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Abstract

Seismic acquisition constitutes a significant economic commitment, accounting for up to 80%

of the overall cost of seismic exploration. This cost is intrinsically linked to the quantity of

deployed sensors and sources, each carrying its own set of expenses related to acquisition,

deployment, and maintenance. With increasing demands to shrink seismic acquisition ex-

penses, minimize ecological impacts, and adhere to health, safety, and environmental (HSE)

guidelines, innovative methodologies like compressive sensing (CS) seismic acquisition have

emerged. These techniques aim at reducing the number of sensors while still fulfilling the

aforementioned objectives. However, practical field constraints can hamper the random

sampling strategies typically employed by CS.

Addressing the challenges of elevated operational costs, diminished e�ciency, and low sam-

pling density in seismic field acquisition, this dissertation concentrates on the formulation

of optimal, cost-e↵ective seismic acquisition layouts to address the challenge of maintaining

data quality while utilizing fewer sensors, as compared to conventional high-density sur-

veys. Within this context, the thesis elaborates on two central paradigms — CS seismic

acquisition and optimal sparse sensing seismic acquisition — each applicable under di↵erent

conditions of prior information availability and field operational constraints.

Chapter 2 discusses the CS theory and its application in seismic acquisition, considering

data-free survey design. In the realm of data-driven methods, this work embarks on a

nuanced examination of diverse strategies for optimization, encapsulated in Chapters 3 and

4. An over-complete pre-trained basis library is also incorporated for data-driven scenarios,

facilitating computationally e�cient and straightforward data reconstructions. Chapter
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5 involves using a data-free objective function for seismic acquisition design. The optimal

survey design strategies range from optimal sparse sensing employing QR-column pivoting to

more advanced methodologies rooted in reinforcement learning (RL) and deep reinforcement

learning (DRL). Noteworthy contributions include the development of a novel theoretical

framework for synchronous spatiotemporal compression through design in CS, resulting in

a theoretical acquisition cost reduction exceeding 50%. Additionally, an RL-based optimal

acquisition design algorithm is introduced, achieving a theoretical reduction in acquisition

costs exceeding 65% via the optimization of field sampling points. Particular emphasis is

placed on RL and DRL techniques, which are operationalized through the formulation of a

Markov decision process (MDP) model for sensor placement decisions.

Empirical validations across diverse application scenarios — including ocean bottom node

(OBN) survey, simultaneous source acquisition, time-lapse studies for carbon dioxide stor-

age monitoring, and vibroseis route design — indicate the high e�cacy of the proposed

methodologies in significantly reducing acquisition costs. The innovative approaches pro-

posed herein hold transformative potential not only for the realm of seismic acquisition but

also extend to other domains of geophysical exploration.
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CHAPTER 1

Introduction

1.1 General background

In the realm of Earth sciences, geophysics stands as an important discipline that endeav-

ors to elucidate the intricacies of Earth’s interior. This is primarily achieved through the

deployment of numerical methodologies, predominantly anchored in the fundamental laws

of physics. Rather than relying on direct observations, geophysicists predominantly employ

indirect measurements to retrieve unseen subsurface properties (Tarantola, 2005). Over

the years, sophisticated techniques has been developed, allowing geophysicists to quanti-

tatively evaluate these enigmatic subsurface geological formations and properties (Kearey

et al., 2002; Lowrie and Fichtner, 2020). In general, subsurface structures and properties

are inferred from measurements recorded on Earth’s surface.

Among all the geophysical methods, seismic exploration is a key technique for imaging

geological formations and identifying potential reservoirs of hydrocarbon accumulations.

Artificially generated seismic disturbances propagate waves into the Earth’s subsurface,

typically from either explosive sources or mechanical vibratory mechanisms. These seismic

waves subsequently undergo reflection at various geological interfaces. Ascending back to

the Earth’s surface, the reflected waves are captured by arrays of sensors1. Though rich in

information, these raw data require advanced, computationally demanding signal processing

and inversion algorithms to accurately delineate the subsurface geological structures.

While the primary focus of this dissertation lies in seismic methodologies, it is worth noting

that another category of geophysical approaches—commonly referred to as potential field

1In the context of seismic data acquisition, sensors typically refer to electromagnetic transducers strate-
gically positioned on the Earth’s surface, or hydrophones situated beneath the oceanic surface.
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methods (Kearey et al., 2002)—exists but is not the subject of investigation in this thesis.

These potential field techniques hinge on the perturbation-induced distortions of potential

fields within the subsurface, attributable to variations in specific physical properties. For

instance, gravity prospecting methods quantify distortions in the gravitational potential

field, which are linked to the heterogeneity in subsurface density distributions. Analogously,

electrical and magnetic methods capture distortions in their respective fields related to

subsurface fluctuations in parameters such as resistivity and magnetic susceptibility. Other

valuable geophysical techniques such as electromagnetic (EM), magnetotellurics (MT), and

ground penetrating radar (GPR), among others, also play a crucial role, each contributing

significantly to the broader field of geophysical exploration (Kearey et al., 2002; Lowrie and

Fichtner, 2020).

The workflow in applied seismology can be conceptually divided into four critical stages.

The initial stage, termed as the Data Acquisition stage, encompasses the strategic planning

and deployment of seismic sources and receivers, followed by the collection of field data.

Subsequently, the Data Processing stage is embarked upon, wherein techniques are employed

to enhance the signal-to-noise ratio (SNR) and conform the acquired data to a uniformly

spaced, dense grid—prerequisites for further processing and imaging. This leads to the

Imaging stage, where preprocessed seismic data are mapped into subsurface images through

the application of wave-equation-based algorithms. The final stage is the Interpretation

stage, during which these subsurface images are synergistically analyzed with geological

data to delineate prospective exploration targets. It should be noted that the financial

expenditure on seismic data acquisition alone constitutes approximately more than 80% of

the overall costs across these stages.

The focal point of my research pertains to the realm of seismic exploration, specifically

concentrating on aspects related to seismic data acquisition and the subsequent data recon-

struction and denoising during the processing stage. In the ensuing sections, I provide a

detailed explanation of the seismic reflection method and subsequently delve into discussions

on diverse strategies involved in the seismic acquisition design.

1.1.1 The seismic exploration method

Energy stands as the backbone of a nation’s sustainable economic and societal progression,

being deeply intertwined with people’s day-to-day lives. Within the realm of the petroleum

industry, exploration geophysics holds considerable importance. Among its various tools,

seismic exploration emerges as the main technique in oil and gas geophysical exploration.

It o↵ers pivotal insights for oil and gas reservoir development through stages encompassing

field data acquisition, processing, imaging, and interpretation. However, the industry is un-

dergoing a transformative shift, especially in the face of the transition to the green economy.
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Oil companies are tasked with meeting the dual objectives of reducing costs while improving

seismic data quality. As seismic acquisition represents one of the most significant capital

investments in the oil and gas geophysical exploration process, it is at the forefront of this

revolutionary change. Companies are increasingly compelled to explore innovative seismic

acquisition methods that not only fulfill the high-data-density requirements but also do so

in a cost-e↵ective manner.

The seismic exploration technique plays a critical role in identifying, exploiting, and mon-

itoring resources such as hydrocarbon reservoirs and in environmental and geotechnical

assessments of the near-surface (Yilmaz, 2021). The seismic reflection method employs

sources to generate elastic waves propagating into the Earth’s subsurface, and these waves

undergo transmission and reflection when encountering geological interfaces that separate

materials with varying elastic properties and densities. A network of receivers captures the

upward-reflected waves. The target subsurface area is illuminated with these waves, and

the resultant data is processed numerically to produce detailed images. Traditionally, the

seismic exploration method encompasses four stages:

1. Data acquisition: During this initial stage, parameter selection is conducted with

precision, ensuring compliance with the sampling criteria established by the Nyquist-

Shannon theorem. As detailed in Vermeer (1990, 2012), this process can occur on

land or at sea. For terrestrial data gathering, sources such as vibroseis or dynamite

are employed, and the resultant signals are captured by stationary geophone stations

on the Earth’s surface. O↵shore acquisition typically involves using an air gun, an

explosive energy source towed by a vessel, along with a cable or streamer equipped

with hydrophones. Moreover, Ocean Bottom Node (OBN) techniques are frequently

utilized for o↵shore data collection. These involve deploying sensor arrays on the

ocean floor, a practice that has become integral to reservoir monitoring. Additionally,

arranging seismic sources and receivers in a linear format yields a 2D seismic profile,

commonly known as 2D seismic acquisition. In contrast, contemporary techniques fre-

quently employ spatial arrays of receivers and sources for 3D seismic acquisition, which

is instrumental in capturing the seismic responses from three-dimensional geological

structures. Overall, the deployment of receivers and sources can be categorized into

three primary methodologies: traditional, compressive sensing, and optimal sparse

sensing seismic acquisitions. Each method o↵ers distinct approaches to capturing

seismic data, catering to di↵erent requirements and objectives in seismic exploration.

2. Data processing: This stage aims to rectify inconsistencies originating from the

spatial positioning of the sources and receivers. Techniques for incoherent and coherent

noise reduction, including advanced denoising methods investigated in my doctoral

research, are applied. These methods are elaborated upon in Chapters 2 and 3 and
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in Appendix B. Additionally, various reconstruction techniques, employing a range of

algorithms and approaches, are used to fill in the gaps in the collected data. The

objective is to maintain the fidelity and resolution of the data while making it suitable

for more sophisticated processing and interpretation. Data reconstruction methods,

another focus of my doctorate, are also included at this stage.

3. Imaging: Imaging is primarily used for outlining subsurface structural boundaries.

Early imaging techniques were grounded in the Huygens principle and the Kirchho↵

integral theorem (Gray et al., 2001). Modern imaging methods, however, have evolved

to incorporate either one-way or two-way acoustic or elastic wave equations, which

are linearized using the Born approximation, as discussed in Sava and Hill (2009).

These advanced imaging techniques not only demarcate structural boundaries but

also provide insights into the properties of rock materials, which are vital for the

subsequent stage of interpretation.

4. Interpretation: In this concluding stage, there is a thorough interpretation of the

subsurface images obtained from the imaging process. However, it’s important to note

that these images alone do not reveal the underlying geological processes, such as the

development of structural features, the routes of fluid migration, or the mechanisms

of reservoir accumulation. To e↵ectively pinpoint areas rich in hydrocarbons, seismic

imagery must be integrated with geological knowledge. This comprehensive interpre-

tation is further enhanced by incorporating regional geological data, analysis of core

samples, and properties of formations derived from well logs, as detailed in Brown

(2011), which ensures accurate understanding of the subsurface geological structures.

My research is primarily concentrated on reducing the cost associated with seismic explo-

ration, encompassing facets such as minimizing acquisition time, employing compressed

spatial sampling density, designing optimal sampling locations, and undertaking associ-

ated data processing. One of the principal contributions of my work is the integration

of optimal acquisition theory to fine-tune sampling points. This approach can potentially

significantly compress both the time and financial resources required for field seismic acqui-

sition. Moreover, the Ecoseis concept, introduced by Naghizadeh et al. (2023), presents a

notable strategy that underscores the importance of conducting seismic explorations in an

environmentally conscious manner. This approach prioritizes the reduction of ecological im-

pact while simultaneously upholding the quality and e�ciency of the data collected. In line

with a commitment to sustainability, my research also concentrates on seismic acquisition

methods with a minimal environmental footprint. This focus is especially pertinent as we

navigate the shift toward renewable energy sources and anticipate advancements in Carbon

Capture, Utilization, and Storage (CCUS) technologies.
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1.1.2 Conventional seismic acquisition and problems

During the seismic data acquisition process, discrete data sets are gathered. These data

sets are representations of continuous, finite-energy wavefields and can span up to five di-

mensions, including time. The acquisition concerns an analog spatiotemporal wavefield with

time in the order of seconds and length in the order of kilometers, and the sampling intervals

are of the order of milliseconds and meters.

Seismic exploration methods often gather vast amounts of data mined for information dur-

ing processing. While this strategy has proven highly e↵ective, pursuing higher-resolution

images in more complex regions of the Earth exposes inherent flaws in current standard

workflows. The primary challenge is the “curse of dimensionality” (Herrmann et al., 2012),

exemplified by Nyquist’s sampling, which places an increasing burden on the acquisition and

processing systems, especially as the scale and the required resolution of the survey areas

expand.

In traditional seismic acquisition frameworks, adherence to the Nyquist-Shannon sampling

theorem (Oppenheim, 1999) is imperative for discretizing data in both time and space.

This often necessitates a dense, and consequently expensive, arrangement of sources and

receivers on a regular or quasi-regular grid (Monk, 2020). The rationale for such a de-

ployment takes into account various financial, operational, and regulatory considerations,

which can di↵er in real-world scenarios. The quest for high-resolution subsurface images

places significant demands for data density, thereby escalating the costs associated with in-

creased numbers of sources and receivers. In such contexts, the imperative for cost-e�ciency

becomes accentuated. Moreover, these operations inherently involve specific health, safety,

and environmental (HSE) risks in the field. Given these conflicting requirements, traditional

seismic acquisition methods increasingly appear suboptimal. It becomes essential, therefore,

to explore more resource-e�cient approaches to seismic data acquisition, leveraging compu-

tational capabilities to reconstruct densely and regularly sampled data from undersampled

datasets.

Instead of relying on conventional seismic acquisition techniques in the field, exploring op-

timal acquisition strategies can o↵er substantial and significant advantages for seismic ex-

ploration and production. This approach not only holds immense potential for enhancing

economic growth but also plays a critical role in safeguarding national energy security. In

contrast to traditional seismic surveys, which prioritize regular and dense spatial sampling,

this dissertation aims to relax these sampling constraints to improve cost-e↵ectiveness and

minimize environmental impact. Specifically, the research focuses on determining optimal

locations for sources and receivers using fewer numbers than conventional methods would

require. The central question is how to design an acquisition setup with fewer sources and
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receivers that still provide data of su�cient quality for reliable reconstruction, comparable

to what would be obtained through a regular, dense (notably more expensive) survey.

1.2 Acquisition design: an overview

In the seismic exploration industry, the acquisition of high-quality seismic data is crucial for

accurately identifying and characterizing subsurface geological features. Traditional seismic

acquisition design methods rely on human expertise and trial-and-error approaches, which

can be time-consuming, costly, and may not necessarily result in the optimal survey design.

Figure 1.1 shows three possible directions for low-cost seismic acquisition considering acqui-

sition time, data compression, and strategic sampling design. For brevity, the single source

to multi-source can be realized by simultaneous source acquisition, and the acquisition time

is reduced by the factor of the number of sources that work simultaneously. The transition

from the regular to the irregular grid is discussed in section 2.3.2, and part of the sampling

points can be randomly removed, which is a compression both in time and space. The last

case concerns random sampling to optimal sampling, which uses fewer sampling points for

low-cost acquisition.

This section briefly illustrates the technology of compressive sensing (CS), machine learning

(ML), optimal sparse sensing, and their adaptation in seismic acquisition design. Then, the

connection between seismic acquisition and reconstruction is explained. Di↵erent sampling

schemes are also provided for comparison.

1.2.1 Compressive sensing seismic acquisition

Conventional seismic acquisition relies on the Nyquist sampling theorem, which mandates a

high-density, equidistant, and, consequently, high-cost data collection approach. In contrast,

compressive sensing (CS) (Baraniuk, 2007; Candes and Tao, 2006; Candes et al., 2006) has

emerged as a groundbreaking methodology that challenges the constraints imposed by the

Nyquist theorem. CS essentially focuses on recovering un-acquired signals through random

sampling coupled with sparse transformations. CS provides a novel approach to seismic data

acquisition and processing, specifically designed for datasets that are traditionally viewed

as undersampled.

CS has been successfully adopted in seismic acquisition. For instance, in the harsh winter

conditions of the North Sea, ConocoPhillips successfully applied an irregular network based

on CS theory to enhance data collection e�ciency while mitigating the adverse impacts of
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Direction 1

• Reduce acquisition
time

• Efficient data
separation

Direction 2

• Compression in time
• Compression in space

Direction 3

• Optimal design
• Least number of
sampling points

Low cost seismic acquisition

Single source to multi-source Regular grid to irregular grid Random sampling to optimal sampling

Figure 1.1: Possible approaches for low-cost seismic acquisition.
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challenging o↵shore climates (Mosher et al., 2017). This approach enabled safe, swift, high-

quality ocean bottom node (OBN) acquisition. Moreover, through judicious survey design

that did not compromise imaging quality, costly nodes were minimized, saving millions of

dollars in acquisition costs. This reduced expenditures and furnished practical insights for

the broader adoption of this acquisition technology in future operations. In another exam-

ple, ConocoPhillips executed a non-regular onshore seismic survey in Alaska’s North Slope

(Mosher et al., 2017). The survey met high-quality, high-density data requirements while

being completed within a condensed timeframe of 30 days. Additionally, the fewer sampling

points meant that the environmental impact on the permafrost regions was significantly re-

duced, leading to substantial cost savings. These successful case studies are transformative,

altering the traditional mode of seismic acquisition and paving the way for the evolution

of low-cost, high-quality seismic acquisition technologies (Brown et al., 2017; Mosher et al.,

2017).

1.2.2 Machine learning assisted seismic acquisition

In the swiftly advancing field of machine learning (ML), numerous applications have emerged

within exploration geophysics, predominantly focusing on aspects like seismic data process-

ing, imaging, and interpretation. However, the utilization of ML for optimizing seismic

data acquisition remains relatively unexplored. There are a few sporadic instances where

attempts have been made, such as the work done in 2019 by Blacquiere et al., which incorpo-

rated artificial intelligence (AI) through convolutional neural networks (CNNs) and genetic

algorithms (GA) to fine-tune acquisition parameters (Blacquiere and Nakayama, 2019).

Reinforcement learning (RL) theory o↵ers a foundational perspective (Sutton and Barto,

2018), deeply anchored in psychological (Romanes, 1883) and neuroscientific (Schultz et al.,

1997) views on animal behavior, about how agents can optimize their interaction with

the environments. However, for this theory to be e↵ective in real-world scenarios, agents

face a challenging mission: extracting e�cient environmental representations from high-

dimensional sensory data and leveraging this to apply past experiences to new situations

(Mnih et al., 2015). Impressively, creatures like humans manage this task by seamlessly

merging RL with layered sensory processing systems (Fukushima, 1980; Serre et al., 2005).

This synergy is further supported by numerous neural studies showing solid correlations

between signals from dopaminergic neurons and the algorithms used in temporal di↵erence

RL (Schultz et al., 1997). Leveraging the latest advancements in deep neural network (DNN)

training, Mnih et al. (2015) introduced an innovative artificial agent called a deep Q-network

(DQN) designed to master e↵ective strategies straight from intricate sensory data through

end-to-end RL.
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Despite its close a�nity with AI, RL remains an underexplored methodology within the

context of exploration geophysics. This is particularly curious given the inherently dynamic

and decision-centric nature of seismic acquisition, which seems to be a natural fit for RL’s

optimization capabilities. Thus, Guo et al. (2023) first proposed adopting RL for seismic

acquisition design, and the application in the OBN survey demonstrates that fewer sensors

at optimal positions can be an alternate solution for conventional acquisition after proper

reconstruction.

Other than designing the acquisition layout, ML customarily exploits dominant features in

a dataset for tasks such as classification and prediction (Kotsiantis et al., 2007; Osisanwo

et al., 2017) to motivate the reconstruction aspect. Often, these prominent features can be

discerned through dimensionality reduction methods like proper orthogonal decomposition

(POD) (Pinnau, 2008; Lu et al., 2019; Mendible et al., 2020), which is adopted for the

pre-learned basis library in section 1.4.

1.2.3 Optimal sparse sensing seismic acquisition

Optimal sparse sensing seismic survey endeavors to delineate the optimal survey layout for

seismic acquisition, with a dual objective: diminishing the acquisition costs and minimizing

the sampling points used. Despite these reductions, the resulting data is designed to match

the quality of traditionally acquired datasets, ensuring its viability for subsequent imaging

and interpretation tasks. Solving for the optimal positioning of sources and receivers, based

on a specific optimization objective, has been demonstrated to be a nondeterministic poly-

nomial (NP)-hard problem, which necessitates an exhaustive brute-force search across all

feasible combinations of source-receiver placements on a designated grid (Brunton et al.,

2016; Manohar et al., 2018; Guo and Sacchi, 2020).

In practical scenarios, I dig into the design of real-world acquisition settings using optimal

sensing. Figure 1.2 showcase the standard versus optimal arrangements for sources and

receivers. In the conventional approach, sources and receivers are uniformly and densely

positioned. However, in the optimal setting, sources and receivers are strategically placed

only at locations that are deemed optimal. By requiring fewer sources and receivers, not

only are equipment costs reduced, but fieldwork durations are also shortened. Thus, the

total acquisition expenses are lower than those in conventional surveys.

Considering whether prior data from the target area is available or not, this thesis intro-

duces both data-free and data-driven survey design. In the data-driven realm, an optimized

acquisition scheme founded on optimal sensor placement theory is adapted to seismic survey

design. Unlike CS, which employs a random sampling approach, this theory aims to refine
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Figure 1.2: Depiction of the source and receiver placements for both the traditional
and optimal survey designs. The red stars signify source locations, while the black
triangles denote receiver positions. (a) and (b) display the layouts for the source
and receiver in the conventional acquisition geometry, respectively. Conversely, (c)
and (d) exhibit the layouts for the source and receiver in the optimal acquisition
configuration, respectively.

the random sampling distribution into an optimal one. The objective is to achieve data

acquisition with even fewer sampling points than what CS typically requires.

The crux of the issue in the optimal design of e�cient, cost-e↵ective seismic acquisition boils

down to two core questions: How to achieve highly compressed data, and how to reconstruct

the compressed data with high fidelity? To address these fundamental queries, optimal

seismic data acquisition inherently involves a balancing act, where one has to make critical

trade-o↵s between the number of sampling points and the quality of the reconstructed data.

Given the complex nature of this problem, this thesis delves into three theoretical methods

for acquisition design:

• Data-driven approaches to acquisition design (corresponding to Chapter 3): This

method capitalizes on empirically collected data to inform the acquisition strategy

and aims to utilize the least number of sensors.

• Reinforcement learning-based acquisition design (corresponding to Chapter 4): In this

approach, reinforcement learning (RL) algorithms are used to navigate the complex-

ities of sensor placement and other acquisition parameters. The goal is to optimize

the acquisition process based on real-time feedback dynamically. It aims to use data

analytics to identify an e�cient and cost-e↵ective design that does not compromise

data quality.

• Deep reinforcement learning-based acquisition design (corresponding to Chapter 5):

This method extends the capabilities of RL by incorporating the power of deep learning
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algorithms. It allows for more nuanced optimization and provides additional layers

of complexity, enabling more accurate and e�cient seismic data acquisition with the

least number of sensors and not compromising data quality.

By pioneering these methods, this study aims to achieve two primary objectives:

• Optimization of acquisition design: Each method is rigorously tested to determine its

e↵ectiveness in reducing the number of sampling points needed. The ultimate goal is

to establish a new paradigm in seismic data acquisition that is more cost-e↵ective and

e�cient than existing CS-based methods.

• High-fidelity data reconstruction: Concurrent with the optimization of acquisition

design, the research also focuses on developing robust techniques for reconstructing

the acquired seismic data. This ensures that the quality of the subsurface images

generated is not compromised despite the reduction in sampling points.

The summary map (Figure 1.3) of the research puts forward the proposed three major

technical routes and four significant applications of this thesis.

Each idea presents a di↵erent balance between the number of sampling points used and the

quality of the data reconstructed, providing a comprehensive set of options for optimizing

seismic data acquisition. The three technique routes are:

1. Minimize sampling points, flexibility in data quality:

• Goal: Identify the least number of sampling points needed for acquisition.

• Premise: Data quality and density requirements are not strict, allowing for

greater flexibility.

• Approach: Optimal sparse sensing illustrated in Chapter 3. The primary focus

is on minimizing the number of sampling points used, even if this compromises

some level of data quality.

2. Quality-prioritized design with reduced sampling:

• Goal: Ensure that the quality of the reconstructed data matches that of a con-

ventional survey.

• Premise: Data quality must be maintained, but the number of sampling points

can be adjusted to di↵erent requirements.

• Approach: Optimal design based on RL approach shown in Chapter 4. Maintain

high-quality data while seeking to reduce the number of sampling points used

compared to traditional methods.
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Figure 1.3: Three approaches and four applications proposed in this thesis in the
context of low-cost seismic acquisition.
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3. High-quality data with minimum sampling points:

• Goal: Achieve high-quality reconstructed data with the fewest sampling points

possible.

• Premise: This idea is contingent upon the success of the first two routes.

• Approach: Optimal design based on DRL theory demonstrated in Chapter 5.

Strive for the highest standard of optimal acquisition design by combining mini-

mized sampling points with maintained data quality.

Once the methods and algorithms for the aforementioned three approaches are fully devel-

oped, I proceed to validate them by applying the optimal acquisition design strategy across

four distinct seismic acquisition frameworks:

1. Simultaneous source acquisition: Traditional seismic surveys often require large arrays

of sources and sensors, making them expensive and time-consuming. Optimizing the

acquisition process for simultaneous sources can reduce the number of required com-

ponents, thereby reducing both the time and financial investments required (Oropeza

and Sacchi, 2011; Li et al., 2013; Mosher et al., 2014b, 2017; Lin and Sacchi, 2020; Lin

et al., 2022c). The corresponding examples are shown in Chapter 3.

2. Carbon dioxide geological storage monitoring: Given the urgency to combat climate

change, monitoring carbon dioxide (CO2) storage and migration in geological forma-

tions is a priority. An optimized seismic acquisition design will help in quicker and

more accurate monitoring of CO2 storage sites, thereby contributing to the global ef-

fort to reduce greenhouse gas emissions (Davis et al., 2003; Arts et al., 2005; Chadwick

et al., 2004, 2005, 2009, 2010; Lumley, 2010; Fabriol et al., 2011). The corresponding

examples are shown in Chapter 3.

3. Ocean bottom node acquisition: The o↵shore oil and gas sector often faces numerous

challenges, including high costs and logistical complexities in seismic data collection.

Applying the optimized acquisition techniques in OBN settings aims to reduce the

costs associated with seismic exploration substantially (Mosher et al., 2017; Monk,

2020). The corresponding examples are shown in Chapter 4.

4. Vibroseis route design: Using the least number of sensors and putting them at the

optimal positions to find the shortest path moving through all the chosen sensors

possess many advantages, i.e., the corresponding acquisition cost is lower and the field

working time is reduced, which is essential for HSE concern (Mosher et al., 2017). The

related examples are shown in Chapter 5.
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In summary, examining the complete research workflow, each element — from the initial

scientific questions to the introduction of three distinct technical approaches and, ultimately,

the application to four di↵erent real-world scenarios — is interconnected and progressively

deepens the understanding. Consequently, this thesis not only provides a novel perspective

for seismic acquisition design but also serves as a reference that can inspire similar work in

other disciplines requiring optimal acquisition designs.

1.3 Di↵erent sampling schemes

Due to the ever increasing demands for higher resolution, achieving complete sampling be-

comes economically and practically infeasible. As a result, data is often sampled below the

Nyquist rate, which usually corresponds to periodic undersampling of sources or receivers

for the spatial coordinates. Unfortunately, such undersamplings can introduce significant

artifacts. To address this problem, recent research e↵orts have been focused on develop-

ing enhanced sampling strategies. These strategies often involve randomizing the spatial

placements of sources and receivers.

The theorem of sampling presents a subject matter of significant relevance in the realms

of physical sciences and engineering. There are two primary classifications for sampling

techniques: uniform and nonuniform. Uniform sampling involves the regular collection of a

signal at a consistent interval, which allows for signal reconstruction guided by the renowned

Nyquist theorem. A detailed overview of uniform sampling and its characteristics can be

found in the work by Unser (2000). On the other hand, nonuniform sampling is categorized

by whether the locations of sample collection are predetermined or uncertain, as discussed

by Vandewalle et al. (2007). Multichannel sampling is another form that leads to the so-

called super-resolution reconstruction techniques (Bertero and Boccacci, 2003; Park et al.,

2003).

1.3.1 Random sampling scheme

Random sampling entails the selection of samples from a regular data grid in a stochastic

manner. To keep the discussion clear and concise, the focus is on regular sampling with

randomly missing data points, i.e., discrete random (under)sampling. Unless otherwise

specified, the term random is used in the discrete sense. Such a sampling approach can

give rise to algorithms capable of near-perfect Fourier reconstruction, particularly when the

signal’s spectrum is either sparse or confined to a specific band (Naghizadeh and Sacchi,

2010b).
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Compared to regular undersampling, random undersampling di↵uses coherent aliasing into

benign incoherent noise, simplifying the complex task of interpolation to a more straight-

forward noise reduction problem. Hennenfent and Herrmann (2008a) demonstrated that

irregular/random undersampling is not a drawback for particular transform-based interpo-

lation methods. One of the seminal insights of CS is that random projection measurements

of the state are inherently incoherent concerning nearly any generic basis. This incoher-

ence is pivotal for the e�cient recovery of sparse signals. However, obtaining such random

projections of the full state can pose a considerable challenge in physical applications.

1.3.2 Jittered sampling scheme

Random undersampling that adheres to a discrete uniform distribution establishes advanta-

geous conditions for a reconstruction method that promotes sparsity in the Fourier domain.

Nonetheless, a global transformation like the Fourier transform generally fails to yield a

sparse representation of seismic wavefields. These scenarios necessitate a more localized

transformation, such as the windowed Fourier or Curvelet transform, as outlined by Zwart-

jes and Sacchi (2007) and Herrmann and Hennenfent (2008), respectively. Issues emerge

when dealing with data gaps 2 exceeding the spatial and temporal scope of the transform

elements, as discussed by Trad et al. (2005). Titova et al. (2021) implemented a two-stage

sampling approach, where the second stage was specifically designed to address and fill in

substantial gaps that were identified following an initial random sampling scheme. As a

result, undersampling strategies that do not manage the maximum gap size are deemed less

favorable.

Controlling the maximum gap size is an essential practical aspect when reconstructing wave-

fields using localized sparsifying transforms, but this is an aspect that random undersam-

pling does not inherently manage. To bridge this gap, jittered undersampling, which was

pioneered by Hennenfent and Herrmann (2008a) and the related work for seismic data

(Leneman, 1966; Dippe and Wold, 1992), merges the advantages of random sampling with

the controlled maximum gap size. Jittered undersampling is particularly advantageous for

methods that utilize localized transform elements, such as the windowed Fourier or Curvelet

transform (Candes and Tao, 2006). These approaches can be sensitive to gaps exceeding

the spatial and temporal bounds of the transform elements, a challenge highlighted by Trad

et al. (2005). Precisely, the essence of the jittered sampling technique is based on the critical

observation that irregularities in sub-Nyquist sampling can be advantageous for nonlinear,

sparsity-promoting wavefield-reconstruction algorithms. These irregular sampling patterns

2The gap is defined as the di↵erence between the spacing of two consecutive sampled traces and the
interval of a dense interpolation grid, with ideal sampling exhibiting zero gaps, according to Hennenfent and
Herrmann (2008a)
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help convert coherent aliasing into incoherent noise that typically has a lesser impact on

the reconstruction quality. When sampling follows a discrete random uniform distribution,

it doesn’t o↵er the ability to regulate the maximum gap size, which can be problematic

for transforms relying on localized elements, as these gaps can disrupt the data continuity

necessary for such transforms. This approach is instrumental in developing a robust sparsity-

promoting wavefield recovery strategy that adheres to the principles of CS. Under certain

conditions, it establishes a conducive recovery condition for seismic wavefield-reconstruction

techniques that enforce sparsity in the Fourier domain or related transforms, as evidenced

by the research of Sacchi et al. (1998); Trad and Ulrych (1999); Xu et al. (2005); Abma and

Kabir (2006) and Zwartjes and Sacchi (2007). An example application can be seen in the

work of Moldoveanu (2010), who adapted the jittered sampling concept from Hennenfent and

Herrmann (2008a) to overcome the physical constraints of marine data acquisition. They

developed a comprehensive random coil-sampling strategy, where multiple vessels operate

in unison, moving along randomly centered coil paths, to achieve full coverage.

1.3.3 Optimal sampling scheme

By identifying these innovative sampling methods as examples of CS, one can develop sam-

pling and computational strategies that harness the inherent structure in seismic data. Con-

sequently, we can devise sub-Nyquist sampling strategies, and the e�cacy of these methods

mainly depends on subsampling techniques that disrupt the periodicity found in traditional

sampling methods. The optimal sampling scheme tries to place sensors in the most informa-

tive positions. I define three di↵erent sampling schemes according to various requirements,

corresponding to the three routes in section 1.2.3.

Figure 1.4 shows di↵erent undersampling schemes with various randomness. The fine grid

of open circles denotes the candidate positions of the sensors. The solid circles correspond

to the coarse sampling locations. The first four sampling schemes in Figure 1.4 illustrate

sampling with increasing randomness. Four out of five samples are missing, and Hennenfent

and Herrmann (2008a) have proven that regular undersampling is the most challenging,

while random and optimally jittered samplings according to a discrete uniform distribution

are among the most favorable. The basic idea of jittered undersampling is to regularly

decimate the interpolation grid and subsequently perturb the coarse-grid sample points on

the fine grid. As for random undersampling according to a discrete uniform distribution,

in which each location is equally likely to be sampled, a discrete uniform distribution for

the perturbation around the coarse-grid points is considered. In particular, if the signal is

su�ciently sparse, these schemes lead to a reconstruction as good as dense regular sampling.

In comparison, the three optimal undersampling schemes have been well explained in section

1.2.3, considering the trade-o↵ between the number of sensors and the reconstruction results.
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Regular undersampling

Jittered undersampling

Optimally jittered undersampling

Discrete random undersampling

Optimal undersampling scheme 2

Optimal undersampling scheme 1

Optimal undersampling scheme 3

Figure 1.4: Schematic comparison between di↵erent undersampling schemes. The
circles define the fine grid on which the original signal is alias-free. The solid circles
represent the actual sampling points for the di↵erent undersampling schemes. The
upper four sampling schemes are existing sampling strategies, and the lower three
correspond to the three proposed optimal sampling schemes. For the optimally
jittered undersampling and the optimal undersampling scheme 2, the maximum
acquisition gap is controlled.
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The subsequent section delves into the seismic acquisition design problem, specifically focus-

ing on the strategy of sensor placement. This issue is particularly significant as the choice

of sensor locations can greatly influence the quality of the acquired seismic data, as well as

the e�ciency and cost-e↵ectiveness of the entire seismic survey.

1.4 Problem description

Consider an ideal seismic data cube D(t, r, s), where t indicates time, r and s denote the

receiver and source position, respectively. Assume the time axis is discretized via the expres-

sion t = (it� 1)�t, it = 1 . . . Nt, and similarly, assume a regular distribution of receivers

and sources with r = r0+(ir�1)�r, ir = 1 . . . Nr and s = s0+(is�1)�s, is = 1 . . . Ns,

where the integers Nt, Nr, and Ns are the number of time samples, receivers, and sources,

respectively. Similarly, �t corresponds to the temporal sampling interval, whereas �r and

�s denote receiver and source intervals, respectively. The cube can be represented as a

third-order tensor D of size Nt ⇥Nr ⇥Ns. An element of the tensor is defined as [D]it,ir,is.

For illustration purposes, consider an optimal receiver problem, the ideal data tensor D can

be reshaped into a matrix D of size (Nt ⇥ Nr) ⇥ Ns where each column of D corresponds

to a common source gather (CSG). This organization of the data facilitates estimating the

basis functions adopted to solve the reconstruction problem, and it also leads to a sampling

problem expressed via a simple matrix-times-matrix multiplication. Assume the data is

acquired with Ns sources and only K receivers (K < Nr) are needed for the optimal design

problem. In other words, I consider the case where only a subset of K receivers are deployed

in the field, and I question where these K receivers should be deployed to maximize the

ability of a particular method to reconstruct the data.

For the optimal receiver problem, the sampling operator acts only on receivers. The receivers

are deployed at positions given by the sampling set ⌫ = [⌫1, ⌫2 . . . ⌫K ]. For instance, if the

ideal data is composed of Nr = 8 receiver positions and ⌫ = [1, 2, 5, 6, 8] means extracting

receivers 1, 2, 5, 6 and 8 (K = 5) to form the sampled or observed data. To continue with

the analysis and in order to define the sampling operator for this particular problem, the

following matrix is also defined

Tr =
h
T⌫1 T⌫2 . . . T⌫K

iT
, (1.1)

where vectors T⌫i are column vectors of length Nr with a one at element ⌫i and zeros

elsewhere. No sampling in time is performed, and the whole seismogram is taken for each

sampled receiver. This can be easily accommodated by expressing the data sampling matrix
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via

T = Tr ⌦ INt , (1.2)

where INt is the Nt ⇥Nt identity matrix and the symbol ⌦ stands for Kronecker product.

T is the sampling matrix, a sparse matrix of size (Nt ⇥K)⇥ (Nt ⇥Nr), which extracts K

selected seismograms belonging to receivers with sampling positions ⌫k, k = 1 . . .K, from

the ideal data D. The latter permits the expression of the sampled data, referred to as the

observed data for a given sampling set ⌫, as follows

D⌫ = TD. (1.3)

Notice that T acts on each column of D, and as stated previously, each column of D

corresponds to a CSG. The reconstruction problem involves estimating D (the ideal data)

from the decimated data D⌫ , which is underdetermined because the ideal data has more

seismograms than the decimated data. Appendix A provides a simplified illustration of

the sampling procedure outlined in this section, serving as a practical example for better

understanding.

A CS or optimally designed acquisition followed by an e↵ective reconstruction process en-

sures the subsequent steps—data processing, imaging, and interpretation—are based on the

most reliable and comprehensive dataset available, thereby improving the overall quality

and reliability of seismic analyses. Thus, the following describes the connection between

acquisition and reconstruction.

1.5 Connection between seismic data acquisition and

reconstruction

Seismic data acquisition and reconstruction are intrinsically linked processes. Each influ-

ences the other in critical ways, and understanding the connection between them can lead

to more e�cient and e↵ective seismic surveys.

CS techniques and optimal survey designs aim to capture the most critical seismic informa-

tion while minimizing costs and computational load. However, these approaches are often

designed to capture sparse or sub-Nyquist sampled data. Bednar (1996) argued that no real

theoretical requirement exists for regular spatial sampling of seismic data. However, popular

multitrace processing algorithms, e.g., surface-related multiple elimination (SRME) (Ver-

schuur et al., 1992) and wave-equation migration (WEM) (Claerbout, 1971), need a dense

and regular coverage of the survey area. Nevertheless, field data sets are typically sampled

19



irregularly or coarsely along one or more spatial coordinates and need to be reconstructed

to form a complete and interpretable dataset.

The quality and resolution of seismic data primarily depend on the acquisition stage. The

placement of seismic sources and sensors’ density all a↵ect the resulting data. Reconstruc-

tion algorithms are applied to fill the gaps or improve the signal-to-noise ratio (SNR) if data

is not fully acquired. Besides, considering high-density data acquisition can be expensive

and time-consuming, especially in challenging environments like the deep ocean or remote

regions. Advanced reconstruction techniques can help reconstruct high-quality data from

sub-Nyquist or sparsely sampled data, leading to cost savings in the acquisition process.

Meanwhile, more sensors and finer grid spacing result in more data, which subsequently re-

quires more computational power for processing and analysis. Seismic reconstruction aims

to regularize field data and increase the folding map for the following processing. Neverthe-

less, e�cient reconstruction algorithms can reduce the computational burden by e↵ectively

reconstructing the data from fewer sampling points, thereby allowing for quicker interpreta-

tions and decisions. Further, the acquisition process should capture all necessary geological

features ideally. However, practical limitations often result in sparse and incomplete data

sets. Reconstruction techniques aim to complete this data, estimating what wasn’t captured

during the acquisition phase.

1.5.1 Seismic data reconstruction: review

Reconstruction is an essential step in seismic data processing, and numerous studies have

been done. Two important categories are prediction filtering methods and transform-based

methods.

Filter-based methods interpolate by convolution with a filter designed to make the error

white noise. The most common of these filters are prediction-error filters (PEFs), which can

handle aliased events (Spitz, 1991; Porsani, 1999). Gülünay (2003) introduced the frequency-

wavenumber equivalence of prediction filtering methods. Their techniques are capable of

interpolating regularly sampled aliased data. Naghizadeh and Sacchi (2007) modified these

methods to cope with irregularly sampled data. In the seismic community, di�culties with

regularly undersampled data are acknowledged when reconstructing by promoting sparsity

in the Fourier domain (Hennenfent and Herrmann, 2008a). For example, Xu et al. (2005)

stated that the anti-leakage Fourier transforms for seismic data regularization may fail when

the input data has severe aliasing. A wide variety of wavefield-reconstruction techniques

exists for regularly undersampled data along one or more spatial coordinates, i.e., data spa-

tially sampled below the Nyquist rate. Methods that employ wavefield operators constitute

a distinct interpolation approach that explicitly incorporates the principles of wave propa-

gation into the process. These methods are designed to account for the way waves travel
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through a medium, making them particularly useful in applications where understanding

and managing the dynamics of wavefields is crucial (Canning and Gardner, 1996; Biondi

et al., 1998; Stolt, 2002).

Transform-based methods also provide e�cient algorithms for seismic data regularization

(Bardan, 1987; Darche, 1990; Sacchi et al., 1998; Trad et al., 2003; Liu and Sacchi, 2004;

Sacchi and Liu, 2005; Herrmann and Hennenfent, 2008; Zwartjes and Sacchi, 2007; Trad,

2008). Transform-based methods map the signal to a new domain, and synthesizing the

signal from the transformed domain generates data at unrecorded spatial locations. In this

case, the seismic signal is represented via a superposition of complex exponentials. Fourier

reconstruction methods rely on two fundamental assumptions. Generally, we assume band-

limited signals in the wavenumber domain or signals that a parsimonious distribution of

Fourier coe�cients can represent. Examples of the aforementioned assumptions abound

in the signal and imaging processing literature. For instance, Strohmer (1997); Feuer and

Goodwin (2005) and Eldar (2006) studied reconstruction of band-limited signals via Fourier

methods. In the geophysical literature, Duijndam et al. (1999) and Schonewille et al. (2003)

proposed a band-limited signal reconstruction method for seismic data that depends on two

and three spatial dimensions. Techniques that used the sparsity assumption to reconstruct

data presented by Sacchi and Ulrych (1996) and Sacchi et al. (1998) were expanded to

the multidimensional case by Zwartjes and Gisolf (2006) and Zwartjes and Sacchi (2007).

However, for irregularly sampled data, e.g., binned data with some of the bins that are empty,

or continuous random, undersampled data, the performance of most of these interpolation

methods deteriorates (Hennenfent and Herrmann, 2008a).

Besides, machine learning (ML) methods are increasingly becoming a prominent category

for reconstructing seismic data. For instance, Jia and Ma (2017) suggested the application

of ML in seismic data processing, with a specific emphasis on its use in interpolation. Addi-

tionally, Yu and Ma (2021) provided a comprehensive review of the existing and prospective

developments in deep learning within the field of geophysics.

1.5.2 Basis functions

CS leverages structure within signals to reduce the required sampling rates. Typically,

this structure translates into compressible representations, using an appropriate transform

that concentrates the signal’s energy into a small percentage of large coe�cients. The size

of seismic data volumes and the complexity of its high-dimensional and highly directional

wave-front-like features make it challenging to find a transform that accomplishes this task

(Herrmann et al., 2012). Traditional methodologies for seismic data regularization often

depend on analytical bases like Fourier, Wavelet, Seislets, or Curvelet frames for data rep-

resentation (Xu et al., 2005; Fomel, 2006; Herrmann and Hennenfent, 2008; Naghizadeh
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and Sacchi, 2010a; Liu and Fomel, 2010; Ma and Plonka, 2010; Liu et al., 2011; Puryear

et al., 2012). For instance, seismic signals admit sparse approximations regarding Curvelets

(Candes et al., 2006; Hennenfent and Herrmann, 2006; Demanet and Ying, 2007). Un-

like Wavelets (Beylkin et al., 1991), which compose curved wavefronts into a superposition

of multiscale “fat dots” with limited directionality, Curvelets (Candes et al., 2006) and

wave atoms (Demanet and Ying, 2007) compose wavefields as a superposition of highly

anisotropic, localized, and multiscale waveforms, which obey the so-called parabolic-scaling

principle. For Curvelets, this principle translates into a support where the length is pro-

portional to the square of the width. At fine scales, this leads to needlelike Curvelets.

Still, similarly to any other data-independent transforms, Curvelets do not provide a sparse

representation of seismic data in the strict sense (Hennenfent and Herrmann, 2008a).

Therefore, these standard approaches may not o↵er the most e�cient or accurate represen-

tation of seismic data specifically. Yu et al. (2015) used a data-driven tight frame method,

which a dictionary is estimated from the input training data with small blocks. Further,

techniques like proper orthogonal decomposition (POD) or dictionary learning can gener-

ate a basis more suitable to the specific characteristics of the seismic data, making the

reconstruction more accurate. Thus, in the upcoming section, I introduce a fast and com-

putationally e�cient method for data reconstruction anchored in a pre-learned basis library.

This approach has been extensively utilized throughout this thesis for data-driven scenarios

to demonstrate its e�cacy and robustness.

1.6 Pre-learned basis library and data reconstruction

In cases where prior information about the signal type is available, leveraging a specific

basis for signal representation becomes feasible (Brunton and Kutz, 2019). Taking inspi-

ration from machine learning methodologies, dominant low-rank features can be extracted

from a training dataset to serve this purpose. Various data-driven dimensionality reduc-

tion techniques can be employed. Still this thesis gravitates towards proper orthogonal

decomposition (POD), which is particularly favored for its widespread application in the

reduced-order models (ROM) community and its array of beneficial properties (Pinnau,

2008; Lu et al., 2019; Mendible et al., 2020). Known by alternative names such as principal

component analysis (PCA) in the realm of statistical analysis, POD e↵ectively captures the

core structures of complex datasets.

In essence, POD expresses a signal in a high-dimensional space as linear combinations of

orthonormal modes. Projecting a signal into the POD subspace is like changing coordinates

and requires a training dataset to extract the specific basis. The POD basis can be easily

obtained from the singular value decomposition (SVD) (Eckart and Young, 1936; Chatterjee,
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2000). According to the Eckart-Young theorem, the SVD provides the optimal least-squares

approximation to the data of rank r (Golub et al., 1987). In addition, seismic data satisfy

the low-rank approximation, and this pre-learned basis can be trained with an available

seismic dataset.

Consider again the ideal data matrix D where each column is a vectorized common source

gather (CSG). The SVD can extract an orthogonal basis that permits the data to be mod-

eled. In essence, if ideal data is accessible, one can adopt the SVD to find the rank p

approximation of the data

D ⇡ Up⌃pV
T

p
, (1.4)

whereUp andVp are the first p columns of the matrix of singular vectors associated with the

p largest singular values of the SVD. The diagonal matrix ⌃p contains the singular values

sorted in descending order. Note that a column j of the data matrix D can be approximated

dj ⇡ Upaj where aj denotes the j-th column of the matrix A = ⌃pVT

p
. This clearly shows

that Up is interpreted as an orthogonal basis capable of representing any matrix column D.

In other words, one can write

D = UpA , (1.5)

and consider A as the unknown matrix of coe�cients required to represent the data D. The

observed data can be expressed using the following expression

D⌫ = TUpA , (1.6)

where T represents the sampling matrix and is the focal point of the acquisition design

process. The subindex ⌫ indicates that it corresponds to recovered data from observed data

with sampling set ⌫. It should be noted that the primary objective of this thesis, with

respect to optimal sampling, is to identify the optimal sampling matrix represented by the

sampling set ⌫.

If letting⇥ = TUp be the sensing matrix, the reconstructed data can be obtained by solving

Â via the method of least-squares (Manohar et al., 2018)

Â = (⇥T⇥)�1⇥TD⌫ , (1.7)

and then using the pre-computed basis functions to estimate the recovered data

Drec

⌫ = Up Â , (1.8)

where Drec

⌫ is the recovered data after reconstruction. This fast reconstruction method max-

imizes the utility of the acquired data, which is especially critical for applications requiring

real-time or near-real-time interpretation, such as monitoring climate change impacts, earth-

23



quake early warnings, or adjustments in ongoing exploratory operations.

The SNR as the measure of reconstruction quality is defined. To be more concise, I define

SNR⌫

SNR⌫ = 10 log10(
kDk2

F

kDrec
⌫ �Dk2

F

), (1.9)

where the symbol k · k2
F
denotes the Frobenius norm.

Some CS-based scheme design algorithms use additional criteria to define an optimal sam-

pling scheme. For example, the nonuniform optimal smapling (NOUS) (Mosher et al., 2012a)

has an outer loop, which uses reconstruction error (RE). One distinct disadvantage of RE

is that one needs to reconstruct data to get the RE value, which is computationally expen-

sive for large-scale problems. However, the reconstruction adopted in this thesis is fast and

computationally e�cient, which can serve as the criteria for a data-driven optimal sampling

scheme. Aside from its use in data reconstruction, the pre-learned basis library also o↵ers a

significant advantage for noise removal, a crucial step in data processing. Detailed informa-

tion on this application can be found in section 3.5. Notably, the requirement for a training

dataset is not a limitation in this context.

1.7 Contribution of this thesis

This research represents a significant departure from existing methods and has both theo-

retical and practical implications. On the theoretical front, it questions the constraints set

forth by CS theory and o↵ers novel approaches for seismic data acquisition. Practically,

it has the potential to revolutionize the way seismic surveys are conducted, o↵ering cost

savings, operational e�ciencies, and reduced environmental impact.

The primary objective of this research is to refine seismic acquisition design with a specific

focus on minimizing the number of required sensors. This approach aims to significantly

reduce acquisition costs without sacrificing data integrity. The main contributions of this

thesis are summarized as follows:

• E�cient seismic acquisition: The study introduces novel techniques for optimal

seismic acquisition design that utilize fewer sensors than traditional methods. The goal

is to cut costs associated with sensor procurement, maintenance, and field operations

while maintaining high data quality.

• Data-driven optimization: When prior information is available, the study advo-

cates for data-driven seismic acquisition over traditional CS methods. It employs a

pre-trained basis library that better characterizes seismic data, enabling a further

reduction in the number of sensors needed.
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• Incorporation of reinforcement learning: The study extends its scope by inte-

grating RL algorithms to solve the sensor placement optimization problem. The goal

is to design a more intelligent and e�cient data collection methodology.

• Advancements via deep reinforcement learning: The research explores the util-

ity of DRL algorithms to conceive a robust and versatile acquisition strategy capable

of adapting to complex scenarios.

• Versatile applications: The study confirms that the optimized acquisition design

is highly adaptable across various seismic acquisition scenarios. These include simul-

taneous source acquisition, OBN acquisition, time-lapse seismic monitoring in CO2

geological storage sites, and vibroseis optimal route design.

1.8 Thesis overview

This thesis focuses on optimizing acquisition design and seismic data reconstruction and

Figure 1.5 shows the schematic workflow of the thesis with three proposed routes and four

possible applications.

In Chapter 1, the groundwork is laid by presenting the general landscape of seismic ex-

ploration and acquisition design. This chapter elaborates on the limitations of traditional

surveys and introduces transformative approaches such as CS seismic acquisition and op-

timal seismic surveys. The problem is described after an overview of di↵erent sampling

schemes. Additionally, the interrelationship between acquisition and data reconstruction is

explored, highlighting the utilization of a pre-learned basis library.

InChapter 2, a comprehensive review of CS in seismic acquisition and an illustration of how

it can be successfully exploited in seismic acquisition are o↵ered. A comparison of di↵erent

reconstruction methods is made. Moreover, the chapter integrates arbitrary irregular-grid

coordinates into the CS framework to better approximate real-world field scenarios.

In Chapter 3, a data-driven and cost-e�cient approach to seismic acquisition is presented

after introducing the optimal sparse sensing theory. Using a basis library pre-trained on

existing seismic data, optimal sensor locations are determined through QR column pivoting.

Applications to simultaneous source acquisition and time-lapse surveys are presented. A

denoising method with a global and local basis is also shown.

In Chapter 4, innovative RL techniques are employed for the optimization of seismic acqui-

sition design. A Markov decision process (MDP) is formulated according to the application

of OBN acquisition. Q-learning is evaluated and found to produce satisfactory results.
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Figure 1.5: Schematic workflow of the thesis.
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In Chapter 5, the scope of the problem is broadened to include more prominent cases

through the implementation of advanced DRL techniques. The MDP formulation is based

on the vibroseis optimal route problem. The deep Q-network (DQN) algorithm is adopted

to solve this acquisition design problem.

Chapter 6 serves as the conclusion, summarizing the core content, contributions, and

limitations of the algorithms developed throughout the thesis. Future research directions

and recommendations are also discussed.
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CHAPTER 2

Compressive sensing seismic acquisition 1

This chapter is designed to o↵er an in-depth review of compressive sensing (CS) in seismic

acquisition, focusing on both the method’s advantages and limitations. Additionally, I delve

into irregular grid scenarios, which mirror real-world conditions more closely. The chapter

is organized as follows: First, I present an introduction to the theoretical framework of

CS. Subsequently, mutual coherence (MC) is discussed, and after that, I show how CS is

applied in seismic surveys using regular and irregular grid setups. To conclude, I showcase

some practical examples to illustrate these concepts, with additional discussions of noise-

contaminated scenarios.

2.1 Introduction

In traditional signal processing, the Nyquist-Shannon sampling theorem sets a strict criterion

for regular spatial sampling. It dictates that a continuous signal can be fully reconstructed

from its samples, provided it is sampled at a rate at least twice the highest frequency

contained in the signal. However, with the advent of CS techniques, deviating from these

strict requirements has become possible.

Using random sampling strategies, CS allows for sub-sampling at rates below what the

Nyquist-Shannon theorem prescribes. This has opened the door to more flexible and po-

tentially cost-e↵ective acquisition schemes, as one can sample at significantly lower rates

without necessarily losing the ability to accurately reconstruct the original signal.

1Part of the version of the work in Chapter 2 of this thesis has been published in a journal paper: Lin
R., Y. Guo, F. Carozzi and M. D. Sacchi, 2022, Simultaneous deblending and source reconstruction for
compressive 3D simultaneous-source acquisition data via Interpolated MSSA (I-MSSA): Geophysics, 87, no.
6, 1-53.
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The seismic reflection method, a primary technique for exploring oil and gas reserves, often

accounts for a substantial portion of the exploration budget (Claerbout, 1992). With the ad-

vent of 3D seismology (Biondi, 2006) in the late 1980s, a new wave of oil and gas exploration

emerged globally, spurring significant e↵orts to cut acquisition costs. Major oil companies

and geophysical contractors worldwide have been at the forefront of these cost-reduction

initiatives. In this context, the role of CS seismic acquisition has been pivotal. Initially

tested as an experimental approach, CS seismic acquisition has gained considerable traction

in the industry. It has emerged as a revolutionary technique in reflection seismology, funda-

mentally altering the landscape of seismic data acquisition. By allowing for the collection of

meaningful data at a fraction of the traditional sampling rates, CS seismic acquisition has

proven to be a cost-e↵ective alternative to traditional methods, making it an increasingly

popular choice in the oil industry for optimizing acquisition budgets.

2.2 Compressive sensing

Natural signals like seismic data are often highly compressible, meaning they can be e�-

ciently represented using a reduced set of basis functions in a suitable domain. The essence

of dimensionality reduction is this: by transforming the signal into a domain where it be-

comes sparse (mostly zeros except for a few large values), one can store these significant

values for later accurate reconstruction. This concept of sparsity allows the recovery of un-

recorded or missing data from a limited set of measurements, essentially enabling a form of

data compression. This results in substantial savings in storage and computational resources

compared to retaining the original, high-dimensional signal.

To demonstrate the CS approach, I begin with a concise overview of CS theory, followed

by its relevance and application in exploration seismology. The recovery process from sub-

samplings involves solving extensive convex optimization challenges, also discussed in the

subsequent section.

2.2.1 Compressive sensing framework

CS (Candès et al., 2006; Candes and Romberg, 2006; Donoho, 2006) is one of the ground-

breaking innovations of the past decade that inverts the conventional compression paradigm.

Instead of compressing and discarding the high dimensional data in the first place, CS

proposes to collect the low dimensional data directly and then infer the sparse coe�cients in

the corresponding transform domain that explain the data. After that, the reconstruction

can be done using convex optimization methods (Candes and Tao, 2006; Donoho, 2006;

Baraniuk, 2007).
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CS relies on a sparsifying transform for the to-be-recovered signal and adopts this sparsity

before compensating for undersampling during the recovery process. For reconstructing

wavefields in the Fourier (Sacchi et al., 1998; Xu et al., 2005; Zwartjes and Sacchi, 2007),

Radon (Trad et al., 2003), and Curvelet (Hennenfen and Herrmann, 2005; Herrmann and

Hennenfent, 2008) domains, sparsity promotion is a well-established technique documented

in the geophysics literature. The main contribution of CS is the new light shed on the

favorable recovery conditions.

Suppose the data x has a compact representation in a transform basis  . On a universal

basis  2 Rn⇥n, such as Fourier bases, x may have a sparse representation

x =  s, (2.1)

where s 2 Rr is a sparse vector. For the basis  to adequately represent any natural signal,

it needs to be complete, encompassing all the necessary basis vectors to capture the inherent

characteristics of x.

Consider a set of measurements y 2 Rp, obtained via a measurement matrix C 2 Rp⇥n

(Baraniuk, 2007)

y = Cx = C s = ⇥s, (2.2)

where ⇥ denotes the sensing matrix. The main challenge is choosing C for a given  so

that ⇥ is still a good measurement matrix.

For p < n, equation 2.2 is under-determined, and there are infinite solutions. The least

squares solution is not sparse and typically yields poor reconstruction. So, knowing the

natural signals are sparse, one seeks the sparest s consistent with the measurements y

s = argmin
s0

ks0k0 , such that y = C s0, (2.3)

where ksk0 is the `0 pseudo-norm corresponding to the number of non-zero entries of s.

Unfortunately, this requires a combinatorial brute-force search across all sparse vectors s. A

major breakthrough in CS is a set of conditions on the measurement matrix C that allows

the non-convex `0-minimization in equation 2.3 to be relaxed to the convex `1-minimization,

which is computationally tractable.

s = argmin
s0

ks0k1 , such that y = C s0, (2.4)

where ksk1 =
P

n

k=1 |sk|. This formulation is shown schematically in Figure 2.1.

Within the framework of CS, three key conditions need to be carefully considered so that

data can be recovered from severely undersampled data:
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Figure 2.1: Compressed sensing provides the sparsest solution to an under-
determined linear system.

• Selection of sparse transformation: The first condition involves choosing a sparse basis

or transformation that can e�ciently represent the underlying data that the signal

exhibits sparsity in a known transform domain. The choice can vary based on the

specific characteristics of the acquired signals.

• Design of the sampling scheme: The design of the sampling matrix is crucial for acquir-

ing enough information from the sparse signals. A poorly designed matrix can result

in ine↵ective or unreliable data reconstruction. Random undersampling is adopted

since the artifacts introduced by the undersampling result in incoherent random noise

in the sparsifying domain.

• Choice of a reconstruction algorithm: The final condition is to choose a data-consistent,

sparsity-promoting procedure used for recovery, that is, an algorithm that can accu-

rately reconstruct the original signal from the compressed measurements. Various

algorithms, such as orthogonal matching pursuit (OMP) or basis pursuit (BP), are

available for this purpose, and the choice may depend on the computational resources

and required accuracy.

Intuitively, the artifacts introduced by undersampling the original signal are not sparse in

the transform domain. When this condition on the artifacts is not met, sparsity alone is no

longer e↵ective before solving the recovery problem. Albeit qualitative, the second condition

provides a fundamental insight into choosing undersampling schemes that favor recovery by

sparsity-promoting inversion (Hennenfent and Herrmann, 2008a).

Numerous random matrix ensembles have demonstrated e�cacy as compressive measure-

ment matrices. Examples include Gaussian, Bernoulli, and Fourier matrices with randomly

chosen rows. A pivotal query arises regarding the relationship between the required number
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of measurements for precise recovery and factors like the sparsity level, the number of mea-

surements, and the ambient dimension, sampling frequency, and the size of the sampling

grid in traditional sampling theory, respectively. The answer is if the measurement matrix

is chosen appropriately, the number of measurements scales only logarithmically with the

ambient dimension (Herrmann et al., 2012).

The optimization problem in equation 2.4 finds a sparse or, under certain conditions,

the sparsest (Donoho et al., 2001) possible solution that explains the data. For the `1-

minimization in equation 2.4 to yield the sparest solution, the measurements C must be

chosen so that ⇥ = C satisfies a restricted isometry (RI) property (Candes, 2008). The

RI property condition essentially asserts that a matrix ⇥ = C preserves the lengths of

sparse signals when they are transformed. More formally, it means that for a K-sparse

vector s, the following inequality holds:

(1� �)ksk22  k⇥sk22  (1 + �)ksk22, (2.5)

where � is a small positive constant. Various alternative strategies exist to find the sparsest

solution to equation 2.3. Among these, greedy algorithms are commonly employed due to

their computational e�ciency. One such algorithm is the compressed sampling matching

pursuit (CoSaMP) (Needell and Tropp, 2008), which iteratively identifies the support of the

sparse signal and updates its estimate without needing the measurement matrix to satisfy

stringent conditions like the RI property.

The RI property condition is essential for ensuring that `1-minimization yields the sparsest

solution to the problem, e↵ectively reconstructing s from a set of compressed measurements

y. However, verifying that a given matrix⇥ satisfies the RI property can be computationally

challenging or even intractable in practice, especially for large matrices or those derived

from complex systems. This remains one of the key challenges in applying CS techniques

in real-world applications; that is, determining the RI property may be highly challenging

in practice.

2.2.2 Mutual Coherence

A sampling scheme should satisfy necessary and su�cient conditions to obtain error bounds

for CS reconstruction and thus quantitatively assess the performance of the chosen sam-

pling scheme. Unfortunately, most of the necessary and su�cient conditions are impossible

to calculate. This computational intractability is inherent to some adequate conditions

that guarantee an accurate reconstruction, for example, the RI property discussed above.

Computationally tractable su�cient conditions include mutual coherence (MC). The MC

minimization is another popular strategy for designing a sampling scheme. MC must be
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very small to be considered a su�cient condition to guarantee accurate reconstruction. The

MC minimization problem is complex since it is a non-convex and non-smooth optimiza-

tion (Titova et al., 2019). To handle this issue, di↵erent kinds of approximations are used

(Obermeier and Martinez-Lorenzo, 2017; Lu et al., 2018), and there is ongoing research on

developing new computationally verifiable su�cient conditions for sparse recovery.

Mathematically, the concept of MC, µ, plays a significant role in evaluating the performance

of CS algorithms. According to Elad (2007), when the following inequality holds

↵(s) < 0.5

✓
1 +

1

µ(⇥)

◆
, (2.6)

one can guarantee an exact solution for equation 2.4, where ↵(s) is the sparsity of the signal

(the number of non-zero elements) and µ(⇥) is MC, defined as the maximum absolute

correlation along the columns ✓ of the matrix ⇥

µ(⇥) = max
1i,jQ,i6=j

|✓H
i
✓j |

k✓ik2k✓jk2
, (2.7)

where ✓i and ✓j are the ith and jth columns of matrix ⇥.

For a matrix of size n1 ⇥ n2, the MC is lower bounded by the Welch bound

µW (⇥) =
p

(n2 � n1)/(n1(n2 � 1))  µ(⇥). (2.8)

Interestingly, the Welch bound depends only on the size of a matrix and does not include any

information about matrix elements. Also, the Welch bound is not always achieved (Titova

et al., 2019).

An important aspect of estimating mutual coherence (MC) is the computation of the Gram

matrix linked to the sampling and transform operators. With certain transformations, such

as the Fourier transform, this computation is relatively straightforward and enables an an-

alytical calculation of MC. However, when direct matrix representations of these operators

are not available, calculating MC becomes a more complex task. To overcome this chal-

lenge, Guitton and Loubani (2022) introduced a mathematical method for estimating the

Gram matrix that is applicable to any combination of sampling and transform operators.

This approach e↵ectively provides a close approximation to the true Hessian for the Fourier

dictionary, which aids in the precise calculation of MC. It’s worth noting that this tech-

nique is computationally intensive, particularly for transformations involving large model

vectors, since it involves the explicit formation of the Hessian matrix. Therefore, additional

optimization e↵orts are necessary to improve its e�ciency.

Next, I discuss the application and challenges CS faces in the exploration seismology.
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2.3 Compressive sensing seismic acquisition

Contemporary seismic data processing, imaging, and inversion methodologies are increas-

ingly dependent on computationally demanding and data-intensive techniques to cater to

the persistent demand for hydrocarbons in today’s world. Besides, proper seismic wavefield

sampling is a crucial element of seismic exploration. But in most cases, the seismic wave-

field is undersampled in the spatial domain due to cost limitations and survey acquisition

constraints. Such an approach, however, poses challenges as it leads to exponentially rising

expenses with the expansion of the targeted survey area.

In an era of CS, a properly sampled wavefield can be achieved from undersampled data by

employing a specially tailored signal processing technique. So, drawing inspiration from the

innovations in CS and building upon prior research in seismic data regularization (Sacchi

et al., 1998) and phase encoding (Romero et al., 2000), CS-based acquisition schemes consid-

erably reduce the costs associated with data acquisition and its subsequent processing, also

attain higher spatial bandwidth (Mosher et al., 2012b) in comparison with conventional de-

sign. By leveraging the sparse nature of seismic signals, CS enables accurate reconstruction

of the subsurface image with fewer measurements, thus leading to substantial cost savings.

This application of CS in seismic exploration has been discussed in various studies (Hen-

nenfent and Herrmann, 2008a; Herrmann et al., 2009, 2012; Li et al., 2012; Ma et al., 2012;

Ma and Yu, 2017). Herrmann et al. (2009) identified seismic data regularization and simul-

taneous acquisition as instances of CS and selected the sparsifying transform and designing

randomized sampling schemes realizable in the field (Herrmann et al., 2012). These works

underscore the potential of CS not only as a data-e�cient methodology but also as a cost-

e↵ective alternative to conventional seismic data acquisition methods. CS also sheds light

on the concept of simultaneous random time-dithered acquisition. This approach enhances

the e�ciency of data collection by condensing the average wait time between consecutive

shots and may include the deployment of transducers across the seabed in a random fash-

ion. While the application of CS principles can lead to substantial gains in the e�ciency of

acquisition, these same principles can also enhance the e�ciency of wavefield simulations,

imaging, and inversion processes. However, the primary focus of this thesis is the application

of CS to seismic data acquisition.

According to CS principles, e↵ective dimensionality reduction is rooted in an incoherent

sampling approach where coherent aliases transform into white Gaussian noise. When ap-

plying this method to the exploration seismology, two primary challenges emerge. Firstly,

seismic data collection is bounded by physical limitations related to the placement, type, and

number of sources and receivers. Coupled with the enormous scale of seismic data, these

limitations necessitate solutions explicitly tailored to seismic challenges. Secondly, while
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CS provides promising opportunities for reducing dimensionality, integrating the scientific

computing workflow with this new methodology is still challenging (Herrmann et al., 2012).

CS states that a sparse signal can be reconstructed from underdetermined measurements

when this signal is acquired according to a specific sampling pattern and reconstructed

with an e�cient algorithm. In terms of seismic application, a sparse transform is required

to get a sparse representation of the seismic wavefield, a suitable arrangement of sources

and receivers, and an algorithm for large-scale signal reconstruction. These elements and

dealing with noise in seismic data represent the current challenges in developing CS for

seismic applications (Baraniuk and Steeghs, 2017).

Let us assume designing a receiver line with Nr receivers. In practice, considering many

factors, one wishes to use fewer receivers K < Nr. The idea is to use the K measurements

to recover the Nr desired measurements. Mathematically, the problem can be described as:

d⌫ = Td+ n , (2.9)

where d⌫ 2 Rn is the vectorized observed data of lengthK⇥Nt, and d 2 Rn is the vectorized

desired data of length Nr⇥Nt. T is the sampling operator of size (Nt⇥K)⇥(Nt⇥Nr), which

contains information about the seismic acquisition pattern. In addition, Nt represents the

number of time samples per trace. Proper temporal sampling following the Nyquist theorem

is assumed, and the problem of spatial sampling is the focus. Last, the term n represents the

noise. Since the number of measurements Nt ⇥K is smaller than the number of unknowns

Nt⇥Nr, the system is underdetermined and consequently has an infinite number of solutions.

If the seismic wavefield is described as a sparse signal s through some sparse transforms  ,

i.e., Fourier bases, equation 2.9 becomes

d⌫ = T s+ n = ⇥s+ n. (2.10)

The operator ⇥ is the sensing matrix, where ⇥ = T . Figure 2.2 is the schematic represen-

tation of the CS seismic framework. One possible way of constructing a good C tailored to

a given sparsity basis  is to choose an appropriate measurement basis R that is incoherent

with  . Once an incoherent R is chosen, we discard all but p rows from R and use the

resulting p ⇥ n matrix as the measurement matrix. More precisely, we set C = HR where

H is an p ⇥ n restriction matrix (consisting of n rows of the N ⇥N identity matrix). The

universal strategy for choosing C that does not require prior knowledge of the sparsity basis

 is to choose C to be an appropriate random measurement matrix (Herrmann et al., 2012).

In equation 2.10, the system is still underdetermined. However, in this case, since we are

dealing with a sparse vector, one can take advantage of CS and find the sparse coe�cients
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dobs T

Figure 2.2: Schematic of measurements in the compressed sensing seismic frame-
work. Reproduced from Brunton and Kutz (2019).

s via a convex optimization algorithm. The latter amounts to solving the problem

s0 = argmin
s
ksk1 , subject to kd⌫ �T sk22  �, (2.11)

where � is the noise level of d⌫ . After computing the solution s0 in equation 2.11, drec

can be obtained by the synthesis operator  s0. The di↵erence between a properly sampled

recorded wavefield d and a properly sampled reconstructed wavefield drec depends on the

choice of the sparse transform, the sampling scheme, and the reconstruction algorithm.

2.3.1 Survey design based on mutual coherence

A lower MC value is generally desirable in CS, as it indicates a greater level of incoherence

between the measurement matrix and the sparsifying basis. This property is fundamental in

seismic acquisition, where a lower MC can potentially lead to more accurate data recovery

from a reduced set of measurements, thereby lowering acquisition costs. Using MC as a

judging criterion is discussed in the following and belongs to the data-free seismic acquisition

design realm.

Significant work has been done to assess the MC minimization for seismic acquisition design.

For example, non-uniform optimal sampling (NUOS) proposed by Mosher et al. (2012a)

has already been successfully tested in the field. Another example, Bhuiyan and Sacchi

(2015), solved the MC minimization problem by considering possible survey requirements.

In the papers by Jamali-Rad et al. (2016) and Campman et al. (2017), one may find a

deterministically subsampled scheme based on the di↵erence sets and has the smallest MC.

Jiang et al. (2018) proposed MC map which is based on the aliased energy (Naghizadeh and

Sacchi, 2010b). It is known (Carin et al., 2011) that when the Fourier transform is chosen as a
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sparse transform, the aliased energy and MC are the same. In a recent paper by Florez et al.

(2018), MC defines the optimal blended distribution of sources. The primary motivation

for using MC for sampling scheme design is the computability aspect and the fact that the

lower values of MC promote better reconstruction results than the higher values. However,

Titova et al. (2019) compared reconstruction results for di↵erent sampling schemes: uniform

random sampling, jittered undersampling, and sampling schemes with the smallest possible

MC and concluded that MC is a very crude way to predict the performance of the sampling

scheme. Echoing the views presented in Guitton and Loubani (2022), I maintain that MC,

despite its imperfections, remains a valuable indicator of the quality of data reconstruction.

In situations where one must choose between two acquisition geometries, assuming all other

conditions are identical, the preferable option would be the one that results in the lowest

MC. This choice aligns with the principle that lower MC typically indicates better data

reconstruction quality.

The concepts of random matrices and the computability of the MC are extensively exploited

in the seismic CS-based sampling design. A random matrix is a matrix whose elements

could be realizations of a Gaussian distribution or a 0/1 Bernoulli process. However, such

matrices are not entirely applicable to seismic acquisition needs (Titova et al., 2019), which

is demonstrated with the following 1D and 2D problems. Both cases choose 24 from 70

sensors on a regular grid with a spatial sampling, which satisfies the Nyquist criterion.

1D problem

If only 24 receivers are available and rely on the MC as a design criterion, then in equation

2.11: s is the Fourier spectrum of the desired signal, d⌫ is the recorded data, ⇥ = T is a

matrix of size 24⇥70,  is the 1D Fourier transform, and T is a sampling matrix built with

the starting vector formed with elements are either 0 (no receiver) or 1 (an active receiver).

As it is a vector, R is used to represent it to distinguish it from the matrix T. For the

matrix ⇥, the Welch bound µW (⇥) =
p

(70� 24)/(24(70� 24)) = 0.17, which coincides

with the value of MC computed by equation 2.7.

2D problem

For the 2D case, a seismic shot gather is considered as an example, and decimate shot

gather only in the spatial domain (receivers), while the traces are sampled regularly in

time. The equation 2.11 has the following elements: s is reshaped into a vector of the 2D

Fourier spectrum of the properly sampled shot gather, which one aims to find. d⌫ is the

registered shot gather reshaped into a vector. ⇥ = T is a matrix of size 24Nt ⇥ 70Nt.

 is the 2D Fourier transform. The construction of seismic sampling matrix T follows

37



certain procedures: first, building a vector of length 70, which elements are either 0 (no

receiver) or 1 (an active receiver), same with the 1D case; then we multiply in element-

wise fashion an identity matrix of size N ⇥ N with this vector. Then, remove the rows

with zeros from this matrix (the amount of non-zero rows equals the amount of 10s in the

starting vector), thereby constructing a rectangular sampling matrix T. Even if the starting

vector is drawn from a 0/1 Bernoulli process, all matrix T elements are not independent

and identically distributed. So, in this sense, the matrix in seismic application possesses

a certain structure, and only the starting vector has entries drawn from the Bernoulli or

a uniform distribution (Titova et al., 2019), which answers why random matrices are not

entirely applicable to seismic acquisition needs.

Further, a variety of strategies may be used to build the starting vector: a jittered un-

dersampling (Hennenfent and Herrmann, 2008a), a piecewise random subsampling (Wang

et al., 2011), a Bernoulli-based random undersampling (Cai et al., 2014), and a local ran-

dom sampling (Liu et al., 2015). These strategies aim to avoid large gaps in a sampling

scheme and use a partitioning approach. However, these strategies are not intended to re-

strict the reconstruction error and integrate acquisition design logistic requirements. The

Welch bound for the matrix ⇥ in this case µW (⇥) =
p

(70Nt � 24Nt)/(24Nt(70Nt � 1)) =p
46/24(70Nt � 1)  0.17. As proved by Titova et al. (2019), the MC value 0.17 is the

smallest possible, although the Welch bound is not reached. So, to compute MC, first, we

obtain the Gram matrix G = ⇥H⇥, then search for the maximum value within G o↵-

diagonal elements. Following Titova et al. (2019), this expression leads to the conclusion

that in the case of regular sampling in time and irregular in space (receiver domain), MC is

determined only by the receiver sampling matrix R:

µ(⇥) = µ(R H), (2.12)

that is if the matrix µ(R H) reaches the smallest MC, then the matrix ⇥ reaches the

smallest MC as well.

2.3.2 Compressive sensing acquisition based on irregular grid

Until now, undersampling strategies based on an underlying fine interpolation grid have been

considered. This situation typically occurs when binning continuous randomly sampled seis-

mic data into small bins that define the fine grid used for interpolation (Hennenfent and

Herrmann, 2008a). Despite the error introduced in the data, binning presents some compu-

tational advantages because it allows for fast implementations of Fourier or Fourier-related

transforms. However, binning can lead at the same time to an unfavorable undersampling

scheme, e.g., regular or poorly jittered. In this case, one should consider working on the
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original data with irregular grids. Despite the extra computational cost, continuous ran-

dom sampling typically improves interpolation results because it does not create coherent

undersampling artifacts (Xu et al., 2005).

Spatially irregularly sampled seismic data is inevitable in field acquisition due to natural

obstacles or compressive-sensing design. Based on CS, Mosher et al. (2014a) showed how to

use fewer sensors for optimal seismic acquisition design. Mosher et al. (2014b) also proposed

a new seismic acquisition design named non-uniform optimal sampling (NUOS) for optimal

sources and receivers deployment. Mapping seismic data from irregular grid to regular

grid is a long-standing problem for seismic processing. In essence, there are two types of

irregularity for field acquisition.

• Natural irregularity

This type of irregularity is caused by natural obstacles, for instances lakes, buildings,

and man-made structures, such as highways and buildings, which is inevitable and

quite common for both marine and land acquisition. Significant gaps occur in the

observed data, leading to discontinuity or even distorted seismic images (Liu and

Sacchi, 2001, 2004; Liu et al., 2004; Trad, 2009; Sacchi and Trad, 2010).

• Human-designed irregularity

This type of irregularity is predefined for designing the acquisition geometry based

on CS theory, which can potentially reduce the survey time and increase the data

resolution (Mosher et al., 2014a,b).

Most reconstruction algorithms assume the sources and receivers are positioned in a regular-

grid coordinate system. However, real-world seismic surveys often deviate from this ideal

due to the above-mentioned irregularities. These irregularities, which are often unavoidable,

have been traditionally addressed using classical prestack interpolation methods (Liu and

Sacchi, 2004; Trad, 2009). Recent advancements in CS have shifted the focus towards

intentionally designed irregular grids to facilitate more accurate seismic data reconstruction

(Li et al., 2012; Mosher et al., 2012a). In essence, CS-based techniques employ strategically

randomized sampling schemes, enabling the transformation of data collected on irregular

grids back to a regular, densely sampled grid (Hennenfent and Herrmann, 2008b). The

following describes the reconstruction methods used for CS acquisition.

Reconstruction for irregular grid compressive sensing acquisition

Seismic data processing usually needs an interpolation step due to the incompleteness of the

data, which is owed to factors like the presence of obstacles, dead traces, or other physical

limitations.
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For regular grid scenarios, the applicability of CS to the large-scale problems of exploration

geophysics relies heavily on the implementation of an e�cient `1 solver. Even though several

attempts have been made to overcome this bottleneck (Tibshirani, 1996; Figueiredo et al.,

2007; van den Berg and Friedlander, 2007), a wide range of large-scale applications still

use approximate `1 solvers such as iterated reweighted least-squares (IRLS) (Gersztenkorn

et al., 1986), stagewise orthogonal matching pursuit (Donoho, 2006), iterative soft thresh-

olding with cooling (Daubechies et al., 2004; Hennenfen and Herrmann, 2005; Herrmann

and Hennenfent, 2008), and fast iterative shrinkage thresholding algorithm (FISTA). Other

methods like projection onto convex sets (POCS) are also e↵ective seismic reconstruction

methods widely used in industry and academia. It was first introduced into the geophysics

area by Abma and Kabir (2006) and then improved by Gao et al. (2013b). Stanton et al.

(2015) introduced a soft thresholding function controlled by a single parameter to the POCS

algorithm. However, strictly speaking, it is not typically used to solve the `1 problem.

Nevertheless, many applications adopting the POCS algorithm proved workable in seismic

exploration.

In the context of an irregular network based on CS, the strategy of Design First, Recon-

struct Later is introduced. This approach entails initially considering the topography of

the acquisition area and the distribution of any obstacles. A judicious random distribution

sampling operator is then employed to minimize the number of sensors needed.

Seismic reconstruction aims to regularize the field data and map the data from irregular-grid

observation to regular-grid. For the two irregularities mentioned before, di↵erent reconstruc-

tion methods have been studied.

• Reconstruction for natural irregularity scenario

Many reconstruction methods have been proposed to solve this problem. To name

a few, Liu and Sacchi (2004) introduced a minimum weighted norm interpolation

(MWNI) method for multidimensional seismic reconstruction. Xu et al. (2005) pro-

posed the antileakage Fourier transform (ALFT) method for irregular sampling and

overcoming the spectral leakage problem. Naghizadeh and Sacchi (2007) adopted pre-

diction error filter (PEF) for aliased regularly and irregularly decimated data recon-

struction. Similarly, Zwartjes and Sacchi (2007) reconstructed aliased nonuniformly

sampled data with sparse Fourier inversion. Chiu (2014) developed a modified version

of the MWNI, incorporating a prior model as a constraint to e↵ectively tackle the is-

sue of aliasing. This alteration is crucial for the MWNI’s optimal performance, which

depends on the replication of data in the FK domain, necessitating random spatial

sampling. This specific challenge in the application of MWNI was earlier identified

and discussed by Cary (2011).
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• Reconstruction for human-designed irregularity scenario

Seismic records compressed to lower than Nyquist frequency can be perfectly recovered

with sparse Fourier domain inversion by utilizing the coherency of seismic signals in

auxiliary domains (Herrmann, 2010; Mosher et al., 2012a; Yu et al., 2020). With

an application for seismic acquisition, Li et al. (2012) proposed an interpolated CS

method for constructing irregular grid sources or receivers’ positions to nominal grid

positions. Jiang et al. (2017) extended the POCS method (Abma and Kabir, 2006) to

Extended Projection Onto Convex Sets (EPOCS) by incorporating an interpolation

operator and extending its usage for under-sampled arbitrary irregular acquisition.

Besides the methods listed above, in recent decades, methods that exploit reduced-rank data

approximations for irregularly decimated data reconstruction have been gaining popularity

and interest. Rank-reduction constrained reconstruction methods can be divided into two

categories: matrix-based reconstruction methods (Sacchi et al., 2009; Trickett et al., 2010;

Oropeza and Sacchi, 2011; Ma, 2013) and tensor-based reconstruction methods (Kreimer

et al., 2013; Kumar et al., 2015; Gao et al., 2015). Oropeza and Sacchi (2011) presented

multichannel singular spectrum analysis (MSSA) method for simultaneous reconstruction

and random noise attenuation. Carozzi and Sacchi (2019) modified the tensor completion

method (Kreimer et al., 2013) to a robust version for simultaneous 5D seismic volumes recon-

struction and erratic noise attenuation. In order to honour true trace coordinates, Carozzi

and Sacchi (2021) extended the MSSA reconstruction method to the interpolated MSSA

(I-MSSA) method for compressive irregular-grid data reconstruction. Despite the accuracy

estimation of MSSA, its computational cost of SVD has always been a concern - a huge

memory-load burden when building the Hankel matrix for multidimensional data. E↵orts

have been made by replacing the SVD with more e�cient algorithms, such as randomized

SVD (Oropeza and Sacchi, 2011) and Lanczos bidiagonalization (Gao et al., 2013a).

Mathematically, let us examine scenarios where the sensors are distributed in an irregular

or quasi-irregular manner on the Earth’s surface during seismic data acquisition. Here,

sources are used as an example to demonstrate the method. Not every grid point receives

traces during the allocation process, necessitating an imputation algorithm to reconstruct

the unobserved traces (Oropeza and Sacchi, 2011). For definitions of the various grids

involved, readers refer to Lin et al. (2022c) for the description of the di↵erent grids.

Initially, we look into a reconstruction situation using a straightforward sampling operator

grounded in data binning. This can be formulated as:

D⌫ = T D. (2.13)

Here, D⌫ signifies the data that adheres to the actual observed irregular-grid coordinates,
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while D corresponds to data on the intended regular-grid coordinates.

We characterize T as the extraction operator, encapsulating two distinct operations: bin-

ning and sampling. The binning operation involves mapping arbitrary irregular-grid source

coordinates to their nearest regular-grid counterparts. The sampling operation entails mul-

tiplying by 1 with all regular grid points that have data and by 0 with all regular grid points

that are empty (Liu and Sacchi, 2004). In other words, within the extraction operator’s

framework, the binning step’s objective is to map the observed irregularly placed data onto

a regular grid. This binning approach can introduce errors in both the amplitude and phase

of the seismic traces, and these inaccuracies can adversely impact the quality of the data

reconstruction.

In this refined approach, the aim is to reconstruct the seismic sources while preserving

the actual positions of these sources, thereby avoiding errors commonly associated with

binning. To achieve this, we link D⌫ and D using a specialized local interpolation operator.

Mathematically, this relationship is expressed as:

D⌫ = W D , (2.14)

where W serves as an operator that embodies a 2D Kaiser window tapered sinc interpolation

technique (Carozzi and Sacchi, 2021; Wang et al., 2022). This operator is designed to

map the target data directly from their regular coordinates to their corresponding irregular

coordinates, o↵ering a more accurate and error-minimized reconstruction.

To elaborate on the Kaiser window tapered sinc interpolation operator specified in equation

2.14, let’s first set the stage by defining the coordinates of the source positions on the

observed irregular grid. These coordinates can be described as:

⇠k = ⇠
�
xk, yk

�
, (2.15)

where ⇠k designates the spatial coordinates of the kth source with k = 1, . . . , Ns. Ns is the

total number of acquired sources, and ⇠k 2 U, representing data in irregular coordinates.

In parallel, we define the coordinates of the desired source positions on the regular grid as

follows:

⌘(i,j) = ⌘
�
x̂i, ŷj

�
, (2.16)

where x̂i = x̂o + i�x, ŷj = ŷo + j�y. The coordinates (x̂o, ŷo) specify the position of the

initial point on the regular grid, while �x and �y are the respective intervals between grid

points along the x and y axes. Indices i and j range from 1 to Nsx, Nsy, respectively. The

total number of desired reconstructed data in this regular grid is Nsx⇥Nsy, and ⌘(i,j) 2 D.

For the application of CS to be feasible, two primary adjustments to the framework are
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essential. Firstly, expecting real-world signals to be strictly sparse is optimistic. A more

plausible scenario is for the coe�cients to diminish quickly when arranged in order of mag-

nitude. This results in a vector dominated by a few substantial entries and numerous minor

ones. While not strictly sparse, such signals can be closely approximated by sparse models

and are referred to as compressible. Secondly, in realistic settings, measurements are often

contaminated by noise. Ensuring that the CS methodology remains robust in the presence

of such disturbances is imperative, as highlighted in Candès et al. (2006). Considering this,

the following section concerns the method used for noise-contaminated scenarios.

Noise attenuation in compressive sensing acquisition

Although the focus is on a noise-free, underdetermined system of linear equations, the CS

theory and, hence, the related work both extend to the recovery from undersampled data

contaminated by noise (Candes et al., 2006; Hennenfent and Herrmann, 2008a).

Erratic noise is non-Gaussian noise. Land 5D volumes, in particular, often contain a large

number of “erratic traces” that one needs to ignore or de-emphasize automatically. However,

it is not a good idea to automatically ignore traces, which means losing many traces in a

problem where we have sparsely populated grids. To name a few, Chen and Sacchi (2014)

adopted a robust SSA method to reduce erratic noise. Chen and Sacchi (2017) proposed a

robust f �x projection filter for simultaneous erratic noise attenuation. Carozzi and Sacchi

(2019) developed a new robust tensor completion algorithm for coping with erratic noise.

Projection Onto Convex Sets (POCS) is a method extensively utilized for seismic data recon-

struction. However, a limitation of the standard POCS algorithm is its inability to eliminate

erratic noise in seismic traces, which can compromise both the integrity of the original signal

and the quality of the reconstructed results. POCS operates through repeated use of the

fast Fourier transform, making it an appealing choice for multidimensional reconstruction of

large seismic datasets, as noted in Abma and Kabir (2006). In my work, I introduce a robust

formula of POCS, which is designed for both erratic noise attenuation and sparse sampling

purposes. This advanced POCS formulation incorporates the `1/`2 norm as the misfit term,

following the methodologies discussed in Carozzi and Sacchi (2019, 2020). This adjustment

significantly diminishes the impact of erratic noise on the reconstructed data, rendering the

modified POCS algorithm more resilient to both Gaussian and non-Gaussian noise types

compared to the traditional approach. Thus, the revised POCS algorithm is more robust

to Gaussian and non-Gaussian noise than the traditional method. In other words, even

with noise-contaminated scenarios, where Gaussian or non-Gaussian noise, seismic data can

be reconstructed with the standard or robust POCS method. Thus, the signal-to-noise

ratio of the reconstructed data is significantly enhanced. The superiority of this refined

POCS method over the conventional one, especially in the presence of erratic noises, is
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demonstrated through the use of 5D synthetic data and real-field data examples. Compre-

hensive formulas and their derivations are detailed in Appendix B, providing a thorough

understanding of this robust approach to seismic data reconstruction.

2.4 Examples

In this section, I employ the FISTA (Beck and Teboulle, 2009), EPOCS (Jiang et al., 2017),

I-MSSA (Oropeza and Sacchi, 2011; Cheng et al., 2019; Carozzi and Sacchi, 2021; Lin et al.,

2022a), and I-FMSSA (Lin et al., 2022b) algorithms to evaluate the performance of CS

in seismic data acquisition through both synthetic and field data examples, considering

scenarios with regular as well as irregular grid configurations.

2.4.1 Compressive sensing seismic acquisition based on regular grid

In the first example, I examine the e�cacy of CS in a seismic survey that uses a regularly

sampled grid featuring three linear events. The grid comprises 30⇥30 points with an interval

of �x = �y = 20 in the x� and y� directions. A Ricker wavelet with a central frequency

of 20 Hz is used in this synthetic example. To emulate the CS scenario, 50% of the traces

are randomly decimated.

Figure 2.3(a) displays the regular grid, which also serves as the ideal grid, while Figure 2.3(b)

presents the decimated sampling points superimposed on the regular grid. These two grids

illustrate the fundamental premise of CS in seismic data acquisition. The desired regular

grid (Figure 2.3(a)) represents the ideal case where full sampling would occur. In contrast,

the observed grid (Figure 2.3(b)) signifies the practical scenario in which only a subset of

the data points from the ideal grid is acquired, typically due to constraints like time, cost, or

other logistical factors. The objective of CS-based reconstruction methods is to accurately

estimate the complete dataset represented by the desired regular grid using the sparsely

sampled data from the observed grid. The data reconstructed using the FISTA method for

this regular grid survey is shown in Figure 2.4. The results are highly satisfactory, with an

SNR of 19.78 dB as computed by equation 1.9.

2.4.2 Compressive sensing seismic acquisition based on irregular

grid

In this example section, I first evaluate the computation e�ciency via the I-MSSA and I-

FMSSA algorithms for irregular reconstruction. For the synthetic and real data examples,
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Figure 2.3: (a) The desired regular grid serves as the output grid for the reconstruc-
tion process. (b) The observed grid is a randomly decimated subset of the desired
regular grid (a).

(a) (b) (c) (d)

Figure 2.4: Reconstruction results for a clean synthetic data example with a ran-
domly 50% decimated volume along x coordinate direction on a regular grid. (a)
Clean data. (b) Observed data with 50% random decimation of (a). (c) Result of
the FISTA reconstruction. (d) Residuals between the clean data (a) and (c).
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Figure 2.5: Coordinate systems considered in the synthetic examples. (a) Coordi-
nates of the irregular gird after 50% decimation. (b) Desired regular grid of output.

I compare the behavior of the EPOCS method and the I-FMSSA method for compressive

irregular-grid data reconstruction with synthetic and real data examples. The expression

1.9 is used to measure the signal-to-noise ratio (SNR) of the recovered data.

Synthetic example

I first consider noise-free 3D synthetic data to compare di↵erent algorithms. The synthetic

example contains three dipping linear events to mimic a small 3D patch of common receiver

gather (CRG). The regular grid consists of 30⇥30 source points with interval �x = �y = 20m

in the x- and y- directions, and a Ricker wavelet of central frequency 20 Hz was adopted.

Then, a perturbation is added to the regular grid to generate the irregular distribution.

Specifically, to avoid the generation of significant gaps, source x and y coordinates were

perturbed via random deviates drawn from a uniform distribution in the range [��x,�x]

and [��y,�y]. This approach is applicable in scenarios where survey irregularities arise due

to physical obstacles or misplacement of sources, as well as in situations where the survey

has been intentionally designed with randomness. Utilizing fewer sources aims to minimize

the time required for data acquisition, thereby enhancing the e�ciency of field operations

(Mosher et al., 2017). The geometry of the source coordinate of irregular-grid and desired

regular-grid distribution is displayed in Figure 2.5. Figure 2.5(a) shows irregular distribution

after 50% decimation, and Figure 2.5(b) represents the desired regular grid output.

Firstly, the computational performance of the I-MSSA method with the I-FMSSA method
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is compared. The clean regular grid data and observed irregular grid data can be found in

Figure 2.6(a) and 2.6(b). Figure 2.6(c) shows the reconstruction result with the I-MSSA

method, and the corresponding error can be found in Figure 2.6(d). A high-quality recon-

struction result (SNR = 46.2 dB) with no signal leakage for this synthetic data is observed.

Similarly, the reconstruction result with the I-FMSSA method can be found in Figure 2.6(e),

in which incredibly the same reconstruction quality as Figure 2.6(c) with SNR = 46.7 dB is

obtained. However, the computing time for this synthetic data shows a considerable di↵er-

ence. Adopting the I-FMSSA method (time = 15.5 s) needs much less computational time

than the I-MSSA method (time = 45.8 s). Thus, the I-FMSSA method is an e�cient and

accurate alternative to the I-MSSA method when applied to the reconstruction problem.

Beyond that, Figure 2.6(g) depicts the reconstruction result with the EPOCS method, and

the corresponding error can be found in Figure 2.6(h). Comparing Figure 2.6(d) and 2.6(f)

with 2.6(h), significant signal leakage of the EPOCS method is observed. Conversely, the

reconstruction with I-MSSA and I-FMSSA methods produces satisfactory results without

noticeable signal leakage. Also, the I-FMSSA method achieves a much higher SNR value

(SNR = 46.9 dB) than the EPOCS method (SNR = 16.2 dB). The detailed comparison can

be found in Table 1. In addition, the EPOCS method requires iterations for each frequency

slice to select di↵erent threshold values for various frequency slices, which increases the com-

putational complexities when compared with the I-FMSSA method, where the iterations are

deployed in the time domain.

Figure 2.7 shows the 2D slices of data in Figure 2.6. Figure 2.7(b) shows the random

decimation of the traces, and Figure 2.7(h) shows significant leakage of the EPOCS method

lies in the boundary traces of the seismic profile. On the contrary, there is no boundary

signal leakage for I-MSSA (Figure 2.7(d)) and I-FMSSA (Figure 2.7(f)) methods.

For noise-contaminated scenarios, Gaussian noise with S/N=1 dB is added to the clean 3D

data in Figure 2.6(a) for the next test. The reconstruction results can be found in Figure

2.8. It is observable that except for reconstructing the signal, the EPOCS method also

reconstructs the noise, resulting in SNR = 3.5 dB. On the contrary, the I-MSSA and I-

FMSSA methods generate cleaner and stable reconstruction results with higher SNR values

(SNR = 20.6 dB and 20.8 dB, respectively).

Again, Figure 2.9 shows the 2D data slices in Figure 2.8. It is observed that the reconstructed

random noise for the EPOCS method is shown in Figure 2.9(h). In addition, the signal

leakage of the boundary traces also exists. In contrast, the I-MSSA and I-FMSSA methods

are e↵ective for simultaneous empty trace reconstruction and random noise elimination.

This test’s computational time and SNR comparison can be found in Table 2.1.
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Figure 2.6: 3D irregular reconstruction results comparison for clean synthetic data.
(a) Clean regular grid data. (b) Observed decimated irregular grid data after bin-
ning. (c) Reconstruction with the I-MSSA method with SNR = 46.2 dB. (d)
Di↵erence between (a) and (c). (e) Reconstruction with the I-FMSSA method
with SNR = 46.9 dB. (f) Di↵erence between (a) and (e). (g) Reconstruction with
EPOCS method with SNR = 16.2 dB. (h) Di↵erence between (a) and (g).

Table 2.1: Computational time and SNR comparison for irregular grid reconstruc-
tion.

Cases Methods Time(sec) S/N(dB)

Clean data

I-MSSA 45.8 46.2

I-FMSSA 15.5 46.9

EPOCS 1825.7 16.2

Noisy data

I-MSSA 57.2 20.6

I-FMSSA 27.7 20.8

EPOCS 1686.6 3.5

Real data example

I also compare the methods with field data from the West Canadian Basin. The coordinate

distribution can be found in Figure 2.10. A small survey area with serious irregularity is

selected, which contains 113 source points, and the mean intervals between sources and

source lines are 100 m and 300 m, respectively. The desired regular grid intervals between

sources and source lines are 100 m and 150 m, respectively, which includes 10 ⇥ 29 = 290

source points.
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Figure 2.7: One slice display of reconstruction results in Figure 2.15. (a) Clean
regular-grid data. (b) Observed decimated irregular grid data after binning. (c)
Reconstruction with I-MSSA method. (d) Di↵erence between (a) and (c). (e)
Reconstruction with the I-FMSSA method. (f) Di↵erence between (a) and (e). (g)
Reconstruction with EPOCS method. (h) Di↵erence between (a) and (g).
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Figure 2.8: 3D irregular reconstruction results comparison for noisy synthetic data.
(a) Clean regular-grid data. (b) Observed decimated noisy irregular grid data after
binning. (c) Reconstruction with I-MSSA method with SNR = 20.6 dB. (d) Dif-
ference between (a) and (c). (e) Reconstruction with I-FMSSA method with SNR
= 20.8 dB. (f) Di↵erence between (a) and (e). (g) Reconstruction with EPOCS
method with SNR = 3.5 dB. (h) Di↵erence between (a) and (g).

The reconstruction results of the EPOCS method and I-FMSSA method for an inline slice

can be found in Figure 2.11. Figure 2.11(a) shows the observed irregular data after bin-

ning. Figure 2.11(b) and 2.11(c) display the reconstruction results with the EPOCS method

and I-FMSSA method, respectively. Both approaches are e↵ective for irregular grid data

reconstruction, and the empty traces have been fully reconstructed. However, the EPOCS

method also reconstructs the random noise. On the contrary, the I-FMSSA method gener-

ates a slightly cleaner reconstruction result than the EPOCS method. On the other hand,

due to lacking the ground truth as a reference, it is di�cult to evaluate the signal leakage

of the boundary traces with the EPOCS method.

Similarly, the reconstruction results for one cross-line slice can be found in Figure 2.12. Like

the observation in Figure 2.11, the I-FMSSA method generates a less noisy result than the

EPOCS method. However, it is also practicable to follow a denoising algorithm with the

EPOCS method to attenuate the random noise; compared with random noise attenuation,

geophysicists are more concerned about signal leakage.
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Figure 2.9: One slice display of reconstruction results in Figure 2.8. (a) Clean
regular grid data. (b) Observed decimated irregular grid data after binning. (c)
Reconstruction with I-MSSA method. (d) Di↵erence between (a) and (c). (e)
Reconstruction with the I-FMSSA method. (f) Di↵erence between (a) and (e). (g)
Reconstruction with EPOCS method. (h) Di↵erence between (a) and (g).
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Figure 2.10: (a) Coordinates of the observed source location. (b) Observed irregular
coordinates of the selected area, including 113 source points. (c) The desired regular
grid of output, containing 10⇥ 29 = 290 source points.
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Figure 2.11: Reconstruction result for one inline slice. (a) Observed irregular grid
data after binning. (b) Reconstruction result with EPOCS method. (C) Recon-
struction result with I-FMSSA method.
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Figure 2.12: Reconstruction result for one cross-line slice. (a) Observed irregular-
grid data after binning. (b) Reconstruction result with EPOCS method. (C) Re-
construction result with I-FMSSA method.

2.5 Conclusions

Compressive sensing has emerged as a promising approach for reducing the economic com-

mitment associated with seismic data acquisition. This chapter delves into the subject of

CS in seismic data acquisition, discussing its principles and specific application in seismic

exploration. Successful wavefield recovery depends on three main factors: the existence of

a sparsifying transform, a favourable sampling scheme, and a sparsity-promoting recovery

method, which indicates using sparsifying transforms in conjunction with sparsity-promoting

solvers that separate signal from sub-sampling artifacts and restore amplitudes; Random

sampling break coherent aliases by introducing randomness, i.e., by designing randomly

perturbed acquisition grids, or by designing randomized simultaneous sources; and relax

complex combinatorial problems into tractable convex optimization problems.

Two scenarios are explored: one involving a regularly gridded survey and the other focusing

on irregular or quasi-regular sensor distributions. This chapter also illustrates a comparison

study for compressive arbitrary irregular grid acquisition data reconstruction with EPOCS

and I-FMSSA methods. An interpolation operator is adopted to map from the observed

irregular grid to the desired regular grid. The EPOCS method requires more computational

time because iterations are deployed in each frequency slice to select di↵erent threshold

values suitable for di↵erent frequency slices. Both EPOCS and I-FMSSA methods are

e↵ective for empty traces reconstruction. For the synthetic examples, the EPOCS method

also reconstructs the random noise and shows signal leakage of the boundary traces. On the
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contrary, the I-FMSSA method can simultaneously reconstruct and attenuate the random

noise. For the real data, a slightly cleaner reconstruction result with the I-FMSSA method is

observed. However, a lack of ground truth as a reference makes it hard to precisely evaluate

the reconstruction performance of the EPOCS and I-FMSSA methods. Beyond that, it does

not mean that the EPOCS method can be replaced with the I-FMSSA method when dealing

with irregular grid reconstruction problems, as it is feasible to attenuate the random noise

by following a denoising algorithm after EPOCS reconstruction.
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CHAPTER 3

Data-driven optimal sparse seismic acquisition design and

reconstruction 1

This chapter presents a data-driven approach for optimal sparse sensing in seismic acquisi-

tion. The organization of the chapter is as follows: initially, the theory of optimal sensing is

introduced, building upon the pre-learned basis library discussed in Chapter 1. This data-

driven method employs QR factorization with column pivoting to select optimal sensor lo-

cations. Following this, the chapter explores various applications, particularly emphasizing

the selection of optimal sensor locations. The utility of this approach in simultaneous source

acquisition and time-lapse surveys is examined. Additionally, a noise removal method in-

volving the learned basis functions and analytical basis functions is provided with synthetic

and real data examples.

3.1 Introduction

The seismic acquisition constitutes the initial step of seismic exploration and often accounts

for over 80% of the substantial financial outlay, which frequently amounts to tens of millions.

Prudent optimization of the acquisition design can lead to direct and significant cost reduc-

tions, bearing economic and strategic implications. Additionally, field seismic acquisition has

a bearing on Health, Safety, and Environmental (HSE) concerns. Shortening the acquisition

1A version of this chapter is published in Y. Guo, R. Lin, and M. D. Sacchi, 2020, Sensor placement
optimization for seismic data acquisition and shot reconstruction: Geoconvention, Y. Guo and M. D. Sacchi,
2020, Data-driven time-lapse acquisition design via optimal receiver-source placement and reconstruction:
SEG Technical Program Expanded Abstracts, 66-70, and M. D. Sacchi, 2022, Seismic noise attenuation via
learned and analytical basis functions: Second International Meeting for Applied Geoscience & Energy,
2867-2871.
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time, particularly in challenging environments like the arid deserts of the Middle East or the

frigid polar regions of northern Canada, could notably diminish the likelihood of field acci-

dents. This would also mitigate the ecological footprint of field operations. Furthermore, an

optimized field survey could enable the completion of comprehensive data acquisition with

fewer shots and receivers, which means a relatively smaller dataset could be expeditiously

obtained, facilitating faster data transmission during on-site acquisition. Compared to the

current practice of amassing voluminous data, the streamlined dataset yielded through op-

timized acquisition can be more quickly transmitted and analyzed, which, in turn, becomes

a critical asset for rapid monitoring applications.

Compressive sensing (CS) provides a compelling alternative to the traditional Nyquist-

Shannon theorem for source-receiver sampling. When there’s prior knowledge about a signal,

customizing a specific basis for that signal becomes viable (Manohar et al., 2018). Instead

of resorting to universal bases like Fourier, Wavelets, or Curvelets, a data-driven dimen-

sionality reduction method is leveraged to derive the most appropriate basis for e�cient

signal recovery. Subsequently, this data-driven methodology can determine the placement

of sensors using the optimal sparse sensing technique.

3.2 Data-driven optimal sparse sensing

The CS approach excels in recovering high-dimensional signals of unspecified content by

employing random measurements based on a universal basis. But when there’s specific

knowledge about the signal, one can optimize sensor locations for those particular signals

of interest (Manohar et al., 2018). Dominant features are extracted from a training dataset

consisting of representative features.

Given a pre-learned basis  r 2 Rn⇥r as elaborated in section 1.6, a compressible signal x

can potentially possess a representation with a reduced rank

x =  ra, (3.1)

where a 2 Rr denote the coe�cients.

The primary challenge in this study lies in designing a measurement matrix C 2 Rp⇥n that

encapsulates a minimal set of optimized measurements

y = Cx = C ra = ⇥a, (3.2)

which is the optimal sensing problem, where y 2 Rp and ⇥ represents the sensing matrix.
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E↵ective measurement C given a basis  r are chosen so that ⇥ is well conditioned for signal

reconstruction. Hence, it is possible to solve for the sparse or the low-rank coe�cients a

given the measurements y, by pseudo-inverse of ⇥ as indicated in equation 3.2.

Desired sensor placement results in a measurement matrix C that is optimized to recover a

from the observed measurements y. The structure of the sampling matrix C 2 Rp⇥n is as

follows:

C = [e⌫1 e⌫2 . . . e⌫k ]
T , (3.3)

where e⌫k represents the canonical basis vector for Rn with a unit entry specifically at index

⌫k and zeros elsewhere. Consequently, y comprises K elements, each corresponding to the

elements in x at the locations specified by each ⌫k

y = Cx = [x⌫1 x⌫2 . . .x⌫k ]
T , (3.4)

where ⌫ = [⌫1 . . . ⌫k] denotes the set of indices corresponding to the locations of the sensors,

which has been defined in section 1.4.

When the signal x is unknown, its reconstruction can be obtained using

x̂ =  râ, where â = ⇥�1y = (C r)
�1y. (3.5)

A diagram illustrating sparse sampling using a pre-learned basis library  r is presented in

Figure 3.1. Optimal sensor placements align with locations that enable the most precise

reconstruction. Consequently, the challenge of determining sensor positioning aims to find

rows within  r that correspond to individual sensor locations, ensuring the matrix ⇥ is

optimally conditioned for inversion.

The condition number of a matrix ⇥ measures the sensitivity of matrix multiplication or

inversion to errors in its input. It is desirable to explicitly control the condition number

of ⇥ = C r by strategically selecting rows of C. One approach could involve optimizing

the product of the magnitudes (determinant) of its eigenvalues or singular value spectrum

(Manohar et al., 2018)

⌫ = argmax
⌫,|⌫|=K

|detM⌫ | . (3.6)

For brevity, the matrix intended for inversion is represented as M⌫ = ⇥T⇥. Recall that ⌫

determines the structure of C (which signifies the sensor positions), and hence it a↵ects the

condition number of⇥ andM⌫ . One can indirectly constrain the system’s condition number

by adjusting the spectral properties ofM⌫ through its determinant, trace, or spectral radius.

The reduced matrix QR factorization with column pivoting decomposes a matrix into three

components: a unitary matrix Q, an upper-triangular matrix R, and a column permutation
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Figure 3.1: A full state reconstruction of x from point observations is achieved
through a least squares estimation of the coe�cients â (Manohar et al., 2018).

matrix C. The pivoting procedure provides an approximate greedy solution method for

the optimization in equation 3.6, also known as submatrix volume maximization, as the

absolute value of the determinant gives matrix volume. In brevity, the main aspect of the

pivoted QR approach lies in identifying columns with the largest `2 norm. Upon identifica-

tion, these columns are used as a basis to apply the Gram-Schmidt process, orthogonalizing

the remaining columns in relation to this direction. Initially, the column with the highest

magnitude is selected, followed by the orthogonalization of all other columns relative to it.

Subsequently, the column with the next highest magnitude is identified and brought into

focus, and a similar orthogonalization is conducted for the remaining columns. This proce-

dure is repeated iteratively, employing Gram-Schmidt orthogonalization to factor out each

column in a sequence that resembles a greedy optimization algorithm. A crucial outcome

of this process is the identification of pivot locations, which correspond to the rows with

the largest magnitude in each iteration. The pivot locations indicate the sensor positions

that are optimally aligned with the given basis, and this approach is logically coherent, as it

essentially involves selecting sensors that exhibit the highest `2 norm across various modes

in the library. These sensors provide substantial information about the variations in the

columns of  r. Following sensors, in a sequential manner, o↵er progressively less informa-

tion about the variances in these columns, adhering to a diminishing order of informational

contribution.

During the QR column pivoting process, the submatrix formed by the pivoted columns is

incrementally enlarged. This enlargement is achieved by first selecting a new pivot column

with the highest two-norm. Following this, every other column has its orthogonal projec-

tion onto the pivot column subtracted. This procedure enhances the submatrix volume by
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instilling a structure of diagonal dominance. The rationale behind this approach is that

the matrix volume also equates to the product of its diagonal elements. Therefore, the QR

factorization with column pivoting yields r point sensors (pivots) that best sample the r

basis modes  r (Manohar et al., 2018)

 T

r
CT = QR. (3.7)

Thus, based on the aforementioned discussion, the pivots derived from the QR factorization

ensure optimal conditioning of the measurement matrix or the row-selected pre-learned

basis.

3.3 Data-driven optimal sparse seismic acquisition

Seismic acquisition design pertains to the selection of locations for sources or receivers. Op-

timal sparse sensing in seismic acquisition identifies the best positions for a limited number

of sources or receivers, ensuring satisfactory reconstruction outcomes in comparison to tra-

ditional acquisitions on dense regular grids. Recognizing that this design is synonymous

with the sampling scheme is essential.

One distinction between optimal sparse sensing and CS is the sampling scheme. In the realm

of CS, the imperative is on random sampling, and the quantity of measurements must adhere

to specific conditions to fulfill the restricted isometry (RI) properties (Candes and Tao,

2006; Donoho, 2006; Baraniuk, 2007). Contrarily, in the context of optimal sparse sensing,

the sampling is specified to the positions corresponding to the most informative locations.

Moreover, the metric for determining the number of measurements is divergent between the

two. In CS, it’s influenced by the sparsity of the signal within its basis, which mandates

the condition p ⇡ O(P log(n/P )) as stipulated by Candes and Tao (2006); Donoho (2006)

and Baraniuk (2007). However, optimal sparse sensing derives its number of measurements

from the intrinsic rank r of the data, often a value considerably lower than the sparsity P .

Consequently, this suggests optimal sparse sensing can achieve similar or superior outcomes

with fewer measurements than CS, highlighting its e�ciency.

The challenge of optimal sensing can be framed as follows:

d⌫ = TUra+ n = ⇥a+ n, (3.8)

where ⇥ is the sensing matrix that ⇥ = TUr, and n denote noise. The key is to devise

the sampling matrix T such that it extracts the most pertinent rows from the basis Ur.

In essence, an optimal sampling matrix would e�ciently capture the most informative rows
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from the basis. Regarding the noise attenuation issue, the last section introduces a hybrid

method to address it.

To elucidate this concept, let’s consider the optimal receiver location problem, using it as

a case study to demonstrate how to construct a sampling matrix that e�ciently captures

pivotal information.

To formulate the sampling matrix in accordance with the problem description presented

in section 1.4, let’s commence by generating a sparse diagonal matrix T with dimensions

(Nt ⇥ Nr) ⇥ (Nt ⇥ Nr). This matrix, T, is structured with alternating blocks of identity

matrices and zero matrices, each having dimensions of Nt⇥Nt. Notably, the presence of an

identity matrix block in the sampling matrix T signifies that the receiver at that position is

active. Conversely, a zero matrix block implies the inactivity of the corresponding sensor.

Subsequently, to create the final sampling matrix T, with dimensions (K⇥Nt)⇥ (Nt⇥Nr),

all zero-filled rows are discarded. K denotes the number of desired sensors. This exclusion is

vital as it ensures the sampling matrix only encapsulates the positions of the active sensors,

thus streamlining the matrix and facilitating faster computations.

In addition, contrary to CS, equation 3.8 presents an overdetermined system, not an un-

derdetermined one. This distinction arises since there are no zero entities in a, and the

volume of the known measurements, represented by d⌫ , is larger than that of the unknown

coe�cients a. This characteristic inverts the typical CS paradigm where there are more

unknowns than known measurements. Figure 3.2 graphically elucidates the application of

optimal sensing in seismic acquisition, providing a lucid depiction of the contrasts between

the two methodologies.

Considering the three key components discussed in the CS section, I propose the adoption

of optimized sparse sampling, and the strategies to address the three questions through

optimized sparse sampling are as follows:

• Basis function library: Instead of employing the sparse transformations commonly

used in CS, an optimized basis function library tailored for seismic data is developed.

This aims at capturing the intrinsic features of seismic data more e↵ectively.

• Optimized sampling matrix: An optimized sampling matrix is designed rather than

using a random sampling matrix, as is typically done in CS. This approach aims to

provide a more accurate and reliable means of data acquisition.

• Reconstruction algorithm: The least-squares algorithm is employed for data recon-

struction, which contrasts to traditional iterative methods and o↵ers the advantage of

faster computational speed, thereby making the overall process more e�cient.
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Figure 3.2: Schematic of measurements in the optimal sensing framework. Revised
from Manohar et al. (2018) to fit seismic acquisition problem.

These strategies aim to fine-tune the CS framework, adapting it more precisely for seismic

data acquisition’s unique requirements and challenges. This optimized approach can o↵er

both better performance and greater computational e�ciency.

The subsequent key query is: how to determine if a sensor is active? In essence, this means

how to optimize the sampling scheme or, equivalently, how to pinpoint the most informative

rows of the basis. The foundation for addressing this query is the understanding that the

primary objective of designing an e↵ective sampling matrix is to ensure that the sensing

matrix ⇥ is well-conditioned for signal reconstruction (Van Loan and Golub, 1996). This

implies that the core goal of the data-driven optimal placement design lies in identifying the

rows of Ur that best facilitate the inversion of ⇥.

Multiple strategies exist to bound the condition number of the sensing matrix. While

indirect approaches might optimize the spectral content, direct methods often demand a

combinatorial search over all feasible configurations, resulting in NP-hard problems. The

use of QR decomposition to resolve least-squares dilemmas was introduced by Businger

and Golub (1965). Further, Drmac and Gugercin (2016) illustrated the e↵ectiveness of the

column-pivoted QR decomposition in judiciously selecting sensor placements. Employing

the QR factorization augmented with column pivoting, sensor positions are chosen itera-

tively, prioritizing those with the most substantial norms. Consequently, QR column pivot-

ing serves to condition the measurements. Following this logic, the sampling matrix T can

be subsequently deduced.
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Similarly, I utilized the QR factorization with column pivoting technique as described by

Strang et al. (1993) to decompose the transpose matrix UT

r
, specifically addressing the

challenge of optimal sensor placement

UT

r
TT = QR, (3.9)

where Q denotes a unitary matrix, R symbolizes an upper-triangular matrix, and T stands

for a column permutation matrix. Subsequently, utilizing the sparse measurements, one can

determine the coe�cient â through the least-squares method

â = argmin
a
kak22 , subject to kd⌫ �TUrak

2
2  �. (3.10)

Equation 3.10 can be recast as minimizing the following cost function:

J =k d⌫ �TUra k
2
2 +µkak22, (3.11)

where µ is used to fit the data to give tolerance as expressed in equation 3.10. Then, finding

the gradient of the objective function with respect to a and setting it to zero, the solution

is:

â = (UT

r
TTTUr + µI)�1(TUr)

Td⌫ . (3.12)

Ultimately, the reconstruction drec can be computed by

drec = Urâ. (3.13)

3.4 Examples

This section provides potential applications of the proposed optimal sparse sensor design.

Initially, I spotlight the selection of optimal sensors to underscore the e↵ectiveness of optimal

sensing. Additionally, I navigate through various scenarios, examining the robustness of the

design in the face of noise contamination and evaluating the influence of parameter choices.

Lastly, I extend the exploration to its application in simultaneous source acquisition and

time-lapse surveys.

3.4.1 Optimal sensor location selection

To evaluate the e�cacy of the proposed method, I generate a set of common source gathers

(CSGs) using a simple model, as depicted in Figure 3.3. Both sources and receivers are
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Figure 3.3: A synthetic 2D velocity model of four dipping reflectors.

placed at the model’s surface. In total, there are 200 receivers and 400 sources, uniformly

spaced. The velocity model is characterized by four distinct layers, each having unique dips

and velocities. Synthetic seismic data, representative of these four reflectors, are shown in

Figure 3.4.

To appraise the proposed method, I partition the available CSGs into two categories: train-

ing and testing data. Collecting the training data, considered a one-time expense, facilitates

learning optimal locations. For this experiment, I select shot gather number 175 as the test

data, while the remaining CSGs, excluding the test data, comprised the training dataset.

In this scenario, the least number of receivers utilized was 86.

Figure 3.5(a) displays the original CSG corresponding to shot number 175, as generated

from the model. Meanwhile, Figure 3.5(b) showcases the optimally decimated CSG for shot

number 175. The reconstruction outcome is presented in Figure 3.5(c). Upon examination,

it’s evident that the reconstructed CSG proficiently retrieves all vital events, even with a

reduced receiver count compared to the original configuration. Additionally, the achieved

SNR value stands at 17.36 dB.

I further explore the method by examining its performance under various training data sce-

narios and assessing its ability to handle random noise during reconstruction using optimal

sensing.
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Figure 3.4: CSGs for shots 1, 100, 200, 300, and 400. The four events within each
CSG vary due to the inclined layers.
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Figure 3.5: A comparison between the original CSG and the reconstructed CSG.
(a) The original CSG of shot number 175. (b) Decimated CSG with optimal sam-
pling using 86 receivers. (c) Reconstruction from optimally decimated data of shot
number 175.
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Figure 3.6: Impact of training dataset volume on reconstruction quality. (a) The
original CSG for shot number 175. (b) Optimal decimated CSG using a training
dataset of 50 CSGs. (c) Reconstruction of shot number 175 based on (b). (d)
Optimal decimated CSG when using a more extensive training dataset of 399 CSGs.
(e) Reconstruction of shot number 175 based on (d).

Comparison with di↵erent numbers of training data

The volume of the training dataset can significantly impact the reconstruction quality. To

understand this e↵ect, I conduct experiments using varying amounts of training data while

keeping the test CSG consistent at shot number 175. In the first scenario, I randomly select

50 CSGs to serve as the training dataset, ensuring that the test data was excluded. On the

other hand, for the second scenario, I employ a more extensive training dataset consisting

of 399 CSGs, again excluding the test data. Regarding the number of receivers, only ten

are utilized in the first case, while 85 are used in the second.

As visualized in Figure 3.6, the results show a marked di↵erence between the two cases. For

the first scenario, where a smaller training set was used, the SNR value was a mere 0.13 dB.

In contrast, the second scenario, which benefitted from a more expansive training dataset,

recorded an SNR value of 17.50 dB. This substantial increase in the SNR underscores

the importance of a comprehensive training dataset. Simply put, the more extensive the

training data, the more accurate and high-quality the reconstructed data is likely to be.
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Figure 3.7: Reconstruction from noise-contaminated data using optimally selected
traces. (a) The original CSG for shot number 175. (b) CSG for shot number 175
after introducing random noise. (c) Decimated CSG of shot number 175 following
optimal selection. (d) Reconstruction result of shot number 175 from the optimally
decimated data in (c).

Random noise elimination

Rank reduction techniques are often employed for noise suppression. In my research, lever-

aging rank reduction methods for constructing the basis inherently eliminates random noise

from the data. The noise isn’t captured within the basis, so it’s naturally excluded during

the reconstruction phase.

In this demonstration, I utilize a noise-free dataset for training. The clean test CSG for shot

number 175 is depicted in Figure 3.7(a). I subsequently introduce random noise to this test

data, as shown in Figure 3.7(b). The decimated CSG with noise contamination is displayed

in Figure 3.7(c). Yet, the reconstruction from this noisy decimated data, presented in Figure

3.7(d), is mostly noise-free.

3.4.2 Application in simultaneous source acquisition

In an endeavor to further delve into the e�cacy of the method when dealing with optimal

sources, I integrate it with a blending acquisition (also called simultaneous source acquisi-

tion) design, a cutting-edge technique aimed at economizing on sources. For brevity, the

concept of blending acquisition in seismic surveys involves using multiple sources whose
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Figure 3.8: Blended CSGs for shots 10, 50, 100, 150, and 190, illustrating the
overlapping signals from simultaneous source acquisition.

responses are simultaneously recorded by receivers, as detailed in Hampson et al. (2008);

Ibrahim and Sacchi (2014); Cheng and Sacchi (2015); Lin and Sacchi (2020) and Abma

and Foster (2020). This approach o↵ers significant benefits, such as cost reduction, shorter

survey durations, and diminished Health, Safety, and Environment (HSE) risks. However,

a challenge arises during the seismic processing stage, as it necessitates the isolation of indi-

vidual source responses. This means that there is a need to e↵ectively separate the sources.

Put di↵erently, the blending noise, characterized as non-Gaussian, requires e�cient removal

for accurate data processing. A salient feature of the integrated approach used in this study

is its ability to concurrently eliminate deblending noise during the reconstruction process.

I continue to use the four-layer dipping model, identical to the scenario for optimal receiver

placement. I evenly distributed both sources and receivers along the model’s surface, re-

sulting in a total of 400 receivers and 200 sources. Instead of focusing on CSGs for receiver

optimization, the attention in this scenario shifts towards common receiver gathers (CRGs),

which naturally align with the optimal source placement problem. Then, I blend the data

with a blending factor equals to 2, which means two sources are implemented simultane-

ously. Figure 3.8 depicts five CSGs of the resultant blended data. Subsequently, when

transforming to CRGs (or common channel gathers), the data recorded from the secondary

source is treated as blending noise, as showcased in Figure 3.9.

The clean CRG is employed as the training data. Figure 3.10(a) shows the clean test

CRG of receiver 200. In contrast, Figure 3.10(b) presents the same CRG but now with
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Figure 3.9: Blended CRGs for receivers 10, 100, 200, 300, and 390, showcasing the
interference caused by simultaneous sources.

blending noise. When proceed to extract the optimally decimated CRG, which is shown in

Figure 3.10(c), the data can be reconstructed, as visualized in Figure 3.10(d). The result

underscores that reconstruction can be done simultaneously with blending noise elimination.

3.4.3 Application in time-lapse survey for carbon dioxide storage

monitoring

To achieve sustainable development and build a community with a shared future of human-

ity, the geological storage technology of carbon dioxide (CO2) is essential to realizing the

goals. With the increasing debate focusing on reducing the environmental impact of fossil

resources and transitioning away from a hydrocarbon-dependent economy, seismic acqui-

sition methods have the potential to significantly contribute to Carbon Dioxide Capture

Utilization and Storage (CCUS) projects, an essential strategy in combating global warm-

ing. In particular, geophysical monitoring of CO2 injected back into the Earth is essential

to secure its correct storage and containment in reservoirs (Davis et al., 2003; Fabriol et al.,

2011). In terms of technological advancements and monitoring capabilities, seismic tech-

niques are predominantly employed for CO2 monitoring. These include a variety of methods

such as time-lapse cross-well imaging (Spetzler et al., 2006), time-lapse 3D vertical seismic

profiling (VSP) (O’Brien et al., 2004), coda-wave interferometry analysis of time-lapse VSP

data (Zhou et al., 2010), and 4D seismic monitoring, which have all proven highly e↵ective

in monitoring CO2 sequestration. Specifically, 4D seismic monitoring, following feasibility
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Figure 3.10: Reconstruction result of the deblending noise-contaminated data with
optimally selected sources. (a) The original, clean CRG for receiver 200. (b) CRG
for receiver 200 is contaminated with blending noise. (c) Optimally decimated CRG
of receiver 200 with blending interference. (d) Reconstruction of receiver 200’s CRG
from (c), demonstrating the removal of blending noise.

studies, proves to be a reliable method for imaging the migration of CO2 plumes (Fabriol

et al., 2011). In essence, 4D seismic method (3D reflection seismology in the time-lapse

modality) is necessary for CCUS projects (Arts et al., 2005; Chadwick et al., 2004, 2005,

2009, 2010; Lumley, 2010), and in this case, methods could be leveraged to obtain high-

density surveys repetitively and economically, underlining their importance and utility in

environmental conservation e↵orts.

However, how to achieve low-cost, long-term monitoring is a fundamental and cutting-

edge issue. At the same time, how to quickly assess the potential risks of leakage and

geological disasters and take timely countermeasures against risks is an urgent problem in

risk prevention and control. To this end, I propose to apply the optimal acquisition design

theory to the sensor network layout design, and the research results will provide theoretical

and methodological support for the low-cost monitoring of CO2 migration changes in timely

safety decisions.

Time-lapse seismic monitoring tracks subsurface changes over time by comparing the seismic

responses from multiple surveys. This approach can lead to more e�cient acquisition strate-

gies when properly leveraged, especially in scenarios where the base and monitor models have

significant geological similarities. As shown in diagram 3.11(a), the traditional approach is

to deploy sources and receivers in a dense, regular pattern, guaranteeing comprehensive

coverage and ensuring that all relevant subsurface information is captured. However, such

69



Number 

of 


sources

Number of receivers

Number 

of 


sources

Number of receivers

a)

b)

Figure 3.11: Comparison of source and receiver placements between base and moni-
tor seismic surveys. Red stars indicate source positions, while blue triangles denote
receiver locations. (a) Conventional acquisition geometry for the base model. (b)
Optimized acquisition geometry for the monitor model.

a dense survey can be resource-intensive. The innovative approach proposed in this work

leverages the high similarity between the base and monitor models’ seismic responses. Using

data from the densely acquired base model combined with a subset from the monitor survey,

one can train the model to recognize the most informative areas in the subsurface, which

enables designing an optimized acquisition geometry for the monitor survey, as shown in

diagram 3.11(b).

To demonstrate this idea, I delve into two test cases: the Marmousi and Sleipner models.

The Marmousi model is a well-known synthetic model in the geophysics community and

provides a complex geological scenario to test the methodology. On the other hand, the

Sleipner model simulates a real-world scenario of CO2 geological storage monitoring, a

critical application of time-lapse seismic surveys. By simulating the time-lapse monitoring

of CO2 storage using these models, one can ascertain the e�cacy of the proposed optimal

sparse acquisition design.

Marmousi model

To evaluate the method’s performance, I generate two sets of CSGs by finite-di↵erence

modeling for both the base model (Figure 3.12(a)) and the monitor model (Figure 3.12(b)),
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a) b) c)

Figure 3.12: 2D Marmousi velocity model. (a) Base model. (b) Monitor model. (c)
The model di↵erence corresponds to the reservoir changes over time.

which are based on the Marmousi subsurface model. The di↵erence between the base model

and the monitor model is shown in Figure 3.12(c). Both shots and receivers are placed at

the surface of the model with equal spacing, and there are 200 receivers and 100 shots in

total.

I employ the CSGs derived from the base model and shots numbered from 50 to 60 from the

monitor survey as the training data to determine the receivers’ optimal positions. The CSGs

from the monitor model, not part of the training data, serve as the test dataset. The data

exhibits a low-rank characteristic, and the decline of singular values is depicted in Figure

3.13. Within this figure, the blue dots indicate the modes utilized during the reconstruction

phase, achieved through the optimal hard thresholding approach for singular values.

Figure 3.14 presents the results utilizing optimal sampling and oversampling. In Figure

3.14(a) and (b) are the original CSGs of the base model and monitor model for shot number

61. The optimally decimated shot for number 61 of the monitor model is depicted in

Figure 3.14(c), while its reconstruction is shown in Figure 3.14(d). Figure 3.14(e) shows the

oversampled decimated shot for number 61 of the monitor model, with its corresponding

reconstruction in Figure 3.14(f). Both reconstructed CSGs demonstrate promising results.

Oversampling in this example holds a more incredible promise, suggesting that oversampling

is more desirable in areas with complex geology. This aligns with the concept introduced in

Chapter 1 as Idea 1, which emphasizes minimizing sampling points while allowing flexibility

in data quality.

Sleipner model

In a practical example of time-lapse survey applications, I employ the Sleipner models, which

are synthetic velocity models representing the Sleipner Field in Norway, a renowned site for
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Figure 3.13: Singular values and four selected modes. The optimal singular value
truncation threshold occurs at r = 35. The blue dots represent the first 35 singular
values.
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Figure 3.14: Comparison of original and reconstructed CSGs from the base and
monitor models. (a) Original CSG from the base model. (b) Original CSG from
the monitor model. (c) Optimal decimated CSG using 26 receivers. (d) Reconstruc-
tion from the optimally decimated monitor data using 26 receivers. (e) Oversampled
decimated CSG using 48 receivers. (f) Reconstruction from the oversampled deci-
mated monitor data using 48 receivers.
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Figure 3.15: Sleipner velocity models. (a) Base model. (b) Monitor model. (c)
Di↵erence between the base and monitor models.

CO2 sequestration. The Sleipner field, situated in the Norwegian sector of the North Sea,

has been notable for being the first industrial-scale CO2 injection project globally, aimed at

mitigating greenhouse gas emissions, as described in Chadwick et al. (2005). The CO2 is

injected into the Utsira formation, a major saline aquifer from the late Cenozoic age. The

Utsira Sand, characterized as a weakly consolidated sandstone, includes thin intra-reservoir

shale layers. Injected CO2, in its supercritical state near the bottom of Utsira Sand, ascends

due to buoyancy until it encounters barriers like the thin shale layers and the top seal shale.

Seismic methods are crucial in identifying these layers, appearing as bright subhorizontal

reflections largely due to the high compressibility contrast between CO2 and brine, coupled

with constructive tuning e↵ects at the CO2 accumulations, as discussed in Arts et al. (2004).

A combination of time-lapse 2D and 3D imaging has successfully tracked the CO2 migra-

tion within the Utsira brine formation (Arts et al., 2005). Monitoring CO2 sequestration is

essential in any geological setting to trace CO2 plume migration, manage the injection pro-

cess, and ensure safety against potential CO2 leakage. Therefore, a combination of various

monitoring methods, including seismic monitoring, is vital throughout the sequestration’s

lifespan, as suggested in Rubino et al. (2011). The heterogeneous distribution of CO2 can

lead to significant attenuation and velocity dispersion e↵ects, which could profoundly in-

fluence surface seismic data (Rubino et al., 2011), underscoring the importance of accurate

and comprehensive monitoring techniques.

The Sleipner model comprises both a base model and a monitor model, making it ideal for

time-lapse surveys designed to monitor the migration of CO2 plumes. I produce two sets of

data using finite-di↵erence modeling for both the base and monitor models. Both sources

and receivers are evenly spaced and positioned on the surface of the model. In total, there

are 300 receivers and 300 sources.

Figure 3.16 displays five distinct CSGs from the base and monitor surveys. The di↵erences

observed in the CSGs can be attributed to the reflections stemming from di↵erences in the
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Figure 3.16: Selected CSGs from both base and monitor surveys. Upper figures:
CSGs from the base survey numbered 20, 80, 150, 220, and 280. Lower figures:
Corresponding CSGs from the monitor survey.

models.

The training data I utilized for an e↵ective reconstruction stems from two distinct parts.

Firstly, the CSGs derived from the base model contribute foundational information. Sec-

ondly, I incorporate ten randomly chosen CSGs from the monitor model proximate to the

test gather to enrich the training dataset and capture variations. The inclusion of data

from the monitor survey enhances the reconstruction outcome. This is because the monitor

survey introduces information that represent the geological changes, elements that aren’t

present in the base model survey. Nonetheless, leveraging this approach remains economical

for the monitor survey.

Figure 3.17 presents results derived from optimal sampling. Figure 3.17(a) and (b) depict

the original CSGs for the base and monitor models of shot number 150, respectively. Fig-

ure 3.17(c) showcases the optimally decimated CSG of shot number 150 from the monitor

model, with Figure 3.17(d) illustrating its reconstruction. The promising nature of the re-

constructed result is underscored by an SNR value of 33.07 dB when employing 89 sensors.
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Figure 3.17: Comparison of original and reconstructed CSGs for the base and mon-
itor surveys. (a) Base model’s original CSG. (b) Monitor model’s original CSG. (c)
Optimal decimated CSG of the monitor survey with 89 receivers. (d) Reconstructed
CSG derived from the optimally decimated data in (c).

This analysis underscores the potential of the proposed survey design. Through it, one

can a�rmatively demonstrate that optimally designed time-lapse measurements play an

important role in elevating the quality of recovered data and extracting dependable time-

lapse signatures. Given the geological similarities between the base and monitor models,

their corresponding seismic responses also bear resemblance. Thus, these findings underscore

the notion that a densely acquired dataset, based on the base model, can e↵ectively guide

the design of an optimal acquisition geometry for the monitor survey. This implies that

the dense data acquisition for the base survey provides a robust framework for crafting an

ideal sparse acquisition geometry for the subsequent monitor survey, as elaborated by Guo

and Sacchi (2020). By training with a reference model, the basis function library, coupled

with the corresponding optimal sampling scheme, demonstrates its capability to accurately

recover seismic data that aligns with monitoring model data. This research avenue holds

the potential to diminish the sensor count required for CO2 geological storage monitoring.

Concurrently, expedited data transmission promises a swift reaction to subsurface carbon

dioxide transport shifts.
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3.5 Seismic noise attenuation via learned and analytical

basis functions

Seismic noise attenuation is a long-term problem in seismic data processing. In equation 3.8,

noise in seismic data obscures valuable signals and negatively a↵ects subsequent processing

steps, including reconstruction, imaging, and interpretation. Even though many approaches

have been proposed for noise attenuation, conventional filtering could harm the signal, and

part of the signal energy can leak into the noise estimator. Hence, it is desirable to develop

techniques capable of minimizing signal leakage. An example of the latter is a two-step

processing flow. In the first step, aggressive filtering is applied, and in the second step,

coherent signal (leakage) in the noise panel is added back to the aggressively denoised signal

estimator. Such an ad hoc approach often leads to satisfactory results despite not having a

sound mathematical framework (Choo et al., 2004).

Many researchers have tackled the signal leakage problem of noise attenuation methods. For

instance, Chiu and Howell (2008) proposed to use eigenimages to construct a coherent noise

model in a localized time-space window and perform the noise attenuation by adaptively

subtracting the noise from the input data. Despite being an exciting workflow, the method

above can potentially remove subtle signals depending on the noise level (Chiu et al., 2017).

Chiu et al. (2017) used a pattern-based approach to recover the residual signal with the

premise that the primaries and residual signals have similar patterns. Similarly, Tian et al.

(2018) presented joint sparsity recovery for noise attenuation by exploiting intra- and inter-

signal correlation structures, namely commonality, and innovations, a technique inspired by

distributed compressive sensing theory. More recently, Li et al. (2019) proposed a learning-

based framework when initial models are available. By employing dictionary learning and

sparse inversion, Li et al. (2019) showed how one can simultaneously recover the signal and

noise.

This section proposes an unexplored approach that entails modeling the signal via two

operators for noise attenuation that minimizes signal leakage. Specifically, I combine learned

global basis functions in conjunction with an analytical transform to model seismic signals

and capture subtle features that often end in the error or leakage panel (Guo et al., 2022).

This method is an extended part of section 1.6 regarding the pre-learned basis library. In

this case, one doesn’t need to worry about the training dataset because the data that needs

to be denoised is the training data itself, which conquers the pre-request limitation of the

training dataset. The latter is combined with a sparse denoising method to yield a procedure

that captures the signal with minimal leakage. While many proposed algorithms attempt

to minimize signal leakage via a two-step approach involving a noise-add-back strategy, this

method attempts to simultaneously invert for the coe�cients that model global features and
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subtle signal elements extractable via the popular sparse inversion framework.

3.5.1 Formulation of the problem

Prestack seismic data can be modeled via the superposition of continuous waveforms that

slowly change in space. The spatial coordinate can be the source or receiver position or any

spatial attribute adopted to represent a particular type of seismic gather.

One wants to extract and model features between adjacent traces in the seismic gather,

which permits the construction of a signal model able to synthesize data with spatially

variant dips. The global basis captures the most informative signal features of a seismic

gather. I name this basis global because it leads to bases the same size as the observed

seismic gather. While global basis captures a good portion of the total signal energy, they

might not correctly model subtle signal variations with o↵set, localized features such as

di↵ractions or amplitudes. Therefore, one needs to add an extra transform or basis that

cooperatively works with the global estimator to fit complex signals properly.

Consider a noisy 3D seismic data cube Dn, whose size is nt⇥n1⇥n2. The integer nt denotes

the number of time samples, and n1 and n2 are, for instance, the number of sources and

receivers or inline and crossline traces, respectively. Then, the noisy data can be represented

as follows

Dn = Ua+Mb+ n, (3.14)

where U and M are the global and analytical bases, respectively. Similarly, a, b are their

corresponding coe�cients. The term n represents random noise. The task is to first learn

a plausible U and then, after selecting a particular forward transform M, one needs to

estimate a and b in order to synthesize the noise-attenuated signal.

Global bases

I use the pre-learned basis estimated from the data as the global basis (Guo and Sacchi,

2020). For a 3D data cube, the global bases are estimated as follows. First, the noisy data

Dn is filtered via a technique the user chooses according to their preference. I adopt f �xy

multichannel singular spectrum analysis (MSSA) described in Oropeza and Sacchi (2011)

to obtain preliminary filtered data Df . Parameter selection at this stage of filtering is not

crucial because one can tolerate the presence of signal leakage. In other words, in the case

of the f � xy MSSA filter, a small rank parameter can be chosen to apply harsh signal

denoising. One is aware that part of the amplitudes is not properly modeled if choosing a

harsh MSSA filter.
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Then, I use the filtered dataset Df as the training data to extract basis functions U. It

is worth recalling the pre-learned basis library described previously in Chapter 1.6 in the

following sentences. I first reshape the 3D cube Df into a ntn1⇥n2 matrix D and compute

the singular value decomposition (SVD) of rank p of the matrix D. The user can select the

rank, which defines the number of basis functions required to model Df . Mathematically,

the resulting global basis comprises the first p orthonormal left singular vectors U, denoted

Up.

The rationale for calling Up the basis is straightforward. Any column of D can be written

as [D]j = Upaj where aj is the j�column of ⌃p VT

p
. In other words, any column of D

can be written down as a linear combination of the columns of Up. When reshaped back

into a data cube, a column of D corresponds to a data slice representing a common receiver

gather, or a common shot gather.

Local bases

The local bases, or analytical bases, can be any conventional transform, like a local Fourier

basis, Wavelets, or Curvelets. Because the global basis is trained from the filtered data,

it cannot contain the features removed by the filtering procedure. Thus, adding the extra

local basis provides the signal that is eliminated back into the estimator of the clean data

and thereby, in this manner, harnesses the signal leakage problem.

The local bases with the windowing approach are summarized as follows

1. The first step of the windowing is to break the data into small overlapping data patches

Sk = Wk[D], k = 1 . . . Nw, (3.15)

where Nw is the number of windows, and W represents the windowing operator with

the action of extracting a spatio-temporal window with proper tapering. Wk is the

k-th analysis window. The extracted k-th data Sk is a matrix of size Lt ⇥ Lx where

Lt is the number of time samples and Lx the number of seismic traces in the window.

2. Then, apply Fourier transform, soft threshold and inverse Fourier transform to each

window
bSk = F�1

T↵F [Sk] k = 1 . . . Nw , (3.16)

where F�1 and F symbolize Fourier transform and inverse Fourier transform, respec-

tively. T↵ denotes soft threshold.
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3. Then, the data patches are properly moved back to their position and summed up

bD =
NwX

k=1

W⇤
k
[bSk], (3.17)

where W⇤ is the synthesis window operator for data patch k.
P

k
W⇤

k
Wk = 1. The

latter guarantees the windowing process does not introduce any distortion.

3.5.2 Numerical algorithm

The objective is to attenuate the noise, equivalent to modeling the signal. The cost function

to minimize is given by

J =k Upa+Mb�Dn k
2
2 +µkak22 + �kbk1. (3.18)

The first term of the cost function (equation 3.18) is the data misfit term, which represents

the di↵erence between the modeled signal and the observed noisy data. The second and third

terms are regularization terms for the coe�cients a and b. Analytical basis functions M are

given by a 3D transform, and b is the vector containing the corresponding coe�cient. Here,

I use the complex Fourier transform, but a di↵erent basis can also be used. In other words,

b represents frequency-wavenumber coe�cients, which one invert uses sparse inversion via

classical Fourier reconstruction method that adopts sparsity (Zwartjes and Gisolf, 2007).

The cost function 3.18 must be optimized with respect to unknowns a and b. I use an

alternating minimization algorithm, which first minimizes in terms of the variable a and

then b, which is equivalent to minimizing the cost functions

J1 =k Upa+Mb�Dn k
2
2 +µkak22, (3.19)

and

J2 =k Upa+Mb�Dn k
2
2 +�kbk1. (3.20)

Notice that I adopt quadratic regularization for expression 3.19 and use the orthogonality of

Up to simplify the inversion. Hence, the first sub-problem (equation 3.19) is the regularized

least-squares problem with close form solution given by

ak+1 = (UT

p
Up + µI)�1UT

p
(Dn �Mbk) (3.21)

=
1

1 + µ
UT

p
(Dn �Mbk), (3.22)

80



where k represents the iteration number. For the second underdetermined sub-problem, I

use the `1 norm to promote sparsity and adopt the FISTA algorithm to solve it (Beck and

Teboulle, 2009). The vector of Fourier coe�cients b is given by

bk+1 = T [bk
� �MT (Upa

k +Mbk
�Dn)], (3.23)

where � is an appropriate step size and T is the shrinkage operator. The algorithm’s extra

steps involve reshaping predicted components to a cube and vice-versa in each iteration

when necessary. Once the algorithm reaches convergence, the final vector solutions a⇤,b⇤

are used to estimate the denoised data via the synthesis operator: D⇤ = Upa⇤ +Mb⇤.

3.5.3 Examples

The proposed method can be described generally in two steps: extracting the global basis

and then iteratively updating global and local basis coe�cients (Figure 3.18). For step

one, I apply the conventional filtering method to do denoising, and here, I use the MSSA

method with minimal parameter tuning. At this stage, signal leakage is permitted, which

will be addressed in the second step. By allowing signal or noise leakage in the first step, the

method also eliminates the need for fine-tuning parameters, which is usually required for

conventional methods. Next, for step two, I use the global basis to generate global features,

and the di↵erence between the noisy data and the global features is the combination of local

features and random noise. The local features are obtained by adopting local transform to

promote sparsity and reconstruction. Then, the final denoised data with minimum signal

leakage is obtained by iteratively updating the global and local basis coe�cients to minimize

the cost functions.

Synthetic examples

The synthetic data example is composed of a cube of three parabolic events (Figure 3.19(a)).

I display only one slice of the cube. The data comprises nt = 340 samples, n1 = 60 receivers,

and n2 = 60 sources. The rank parameter of the MSSA filers is set to rank = 100. MSSA

works optimally for linear events, so signal leakage is expected when processing events with

spatially variant dips as those in this example. Random noise is added to the clean data to

obtain the noisy data in Figure 3.19(b). Then, by using the f �xy MSSA method (Oropeza

and Sacchi, 2011), the filtered data is estimated, which is portrayed in Figure 3.19(c). The

MSSA method Figure 3.19(d) shows the di↵erence between the filtered data and the clean

data, and it is clear that some signal has been removed. As mentioned above, this is a

consequence of having varying dips in the data and the MSSA algorithm not being able to
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Figure 3.18: Workflow of the two-step noise attenuation method.
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adapt to varying dips. The MSSA filter data was used to extract the global bases. The

rank parameter is p = 20. Figure 3.19(e) shows results from the proposed method and

Figure 3.19(f) is the di↵erence between Figure 3.19(a) and 3.19(e). One can appreciate

that the signal is not damaged during the noise attenuation. In this example, the trade-o↵

parameters µ = 0.01 and � = 0.01 are selected heuristically in a way the variance of the

estimated noise approximates the variance of the noise added to the data. Last, it is worth

mentioning that the algorithm typically converges in about 10� 15 iterations.

The second example is more complex, with 100 receivers and 60 sources, and the slices shown

here are CRGs. Figure 3.20(a) and (b) are the clean and noisy data. Figure 3.20(c) is the

data after filtering, and Figure 3.20(d) shows the di↵erence between Figures 3.20(b) and

(c). A small event is lost after filtering, and the signal leakage can be seen in the di↵erence

panel. Figure 3.20(e) is the reconstructed global features using the basis extracted from the

filtered data, and Figure 3.20(f) shows the local features extracted from the di↵erence panel.

Figure 3.20(g) is the final data with the combination of global features and local features. It

is noticeable the leaked signal has been added back. Figure 3.20(h) is the di↵erence between

the noisy data and Figure 3.20(g); it has less signal leakage.

A real example from the Gulf of Mexico

The real data example is from the Gulf of Mexico, and I choose a data cube with 100

receivers and 251 sources for the test. As with the synthetic data example, I use the filtered

data via f � xy MSSA to learn the global basis function. In this example, the rank of the

MSSA filter is rank = 100, and the rank parameter of the POD decomposition is p = 107.

Figures 3.21 and 3.22 compare the proposed method in the CRG and CSG domain, respec-

tively, with the conventional denoising method. Figure 3.21(a) is the original clean data (one

common channel section), and Figure 3.21(b) is the noisy data. Figure 3.21(c) is the result

after applying f �xy MSSA filter. It is noticeable from the di↵erence panel (Figure 3.21(d)

that a serious signal leakage problem exists. Figure 3.21(e) and (f) show the extracted

global and local basis, respectively. Figure 3.21(g) is the data after adopting the proposed

hybrid method, where I simultaneously invert the coe�cients of the POD expansion and

the 3D Fourier transform. Figure 3.21(h) shows the noise di↵erence between Figure 3.21(b)

and Figure 3.21(g), and it is clear that most of the leaked signals have been added back

to the dataset. In addition, the SNR value of the MSSA filtered data with the clean data

is 3.5 dB, while for the new method is 9.4 dB. Similar to the previous example, I choose

µ = 2⇥ 10�3 and � = 0.01 in a way the final variance of the estimated noise approximates

the variance of the noise in the input data. In addition, Figure 3.22 shows the corresponding

results in CSGs.
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a) b) c) d)

e) f) g) h)

Figure 3.19: Synthetic example. (a) Clean data. (b) Noisy data. (c) Filtered data
with a harsh f � xy MSSA filter. (d) Di↵erence between (b) and (c). (e) Global
basis. (f) Local basis. (g) Denoised data via the proposed hybrid method. (h)
Di↵erence between (b) and (g).
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a) b) c) d)

e) f) g) h)

Figure 3.20: Complex synthetic example. (a) Clean data. (b) Noisy data. (c)
Filtered data with a harsh f � xy MSSA filter. (d) Di↵erence between (b) and
(c). (e) Global basis. (f) Local basis. (g) Denoised data via the proposed hybrid
method. (h) Di↵erence between (b) and (g).
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a) b) c) d)

e) f) g) h)

Figure 3.21: Denoising comparison of a common channel section. (a) Clean data.
(b) Noisy data. (c) Filtered data with a harsh f � xy MSSA filter. (d) Di↵erence
between (b) and (c). (e) Global basis. (f) Local basis. (g) Denoised data via the
proposed hybrid method. (h) Di↵erence between (b) and (g).
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a) b) c) d)

e) f) g) h)

Figure 3.22: Denoising comparison of a common source section. (a) Clean data.
(b) Noisy data. (c) Filtered data with a harsh f � xy MSSA filter. (d) Di↵erence
between (b) and (c). (e) Global basis. (f) Local basis. (g) Denoised data via the
proposed hybrid method. (h) Di↵erence between (b) and (g).
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3.6 Conclusions

In this chapter, I adopt optimal sensor selection into the domain of seismic acquisition

design. The essence of the method lies in extracting a pre-learned basis library derived

from the training dataset. The quest for the optimum acquisition geometry finds its answer

in the QR decomposition with column pivoting. Regarding the reconstruction phase, the

extracted basis stands as a reliable pillar, allowing the employ of the least-squares method

for accurate and e�cient results. Through an assortment of case studies, I have embarked

on an initial exploration of this technique. Within the framework of seismic acquisition, the

concept of optimal sensing has been discussed, and a multitude of scenarios under varying

conditions has been deliberated upon.

The results of the data reconstruction prove that savings can be obtained with available

training data. Besides, more training data usually yields a notable enhancement of data

reconstruction quality, but there is a trade-o↵ between precision and saving. Further, noise,

i.e., random or erratic noise, can be removed simultaneously with reconstruction. The time-

lapse example results reveal that a previously obtained dense base survey can optimize the

monitoring design. This optimal design could lead to strategies that considerably reduce

seismic acquisition costs and design intelligent data-driven approaches for seismic data ac-

quisition. In essence, the dense acquisition from the base model serves as a guide, allowing

us to infer the most crucial locations for capturing significant subsurface changes. One can

deploy a sparser yet highly e↵ective acquisition geometry for the monitor survey by har-

nessing this knowledge. This methodology promises resource e�ciency and paves the way

for more sustainable and environmentally friendly seismic monitoring practices.

Further, a hybrid method that involves inverting for coe�cients that simultaneously model

the signal via a global basis and analytical transform is proposed to solve the signal leakage

problem that often arises in seismic processing. The global basis, which contains the general

features of the dataset, is extracted from aggressively filtered data. Then, by updating the

Fourier coe�cients that model the leakage together with the global basis, a balance between

the two bases is compromised with the premise that the modeled signal approaches the

observed noisy data in the `2 norm sense. Synthetic and real data examples reveal that the

signal component is not damaged compared to traditional noise removal methods.
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CHAPTER 4

Optimal seismic sensor placement based on reinforcement

learning approach 1

4.1 Introduction

Seismic data acquisition involves strategically placing sources and receivers to capture seis-

mic waves, subsequently providing insights into the planet’s subsurface structure. However,

determining the optimal deployment of these sensors presents a challenge due to the vast

possibilities of positioning combinations. The challenge is underlined by the NP-hard nature

of the optimal sensor deployment problem (Bian et al., 2006), and this complexity means

that a straightforward brute-force search method, which would entail checking every po-

tential sensor placement, becomes infeasible due to the exponential time it would require

(Wang et al., 2019).

Given this challenge, researchers have sought to develop alternative methods to determine

optimal sensor placements without evaluating all possibilities. Nakayama et al. (2019) of-

fered a novel approach that amalgamates the genetic algorithm (GA) with convolutional

neural networks (CNN). This combination aims to automatically determine the most suit-

able acquisition parameters, considering factors such as source blending and the spatial

sampling of the sensors. Taking a di↵erent route, Guo and Sacchi (2020) leveraged the

QR decomposition combined with column pivoting, illustrated in Chapter 3. This method,

relying on a pre-learned basis library, is particularly e↵ective in determining optimal sen-

sor placements, especially in time-lapse seismic applications. In a more simulation-based

1A version of this chapter is published in Y. Guo, R. Lin, and M. D. Sacchi, 2023, Optimal seismic
sensor placement based on reinforcement learning approach: An example of OBN acquisition design: IEEE
Transactions on Geoscience and Remote Sensing, 61, 1-12.
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strategy, Zhang et al. (2022) treated data reconstruction as a matrix completion problem,

and by employing simulated annealing (SA), they e↵ectively determine the best sensor posi-

tions using only the attributes of the sampling operator. These approaches provide feasible

alternatives for addressing the problem of optimal sensor deployment in seismic data acqui-

sition. Through these techniques, there’s a clear potential for achieving better data quality

and significant cost savings by minimizing the number of sensors deployed.

Reinforcement Learning (RL) o↵ers a decision-making paradigm rooted in learning by in-

teracting with an environment. It thrives on the concept of an agent making sequential

decisions, learning from the feedback (in terms of rewards or penalties), and adjusting its

strategies to maximize some notion of cumulative reward over time (Mnih et al., 2015; Silver

et al., 2016; Sutton and Barto, 2018). Essentially, it’s a continual process of trial and error,

iterating through choices, collecting rewards, and refining decisions.

In geophysics, a few test adopting RL methods has been made. For instance, Ma et al.

(2019) dived into automating first-arrival picking using RL. This approach shows promise

in tackling the challenge of picking accurate onset times of seismic waves, a critical step

in many seismic data processing sequences. On a related note, determining the origin

of seismic activities is critical for many applications, from studying the Earth’s interior

to monitoring human-made earthquakes. Addressing this, Wu et al. (2019) introduced a

deep RL method to locate seismic sources. Beyond that, Wang et al. (2020) stated using

deep RL for inverting magnetotelluric data in the realm of electromagnetic fields, and Sun

and Alkhalifah (2020) used RL to determine the proper time to switch between di↵erent

misfit functions for Full-Waveform Inversion (FWI). More recently, Feng et al. (2022) used a

convolutional autoencoder to estimate waveform database and RL to determine microseismic

source location. Similarly, Dell’Aversana (2022) combined geophysical inversion with RL

using Q-learning, and Zi et al. (2022) used a data-driven o✏ine RL framework to do gamma-

ray well-log depths matching and solve the pattern localization problem.

The application of RL in determining optimal seismic sensor placement remains an open

frontier with opportunities for exploration and innovation. The deployment of seismic sen-

sors in a manner that optimally captures vital information about the subsurface structures is

a significant challenge due to the vast search space, rendering the problem computationally

intensive and complex. In particular, RL can navigate through large and complex search

spaces, make decisions in the face of uncertainty, and adjust strategies based on feedback

from the environment, which are all pertinent to seismic sensor placement.

This chapter examines and tests the potential adoption of RL for optimizing seismic sensor

placements. The narrative unfolds as follows: an introduction to seismic sensor placement

utilizing RL is initially provided. This is succeeded by an articulation of how to cast optimal

sensor placement into a Markov decision process (MDP) framework. Subsequently, the
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concept of Q-learning is explored (Watkins and Dayan, 1992; Sutton and Barto, 2018).

Finally, numerical experiments are shown to assess the viability of employing RL in seismic

sensor deployment scenarios.

4.2 Seismic sensor placement based on reinforcement

learning

This section presents the integrated RL-based optimal seismic sensor placement design.

The method is rooted in a data-driven approach and harnesses the pre-learned basis library

presented in section 1.6, which allows for robust computational reconstruction through the

least-squares method. Notably, the metric utilized to gauge the quality of reconstructions,

and hence to be maximized, is the SNR value between the ground truth data and the

reconstructed data. Essentially, RL is leveraged to discover the receiver configuration that

amplifies the quality of the reconstruction. It’s worth noting that while the RL-based design

is tethered to the SNR metric, its architecture is adaptable. Various objective functions

can be seamlessly integrated into this framework (Wang et al., 2019). As such, users have

the flexibility to modify the cost function to their particular problems. Progressing, I shape

the problem of optimal sensor placement within the mathematical structure of an MDP,

executed via the Q-learning optimization process (Watkins and Dayan, 1992; Sutton and

Barto, 2018).

The scenario depicted in Figure 4.1 is first considered, which showcases a pre-defined grid

encompassing Nr potential receiver positions to elucidate the concept further. Within this

grid, the objective is to discern the optimal K grid points that would best sample the data.

Let’s recall from section 1.4 the sampling set, represented as ⌫. The primary objective

is to identify a configuration for ⌫ so that the SNR⌫ , as articulated by equation 1.9, is

maximized. In simpler terms, out of the numerous potential locations available for placing

the sensors, one aims to find those locations that would provide the highest SNR value of

the data. One of the aims here is to give a broad view of the main approaches and to use

a data-driven approach with the pre-learned basis library, which I use routinely for seismic

data reconstruction problems.

4.2.1 Formulation of optimal receiver deployment as Markov deci-

sion process

The seismic sensor selection challenge seeks to discern the optimal set ⌫, guaranteeing

superior data reconstruction. To achieve this, I turn my attention to RL, rooted in the

foundational principles of the MDP framework (Sutton and Barto, 2018).
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(a)

(b) K

Nr

Figure 4.1: Contrasting layouts of seismic survey designs. (a) Conventional design,
wherein receivers, depicted by black triangles, are evenly distributed across the
survey area, employing a total of Nr receivers. (b) Optimal design, strategically de-
ploying a reduced number of receivers (K, where K < Nr) at locations deemed most
informative and beneficial for data acquisition. While the conventional approach
ensures uniform coverage, the optimal design prioritizes positioning to enhance the
quality and relevance of acquired seismic data.

At its essence, an MDP delineates how an agent systematically chooses actions based on

its current state within an environment. This decision-making is influenced by the rewards

it receives, even in the presence of uncertainties in transitioning between states. Formally

expressed, an MDP is represented as the tuple (S,A,R, P ):

• S signifies the state space, illustrating the various situations the agent can encounter.

• A represents the action space, capturing the potential actions available to the agent

in response to any given state.

• R is the reward function, determining the immediate reward or penalty the agent

receives upon taking an action in a specific state.

• P outlines the state transition probability, showcasing the likelihood of transitioning

to a new state from the current state after an action.

The strategy or plan the agent follows, known as the policy ⇡, embodies the probability

distribution within the state-action domain. It guides the agent in selecting appropriate

actions based on the given state, intending to accumulate the highest long-term reward.

The objective is to estimate the optimal policy ⇡⇤ that satisfies

J⇡⇤ = max
⇡

J⇡ = max
⇡

E⇡

" 1X

t=0

�trt

#
, (4.1)
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where � 2 [0, 1) is the discount factor, rt is the reward at time-step t, E⇡[.] stands for the

expectation under policy ⇡, and J⇡ is the expected cumulative reward.

The following illustrates how to mathematically design the optimal sensor placement as a

formulation of an MDP concerning state space, action space, and reward, followed by a

selection procedure.

State space

The state space in the sensor placement problem is defined as a collection of all the possible

combinations of the sampling set ⌫ = [⌫1, ⌫2 . . . ⌫K ]. The state at a specific time-step

t is symbolized by st, spanning T time-steps for every episode. An inherent challenge

arises as the quantity of sensors escalates: the combinatorial explosion of potential sensor

placements. For illustration, given an initial setup with Nr = 20 sensors and a goal to pick

K = 3 among them, the potential combination surges to 20!
3!(20�3)! = 1140. The complexity

amplifies when aspiring to select K = 7 from the 20 receivers, raising the combination count

to 20!
7!(20�7)! = 77520. The situation becomes even more complicated if the original receiver

pool (Nr) substantially surpasses 20 and there’s an intent to select an even larger number of

sensors. This underscores the inherent NP-hard nature of the sensor placement challenge,

where the enormity of potential combinations renders traditional greedy approaches largely

ine�cient.

When utilizing the classic RL approach rather than deep RL (Mnih et al., 2015; Silver

et al., 2016; Sutton and Barto, 2018), the size of the state space constraint surpasses the

algorithm can handle. As such, a necessity arises to truncate the expansive set of potential

combinations into a more manageable size.

In addressing the optimal sensor selection challenge, a strategic segmentation is performed:

the entire set of Nr potential positions is divided into K distinct ranges, with K representing

the desired number of sensors. A key stipulation here is that sensors, when selected, must

remain confined within these pre-defined segments and are forbidden from trespassing be-

yond their boundaries. This constraint reflects the real-world presumption that all sensors

are interchangeable, so swapping positions doesn’t result in any discernible di↵erence. By

imposing this constraint, the combinatorial challenge becomes notably less daunting. For

instance, if the task is to choose K = 7 sensors from Nr = 20 candidate positions, the count

of possible combinations under these rules would only be 3⇥ 3⇥ 3⇥ 3⇥ 3⇥ 3⇥ 2 = 1458,

which is much less than the number of possibilities calculated with the unrestricted scenario

and results in a substantial reduction in computational complexity.

This segmentation criterion o↵ers another advantage besides the direct benefit of shrinking

the problem size. It inherently ensures that the selected sensors are more evenly distributed,
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sidestepping any significant gaps in the design. This strategy echoes the principles of jit-

tered sampling (Hennenfent and Herrmann, 2008a), a methodology known for its e�cacy in

avoiding aliasing and ensuring a more balanced data acquisition.

Action space

The action space for the sensor placement problem is structured around choosing the location

for a particular sensor from the pool of candidate positions. To elucidate, taking an action,

denoted as a, entails a two-fold process:

• Activation: This step involves selecting a particular sensor to make an adjustment to

its position.

• Directional movement: Once a sensor is activated, the next step involves deciding the

direction of its movement. The choices are binary: either move to the left or the right.

This movement translates to opting for the adjacent candidate position on the left or

right of the currently activated sensor.

It’s crucial to note that any action a↵ects only one sensor’s position. Thus, when an action

at is undertaken while in state st, the system navigates to a subsequent state, denoted st+1.

The e�cacy of the chosen action can then be assessed by comparing the data reconstructed

in the newly arrived state, st+1, with the prior state, st. The quality of this comparison is

quantified using the pre-established objective function (equation 1.9). Based on this, the

algorithm determines the appropriateness of the action, guiding whether or not the move

enhances the overall quality of data reconstruction.

Reward

Upon executing a specific action at in a state st, the agent receives a reward, symbolizing the

immediate consequence of that action in the context of the seismic sensor placement problem.

The primary objective here is to navigate through possible sensor locations, ultimately

identifying a combination that maximizes the cumulative reward. The immediate, one-step

reward, denoted as r(st, at), is calculated by evaluating the reconstruction quality (as per

equation 1.9), involving a comparison between states st and st+1. If the data reconstruction

quality at the new state st+1 exceeds that of the prior state st, the reward is +10. If not, a

penalty (or a negative reward) of �2 is administered. While the agent amasses rewards at

each time-step during its exploration, the algorithm’s focal point remains the maximization

of cumulative rewards, guided by the discount factor �, which controls how myopic the agent

is in its decision-making.
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Selection procedure

Upon defining the state space, action space, and reward, Figure 4.2 shows the sensor selection

procedure, delineated into seven distinct stages for clarity. Here, stars symbolize candidate

positions, while black triangles indicate the selected position for the sensor.

I begin by aligning candidate positions to a conventional configuration, characterized by

densely and uniformly arrayed locations, indicated by stage one shown in Figure 4.2. Then,

I set sensor ranges (vertical lines represent the range boundaries) according to the number

of sensors one wants to choose in stage two. Once these preliminaries are established, the

proposed RL method can be used with the number of episodes to select optimal locations

with an initially random given state (shown in stage three). I set the initial state randomly

for each episode in the RL algorithm to explore the whole state space fully, which means

the local optimum is trying to avoid. For each episode, the state transit from the old state

to the new state with action is shown in stage five. Noted, stage five comprises four parts

corresponding to the description provided in the action space section. The red triangle

represents the activated sensor, and the red arrows indicate moving left or right. Then,

suppose in state st (stage 5.1 in Figure 4.2), one wants to select the sensor’s location from

the candidate positions (black stars). The first step of the action is to decide which sensor

to move (stage 5.2 in Figure 4.2). After activating the sensor, step 2 of the action is to

decide to move left or right (stage 5.3 in Figure 4.2). Afterward, the new state st+1 with

a di↵erent combination of sensors is reached. Finally, after all the episodes, the optimal

state (stage seven in Figure 4.2) corresponds to finding the sensors’ combination at optimal

positions, which corresponds to the optimal sampling set ⌫ = [⌫1, ⌫2 . . . ⌫K ].

4.2.2 Q-learning

RL is a vast domain with numerous algorithms tailored for di↵erent problems and scenarios.

Among these algorithms, Q-learning stands out as a particularly influential method in the

RL family. It operates on the principles of value-based learning and is both o↵-policy and

model-free, which means it learns the value of an action without necessarily following it and

without requiring a model of the environment.

Central to Q-learning is the Q-function, which attempts to estimate the expected rewards for

state-action pairs in an attempt to find the most optimal action for any given state (Watkins

and Dayan, 1992). The goal is to ascertain the action that maximizes the expected reward.

As the agent interacts with its environment and receives feedback in the form of rewards, it

continually updates its Q-values using the Q-learning update rule.

By harnessing the power of Q-learning for the seismic sensor placement problem, the aim
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1: conventional setting

2: set sensor ranges

3: initial random state

7: Optimal state

: candidate position; : selected position; : range boundary; : activated sensor; : move left or right

5.1: state st

5.2: action step 1

5.3: action step 2

5.4: state st+1

4: state s1 to state st-1

6: state st+2 to state st+T

Legend:
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Figure 4.2: Schematic diagram to show selection procedure. The whole selection is
summarized as seven stages. Black stars represent the candidate positions to put
a sensor, and the black triangles represent the selected positions. The vertical line
denotes the ranges defined by the user. Each initial state of an episode is set to
be random to explore the whole state. For each action shown in stage five, the red
triangle means activating one sensor, and the red arrows indicate moving left or
right to a new candidate position. The sub-index t (indicates time-step) runs along
the number of time-steps (T ).
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is to e�ciently and e↵ectively navigate the state space to determine optimal sensor posi-

tions. Given the characteristics and constraints of the sensor placement challenge, Q-learning

emerges as an apt choice due to its ability to handle vast state-action spaces and deliver

robust performance.

In general, Q-learning is a subset of temporal di↵erence (TD) learning that can achieve

optimal policies from delayed rewards when the agent has no prior knowledge of the unknown

environment. The TD methods are grounded in the idea that one can learn by bootstrapping

from current estimates to update subsequent estimates. In other words, it uses di↵erences

between estimates at di↵erent time-steps to update value functions.

In the typical Q-learning process, the agent observes the state st at a specific time-step t.

Then, it chooses an action at according to the ✏-greedy strategy, which executes an intensified

search by exploitation and a diversified search by exploration. The ✏-greedy strategy’s dual

nature of exploration and exploitation allows the agent to occasionally try out di↵erent

strategies, helping ensure it doesn’t get stuck in local optima and can uncover potentially

better strategies. This is crucial for solving complex problems, especially NP-hard like the

sensor placement problem, where the solution space is vast and computationally challenging

to navigate exhaustively.

The Bellman equation is one of the foundational mathematical underpinnings of Q-learning

and RL in general. The equation is pivotal as it relates the value of a state to the values of

its successor states. In the context of Q-learning, the Bellman equation updates Q-values

until they converge to the true Q-values iteratively, the expected cumulative rewards for

each state-action pair. For those keen on delving deeper into the intricacies of the Bellman

equation and its role in RL, the book by Sutton and Barto (2018) serves as an authoritative

and comprehensive guide on the subject.

The core algorithm of Q-learning is a Bellman equation as a value iteration update, using

the weighted average of the old and new information:

Q⇤(st, at) Q(st, at) + ↵(rt+1 + �max
a

Q(st+1, a)�Q(st, at)), (4.2)

where Q⇤(st, at) is the expected value (cumulative discounted reward) of doing action a in

state s at time-step t and then following the optimal policy. rt+1 + �maxa Q(st+1, a) is

the TD target, and the TD is the subtraction between TD target and Q(st, at). � is the

discount factor, and ↵ is the learning rate.

In the framework of the defined objective function and the formulated MDP, I introduce an

integrated RL algorithm for the optimal selection of seismic sensors, detailed in Algorithm

1. The learning procedure unfolds across E episodes, each comprising no more than T

time-steps. Actions within this algorithm are chosen to employ the ✏-greedy strategy, which
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permits exploring possible actions and exploits experiences from the reinforcement returns.

Notably, the state denoting sensor locations is randomized at the beginning of each episode

to enable a thorough exploration of the entire state space. The exploitative aspect of the

✏-greedy action selection strategy directs the sensors toward states indicative of superior

data reconstruction, as delineated by the objective functions. Conversely, the explorative

facet entails random selection, ensuring a wide-ranging search across the entirety of the

space and mitigating entrapment in local optima.

This procedure operates autonomously, necessitating no user intervention post-engagement

of the selection mode. Resultantly, the optimal sensor placement is obtained to provide the

best reconstruction performance using the limited set of sensors. For the implementation of

the proposed approach, I employed the Julia programming language, particularly leveraging

the POMDPs.jl framework (Egorov et al., 2017).

Algorithm 1 Optimal seismic sensor selection using Q-learning for estimating policy ⇡

Inputs: S, A, R, �, ↵, E and T
Build pre-learned basis library Up

Initialize Q(s, a) for all s 2 S, a 2 A

Initialize the policy ⇡ arbitrarily
for episode = 1 to E do

for t = 1 to T do
Initialize random state s1
Select action at using the ✏ - greedy strategy
Take action at
Observe next state st+1

Reconstruct data for state st+1 (Equations 1.7 and 1.8)
Calculate SNR⌫ value (Equation 1.9)
Compare the SNR⌫ value of state st and st+1

Give reward (+10) or penalty (-2) for rt+1

TD target = rt + �maxa Q(st+1, a)
TD = TD target - Q(st, at)
Q⇤(st, at) Q(st, at) + ↵TD
st  st+1

end for
end for
Obtain optimal policy ⇡
Following the learned policy to obtain optimal seismic sensor locations (⌫ = [⌫1, ⌫2 . . . ⌫K ])

4.3 Application in ocean bottom node acquisition

In seismic acquisition, the number of sources and receivers significantly impacts the overall

cost. This cost can be particularly exorbitant in marine seismic explorations where special-
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ized equipment like OBN is employed. Each node is costly, and hence, the optimization of

their layout can lead to substantial cost savings. Several cost factors need to be taken into

account in OBN acquisition, including the purchase cost of each node, deployment costs,

which include labor and corresponding field operation time, and operational expenses, in-

cluding data processing and quality control. Applying these methodologies aims to present

a cost-e↵ective OBN acquisition strategy that significantly reduces expenses and operational

time. This optimized design could be a game-changer for marine seismic exploration, making

it more economically feasible and e�cient.

This section presents numerical examples to explore the proposed RL-integrated seismic

sensor placement problem. Figure 4.3 establishes the whole workflow for reconstruction and

sensor selection following the proposed method. I first build the pre-learned basis library

as the preparation for reconstruction. Then, the sensor selection with RL is implemented

after that.

I employ the acoustic finite-di↵erence modeling from the SeismicJulia package (Stanton

and Sacchi, 2016) to simulate a prestack marine OBN dataset using the SAIG velocity

model. The preference for the OBN setup arises from the significant cost associated with

each node; thus, finding the optimal node locations can yield notable economic advantages.

Spatial sampling is set at five meters for vertical coordinates and ten meters for horizontal

ones. The velocity model encompasses a range from 1.5 km/s to 3.0 km/s. The velocity

model, complemented by the source-receiver geometry, can be observed in Figure 4.4.

The sources (depicted as red stars) and receivers (illustrated as black triangles) are dis-

tributed every 20 and 100 meters, respectively. A total number of 350 sources are simulated.

Each source fires into a fixed array of 70 receivers. The receivers are situated at 500-meter

depth to simulate ocean bottom nodes. A Ricker wavelet with a central frequency of 10 Hz

has been utilized for generating the data. 24 out of the original 70 nodes are selected for

the optimal setting to test the proposed method.

Based on the pre-learned basis library, the optimal placement for 24 available sensors using

the proposed RL-based method and the corresponding learning performance are presented

in Figure 4.5. The parameter settings for the iteration are as follows: learning rate ↵ = 0.1

and discount factor � = 0.7. The ✏-greedy exploration strategy is applied to investigate the

performance of the proposed algorithm. The exploration rate ✏ is set as 1.0 at the beginning

and decreases gradually to 0.1. I run 1000 episodes, with each episode iterating over 100

time-steps. The reward trend plotted every ten episodes reveals the converging trend, and

it can be observed that the received rewards rapidly grow in the first learning episodes,

indicating an intensified and e�cient learning process of the RL-based sensor placement

method. Besides, I also point out the possible reasons why small-value accumulated rewards

around episode 540 are ascribed to the randomness of the initial state or the random selection
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Figure 4.3: The comprehensive workflow comprises two folds: reconstruction prepa-
ration and sensor selection. The former delineates the construction of a pre-learned
basis library, facilitating fast and e�cient reconstruction. Meanwhile, the latter
elucidates the Q-learning procedure for choosing optimal sensor locations.
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(m/s)

Figure 4.4: The velocity model utilized to simulate ocean bottom node data via
finite di↵erence modeling. Red stars represent the sources, and black triangles
represent the receivers.

property of the ✏-greedy strategy. The algorithm converges, guiding us to find the optimal

locations of the sensors following the learned policy.

Next, I display the original nine CSGs and CRGs (Figure 4.6(a) and Figure 4.6(b)), re-

spectively, with traditional equal-spaced acquisition using 70 receivers and 350 sources as

a reference. Figure 4.7(a) and (b) show the decimated CSGs and CRGs with 24 receivers

located at the optimal positions selected by the RL algorithm. Notably, some of the CRGs

in Figure 4.7(b) are empty, signifying no receiver was selected by the RL algorithm for those

specific indices. Lastly, the reconstructed CSGs and CRGs are depicted in Figure 4.8(a) and

(b). It is noticeable that the events, both in CSGs and CRGs, are all fully reconstructed,

and the SNR⌫ value of the reconstructed data calculated by equation 1.9 is 20.72 dB.

Then I compare the performance of the RL-based optimization method for sensor placement

with the state-of-the-art jittered sampling protocol as a benchmark. To clarify, the jittered

sampling I mention here only concerns the sampling strategy. Noted, I am not reaching the

proposed method with the traditional jittered-CS acquisition scheme but are only comparing

the spatial technique sampling regarding where to put the sensors. Both sampling paradigms

use the same number of sensors and are all reconstructed based on the pre-learned basis

library.

Table 4.1 lists the number of receivers and sources employed in the OBN survey for the

101



Figure 4.5: Rewards earned during the 1000 episodes. Rewards are plotted every
ten episodes to show the general trend.

Table 4.1: Receiver sampling in conventional, jittered, and proposed optimal sce-
narios in OBN acquisition.

Standard Jittered Proposed

Receivers numbers 70 24 24

Receiver interval 100 m irregular irregular

Sources numbers 350 350 350

Source interval 20 m 20 m 20 m

conventional, jittered, and proposed methods. Given the focus on receiver selection, the

number of sources remains consistent across methods. However, the count of receivers in

the proposed and jittered methods is reduced compared to the conventional approach.

I randomly initialize ten di↵erent jittered sampling acquisition schemes, and Figure 4.9(a)

and (b) present the best-reconstructed CSGs and CRGs among the ten jittered sampling

trials with the highest SNR⌫ value. A closer inspection reveals that slightly more artifacts

exist compared with the optimal one (Figure 4.8) and that the optimal sensor locations

obtained by the RL-based method provide a closer approximation to the original CRG. It

is important to remember that the di↵erence in reconstruction quality is solely due to the

spatial sampling di↵erence. Further, the SNR⌫ value of the jittered sampling is 17.64 dB,

averaged with ten di↵erent jittered acquisition schemes.
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Figure 4.6: Conventional OBN data acquisition using 350 sources and 70 receivers.
(a) Nine original CSGs. (b) Nine original CRGs.
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Figure 4.7: Optimized OBN data acquisition using the RL method. (a) CSGs with
24 strategically placed receivers. (b) CRGs with 24 selected receivers.
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Figure 4.8: Data reconstructed using the optimized OBN acquisition via the pro-
posed RL method. (a) Recovered CSGs. (b) Recovered CRGs.
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Figure 4.9: Reconstructed data via jittered sampling OBN acquisition. (a) Recov-
ered CSGs. (b) Recovered CRGs.

106



Ti
m

e 
(s

)

Trace Number

0 35 70 0 35 70 0 35 70 0 35 70

(a) (b) (c) (d)

Figure 4.10: Comparison of the original CSG with reconstructions via jittered sam-
pling and the proposed RL-based method at source index 175. (a) Original CSG.
(b) Optimal decimated CSG using the RL-based approach. (c) Reconstructed CSG
through jittered sampling. (d) Reconstructed CSG via the RL-based method.

Figure 4.10 provides a detailed comparison of one CSG at position x = 3.5 km (corresponds

to the 175th shot index in the conventional acquisition setting). The displayed CSGs in

Figure 4.10 include (a) the original, (b) optimally decimated, (c) reconstructed using 24

receivers via the best jittered sampling scheme from ten random initializations, and (d)

reconstructed with 24 receivers positioned optimally through the RL algorithm. Note that

the jittered sampling result shown in Figure 4.10(c) is the best-resulting protocol chosen

from ten randomly initialized settings following the jittered sampling scheme. The RL-

based method provides a better sensor placement scheme for reconstruction than jittered

sampling because RL-based sampling always reaches the same optimal solution. In contrast,

jittered sampling is a form of random sampling; hence, one cannot confirm when a jittered

sampling realization is the best-stable option.

Similarly, Figure 4.11 highlights a detailed comparison of one CRG at position x = 2.7

km, corresponding to the receiver index 27 in the conventional acquisition setting. Notably,

this position was not selected as optimal by the RL method, which means no data was

recorded at this particular receiver’s location. Nevertheless, the four CRGs displayed in

Figure 4.11 are the original CRG, the optimal decimated CRG, the reconstructed CRG

with jittered sampling, and the reconstructed CRG with the proposed sampling, respectively.

Significantly, the data can still be recovered even without data recorded at position x = 2.7

km in the optimal setup. What’s more, the CRG recovered with the proposed sampling
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Figure 4.11: Comparison of original and reconstructed CRGs with receiver index
27. (a) Original CRG. (b) RL-optimized decimated CRG. (c) Jittered sampling
reconstructed CRG. (d) RL-based method reconstructed CRG.

in Figure 4.11(d) delivers better reconstruction quality compared to the jittered sampling

scheme shown in Figure 4.11(c).

Furthermore, I also compare the optimal policy learned by the RL algorithm with the

random policy. To clarify, a random policy implies that, irrespective of the state, an agent’s

action selection is entirely arbitrary and does not stem from a pre-defined or learned policy.

Figure 4.12 depicts the total reward gained per episode, and the blue and red dots represent

the reward obtained by the Q-learning policy and random policy, respectively. Across a

span of 100 episodes, a significant distinction in their performances is discerned, and the

mean reward for the Q-learning policy stands at 29.62, while the one for the random policy is

6.23. As anticipated, the Q-learning policy consistently outperforms its random counterpart,

emphasizing the superiority and e↵ectiveness of the proposed method. Conversely, given its

arbitrary nature, the random policy would necessitate potentially millions of iterations ever

to hope to approach the optimal solution achieved by Q-learning.

In the conclusive analysis, Figure 4.13 portrays the images computed by the reverse time

migration (RTM) method with the conventional acquired equal-spaced data, shown in Fig-

ure 4.13(b), and the reconstructed data using the optimal sensor setting obtained by the

proposed method, shown in Figure 4.13(c), in comparison with the original velocity model,

which is depicted in Figure 4.13(a). I am inverting for a single stacked image for all the shots

for simplicity and memory-saving purposes. Laplacian filtering and gaining with the same

parameters are applied to the RTM images. On juxtaposing the original velocity model
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Figure 4.12: Comparison of total reward gained per episode between Q-learning
policy vs. random policy.

(Figure 4.13(a)) with the RTM images, prominent geological features become evident —

from the seabed located 500 meters below the sea surface to the evident anticlines and fault

lines. A striking observation is the remarkable similarity between the RTM images derived

from conventional data (Figure 4.13(b)) and the reconstructed data from the RL-based sur-

vey (Figure 4.13(c)). This congruence underscores the e�cacy and validity of the proposed

method, presenting it as a potent alternative to traditional methods.

4.4 Discussions

This section discusses research challenges and issues encountered, casting light on outlooks

for future recommendations. First, this chapter introduces an RL algorithm, addressing

the seismic sensor placement problem with a fast and computationally e�cient reconstruc-

tion method. Considering the strategy employed in this chapter is classical RL, the size of

the problem is limited compared with deep reinforcement learning (DRL). The next chap-

ter entails adopting more powerful DRL algorithm to tackle more extensive and complex

scenarios to remove the size bottleneck. For example, the deep Q-network (DQN) (Mnih

et al., 2015; Sutton and Barto, 2018) a↵ords the capacity to manage more convoluted situ-
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Figure 4.13: Comparison of the velocity model (a) with the RTM images of the
conventional acquired data (b) and the reconstructed data via the proposed method
(c).
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ations involving an increased number of sensors, which forms a pivotal aspect of the future

exploration.

In addition, even though the reconstruction method is suitable for the methodology used

in this study, this data-driven method also needs training datasets to obtain the basis

library. Nonetheless, in real-world applications, regions with prior survey data can serve as

training datasets, i.e., time-lapse scenarios. On top of that, despite the objective function I

adopted here being explicit and easy to implement, alternative reconstruction methods and

objective functions are open for exploration. For example, Zhang et al. (2022) utilized SA

to find optimal sensor positions using the properties of the sampling operator and matrix

completion for reconstruction. The importance of the theory lies more in introducing RL

for optimal seismic sensor location design. Furthermore, the objective function concerns

how the agent learns from experience and needs to give a fair amount of thought because

defining the rewards to reflect the behaviour the agent wants to know is critical.

Additionally, even though I attempt to simulate the OBN setting with optimal receiver loca-

tions, the tentative idea includes but is not limited to, optimizing the nodes within the OBN

setting or designing the source firing positions in the land or marine survey scenarios with

an aim to reduce acquisition costs. Essentially, the broader potential of the approach can

be realized in diverse applications, where either the source or receiver location optimization

plays a pivotal role in both land and marine acquisition settings.

After designing and testing the integration of RL with optimal receiver placement, it be-

came evident that with proper reconstruction, fewer sensors could achieve comparable data

quality. Alternative designs of the problem could be admitted regarding the di↵erent re-

quirements of various issues. All in all, this brand-new approach is advisable and deserves

a trial for optimal sensor placement application.

4.5 Conclusions

This chapter introduces a new approach to seismic acquisition design by integrating RL-

based optimal sensor placement techniques. The sensor placement problem with the pro-

posed objective function falls under the MDP formulation mathematically, where state space

with a practical boundary restriction, action space, and reward is mainly defined for the

seismic sensor selection problem. The promising properties of RL enable the sensor selec-

tion algorithm to be implemented online, model-free, and fully incremental. The Q-learning

result is converged, and optimal sensors can be selected following the learned policy. The

resultant synthetic data scenarios are shown in CSGs, CRGs, and RTM images, demon-

strating that the proposed method provides better sensor locations for reconstructing data
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than the jittered sampling scheme under the same circumstances. Comparison with random

policy also verifies the e↵ectiveness of the proposed method. Further, albeit only exempli-

fied with seismic sensor placement application, this general idea of applying RL to solve the

NP-hard combinatorial problem could also be used in other fields of science.
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CHAPTER 5

Optimal seismic sensor placement based on deep

reinforcement learning approach

5.1 Introduction

The seismic acquisition design process is a complex decision-making problem involving a

large number of variables and constraints. Traditionally, the acquisition design process

is done manually, relying on the expertise of geophysicists and trial-and-error methods.

Nevertheless, this approach is time-consuming, expensive, and may not guarantee optimal

results.

Artificial intelligence (AI) has made a series of transformative breakthroughs in recent years,

consistently reshaping the world and challenging our preconceived notions. Machine learning

(ML) techniques, particularly deep reinforcement learning (DRL), have emerged as promis-

ing tools for optimizing various complex decision-making problems (Mnih et al., 2013, 2015;

Silver et al., 2016; Sutton and Barto, 2018). Notable examples include AlphaGo’s victory

over the world’s top Go champion (Silver et al., 2016, 2018) and the immensely popular Chat-

GPT (Wu et al., 2023). Both of these milestones owe their success to the advancements in

DRL. DRL algorithms can learn optimal policies through trial-and-error interactions with

an environment, a simulator, or a real-world system.

Seismic acquisition design has been studied in the geophysical exploration community, and

various optimization methods have been proposed. These methods include genetic algo-

rithms (GA) (Nakayama et al., 2019), simulated annealing (SA) (Zhang et al., 2022), and etc.

However, these methods have limitations, such as being computationally expensive, requiring

prior knowledge of the underlying geology, and not guaranteeing global optimality. DRL has
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been applied to various geophysical exploration problems, such as first arrival picking (Ma

et al., 2019), seismic source localization (Wu et al., 2019), and inversion (Dell’Aversana,

2022). However, to the best of my knowledge, no study has investigated the use of the

DRL algorithm for seismic acquisition design. As a well-established algorithm, the deep Q-

network (DQN) algorithm has several advantages, such as handling high-dimensional state

and action spaces and being computationally e�cient. Therefore, I propose a DQN-based

approach for seismic acquisition design in this chapter and demonstrate its e↵ectiveness on

a synthetic dataset.

The remainder of this chapter is organized as follows. I first introduce data-free optimal

sparse seismic acquisition. Regarding this, the second maxima of the spectrum of the grid

are illustrated for optimal design. Then, I describe the proposed DRL-based approach for

seismic acquisition design, particularly for the vibroseis optimal route problem. After that

is the introduction of DRL, the formulation of the problem as a Markov decision process

(MDP), and the DQN algorithm. Then, I present the application in vibroseis optimal route

design problem with some experimental results. Finally, the outlines of future research

directions and the conclusion of the method are shown.

5.2 Data-free optimal sparse seismic acquisition

Data-free acquisition means no prior data is needed to design optimal sensor placement.

Considering this, looking for a proper objective function is essential. Naghizadeh and Sac-

chi (2010b) stated that 2D signals that are band-limited in one spatial dimension can be

recovered by designing a regular acquisition grid that minimizes the mixing between the

unknown spectrum of the well-sampled signal and aliasing artifacts, and this concept can

be used to define potential strategies for acquisition guided Fourier reconstruction.

Figure 5.1 shows an example of randomly selected four sensor locations and their wavenum-

ber spectra, demonstrating that the second largest maxima of the wavenumber amplitude

varies with di↵erent sampling schemes. For comparison, Figure 5.2 shows another random

sampling; instead of choosing four sensors, I select 24 out of the 49 candidate positions. It

is obvious that the wavenumber response is an impulse in the middle of the 2D spectrum

for the multidimensional sampling function. Interestingly, with more selected sensors, the

second maxima value also decreases.

For those keen on delving deeper, the paper by Naghizadeh and Sacchi (2010b) provides a

comprehensive illustration of the subject. Inspired by this interesting paper, this chapter

proposes to use the minimization of the second maxima of the grid as the judging criteria,

which is data-free. Other than this criteria, readers are free to use others for data-free

optimal sparse seismic acquisition design.
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Figure 5.1: Di↵erent random sampling schemes and their corresponding wavenum-
ber spectra. Four out of the 7⇥ 7 grids are randomly selected. Plots a1, b1, and c1
are three randomly generated samplings. Plots a2, b2, and c2 are the normalized
wavenumber spectra. Plots a3, b3, and c3 are wavenumber vs amplitude, showing
the second maxima varies with di↵erent sampling schemes.

115



(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

X sample number

X sample number

X sample number

Y
sa
m
pl
e
nu
m
be
r

Y
sa
m
pl
e
nu
m
be
r

Y
sa
m
pl
e
nu
m
be
r

Kx

Kx

Kx

K
y

K
y

K
y

Wavenumber

Wavenumber

Wavenumber

A
m
pl
itu
de

A
m
pl
itu
de

A
m
pl
itu
de

Figure 5.2: Di↵erent random sampling schemes and their corresponding wavenum-
ber spectra. 24 out of the 7 ⇥ 7 grids are randomly selected. Plots a1, b1, and c1
are three randomly generated samplings. Plots a2, b2, and c2 are the normalized
wavenumber spectra. Plots a3, b3, and c3 are wavenumber vs amplitude, showing
the second maxima varies with di↵erent sampling schemes.
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5.3 Seismic sensor placement based on deep reinforce-

ment learning

The idea of RL can be combined with the concept of optimal seismic acquisition design has

been proved and explained in the proposed second route in Chapter 4. The DRL proposed

in the third route can be applied to the location of large-scale sensor scenarios to serve more

complicated real acquisition. DRL is a subfield of ML that uses RL techniques to train

artificial agents to make decisions in dynamic environments. The goal of DRL is to optimize

the behavior of the agent to maximize a long-term reward signal, which can be defined in

various ways depending on the application. This chapter proposes an optimal seismic survey

design method using DRL with the DQN algorithm. In the context of optimal seismic

acquisition design, the DQN can process vast amounts of information to determine the best

sensor placements for a given scenario. Though RL agents have marked accomplishments in

several fields (Tesauro et al., 1995; Diuk et al., 2008; Riedmiller et al., 2009), their scope has

predominantly been restricted to areas where valuable features can be manually designed

or to situations with transparent, uncomplicated state spaces (Mnih et al., 2015). However,

the DQN can make informed decisions to optimize the acquisition process by considering

various states. This combination of DRL with seismic design opens many possibilities for

more e�cient and accurate data collection, ultimately leading to better decision-making in

exploration and other related fields.

5.3.1 Formulation of vibroseis optimal route design as Markov de-

cision process

The problem of vibroseis optimal route design is defined as three parts: using the least

number of sources, activating them at the optimal positions, and finding the optimal path

moving through all the chosen locations. The main idea of designing the optimal route for

the vibroseis is threefold: first, when obstacles exist, random sampling is not workable, and

designing the path of the vibroseis is required; second, optimal design utilizes minimum

sampling point so that the corresponding acquisition cost is lower; last but not least, the

field working time is reduced, which is important for HSE concern.

Figure 5.3 depicts the idea of optimal route design. Figure 5.3(a) represents the decision

made in the working desert environment. Figure 5.3(b) indicates the vibroseis needs to

move from the start point to the end position while placing a source point at every regular

dense grid. Figure 5.3(c) indicates while there is an obstacle in the working area, like the

mountain in the upper left, how to design the shortest route with the minimum number of

shots needs to be studied.
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Start
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Figure 5.3: Contrasting routes of vibroseis. (a) Define the start and finish position
of the vibroseis. (b) Conventional survey with dense and regular grid (black dots),
where the vibroseis activates at every sampling point. (c) Optimal route of the
vibroseis with the least number of sampling points (red stars). Black lines indicate
the vibroseis moving path, and the mountain icon represents an obstacle where data
cannot be obtained.
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A framework for the MDP consists of an environment and an agent which acts in this

environment. In this case, the environment is a regular grid consisting of all the possible

candidate positions. The vibroseis is trying to find the shortest route from the start point

to the target point and is exploring and exploiting past experiences (episodes) in order to

achieve its goal. It may fail repeatedly, but hopefully, after lots of trial and error (rewards

and penalties), it will solve the problem. The solution will be reached if the agent finds

the optimal sequence of states in which the accumulated sum of rewards is maximal. The

following describes the state space, action space, and reward function I defined for the

vibroseis optimal route design problem.

State space

Considering the problem is a 2D problem with each grid point possessing an x and y direction

coordinates. There are four types of grid points: blocked points represent obstacles like

mountains, rivers, or others that prohibit placing a source point; free points indicate the

candidate positions that the vibroseis can move and place a source point; labeled points

mean the vibroseis placed a source point at this location; and target points denote the start

and finish locations. Note that the labeled points previously belonged to the free points, but

once the agent moves there and marks it as an optimal position, the free point is marked as

the labeled point.

I first define the particular grid status at a specific time-step t, symbolized by xt, with the

process spanning T time-steps for every episode. Note that each xt is composed of the x

and y coordinates of the grid point. Because the agent only observes the current state, it is

impossible to fully understand the current situation from the existing grid’s status. In other

words, the task is partially observed (Kaelbling et al., 1998). Therefore, the state space

is defined as the sequences of actions and observations, st = x1, a1, x2, . . . , at�1, xt, which

are the input to the algorithm, and then the strategies are learned depending upon these

sequences. Remember, the state definition is the sequences of actions and observations, and

these histories of arbitrary length as inputs to a neural network are di�cult. So, a function �

is introduced as a preprocessing to the m most recent grid status and stacks them to produce

the input to the Q-function works on a fixed length representation of histories. All sequences

are assumed to terminate in a finite number of time-steps, and this formalism gives rise to a

large but finite MDP in which each sequence is a distinct state. As a result, one can apply

RL methods for MDPs by using the complete sequence st as the state representation at

time-step t.
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Action space

The action space for the optimal route problem is structured around choosing the location

for a particular sensor from the pool of candidate positions. I define eight actions for each

position, except the boundaries and the place that are blocked by obstacles: move forward,

move backward, turn left, turn right, plus each movement direction being activated, which

are eight di↵erent choices in total. To elucidate, taking an action, denoted as a, entails a

two-fold process:

• Directional movement: This step involves deciding the direction of its movement, and

the choices are four directions: move forward, backward, left, or right.

• Activation: This step decides whether the vibroseis activates at this position or not.

When an action at is undertaken while in state st, the system navigates to a subsequent

state, denoted st+1, that one more position is added to the previous state to form the new

state. Further, rather than assess the action at each time-step, I assess the actions at the

end of each episode, corresponding to the vibroseis reaching the finish position. The e�cacy

of the chosen action can then be assessed by the objective function defined, and then the

algorithm determines the appropriateness of the action.

Reward function

The task is an agent interacting with the environment in a sequence of actions, observations,

and rewards. At each time-step, the agent selects an action at; then the action modifies

the internal state. The agent observes a vector of values representing the current state and

receives a reward rt representing the change of the whole design. Noted that, in general,

the reward may depend on the entire previous sequence of actions, and feedback about the

action may only be received after many thousands of time-steps have elapsed (Mnih et al.,

2015).

The reward function is designed particularly for vibroseis optimal route problem that should

ensure the use of the least number of sensors and have the shortest time spent on the route.

Considering these requirements, I define a reward r� as:

r� = ��� tvibro
Ttotal + tvibro

, (5.1)

where tvibro denotes the vibration time of the vibroseis and Ttotal means the total time spent

from the start point to the finish point without adding a new sensor point, that is, the total

time spent for the last episode. If this is the first episode, then Ttotal is set to equal to the
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moving time from start to end point without vibration time, which equals to L

V
, where L is

the total distance from start to finish point and V is the velocity of the vibroseis. �� is a

hyperparameter that needs to be tuned.

However, if adding one more source point with valuable information improves the value

related to the objective function, then another reward r+ is evaluated by the end of each

episode:

r+ = �+SMSnew

SMSold

, (5.2)

where SMSnew and SMSold are values of the second maxima of the spectrum of the grid

computed from the current and previous episodes, respectively. �+ is the corresponding

hyperparameter. Then, with a proper balance between r� and r+, the trade-o↵ between

the least number of sensors being used as well as the best data quality collected can be

achieved.

Besides the r� and r+ described, other details about the reward function are as follows:

the rewards range from �1.0 to 1.0; each move from one state to the next state is rewarded

by a small negative value, to ensure the agent is encouraged to minimize the number of

moves, which means the number of optimal sensors. In addition, considering given the same

optimal sensor locations, di↵erent routes may use the same time from driving from the start

to the finish point, so I also give a small negative reward for changing movement direction

between consecutive actions to avoid frequent changing directions for the vibroseis in the

real world scenario. A reward of 1.0 is given when the agent reaches the finish point, and

an attempt to enter the blocked grid point will cost a significant negative reward. Further,

the same rule holds for an attempt to move outside the pre-defined grid boundaries. The

algorithm ends once the total reward is below the pre-set negative threshold to avoid infinite

loops and senseless wandering.

Next, I provide a detailed description of the DQN algorithm and its application to seismic

survey design.

5.3.2 Deep Q-network

Mnih et al. (2015) introduced an innovative artificial agent called the deep Q-network (DQN)

that connects complex sensory inputs and actions, resulting in the first artificial agent

adept at mastering a wide variety of demanding tasks. The novel agent, DQN, is able to

combine RL with a class of artificial neural networks (ANN) known as deep neural networks

(DNN). Significantly, modern breakthroughs in DNN (Hinton and Salakhutdinov, 2006;

Bengio et al., 2009; Krizhevsky et al., 2012), where multiple layers of nodes are used to

build up increasingly abstract representations of data, have enabled ANN to grasp concepts
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like object categories directly from raw sensory inputs. DQN employs a highly e↵ective

design, the deep convolutional network (LeCun et al., 1998), which uses hierarchical layers

of tiled convolutional filters to mimic the receptive fields’ e↵ect, drawing inspiration from

Hubel and Wiesel’s foundational research on feedforward processes in the early visual cortex

(Hubel and Wiesel, 1963).

The agent aims to interact with the environment by selecting actions to maximize future

rewards. In a more technical sense, a deep convolutional neural network is employed to

estimate the optimal action-value function

Q⇤(s, a) = max
⇡

E
⇥
rt + �rt+1 + �2rt+2 + · · · | st = s, at = a,⇡

⇤
. (5.3)

This function in equation 5.3 represents the maximum cumulative rewards rt, discounted

by � at each time-step t, which can be achieved through a behavior policy ⇡ that maps

sequences to actions.

If the future discounted return at time-step t is

Rt =
TX

t
0=t

�t
0
�tr

t
0 , (5.4)

where T is the time-step the vibroseis reaches the finish point. Then the optimal action-

value function Q⇤(s, a) defined as the maximum expected return achievable by following any

policy after seeing some sequence s and then taking some action a, same as equation 5.3

can be rewritten as

Q⇤(s, a) = max
⇡

E [Rt | st = s, at = a,⇡] . (5.5)

The optimal action-value function obeys the Bellman equation, an important identity that

if the optimal value of Q⇤(s
0
, a

0
) of the sequence s

0
at the next time-step is known for

all possible actions a
0
, then the optimal strategy is to select the action a

0
maximizing the

expected value of r + �Q⇤(s
0
, a

0
)

Q⇤(s, a) = E
s
0


r + �max

a
0

Q⇤(s
0
, a

0
) | s, a

�
. (5.6)

The basic idea behind many RL algorithms is to estimate the action-value function by using

the Bellman equation as an iterative update, Qi+1(s, a) = E
s
0

h
r + �max

a
0 Qi(s

0
, a

0
) | s, a

i
.

Such value iteration algorithms converge to the optimal action-value function, Qi ! Q⇤

as i ! 1. However, this basic approach is practically impractical because the action-

value function is estimated separately for each sequence (Mnih et al., 2015). Instead, it is

expected to use a function approximation to estimate the action-value function, Q(s, a; ✓) ⇡
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Q⇤(s, a). In the RL community, this is typically a linear function approximator. Still, a

nonlinear function approximator, such as a neural network, which is the deep Q-network, is

sometimes used instead. The following describes the neural network function approximator

with weights ✓ as a Q-network proposed by Mnih et al. (2015).

A Q-network can be trained by adjusting the parameters ✓i at iteration i to reduce the

MSE (mean squared error) in the Bellman equation, where the optimal target values r +

�max
a
0 Q⇤(s

0
, a

0
) are substituted with approximate target values y = r+�max

a
0 Q(s

0
, a

0
; ✓�

i
)

with parameters ✓�
i
from some previous iteration. This leads to a sequence of loss functions

Li(✓i) that changes at each iteration i

Li(✓i) = Es,a,r

⇥
(E

s
0 [y | s, a]�Q(s, a; ✓i))

2
⇤
= E

s,a,r,s
0
⇥
(y �Q(s, a; ✓i))

2
⇤
+ Es,a,r [Vs0 [y]] .

(5.7)

Noted, the targets depend on the network weights, which are di↵erent from those used for

supervised learning that are fixed before learning begins. At each stage of optimization, the

parameters from the previous iteration ✓�
i

are fixed when optimizing the ith loss function

Li(✓i), ended in a sequence of well-defined optimization problems (Mnih et al., 2015).

DQN represents an approximate value function, Q(s, a; ✓i), via a deep convolutional neural

network as depicted in Figure 5.4. The model architecture has a separate output unit for

each possible action, and only the state representation is an input to the neural network.

The outputs represent the predicted Q-values for each action based on the provided input

state. A primary benefit of this architecture is its capability to determine Q-values for every

potential action in a specific state using just one forward pass in the network (Mnih et al.,

2015).

When a nonlinear function approximator like the neural network represents the action-value

(often termed Q) function, RL has historically been prone to instability or even divergence

(Tsitsiklis and Van Roy, 1996). Several factors contribute to this instability: the inherent

correlations within the observation sequence, potential significant policy changes resulting

from small Q updates that subsequently alter the data distribution, and the interdependen-

cies between Q and their corresponding target values r+�maxa0 Q(s0, a0). Mnih et al. (2015)

tackled these instabilities with two primary concepts. Firstly, incorporate a biologically-

driven mechanism known as experience replay (Lin, 1992; McClelland et al., 1995; O’Neill

et al., 2010), which introduces randomness to the data, e↵ectively eliminating observation

sequence correlations and averaging out fluctuations in data distribution. Secondly, apply-

ing an iterative update adjustment to the Q aligns them with target values updated at

periodic intervals, thus minimizing correlations with the set target.

To implement experience replay, the agent’s experiences are recorded and stored at each

time-step, et = (st, at, rt, st+1), in a data set Dt = {e1, . . . , et} after pooled over several
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Figure 5.4: Schematic illustration of the convolutional neural network. The input
to the neural network is produced by the preprocessing map ✓, followed by three
convolution layers. The blue line symbolizes the sliding of each filter across inputs
and two fully connected layers with a single output for each valid action. A rectifier
nonlinearity follows each hidden layer. The red dot represents to put a sensor.
Modified from Mnih et al. (2015)
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episodes into a replay memory. During the inner loop of the algorithm, Q-learning or

minibatch updates are applied to samples of experience, (s, a, r, s
0
) ⇠ U(D), drawn at

random from the pool of stored samples. This approach has several advantages over standard

online Q-learning (Mnih et al., 2015). Using each step of experience multiple times for weight

updates enhances data e�ciency. Learning from sequential samples is less e↵ective because

of the significant correlations between them; randomizing the order of these samples disrupts

these correlations, leading to more stable updates. On-policy learning can be problematic

because the present parameters influence the upcoming data sample, leading to potential

feedback loops where parameters might become trapped in an undesirable local minimum

or diverge dramatically (Tsitsiklis and Van Roy, 1996). Through experience replay, the

behavior distribution averages over numerous past states, ensuring more consistent learning

and preventing parameter oscillations or divergence. It’s worth noting that when utilizing

experience replay, o↵-policy learning is essential since the current parameters di↵er from

those that generated the sample, thus favoring the adoption of Q-learning. The Q-learning

update for the i-th iteration relies on the subsequent loss function:

Li(✓i) = E(s,a,r,s0)⇠U(D)

⇣
r + �max

a0
Q(s0, a0; ✓�

i
)�Q(s, a; ✓i)

⌘2
�
, (5.8)

where � denotes the discount factor. ✓i denotes the parameters (the weights) of the Q-

network, and ✓�
i
are the network parameters used to compute the target at the i-th iteration,

respectively.

Di↵erentiating the loss function with respect to the weights arrives at the following gradient:

r✓iLi(✓i) = E
s,a,r,s

0


(r + �max

a
0

Q(s
0
, a

0
; ✓�

i
)�Q(s, a; ✓i))r✓iQ(s, a; ✓i)

�
. (5.9)

Instead of computing the full expectations in the above gradient, a computational expedient

to optimize the loss function uses stochastic gradient descent. The Q-learning algorithm

(Watkins and Dayan, 1992) can be recovered in this framework by updating the weights after

every time-step by replacing the expectations using single samples and set ✓�
i
= ✓i�1. Since

this algorithm solves the RL task without explicitly estimating the reward and transition

dynamics P (r, s
0
| s, a), and it learns about the greedy policy argmax

a
0 Q(s, a

0
; ✓) while

following a behaviour distribution that ensures adequate exploration of the state space.

Thus, this algorithm is model-free and o↵-policy (Mnih et al., 2015).

The full algorithm for training DQN is presented in Algorithm 2. The agent selects and

executes actions according to the ✏-greedy policy based on Q; that is, the behaviour dis-

tribution is selected with probability 1 � ✏ and selects a random action with probability ✏.

The algorithm modifies standard Q-learning to make it suitable for training large neural
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networks without diverging (Mnih et al., 2015), employing a distinct network to generate

target values yj in the Q-learning adjustment. Specifically, the network is duplicated for

every C iteration to produce a target network, denoted as Q̂. This Q̂ network generates

Q-learning target values yj for the upcoming C adjustments to Q.

Algorithm 2 Deep Q-learning with experience replay

Initialize replay memory D
Initialize action-value function Q with random weights ✓
Initialize target action-value function Q̂ with weights ✓� = ✓
for episode = 1 to M do

Initialize sequence s1 = {x1} and preprocessed sequence �1 = �(s1)
for t = 1 to T do

With probability ✏ select a random action at
Otherwise select at = argmaxa Q(�(st), a; ✓)
Execute action at and observe reward rt and xt+1

Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
Store transition (�t, at, rt,�t+1) in D
Sample random minibatch of transitions (�j , aj , rj ,�j+1) from D

Set yj =

(
rj if episode terminates at step j + 1

rj + �maxa0 Q̂(�j+1, a0; ✓�) otherwise

Perform a gradient descent step on (yj �Q(�j , aj ; ✓))2 with respect to ✓

Every C steps reset Q̂ = Q
end for

end for

5.4 Application in vibroseis optimal route design

The vibroseis optimal route design problem is a vibroseis whose mission is to vibrate at

multiple positions before arriving at the destination under an objective function’s restriction,

with the premise using the least number of shot samples and the least amount of time.

The following example is used to test the algorithm for optimal route design. Figure 5.5

shows a small (7⇥7) grids from a 2D view. For simplicity’s sake, I assume the vibroseis starts

at the up left, and its destination is at the bottom right of the 2D grids. The experimental

setup uses the following minimal prior knowledge: the grid size and the interval between

each point are 50 meters, the reward functions, and the number of actions. Suppose the

velocity of the vibroseis is 5 m/s, and the vibration lasts up to 30 seconds. So, the time for

the vibroseis to move from one grid point to another is 10 seconds. The goal for the design

is to use the least number of source points together with the least amount of operational
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Figure 5.5: Schematic 2D view of the survey area. The area is divided into 7 ⇥ 7
grids, where the blank grid represents the candidate position that the vibroseis can
move. The yellow point is the start location, and the green point is the finish point.

time spent in the field. Yellow and green points represent the start and finish positions,

respectively. The blank points denote the candidate source positions that the vibroseis can

move.

To validate the e↵ectiveness of the proposed method, I compare it with traditional survey

design methods and demonstrate its superiority in terms of the working time spent in the

field. Figure 5.6 represents the conventional route for the dense and regular grid survey,

where the vibroseis visit all the grid points and generate a controlled wavetrain. The red

line denotes the movement direction of the vibroseis. In this case, the total time spent for

the conventional survey is 48⇥ 10 + 49⇥ 30 = 1950 seconds.

Conventionally in the field, in the pre-plot stage, satellite images are used to depict the

topography of the survey area; obstacles like mountains, rivers, buildings, or other places

that the vibroseis cannot visit, are marked, which are shown in Figure 5.7 by the black

points. In this case, conventional and CS random sampling cannot fulfill the requirement,

and optimal sampling with the shortest moving time is needed. Under these circumstances,

I divide the problem into two steps. I first assume the optimal sampling positions are known

and find the shortest path to validate that the shortest time requirement can be met. Then,

adding the positions for the vibration points is also unknown, forming the whole optimal

route design problem.

Thus, firstly, assume the case if the sensors’ locations are known (depicted in Figure 5.8) and
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Figure 5.6: Schematic 2D view of the survey area. The red line with the arrow
indicating the moving direction represents the vibroseis conventional route, where
every grid point is visited, and each point is a source point.
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Figure 5.7: Schematic 2D view of the survey area. Black points represent the area
where obstacles where the vibroseis cannot move and place a source point.
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Figure 5.8: Schematic 2D view of the survey area with pre-defined sensor locations.

find the optimal path only. Then, the shortest route calculated with the DQN algorithm

with four pre-defined sensors is shown in Figure 5.9, which shows that the shortest path

algorithm is working e↵ectively.

Then, I run the whole algorithm considering all the factors: the number of optimal sensors,

the location of the optimal sensors and the shortest path problem. Choosing the correct

parameters for a suitable neural network model is not easy and requires some experience.

The optimizer adopted is Adam, and the loss function is MSE. I use two hidden layers, each

equal to the pre-defined grid size. The input layer also has the same size as the grid size since

it accepts the grid state as input. The output layer is the same as the number of actions

(eight in this case) since it outputs the estimated Q-value for each action. The behaviour

policy during training was ✏-greedy with ✏ annealed linearly from 1.0 to 0.1 and fixed at

0.1 thereafter. I assume that future rewards are discounted by a factor of � per time-step,

and the value is set to 0.99 throughout. The final optimal sensor number is six, and the

positions of the selected source points and the optimal route are shown in Figure 5.10. In

this case, the total time spent for the optimal survey is 24 ⇥ 10 + 6 ⇥ 30 = 420 seconds,

which is much less than the 1950 seconds that a conventional survey requires. Further, the

second largest maxima of the grid in this optimal scenario is 2.99, and the corresponding

wavenumber spectra are shown in Figure 5.11. After the model is properly trained, the

model is saved and can be loaded at any time to solve the vibroseis optimal route problem

as a winning strategy. Further, for larger size problems, the main workflow, functions, and

algorithm are the same, only consuming more compute time.
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Figure 5.9: Schematic 2D view of optimal route with given sensor locations.
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Figure 5.10: Schematic 2D view of optimal route selected following the learned
policy.
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Figure 5.11: Wavenumber spectra of the optimal sampling scheme.

Finally, I also use the random agent as a baseline comparison, and the assessment of the

performance of a random agent is when the agent selects an action randomly. Figure 5.12

shows the value of the second maxima of the grid for 1000 episodes of random policy. It is

noticeable that after 1000 random simulations, there is only one time the second maxima

value reaches the lowest value. Further, there is a possibility that even after more trials, the

random policy still cannot reach the optimal setting.

Note that it may happen that in order to reach the goal, the agent will have to endure

many penalties on its way. For example, the agent in the environment gets a small penalty

for every legal move. The reason for that is that I want it to get to the destination in

the shortest possible path. However, the shortest path to the target is sometimes long and

winding, and the agent may have to endure many penalties until it gets to the target. After

the model is properly trained, the model is saved and can be loaded at any time to solve the

vibroseis optimal route problem as a winning strategy. Further, for larger size problems,

the main workflow, functions, and algorithm are the same, only consuming more compute

time. This chapter serves as a problem proposal and a first trial of DRL application in

seismic acquisition design. Future work can cope with the larger and more di�cult real

data problems.

5.5 Conclusions

This chapter proposes the vibroseis optimal route problem together with the formulation of

an MDP framework. DQN algorithm is applied to solve the problem. Minimizing the second

maxima of the spectrum of the grid for optimal route design is adopted when some positions
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Figure 5.12: The wavenumber’s second maxima value using random agent simulates
1000 episodes.

are unavailable. The DQN essentially utilizes a deep neural network to approximate the Q-

values, overcoming the traditional limitations of Q-learning in high dimensional state spaces.

By feeding the state into the network and obtaining the Q-values for each possible action, the

DQN can e↵ectively learn the optimal policy. The inclusion of a replay algorithm is pivotal

for the successful integration of RL with deep learning architectures. Results demonstrated

that with the proposed method, the least number of sensors is used, and the vibroseis can

reach the finish points using the least amount of time. The acquisition cost is lower, and

the field operation time is shortened. Preliminary results indicate that DRL holds promise

as a robust tool for optimizing the e�ciency, cost, and quality of seismic surveys, thereby

presenting a transformative approach in the field of exploration geophysics.
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CHAPTER 6

Conclusions

6.1 Conclusions and summary

Compared with processing, imaging, and interpretation, seismic acquisition costs most in the

seismic exploration stages. Conventional seismic surveys require dense and equally-spaced

sensor placement; however, this can be di�cult due to expensive initial and maintenance

costs. Further, relieving the spatial sampling requirements minimizes HSE exposure in the

field and reduces the environmental footprint. While traditional seismic surveys aim ideally

at regular and dense sampling, further easing the spatial sampling requirements contributes

to the business aspect and reduces the ecological footprint (Jones, 2023). This research seeks

to identify the ideal locations for sensors that would necessitate fewer deployments compared

to conventional methods. Yet, the prerequisite remains that such configurations should

facilitate data reconstructions comparable in quality to those obtained through traditional,

denser surveys. Given that the optimal sensor deployment problem is NP-hard, brute-force

search methodologies that evaluate all possible sensor positions are infeasible. Thus, this

dissertation aims to provide actionable insights into the development of more e�cient, cost-

e↵ective, and environmentally responsible seismic data acquisition strategies.

This research aims to explore and validate alternative methods that could potentially re-

quire fewer sampling points than the current CS theory suggests without sacrificing data

integrity. This is accomplished by focusing on three principal avenues for acquisition design:

data-driven approaches, reinforcement learning, and deep reinforcement learning. The four

principal practical applications of this research focus on critical issues in both the energy

and environmental sectors: simultaneous source acquisition, time-lapse monitoring for CO2

geological storage monitoring, OBN acquisition, and vibroseis optimal route design. Conse-
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quently, this research serves as a pivotal contribution to the broader endeavor of optimizing

geophysical data acquisition and interpretation.

Chapter 2 provides a concise review of advancements in CS, which o↵er an appealing alter-

native for source-receiver sampling by sidestepping the constraints imposed by the Nyquist-

Shannon theorem. Specifically, CS leverages random sampling and sparsity-enforcing al-

gorithms to facilitate the recovery of missing seismic data. The primary outcome of this

proposed approach is a new technology where overly stringent sampling criteria no longer

determine acquisition and processing-related costs. Leveraging the principles of CS theory,

this chapter advances the concept of irregular grid seismic acquisition. This design employs

randomly distributed sampling positions with fewer shots or receivers and combines them

with sparse transformation theory to facilitate irregular o↵-the-grid data acquisition and re-

construction. In essence, the proposed method can handle acquisition with an irregular-grid

geometry based on compressive sensing design. Acquisition time can be reduced further by

using fewer sources, thereby improving the e�ciency of field data acquisition. A compara-

tive study for reconstructing arbitrary compressive irregular-grid data with commonly used

Fourier basis and low-rank constraints is also presented. The I-FMSSA method significantly

improves computational e�ciency compared with the I-MSSA method. An interpolation op-

erator is adopted for EPOCS and I-FMSSA methods to connect irregular-grid observations

and desired regular-grid data without losing accurate spatial coordinates information.

Chapter 3 adopts the optimal sensing theory for optimal source and receiver design for

seismic acquisition. The quest for the optimum acquisition geometry is answered in the

QR decomposition with column pivoting. The results of the data reconstruction prove that

savings can be obtained with available training data. Further, noise can be removed si-

multaneously with reconstruction. The time-lapse example results reveal that a previously

obtained dense base survey can optimize the monitoring design. This optimal design could

lead to strategies that considerably reduce seismic acquisition costs and design intelligent

data-driven approaches for seismic data acquisition. The dense acquisition from the base

model serves as a guide, allowing us to infer the most crucial locations for capturing signif-

icant subsurface changes. Harnessing this knowledge, one can deploy a sparser yet highly

e↵ective acquisition geometry for the monitor survey. This methodology promises resource

e�ciency and paves the way for more sustainable and environmentally friendly seismic

monitoring practices. Further, a hybrid method that involves inverting for coe�cients that

simultaneously model the signal via a global basis and analytical transform is proposed to

solve the signal leakage problem that often arises in seismic processing. Synthetic and real

data examples reveal that the signal component is not damaged compared to traditional

noise removal methods.

Chapter 4 introduces a machine-learning-based approach for seismic sensor placement,
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specifically leveraging reinforcement learning techniques to address the challenges of acqui-

sition optimization. In the seismic sensor placement problem, the limited number of optimal

sensors attempting to be in the optimal locations can acquire nearly the same reconstructed

signal quality compared with the conventional dense and regular equal-spacing survey lay-

out. Theoretically, this optimization problem can be incorporated into RL methodology

to provide a brand new way to address seismic sensor placement design problems. There-

fore, I propose an integrated RL-based optimal sensor location selection and take the OBN

acquisition as an example. Defined in terms of optimization of the MDP, RL theory ad-

dresses the problem of, with an initially unknown environment, how an autonomous active

agent learns the optimal policies while interacting. Thereby, I aim to justify whether the

self-learning property can make RL a promising candidate for this optimization problem.

Initially, the well-established Q-learning algorithm is adapted to tackle the optimization

problem. Then, an MDP is explicitly developed for seismic acquisition design, with fo-

cusing the sensor placement issue. Once the optimal policy is trained through this MDP

framework, it guides us toward achieving an optimal acquisition design in line with that

policy. The resultant synthetic data scenarios are shown in CSGs, CRGs, and RTM images,

demonstrating that the proposed method provides better sensor locations for reconstructing

data than the jittered sampling scheme under the same circumstances. Comparison with

random policy also verifies the e↵ectiveness of the proposed method. Further, albeit only

exemplified with seismic sensor placement application, this general idea of applying RL to

solve the NP-hard combinatorial problem could also be used in other fields of science.

Chapter 5 proposes the vibroseis optimal route problem together with the formulation of an

MDP framework. My intention is to pioneer the application of RL in the domain of seismic

acquisition. Specifically, I aim to utilize DRL algorithms to navigate seismic acquisition

design’s highly complex and multi-variable space. Preliminary results indicate that DRL

holds promise as a robust tool for optimizing the e�ciency, cost, and quality of seismic sur-

veys, thereby presenting a transformative approach in the field of exploration geophysics.

DQN algorithm is applied to solve the problem. Minimize the second maxima of the spec-

trum of the grid for optimal route design when some positions are unavailable. The DQN

essentially utilizes a deep neural network to approximate the Q-values, overcoming the tra-

ditional limitations of Q-learning in high dimensional state spaces. By feeding the state into

the network and obtaining the Q-values for each possible action, the DQN can e↵ectively

learn the optimal policy for even the most complicated scenarios. The inclusion of a replay

algorithm is pivotal for the successful integration of RL with deep learning architectures.

The network can learn more e�ciently and robustly by sampling from this replay bu↵er and

revisiting these transitions. Results demonstrated that with the proposed method, the least

number of sensors is used, and the vibroseis can reach the finish points using the least time.

Appendix A gives a toy example of the sampling operator utilizing the Kronecker product.
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Appendix B provides a robust POCS version to de-emphasize outliers using the `1/`2 norm

to reduce the influence of erratic noise. Synthetic and real data are used to examine the

performance of the revised POCS method.

6.2 Future recommendations

The content of my dissertation relies on developing new algorithms/methods for seismic

acquisition design. During my research, I also found some problems/limitations that can be

considered in future research directions.

First, the potential benefits of CS are real and significant. But to realize them, several ob-

stacles need to be surmounted, including overcoming the inertia of entrenched engineering

practices and adapting the theoretical framework to practical acquisition schemes and work-

flows for imaging and inversion. The seismic application of CS and its extensions rely on

solving an extensive system of equations that arise from the physical setting of exploration

seismology. This puts pressure on developing large-scale solvers that can handle massive

data volumes.

Second, for the problem of optimal vibroseis route design, even though I have tested single-

agent cases, the field of multi-agent environment is full of research opportunities, which is

the case of simultaneous source acquisition. Multiple agents may be demanded to cooperate

to collect a mutual maximal reward, or each agent may be allowed to operate on its own

egoistically to compete for its maximal reward. About the neural network, several neural

networks could be built, and each has to compete against the other neural networks in

predicting adversaries’ strategies and selecting the best next move. Or only one neural

network is needed for predicting a coordinated next move for all the agents.

Third, another potential direction for future work is to explore the use of other DRL al-

gorithms, such as proximal policy optimization (PPO), for seismic acquisition design and

compare their performance with the DQN algorithm. Moreover, the proposed approach can

be extended to other optimization problems in the geophysical exploration industry, such

as well placement design.

I postulate that some of the techniques developed and explored within the confines of this

dissertation may be extensible to other applications. These could range from optimal acqui-

sition design in non-destructive testing to advancements in biomedical imaging and telecom-

munication sectors (Tiwana et al., 2012; Pelivanov et al., 2014; Herrera-May et al., 2016;

Manohar et al., 2017).

Last but not least, one promising application is earthquake early warning systems. Quick

and accurate seismic data acquisition is crucial for early earthquake detection and warning.
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My optimized acquisition techniques aim to contribute to the international academic frontier

in earthquake early warning by enabling rapid response and more e↵ective risk mitigation

strategies. Although seismology relies on arrays in terms of depth and horizontal resolution,

which is di↵erent from traditional seismic exploration, the research ideas of array technology

(i.e., multi-seismometer acquisition) are first applied in the field of oil and gas exploration,

and it has similarities in the principle of seismic wave propagation and the method of data

processing. Under the actual conditions in the field, the seismic arrays are limited by

the number of available instruments, budgetary funds, geological conditions and research

objectives, and other factors. In addition, in recent years, the operation of dense arrays

has become a development trend to use and densification of the existing network of arrays.

How to design the optimal seismic observation system to improve the signal-to-noise ratio of

the seismic signals and the ability of earthquake monitoring is an important research topic.

Suppose the optimal acquisition method, by deep reinforcement learning algorithms, can be

successfully applied to the design of an earthquake array design. In that case, data can be

collected quickly and e�ciently to help take rapid response measures to reduce casualties

and property damage caused by earthquake disasters. It will be meaningful if this research

can make a certain contribution to the timely and e↵ective early warning of earthquake

disasters.
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APPENDIX A

Sampling operator using Kronecker product

Consider an ideal seismic data cube D(t, r, s), where t indicates time, r and s denote the

receiver and source position, respectively. Assume the integers Nt, Nr, and Ns are the

number of time samples, receivers, and sources, respectively. The cube can be represented

as a third-order tensor D of size Nt ⇥Nr ⇥Ns.

For illustration purposes, consider an optimal receiver problem, I reshape the ideal data

tensor D into a matrix D of size (Nt ⇥ Nr) ⇥ Ns where each column of D corresponds to

a common source gather (CSG). Assume the data is acquired with Ns sources and only K

receivers (K < Nr) are needed for the optimal design problem.

The sampling operator for this problem is Tr. No sampling in time is performed, and the

whole seismogram is taken for each sampled receiver. This can be easily accommodated by

expressing the data sampling matrix via

T = Tr ⌦ INt , (A.1)

where INt is the Nt ⇥Nt identity matrix and the symbol ⌦ stands for Kronecker product.

T is the sampling matrix, a sparse matrix of size (Nt ⇥K)⇥ (Nt ⇥Nr), which extracts K

selected seismograms belonging to receivers with sampling positions ⌫k, k = 1 . . .K, from

the ideal data D. The latter permits the expression of the sampled data, referred to as the

observed data for a given sampling set ⌫, as follows

D⌫ = TD. (A.2)

For the toy example, I use Ns = 10, Nr = 20, and Nt = 140. The receivers are deployed

at positions given by the sampling set ⌫ = [⌫1, ⌫2 . . . ⌫K ], and K = 8. Figure B.1 shows
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Figure A.1: Toy example showing the sampling operator acting on receivers. The
upper figure shows the original data, and the lower one depicts the data after
sampling.

the true data (D) with the decimated data (D⌫) after sampling. Clearly, for the optimal

receiver problem, the sampling operator acts only on receivers.
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APPENDIX B

Robust projection onto convex sets reconstruction for

seismic erratic noise attenuation

Even though the POCS method is widely adopted, it cannot remove erratic noise. Appendix

B proposes to de-emphasize outliers by using the `1/`2 norm to reduce the erratic noise

influence. Synthetic and real data are used to examine the performance of the revised

POCS method.

B.1 Traditional projection onto convex sets

Traditional POCS algorithm in the ! � k domain can be expressed as (Gao et al., 2013b):

dk = dobs + [1�P] � FTTFdk�1, (B.1)

where d is data in the frequency-space domain, P is sampling operator. The element of

P = 1 means there is a trace and P = 0 indicate there is no trace. T is a threshold operator

that is applied on the spectrum of the data D, and � means Hadamard product.

From equation B.1, we can know the reason why erratic noise cannot be attenuated using

the traditional method is that the original traces are reinserted in each iteration without

any threshold or processing.
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B.2 Robust projection onto convex sets

Let us assume the following model is the complete ideal vectorized multi-dimensional seismic

data:

d = F
Tx, (B.2)

where F is the Fourier transform, and x represents the ideal complete Fourier coe�cients.

Besides, orthogonality property of Fourier transform guarantee that FT = F
�1.

Then, noise, including erratic noise, is the di↵erence between the observed data and the

sampled ideal data, which can be written as:

e = dobs
�Pd = dobs

�PF
Tx, (B.3)

where dobs is the observed data and e is the noise we want to attenuate. P as shown in

equation B.4 denotes a diagonal sampling matrix whose elements are also diagonal matrix,

which is represented by Pi. Each Pi corresponds to one trace of the dataset, and n is the

total number of traces.

P =

2

66666664

P1

P2

. . .

Pn�1

Pn

3

77777775

(B.4)

Pi is expressed as:

Pi =

(
I if trace is not empty

0 if trace is empty
(B.5)

The symbol I in equation B.5 means the trace has been sampled contains signal and noise,

while 0 means the trace is empty. Notice that P = PT .

The reconstructed data can be obtained by minimizing the following cost function

J = JM + JR, (B.6)

where JM is the data misfit term and JR is the model term.

To deal with the non-gaussian noise, we adopt the `1/`2 norm for the misfit term:

JM = kek
`1/`2 =

NX

i=1

q
|ei|

2 + "2, (B.7)
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where N denotes the total number of the complete noise-free seismic data and " is a small

constant.

According to sparse sensing theory, we use `1 norm for the model term to let the Fourier

coe�cients be sparse. Thus, a cost function expressed in equation B.8 is proposed.

J =
��dobs

�PF
Tx

��
`1/`2

+ � kxk1 , (B.8)

The derivative for the Fourier coe�cients is expressed in equation B.9, which is equal to

zero.
@J

@x
=

�
PF

T
�T

A
�
PF

Tx� dobs
�
+ �Qx = 0. (B.9)

The symbol A in equation B.9 denotes the weights induced by the `1/`2 norm, which is a

diagonal matrix with elements given by Aii =
1p

|ei|2+"2
Besides, Q is also a diagonal matrix

with elements given by Qii =
1

|xii|+"
.

Grouping,

FPTAPF
Tx� FPTAdobs + �Qx = 0. (B.10)

The second term in equation B.10 can be simplified. Because A and P are both diagonal

matrices, their sequence does not change the final result. Besides, notice that Pdobs = dobs,

which means the observed data stayed the same when the sampling operator was applied

to it. Then, the second term in equation B.10 can be rewrite as:

FPTAdobs = FAPTdobs = FAPdobs = FAdobs. (B.11)

Let FTx = d, then equation B.10 can be rewritten as:

FPTAPd+ �Qx = FAdobs. (B.12)

Grouping,

�Qx = FAdobs
� FPTAPd. (B.13)

The observed dataset can be divided into two circumstances: the traces that are not empty

and the empty traces. Let’s discuss these two cases:

If, in case 1, the trace is not empty, then the element in the sampling matrix corresponds to

an identity matrix, which means that for these traces, the element in matrix Pi = I, then

equation B.13 is as follows,

�Qx = FAdobs
� FITAId = FAdobs

� FAd = FA(dobs
� d). (B.14)
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In this case, the Fourier coe�cients are:

x = (�Q)�1
FA(dobs

� d). (B.15)

If in case 2, the traces are empty, then the element in the sampling matrix corresponds to

zeros, which means that for these empty traces, the element in matrix Pi = 0, then equation

B.13 is expressed as,

�Qx = FAdobs
� F0TA0d = FAdobs. (B.16)

In this case, the Fourier coe�cients are

x = (�Q)�1
FAdobs. (B.17)

Because the whole dataset is made of all the traces, whether it is empty or not, that is to

say, cases 1 and 2 together form the dataset. Therefore, the final expression for the Fourier

coe�cients is the sum of the two cases,

x = P(�Q)�1
FA(dobs

� d) + (I�P)(�Q)�1
FAdobs, (B.18)

where I is an identity matrix.

Furthermore, the elements in matrix A and Q depend on the unknown x, POCS iteratively

can find the Fourier coe�cients. So, if we express the equation with iteration, we can rewrite

the final formula as follows:

xk+1 = P(�Q)�1
FA(dobs

� dk) + (I�P)(�Q)�1
FAdobs, (B.19)

where k represents the iteration number.

Equation B.19 is the iterated equation for the Fourier coe�cients. We can see x in the

k + 1 iteration depends on the di↵erence between the initially observed dataset and the

data reconstructed from the k-th iteration and the Fourier coe�cients from the previous

iteration.

As long as the Fourier coe�cients are available, we can easily reconstruct the ideal dataset

by applying the inverse Fourier transform.

d = F
Tx = F

TP(�Q)�1
FA(dobs

� d) + F
T (I�P)(�Q)�1

FAdobs, (B.20)

Or:

d = F
Tx = PF

T (�Q)�1
FA(dobs

� d) + (I�P)FT (�Q)�1
FAdobs, (B.21)
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B.3 Examples

B.3.1 Synthetic data example

In this section, the proposed method is evaluated with both synthetic data and field data

examples. Comparisons between the robust solution and the conventional solution on a 5D

seismic data set are made.

Figure B.2 is one slice of the 5D synthetic data contaminated with Gaussian and erratic

noise. By using the standard POCS method, the signal has been recovered, but the erratic

noise is still there. Figure B.3 shows the [:,:,8,2,2] slice of the synthetic data after the

proposed POCS reconstruction with an iteration number of 5. It is noticeable that the

reconstructed result is satisfied, and the erratic noise has been successfully attenuated.

B.3.2 Field data example

Figure B.4 shows the [:,4,:,2,2] data slice after standard POCS reconstruction, which means

the 2nd, 4th, and 5th dimension is fixed. The iteration number is 100, and it is clear that

even though the empty traces are successfully reconstructed, erratic noise is still there. For

example, trace 20 is contaminated by erratic noise before and after applying the POCS

algorithm. Figure B.5 is the same slice as Figure B.4, but using the proposed algorithm. It

is noticeable that the reconstructed result is much better than Figure B.4, and the erratic

noise attenuation is successful.

Figure B.6 shows the [:,:,8,2,2] slice of the data after standard POCS reconstruction. It is

the same in Figure B.4 that even though the empty traces are successfully reconstructed,

erratic noise is still not reduced. Figure B.7 is the same slice as Figure B.6, but using the

proposed algorithm. It is clear that the reconstructed result is also much better than Figure

B.6, and the erratic noise has been removed.
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k = k + 1 �For each

Figure B.1: The flowchart of the 5D POCS reconstruction algorithm with erratic
noise sampling operator in the ! � nx1� nx2� nx3� nx4 domain.
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Figure B.2: Left) Original data of slice [:,:,8,2,2] with 50% decimation. Right)
Reconstructed data with standard POCS.

Figure B.3: Left) Original data of slice [:,:,8,2,2] with 70% decimation. Right)
Reconstructed data with proposed POCS.
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Figure B.4: Left) Original data of slice [:,4,:,2,2]. Right) Reconstructed data with
standard POCS.

Figure B.5: Left) Original data of slice [:,4,:,2,2]. Right) Reconstructed data with
proposed POCS.
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Figure B.6: Left) Original data of slice [:,:,8,2,2]. Right) Reconstructed data with
standard POCS.

Figure B.7: Left) Original data of slice [:,:,8,2,2]. Right) Reconstructed data with
proposed POCS.
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