface. The stresses produced in model
M1-S1 after the temperature loading were found to match the

calculated theoretical stresses.

After introducing the initial stresses, the analysis was
continued by adding the transverse loads. The loading steps were
chosen at equal intervals of about 20% of the expected limit load.
When the model response started to be nonlinear, the solution
strategy was switched from modified Newton-Raphson to CALM with
an assumed initial arc length. As the displacements increased, the
strains increased and the shear stresses reached the yield value at
the locations of maximum stresses. At this stage, the deformed shape

of the model started to show a form of diagonal buckling at the
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elements near the neutral axis. The deformed shape of the model
before it reached the ultimate load is shown in Fig. 4.5 for two
different displacements. The load levels at which these deformation
occurred are 1473 and 1671 kN. It is to be noted that the
deformations in Figs. 4.5(a) and 4.5(b) are magnified 30 and 20
times, respectively. It can be seen that the initiation of the diagonal
buckles starts before the ultimate load is reached and the buckles
then increase as the deformation increases. The relationship between
the applied load and the vertical displacement at the location of the
loading diaphragm is shown in Fig. 4.6 for the whole loading path.
Points C and B in Fig. 4.6 correspond to the stages where the

deformed shapes in Fig. 4.5 were observed.

As the model deformed further, the buckles folded more and
plastification of the cross section propagated through the thickness.
Consequently, the stiffness of the model decreased gradually until it
almost diminished. This "gradual yielding" -is primarily due to the
existence of the initial stresses. In fact, if the initial stresses were
eliminated, the response of the model would have been linear up to
the limit point. To show the effect of the initial stresses on the model
behavior, another model, M2-S1, was analyzed. This model was
similar to M1-S1 but without initial stresses. Both models are shown
in Fig. 4.6 for comparison. The ultimate load of M2-S1 is much higher
than the measured load of the test. After the ultimate load, the
capacity drops quickly and then decreases with a smaller rate. The
ultimate load reached by model M1-S1 is only 1% different than the

ultimate load obtained in the test. However, the model did not show

108



the sudden drop in the shear load observed in the test after the limit
load was reached. The deformed mesh of model M1-S1 in the post-
buckling region is shown in Fig. 3.11 (deformations are magnified 10

times).

It is often assumed (Yamaki, 1984, and Galletly and Blachut,
1985) that the shear stress and the longitudinal stress in thin-walled
cylinders in the pre-buckling region can be calculated according to
the classical beam theory. The average shear stresses along the cross
section obtained using models M2-S1 and M1-S1 are plotted in Figs.
4.7(a) and 4.7(b), respectively. The reference load level is 1671 kN
(points A and B in Fig. 4.6), and the location of these stresses is at the
section of zero moment. Figure 4.7(a) shows that the M2-S1 model
shear stresses are close to the predictions obtained using beam
theory. In fact, it can be shown that the finite element model
predicts stresses very close to beam theory predictions when the
model is perfect (no initial imperfections and initial stresses). On the
other hand, the deviation of the imperfect model, M1-S1, from the
beam theory is clear as shown in Fig. 4.7(b). It is noted that the shear
stress at the neutral axis is higher than the beam theory predictions
in both cases, M1-S1 and M2-S2. It is therefore reasonable to believe
that the initial geometric imperfections trigger the variation in the
stresses which are then magnified by the initial stresses. In addition,
the distribution of the shear stress across the cylinder thickness,
shown in Fig. 4.8, is almost uniform in model M2-§1, which is close to
the beam theory predictions. Meanwhile, the imperfect model,

M1-S1, has an uneven distribution of shear stress across the
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thickness, with maximum value at the middle and minimum values

at the surfaces due to the introduced state of initial stresses.

The distribution of the longitudinal stresses along the cylinder
cross-section as obtained from models M1-S1 and M2-S1 is shown in
Fig. 4.9. The stresses are taken at the nearest Gauss points to the
fixed boundaries. As was the case for shear stresses, the longitudinal
stresses of the model that did not include initial stresses, M2-Sl1,
corresponded closely to the beam theory while the imperfect model,
M1-S1, showed considerable discrepancy from the beam theory

results. This discrepancy is also a magnification of the deviations of

model M2-S1.

The post-buckling behavior of specimen S1 was described in
Chapter 3. It was observed that the load carrying mechanism
changed after buckling. As soon as the cylinder buckles, a tension
field is formed in the direction of the buckles. The tension field
anchors in the stiff boundaries of the shear span. These observations
can also be seen in the results of the finite element model. Figures
4.10 and 4.11 show plots of the internal principal forces of model
M1-S1. The forces are calculated by integrating the stresses
throughout the thickness and are plotted to scale at the Gauss points.
The plots show the three-dimensional mesh in a two-dimensional
plane by unfolding the circumference of the cylinder. The resulting

view is referred to as the developed surface.

Figure 4.10 shows the principal forces on the developed surface

when the model reached the ultimate load. It is noticed that the
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tensile forces dominate at the locations of the buckles and are in the
same direction, while the compressive forces dominate at the top and
bottom fibers of the cross section, far away from the buckles. The
slope of the tensile forces is constant in the central portion of the
developed surface and changes near the boundaries where the forces

find anchorage in the diaphragm.

Figure 4.11 shows the principal forces after the buckles have
been completely developed. It can be noticed that the tensile forces
separate into bands. The direction of the forces becomes more
unified and their magnitudes increase to the yielding values. The
compressive forces do not seem to separate into bands, but their
magnitudes increase with distance from the neutral axis. It is
suggested (Roman and Elwi, 1987) that the tensile and compressive
forces offer a mechanism to carry the load in the post-buckling

range. This argument is discussed in detail in Chapter 6.

4.4.2 Specimen S2

The dimensions and boundary conditions of specimen S2 are
shown in Fig. 3.20. Because of symmetry, only one half of the
specimen needs to be modeled. The model, M1-§2, consists of 24
elements arranged as shown in Fig. 4.12. The boundary conditions
used in model M1-S2 are the same as those used for model CNTI.
The geometric imperfections used in M1-S2 are shown in Fig. 3.4(a).
The stresses produced in the cylinder due to cold rolling were
incorporated in the analysis. The transverse loads were then applied

in a similar way to that described for model M1-S1. The relationship
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between the applied load and the vertical displacement at the
location of the loading diaphragm is shown in Fig. 3.26. The behavior
of the model is essentially the same as that for model M1-S1 except
for the amount of difference between the model and the test. (The
ultimate predicted load of model M1-S2 is 12% higher than that
obtained in the test). Again, the model failed to represent the drop in
the load after buckling that was observed in the test. However, the
deformed mesh of the model, shown in Fig. 3.24, is close to the
buckled shape observed in the test. The post-buckling behavior of
the finite e¢lement model, as shown later in the parametric study, is
dependent on the pattern and magnitude of the introduced initial
stresses. The observed differences between the models and the tests

indicate that the assumed state of initial stresses is not yet complete.

In order to follow the change in the stress distribution as the
model deforms, the average shear stress along the cross-section at
three consecutive load levels (marked as A, B, and C in Fig. 3.26) is
plotted in Figs. 4.13 through 4.15. Similarly, the average longitudinal
stress is plotted in Fig. 4.16 through 4.18. The shear stress is taken at
the middle of the shear span and the longitudinal stress is taken near
the fixed support. It can be noticed that the deviation of the
imperfect model from the beam theory increases as the deformations
increase. Due to the existence of the initial stresses, some points in
the model reach the yield stress before the model can reach the
ultimate load. Consequently, a redistribution of the stresses takes
place until equilibrium is satisfied. As the buckles form after

reaching the ultimate load, further redistribution is needed to
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accommodate the local bending moments associated with the buckles.
It should be noted that the stress distributions in Fig. 4.13 through

Fig. 4.18 represent the average stress across the cylinder thickness.

The principal forces at buckling and in the post-buckling region
are plotted in Figs. 4.19 and 4.20, respectively. The tensile forces
stretched diagonally between the loading diaphragm and the fixed
boundary. It is noticed that the slope of the tensile forces on the
developed surface of the cylinder is approximately constant. As the
deformations increased, the tension field separated into bands of
forces. The compressive forces dominated at the top fibers of the

cross section but did not separate into bands.

4.4.3 Other Tests

Other cantilever tests were carried out by Galletly and Blachut
(1985). The ultimate load of these tests was reported but the load-
displacement curves and the geometric imperfections were not
reported. The tests had boundary conditions similar to specimen S2.
Therefore, the models that represent them are similar to the M1-§2
model. Two models, M-G12 and M-G34, are proposed to predict the
ultimate load of a sample of four tests from Galletly and Blachut
tests. Model M-G12 represents the dimensions and material
properties of specimens Gl and G2 while model M-G34 represents
the dimensions and material properties of specimens G3 and G4 (see
Table 2.1). No geometric imperfections are used in these models but
the initial stresses are incorporated as before. The ratio of the

ultimate load predicted by the first model, M-G12, and the measured

113



test load is 1.03 for G1 and 1.08 for G2. The ratio of the ultimate load
predicted by the second model, M-G34, and the measured test load is
0.94 for G3 and 0.95 for G4. The comparison between the finite
element models and the test results shows that the ultimate load can

be estimated within a reasonable margin of error.

4.5 Parametric Analysis

The above simulations establish a reasonable level of
confidence in the ability of the numerical model to predict results
that are in agreement with test results. Reliable full scale test results
are still limited, even in view of the tests carried out in this study. In
order to extend the data base in terms of failure mechanism, failure
loads, stress distributions, etc., one is led to numerical analysis as a
viable tool. Hence, a parametric study intended to fill in the gaps in

experimental results was carried out. This study is reported in the

following.
4.5.1 Model Descriptions

Nine models, MF1 through MF9, are analyzed in this section.
The aim is to investigate the relationship between the ultimate shear
load and the geometric variables of the cylinder in the inelastic
range. The MF series represents a cantilever cylinder and uses
boundary conditions similar to model CNT1. A typica! mesh of the MF

series is shown in Fig. 4.21.

The diameter, thickness, and shear span of each model, shown

in Fig. 4.21, are the parametric variables in this analysis. These
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variables were chosen so that the cylinders are susceptible to
inelastic shear buckling. The chosen aspect ratio, R/L, is between 0.5
and 1.0. Cylinders with R/L ratio outside this range may buckle in a
flexural mode (for cylinders with shear span longer than their
diameter) or yield due to excessive shear stresses (for cylinders with
shear span shorter than their radius). The thickness ratio, R/t, was
chosen to be between 150 and 250. Cylinders with R/t ratios higher
than 250 may buckle in an elastic mode. Cylinders with R/t ratio
lower than 150 were not considered so as to limit the number of
models. The lower limit of the R/t ratio selected was thought to be a
reasonable minimum value for some practical applications (e.g.

conveyor galleries).

The MF models have very small magnitudes of initial
imperfections, just enough to trigger the buckle formations. The
imperfections were scaled down from the imperfections of the test
specimen S2. The models have the same material properties, an
elastic modulus of 200x10® MPa and a yield stress of 300 MPa, and
they include cold bending initial stresses. The analysis of each model
is carried out by introducing a temperature gradiert through the
element thickness and then applying the transverse loading, a
procedure similar to the M1-S1 and the M1-S2 models. The solution

was terminated when the post-buckling deformations had been

completely developed.
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4.5.2 Ultimate Shear Capacity

The load resisted by each model is plotted against the vertical
displacement of the neutral axis of the cross section in Figs. 4.22,
4.23, and 4.24. To normalize the results, the shear load is replaced by
a shear ratio which is the ratio of the shear load to the shear force
required to cause yield shear stress at the neutral axis. The load-
displacement curves are arranged to show the effect of R/L ratio on
the inelastic shear capacity. Figure 4.22 shows the models that have
a constant R/t ratio of 150 and different aspect ratios. It is clear from
Fig. 4.22 that the shear capacity decreases as the aspect ratio (R/L)
decreases. The stiffness of the model also decreases as R/L decreases
because it is dependent on the length of the shear span. The same
conclusions can be drawn from both Fig. 4.23 ( models with R/t=188)
and Fig. 4.24 (models with R/t=250).

The effect of the thickness ratio (R/t) can be demonstrated by
grouping the models according to R/L ratio, as shown in Figs. 4.25,
426, and 4.27. The ultimate shear load of the finite element models
decreases slightly as the thickness ratio increases, while the post-
buckling load clearly decreases as the R/t ratio increases. However,
the main effect of R/t ratio is upon the shape of the load-
displacement curve. It can be seen that the stockier models (models
with small R/t ratio) experience nonlinear deformations earlier than
the thinner models (models with large R/t ratio). After reaching the
ultimate load, the stockier models lose their stiffness more gradually

than the thinner models. It is possible that this behavior is related to
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the initial stresses iniroduced in the model. As the cylinder radius
takes smaller values, more strain is required to form a cylinder by
bending a flat plate, which in turn increases the portion of the
cylinder thickness that exhibits yielding. As a resuit, the behavior of
the cylinder changes from sharp yielding (e.g. model MF9) to gradual
yielding (e.g. model MF3). In fact, the same argument applies for the
difference between model M1-S1, which contained initial stresses,

and model M2-S1, which did not contain any initial stresses.

By comparing model MF5 with model M1-§2, it is clear that the
dimensions of the cylinder do not influence the ultimate shear ratio.
The two models have different radius, shear span, and thickness but
they have similar R/t ratios, 185 and 188, similar R/L ratios, 0.76
and 0.75, and similar E/c, ratios, 643 and 667. The resulting
ultimate shear ratios are 0.79 for M1-S2 and 0.81 for MFS5, which is
also close. The cylinder dimensions, however, affect the ultimate load

resisted by the cylinder.
4.5.3 Post-Buckling Behavior

The first attempt at analysis using MF models employed a
mesh of 18 elements with the transverse load applied at the edge.
The model stiffness in this analysis started to rise instead of decline
and the solution diverged shortly after, even though a very small arc
length was used in the context of CALM solution strategy. It was then
realized that applying the load at the edge is responsible for the
stiffening behavior and that the presence of an additional part of the

cylinder under the loading edge is necessary. This end part, which
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has a length of 75 mm in the typical model shown in Fig. 4.21, may
be useless in the early stages of applying the transverse load but as
soon as the carrying mechanism starts to change from "beam" type to
"tension field" type, the end part provides the needed support to

anchor the inclined force fields.

The load carrying mechanism of thin-walled cylinders after
buckling can be studied by examining the force fields in the models.
The plots of the principal forces at the maximum displacement of
each of the nine models are shown in Figs. 4.28 through 4.36. The
models in MF series demonstrate the same basic post-buckling
characteristics as did models M1-S1 and MI1-S52. The observations

that follow are obtained by inspection of Figs. 4.28 through 4.36.

After the cylinder reaches the ultimate load, two main force
fields start to develop in the cylinder; a tension field that takes the
general direction of the diagonal buckles and a compression field that
takes a crossing direction. The inclined field forces anchor in the stiff

vertical boundaries (diaphragms or fixed ends).

As the deformations grow, the shape of these fields crystallizes.
The tension field separates into bands of intense forces at the center
of the bands and little or no forces in between the bands. The
number of bands in the tension field varies from two to four. On the
other hand, the compression field does not separate into bands, but
the forces in the field tend to intensify near the top corner of the

cross-section and diminish towards the neutral axis.
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The unloaded parts of the tension field seem to match the
valleys of the buckles, while the loaded parts match the crests of the
buckles. To demonstrate this, the deformed shape of a cross-section
in model MF9 is shown in Fig. 4.37. By comparing the node locations
in Fig. 4.37 and Fig. 4.36, it can be seen that nodes 141 and 145, for
example, lie between the tension bands and therefore are deflected
toward the center of the cross section, while nodes 139, 143, and
147, which lie in the tension bands, are deflected outward from the
center. The same observation was reported by Roman and Elwi

(1987).

The slope of the tension field changes as the deformations
increase after reaching the ultimate load, but it becomes
approximately constant as the equilibrium path flattens. It is to be
noted, however, that the tensile forces tend to tilt at the proximity of
the boundaries where they anchor in the stiff vertical edges. This
tilting is considered to be an inevitable local effect of the boundary
conditions. The slope of the tension bands referred to here is,
therefore, measured some distance away from the boundaries. The
slope of the tension bands for MF series and the two models M1-S1
and M1-S2 are shown in Table 4.3. The slope is measured on the
developed surface of the cylinders and it is reported at the ultimate
load and at the maximum displacement obtained in each model. The
slopes range from 32 to 48 degrees. They are generally higher at the
ultimate load than at the maximum displacement and are also higher
for the top band than for the bottom band. No relationship between

the slope of the tension bands and the R/t ratio is observed.
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However, it is clear that the slope lessens as the aspect ratio, R/L,

decreases.

Using the scales shown in Figs. 4.28 to 4.36, the forces in the
tension field could be measured. It can be shown that some of these
forces reach maximum value (which corresponds to average yield
stress across the thickness). The forces in the compression field also
increase, especially near the top. Figures 4.28 to 4.36 also show that

the slopes of the compression forces do not show any parallel

pattern.

The above observations show clearly that there is a common
pattern in which thin-walled cylinders carry the transverse load in
the post-buckling region. This behavior can be modeled so that the

shear capacity of the cylinder may be estimated. The attempt to do

so is described in Chapter 6.
4.6 Summary

The 16 node degenerated plate shell element can be used
successfully to model the shear behavior of transversely loaded thin-
walled steel tubes, provided that certain aspects are treated
properly. The correct representation of the test boundary conditions
is crucial to the stiffness of the finite element model. As discussed in
Section 4.4, this factor is considered to be the reason for the
discrepancy between the finite element model and previous tests. In
this Chapter, it has been shown that good agreement exists between

the results of two full scale tests and the predictions of the numerical

model.
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A parametric study of nine model was carried out in order to
extend the information available about the ultimate shear capacity of
thin-walled cylinders and their failure mechanism. The study
investigated the effect of the thickness ratio (R/t) and the aspect
ratio (R/L) on the ultimate shear capacity of the cylinders. The
numerical aralysis was most useful in examining the post-buckling
behavior. The analysis provided a clear picture of the force fields
responsible for carrying the shear load in the post-buckling region.
All models demonstrated a common load-carrying pattern that can

be used to determine the post-buckling capacity.

The study showed that the magnitude and distribution of the
initial stresses introduced in the finite element model to account for
the cold bending inherent in fabricated steel tubes are critical in
determining the uliimate capacity of the numerical model as well as
its post-buckling capacity. Further refinement of the initial stress is
needed to include both the longitudinal and circumferential welding

stresses.
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Fixation

Section Fixed DOF Free DOF Coupled DOF
I-I u, v, w, Ox, s N -
-0 ———- u, v, 6x, Os w
111 Bs v, W, 6x u
I-III v, Ox u, w, 0s —

Table 4.1 Boundary conditions for fixed-ends cylinder model
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Loading diaphragm

Fixation
X
1t
Section Fixed DOF Free DOF Coupled DOF
I-I u, v, w, 0x, 0s - -eee
-1 - u, v, w, Ox, 0s ----
I-11I v, Ox u, w, s -
II-IT (CNT1) v, Bx u, w 0s
II-II (CNT2) v, Ox u, w, 0s ———-
II-II (CNT3) e u, v, w, Ox Os
II-1I (CNT4) - u, v, w, 6x, 0s ----

Table 4.2 Boundary conditions for cantilever cylinder models (CNT series)
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Slope at ultimate load Slope at max. displ.
F.E. Model R/t R/L | Topbend | Mid.bend | Botband | Topbend | Mid. bend | Bot. band

MF1 150 | 1.00 | 45 43 40 47 46 44
MF2 150 | 075 | 45 42 36 46 43 38
MF3 150 | 050 | 41 39 33 39 37 36
MF4 188 | 1.0 | 43 43 43 45 44 44
MF5 188 | 075 | - 38 37 47 .| 4 r3
MF6 188 | 050 | - 38 37 39 38 32
MF7 250 | 1.00 | 48 45 39 45 43 43
MF8 250 | 0.75 | 48 4 37 | 47 39 39
MF9 250 { 0.50 | 40 38 38 | 39 37 36
M1-S1 185 | 053 | 40 40 40 37 34 34
M1-82 185 | 076 | 48 42 37 | 42 42 40

Table 4.3 Slope of the tension field bands (in degrees)
at and beyond the ultimate load
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Note: 7, is normal to the surface

Fig. 4.1(a) Configuration of the isoparametric degenerated bi-cubic shell element

Projection of
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Fig. 4.1(b) Nodal degrees of freedom of the plate shell element in NISA80
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Fig. 4.2 Mesh arrangement of CNT models
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Fig. 4.5(a) Mesh deformation for model M1-S1
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Fig. 4.5(b) Mesh deformation for model M1-S1
at vertical displacement= 2.38 mm (maginified 20 times)
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Fig. 4.6 Load-displacement curves for models of specimen S1
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Fig. 4.7(b) Average shear distribution for M1-S1 at load = 1671 kN
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Fig. 4.7(a) Average shear distribution for M2-S1 at load = 1671 kN
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Fig. 4.10 Principal forces on the developed surface of model M1-S1
at vertical displacement = 3.18 mm
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Fig. 4.11 Principal forces on the developed surface of model M1.S1
at vertical displacement = 6.42 mm
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Fig. 4.13 Average shear distribution for M1-S2 at disp. = 0.99 mm
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Fig. 4.14 Average shear distribution for M1-S2 at disp. = 2.22 mm
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Fig. 4.16 Average longitudinal stress distribution at disp. = 0.99 mm
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Fig. 4.19 Principal forces on the developed surface of model M1-S2
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Fig. 4.23 Load-dispiacement curves for models with R/t ratio=188
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5. Regression Analysis
5.1 Introduction

The inelastic shear buckling capacity of fabricated steel thin-
walled cylinders is affected by many factors. This is one reason why
it is not possible at the present time to develop an analytically
derived solution for the inelastic shear capacity of such members.
Two alternatives are available in such cases. Either a sophisticated
numerical analysis can be employed, which is usually expensive and
not convenient for everyday design purposes, or empirical formulae

based on experimental results can be developed.

In this chapter, regression models are developed which
provide an estimate of the inelasiic shear capacity of thin-walled
cylinders. A number of linear and nonlinear models are fitted to the
available experimental and numerical data. The cffectiveness of
these models is tested by several correlation criteria and a particular
model is then recommended as an empirical design equation and
compared with a currently used design equation (Eq. 2.17, Galletly

and Blachut, 1985).
5.2 Regression Variables and Data Set

With the increasing emphasis on empirical research, along with
the availability of prepared computer programs, regression analysis
is now widely used in many fields. Regression analysis is the method
of building a statistical model to describe in some sense the behavior

of a random variable. A regression model uses information about a
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set of independent variables in order to estimate the expected value
‘of some dependent variable. The regression model is useful for
estimating the response provided it is based on an understanding of

the relations among the variables.

The elements of any regression analysis are the model, the
variables, and the data set. In this Section, the variables contained
within the inelastic shear buckling problem for thin-walled cylinders

are defined and the regression data are presented.

For the problem of cylinder shear buckling, the shear capacity
of the cylinder is the dependent variable. In oider to generalize the
analysis, the response (Y) is defined as the ratio of the maximum

resisted shear force (Vp,.) to the yield shear force (Vy:

v
Y =75 (5.1)

Vy

In deriving expressions for Vp,, and V,, it is assumed that the
relationship between the shear force and the shear stress is based on

membrane theory, that is:
V=ntRt7T (5.2)

The shear capacity of the cylinder is influenced by many
parameters: cylinder radius (R), shear span (L), shell thickness (t),
material yieid strength (o), elastic modulus (E), the degree and
shape of imperfections which exist in the cylinder wall prior to
loading, the residual stresses due to the manufacturing process, and

the boundary conditions. A successful multiple regression model
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includes the least possible number of independent variables that
permit an adequate interpretation of the response. Multiple
regression models that have fewer independent variables are
inherently easier to analyze and interpret. Therefore, an attempt to
reduce the eight independent variables mentioned above will be

advantageous.

As discussed in Chapter 2, the influence of cylinder
imperfections on the maximum shear capacity is considered to be
relatively small, and, based on tests and numerical analysis, is
reported to be less than 10% (Galletly and Blachut, 1985 and Roman
and Elwi, 1986). Therefore, it is proposed to ignore imperfections as
an independent variable in this analysis. However, the effect is
included as a source of random error inherent in the test specimens

used as the basis of the regression model.

For most of the cases in the data set, the boundary conditions
are identical. This does not allow the effect of the boundary
conditions to be examined in a worthwhile way, and therefore it has

been omitted as a variable.

Residual stresses are mainly induced by the rolling and
welding processes and by the type of material used. All the physical
specimens were manufactured using the same fabrication procedure.
Also, the finite element models included an estimate of the residual
stresses equivalent to those induced by bending a flat plate to form a
cylinder. The iack of variation in the residual stress patterns

throughout the data set led to a decision to exclude them as a
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variable in this analysis. However, the residual stresses caused by
welding and the type of material are not the same in all the
observations in the data set. Because of the insufficient information
reported from the physical tests concerning these residual stresses,

this difference is expected to induce some inevitable error in the

analysis.

The remaining parameters (R, t, L, E, and G) are used to define

three dimensionless independent variables X1, X2, and X3 as follows:

X1 = Rt (5.3)
X3 = E/O'y (5.5)

Since E is almost constant for different types of steel and since R does
not independently affect the shear capacity as an individual variable,
the defined variables X1, X2, and X3 are in fact independent of one
another. The thickness ratio (X1) emphasizes the thin-wall aspect of
the cylinder while the aspect ratio (X2) emphasizes the effect of the
shear span. The material ratio (X3) introduces the effect of the grade
of steel on the maximum shear stress. Defining the regression
variables in this manner serves three purposes. It reduces the
number of variables in the regression model, it generalizes the model
by relating the shear capacity to nondimensional ratios, and brings it
closer in form to the theoretical elastic shear buckling prediction
(Schroder, 1972 and Yamaki et al., 1979), where the elastic shear

stress (T,) is a function of the elastic modulus (E), the aspeci ratio
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(R/L), and the thickness ratio (R/t). (The elastic shear buckling
equation is given by Eq. 3.2).

The data set chosen to develop the regression models covers a
wide practical range of the three independent variables X1, X2, and
X3, as shown in Table 5.1. The thickness ratio (X1) varies from 125 to
250, the aspect ratio (X2) varies from 0.50 to 1.37, and the stress
ratio (X3) varies from 457 to 841. It should be noted that the
regression models can predict the response (Y) most accurately
within the range of the independent variables from which they were

derived. The model accuracy outside this range is indefinite.

The data set comsists of 29 different data records and each
record consists of the three variables X1, X2, and X3 and the
corresponding response Y. Seventeen of these records are obtained
from physical tests, including G1 through G14 (Galletly and Blachut,
1985), B1 (Bailey and Kulak, 1984), and the tests S1 and S2
performed as part of this work and described in Chapter 3. The other
data records are the results of the numerical analysis described in
Chapter 4. The finite element models tend to slightly overestimate
the maximum shear capacity of the cylinder. Therefore, it might be
considered that a more rational regression model would be one based
on the experimental data only. However, both approaches, including
and excluding the finite element data, are investigated and criticized

in the following sections.

153



5.3 Regression of the Data Set
5.3.1 Linear Model

The ultimate goal of any regression analysis is to develop the
true relationship between the response and the independent
variables. If the shape of this relationship or equation is known, then
the remaining unknown constants can be evaluated from the data set
using the least squares method or any other error minimization
technique. However, in most cases the shape of the equation is also
unknown and has to be determined. The simplest Fciir of the
regression models is the linear form. Using linear models in cases
where the true behavior is certainly nonlinear is justified by Taylor's
theorem (Burington, 1948), whereinn any nonlinear function can be
approximated to any desired degree of accuracy by a linear function
with enough higher order terms. Simple linear models help to
understand the strength of association between Y and each of the X-

variables, while multiple linear models approximate the true

function.

In selecting the best regression model of the simple linear
models, one approach is to evaluate all possible models, especially if
the number of X-variables is small (Berenson et al., 1983). For three

independent variables, the possible simple linear regression models

are :

=a + b Xl (5.6)

<)

Y=a+ bX2 (5.7)
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Y=a+bX3 (5.8)
Y=a+bXl +cX2 (5.9)
Y=a+bXl +cX3 (5.10)
Y=a+bX2 +cX3 (5.11)
Y=a+bXl +cX2+dX3 (5.12)

where Y is the predicted response and a, b, c, and d are the
regression constants. It is also possible to multiply two or more

variables as follows (Berenson et al., 1983):

Y=a+bX1lX2 (5.13)
Y=a+bX1X3 (5.14)
Y=a+bX2X3 (5.15)
Y=a+bX1X2X3 (5.16)

To test these models, a correlation criterion is needed, that is, a
method is needed which measures the strength of association among
the variables. One popular correlation criterion compares the
coefficient of determination (r?) of the different models (Wesolowsky,

1976). The coefficient of determination is defined as:

m ~12
(v.-¥)
2 SSE i=1
.S _ =2 17
’ SST . (>-17)
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in which m = the number of data records in the regression;

SSE = the sum of the squares of the error for a model
and is a measure of the scatter of the observed
Y data about the regression line :1; and

SST = the sum of the squares of the total error and is

a measure of the variation of the observed Y

values around their mean Y.

If the fit of the linear relationship § is perfect, that is, if all
points fall on ‘";, then r’= 1. If, on the other hand, the variation from
the linear relationship is nearly as large as the variation about the
mean Y, then r* approaches zero. The value of r* is therefore a
measure of the strength of the regression: the model fits the data

best when the value of r’approaches unity.

Using the least squares method, the unknown constants a, b, c,
and d of the linear models can be easily calculated. The constants and
the corresponding correlation factors r’ are presented in Table 5.2.
Some important observations can be made from the data in this
table. First, the coefficient of determination (r*) for Egs. 5.6 to 5.12
show that the accuracy increases when the model includes more
parameters. They also show that the thickness ratio (R/t) and the
aspect ratio (R/L) have a clear effect on the shear capacity ratio (Y),
while the stress ratio (E/0,) does not seem to be linearly related to Y
and its effect is, in fact, minimal. This is to be expected since the
stress ratio includes two components, E, which is almost constant, and

o,, which is present on both sides of the equation because it is

y’
proportional to T,.
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Second, from Egs. 5.13 to 5.16 it is noted that when X2 and X3
are combined, the degree of association with Y increases. This is most
beneficial if the multiple linear models are used. The general
multiple models contain higher powers of X as follows:

”~

Y=a+bXl +cX12+dX13 +..+ eXI
+ X2+ gX2%2 + h X2+t kX"

+1X3 + mX32 +nX3 +..4 gX3"  (5.18)

Equation 5.18 is not convenient for design purposes. Even with
only second powers, it would include seven terms. A simpler model
which includes second order terms and makes use of the strength of

the combined X2 and X3 is written as:

”~

Y = a +b (X1) +¢ (X1)? + d (X2 X3) +e (X2X3)? (5.19)

Eq. 5.19, which includes the additional second order terms,
resulted in the largest value of r’. This is shown in Table 5.2.
Although the accuracy may increase if more terms are added, it will
be seen that the same accuracy can be achieved more easily by

nonlinear models.
5.3.2 Nonlinear Models
5.3.2.1 Regression Subroutine

Nonlinear regression models are not usually as easy to solve as
the linear models. Instead of using simple formulae to calculate the
unknown constants, as is the case with linear models, computer

subroutines designed for nonlinear regression must be used. The
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subroutine  RNLIN (IMSL, 1987) has been chosen to analyze the

models proposed in the following sections.

Subroutine RNLIN fits a nonlinear regression model to a set of

data using the least squares method. The nonliner regression model

is:

Y. = FX;,C) + & (5.2
where Y; = the obscived values of the dependent variable;
X; = the known independent va:iables;

C; = the unknown constants; and

g; = independently distributed error with zero mean
value and common variance S% su: - that

s' = EI_T?‘I (e-2) (5.21)

The program which provides the data and the function F to the
solver subroutine RNLIN is listed in Appendix A. The output of this
program includes the values of the regression constants (Ci-values),

the sum of the squares of the crror (SSE), and the coefficient of

determination (rz).

5.3.2.2 Model Groups

in this section, two groups of models are tested and compared
with the data set. The general formula of each model is based on the
general behavior of thin-walled cylinders under transverse loading.
The first group is based c: the interacticn between the yield shear

stress and the elastic shear buckling stress. The second group is
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based on an examination of the shape of the response relative to

each ir_~nandent variable.

The ; st group is based on the interaction equation proposed
by Galletly and Blachut (1985). This equation assumes that the
inci siic shear buckling stress (T,) can be approximated by a
quadratic interaction equation that uses the elastic shear buckling
stress for simply supporied cylinders under torsion (T,)and the yield

shear stress (Ty). The interaction equati-n takes the following form:

1 1 1
= = 7 t 7 (5.22)
T, T, T,

where 1. is calculated according to Eq. 3.2. Although Galletly and
Blachut compared the resuits of fourteen down-scaled model tests
(300 mm in diameter) with the vredictions of Eq. 5.22 and reported
good agreement, this equation is not the best fit for the fourteen
tests. In fact, if the difference between Eq. 5.2 and the test results
is minimized using the least squares technique, the power "2" in the

equation will be replaced by the power "2.33".

To expand on this idea, the interaction equation is assumed to
have an unknown power n, this power is to be determined from the
regression analysis of all the available data, namely Galletly's tests,
Bailey's test (380 mm in diameter), the two full scale tests S1 and S2
(1270 mm diameter), and the finite element models. The power n of
the interaction equation is no longer restricted to integer numbers

and is calculated so that ihe equation is the best fit of the available
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data set. The regression model is written in the general form as

follows:
1 1 1
- = = vt = (5.23a)
T, T, T,

Equation 5.23a has favcrable convergence characteristics.
When T, approaches infinity, :#¢ cos~ uf a very thick or a very short
cylinder, the maximum shear siress approaches the yield shear
stress. When 1. approaches zero, the case of a very inin or a very
long cylinder, the maximum ‘hear stress converges tc the elastic
buckling stress. As a result, the inelastic buckling capacity acts as a
smooth transiiion from the elastic buckling capacity to the yield
capacity in a raanner similar to that used to describe the inelastic

buckling of steel columns. Eq. 5.23a can be rearranged in terrsi of ‘;

and X as followg»:
Y= {1+[0.74 X112 X205 X3 ) 3050 )i/ (5.23b)

As previously explained in Chapter 2, the constant, 0.74, that
appears in Eq. 3.2 and 5.23(b), is actually a function of the boundary
conditions as well as the thickness ratio (X1) and the aspect ratio
(X2). For cylinders with fixed boundary conditions and with the
range of X-values as in the data set, this constant ranges from 0.805
to 0.842, with an average of 0.825 (Yamaki, 1984). The constant 0.74
in Eq. 5.23b can therefore be replaced by 0.825. This is now re-

introduced as another model, one that accounts for the effect of the

boundary conditions:
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Y= {1+[(0825 Xi"* X2 X3 ) 3050 ) (5.24)

The two models, Eqs. 5.23(b) and 5.24, have the same accuracy
with different values of the power n. The success of these models
should be dependent on the accuracy of Eq. 3.2, which was originally
derived for cylinders under pure torsion. After comparison with test
results, Yamaki (1976) recommended the use of the same elastic
buckling shear stress for cylinders under torsion and transverse
loading. On the other .hand, Schroder (1972} derived a capacity for
cylinders under transverse loading w!ich, although close to Yamaki's
solution, is slightly different. Even though Schroder's solutiot: is more
accurate, it is available only in a chart fcrmat, and this discourages
utilization in the interaction equation in place of Yainaki's solutioa.
Also, the regression analysis performed on Eq. 5.23(b) and 5.24
minimizes the effect of the elastic solution and yields almost the

same accuracy for both equations.

In order to limit the number of possible models in the analysis,
an intuitive approach is adopted to select the second group of the
nonlinear regression models. First, the general shape of the
relationship between the response and each independent variable is
described. Second, appropriate functions which are able to represent
these relaticnships are suggested. Finaliy, different combinations of

these functions are chosen to formulate the regression modeis.

To describe the relationships between Y and X, it is helpful to
use the output of the linear regression analysis developed in Section

5.3.1. Equations 5.6 and 5.7 show that Y increases as X1 (=R/t)
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decreases or as X2 (=R/L) increases, while the small value of r’of
Equation 5.8 shows only a small association between Y and X3
(=E/0y). Equation 5.12 indicates the importance of including all the X-
variables in the model and Eq. 5.15 suggests a possible interrelation
between X2 and X3. Many functions can describe these relations:
thus, more conditional characteristics have to be inciuded. One way is
to examine the theoretical shear capacity when the independent
variables approach limit values. When the thickness ratio (R/t)
approaches zero or when the aspect ratio (R/L) approaches infinity,
the shear capacity converges to the yic!d shear capacity, or at leasi to
a value close to the yield, depending on the initial residual stresses in
the cylinder. In order to bring the regression model closer to % “rue
behavior cf cylinders, the selected functions should be able to su.tisry
these theoretical limits. Figures 5.1 and 5.2 show the desired general
shape of the relationship between the shear force and the two
variables R/t and R/L. They are best described by exponential
functions. The following functions, fl and f2, are suggested to

simulate the curves in Fig. 5.1 and 5.2, respectively:

fl, = a Xi” (5.25)
fl, = ae?* (5.26)
f2, = a X2* (5.27)
f2, = ae?*? (5.28)
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in which the subscripts describe different versions of the function f.
Considering X3 (the stress ratio), it is either treated similarly to X2 or

combined with it in f2 as follows:

f2, = a (X2 x3)° (5.29)

From these functions, the following combinations are proposed as the

second group of nonlinear regression models:

Y = a X1° x2° X3¢ (5.30)
Y = a X1° (X2X3) (5.31)
Y = ¢ w1° X2+ d X3 (5.32)
Y = a ®XD x2¢ X357 (5.33)
Y = a ® XD (x2 X3 (5.34)
Y = a X1b eXx2+dXy (5.35)
§ = g e Xl+cX2+d X3) (5.36)

It is alsc possible to approximate the interaction equation 5.23

by expanding it to a third degree polynomial (Appendix B):
Y=a+bd +cP* dd’ (5.37)

in whick (@ is Yamaki's clastic parameter (X1 X2%° X3).

Equations 5.23, 5.24 (Group 1) and 5.30 to 5.37 (Group 2)
are the proposed nonlinear models for inelastic shear buckling. The

values of the «onstants a, b, c, and d are determined from a
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regression analysis on the total data set shown in Table 5.1, which
includes botn the test results and the finite element parametric
study results, and are listed in Table 5.3. By examining the
correlation factor r® in Table 5.3, it can be seen that the proposed
aonlinear models are more successful than most of the linear models.
In particular, Eqs. 5.30, 5.31, and 5.33 are the most accurate models
of the nonlinear groups. However, the values of r* have not increased
to an acceptable degree of accuracy. This is due to the inclusion -

the finite element dat2 in the total set.
5.4. Regression of the Experimental Data

Regression analysis assumes that the least squares assumptions
of normality, independence, and common variance are valid within
the data set. When these assumptions are satisfied, the least squares
estimates are the best (i.e. have the minim:m variance) among all
possible estimates. In reality, these assumptions hold only
approximately (Rawling, 1988). Violating these assumptions may

seriously affect the estimates of the regression. unless proper

corrections are made.

Normality, the assumption that the residual errors are
normally distribated, is valid in most practical cases. In the shear
buckling problem, the major causes of residual errors are the random
imperfections, the residual stresses, and the testing procedures.
These factors are likely to have symmetrically bell-shape distributed
errors. Even if the normality condition is not satisfied, the least

squares estimates are still the best unbiased estimates if the other
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assumptions are met. However, the tests of significance are affected

by non-normality and would generallv be incorrect.

The independence assumption means that, for a certain set of
X-variables, there is no relationship between the residual errors. This
assumption is satisfied in the data set of Table 5.1 since the variables

X1, X2, and X3 are independent.

The common variance assumption requires that all the residual
errors have the same variance S2, which also implies that every
observation contaias the same amount of information (Rawling,
1988). This assu> st is violated in the regression of the data set of
Table 5.1, mainiy Utwcause of the existence of two types of data,
numerical, and experimental. Finite element analysis is a
deterministic method of analysis: in other words, it calculates a
unique value of the shear capacity for a certain set of variables Xl,
X2, and X3. On the other hand, physical testing is subject to other
factors (such as the random measuring errors) that contribute to the
response beside these three variables. These errors cannot be
modeled and this causes the numerical and the experimental sets to
have different variance. Heterogeneous variance causes the least
squares method to lose precision in the estimates and consequently

to show poor accuracy. The remedy for this problem is to use one

type of data.

Since the experimental data are believed to contain more
information about the actual problem, the above discussion suggests

that the finite element records be eliminated irom the data set used
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in order to satisfy the least squares assumptions. The number of
records left (17 data records) may not be large enough to represent
the whole population, but it ic mure consistent than the mixed data
used in Section 5.3. Using the same linear and nonlinear models
described in Section 5.3, the regression constants and the correlation

factor of the regression of the experimental data are calculateu and

listed in Tables 5.4 and 5.5.

The first observation from Tables 5.4 and 5.5 is that a high level
of correlation is achieved for both the multiple linear model (Eq. 5.19)
and the nonlinear models, as demonstrated by the high values of r*
(0.795 to 0.954). This is mainly due to the consistency of the data
used. Comparison with the constants of Table 5.2 and 5.3 shows that
some models, namely 5.15, 5.19, 5.32, and 5.35, changed drastically
when a subset of the cdata is used. This sensitive dependency on the
subset of the data decreases the confidence of the model. The other
models were less sensitive and have more conservative predictions of
the shear capacity when the expérimental data were used alone. This
is favorable from the design point of view. Models 5.12, 5.19, 5.30,
5.31, 5.33, and 5.34 have high values of r* for the regression of both
the whole data and the experimental data, while model 5.37, based

only on experimental data, has the best value of .

Among the equations in Tables 5.4 and 5.5, the best five are
selected and re-examined in detail in order to select the ome to
represent the inelastic shear buckling capacity. Equatiens 3.19, 5.33,
and 5.37 are chosen for their good accuracy. Equations 5.23 and 5.30

are also chosen; the former represents the interaction group and the
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latter has the simplest form of all the models. Although Eqs. 5.12,
5.24, and 5.34 have good accuracy, they are similar to Eqs. 5.19, 5.23,
and 5.33 and are less accurate. Thus, the equations selected are

(renumbered):

Y =0455 + 2.13 (103 X1 - 127 10) X12

+ 5.8(10)* X2 X3 + 4 (10)® x2? x32 (5.38)
Y = (1+(3%%0.74 X115 X2%5 X3 )22y (5.39)
Y = 098+424 @ - 3383 @ +0933 @° (5.40)
Y = 0345 X378 047 30522 (5.41)
§ = 0.050 e(-ﬂ.ss.‘.i.}?i.'l) 20387 3 30.520 (5.42)

Choosing one equation from these five equations cannot be
based solely on the value of r’. Two otner factors need to be
examined; the behavior of the model outside the range of the
independent variables used in the regressior. and the scatter of the

data about the regression model.

As already noted, the regression model best estimates the
response in the range of the data upon which it was based. If the
model is close o the physical behavior of the true problem, it should
not predict unexpected physical response outsids the range as well.
The five equations are therefore plotted against the three
independent variables R/t, R/L, and E/o, in Figs. 5.3, 5.4, and 5.5,
respectively. Equation 5.38 unreasonably underestimates the

response for thickness ratios outside the data range (125 to 250) and
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over-estimates the response for aspect ratios above 1.5. Equation
5.39 has the closest shape to the physical problem outside the data
range, as expected from any interaction equation. Equation 5.40 is
unrealistic for R/t < 100 and R/t > 350. Equations 5.41 and 5.42 are

reasonable except for low R/t ratios, where they over-estimate the

response. This is especially true for Eq. 5.41.

One way of showing the scatter of the data arcund the
regression line is to plot the predicted capscity ratio (?) versus the
measured capacity ratio (Y). These plots are shown in Figs. 5.6
through 5.11 for the five equations 5.38 :hwongh 5.42, ¢ well as for
Galletly's equation 5.22. The plots are not difievzt encygh to be able
to discriminate among them visually. The foliowing gauges arc

suggested to rank the data scatter:

Y- Y.
B = 100(5—) (5.43)
yield
l m
E = e .

"o E,I Ei| (5.44)
Enax = maximum {E,} (5.45)
Emin = minimum {Ei} (5.46)

(¥ - vy
o - Al = (5.47)
y/x m-n
where Y; = the shear capacity ratio for the "i" record of the

experimental data set;
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E; = the residual error as a percentage of the shear
vield capacity of the cylinder;
avg = the average of the absolute value of E;-values;

E
Enax = the maximum value of E;-values;
E

min = the minimum value of E;-values;

n = number of regression constants;

m = number of observations; and

Sy/x = the standard error of estimate of the regression

equation Y measured in the same units of the

dependent variable Y.

The first four gauges are direct error measurements, while the
last one is a statistical measurement. If the errors are assumed to
have a normal distribution probability function with zero mean and
variance, then the probability of having data points less or more than
that predicted by ? can be calculated (Berenson et al., 1983). For
example, the probability of having cylinders with shear capacity less
than Y-28,/, is 95.44% at the mean of the data. If 25, is small, the
data will be close to the regression, and vice versa. Therefore, 2S,,,
can be taken as a measure of the data scatter about the regression
equation. The values of these gauges, Eqs. 5.43 to 5.47, are listed in
Table 5.6 for the five regression models. The most accurate model is

Eq. 5.40 and the poorest is Eq. 5.39. However, the difference between

them is not very large.

Equations 5.38 and 5.40, although they have the best accuracy,
do not simulate the true shear capacity outside the range of X-

variables, as shown in Fig. 5.3. They anticipate negative capacity for
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larger values of R/t and a puzzling decrease or increase for the
smaller values of R/t. These equations are also sensitive to any
change in the data set, as can be seen from the values of the
constants in Tables 5.2 and 5.4. In contrast, Eq. 5.39 behaves ideally
outside the range of the X-values, as expected, but it has the poorest
accuracy of the five mo: :s: r* = (.83, E, .= 5% and 2§, = 13.3%.
Equations 5.41 and 5.42 are very close to each other, with the latter
slightly more conservative and slightly more accurate. Both provide
reasonable estimates of the shear capacity outside the range of X-

variables except for R/t ratios less than 100, wherc they tend to

~ver-estimate it.

In conclusion, Eq. 5.42 is considered the best regression model
because it has good accuri.y as well as reasonable predictions within
the overall range of the independent variables. Galletly's predictor
equation (Eq. 5.22) is also presented in Table 5.6 for comparison with
the regression models. Equation 5.42 has an error range (Emin to Em“)
of -7.5% to 11.8%, whereas Galletly's equation has a wider range,
-11.6% to 14.7%. Equation 5.42 has an accuracy factor (r*) of 0.91

and a scatter factor (ZSy/K) of 0.11, whereas the corresponding

factors for Galletly's equation are 0.80 and 0.14.

5.5 Shear Capacity Equation

The currently used formula for identifying the inelastic shear
capacity of transversely loaded cylinders is the quadratic interaction
equation suggested by Galletly and Blachat (Eq. 5.22). This equation,

although empirically based, is not the best fit for the group of tests
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upon which it was based. In this chapter, a best fit regression model
for all the available shear buckling physical tests has been
determined as:

+0.387

R 0.52
-0.0033 =
Vmax . 9,05 %P (5) E (5.48)
v, 7 P '

In additic=. the maximum shear force resisted by the cylinder
according to ;. 5.48 should not exceed the yieid shear force or the

elastic buck!ing shear force:

\% : -
VL“"S <1.0 (5.49)
y
A" T.T Rt
max < € (5.50)
VY Vy

Where 1. is tiie elastic buckling shear stress for cylinders under

transverse loads as calculated from Eq. 2.15.

The predictions of Eq. 5.48 are most accurate within the

following ranges:

125 < -lti < 250 (5.51(a))
R
05 < = <14 (5.51(b))
450 < £ <850
- (5.51(c))

y

Figure 5.12 shows the finite eciement results relative to

equation 5.48. Clearly, the proposed design equation is a lower bound
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on the best available theoretical prediction in addition to its excellent

performance relative to the available test data.

Equation 5.48, which has better accuracy than Galletly's
equation, is the empirical equation recommended for the
determination of the inelastic shear buckling czpacity of thin-walled

fabricated steel cylinders under transverse loading.
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Data _ X1 X2 X3 Y
Specimen S1 185 0.53 645 0.64
Specimen $2 185 0.76 643 071
Specimen Bl 250 0.50 6790 0.38
Specimen G! 188 1.00 673 0.87
Specimen G2 188 1.00 673 0.83
s Specimen G3 150 1.00 841 1.00
S5 Specimen G4 150 1.00 8§41 0.99
- Specimen G5 125 1.00 704 1.02
*Z 2 | Specimen Gé 125 1.00 704 0.98
g 3 Specimen G7 150 1.00 457 0.71
| 5 | SpecimenG8 150 1.00 457 0.76
§ 3 | SeecimenG9 125 1.00 547 0.79
il = Specimen G10 125 1.00 547 0.87
© Specimen G11 126 1.37 533 0.94
Specimen G12 151 1.37 457 0.80
Specimen G13 129 0.83 533 0.83
Specimen G14 155 0.83 457 0.72
Modef M1-S1 188 0.53 645 0.64
Model M1-S2 188 0.76 643 0.80
o Model M1-Bl 250 0.50 679 0.50
5 Model MF1 150 1.00 667 0.94
2 Model MF2 150 0.75 667 0.85
o Mode! MF3 150 0.50 667 0.73
s Model MF4 188 1.00 667 0.90
f Model MFS 188 0.75 667 0.81
= Model MF6 188 0.50 667 0.71
S Model MF7 250 1.00 667 0.89
Model MF8 250 0.75 667 083
Model MF9 250 0.50 667 073

Table 5.1 Variables of the regression data set
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Eq. number a b c d e r

Eq. 5.6 1.129 |[-0.002 0.300
Eq. 5.7 0.457 | 0.400 0.459
Eq. 5.8 0.575 | 3.50E-4 0.058
Eq. 5.9 0.673 |-8.70E-4 | 0.319 0.503
Eq. 5.10 0.807 |-2.30E-3 | 6.20E-4 0.466
Eq. 5.11 -0.046 | 0.48 6.90E-4 0.661
Eq. 5.12 0.205 |-1.20E-3 | 0.376 7.60E-4 0.739
Eq. 5.13 0.608 1.30E-3 0.121
Eq. 5.14 0.957 |-1.40E-6 0.115
Eq. 5.15 0.391 | 7.60E-4 -- 0.698
Eq. 5.16 0.593 | 2.30E-6 0.189
Eq. 5.19 0.476 |-1.46E-3 | 1.55E-6 | 1.33E-3 | -S.87E-7 0.766

Table 5.2 Regression constants of the linear models based on all data records

Table 5.3 Regression constants of the nonlinear models based on all data records

Eq. number b c d v
Eq. 5.23 2.5040 0.644
Eq. 5.24 2.1512 0.644
Eq. 5.30 0.0945 [-0.2334 | 04094 |0.5288 0.765
Eq. 5.31 0.1290 [-0.1909 | 0.4478 0.756
Eq. 5.32 43932 [-0.4386 [ 07250 |0.0006 0712
Eq. 5.33 0.0366 [-0.0013 | 0.4104 {05256 0.764
Eq. 5.34 0.0584 |-0.0011 | 04477 0.755
Eq. 5.35 1.1878 [-0.2574 | 0.4442 |0.0008 0.716
Eq. 5.36 0.4083 [-0.0014 | 0.4459 (0.0008 0715
Eq. 5.37 -0.1717 |2.3313 |-1.8804 |0.5440 0.677
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Eg. number a b c d e r

Eq. 5.6 1.369 |-3.55E-3 0.564
Eq. 5.7 0.371 | 0.464 0.427
Eq. 5.8 0.550 | 4.32E-4 0.114
Eq. 5.9 1.025 |[-2.65E-3 | 0.214 .- 0.619
Eq. 5.10 1.041 [-4.10E-3 | 6.80E-4 0.835
Eq. 5.11 -0.111 | 0.548 6.60E-4 0.679
Eq. 5.12 0581 |-3.02E-3 | 0.273 7.29E-4 0.923
Eq. 5.13 0648 | 1.10E-3 --- 0.044
Eq. 5.14 0974 |-1.66E-6 0.110
Eq. 5.15 0.329 |-8.42E-4 0.722
Eq. 5.16 0.578 | 2.70E-6 -—-- 0.170
Eq. 5.19 0.455 | 2.13E-3 | -1.27E-S | 5.84E-4 | 4.00E-8 0.940

Table 5.4 Regression constants of the linear models based on experimental data

Table 5.5 Regression constants of the nonlinear models based on experimental data

Eq. number a b ¢ d r

Eq. 5.23 2.2040 --- -== - 0.830
Bq. 5.24 1.9370 --- --- - 0.795
Eq. 5.30 0.3446 |-0.4883 | 0.4218 | 0.5215 0.894
Eq. 5.31 0.3545 |-0.4399 0.4796 --- 0.888
Eq. 5.32 43.200 | -0.8950 0.6250 0.0005 0.821
Eq. 5.33 0.0493 |-0.0033 | 0.3873 | 0.5202 0912
Eq. 5.34 0.0652 | -0.0028 0.4672 -—- 0.902
Eq. 5.35 5.9040 |-0.5714 0.3802 0.0008 0.863
Eq. 5.36 06174 |-0.0037 0.3473 0.0008 0.887
Eq. 5.37 -0.9799 4.2390 | -3.3830 0.9332 0.954
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Maximum Shear Force

R/t

Fig. 5.1 The general shape of the shear capacity vs R/t

Maximum Shear Force

R/L

Fig. 5.2 The general shape of the shear capacity vs R/L

177



I WUIIYYIP J0j SPPOW UCISSAIZIL 3Y) Jo suondIpalg €5 *Siyg

178

(/4) ones ssauydiyy ag g,
osyr  00b 0S€  00¢ 0s2 002  0Sl! 001 0S
" i i | SR | 2 1 1 ] 2 1 1 ] 1 i M
Zp G D3
ib g by cemimmiee-
OpG b3  —-e-eea- e —
6E£C b ceccemcccanee e —memn?
8£ ¢ b3

, abueud ejeg

( X ) oneu Lyoded seayg




v G b3
i+'s b3
oF S b3
6£G b3
8€ G b3

1/ JUIIHP 0] SPPOw uoissa I3l Iy) Jo suondPald p°s Sy

("174) onyea dadse ay |,
02 ¢y o'l S0
'l 1 — 'y |7 1 yl — 2 2 2 R — 9 2 2 ] - rl 2 yy

.
A )

o
L r~

— GZ'1

oSt

( X ) onea Lyroeded Jwayg

179



£O/q WUIIYJ1P 10§ SPPPO UOISSIIBII 3Y) Jo suONdIPAL] §°S i

(A0/3) oneu ssans ay g,
0001 006 008 00L 008 00§ ooy 00¢
I 1 " 1 1 ] 1 | 2 i 3 1 1 ~ 000
Nv m Unu. e —TEeT— \\ "
-~
e by e i | | .~ 2
g by - - " 4 B
6£G by tmmmmmmeees | £
by —— . g,
8£ G b3 g <
. ’ ‘
» »
_ g
: <>
abueu ejeq Ym A
— GZ'I
5

180



Predicted capacity ratio (Y)

ratio (Y)

Predicted capacity
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--------- 10% Error range

L M LI v v | v o s

L v L]
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Measured capacity ratlo (Y)

Fig. 5.6 Scatter of the test data about the regression Eq. 5.38
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Measured capacity ratio (Y)

Fig. 5.7 Scatter of the test data about the regression Eq. 5.39
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Predicted capacity ratio (Y)

Predicted capacity ratio (Y)

...... 10% Error range
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Measured capacity ratio (Y)

Fig. 5.8 Scatter of the test data about the regression Eq. 5.40

Measured capacity ratio (Y)

Fig. 5.9 Scatter of the test data about the regression Eq. 5.41
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Predicted capacity ratio (Y)

ratio (Y)

Predicted capacity

------- 10% Error range
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Measured capacity ratio (Y)

Fig. 5.10 Scatter of the test data about the regression Eq. 5.42

Measured capacity ratio (Y)

Fig. 5.11 Scatter of the test data about Galietly's equation 5.22
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Predicted capacity ratio (Y)
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Fig. 5.12 Scatter of the finite element data about the regression Eq. 5.48
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6. A Truss Model for the Post-Buckling
Shear Capacity

6.1 Introduction

Prediction of the maximum shear capacity of cylinders under
transverse loading, based on experimental, numerical and empirical
studies, has been reported in the previous Chapters. Both the
experimental and the numerical studies showed that there is
significant secondary strength after buckling. This strength, which of
course is lower than the buckling strength, can be utilized as a

conservative estimate of the shear capacity of cylinders.

The shear tests of transversely loaded cylinders that were
carried out in the post-buckling region, Bl and B2 (Bailey and Kulak,
1984) and S1 and S2 (Chapter 3), demonstrated a common post-
buckling pattern. An example of the load-displacement relationship
obtained during these tests is shown in Fig. 6.1. As the load reaches
the buckling strength, diagonal buckles appear in the center of the
shear span and the load level drops. After buckling, the load remains

constant as the deformation of the cylinder increases in the plastic

range.

There are similarities between the post-buckling behavior of
thin-walled cylinders and that of plate girders. The buckled shape of
plate girders and cylinders under transverse load is displayed in
Figs. 6.2a and 6.2b, respectively. When a plate girder buckles in
shear, truss action evolves to carry some of the shearing force. In

this truss action, the tensile forces in the direction of the buckles are
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carried by membrane action of the web and the compressive vertical
and horizontal forces are carried by the stiffeners and the flanges.
Similarly, when a cylinder buckles in shear, tensile membrane forces
develop in the direction of the buckles. The vertical component of
these diagonal forces is taken by the circumferential stiffeners or by
the end diaphragm, while the horizontal component is resisted by
compressive membrane forces in the direction opposite to the

buckles.

Although the tension field mechanism in plate girders has been
studied by many researchers (a summary of which is reported in
Structural Stability Research Council Guide, 1988), few such studies
have been identified in the case of thin-walled cylinders. Tension
field action in cylinders was first observed by Bailey and Kulak
(1984). Later, Mok and Elwi (1986) and Roman and Elwi (1987)
attempted to predict the post-buckling capacity of one of the Bailey
and Kulak tests by using the tension field action. In the following
sections, a brief review and discussion of these studies is presented,
and a general truss model for the shear buckling capacity of thin-

walled cylinders is proposed and verified.
6.2 Tension Field Models for Thin-Walled Cylinders

When Bailey and Kulak (1984) tested two thin-walled cylinders
(Bl and B2) under transverse loading, they noticed that the
specimens had a buckle pattern similar to that of plate girders. As a
result, they tried to adopt the tension field theory of plate girders to

fit thin-walled cylinders. Bailey and Kulak assumed that a diagonal
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tension field developed in the cylinder after buckling and that it was
anchored in the vertical sides of the shear span, as illustrated in
Fig. 6.3. They also assumed that this tension field had a constant
tensile stress equal to the flexural buckling stress 6.,. The slope of
the tension field ({) was calculated by replacing the panel height and
length in the corresponding plate girder equation for tension field
slope (Salmon and Johnson, 1990) by the cylinder diameter (2R) and
shear span (L). According to Bailey and Kulak, the shear strength
(T,), the arc width (), and the slope (§) of the tension field are

expressed in terms of the cylinder dimensions and the flexural

buckling stress as follows:

T, =2Rt o, (1-cosy)sin (6.1)
1 L
where \|l=1t-cos(1-Etan§)

-1
tan (—2-11)

§ = R

N —

and O is the critical buckling stress in flexure (Stephens et al., 1981)
and all other terms are shown in Fig. 6.3. Comparison of predictions
made using Eq. 6.1 with the two tests available (B1 and B2), led
Bailey and Kulak to conclude that an improved shear strength
predictor equation would depend on R/t ratio. They subsequently

proposed the following format:
Vo= kn Ty (high R/t ratio) (6.2)

Vu= kg T, + ky; Ty (intermediate R/t ratio) (6.3)
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V,= kys T, (low R/t ratio) (6.4)

where V,is the ultimate shear strength of the cylinder, T, the
tension field shear strength, T, the yield strength of the cylinder and
k. ki, kyy, and kys are functions of R/t ratio and the material
properties. The first term in Eq. 6.3 is referred to as the "tension field

shear” part, whereas the second term is called the "beam shear" part.

Mok and Elwi (1986) adopted Eq. 6.3 as a shear buckling
formula for the Bl test and attempted to evaluate the tension field
and the beam shear parts. Their assumptions regarding the shape,
the slope, and the stress distribution of the tension field were the
same as those of Bailey and Kulak. However, they calculated the
tension field stress o, differently. Whereas Bailey and Kulak assigned
the flexural buckling stress G to the tensile stress, Mok and Elwi
determined it from a yield condition. They assumed that the cylinder
buckles at a critical shear stress which is proportional to the elastic
buckling shear stress (T ) proposed by Batdorf et al. (1947). After
buckling occurs, additional shear stress is carried by the tension field
action. Assuming that the state of stress in the tension field reaches
the Von Mises yield criterion, the tension field stress can then be

determined. The components of Eq. 6.3 according to Mok and Elwi

are.

K, = { 8 T” @3 -—sm ZC)} 38T‘”sm 2f (6.5)
O'y Y

T, = Rtq, (2 -%tanC)sinC (6.6)
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£ (6.7)
y

Ky = 43

c

Ty=‘\/§. TCRtCy (6.8)

where Oy is the yield stress and & is a reduction factor which is
applied to the elastic buckling stress (T) to account for the effect of
the initial imperfections. Mok and Elwi did not determine a specific

value for O, and therefore no comparison between Eq. 6.3 and the

tests was made.

Several criticisms can be directed toward each of these models.
The Bailey-Kulak model dealt with the cylinder as a flat plate when
calculating the angle of inclination of the tension field, {, neglected
the compressive membrane forces, and used an ambiguous definition
of the tension field stress, ©,. Bailey and Kulak (1984) were not able
to provide supportive evidence for their assumption about the
tension field stress, while Mok and Elwi (1986) left the tension field

stress as a function of the unknown factor §.

Roman and Elwi (1987) used extensive finite element analysis
of the first shear test of Bailey and Kulak in order to develop a truss
model which addressed these criticisms. The Roman-Elwi model,
shown in Fig. 6.4, has a helix-shaped tension field and an
equilibrating compression strut. The total shear capacity (V,,) of the
model is evaluated not only from the integration of the vertical
component of the tension field (T,), but also from the vertical
component of the compression strut (C,). In this model, it is assumed

that the shear capacity after buckling is dependent on the tension
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field action alone. In other words, the beam shear contribution is

neglected.

To define the tensile stress ¢,, Roman and Elwi proposed two
limiting bounds for the tensile stress in the tension field. The lower
limit corresponds to a sinusoidal distribution of stress in the
direction of the buckles accompanied by a cross-bending moment
equal to the yield moment due to the deformations of the buckle
waves. The upper limit corresponds to constant yield stress
accompanied by cross-bending moment equal to the plastic moment.
These limits are represented by a reduction factor (a) which is
applied to the yield stress. The factor a is equal to 0.438 for the
lower limit and 0.750 for the upper limit. The post-buckling shear
strength of cylinders according to Roman and Elwi is described by

the following equations:
V= T, + C, (6.9)
where T,=aRto, (1-cosy)sin2{

R 2
C,,=2aRt0y\|If (1 +cosy) cos §

L
=T - — tan
'} = 4

) 2
{ = tan l(l+ cos(—IEtan €)) cosec (%tan §)cos §

It can be demonstrated that the shear capacity of the truss
model according to Eq. 6.9 is independent of the thickness ratio, R/t.

This is not consistent with the test observations. The ratio of the
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shear capacity calculated using the lower limit of Eq. 6.9 to that
measured from the tests which have the same R/L ratio is 1.62 for
B1 (R/t = 250), 1.04 for S1 (R/t = 185), and 0.78 for B2 (R/t = 75).
The discrepancy is mainly due to the fact that the model is
independent of the R/t ratio. Equation 6.9 does give satisfactory
results within a narrow range of the R/t ratio, but it does not give

good predictions over a broader range.

There are also some inconsistencies in the Roman-Elwi model
regarding the definition of the compression strut. First, the strut (C),
which is the resultant of the compressive membrane forces, and the
resultant of the tension field (T) do not intersect at the same point on
the circumferential stiffeners. Thus, the model violates equilibrium
conditions. As shown in Fig. 6.4, the compression strut intersects the
stiffener at angle equal to (m-y), while the resultant of the tension
field intersects the stiffeners at (Y /2). Second, the stress
concentration at one end of the strut is theoretically equal to infinity
since the strut starts from the extreme point of the cross section.
Finally, the slope of the tension field, {, was chosen to maximize the
shear component of the tension field, T,. This is a reasonable
assumption in plate girders. where the compressive forces in the
flanges do not contribute to the shear capacity. On the other hand,
the shear capacity V,, in Eq. 6.9 consists of two segments, T, and C,,

and maximizing only one of them is not easily justifiable.

In summary, the concept of tension field action can be
reasonably employed to determine the shear capacity of thin-walled

cylinders in the post-buckling range. The tension field models which
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are available do not satisfactorily predict the test results, however.
An attempt to develop a tension field model which can address the
deficiencies of the previous models and predict the shear capacity of

thin-walled cylinders will be presented.
6.3 Proposed Truss Model

The models summarized in Section 6.2 were constructed to fit
cylinders with fixed-end boundary conditions, such as the B1 and B2
tests of Bailey and Kulak. As discussed in Chapter 3, the bending
moment distribution of the fixed-end test S1 along the shear span is
sensitive to the support movements. It was also observed that even
small deformations in the supporting elements change the bending
moment significantly and that such deformations cannot be avoided.
As a result, the degree of indeterminacy in the tests and the post-
buckling models increases. To decrease the number of unknowns,
and consequently the number of assumptions in the propesed model,
the boundary conditions will be limited to simple and cantilever
supports. For these cases, the middle of the shear span is susceptible
to shear buckling while one end of the shear span is susceptible to

local flexural buckling.

6.3.1 Assumptions

The truss model adopted in this study is illustrated in Fig. 6.5.
The model consists of three main elements; the tension field that
develops after buckling, the compression strut that must be present
to balance the horizontal component of the tension field, and the

circumferential stiffeners that support the vertical thrust of the
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inclined force fields. In order to view the model in a two-dimensional
plane, the cylinder is cut with a vertical plane and then unfolded as
shown in Fig. 6.6. This two-dimensional plot will be referred to as the

developed surface of the cylinder.

In the following, the basic aspects of behavior in the post-
buckling range are discussed and the assumptions necessary to

construct a truss model of the behavior are set out.

1. When a cylinder buckles in shear due to transverse loading,
the ultimate shear capacity immediately drops to a lower
load level and then stabilizes, as seen in Fig. 6.1. Such typical
post-buckling behavior has been observed in all shear
buckling tests (B1, B2, S1 and S2) which were continued into
the post-buckling range. During buckling, the load-carrying
mechanism changes from beam-type to truss-type in a way
similar to that of plate girders except that the post-buckling
capacity of cylinders is, herein, assumed to be dependent on
the truss mechanism alone. An explanation of this observed
behavior was offered by Roman and Elwi (1987). They
suggested that outward shear buckles help develop the
inclined tensile membrane forces while the inward buckles
reduce these forces significantly due to the reduction in
length of the buckles. With the increase of deformations in
the post-buckling range this results in unloaded strips of
forces, which in turn causes the beam-type shear to

diminish.
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2. After buckling, tensile forces are developed in approximately
the same direction and location as the buckles. This field of
forces has a helical shape, which means it appears as a
straight strip on the developed surface of the cylinder (Love,
1944). This assumption is supported by the results of the
finite element analyses (Chapter 4), which showed that the
principal tensile forces in the post-buckling range always
appear as straight, parallel rays. An example of these
analyses is displayed in Fig. 6.7, where the principal forces
in the post-buckling range are plotted on the developed

surface of specimen S2.

3. Examination of Fig. 6.7 shows that the compression field is
not as clearly defined as the tension field. The compressive
principal forces at different points on the cylinder do not
have the same slope, neither do they have a definable
shape. However, the compression field can be replaced by an
equivalent compressive strut in deriving the truss model
capacity. This strut must be in equilibrium with the

resultant of the tension field.

4. The compression and tension fields can receive anchorage
only in the circumferential stiffeners. In other words, the
unstiffened parts of the cylinder cannot provide anchorage
to the inclined force fields. This behavior, which helps in
defining the width of the force fields, was observed in the
tests (Figs. 3.10, and 3.22) and it is also consistent with the

numerical analysis (Fig. 6.7).
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5. The stresses in the force fields are redistributed as the
deformations increase until they reach maximum values-
yield stress in tension and buckling stress in compression.
As suggested by the finite element analyses (Chapter 4), the
stresses in the tension field tend to be high at the crests of
the buckles (yield value) and low at the valleys (almost zero
value), creating banded strips of forces as shown in Fig. 6.7.
Therefore, it is reasonable to assume that the stress
distribution in the tension field has a sine wave variation as
shown in Fig. 6.6. The number of buckles observed in tests
S1 and S2 (Chapter 3) was three and thus, the stress
distribution in Fig. 6.6 has also three waves. (Subsequent
exarmnation of the effect of the assumed number of waves
on the truss model capacity showed that it is minimal). On
the other hand, the stresses in the compression field at the
support tend to intensify near the top of the cross section
and diminish towards the neutral axis. The stresses in the
compression field, therefore, are assumed to have a
triangular distribution, with a maximum value at the crest
of the cross section equal to the critical compressive stress

in buckling due to bending.

6. During redistribution of the stresses in the post-buckling
range, the direction of the tension field changes accordingly
until the capacity stabilizes. It is reasonable to postulate that
when the shear capacity of the cylinder stabilizes, the

tension field slope reaches an optimum value such that the
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shear capacity of the truss model is maximized. This
assumption is analogous to the one made by Basler (1961)

regarding the post-buckling shear capacity of plate girders.
6.3.2 Derivation of Shear Capacity

The shear capacity of the truss model can now be derived.
From the definition of the helix shape of the tension field, the angle y
(Fig. 6.6) which defines the width of the tension field is calculated as

follows:

\y=n-%m§ (6.10)

in which L is the length of the shear span, R is the cylinder radius

and { is the slope of the tension field.

Consider an element of width dw oriented in the direction of
the tension field (Fig. 6.6). If the stress acting on the end area of this

element is O, and the cylinder wall thickness is designated as t, then
the infinitesimal force acting on the element in the direction of the

tension field can be written as:

dT = o, t dw (6.11)

(Note that, because of the presence of cross-bending moment as a

buckle forms, G, is not, in fact, a uniform stress acting on the end

area of the element, although it will be convenient to think of it that

way. The influence of the cross-bending moment on G, will be

developed subsequently.)
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The component of the infinitesimal force, dT, in the direction

of the applied shear is written as:
dT, = 6, t dw sin{ sin 0 (6.12)

where O is the angle between the infinitesimal strip and the vertical

axis.

The width (dw), which is defined as the dimension of the strip
normal to the tension field, can be expressed in terms of the

infinitesimal angle (dO), the radius (R), and the slope of the tension

field as follows:
dw = R dO cos { (6.13)

Substituting Eq. 6.13 into Eq. 6.12 and using a trigonometric identity,

one obtains:

6, t R (sin 2{) sin® dO (6.14)

N}

dT, =

Before integrating Eq. 6.14, the tensile stress, O, first has to be
defined. Using the assumed sinusoidal distribution of ©, shown in
Fig. 6.6, the tensile stress (0,) at a strip dw can be expressed as a
function of the peak value of the distribution (0y)and the strip

location angle (0). It can be shown that this function is:

o, = 321 (1+sin(6$9-12‘-)) (6.15)

Equation 6.15 is still incomplete because it does not take into

account the variation of the tensile stress through the cylinder
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thickness (t). As already noted, the shape of deformation in the
buckled zone implies that in addition to the tensile stress that exists
in the direction of the tension field, there is also stress normal to it
due to the cross-bending moment. For example, when the surface
buckles outward at a particular cross-section, the outside half of the
thickness will be subjected to tensile stress normal to the tension
field stress while the inside half of the thickness will be subjected to
compressive stress. This biaxial state of stress may prohibit the
tensile stresses in the direction of the temsion field from reaching the
yield value (Gy). To determine the tensile stress distribution, the

biaxial state of stress first needs to be identified.

As the deformations in the post-buckling range increase, the
cross-curvature of the buckles increases, thereby creating high local
cross-bending moments. These moments can be as high as the plastic
moment after a sufficient degree of deformation is reached in the
stable post-buckling path (Roman and Elwi, 1986). The stresses (O.p,)
associated with the cross-bending moment will limit the maximum
stress (C,,) that can be reached in the direction of the tension field.
Adopting the Von Mises yield criterion, shown graphically in Fig. 6.8,

the relationship between the biaxial stresses takes the form:

O’ + O’ - 630y - 6,2 = 0 (6.16)

The distribution of the cross-bending stress, O.p, through the
thickness is determined from the cross-bending moment due to the
buckle deformation. The distribution of the maximum stress in the
direction of the tension field, 0,,, around the cylinder can then be

calculated from Eq. 6.16. The tension field stress, which was assumed
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to be uniform through the thickness, is now adjusted so that it does
not exceed the maximum stress, G,. Finally, an equivalent uniform
stress, O, is calculated as the average value of the adjusted tension
field distribution through the thickness. This equivalent uniform

stress, O,.,iS now the one that considers the effect of the cross-

bending moment at the chosen location.

An example of this procedure is illustrated in Fig. 6.8. The
section considered in this figure is the crest of a buckle where the
thickness is fully plastified. It is logical to assume that the stress in
the direction of the tension field must be between 0 and +0,.
Equation 6.16 will show, therefore, that this stress (O.,) will be +0,
and that it will be present only in the outside half of the thickness.
The adjusted tension field distribution in this case is similar to the
0., distribution and the equivalent stress (0,) is equal to 0.50,.
Defining W as the ratio between the equivalent stress and the tension
field stress, W at the crest location is 0.5. This ratio, first introduced
by Roman and Elwi (1987), is a reduction factor which should be
used in Eq. 6.15 to take the effect of the cross-bending moment into
account at the crest location. After some further discussion of the

value of M, its introduction will be made in Eq. 6.17.

The steps for calculating ©,,, G, and WU are repeated for
different locations on the buckle wave. Figure 6.9 shows the

distributions of the cross-bending moment M, the tensile stress O,

and the reduction factor W along one half of a buckle wave.
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Instead of including the distribution of | in Eq. 6.15 as a
function of O, an average value of | for the whole tension field width
can be calculated by integrating the distributions of W and o,. This
average value is calculated 2s 0.820, which is slightly less than the
value of 0.875 suggested by Roman and Elwi (1986) using a similar
approximation. Equation 6.15 is now modified to include the effect of

the cross-bending moment.

- 22% (14sin(8R8 . Xy, (6.17)
v

Substituting Eq. 6.17 into Eq. 6.14, one obtains:

dT, = QLS_ZIZJZ sin2{ (1 +sin %—Q - %))sinede (6.18)

Integrating Eq. 6.18 over the range of d® (from O to y), the

contribution of the tension field to the shear capacity can be

evaluated as:

2
6x

"—2————2] (6.19)
Y +36T

T, = 0.205Rt G, sin2{ (1 - cosy)

The horizontal component of the tension field can also be determined

in the same manner:

dT, = 0, t dw cos{ (6.20)
2 36 11:2
T, = 041Rt0, Y cos( |[——— (6.21)
Y +36T
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To satisfy equilibrium, the horizontal component of the
compression field (C,) is set equal to the horizontal component of the

tension field (T,). The compression force (C) can then be calculated

from T, as:

LY (6.22)
cos M

in which 1 is the slope of the compression strut. The compression
force (C) is also given by the resultant of the triangular compression
stress distribution shown in Fig. 6.6. The width (B) of this

distribution at the supporting diaphragm is given by:

B - 2C (6.23)
t .,

in which o, is the buckling compressive stress (Stephens et al,
1981). The vertical distance b, shown in Fig. 6.6 as the distance

between the compressive strut (C) and the top of the cylinder, is

dependent on B:

B

3 cosM (6.24)

b =

Substituting Eqs. 6.21, 6.22 and 6.23 into Eq. 6.24, b is written as:

2 2
b=0273 Ry 9y cos C] [ ikl (6.25)

2 2 2
C..cosN| |y +36X

There are three unknowns (b, 7, and {) in Eq. 6.25; therefore,
two extra conditions are needed. Since the compression strut has a

helical shape, its slope (n) is governed by the location of the tension
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field resultant and the centroid of the stress triangle. This condition

is expressed as:

tann= L (R . p) (6.26)

1
L
Substituting Eq. 6.25 into Eq. 6.26, the value of M can be determined
as a function of {. Roman and Elwi (1986) assumed incorrectly that ul
is equal to {, while Bailey and Kulak (1984) neglected the
compression strut altogether. After calculating 1, the contribution of

the compression field to the shear capacity can be obtained.

C,= T, tanm singf (6.27)

The total shear capacity of one half of the cylinder is simply
the summation of the tension component (Eq. 6.19) and the
compression component (Eq. 6.27). For the whole cylinder, the post-

buckling shear capacity according to the truss model is written as:
Vim = 2(T, +Cy) (6.28)

Equation 6.28 is a function of the slope of the tension field, {, which
is still unknown. To determine the value of {, the assumption that

the slope will be that which produces maximum shear will be

applied:

= 0 (6.29)

The nonlinearity of Eqs. 6.28 and 6.29 prevents the derivation

of a closed form solution for the post-buckling shear force V,,.
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However, numerical techniques are suitable in such cases to
determine the maximum value of the post-buckling shear force V,g.
One possible algorithm is to assume different values of { in the
practical range (0 to ®/2) and to calculate Eq. 6.28 for each value of {.
Subsequently, the maximum value is selected and the first derivative
(Eq. 6.29) is checked to ensure that it is almost zero. Appendix C lists
a FORTRAN subroutine that was written to perform these
calculations. The input data of this subroutine are the cylinder
variables, namely the aspect ratio (R/L), the thickness ratio (R/t),
and the material ratio (E/G,). The output data are the slope of the

tension field (§), the slope of the compression strut (1), and the ratio

of post-buckling shear stress to the yield stress (T;n/Cy). This shear

stress is related to the shear force V,, of Eq. 6.28 by the simple beam

shear relationship:
Vim = T Rt Ty (6.30)

The process of selecting the maximum shear stress (T;n) for
different values of R/t, E/G,, and R/Lis demonstrated graphically in
Figs. 6.10, 6.11 and 6.12,respectively. Each curve in these figures
shows the post-buckling shear stress ratio (T/Cy) versus the slope of
the tension field ({) and each figure shows the effect of changing
certain cylinder variables on the 7T-{ relationship. The global

maximum of each curve is selected as the shear value for the truss

model capacity (T,y). Examining these maximum values, it is
observed that the post-buckling shear stress 7T,, increases with

increasing values of R/L and E/Gy, but decreases as the R/t ratio
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increases. These relationships agree with the observations of the full-

scale tests B1, B2, S1, and S2.

In addition to the global maximum values, there are some local
maximum values at a tension field slope greater than that of the
global maximum. These values correspond to horizontal compression
struts, that is, the slope 7 is equal to zero. In other words, these local
maximum values represent cases when the shear capacity is due to

the tension field alone.

Figures 6.10 and 6.11 indicate that when the shear strength is
generated from the tension field alone (T,), it is not a function of the
ratios R/t and E/0,. On the other hand, Fig. 6.12 shows that T, is a
function of the aspect ratio R/L. Indeed, when R/L decreases to a
certain limit, the tension field contribution becomes the only active
shear component. This limit is a function of the thickness ratio and
the material ratio. The curve with R/L = 0.5 in Fig. 6.12 shows that
the global maximum value is only slightly greater than the local
maximum value. Further examination showed that for R/L < 0.35, the

local maximum becomes the global maximum.
6.3.3 Model Mechanism

To understand the role of R/L and R/t ratios in developing the
post-buckling shear force V,,, the shear resistance is separated into
two components; the tension field component, T,, and the
compression field component, C,. The two components, as well as the
slopes of the tension and compression strut, are displayed on the

developed surface of the cylinder in Figs. 6.13 and 6.14. Figure 6.13

204



points out the change in the slopes due to variation of the R/L ratio.
It is noticed that the shorter the shear span L, the steeper the slopes
of the tension and compression struts, and, consequently, the higher
the shear components. Figure 6.14 illustrates the effect of the R/t
ratio. When the cylinder thickness is reduced, the critical
compression stress is also reduced. Thus, the compression strut,
which should balance the horizontal component of the tension field,
is forced to have a smaller slope 1 and it therefore provides a
smaller vertical component. Even though the slope of the tension
field increases to compensate for the loss of the compression strut

shear contribution, the shear capacity of the whole model diminishes

as the thickness ratio, R/t, increases.

Although Figs. 6.13 and 6.14 utilized specific values of the
aspect ratio and the thickness ratio, the same conclusions can be
drawn for any value of R/t and R/L. This can be seen in Figs. 6.15,
6.16 and 6.17. As the shear span decreases, the shear capacity and
the slopes £ and 1} increase. As the cylinder thickness decreases, the
shear capacity and the slope of the compression strut decrease, while

the slope of the tension field increases.

6.3.4 Design Charts

The subroutine described in Appendix C can be used to produce
design charts for the post-buckling shear capacity by repeating the
process for different cylinder variables. Some examples of these

charts are presented in Figs. 6.18(a), 6.18(b), and 6.18(c). The shear
force ratio (V,n/Vy) is plotted against the aspect ratio (R/L) for
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selected increments of the thickness ratio (R/t). Since the shear
capacity is not sensitive to the variation of the material ratio (Eloy),
it is better to choose a constant value for the E/o, ratio rather than to
complicate the chart. The values of E/oy chosen for Figs. 6.18(a),
6.18(b), and 6.18(c) are 400, 600, and 800, respectively. In these
figures, the shear ratio is increasing as the aspect ratio increases,
except for small values of the R/t ratio (about 0.5 or less). At these
small values, the compression strut is horizontal and not contributing

to the shear capacity of the cylinder.

Three limitations were imposed on the design charts in the

above figures. The first limit is the yield limit, wherein the yield

shear stress, Tys is considered as an upper bound to the truss model
shear stress, T,,. When the shear stress predicted by the truss model
is larger than the yield shear stress (T, > T,), the yield shear stress is
plotted instead. This condition occurs at low values of the thickness
ratio, R/t, and can be observed as the horizontal lines seen in

Figs. 6.18(a), 6.18(b), and 6.18(c).

The second limit is the elastic buckling limit, wherein the

clastic shear stress (T, calculated from Eq. 2.10 with K,

conservatively taken equal to 0.74) is also an upper bound to the

truss model shear stress, T,,. When the shear stress predicted by the
truss model (Eq. 6.28) is larger than the elastic buckling shear stress
(Eq. 2.10), the elastic buckling shear stress is plotted instead. This
condition occurs at high values of the thickness ratio, R/t, and low

values of the material ratio, E/oy. It can be observed in Fig. 6.18(a),

wherein the curves for R/t ratios greater than about 250 show
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slightly shallower slopes because they represent Eq. 2.10 rather than

Eq. 6.28.

The third limit deals with the failure mode. When the R/L ratio
is small, the shear capacity of the truss model, V,,, is larger than the
load required to cause buckling due to bending. In these cases, the
curves were terminated so that they do not identify shear
resistances which in fact cannot be delivered. This condition occurs at
values of R/L that are slightly smaller than those which have a
horizontal compression strut. The shear resistance corresponding to a
bending buckling limit is calculated as M/L, where M is the bending
moment (case of a cantilever or a simply supported cylinder) and the

buckling stress due to bending is evaluated as suggested by Stephens

et al. (1981).

In general, the shear capacity ratio in the design charts
decreases as the R/L ratio decreases, except for R/L ratios less than
about 0.50, where the carrying mechanism becomes a function of the
tension field alone. It also happens that at these values of R/L, the

buckling mode changes to bending-type rather than shear-type.
6.4 Assessment of the Proposed Model

6.4.1 Comparison with Tests

The known cylinder shear tests are Bl and B2 (Bailey and
Kulak, 1984), S1 and S2 (Chapter 3), and G1 through G14 (Galletly
and Blachut, 1985). The first four tests (B1, B2, S1, and S2) were the

only ones for which the pre-buckling and post-buckling behavior
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was reported and, therefore, the only ones that can be directly
compared to any post-buckling model. The last three tests of this set
(B2, S1, and S2) also happen to be large-scale tests carried out on

specimens that use hot-rolled steel.

The truss model contained in Eq. 6.28 was derived primarily
for simply supported and cantilever cylinders, which leaves only one
test (S2) that can be compared directly with the truss model.
Although the Bl, B2, and S1 tests were intended to have fixed-end
supports, the support rotations could not be prevented completely.
This caused the bending moments to be redistributed towards that of
simply supported members. The degree of success the truss model
will have in predicting these tests is dependent on the degree of this
moment redistribution. Not withstanding the boundary condition
effect, the truss model will be evaluated using the four tests B1, B2,

S1 and S2.

The comparison is illustrated in Fig. 6.1¢, where the predicted
and measured capacity ratios (the ratio of the post-buckling shear
capacity to the yield shear capacity, V,/V,) are plotted against one
another. The diagonal line in Fig. 6.19 represents the ideal condition.
Values above the line are conservative model predictions, and values
below the line are unconservative predictions. It is clear that the
truss model is close to the test results, especially for S2. Following
the same definition of the error measurements E, suggested in
Chapter 5 (Eq. 5.43), the error between the truss model predictions
and the test results is 5.0%, -13.5%, -11.0%, and -1.5% for Bl, B2, SI,

and S2, respectively.
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The slopes of the inclined buckles measured from the tests are
compared to the slope of the tension field calculated according to the
truss model in Table 6.1. Only three tests (Bl, S1, and S2) are
compared to the truss model in Table 6.1 because the B2 test and all
of Galletly's tests did not report the buckle slopes. Although the
slopes predicted by the truss model are reasonably close to the

measured ones, no general conclusion can be made until more test

data are available.

Although tests G1 through G14 did not report the post-buckling
capacity, were carried out on very small specimens (150 mm in
diameter), and in some cases were not made of hot-rolled steel, they
could be used indirectly in the comparison with the tests. The ratios
of the stable post-buckling load to the buckling load for the tests, Bl,
B2, S1, and S2, were 0.800, 0.700, 0.823, and 0.797, respectively.
Except for B2, these ratios are unusually close to one another. This
closeness suggests that the ratio of the stable post-buckling load to
the buckling load for the tests that did not report the post-buckling
capacity and have the same range of variables may also be in the
neighborhood of 0.805, the average of B1l, S1, and S2. Galletly's tests
also had a range of variables closer to B1, S1 and S2 than to B2. The
range of R/t ratios is 125 to 188 for Galletly's tests, 185 to 250 for
B1, S1 and S2 tests, and 75 for B2 test.

In order to utilize the results of G1 through Gl4, it will be
assumed that the ratio of the post-buckling capacity to the buckling
capacity of these tests is 0.805, which is the average ratio of the

three tests B1, S1, and S2. The comparison between the truss model
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and Gl through G14 tests is shown in Fig. 6.20. The test results
cluster around the model predictions in a reasonable way. The error

(E,;) between the truss model predictions and the results of G tests

range from -8.1% (case of G3) to 16.5% (case of G12).

Considering all experimental results, the proposed model has
an error range of -13.5% to 16.5% with an overall average of 7.1%.
Taking into consideration the approximations made to compensate
for the limited information obtained from some of the tests, it
appears that the proposed model has good potential for estimating

the post-buckling capacity of thin-walled cylinders.

Although the numerical parametric study described in Chapter
4 is not a "physical test", it is worthwhile to examine the correlation
of the finite element results with the truss model. The post-buckling
capacity measured from the results of the finite element analysis is
compared to the post-buckling capacity predicted by the proposed
truss model in Fig. 6.21. It is clear that the truss model prediction is
a lower bound on the finite element model. This observation is
similar to that illustrated in Fig. 5.12 for the relationship between

the finite element and the regression model.
6.4.2 Comparison with Buckling Equation

In Chapter 5, the buckling capacity was estimated by the
inelastic buckling equation 5.48. If the assumption made in the
previous section regarding the ratio between the buckling and the
post-buckling capacities is valid in the prescribed range of variables,

then the results from an ideal truss model should be approximately
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80% of the results obtained using the buckling equation. On the other
hand, if the assumption is not valid and both the buckling and post-
buckling models are accurate, then the ratio between them would

give an idea about the ideal relationship between the buckling and

post-buckling capacity.

The shear force ratio calculated from Eq. 5.48 is plotted against
the cylinder variables R/L, R/t, and E/(Sy in Figs. 6.22, 6.23, and 6.24,
respectively. In order to compare the buckling load with the post-
buckling capacity, two truss model curves are also plotted in these
figures; the proposed truss model (Eq. 6.28) and the Roman-Elwi
model (Eq. 6.9). As for Eq. 6.28, it can be noticed that it is generally a
lower bound solution for the buckling strength. However, the truss
model results are not exactly proportional to those of Eq. 5.48. In
fact, the ratio between the truss model predictions and Eq. 5.48
changes from 0.69 to 1.00 in the prescribed range of variables for
the inelastic buckling Eq. 5.48 (125 < R/t < 250, 0.50 < R/L < 1.40, and
450 < E/c, < 850).

Unfortunately, no solid conclusions regarding the ratio between
the post-buckling and buckling strength can be drawn because the
test results available are limited. However, the proposed truss model
demonstrated the favorable attribute of being a lower limit to the
buckling shear capacity: therefore, at least it can be used as a

conservative predictor of the shear capacity for most practical cases.
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6.4.3 Comparison with Other Post-Buckling Models

The model proposed by Roman and Eiwi (1987) to simulate the
post-buckling behavior of large diameter cylinders is the model
chosen herein for coinparison. In Figs. 6.22, 6.23, and 6.24. the
predictions of the Roman-Elwi model, Eq. 6.9, for different values of
the cylinder variables are shown simultaneously with the proposed

truss model, Eq. 6.28.

Figs. 6.22 through 6.24 show that Eq. 6.9 is below the expected
shear capacity for large values of the aspect ratio, small values of the
thickness ratio or large values of the material ratio. In fact, Eq. 6.9
lacks the effect of the cylinder thickness ratio (R/t) and the material
ratio (E/G,) completely. Therefore, it is expected that Eq. 6.9 may be
very conservative in cases of relatively short thick cylinders with
low yield stress. For example, the ratio of the shear capacity
calculated using Eq. 6.9 to that measured from the G11 test (which
has R/L = 1.37) is 0.80. The same ratio for G4 test (which has E/o, =
840) and G5 test (which has R/t = 125) is as low as 90.75 and 0.74,

respectively.

On the other hand, Eq. 6.28 appears to include the desirable
effect of all the variables (R/L, R/t, E/o,) that influence the shear
capacity. For example, the ratio of the shear capacity calculated using
Eq. 6.28 to that measured from the tests chosen above, G11, G4, and
G5, is 1.14, 0.91, 0.90, respectively. Thus, it is concluded that the
proposed model provides better agreement with the buckling

behavior of thin-walled cylinders than does the Roman-Elwi model.
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Shear force / Sisear at buckling

Angle between buckle and longitudinal axis of the cylinder
(In degrees)
Test | R/t R/L .
Measured Calculated
S1 185 0.53 230, 250, 240. 2710 24.0
S2 185 0.73 210, 270 -—- — 29.0
Bl 250 0.50 24.0 -— -—- -—- 26.0

* Individual numbers in the same test correspond to different buckles

Table 6.1 Comparison between measured and predicted buckle slopes

1.2

1.0

0.8

0.6

0.4

0.0

Fig. 6.1 Behavior of large diameter tubes in post-buckling range (typical)

0.2
0.0 j

0.5 1.0 1.5

Central deflection / Deflection at buckling

2.0
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Fig. 6.2a Tension field action in plate girders

Fig. 6.2b Tension field action in thin-walled cylinders
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A <J !
>
Section A-A

Fig. 6.3 Tension field action in the Bailey - Kulak model
(after Bailey and Kulak, 1984)

I Limits of tension field

~S . Compression Strut

Cr

Fig. 6.4 Tension field action in the Roman - Elwi model
(after Roman and Elwi, 1987)
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Force fields in the cylinder

__C Compression force
T

Tension force

— 1 \
C
.-\C
T ./ T Ring Stiffener
g
Truss model

Fig. 6.5 Proposed truss model
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a, 050,
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- e J—
t/2 =
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Von Mises Yield Criterion O, distribution G distribution C,. distribution

Fig. 6.8 Effect of biaxial stress state at the crest of a buckle

Outward displacement

| Pre-buckling surface

Cross-bending
moment distribution

Tensile stress &,
distribution

1.00
1.00
1.00

Reduction factor
distribution

Fig. 6.9 Distributions of M, O,, and L for half buckle wave in the tension field
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Shear stress / Yield stress

Shear stress / Yield stress

o.o nd T Y T v 14 T T v
0.2 0.4 0.6 0.8 1.0 1.2 1.4

v L |

Slope of tension fleld ( {)

Fig. 6.10 Effect of thickness ratio on post-buckling shear stress

(R/L=L0, Efc, =600)
0.6 E/q, = 400
- seasovemmossessen %’ - m
0.5 4
i e Efo, = 800
0.4 T, ~==-= E/0, = 1000

v T v T T

T Y T M T
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Slope of tenslon fleld ( {)

Fig. 6.11 Effect of material ratio on post-buckling shear stress
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Shear stress / Yield stress

0.6

o

v T
0.4 0.6

—
0.8 1.0
Slope of tension field ( {)

Fig. 6.12 Effect of aspect ratio on post-buckling shear stress
(R/t=200, E/c,=600)
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Fig. 6.13 The truss elements cn the developed surface for different R/L ratios
(R/t =200 and E/Oy=600)
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Fig. 6.14 The truss elements on the developed surface for different R/t ratios
(R/L=1.0 and E/Cy=600)

222



Shear stress / Yield stress

Tension fleld slope

0.8
0.5
0.4 4
0.3
0.2 a Rit=100
1 e Rit=200
0.14
| o RA=300
0.0 T T T Y T t']
0.4 0.6 0.8 1.0 1.2 1.4
Aspect ratio (R/L)
Fig. 6.15 Shear capacity of the truss model
1.0
0.8 4
0s- W
0.4 1 /Mn L
0.2- ¢ Rt=200
p o RA=300
0.0 1] v L v ¥ L T -1
0.4 0.6 0.8 1.0 1.2 1.4

Aspect ratio (R/L)

Fig. 6.16 Tension field slope of the truss model
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Compression strut slope

1.0 a Rt=100
0.8 - ¢ Rit=200
L (-] R/l-SOO
0.6
0.4
0.24
0.0 v T r T v T v T - Y
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Aspect ratio (R/L)

Fig. 6.17 Compression strut slope of the truss model
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Measured ratio (Vy/Vy)

Mcasured ratio (Vi/Vy)
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Fig. 6.19 Comparison between the truss model and full-scale tests
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Fig. 6.20 Comparison between the truss model and Galletly's tests
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Shear force / Yield shear

Measured ratio (Vi/Vy)
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Fig. 6.21 Comparison between the truss model and finite element results
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Fig. 6.22 Comparison between buckling and post-buckling strength
for different aspect ratios (R/t=200, E/oy =600)
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Fig. 6.23 Comparison between buckling and post-buckling strength
for different thickness ratios (R/L=1.0, E/o,=600)
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Fig. 6.24 Comparison between buckling and post-buckling strength
for different material ratios (R/t=200, R/L=1.0)
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7. Summary and Conclusions

7.1 Summary and Conclusions

The inelastic shear behavior of large-diameter cylindrical shells
subjected to transverse loads was investigated both experimentally
and numerically. Two specimens of 1270 mm diameter were tested
under different boundary conditions. After the buckling load was
reached, testing was continued in order to determine the post-
buckling characteristics of the transversely loaded cylinders.
Numerical analysis was performed a priori to help plan the tests and
to offer insight into the findings. Subsequently, two design
approaches were proposed. One approach was based on a regression
analysis of the available test data as well as a parametric numerical

analysis. The other approach was based on a mechanistic truss

model.

The experiments confirmed that thin-walled tubes loaded in
transverse shear behave in a linear elastic manner up to a
proportional load level. Following this, the response becomes
gradually non-linear until inelastic buckling occurs. In the linear
elastic range, the stresses could be estimated according to the
classical beam theory. Beyond the proportional load level the
presence of the initial stresses and initial imperfections distort the
predictions of the beam theory. After reaching the ultimate load, the
cylinder shear capacity drops to a stable lower level. This secondary
post-buckling capacity is conditional on the existence of stiff

elements in the boundaries of the shear span, such as ring stiffeners
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or end diaphragms. Some of the aforementioned observations were

also reported by other investigators (Bailey and Kulak, 1984).

The behavior of the tested specimens was successfuily
simulated using nonlinear finite element analysis. A 16-node
degenerated plate-shell element was used to predict the cylinder
response. The analysis incorporated the geometric imperfections
measured in the test and the locked-in stresses initiated due to cold
bending. The analysis showed that shear buckling of thin-walled
tubes is not sensitive to geometric imperfections. Meanwhile, locked-
in stresses proved to be an important factor in determining the
inelastic buckling strength. Insensitivity to imperfection was also
observed by others (Galletly and Blachut, 1985, and Roman and Elwi,
1987).

In order to properly model the test specimen, the boundary
conditions that actually existed in the test (frame and fixture
stiffness) have to be introduced in the numerical model. Allowing for
these effects, the numerical simulations carried out in this work
matched closely the response of the full-scale test results with

respect to both strength and stiffness.

The numerical analysis was used to generate data beyond that
relating to the test specimens. Once the numerical study had been
used to establish trends, only the test data were used to determine
the empirical design equation that predicts the ultimate capacity of
thin-walled cylinders under transverse loads. The proposed equation,

Eq. 5.48, is a best-fit regression model of all the available test results,
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and is therefore more accurate in predicting the shear test results
than the empirical interaction equation proposed by Galletly and
Blachut (1985). Equation 5.48 has two upper limits; the yield shear
capacity (Eq. 5.49) and the elastic shear capacity (Eq. 5.50). The
recommended equation was derived for cylinders within specific
ranges of geometric and material variables (Eq. 5.51). The accuracy

of the equation outside these ranges is uncertain.

Ar alternate method, also suited for design purposes, was
developed to predict the post-buckling shear capacity of thin-walled
tubes. Based on the test results in the post-buckling range and the
results of the numerical analyses, a truss model which simulates the
load carrying mechanism beyond the limit point was proposed and
compared with other models. The proposed model idealizes the
cylinder behavior by two force fields, tension and compression,
acting together to support the transverse load. The tension field
takes the general direction of the diagonal buckles, while the
compression field takes a crossing direction to balance the horizontal
component of the tension field. Both force fields anchor in the stiff

vertical boundaries (ring stiffeners or end diaphragms).

The truss model predictions compare well with the post-
buckling test information available. The proposed truss model
demonstrates the favorable attribute of being a lower limit to the
ultimate shear capacity presented by equation 5.48. Thus, the truss
model can be used as a conservative predictor of the shear capacity.
The model also shows better agreement with the buckling behavior

of thin-walled cylinders than does the Roman-Elwi model. The shear
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capacity of the proposed truss model is presented in the form of
design curves (Figs. 6.18(a), 6.18(b), and 6.18(c)). Limits on the shear
capacity derived using the truss model are the yield shear capacity
and the elastic buckling shear capacity of the cylinder. It is to be
noted that the strength curves given in Fig. 6.18 were terminated
when the shear span was long enough to induce a flexural buckling

mode rather than a shear buckling mode.
7.2 Recommendations for Future Research

When the experimental program was planned, it was decided
to test a few full-scale specimens rather than a large number of
small scale specimens. Obviously, large-diameter specimens provide
a clear and accurate view of the shear buckling problem especially in
the post-buckling range. However, the number of full-scale tests
carried out so far is still small and more tests are desirable in order

to improve the confidence in the design models.

The minimum rigidity of the circumferential stiffeners
required to anchor the tension and compression fields needs to be
investigated. Spacing of ring stiffeners defines the length of :he shear
span and controls the ultimate shear strength. They also provide the
support for the inclined force fields in the post-buckling range. The

rigidity of the ring stiffeners therefore has a direct effect on the

shear capacity.
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Appendix A
Regression Analysis Program
C——_—_——____—__———'——-__——_———————_——______—.
THIS FORTRAN PROGRAM PROVIDES REGRESSION DATA AND REGRESSION

MODEL TO THE REGRESSION ANALYSIS SUBROUTINE RNLIN AND PRINT
THE REGRESSION CONSTANTS AND CORRELATION FACTOR R?

O 000 a0

INTEGER LDR, NOBS, NPARM
PARAMETER *(NOBS=29, NPARM=4, LDR=NPARM)

INTEGER IDERIV, IRANK

REAL DEF, FUNC, R(LDR,NPARM), SSE, PAR(NPARM),
& XiDATA(NOBS), X2DATA(NOBS), X3DATA(NOBS),
& YDATA(NOBS)

EXTERNAL  FUNC, RNLIN

C =——=<==——=—=—===THE INITIAL REGRESSION CON%TANTS
10 READ(S,*) PAR
IF(PAR(1).EQ.999) GO TC 20
WRITE(6,*) 'PAR INITIAL = ', PAR
IDERIV =0

CALL RNLIN (FUNC, NPARM, IDERIV, PAR, R, LDR, IRANK, DEF,
& SSE)
WRITE(6,*) 'PAR = ', PAR

RSQU= 1.0-SSE/0.5936764
WRITE(6,*) 'IRANK ="IRANK, ' DEF =',DEF,"' SSE =",
& SSE, R2='RSQU
GOTO10
20 END

SUBROUTINE FUNC (MPARM, PAR, IOPT, I0BS, FRQ, WT,
& E, DE, [END)

NTEGER NPARM, IOFT, IOBS, IEND

REAL PAR(NPARM), FRQ, WT, E, DE(1)

INTEGER NOBS
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PARAMETER (NOBS=29)

REAL EXP, X1DATA(NOBS), X2DATA(NOBS), X3DATA(NOBS),
& YDATA(NOBS)

COMMON /XYDATA/ X1DATA, X2DATA, X3DATA, YDATA

INTRINSIC EXP

IF (I0BS .LE. NOBS) THEN

WT =1.0E0
FRQ =1.0E0
IEND =0
C THE REGRESSION MODEL
E = YDATA(IOBS)*1.73205-PAR(1)*EXP(X1DATA(IOBS)*PAR(2))
& *X2DATA(IOBS)**PAR(3)*X3DATA(IOBS)**PAR(4)
ELSE
IEND =1
END IF
RETURN
END

INTEGER NOBS
PARAMETER (NOBS=29)
REAL XI1DATA(NOBS), X2DATA(NOBS) X3DATA(NOBS)
& ,YDATA(NOBS)
COMMON /XYDATA/ X1DATA, X2DATA, X3DATA, YDATA

DATA YDATA/.368,.371,.409,.46,.219,.286.,.5,.477,
.577,.569,.591,.567,.409,.438,.457,.502,.544,.462,
.479,.414,.423,.493,.543,.41,.47,.52,.423,.48,
513/

DATA X1DATA/188.,188.,188.,188.,250.,250., 188.,188.,
150.,150.,125.,125.,150.,150.,125.,125.,126.,151.,
129.,155.,150.,150.,150.,188.,188.,188.,250.,250.,
250./

DATA X2DATA/.53,.53,.76,.76,.5..5, 1.,1.,
1,1,1,1,1,1,1,,1,1.37,1.37,
0.83.0.83,.5,.75,1.,.5,.75,1.,.5,.75,

L/

DATA X3DATA/645.,645.,643.,643.,679.,679., 671.,671.,
840.,840.,704.,704.,457.,457.,547.,547.,533.,457.,
533.,457.,661.,661.,667.,667.,667.,667.,667.,667.,
667./

PR PR PR PR

g
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Appendix B
Taylor's expansion of Eq. 5.23
Equation 5.23 can be written in terms of one variable Z as follows :
Y=(1+Z")ln (B.1)

in which Z = 0.74 (3.0%%) X125 X295 X3. Using Taylor's theorem,

Eq. B.1 can be expanded into a polynomial of nib degree.
Y = Y(h) + Y(h) (Z-h) + Y(h) (Z-R)}2! +Y(h)" (Z-h)}/3!
- +Y(W)" (Z-h)"/n! + R, (B.2)

In which the superscript on Y(h) defines the derivative with respect
to Z, h is an arbitrary value and R, is the remainder after n number
of terms and it is equal to Y(Z1)*(Z-h)"/n! where ZI is a value
between Z and k. Since the value of Z for the data in Table 5.1 varies
from 0.6 to 2.2, then if A is chosen as 1.4, (Z-h)" will be numerically
small and R, can be neglected. Consequently, Eq. B.l1 can be
accurately approximated by a third degree polynomial of Z or any

parameter that is proportional to Z as . Therefore, Y can be written

as follows:

Y=a+bP +cP*+d P’ (B.3)

For a specific h, the constants a, b, c and d can be calculated from
Eq. B.2 or, alternatively, they can be tailored by determining them

from the regression analysis of the data set.
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Appendix C

Truss Model Subroutine

THIS PROGRAM CALCULATES THE TRUSS MODEL EQUATIONS 6.10 TO 6.28
FOR INCREMENTS OF THE TENSION FIELD SLOPE C AND CHOOSES THE
MAXIMUM VALUE 1,;, THE PROGRAM ALSO CHECK THE DERIVATIVE

ACCORDING TO EQUATION 6.29.

sloNoNeKeXe!

REAL RT,RL.ES,AETAETACLETAC,SCEMETACI
REAL ETAC2,GAMAS,VER,VG,VK,AA PAPAO,VT,VC.ERR
REAL ETAO, FF,VK1,VK2,VK3,VMAX,ETAM,ETACM

ACU IS AN ITERATIONS INCREMENT FACTOR :

ACU= 1.0 GIVES LOW ACCURACY

(ANGLES' INCREMENT IS 0.57 DEGREES AND TOLERANCE IS 1.0%)

ACU =10.0 GIVES HIGH ACCURACY

(ANGLES' INCREMENT IS .057 DEGREES AND TOLERANCE IS 0.5%)

WRITE(6,*) ' PLEASE, ENTER E /Oy, R/t, R/L, ACU (1 to 10)°
READ (5,*) ES, RT, RL, ACU

TOLEC = .01 /ACU
STEEC = .01 /ACU
STEET = .01 /ACU
ETAO =01
VMAX =0.0
ETAM =0.0
ETACM =0.0
KCKO = 1.57/STEET

C—==———————o——= [TERATION ON THE TENSION FIELD SLOPE

DO 30K=1KOKO

ETAOQ =ETAO + 3.*STEET

DO33KK=13
ETA =ETAO +STEET*(KK-2)
AA =3.1415927-TAN(ETA)/RL
EM =0.82%0.5*355.3/(355.3+AA**2)
ETAC1 =RL/2.*AA
GAMAS =RT**(-1.5)*ES**0.5
IF (GAMAS.LE.0.0036) THEN
SC =119.3*GAMAS
ELSE
IF (GAMAS.GE.0.0527) THEN
SC =1.0
ELSE
SC =1.625+0.489*ALOG10(GAMAS)
ENDIF
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ENDIF

ETAC2 =RL/1.5*COS(ETA)**2.*AA*EM/SC
ETACI =0.0

LOLO = 1.57/STEEC

C=—=—==—=—==——==ITERATION ON THE COMPRESSION FIELD SLOPE

50

KX
30

DO 40 M=1,LOLO
ETACI =ETACIHSTEEC
PAO =ETACI1-ETAC2/COS(ETACI)/COS(ETACI)
IF (PAQO .LT. 0.0 ) THEN
ETAC =00
GOTOs0
ELSE
PA =ABS(TAN(ETACI)-PA0)/TAN(ETACI)
IF (PA.GT.TOLEC) GO TO 40
ETAC =ETACI
GOTOS0
ENDIF
CONTINUE
WRITE (6,70)

VT  =SIN(2*ETA)*(1-COS(AA))/2.
VC  =COS(ETA)**2*AA*SIN(AA/2.)*TAN(ETAC)

CALCULATION OF THE POST-BUCKLING SHEAR RATIO

VK  =EM*(VT+VC(C)*2/3.1415927
IF (VMAX .LT. VK) THEN

VMAX =VK
ETAM =ETA
ETACM =ETAC
ELSE

ENDIF

IF (KK .EQ. 1} ¥X1=VK
IF (KK .EQ. 2) VK2=VK
IF (KK .EQ. 3) VK3=VK
CONTINUE
DERV  =(VK3-VK1)/2./STEET
CONTINUE

60
70

80
88

IF ( DERV.GT.TOLER) THEN 80

WRITE (6,60) ES,RT,RL,ETA»{ ,ETACM ,VMAX

FORMAT( ' ',6(F7.3,1X))

FORMAT (3X,'ERROR *** COULD NOT FIND 1], ZERO SLOPE IS
ASSUMED")

WRITE(6,88) DERV
FORMAT (3X,ERROR *** DERIVATIVE OF MAXIMUM SHEAR IS

' F7.3’t FATER THAN TOLERANCE.")
GOTGw
END
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