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Cluster resolution (CR) is a useful metric for guiding auto-
mated feature selection of classification models. CR is a
measure of class separation in a linear subspace for variable
subsets via the determination of maximal, non-intersecting
confidence ellipses [11[2][3]. Feature Selection by Cluster
Resolution (FS-CR) is most commonly used to extract pan-
els of useful, discriminating features from sparsely popu-
lated chromatographic peak tables, optimizing models from
raw signals, or when working with data sets with many more
variables than samples. The absence of a numerical method
for calculating cluster resolution necessitates a great deal
of dynamic programming and algorithmic complexity [4]. In
this work, we present a numerical determination of the clus-
ter resolution metric, which reduces computation time by
about 65 times when compared with the dynamic program-
ming approach, and simplifies the operating principles of
FS-CR algorithm.
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1 | INTRODUCTION

Modern platforms for chemical analysis, particularly chromatographic separations with mass spectral detection, gener-
ate an abundance of data. Modern liquid chromatography - tandem mass spectrometry (LC-MS/MS) or comprehensive
two-dimensional gas chromatography - time-of-flight mass spectrometry (GCxGC-TOFMS), often reveal thousands
of unique compounds in complex samples. Within such data sets, there are a typically a relatively small number of
variables which contain the useful information required for discrimination between classes of samples, obscured by
many more variables that hinder predictive modeling capabilities. Problems such as these are frequently observed
when modelling raw spectroscopic data (FT-IR, Raman, NMR, etc), raw chromatographic signals, and peak table data
from a series of complex samples, as frequently encountered in metabolomics data sets.

Feature selection seeks to identify a useful subset of variables in the data for inclusion, while excluding variables
that do not contribute to model performance. Ideally, feature selection will identify a subset of variables that yield a
rugged model that is resistant to noise and easy to interpret.

A number of variable selection techniques exist, which can be broadly classified as belonging to filter, wrapper,
or embedded-type methods. All of these techniques have relative advantages and disadvantages[5] [é]. Briefly, filter
methods are easy to apply to many different types of data, but require careful optimization of thresholds. Selection
based on a Fisher-ratio threshold is a common example of a filter method [7] [8] [2]. The approach is fast, but since
it evaluates each variable independently, it cannot account for relationships between correlated variables. Selectivity
ratios and Variable Importance in Projection (VIP) scores are metrics for feature selection which do consider each
variable in the context of others - either by examining the weighted variable correlation with the vector of observed
values, y, within its projection to the latent variable space (in the case of VIP scores) or the ratio of variance explained
to residual variance (in the case of Selectivity Ratios) [10]. Wrapper-type methods reduce user intervention through
automated model quality assessment as different combinations of variables and samples are tested and validated, but
may still require carefully optimised user parameters. These also require large numbers of iterations in order to find an
optimal variable subset. Recursive weighted Partial Least Squares (rPLS) [11] is a modern implementation of a wrapper-
type method [12], but methods such as Genetic Algorithms (GA) [13] and Random Forests (RF) [14] have been used
as variable selection routines within the framework of wrapper methods as well. Embedded methods incorporate
an extra step to make decisions about variable selection during model calculation, independent of model quality
assessment. Powered partial least squares discriminant analysis is an example of this technique [15], but embedded
methods based on classification by Support Vector Machines (SVM) are also applied [14]. Ideally, this approach makes
objective decisions about variable selection, and reduces the dependency on extensive cross-validation, but the extra
step increases the computation time required for these techniques. Embedded methods are not as extensively used,
perhaps because they assess variable significance based on optimisation criteria instead of a statistical measure of
performance [17].

Hybrid variable selection routines incorporate elements of 2 or more classes of variable selection, most commonly
to reach a compromise between the simplicity of threshold methods, and the reliability of wrapper methods [18] [19].
Aninitial subset of variables exceeding a particular threshold are considered, and model performance is evaluated once
per iteration or multiple times either by adding (forward-selection) or removing (backwards-elimination) high-ranking
variables until the predictive ability of the model is no longer improved. Variables that are consistently retained across
multiple cross-validation sets are retained, and others are discarded.

Principal Component Analysis (PCA) is a data reduction technique that can be used to reduce the complexity of
the feature selection problem, and a qualitative tool often used by investigators to examine the effect of variable

selection on the most significant axes of variance in the data. Classes well-separated along their most significant
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principal components typically perform well using a targeted discrimination technique such as Linear Discriminant
Analysis (LDA), Partial Least Squares - Discriminant Analysis (PLS-DA), or Support Vector Machines (SVM). As such, it
is often convenient to examine variable subsets within their principal component space [20] [21].

1.1 | Feature Selection by Cluster Resolution (FS-CR)

Feature selection by cluster resolution (FS-CR) is a supervised learning technique that returns a subset of variables
whose linear combination provides the best possible separation between two or more sample classes in principal
component (PCA) space as determined by the Cluster Resolution (CR) metric. There are two basic assumptions for
the operation of the algorithm: 1 - That a useful, discriminating subset of variables is of relatively low rank, and can
be adequately described using only a few principal components, and 2 - that samples resolved along relatively few
principal components are trivial to separate using supervised classification methods.

The latest implementation of FS-CR operates within the framework of a hybrid filter/wrapper method with a com-
bination of backwards-elimination and forward-selection to consider individual variables within the context of others.
Variables are first ranked, typically through the application of either Fisher ratio [22] or selectivity ratio[23] [3], and
the algorithm evaluates candidate variables via a hybrid backwards-elimination / forward-selection routine [4]. The
initial population of variables to be included in the preliminary model is determined through analysis of the true and
null distributions of ranking metric values [21]. Backwards-elimination proceeds by sequentially removing variables
beginning with the lowest-ranked (based on ranking metric) variable and working towards the highest-ranked. If CR
improves when a variable is removed, that variable is permanently discarded; otherwise it is returned and permanently
retained. This proceeds until the entire initial population of variables has been tested. Forward-selection is then per-
formed, testing as-yet unconsidered variables to see if their inclusion improves the model based on the variables that
survived the backwards-elimination step. Forward-selection proceeds from the highest-ranked variable that was not
included in the initial population being considered until a stop condition is met [21].

The FS-CR algorithm has several advantages, including the fact that the utility of a variable is evaluated in the
context of the information provided by other variables (unlike in methods such as a Fisher-ratio cut-off threshold). Un-
like feature selection methods based on a partial least squares regression, variables are considered in an unsupervised
projection to their principal component space. This helps to reduce to risk of over-fitting because the model is not
seeking to impose a favourable projection on the data, but is seeking to find a group of variables that naturally lend
themselves to favourable projections via PCA[1]. The results can also be thoroughly cross-validated by redistribut-
ing the samples among the training (data which is used to calculate the principal components), optimization (data for
which CRis calculated within the previously calculated principal component space), and validation (data that measures
the predictive accuracy of the variables) sets through multiple iterations of the algorithm and retaining only those vari-
ables that survive in a given fraction of all iterations (typically 75-90%). Other hybrid feature selection routines are
structurally similar to the FS-CR algorithm in this regard, but a metric describing the accuracy of cross-validation re-
sults is more commonly employed to assess variable subsets. FS-CR employs the cluster resolution metric to assess
variable subsets. Cluster resolution is defined as the maximum confidence interval over which two or more classes
can be separated when projected into the principal component space of the candidate feature subset. This is more
sensitive to favourable orientations of sample scores, and is much less granular than cross-validation results alone.

FS-CR has been successfully deployed for datasets where the number of features greatly exceeds the number of
samples, and in cases where there are many pre-processing artefacts or spurious signals. These situations often arise
with weak signals close to the detection limits of analytical instrumentation or in data derived from highly variable

populations of samples (often encountered in natural products, petroleum, and metabolomics samples). Two chal-
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lenges for the application of FS-CR include the need for a relatively large number of samples (30 per class is a typical
minimum) so that they can be properly partitioned into training, optimization, and validation sets, and the relative
slowness of the cluster resolution calculation which is performed ,C, times for each variable being tested where n
is the number of classes in the optimization problem. Calculation of CR scales poorly for multi-class problems: for a
three-class problem, CR is calculated three times for each variable considered, and in datasets with seven classes, CR
is calculated 21 times per variable [3], as the overall CR for the iteration is calculated as the product of the individual
pair-wise binary combinations of different classes. This puts a practical limitation on the number of classes that can
be analyzed within a reasonable time-frame using this technique.

The utility of CR in four or more dimensions is currently unknown. The volumes and surface areas of N-spheres
are maximal at 5 and 7 dimensions, respectively [24]. This may have implications for the determination of higher-
order cluster resolution, especially when considering that the axes of confidence ellipses decrease as a function of
explained variance. However, the proposed mathematical formalisation of the cluster resolution metric does not
prohibit similar determinations of CR for any number of dimensions, or principal components. Evaluating the utility of
this formalisation in two dimensions is an important first step in addressing these questions, which will be explored

in future works.

2 | THEORY

2.1 | Cluster Resolution

Cluster resolution is defined as maximum size of confidence ellipses (or ellipsoids when operating in higher-dimensional
space) that can be described about the scores for the samples in a pair of classes projected into a linear space, without
the ellipses overlapping, and is bounded between 0 and 1. The determination of cluster resolution has so far utilised
extensive dynamic programming. In addition to being slow, dynamic programming is mathematically unsatisfying.
The method works by calculating a number of points along confidence ellipses projected within two or three principal
components, and uses graphical methods to determine whether or not they intersect. Improvements to the efficiency
of this method have been made by "hopping"[4] between intervals where the ellipses do intersect, and where the
ellipses do not intersect. This reduces the number of iterations of the algorithm, and solves some issues regarding
the granularity of confidence ellipse calculations. However there is still the need to determine the coordinates of
many points multiple times for each calculation of cluster resolution, and the accuracy scales with the computational

workload required for a properly representative graphical determination.

2.2 | Mathematical Description of Confidence Ellipses

For two uncorrelated score vectors in principal component space, confidence ellipses for one class follow the form
[25]:

T, \2 T, \2
(o -
'S VS,
Where T, and T, are vectors containing the first and second principal component scores of the confidence ellipsis,

Sy and S, are the variances associated with each principal component, and y? corresponds to the size of the ellipse for

a given confidence interval, as defined by the y2 distribution. Equationcan be rewritten in more general parametric
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form:

Ti = T2 + \|Ax% cos(6) 2
Ty = T2 + \JAx2sin() (3)

In Equation 7'1O and Tz0 refer to the mean of each cluster along the first and second principal components. A,
and A describe the major and minor eigenvalues, which correspond to the variance of the data, and 8 encompasses
the angle associated for a given point along the ellipse. For the majority of cases, where T;, and T, are not completely
uncorrelated, the angular components of Equations 2 and 3 are multiplied by a rotation matrix, Rs, as a function of
an angle ¢. ¢ is calculated as the angle between the major eigenvector of the ellipse, vy, relative to the first principal

component of the data:

vi(2)
= arctan ()
¢ ()
Where R for a two-dimensional case follows:
cos —sin
S e "’} G
sing  cos¢

Previously, CR was calculated by increasing y2 by the same factor for each of the two confidence ellipses until the
point where a collision between the two ellipses was detected (or y2 was decreased similarly until a collision no longer
occurred). This requires several hundred points around the ellipse to be calculated for each increase of y2. Accuracy
is improved by increasing the granularity of the y2 expansion and/or the number of points along the ellipse, at the
expense of computation time. While this is a reliable method of determining cluster resolution, it is computationally

costly. Consequently, in this work a numerical solution through minimization of some cost function is sought.

2.3 | Derivation of a Numerical Solution

The intersection of two confidence ellipses can be described as the intersection of two lines, for a pair of angles that
stem from the centre of each confidence ellipse.

uy
+ X7 [V1

Where 7}." refers to the it" confidence ellipse centre for the j principal component scores. Vector components

2
1

“Z] (6)

T T
7] T2 Vo

u, v are shorthand for the following expansions from Equations[2and 5}

uy = v\ cos 8; cos ¢y — +fA; sin 6 sin gy (7)

uy = A2 cos 8, cos ¢y — \/A; sin 6, sin ¢y (8)
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vy = y/A1 €Os 8; singq + /A7 sin 6; cos ¢y 9)
vy = /A2 €S 8, sin ¢y + /A7 sin 67 COs ¢y (10)

For almost any pair of 1, 8;, depending on their positions relative to the angle of the ellipses, ¢1, ¢, 112, and Xzz
can be solved for by rearranging Equation [§]

1 —vy  up||T2-T \ 2
2 2| (14 1| Z X (11)
—(u1vp) +uzvy -vi T22 - 7-12 ’122

The euclidean norm of Equation[IT]can be used to constrain the problem as the minimization of a cost function:

2

2
min £ (61, 6,) = ( 112) +(\/;§) (12)

2.4 | Practical Considerations

For an accurate numerical solution to the cluster resolution problem, at the minimum of Equation ,(12 ought to be
equal to )(22. By minimizing Equation the results often approach this equality. Ideally, a solution is found when

0/96; = 0and 8/96, = 0, such that the intersection of two lines at the minimum of Equation[I2]becomes:

duy /086

,X12 1/064 -0 (13)
0V1 /@91
Oduy /086

,Xzz 2/062| _ 0 (14)
0V2/@92

Setting Equations[I3]and[14]equal to each other and expanding the differentials yields:

—V/A7 sin6; cos ¢ — VA7 cos 67 sin gy
—V/A7 sin6; singy + VA7 cos 8; cos ¢,

—/A2 sin 8, cos ¢y — VA7 €Os 8; sin ¢

(15)
—/A2 sin 8, sin ¢y + /A7 cos B, cos ¢

It is clear that a solution for 8;,6, can be found that satisfies Equation [I5]as a system of nonlinear equations.
However, there is no guarantee that a solution to this system of equations would minimize Equation [I2]nor would a
minimum of Equation[I2] necessarily satisfy Equation[I5] It is possible to find a minimum subject to the constraints
of and via Lagrange’s method; however, it was shown to be computationally inefficient, and unstable given the
complexity of the equations involved, and the potential for undifferentiable points on the optimization surface (i.e. for
two lines parallel to each other such that the y2 at which they converge is undefined). The accuracy of the algorithm

is therefore somewhat limited, but it will be shown that minimizing Equation [L2]yields a workable approximation by
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calculating an intermediate of the upper and lower bounds of y?2 via the mean:
Xmean = Min £2/2 (16)

The confidence interval (defined as cluster resolution (&) for this particular problem) is calculated from the cu-
mulative XZ distribution function with two degrees of freedom (DOF) using the chi2cdf function in the MATLAB ®
Statistics and Machine Learning Toolbox [26]. Where:

X t(v—2)/28—t/2
=F = - dt 17
£=rFi = [ S a7)

In Equation v refers to DOF, I is the Gamma function, and x is the input y2,.,, value from Equation

3 | MATERIALS AND METHODS

3.1 | Implementation

Equation[I2) was minimized using an implementation of the Nedler-Mead Simplex algorithm available as fminsearch
in MATLAB ® 2018b (64 bit)[27]. This algorithm outperformed its equivalent quasi-Newtonian counterparts, both
in terms of the reliability and speed of its convergence rate, due in part to its ability to operate without the need for
an analytical determination of the gradient at each iteration. The tolerance for convergence was set at 2.5 x 1076
for the numerical experiments, and 1 x 1078 for the classification data. Randomly generated two-dimensional data,
simulating scores in the first and second principal components for a balanced dataset were generated (See Supporting
Information). The original (dynamic programming) and new numerical approach to determination of cluster resolution
were applied to the data. All computations were performed on a Lenovo ThinkCentre M700 running Ubuntu 18.04
LTS "Bionic Beaver" with 8 Gb RAM, and an Intel i3-6100T CPU @ 3.20 GHz.

The most recent implementation of the FS-CR algorithm was used for selecting discriminating features in the
experimental data using both the current dynamic programming, and proposed numerical method for determining
CR. Variables were ranked using Fisher Ratios and populations for backwards elimination and forward selection were
calculated using experimental true and null distributions of significant features [21]. The numerical implementation
of the CR algorithm has been made freely available online: 10.5281/zenodo.4064280.

3.2 | Experimental Data

A dataset comprising the volatile organic chemical signatures of 162 samples of cotton and polyester fabrics recovered
from a wear trial, wherein participants each wore bi-symmetrical shirts comprised of one-half cotton, and one-half
polyester fabric was used to compare the algorithms with real data. Details of the wear trial can be found else-
where [28], but the stated goal of the analysis was to find discriminating chemical signatures between the cotton and
polyester samples indicating which compounds were particularly well-retained on the different fabrics following mul-
tiple wear-wash cycles. Both washed and unwashed samples were categorised only as belonging to either the cotton
or polyester classes. The sampling was performed using Solid Phase Micro-Extraction (SPME) fibres with a “tri-mode”
divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) extraction phase (SUPELCO, Bellefonte, PA). Ex-
tractions were performed on the headspace of 2.0 x 2.0 (+ 0.2 cm) samples of fabric, sealed within 10 mL crimp-top
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vials at 30 °C for 21 h. The potentially large in-class variation makes for a somewhat challenging dataset for classifi-
cation.

4 | RESULTS AND DISCUSSION

Numerical I-l

I I I |
0 0.05 0.1 0.15 0.2 0.25
Computation time (s)

FIGURE 1 Average computation times for numerical and dynamic programming determinations of cluster
resolution for two clusters. Error bars indicate +s.
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Confidence interval: 0.9062 Confidence interval: 0.8867
. Computation time: 2.680e-03 s 37/2 15| computation time: 1.205e-01 s
Qb

~ T ~

k)', - E_» 0.5
3 2 g

3 g 0
0 - 0 w0

Hi g 05
2 o
o -7/2 o

3 3 A1k

E E
) - 7}

1.5

2 3712 2

2.5 27 2.5

-2 0 2 4 27312 -x -2 0 w2 w 3x/2 2x 2 0 2 4
Simulated Scores, PC1 61 Simulated Scores, PC1

FIGURE 2 Example calculation, comparing the numerical and dynamic programming implementation of the
cluster resolution metric, with the corresponding optimization surface. "X" is the location of the optimum values for
8y, and 6, found by the Nedler-Mead Simplex algorithm via the minimization of Equation@

In the absence of an analytical solution to the cluster resolution metric, a numerical experiment consisting of
200 randomly generated data sets was used to compare the performance of the numerical implementation of the
algorithm with the current version. The dynamic programming implementation requires an initial guess for CR, and
0.75 was used, as this is a typical initial guess used in practice. The numerical solution does not require an initial guess
for CR. An example solution and the corresponding optimization surface for the numerical method is shown in Figure
|2| For N = 200 sets of randomly generated data, the average time required to calculate cluster resolution was 2 + 1
ms using the numerical method, and 163 + 65 ms using the current dynamic programming approach. For two clusters
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Average calculated confidence interval

FIGURE 3 Secant plot comparing the relative percent differences in the determination of cluster resolution
using the numerical (left, white hemisphere) vs. dynamic programming (right, grey hemisphere) approach for data
with sample classes. All calculations agreed within a 15% relative error. Lines intersecting with the edge of the circle
at the left side of the circle indicate the % relative difference of the numerical method for the determination of
cluster resolution, for an averaged value for cluster resolution indicated by the colour of the line - similar to the
intersection with the right hand side of the circle, expect with respect to the % relative difference for the dynamic
programming approach.

in two-dimensional space, the numerical method is on average 65 times faster (Figure. The two methods provided
similar results that agreed within 15% @ and the ellipses do not appear to significantly overlap in any of the solutions
from the numerical method (See: Supporting Information 1). Comparing the two methods with a secant plot (Figure
@ shows the tendency for the the dynamic programming approach to underestimate cluster resolution vs. the new,
numerical approach.

4.1 | Calculation of the cluster resolution metric for N clusters

The number of times cluster resolution is calculated per evaluated variable depends on the binomial coefficient, ,Cx
where k = 2 and n is the number of sample classes. This is due to the fact that it is necessary to calculate the cluster
resolution between each pair of classes to evaluate the overall cluster resolution for the model (Z). Consequently,
computation time scales poorly for variable selection problems with more than two classes. In general, the overall
cluster resolution is calculated as the product of the individual cluster resolutions for each possible combination of
clusters:

nC2 n
==]]¢ (2) (18)

To compare the compounded improvement for multi-class problems offered by the numerical approach vs. the
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current approach, randomly generated data sets simulating n-class problems were generated as before (2 < n < 7).
30 data sets were simulated per value of n. Results are summarized in Figure Eib For the 7-class problem, a single
= calculation required 3.3 + 1 s using the dynamic programming approach, and 0.040 + 0.005 s using the numerical
approach, an 82-fold improvement.

4.5

+s, Dynamic Programming
Dynamic Programming
+s, Numerical Method
s NumMerical Method

3.5

2.5

1.5

Average Computation Time (s)

0.5

2 3 4 5 6 7
Number of Clusters

FIGURE 4 Average computation time for = in N-class problems for 2 < N < 7 for numerical and dynamic
programming methods. s refers to sample standard deviation for the dynamic and numerical computation times.

4.2 | Comparison of Predictive Capabilities

Feature Selection by Cluster Resolution has proven to be extremely useful for selecting useful subsets of sparse
datasets, typical of peak tables generated GCxGC-TOFMS data, and so one such dataset was used from a previous
study [29]. The dataset is available at: https://doi.org/10.7939/DVN/RLMSRW,

Partial Least Squares Discriminant Analysis (PLS-DA) was used to generate a classification model; the discrimi-
nation threshold for predicted Y scores was generated using a Bayesian technique [30]. The external validation set
was used to evaluate prediction results, following strict class membership assignment designated by the aforemen-
tioned threshold. Results for predictions were made using PLS-DA without feature selection (Figure row 1), with
the current dynamic programming (DP-FS-CR) implementation (Figure row 2), and the numerical (NM-FS-CR) imple-
mentation (Figure row 3), and summarized using predicted Receiver-Operator Characteristics (ROC) and prediction

accuracy, where prediction accuracy is defined as the ratio of the sum of the true positive rate (TP) and true negative


https://doi.org/10.7939/DVN/RLMSRW

Armstrong et al. 11

rate (TN) over the sum of all prediction rates including the false positive (FP) and false negative (FN) rates:

Accuracy = (TP+TN)/(TP+FP+TN +FN) (19)

The dataset contains a high number of replicates, and was divided evenly between training and validation sets for
a critical analysis of each models’ predictive ability. External validation samples were centred and scaled according to
values calculated in the training set. All results are presented with respect to Class 1 (cotton samples) versus Class O
(polyester samples). Within the training set, 200 combinations of training and optimization sets were generated and
used for both DP-FS-CR and NM-FS-CR routines, with variables selected at least 90% of the time across all sample
combinations being included in the final feature subset. In the training set, there were a total of 81 samples: 63 class

1, and 18 class 0. In the validation set there were also a total of 81 samples, with 61 class 1 and 20 class O samples.

Results from the confusion matrices and predicted ROC curves suggest that the variables selected using NM-FS-
CR perform better than the much slower DP-FS-CR algorithm in terms of predictive ability. DP-FS-CR selected a total
of 32 variables, and NM-FS-CR selected a total of 46, with total computation times of 14760 and 1468.3 seconds
respectively. All but 2 variables that were selected using DP-FS-CR were also selected using NM-FS-CR (Table ,
in addition to 16 variables that were unique to the NM-FS-CR method. It was previously shown that using a simple

thresholding method for feature selection with this dataset was unsuccessful [8].
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FIGURE 5 Summary of classification results using PLS-DA, DP-FS-CR, and NM-FS-CR. Confidence ellipses are
displayed for a confidence interval of 95%

5 | CONCLUSIONS

Cluster resolution is a useful metric for evaluating model quality and guiding variable selection routines. Cluster

resolution permits consideration of favourable changes to the relative positions and orientations of score clusters

representing the distribution of sample classes in principal component space, without relying solely on cross-validation

results as is done with other methods. Previously, there existed no mathematical formalization of the cluster resolution

metric, and its determination relied on dynamic programming. The speed and accuracy of the dynamic programming

method depends primarily on the number of points used in the confidence ellipse projections, and a reasonable initial

guess for the cluster resolution. The numerical solution to the calculation of cluster resolution presented herein has

demonstrated a substantial improvement in computation speed, while generally maintaining or improving the accuracy

of the calculation. Preliminary results show that the variables selected using the new numerical determination largely

encompass the variables selected using the dynamic programming approach, while also identifying additional useful

variables. Including these previously hidden variables has been shown to improve the predicted ROC and prediction

accuracy of the model.

The improvements in speed make it feasible to analyse many more combinations of training and optimisation sets,
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DP-FS-CR  NM-FS-CR  Common

32 46 30
1 1 1
3 3 3
4 4 4
5
9 9 9
11 11 11
21 21 21
22 22 22
23 23 23
28
30 30 30
35 35 35
54
56
69
75 75 75
76 76 76
78 78 78
79 79 79
84 84 84
85 85 85
109
123 123 123
141 141 141
148 148 148
165
228
236 236 236
260
280
308 308 308
336 336 336
458 458 458
483 483 483
610 610 610
662
806
912
1022 1022 1022
1342 1342 1342
1573 1573 1573
1614
1763
1842 1842 1842
2230 2230 2230
2531
2708
2766

TABLE 1 Variables selected using the DP-FS-CR and NM-FS-CR feature selection routines. NM-FS-CR identified
all but 2 variables identified using DP-FS-CR in addition to 16 variables that were not identified using DP-FS-CR.
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and a greater number of classes within a reasonable time-frame. As with any hybrid feature selection method, this
extensive cross-validation is generally considered to improve the robustness and predictive accuracy of the model.
Although employed here as a feature selection routine, CR is a generally useful metric for model quality that can
be used in conjunction with validation and residual analysis in any linear space to describe the expected utility of
classification models. It is the authors’ hope that the described mathematical formalization and freely-available code
will enable its use in a variety of different fields where multivariate classification problems are encountered. Further
studies are necessary to derive cost functions for the resolution of N-Dimensional confidence ellipses, and validate

the applicability of this method for determining CR in higher dimensional PCA space.
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An online tutorial for constructing confidence ellipses was instrumental in making this publication possible [31].
Automated colour palette generation made use of /inspecer.m[32]. Figure 4 also utilised code for visualising error

bars as as a translucent background [33].
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