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Abstract: By effectively adjusting the appliance usage patterns of customers, demand response (DR) is expected to bring
significant economic and environmental benefits to the future smart grid. Two kinds of appliances should be considered for DR,
i.e. shiftable appliances such as dishwashers and laundry machines, and non-shiftable appliances such as lights and stoves.
Although the shiftable appliances can be well controlled by energy management systems, the random usage patterns of non-
shiftable appliances will result in uncertainties to electrical demands and thus, affect the efficiency and reliability of smart grid
operation. A two-stage stochastic programming problem is formulated, for which the distribution system operation cost is
minimised in the first stage, by considering various distribution system operation constraints. The scheduling of shiftable
appliances is optimised in the second stage, by considering the random usage patterns of non-shiftable appliances. To reduce
the computational complexity caused by a large number of home appliances in distribution systems, scenario reduction
technique is applied to reduce the number of possible scenarios while still retaining the essential features of the original
scenario set. Extensive simulations are performed to evaluate the proposed DR scheme in IEEE 33-bus and 119-bus test
distribution systems based on real appliance usage pattern data.

௑Nomenclature
ANS non-shiftable appliances set
ASE shiftable EMS controlled appliances set
ASM non-shiftable price sensitive appliances set
C

m household electrical cost
C

u utility electrical operation cost
G() price sensitive function
M household set
O() household occupied function
T time set
W market clear price
max maximum value
min minimum value
ψ power operation to describe appliance property
a appliance indices
cω wholesale electricity market
m household indices
t time slot indices
E energy used to describe appliance property
H hour used to describe appliance property
I power flow node current
LSR power loss between sending end and receiving end
Ntap transformer tap operation
P active power
Q reactive power
V power flow node voltage
τ transformer tap-ratio
ξ time of use probability profile
nR receiving end
nS sending end
x decision variable of EMS controlled appliance
y admittance matrix
z impedance matrix

1௑Introduction
As a crucial component of the future smart grid, demand response
(DR) can benefit from the two-way communications between

electricity producers and customers and results in power quality
improvement as well as power system operation cost reduction. On
the other hand, the customers can adjust (or shift) the time of their
appliance usage in response to different electricity pricing for
energy bill savings. According to the U.S. residential energy
consumption survey [1], the percentage of energy consumption at
home by daily electrical appliances (e.g. lighting and air
conditioning) is 34.6% in 2011, which is 1.44 times higher than
that of 1993. DR is expected to play an important role in
accommodating such a load increment in the near future.

DR, along with renewable energy sources and energy storage
devices at the distribution system level, will have significant
implications in the wholesale energy market. In [2], the authors
distinguish various types of DR as market DR, while physical DR.
Market DR focuses on the electrical pricing and the physical DR is
more about the grid system management. DR programs can also be
divided into time-based DR programs and incentive-based DR
programs [3]. By these different classifications of DR, we can
observe that the electricity market requires the customers to play an
active role to improve the grid system, rather than pure receivers in
the traditional market. Moreover, the close relationship between the
customer and the electrical market helps enhance power quality,
reduce peak period load demand, and enhance customer user
experience. Therefore, customers can choose whether to shift
electrical appliances to the low-price period or to their favourite
hours.

In the literature, DR optimisation has been studied based on
various pricing mechanisms, such as real-time pricing, day-ahead
pricing, time-of-use pricing, and critical peak pricing [4, 5].
Several research works investigate the optimal design of price-
based DR schemes by utility companies based on the prediction of
customer load demand, in order to improve the efficiency of power
system operation [6–9]. A recent research work pointed out that the
consideration of uncertain load growth is critical for distribution
network pricing [10], and a bidding strategy operation model of the
virtual power plant has been formulated to make distributed energy
resources more applicable and effective in electricity market [11].
Although there is existing research works on modelling the
uncertainties of renewable power generation [12, 13], electric
vehicle (EV) charging and discharging, and voltage regulation and

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 18, pp. 4163-4171
© The Institution of Engineering and Technology 2018

4163

READ O
NLY



inverter capacity [14], how to incorporate the random appliance
usage patterns in the development of DR schemes in distribution
system still requires extensive research. In order to address this
issue, recent research works on DR investigate residential
appliances with flexible service time period and power intensity, as
well as day-ahead load forecast considering errors [15]. Also, a
continuous decision-making process that allowed more flexibility
of electricity customers is proposed in [16]. Probabilistic
residential electrical load models are developed in some recent
research works by considering the random operating conditions of
each home appliance under uncertain human behaviour [17]. Yet,
these works concentrated on the optimisation at the residential
level, but how to utilise the probabilistic residential electrical load
models and develop a stochastic DR scheme accordingly in the
distribution system level is still an open issue.

In this paper, we proposed a two-stage stochastic programming
scheme for DR in a smart grid. Different from the recent research
works on the optimisation in distribution systems, which model
each residential household by its total load, we establish detailed
models of the usage patterns of each appliance in the household, as
well as the customers’ response to electrical price variation.
Specifically, the operation cost minimisation of the distribution
system is considered in the first stage by optimising electrical
price, while the optimal scheduling of shiftable appliances is
investigated in the second stages. The interaction between the two
stages is established based on customers’ response to electricity
price, which can affect the usage patterns of various appliances.
This work is important for the analysis of the impact of customers’
uncertain behaviour in distribution systems with certain DR
programs and for the utility companies seeking for optimal pricing
schemes for the DR programs to indirectly affect customers’
behaviour. The main contributions of this paper are threefold:

• A two-stage stochastic programming scheme is developed for
DR in the smart grid, by considering the random appliance
usage patterns of customers.

• In the first stage of the stochastic programming, a genetic
algorithm is implemented to optimise the electricity price, by
considering the responses of various types of appliances and
non-linear distribution power flow.

• In the second stage of the stochastic programming, due to the
existence of a large number of appliances with random usage
patterns in each household, a modified scenario reduction
technique is proposed to reduce the computational complexity of
appliance scheduling optimisation.

This remaining of this paper is organised as follows. The related
works are introduced in Section 2. In Section 3, the system model,
including the models of both distribution system and household
appliances, are introduced. The two-stage stochastic programming
scheme, along with the genetic algorithm and scenario reduction
technique are presented in Section 4. The simulation results are
discussed in Section 5, followed by the concluding remarks in
Section 6.

2௑Related work
Random load demand has been studied in the literature as a part of
uncertainties in power systems. A real-time interactive energy
management scheme of microgrid was proposed by Marzband et
al. [18], where various uncertainties including random load
demand and renewable power generation are being considered.
Also, the uncertainties of wind power generation and price elastic
loads are investigated in [12] for security-constrained economic
dispatch. Nevertheless, these research works study the random load
demand based on data analysis and prediction, by assuming that the
human behaviour is known in advance.

In practice, the knowledge of future human behaviour cannot be
obtained accurately when the electrical price is released. To address
this kind of uncertainty, two-stage approaches can be applied for
stochastic programming [19]. Considerable efforts have been made
in the past concerning applying two-stage approaches for DR [20–
24]. In particular, a two-stage stochastic programming problem was

formulated in [20], aiming at pursuing the optimal day-ahead
power procurement with minimum costs and expected recourse
cost, while considering the random actual power demand,
renewable energy supply and storage. In [21], a two-stage
operation scheme was introduced to reduce the uncertainty of the
solar energy at the first stage, while maximising the total revenue
of EV parking at the real-time operation in the second stage.
Uncertainties such as renewable energy, power demand, and energy
storage are considered in [22–24].

Although different kinds of uncertainties have been studied in
power systems, all of the above-mentioned literature does not take
into account human behaviour uncertainties in DR, or only
considers the random appliance usage patterns in the household
energy management system (EMS) instead of a distribution system.
In this paper, we formulate a two-stage stochastic programming
problem based on probabilistic residential electrical load models
for DR in the smart grid. Besides, a genetic algorithm is
implemented to solve the two-stage stochastic programming
problem, in conjunction with a scenario reduction technique for
computational complexity reduction.

3௑System model
In this paper, we consider a typical residential distribution system
and various types of appliances. The distribution system power
flow model and household electrical appliance models are
presented in the following.

3.1 Distribution system power flow model

We use a common branch model to characterise the transmission
lines and transformers in an n-node distribution system, which
consists of a standard π transmission line model and an ideal phase
shifting transformer model. For a transformer with tap-ratio τ and
phase shift angle θ, its turns ratio can be represented as B = τe jθ,
while a transmission line can be modelled by letting B = 1.

Then, the complex current from the sending end (InS
) to the

receiving end (InR
) of a branch can be expressed with branch

admittance matrix and respective voltages VnS
 and VnR

, given by

InS

InR

=

y

2
+ z

1

B
2

1
B

z

1
B

z z +
y

2

VnS

VnR
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where the impedance z and the admittance y in the branch
admittance matrix are elements between the sending end and
receiving end. For an n-node distribution system, the complex
nodal current injections from related node d to node b is
Ib = ∑d = 1

d = n
Ibd. Then, the complex power flow can be calculated as

a function of the complex nodal voltages, given by

Pb + jQb = VbIb
∗ = VbYbd

∗
Vd

∗, (2)

where P and Q refer to the active power and reactive power,
respectively. Ybd integrates all the impedance and admittance
elements into a complex n × n admittance matrix. Once the active
and reactive power consumed by all household appliances (which
are random variables in nature due to the random appliance usage
patterns) are realised, the voltage and related phase angle can be
obtained based on power flow analysis.

For tap changing transformers (e.g. voltage regulators), the
transformer tap-ratio can be calculated as [25]

τt = 1 + bV , t, ∀t = 1, 2, …, T , (3)

where bV , t refers to the voltage regulator coefficient, based on the
transformer turns ratio range. For a given period of time (T), the
total number of transformer tap operations can be calculated as
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Ntap = ∑
t = 1

T

|τt − τt − 1| . (4)

The branch power loss LSR from node nS to node nR can be
calculated based on bus voltages and branch parameters as

LSR = |(VnS
/B) − VnR

|2 /z . (5)

As mentioned before, the voltage and phase angle can be acquired
from power flow analysis. So, the system operation cost, which
includes tap operation and power loss, can be calculated
accordingly.

3.2 Residential load model

Two categories of household appliances are considered for DR
programs. One includes the non-shiftable appliances which involve
human participation, such as cooking and cleaning. The other
consists of shiftable appliances such as washers and dryers, which
can be controlled by an EMS with adjustable operation start times.
A key feature of this research work is the consideration of the
random usage patterns of appliances, which can significantly affect
the optimisation of DR schemes.

3.2.1 Non-shiftable appliances: Recent research works have
investigated how to quantify the randomness of human participated
activities [26, 27]. In particular, the electric load profiles of
individual appliances have been developed.

Based on these research works, we can introduce the appliance
time-of-use (ToU) probability profile ξm, a, t, which represents the
probability of operation of an electrical appliance a ∈ ASM in a
household m ∈ Mn during the time period t ∈ T .

The probability distribution profiles of human behaviour can be
found in [28]. In this paper, we assume that the appliances related
to one behaviour follow the same distribution (e.g. deep fryer and
stove are related to the cooking behaviour). Fig. 1 shows several
typical human behaviours in a common household with children.
The probability distributions differ by household types. For more
details, please refer to [28]. 

In practice, many factors can affect this ToU probability profile,
among which the price sensitivity is a major factor.

Price sensitivity function G(W) can be used to describe the
sensitivity of human behaviours in response to different market
clear prices (MCPs) W [29]. Affected by the price sensitivity, the
new ToU probability profile can be calculated as follows:

ξm, a, t
′ = G(Wt) ⋅ ξm, a, t, ∀m ∈ Mn, ∀a ∈ ASM, ∀t ∈ T , (6)

where the MCP value applied to calculate the new ToU probability
profile is given by

Wt =
αct

ct
max , ∀t ∈ T . (7)

Here α is a calibration scalar to adjust the MCP value. By applying
different scalars, the effectiveness of the price sensitivity can be
different.

Another common factor related to the random appliance usage
patterns is whether the house is occupied or not. In other words, the
appliances can only be operated when the house is not empty.
Thus, a household occupation function can be applied to force the
appliance turn-on probability to zero when the household is empty
[17, 26]. Accordingly, a household occupation function with binary
variables is introduced in this paper, given by

O(m) =
1, if the house is occupied

0 otherwise
∀m ∈ Mn . (8)

Consequently, the household occupation function affected ToU
probability profile can be expressed as

ξm, a, t
′ = O(m) ⋅ ξm, a, t, ∀m ∈ Mn, ∀a ∈ ASM, ∀t ∈ T . (9)

The summation of the adjusted human activity probability profile
ξm, a, t

′  is still equal to 1. Therefore, a calibration equation can be
introduced as follows:

ξm, a, t′′ =
βξm, a, t′

∑t ξm, a, t
′

, ∀m ∈ Mn, ∀a ∈ ASM, ∀t ∈ T . (10)

The final ToU probability profile ξm, a, t′′ , which is affected by either
the price sensitivity function or the occupation function, could be
adjusted by the calibration scalar β to ensure the sum of probability
profile equals to 1.

3.2.2 Shiftable appliances: Different from the non-shiftable
appliances operated by a human which can cause uncertainty, the
EMS controlled appliances can be shifted to the lower price period
deterministically. For the various EMS controlled appliances, we
proposed the following EMS appliance property matrix to describe
each appliance

a ∈ ASE := {a: [Ha, Hsa
, H f a

, Ea, ψa
max, ψa

min]} . (11)

Here, we denote the appliance operation duration by Ha, the
operation starting time Hsa

, finishing time H f a
, appliance total

energy consumption Ea, and upper and lower bounds of power
operation consumption ψa

max and ψa
min, respectively. Based on this

matrix, we can define appliances with different requirements, such
as the appliances need to be operated during a specific period, with
controllable or uncontrollable power consumption. Details of the
EMS controlled appliance operation are discussed in Section 5.2.

Therefore, considering these two kinds of appliance and non-
shiftable appliances without price sensitivity as base load
(a ∈ ANS), the power consumption of a single household m ∈ Mn

can be calculated as

Pm = ∑
a

Pa, {a ∈ A | A = ASE ∪ ANS ∪ ASM} . (12)

The household reactive power for power flow computing can be
achieved by using the power factor cos θa of a specific appliance a,
given by

Qm = ∑
a

Pa
1

cos2
θa

− 1
−1

, ∀m ∈ Mn, ∀a ∈ A . (13)

4௑Problem formulation
In this paper, we consider the minimisation of distribution system
operation cost based on DR. Therefore, we can define the operation
cost as follows [In this work, the transmission investment and
maintenance costs are not considered, since they are typically

Fig. 1௒ Time of use distribution profile with the following activities: (i)
cooking; (ii) laundry; (iii) comfort and healthy; (iv) entertainment
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charged at a fixed rate and would not affect the optimisation
results.]:

Operation cost = Wholesale martket′s electrical cost

+Power transmission cost .
(14)

The electrical cost from wholesale market associated with the cost
of energy procurement by retailers from the power pool, while the
transmission cost reflects the power loss during transmission plus
the cost associated with transformer wear and tear due to tap
charging operation. Therefore, the objective function of the
optimisation problem is formulated as

C
u(cw, P) = ∑

n

∑
m

∑
a

∑
t

cwPn, m, a, t + μ∑
n

∑
t

cwLn, t + νNtap ,

∀n ∈ N, ∀m ∈ MNS, ∀a ∈ A, ∀t ∈ T .
(15)

where μ and ν are the weights given to the power transmission
operation which depends on the level of priority, while cw refers to
the price of the wholesale electricity market, who offers the
electricity to retailers. In this work, we consider that the electricity
retailers purchase from the wholesale pool and decide the price for
electricity customers. The optimised electrical price can help
reduce power loss by indirectly affect the usage of price-sensitive
appliances. Consequently, the residents would respond to the
electrical price c presented by the utility company, and aspirate to
reduce the electrical expenditure by arranging their behaviours
related to non-shiftable appliances and shiftable appliances.
Therefore, the household appliances electrical expenditure, that is,
all the appliances a ∈ A electrical cost Cm in a household m ∈ Mn

can be commonly expressed as

C
m(c, P) = ∑

t

c ∑
a

Pa, t , ∀a ∈ A, ∀t ∈ T . (16)

5௑Two-stage stochastic programming
Considering the costs of two different parties in the distribution
system, i.e. utility company and customers, the optimisation
problem with random appliance usage patterns can be solved based
on two-stage stochastic programming. The basic idea is that
optimal decisions should be made based on available data, without
a priori knowledge of future observations. The general formulation
of a two-stage stochastic programming problem is given by [30]

min {C
u(cw, P) = ∑

n ∈ N

∑
m ∈ Mn

f u cw, ∑
a ∈ ASE

Pa, t

+ ∑
n ∈ N

∑
m ∈ Mn

Eε ∈ ℰa ∈ ASM[gu(cw, Pa(ε))]

+ μ∑
n

∑
t

cwLn, t + νNtap ,

(17)

where f u(cw, ∑a ∈ ASE
Pa) refers to the shiftable appliance related

cost of the utility company. Once the second stage realisation is
achieved, it corresponds to a deterministic power consumption in
the distribution system. Further, gu(cw, Pa(ε)) is the non-shiftable
appliance a ∈ ASM related cost, which can be calculated from the
second stage problem

min {gu(cw, Pa(ε)) |GM(c, ε) + O(m)Pa(ε) = h(ε)} . (18)

Here, ε refers to the appliance random turn-on scenarios,
determined by the ToU probability profile ξm, a, t, which is related to
the electrical price c presented by the utility company as well as the
household occupation function O(m). For the second stage, the
electrical price c is determined before the realisation of the
uncertain data ε. Once the realisation of ε becomes available, we

can optimise the shiftable appliances by solving an optimisation
problem.

In this paper, a genetic algorithm is applied in the first stage to
seek for the optimal electrical price since the distributed power
flow analysis is highly non-linear. A flowchart of the stage
decomposition based genetic algorithm is shown in Fig. 2. Details
of the techniques involved are discussed in the following
subsections. 

5.1 First stage optimisation

The general formulation of the proposed stochastic programming is
shown in (17). Since the power loss L and transformer tap
operation Ntap can be calculated based on power flow equations
once all the appliance operations are settled, we can start with costs
of EMS controlled shiftable appliances (a ∈ ASE) and non-shiftable
base load appliances (a ∈ ANS). By considering all the appliances
of these two categories in a household m ∈ Mn, we have

f u cw, ∑Pa = ∑
a ∈ ASE ∪ ANS

∑
t ∈ T

cwPa, t . (19)

Further, we defined the stochastic appliance turn-on scenarios by
ε ∈ ℰ. Therefore, for each scenario ε, the electrical cost of
shiftable appliances with ToU probability profiles (a ∈ ASM) in the
household m ∈ Mn can be formulated as

gu(cw, Pm(ε)) = ∑
t ∈ T

cwPm(ε), ∀ε ∈ ℰ . (20)

Consequently, the electrical cost of a household by considering the
random human behaviours can be formulated as

Eε[gu(cw, Pm(ε))] = ∑
ε

pεgu(cw, Pm(ε)), ∀ε ∈ ℰ . (21)

By minimising the cost, the cost minimisation of distribution
system operation can be achieved in the first stage. However, in
(21), the total number of scenarios of appliance turn-on
permutation in a household is given by

Kℰ = (Ka)
(KO(m)), ∀a ∈ ASM, ∀m ∈ Mn . (22)

As the number of household appliances increase, the total number
of scenarios increases exponentially. The situation becomes even
worse if we model the ToU probability profile ξm, a, t as random
variables with continuous distributions. A common approach to
reducing the scenario set to a manageable size is by using Monte
Carlo simulations. Specifically, we can generate a set ε1, ε

2, …, εK

of K scenarios of the random vector ε, which follow the same
probability distribution. Furthermore, we assume that the samples
are independent identically distributed. Therefore, the

Fig. 2௒ Flowchart of the stage decomposition based genetic algorithm
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approximated expectation gm(c, Pm(ε)) can be calculated based on
an average over the samples, given by

Eε[gu(c, Pm(ε))] =
1
K

∑
k

gu(c, Pm(εk)), ∀k ∈ K . (23)

This formulation is also known as the Sample Average
Approximation method [31]. The accuracy of the optimal result
can be improved by increasing the number of samples (K).
Therefore, the computational complexity of the algorithm could be
excessive when considering a large distribution system. In order to
address this issue, scenario reduction technique will be introduced
in Section 5.3.

5.2 Second stage optimisation

The objective of second stage optimisation is to calculate an
appliance schedule to minimise the electrical cost for each scenario
ε ∈ ℰ, based on the electrical price c given by the first stage
optimisation. Furthermore, once the operations of shiftable
appliances with ToU probability profiles are realised, the shiftable
appliances controlled by the EMS can be scheduled by solving a
mixed-integer linear programming (MILP) problem. The general
formulation of the second stage optimisation is introduced in (18)
and (20), with the details given below:

min
x, r

f m(c, Pa) + gm(c, Pm(ε)) . (24)

s . t . ∑
a ∈ ASM

Pa + ∑
a ∈ ASE

Pa + ∑
a ∈ ANS

Pa ≤ P
max, (25)

GM(c, ε) + O(m)Pa(ε) = h(ε), (26)

F(Pa(x, r)) = b . (27)

The value of Pmax in the first constraint can be obtained by running
the standard test system, according to certain voltage and loading
constraints. The second constraint is used to simplify (6), (9) and
(10) for the appliance a ∈ ASM. The last constraint refers to the
EMS controlled appliances. The decision variables (x, r) for
a ∈ ASE ∪ ANS are introduced as follows:

(x, r) = [x1, x2, …, xa, r1, r2, …, ra], (28)

xa = [xa, 1, xa, 2, xa, 3, …, xa, t], (29)

ra = [ra, 1, ra, 2, ra, 3, …, ra, t], (30)

where xa is the energy consumption for each appliance
a ∈ ASE ∪ ANS, and each xa is consumed within the T time slots.
Also, ra is the appliance operation status represented by binary
variables, i.e. 1 and 0 for appliances turned on and off, respectively.

Based on the appliance property matrix (11), we can define
several kinds of appliances: appliances with controllable power
level such as light bulbs with controllable brightness, electric fans
with controllable speeds; appliances with fixed power level such as
battery chargers with fixed charging rates; and appliances need to
operate at a specific period of day and so on. For the set of
appliances operated by EMS (a ∈ ASE) with controllable power
levels ψa, the properties can be described as follows:

∑
t = Hsa

t = H fa

xa
t = Ea, ψa

min ≤ xa
t ≤ ψa

max, (31)

∑
t

sa[t] = Ha, Hsa
≤ {t |sa[t] = 1} ≤ H f a

, (32)

where sa[t] = 1 refers to the appliance turn-on time. For the set of
appliances operated by EMS (a ∈ ASE) with a fixed power level, it
can be formulated as

∑
t = Hsa

t = H fa

xa
t = Ea, ψa

min = xa
t = ψa

max, (33)

∑
t

sa[t] = Ha, Hsa
≤ {t |sa[t] = 1} ≤ H f a

. (34)

For an appliance a ∈ ANS, which refers to the non-shiftable
appliance such as refrigerator, the parameters in the property
matrix are all constant and cannot be optimised. Therefore, after
the stochastic appliance scenarios are settled, MILP can be used for
the EMS controlled appliance optimisation.

5.3 Scenario reduction for two-stage stochastic programming

In stochastic programming, the expectation of uncertainty related
problem can be obtained by evaluating all possible scenarios,
which usually results in an enormous scenario set. For the ease of
implementation, we need to reduce the number of scenarios while
still preserving the basic characteristics of the original scenario set.
In other words, we seek a set of reduced scenarios to produce the
optimal solution that can best approximate the solution of the
original problem.

In this paper, the scenario reduction technique based on fast
forward section is implemented [32], as shown in Algorithm 1. In
this algorithm, o(εk, εu) refers to the norm of εk and εu. This
selection allows us to not only seek for the scenarios with the
highest probability of occurrence but also concern the solution that
is closest to the original optimal problem. In each step i, the closest
scenario is selected. In general, more accurate results of scenario
reduction can be obtained by increasing the number of steps.
 

Algorithm 1: Scenario reduction

1: for i = 1 do
2:  oku

[1] = o(εk, εu), k, u = 1, ⋯, ℰ

3:  zu
[1] = ∑k = 1, k ≠ u

ℰ
pkoku

[1], u = 1, ⋯, ℰ,

4:  u1 ∈ arg minu ∈ {1, ⋯, ℰ} zu
[1], J

[1] := {1, ⋯, ℰ}∖{u1}

5: end for
6: for i = 2, 3, …, ℰ do
7:  oku

[i] = min oku
[i − 1], okui − 1

[i − 1] , k, u ∈ J
[i − 1]

8:  zu
[i] = ∑k ∈ J

[i − 1]∖{u}
ℰ

pkoku
[i] , u ∈ J

[i − 1]

9:  ui ∈ arg minu ∈ J
[i − 1] zu

[i], J
[i] := J

[i − 1]∖{ui}

10: end for
11: for i = n + 1 do
12:  Redistribution by the minimum attained at:
13:  q̄ j = pj + ∑i ∈ J j

pi, for each j ∉ J

14: end for

To further accelerate the scenario reduction process, we also
combine the following method with the fast forward section. The
key for this method is to transfer the appliance turn-on scenarios to
the power consumption scenarios with the related probability.
Specifically, the power consumption by a different power level P(l)
in a household m ∈ Mn at a specific time t ∈ T  can be computed as

Pm, t(l) = ∑
a

Pa(l), ∀a ∈ ASM, ∀l = 1, 2, …, (35)

where ∑a Pa(l) refers to the power consumption of power level
Pm, t(l) related appliance turn-on scenarios. For instance, if the
power level is Pm, t(l) = 50 W, ∑a Pa(l) can be five light bulbs with
10 W rating, and two light bulbs with 25 W rating at the time
t ∈ T . A power level is the total appliance turn-on scenarios
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without repetition. Consequently, the corresponding power
consumption probability distribution at a time t ∈ T  can be
calculated as

ζP(l) = Πaξa′ ⋅ ξa, ∀a ∈ ASM, (36)

where ζP(l) is the probability corresponding to the power level
Pm(l), a′ refers to the turned-off appliances. The probability
distribution ξa introduced in Section 3.2.1. Using this probability
distribution profile, the turn on/off probability for a specific
appliance in each time slot can be obtained. Therefore, the power
consumption probability distribution profile in the household
m ∈ Mn can be calculated via (35) and (36). For each time period,
there is a pool that contains the turn on/off operation scenarios for
all appliances. For a specific scenario in the pool, there exists an
optimal solution for the shiftable appliances controlled by EMS.
Noted that the non-shiftable appliances are assumed to be operated
once every day and non-interruptible. As the number of all the
scenarios can be as large as 2a, we define a redistributed power
consumption probability distribution by d intervals, i.e. in the
household m ∈ Mn at a time t ∈ T , the redistributed power level
Pm, t(ld) can be calculated as

Pm, t(ld) =
max {Pm(l)}

d
, ∀a ∈ ASM, ∀ld = 1, 2, … . (37)

and the corresponding probability is the sum of the probability in
each interval d, given by

ζP(ld) = ∑
d

ζP, t(l), ∀a ∈ ASM . (38)

Since this method allows us to reduce a large number of scenarios
to d scenarios and obtain the corresponding probability ζP(ld) of
each scenario, the original probability distribution can be retained
with proper value of d. By combining the sample average

approximation and scenario reduction technique, the performance
of our proposed algorithm can be improved significantly without
sacrificing the accuracy.

5.4 Heuristic two-stage stochastic programming algorithm

L-shaped method [33] has been widely used to solve two-stage
stochastic programming problems. However, for large-size
problems, the study in [34] indicates that the evolutionary
algorithm such as a genetic algorithm performs better in finding the
optimal solutions than the L-shaped method. Besides, the genetic
algorithm, as a common mature algorithm in evolutionary
computing, has been widely used in DR problems [9].
Furthermore, the power flow analysis in our work is highly non-
linear in nature. For the above reasons, a genetic algorithm is
applied to solve the proposed problem instead of the L-shaped
method.

The proposed stochastic two-stage programming scheme with a
genetic algorithm is introduced as follows:

• First stage: System operation cost minimisation:

i. Initialise: Generate the initial population electrical price ct, i
k ,

where the subscript i refers to the ith individual in the
iteration k. Then, input the household shiftable appliances
a ∈ ANS ∪ ASE use pattern follow (11). Also, input non-
shiftable appliances with probability usage pattern a ∈ ASM,
which is ToU probability profile ξm, a, t in this paper. For a
specific time slot t, the scenario pool for non-shiftable
appliances is obtained from the probability profile, and the
pool is utilised by the next process.

ii. Evaluate: Use the initialled individuals ci
k to apply the

fitness function below that modified from (17) with second
stage power consumption Pm. Cmax is the maximum estimate
value of system operation cost. This function helps transfer
the minimisation problem to maximisation problem

fit = C
max − C

u(cw, Pm) . (39)
iii. Scenario reduction: scenarios are exhausted and the most

representative scenarios are selected via Algorithm 1 and
functions (35)–(38). Only the selected scenarios are
considered in the second stage optimisation.

• Second stage: Household electrical cost minimisation: For each
scenario ε ∈ ℰ, the optimal power consumption Pa can be
achieved by (27). The optimal shiftable appliances schedules are
decided in this stage once the representative scenarios are
selected in the first stage.

• Genetic operation: Electricity price optimisation:

i. Select: The best-ranking individuals are preserved as parents
to reproduce the offspring.

ii. Breed: To generate a new generation population, a
combination of crossover and mutation can be applied to
give birth to offspring ct, i

k + 1.
iii. Evaluate: Apply the offspring ct, i

k + 1 to the fitness function
C

u(c, P).

6௑Case study
In this section, we evaluate the performance of the proposed DR
scheme based on the IEEE 33-bus and 119-bus test distribution
systems. The simulations are conducted on a Linux desktop with an
Intel i7-4790 CPU at 3.60 GHz with 16 GB RAM. Several
categories of typical household appliances are considered, with
their characteristics shown in Table 1.

For each appliance, the average power consumption, average
operation duration, and power factor can be obtained from [35, 36].
The appliances for entertainment activities are considered as non-
shiftable and insensitive to price due to comfort reasons, while all
other appliances are considered as price sensitive. In particular, the
washing machine and dryer are assumed to be controlled by the

Table 1 Characteristics of typical household appliances
Appliance
category and
name

Average power
consumption, W

Average
operation
duration, h

Power
factor

Kitchen
blender 175 0.2 0.73
coffee maker 900 0.4 1
deep fryer 1500 0.267 1
dishwasher 1300 0.667 0.99
food freezer 350 8 0.8
microwave oven 1500 0.333 0.9
range and oven 4000 0.833 1
toaster 1200 0.133 1
Laundry
dryer 5000 0.933 0.99
iron 1000 0.4 1
washing machine 500 0.867 0.65
Entertainment
computer
(desktop)

250 8 0.8

computer (laptop) 30 8 0.8
laser printer 600 2 —
stereo 120 4 —
television 100 4.167 0.8
Comfort and health
air conditioner 750 2.467 0.9
electric heating 1000 8.333 1
fan 120 0.2 0.87
lights 60 8 0.93
vacuum cleaner 800 0.333 0.9
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EMS in this case study. Note that the appliance list is expandable if
more appliance usage data are available. In the case study, the time
horizon is considered to be 24 h, with the duration of each time slot
being 1 h. The wholesale market electrical pool price cw is obtained
from Alberta Electric System Operator (AESO) in April 2018 [37].

6.1 IEEE 33-buses test distribution system

The IEEE 33-bus test distribution system is used in the first case
study. Due to the relatively small-scale of the distribution system
with low computational complexity, we can evaluate our proposed
DR scheme through extensive simulation runs under various
system configurations. The one-line diagram of the system under
study is shown in Fig. 3, where the detailed circuit data can be
obtained from [38]. The system is operated at 12.66 kV, and the
total real and reactive loads are 3715 kW and 2300 kVar,
respectively. The voltage regulators can regulate system voltages in
32 steps with 0.625% for each step. The household type applied in
this case study is the household with children, and the data related
to human behaviour are collected from [28, 39]. 

In the simulation, the performance of the proposed two-stage
stochastic programming scheme with scenario reduction technique
is compared with that of the Monte Carlo simulation, which can be
considered as the benchmark solution. Monte Carlo simulation
method is widely used to generate random scenarios in stochastic
programming [19, 40]. In this work, Monte Carlo simulation with
repeated random sampling is applied to obtain the optimal results.
These results still need to be sent to the genetic algorithm, and
genetic operation (crossover and mutation) is used to generate a
new population for the next iteration. A large number of Monte
Carlo simulation runs can lead to better performance in terms of
the DR outcome. However, the computational complexity can be
prohibitive due to a large number of appliances in the distribution
system. Furthermore, the results of both the proposed scheme and
Monte Carlo simulation scheme, which are stochastic in nature, are
also compared to that of traditional deterministic optimisation
scheme, where only the expectations are used to model the
uncertain factors in the simulation [19, 40]. Moreover, the
mechanism of economic DR (EDR) introduced in [16] can be
adapted for comparison.

A comparison of average fitness of different schemes is shown
in Fig. 4a. Here, the modified objective function (39) that aims at
finding the lowest cost for distribution system operation, is chosen
as the fitness function for comparison. As we can see, the scenario
reduction method shows a better convergence in the first 100
generations than other methods. Furthermore, the cost of EMS
appliances a ∈ ASE is shown in Fig. 4b, with respect to the different
percentage of controllable domestic appliances a ∈ ASE ∪ ASM. In
this simulation, after all the algorithms reach each their solutions,
we use Monte Carlo simulation with random samples to simulate
as the real scenario. Based on the EDR algorithm, the peak load is
shifted to the off-peak period, which should lead to the most
economical result. However, when the randomness of the appliance
usage patterns is considered, the cost becomes higher than our
proposed method, as shown in Figs. 4b and c. Also, Fig. 4b shows
that our proposed method with scenario reduction technique has a
better performance than that of Monte Carlo simulation and
deterministic optimisation scheme, due to the consideration of
random appliance usage patterns. Note that the cost based on
Monte Carlo simulations with 1000 random samples is higher than
that of our proposed scheme. The main reason is that Monte Carlo
simulations choose scenarios randomly, while the scenario

reduction technique used in this paper selects scenarios based on
the probability of their occurrence. Since the probabilities for
different human behaviours to occur are different, our proposed
scenario reduction technique can effectively select the scenarios
which may improve the outcomes of DR significantly. 

From the utility companies’ perspective, Fig. 4c shows the cost
of electricity from the wholesale market for distribution system
operation, which can be indirectly affected by the optimised
electrical price. As we can see, the electrical cost is lower based on
the proposed scheme. Besides, as the percentage of the domestic
appliances increases, the electrical cost can be reduced
significantly. In other words, the optimised electrical price can
effectively reduce the distribution system operation cost while
achieving reliable electrical grid operation. Note that in these
figures, we allocate different loading percentages of shiftable
appliances. Although the cases with close to 0% or 100% of
domestic appliances may not happen in practice, these cases are
still included in this case study to show the trend of the
performance of different algorithms.

6.2 IEEE 119-buses test distribution system

A relatively large-scale case study is performed based on the IEEE
119-bus test distribution system to test the scalability and
effectiveness of the proposed scheme, the system data can be found
in [41]. As shown in Fig. 5, several types of households with
various occupation function O(m) and human behaviour ToU
probability profiles are used. The test system operates at 11 kV
with 22,709.7 kW and 17,041.1 kVar of real and reactive power

Fig. 3௒ One-line diagram of the IEEE 33-bus test distribution system
 

Fig. 4௒ (a) Comparison of the average fitness, (b) Cost of shiftable
appliances controlled by EMS, (c) Comparison of the pure electrical cost
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demands, respectively. In this study, 30% of shiftable appliances
are implemented.

Table 2 shows the performance of the proposed scheme (SR10),
in comparison with the Monte Carlo simulations with 10 and 1000
random samples (MC10 and MC1000), respectively, the
deterministic optimisation scheme (DET), and EDR. For all the
simulation results, 200 generations are applied to the genetic
algorithm for each method. Similar to the 33-buses test system, we
still use Monte Carlo simulation with a random sample to test these
algorithms as the real scenario. As we can see, the proposed
scheme can optimise the electrical price more effectively, as
reflected by the lower user cost and system operation cost. Also,
the convergence of the proposed scheme is faster, since the average
time for the calculation of every single individual is shorter. For the
overall optimisation of the DR, the Monte Carlo simulation with
1000 random samples takes over 76 h to converge, while the
scenario reduction technique can efficiently converge within 200
generations in about 4 h. 

7௑Conclusion
In this paper, a two-stage stochastic programming scheme is
proposed for the purpose of optimal DR in the smart grid. A
genetic algorithm is utilised to find the optimal electrical price
under random appliance usage patterns, while a scenario reduction
technique is embedded in the algorithm to reduce the
computational complexity caused by a large number random
scenarios of the household electrical appliance operation.
Simulation results based on IEEE 33-bus and 119-bus test
distribution systems indicate that our proposed scheme can provide
better performance of DR in comparison with Monte Carlo
simulations and deterministic optimisation. Also, the convergence
of the proposed scheme is faster, which improves the efficiency of
practical implementation of DR. Future research work involves the
investigation of other types of uncertainties in DR, such as
renewable energy sources with intermittent power generation and
EVs with random driving cycles, and the development of an
efficient stochastic programming scheme to optimise the DR
process accordingly.

8௑Acknowledgments
This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC). Yue Wang was sponsored
by the China Scholarship Council (CSC) under grant no.
201406350066.

9௑References
[1] ‘Residential energy consumption survey’. Available at: http://www.eia.gov/

consumption/residential/index.php
[2] Palensky, P., Dietrich, D.: ‘Demand side management: demand response,

intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7,
(3), pp. 381–388

[3] Parvania, M., Fotuhi-Firuzabad, M.: ‘Demand response scheduling by
stochastic SCUC’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 89–98

[4] Wolak, F.A.: ‘Residential customer response to real-time pricing: the
Anaheim critical peak pricing experiment’ (Center for the Study of Energy
Markets, Berkeley, CA, USA, 2007)

[5] Samadi, P., Mohsenian-Rad, A.H., Schober, R., et al.: ‘Optimal real-time
pricing algorithm based on utility maximization for smart grid’. First IEEE
Int. Conf. Smart Grid Communications, Gaithersburg, MD, USA, October
2010, pp. 415–420

[6] Tsui, K.M., Chan, S.C.: ‘Demand response optimization for smart home
scheduling under real-time pricing’, IEEE Trans. Smart Grid, 2012, 3, (4), pp.
1812–1821

[7] Barbose, G., Goldman, C., Neenan, B.: ‘A survey of utility experience with
real time pricing’ (Lawrence Berkeley National Laboratory, Berkeley, CA,
USA, 2004)

[8] Mohsenian-Rad, A.H., Leon-Garcia, A.: ‘Optimal residential load control
with price prediction in real-time electricity pricing environments’, IEEE
Trans. Smart Grid, 2010, 1, (2), pp. 120–133

[9] Yang, Q., Fang, X.: ‘Demand response under real-time pricing for domestic
households with renewable DGs and storage’, IET. Gener. Transm. Distrib.,
2017, 11, (8), pp. 1910–1918

[10] Gu, C., Yang, W., Song, Y., et al.: ‘Distribution network pricing for uncertain
load growth using fuzzy set theory’, IEEE Trans. Smart Grid, 2016, 7, (4), pp.
1932–1940

[11] Zhang, G., Jiang, C., Wang, X., et al.: ‘Bidding strategy analysis of virtual
power plant considering demand response and uncertainty of renewable
energy’, IET. Gener. Transm. Distrib., 2017, 11, (13), pp. 3268–3277

[12] Yang, S., Zeng, D., Ding, H., et al.: ‘Stochastic security-constrained economic
dispatch for random responsive price elastic load and wind power’, IET
Renew. Power Gener., 2016, 10, (7), pp. 936–943

[13] Paterakis, N.G., Erdinc, O., Bakirtzis, A.G., et al.: ‘Load-following reserves
procurement considering flexible demand-side resources under high wind
power penetration’, IEEE Trans. Power Syst., 2015, 30, pp. 1337–1350

[14] Wang, G., Kekatos, V., Conejo, A.J., et al.: ‘Ergodic energy management
leveraging resource variability in distribution grids’, IEEE Trans. Power Syst.,
2016, 31, (6), pp. 4765–4775

[15] Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al.: ‘Hourly electricity
demand response in the stochastic day-ahead scheduling of coordinated
electricity and natural gas networks’, IEEE Trans. Power Syst., 2016, 31, (1),
pp. 592–601

[16] Sharifi, R., Anvari-Moghaddam, A., Fathi, S.H., et al.: ‘Economic demand
response model in liberalised electricity markets with respect to flexibility of
consumers’, IET. Gener. Transm. Distrib., 2017, 11, (17), pp. 4291–4298

[17] Jiang, C.: ‘A probabilistic bottom-up technique for modeling and simulation
of residential distributed harmonic sources’. Ph.D. thesis, University of
Alberta, 2011

[18] Marzband, M., Parhizi, N., Savaghebi, M., et al.: ‘Distributed smart decision-
making for a multimicrogrid system based on a hierarchical interactive
architecture’, IEEE Trans. Energy Convers., 2016, 31, pp. 637–648

[19] Zhou, Z., Zhang, J., Liu, P., et al.: ‘A two-stage stochastic programming
model for the optimal design of distributed energy systems’, Appl. Energy,
2013, 103, pp. 135–144

[20] Kwon, S., Ntaimo, L., Gautam, N.: ‘Optimal day-ahead power procurement
with renewable energy and demand response’, IEEE Trans. Power Syst.,
2016, 32, (5), pp. 3924–3933

[21] Guo, Y., Xiong, J., Xu, S., et al.: ‘Two-stage economic operation of
microgrid-like electric vehicle parking deck’, IEEE Trans. Smart Grid, 2016,
7, pp. 1703–1712

[22] Bhattacharya, A., Kharoufeh, J., Zeng, B.: ‘Managing energy storage in
microgrids: a multistage stochastic programming approach’, IEEE Trans.
Smart Grid, 2018, 9, (1), pp. 483–496

[23] Mahmoudi, N., Saha, T. K., Eghbal, M.: ‘Wind power offering strategy in
day-ahead markets: employing demand response in a two-stage plan’, IEEE
Trans. Power Syst., 2015, 30, (4), pp. 1888–1896

[24] Talari, S., Yazdaninejad, M., Haghifam, M.-R.: ‘Stochastic-based scheduling
of the microgrid operation including wind turbines, photovoltaic cells, energy

Fig. 5௒ Illustration of the IEEE 119-bus test distribution system with
various household types

 

Table 2 Electrical price optimisation results
Method SR10 MC10 MC1000 DET EDR
user cost, $ 5.0126 6.7451 5.2202 5.8152 6.8366
system operation cost, $ 268,578 358,572 299,785 309,342 362,523
single individual average time, s 15.7467 8.8023 282.7716 2.6277 3.0424

 

4170 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 18, pp. 4163-4171
© The Institution of Engineering and Technology 2018

READ O
NLY

http://www.eia.gov/consumption/residential/index.php
http://www.eia.gov/consumption/residential/index.php


storages and responsive loads’, IET Gener. Transm. Distrib., 2015, 9, (12), pp.
1498–1509

[25] Ghahremani, E., Kamwa, I.: ‘Maximizing transmission capacity through a
minimum set of distributed multi-type facts’. Power and Energy Society
General Meeting, San Diego, CA, USA, July 2012, pp. 1–8

[26] Richardson, I., Thomson, M., Infield, D., et al.: ‘Domestic electricity use: a
high-resolution energy demand model’, Energy Build., 2010, 42, (10), pp.
1878–1887

[27] Capasso, A., Grattieri, W., Lamedica, R., et al.: ‘A bottom-up approach to
residential load modeling’, IEEE Trans. Power Syst., 1994, 9, (2), pp. 957–
964

[28] ‘United Kingdom time use survey, 2000’. Available at: http://doi.org/10.5255/
UKDA-SN-4504-1, 2003

[29] Zhao, Z., Wu, L., Song, G.: ‘Convergence of volatile power markets with
price-based demand response’, IEEE Trans. Power Syst., 2014, 29, (5), pp.
2107–2118

[30] Shapiro, A., Philpott, A.: ‘A tutorial on stochastic programming’. Available
at: www.isye.gatech.edu/people/faculty/AlexShapiro/TutorialSP.pdf, 2007

[31] Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: ‘The sample average
approximation method for stochastic discrete optimization’, SIAM J. Optim.,
2002, 12, (2), pp. 479–502

[32] Heitsch, H., Römisch, W.: ‘Scenario reduction algorithms in stochastic
programming’, Comput. Optim. Appl., 2003, 24, (2–3), pp. 187–206

[33] Birge, J.R., Louveaux, F.: ‘Introduction to stochastic programming’ (Springer
Science & Business Media, New York, NY, USA, 2011)

[34] Tometzki, T., Engell, S.: ‘Hybrid evolutionary optimization of two-stage
stochastic integer programming problems: an empirical investigation’, Evol.
Comput., 2009, 17, (4), pp. 511–526

[35] ‘Micro-hydro systems-a buyer's guide’, in ‘Natural resources’ (Ottawa, ON,
Canada, 2004)

[36] Rylander, M. R.: ‘Single-phase nonlinear power electronic loads: modeling
and impact on power system transient response and stability’. PhD Thesis,
The University of Texas at Austin, 2008

[37] ‘Alberta electric system operator (AESO)’. Available at: http://ets.aeso.ca
[38] Baran, M. E., Wu, F. F.: ‘Network reconfiguration in distribution systems for

loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2),
pp. 1401–1407

[39] Zimmermann, J. P., Evans, M., Griggs, J., et al.: ‘Household electricity
survey: a study of domestic electrical product usage’ (Intertek Testing &
Certification Ltd., Leatherhead, UK, 2012)

[40] Chen, Z., Wu, L., Fu, Y.: ‘Real-time price-based demand response
management for residential appliances via stochastic optimization and robust
optimization’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 1822–1831

[41] Zhang, D., Fu, Z., Zhang, L.: ‘An improved ts algorithm for loss minimum
reconfiguration in large-scale distribution systems’, Electr. Power Syst. Res.,
2007, 77, (5), pp. 685–694

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 18, pp. 4163-4171
© The Institution of Engineering and Technology 2018

4171

READ O
NLY

http://doi.org/10.5255/UKDA-SN-4504-1
http://doi.org/10.5255/UKDA-SN-4504-1
http://ets.aeso.ca



