L1

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington

Ottawa, Ortario Ottawa (Ontario)

K1A ON3 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 19870, c. C-30, and
subsequent amendments.

Canad‘éi

Your e Votre réiévence

Qur e Notre retérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'it manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certain®s pages peut laisser a -
désirer, surtout si les pages
originales ont éte
dactylographiées a laide d’un
ruban usé ou si I'université nous
a fait parvenir une photocagie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendeinents subséquents.

University of Alberta

Tree-structured Linear Cellular Automata

by

Jin Li @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science
in

Department of Electrical Engineering

Edmonton, Alberta

Fall, 1995

Bel b

Ottawa (Ontario)

ue nationale

du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliograptiques
395 Wellington Street 385, rue Wellington
Ottawa, Ontario
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06567-7

Canadi

Your hie Voire réMrence

Ouwr g Notre rélgrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTELUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

University of Alberta

Library Release Form

Name of Author: Jin Li
Title of Thesis: Tree-structured Linear Cellular Automata
Degree: Master of Science

Year This Degree Granted: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
rescarch purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author's prior written permission.

230 Woodridge Cr. #510
Ottawa, Ontario
K2B 8G2

Date: J>L(‘.\L 2 ? ’ {)5
{

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Tree-structured Linear Cellular

Automata submitted by Jin Li in partial fulfillment of the requirements for the degree
of Master of Science.

Date: fu

Ty

199¢

P . 7
A e Zﬁﬂ"“j—

Supervisor: Dr. X. Suﬁ

MW\}"

Egmincr: Dr. J. Mowchenko

...

Examiner: Dr. W. Grover

»

External Examiner;: Dr. M. Green

Abstract

This thesis formally introduces a novel implementation structure of linear finite
state machines (LFSMs), named tree-structured linear cellular automata (TLCA).
We define the structures and operations of TLCA and explore their applications
as pseudorandom binary sequence generators in digital system testing.

We identify five types of maximum length TLCA. The algorithms to inspect
maximum length TLCA are developed. The lookup tables of low cost maximum
length TLCA are produced up to degree 60.

A comparative study of the pseudorandom behavior of the LFSMs, lin-
ear fecdback shift registers (LFSRs), linear hybrid cellular automata (LHCA),
rectangular-structured linear cellular automata (RLCA) and TLCA, is conducted.
Computer simulation results reveal the relation between the pseudorandomness
of the test sequences generated by the LFSMs and their test coverage for digital
circuitry and are reported on the standard ISCAS ’85 benchmark circuits. It sug-
gests that maximum length TLCA be a viable alternative to both the conventional

LFSRs and the more recent LHCA as pseudorandom sequence generators.

Acknowledgements

I wish to express my sincere appreciations to my supervisor, Dr. Xiaoling Sun,
for her patience, understanding and encouragement. Her commendable guidance
on the course of my work on this thesis is gratefully acknowledged. The financial
assistance received from her research grant is also gratefully acknowledged.

I would like to thank the member of my supervisor committee, Dr. Jack
Mowchenko, and my fellow graduate student, Mr. Michael Olson, for proofreading
of my thesis. My thanks go to the other members of my committee, Dr. Wayne
Grove ard Dr. Mark Green, for their valuable comments. My thanks also go
to Mr. Kevin Catteil, at the Department of Computer Science, University of
Victoria, for his help in using Maple software.

I would like to thank my fellow graduate students, Yanming Li, Baolian Xu,
Ketan Bhalla, and Nicole Sat, for sharing their knowledge and friendship.

Technical assistance from Norman Jantz has been an immense contribution
and is greatly appreciated. Without him, the computer program work could not
have been done.

Finally, a well-deserved expression of appreciation goes to my wife, Jin Wen,

for her understanding, encouragement and efforts.

Contents

1 Introduction 1
2 Background and Review 6
21 Definitions L e e e e e e e 6
2.2 Linear Feedback Shift Registers 9
2.2.1 Analysis of Shift-Register Sequences. 9

2.2.2 The Matrix Method 13

2.2.3 Algorithm for Finding Primitive Polynomials 14

2.2.4 Representationsof LFSRs, 16

2.3 One-dimensional Linear Hybrid Cellular Automata 16
2.3.1 Notations and Computation Rules. 17

2.3.2 1-d LHCA Transition Matrix 19

2.3.3 Maximum Length 1-dLCA 21

2.3.4 LHCA and LFSRs with the Same Characteristic Polynomials 22

2.3.5 Synthesis Algorithm, 24

2.4 Two-dimensional Linear Ceilular Automata 27
25 Fault Models i e 27
2.5.1 Stuck-at Fault Model 29

2.5.2 3Stuck-open Fault Model 30

2.5.3 Transition Fault Model 32

3 Tree-Structured Linear Cellular Automata 35

3.1 Notations and Definitions

..................... 35
3.1.1 Computation Rules o000 36
3.1.2 Regularly Structured TLCA 0000000 L. 10

3.2 Transition Matrices of TLCA 41

3.3 Maximum Length TLCA 43
3.3.1 Non-primitive TLCA Structures . « . . o oo oo oo .. A4l
3.3.2 Primitive TLCA Structures 15
3.3.3 Hardware Cost of TLLCA Structures H4

3.4 SUMMATY . . - v v ot e e e e e e e e e e e e e 57

Maximum Length TLCA 58

4.1 Algorithm I oo oo H8

4.2 Implem#wtaiion of Algorithm 1. 60

4.2.1 Multiple Precision fntogrersso oo oL 61

422 Prime Factors of 2" — 1

................... 63
4.2.3 Matrix Multiplicationo 000 63
4.2.4 Powering Algorithm 641

43 Algorithm IT.o oo 65

4.4 Minimal Cost Maximum Length TLCA 70

4.5 Maximum Length TLCA vs Primitive Polynomials 77

Pseudorandomness of LFSMs: Theory and Simulation 82

5.1 Measures of Pseudorandomnesso 82
5.1.1 Equidistribution Test 83
5.1.2 Visual Test and Correlation Test 85
5.1.3 The Role of Fault Simnulation 94

5.2 Fault Simulation oo 95
5.2.1 Simulation Environment 000 96
5.2.2 Simulation Results 97

5.3 A Note on the Two-pattern Transition Property 114

Conclusion 121
Bibliography 124
Appendices 129

Number of Primitive Polynomials and Irreducible Polynomials 129

Implementation of Algorithm 1 131
B.l SourceCode L e e e e e e e 131
B.2 Manual Page s 142
User Manual for the Fault Simulator 144
C.1 ManualPage oo 144
Data of Test Length vs Fault Coverage 147

The LFSRs, LHCA and TLCA in Fault Coverage Simulations 151

List of Figures

1.1

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

A signature analysis environment

..................

(a) a LFSR(I) and (b) a LFSR(II) with the common characteristic
polynomial f(z) =1+a3+2%,

An example of CA
Naming of CA Rules

..........................

.........................

(a) General case; (b) irreducible machines and polynomials
Transition matrices of an LFSR(I) and an LHCA

The structure of rectangle-structured LCA of degree 4x4
Single stuck-at fault model

.....

......................

CMOS realization of a 2 input NAND gate
CMOS 2 input NAND gate with p; open

............

A binary tree structure

........................

(a) A complete TLCA of odd degree 7 (b) A complete TLCA of

even degree 6

.............................

A TLCA of degree 7 using rules 31, 23 and 11

An example of a cell in a TLCA without one input

Examples of non-primitive TLCA structures

(a) TLCA(I) structure of odd degree (b) TLCA(I) of even degree
TLCA(II) structure

TLCA(III) structure

.........................

.........................

o

36

3.9 (a) TLCA(IV) structure of odd degree (b) TLCA(IV) of even de-
gree

..................................

3.10 TLCA(V) structure © . . o o0 v v vt v vt v e e

4.1 Computational complexity (O(n*)) of the irreducibility test . . .

5.1 Visual test for LFSR, LHCA and TLCA of degree 20

54

61

89

5.2 Visual test for the LFSR with characteristic polynomial «%° + 2% +1 90

5.3 Auto and cross correlation test for LFSR of degree 36

.......

5.4 Auto and cross correlation test for LHCA of degree 36

5.5 Auto and cross correlation for TLCA(III) of degree 36
5.6 Transition fault coverage vs test length using C1355 (41 inputs)
5.7 Transition fault coverage vs test length using C3540 (50 inputs)
5.8 Transition fault coverage vs test length using C880 (60 inputs) . .
5.9 Stuck-open fault coverage vs test length using C1355 (41 inputs) .
5.10 Stuck-open fault coverage vs test length using C3540 (50 inputs) .

5.11 Stuck-open fault coverage vs test length using C880 (60 inputs)

92

106
106
107
107
108
108

List of Tables

2.1

2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

States of the LFSR(II) with characteristic polynomial f(r) =1 +

Operation of fault free NAND gate

................. 31
Slow-to-rise fault o oo, 34
Slow-to-fall faulto 3
TLCA rrules o v e 39
Computation rules of five primitive TLCA structures AT
Number of XORs in LHCA and Types I to V TLCA H6
List of minimal cost maximum-length TLCA(I) 72
List of minimal cost maximum-length TLCA(II) 73
List of minimal cost maximum-length TLCA(IIl) 74
List of minimal cost maximum-length TLCA(IV) 75
List of minimal cost maximum-length TLCA(V) 76

Primitive TLCA(II1) and their characteristic polynomiais 81

Equidistribution test for the LFSRs (Y=Yes, S=Suspect, N=No}. 86
Equidistribution test for the LHCA (Y=Yes, S=Suspect, N=No) . 87
Equidistribution test for the TLCA(III) (Y=Yes, S=Suspect, N=No) 88
Characteristics of ISCAS ’85 Benchmark Circuits 97
Stuck-at fault simulation results for LFSR, LHCA and TLCA . . 100
Stuck-at fault coverages at different lengths 102

.7
0.8
5.9
5.10
511

5.12

ALl

1.1
D.2
D.3

N
| DN |
.

Transition fault simulation results for LFSR, LHCA and TLCA . 104
Stuck-open fault simulation results for LFSR, LHCA and TLCA . 110
Fault coverage of three types of LFSMs with different initial states 112
Characteristics of fault coverage distribution of three types of LFSMs113
"Fest vectors produced by the LFSR(1), LFSR(11), LHCA and TLTA(III)

with characteristic polynomial z°> +z3+1 116
Number of the transitions of different LFSM of degree 3 117
Number of different k-cell substate vectors with 22% transition ca-

pability Lo e 120
Number of primitive polynomials of degreen 130
Fault coverages at different numnber of test patterns 148
Fault coverages at different number of test patterns 149
Fault. coverages at different number of test patterns 150
The LFSMs used in fault coverage simulations in Chapter 5 . 152

Chapter 1
Introduction

The testing of a digital system determines whether it is manufactured properly
and behaves correctly. Digital testing encompasses logic and parametric tests.
Logic testing concerns the logical correctness of a circuit under test (CUT), while
parametric testing examines circuit parameters such as current, voltage, time
delay and power consumption. This thesis addresses issues in logic testing. The
term testing is used to refer to logic testing.

Testing techniques can be classified into two categories, erternal lest and
built-in self-test (BIST) [27, page 131]. External testing uses a tester external
to a CUT to stimulate the circuit and evaluate the circuit responses. A general
purpose tester may cost from one to several million dollars, and is not necessarily
available to all designers. Moreover, a large volume of data needs to be handled
by the tester, resulting in long testing times and high testing costs.

A viable alternative to traditional external testing is built-in self-test (BIST).
In general, BIST refers to the inclusion of on-chip circuitry to facilitate testing
so that complicated digital systems can be tested either without the need for
external testers, or with reduced dependency on external hardware. As circuit
density rapidly increases, testing of digital circuitry has become more and more
difficult because of the increased system complexity and decreased circuit acces-

sibility. On the other hand, very large scale integration (VLSI) and ultra large

scale integration (ULSI) permit a larger portion of silicon area to be devoted to
BIST circuitry, thus allowing a significant reduction on testing cost.

Testing techniques can be on-line or off-line. On-line testing allows the
circuit to be tested as it is performing its intended functions, while off-line testing
typically requires the CUT to suspend normal operation and enter a separate test
mode. Both on-line and off-line testing can be built-in or external. Today, off-line
BIST techniques are widely used in engineering practice, while on-line testing can
only be found in some safety-critical systems due to the high cost in silicon and
design process.

A typical testing environment consists of two key components: a mechanism
to provide input stimuli to a CUT, and a mechanism to evaluate the circuit
responses. The best known off-line testing technique is signature analysis [1, pages
432-448]. It is based on the concept of cyclic redundancy checking (CRC), and is
realized in hardware using linear feedback shift registers (LFSRs) [5]. Figure 1.1
shows a signature analysis environment. The test pattern geneixtor generates
test vectors to stimulate the CUT. The circuit responses (a large volume of data)
are compacted into a short signature (usually 16 or 32 bits) by the signature
analyzer. The comparator compares the signature with the precomputed fault-

free reference. An agreement (disagreement) of the two indicates that the CUT

passes (fails) the test.

TEST CIRCUIT
PATTERN || UNDER o] SIGNATHRE s o} cOMPARATOR |——= PASSIFAIL
GENERATOR TEST

/

FAULT-FREE
REFERENCE

Figure 1.1: A signature analysis environment

A shift register is a collection of storage elements (for example, flip-flops)

connected so that the state of each element is shifted to the next element in

2

response to a shifting clock signal. A lincar fecedback shift register (LEFSR) s a
shift register with a linear feedback network using XOR gates. and is uniquely
defined by a polynomial in binary field {1]. LFSRs are commonly used as test
pattern generators and data compactors [27, pp. *31-153].

Ezhaustive test pattern generation generates all the 2" possible input com-
binations for a circuit of n inputs. However, it is only applicable to circuits with
a small number of inputs (i.e. when n is in the lower twenties). In practice,
commercial circuits with over 100 inputs are not uncommon, and the affordable
testing time for circuits is in seconds. Generating exhaustive test patterns for a
circuit with 100 inputs would require several days, even if the fastest computer
available today is used.

Digital testing has two basic requirements, the lowest possible test cost and
the highest possible test coverage. Test cost is a function of test time, which is
largely dependent on the test length of chosen test vectors. The test coverage, on
the other hand, determines the quality of digital circuits and requires sufficiently
long test sets. Therefore, tradeoff between the two requirements has to be made.
It is desirable to choose a small subset of all the possible input combinations, which
requires a reasonable test time and is able to detect the maximum number of faults
in a CUT. There are two alternative approaches, random and pseudorandom test
pattern generation. A random test sequence has a high probability of exercising
all input lines with different logic values. However, it suffers two main problems: it
is hard to determine the test coverage, and the test sequence is not repeatable {1].
In manufacture testing, a million copies of a circuit may be fabricated. Therefore,
a repeatable test sequence would provide a standard testing measurement on the
circuit and simplify the testing procedures.

Pseudorandom %est pattern generation generates a subset of 2" possible test
vectors in a deterministic fashion. The vectors have many characteristics of ran-
domn patterns, i.e. the vectors appear to be random in the local sense, but they

are repeatable. Various hardware implementations of pseudorandom test pattern

generators have been proposed. LFSRs are the most commonly used implementa-
tion structure. A brief review of the implementation structures and the theoretical
background can be found in Section 2 of this thesis. A comprehensive exposition
of this subject can be found in [5].

It should be pointed out that the application of pseudorandom sequences is
not limited to digital testing. In fact, they have found wide use in communication
systems, encipherment, error-correcting coding and cryptography.

The primary goal of this thesis is to explore alternative implementation struc-
tures for pseudorandom sequence generation so that test coverage of digital cir-
cuitry can be improved and test time can be reduced. There are two basic related
issues: (1) to find a suitable structure and implementation of a new binary se-
quence generator, and (2) to study its pseudorandom behavior and determine its
test coverage in testing applications.

In the past ten years, considerable interest has been developed in the behavior
of cellular automata (CA). The initial work was pioneered by Wolfram [37] and
later by Pries et al. [28]. It has been found that one-dimensional linear hybrid
cellular automata (LHCA) are of special interest as an alternative source of test
stimuli to the conventional LFSR implementations [10, 30]. It is reported that
LHCA with maximum length cycle have superior performance as pseudorandom
test pattern generators to LFSRs [39]. Industrial companies have reported the
use of LHCA in their built-in test circuitry for commercial products [26].

Janowalla defined and explored the behavior of two-dimensional machines,
called rectangle-structured linear cellular automata (RLCA) [23]. The initial re-
sult showed that the one-dimensional LHCA and the two-dimensional RLCA per-
form equally well as pseudorandom test pattern generators, and that both are
much better than LFSRs. However, RLCA cannot be implemented at every de-
gree. For instance, RLCA of prime number degrees cannot be implemented [23].

The objective of this thesis is to formally introduce two-dimensional tree-

structured linear cellular automata (TLCA), and explore their applications in

pseudorandom pattern generation. The research will increase our understanding
of the pseudorandom behavior of linear finite state machines, and the relation
between the pseudorandom measurements and test coverage. It will also prepare
the background for theoretical treatment of measuring testing quality in future
studies.

The remainder of this thesis is organized as follows. Chapter 2 prepares the
general background relevant to this thesis. Additional details are introduced as
necessary in later chapters. We review the previous work in LFSR, LHCA and
RLCA, and examine their merits and demerits in testing applications.

Chapter 3 introduces the definitions, structures and computation rules of
TLCA. The transition matrix of TLCA and five maximum length TLCA struc-
tures are formally defined.

Chapter 4 presents the computer algorithms to search maximum length
TLCA, and discusses the problems and the solutions in their C programming
implementation. Lookup tables of minimal cost maximum length TLCA of de-
gree 2 to 60 are given.

Chapter 5 explores the application of TLCA as pseudorandom test pattern
generators, and examines their effects on test coverage under various fault models.
Fault simulations are conducted on the standard ISCAS ’85 benchmark circuits,
and the statistical results of the simulations are reported. Concluding remarks
and topics of future research are presented in Chapter 6.

There are five appendices. Appendix A lists the number of all primitive
polynomials of each degree, up to degree 24. Appendix B contains the source
code for the implementation of Algorithm I described in Section 4.1. Appendix C
is the user manual of the fault simulator used in Chapter 5. Appendix D provides
the tabular data of the fault co‘erage as functions of test length. The plots of
the data can be found in Figures 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 of Chapter 5.
Appendix E shows the actual LFSMs used as the test pattern generators in the

fault simulations reported in Chapter 5.

Chapter 2

Background and Review

Problems in pseudorandom sequence generation and its applications in digital
testing span several subjects of science and engineering. In the first four sec-
tions of this chapter, we prepare the necessary mathermatical and practical back-
ground required for the study of tree-structured linear cellular automata (TLCA)
in Chapters 3 and 4. We review the extensive work on structures and operations
of pseudorandom sequence generators. We summarize their representations used
in different contexts, and provide the insight of the correlations among them.
To prepare for the study of the effectiveness of pseudorandom sequences on
test coverage for digital systems in Chapter 5, fault models that represent faulty

behavior of digital components are introduced in Section 2.5.

2.1 Definitions

Definition 2.1 A nonzero intege- t is a divisor of an integer s if there is an

integer u such that s = tu. In this case, we write {is.

Definition 2.2 A prime is a positive integer greater than 1 whose only positive

divisors are 1 and itself.

Euclid’s Lemma: If p is a prime then plab implies pla or pib.

Definition 2.2 Modular Equations: If a and b are integers and n is a positive
integer, we write ¢ = bmod n when n divides « —b. E.g., 13 = 3 mod 5,22 =

10 mod 6, —10 = 4 mod 7.

Definition 2.4 [7, pp.27] A field Fis a set that has two operations: addition and

multiplication, defined on it such that the following axioms are satisfied:

1. The set is an abelian group under addition.

2. The field is closed under multiplication, and the set of nonzero clements is

an abelian group under maltiplication.

3. The distributive law

(a + b)e = ac+ bc
holds for all a, b, < in the field.

A field with finite elements is called a finite field, or a Galois field. It is
denoted by the label GF(q) with g elements in a field. GF{2) has clements 0 and

an 1, which are under modulo-2 addition and modulo-2 multiplication.

Definition 2.5 Given a sequence of numbers, ag,@1,d2,*,an, -+, a genecraling

function G(z) can be associated with the sequence by the rule
G(IE)=ao+alx+02$2+---+anxn+.... (21)

Definition 2.6 (33, p. 297] A function f: V — V' is a linear function from a

vector space V into a vector space V' over the same scalar field ¢ if, for all ¢; and

c2 in q and v; and v, in V,

flei vy + e2-v2) = e1- f(v1) + c2- f(v2),

where “-” denotes multiplication of a scalar with a vector, and “+4” is the operation

defined in V. Here, we consider the field GF(2).

7

Definition 2.7 A machine M is a linear finite state machine (LFSM) [33, pp.
297-298] if:

1. the state space Sy of M, the input space Ipr, and the output space Y are

cach vector spaces over a finite field K;

2. let the vector st denote the state of the machine at time ¢, the vector u;
denote the input to the machine, and the vector y; denote the output of the

machine. The next state si*! of M at time t 4 1 is defined by

stV = A.st + By (2.2)

and the output is defined by
yi = C-s; + D u;, (2.3)

where A, B, C, and D are transformation matrices over the finite field K,

and “” denotes matrix multiplication.

The machine is linear because the transition function from the current state
to the next state is defined to be linear, and thus can be represented by a matrix

with the elements in the appropriate field (here GF(2)).

Definition 2.8 Autonomous linear finite state machines are linear finite state

machines without external input u;.

For an autonomous LFSM there is no second term in equation (2.2) and (2.3)

and therefore the next state function is reduced to

st = A.st. (2.4)

The matrix A is called the state transition matriz. Thus with the deumnition of
linearity, the state of the machine at time ¢ +1 linearly depends on the state of the
machine at time ¢, and the transformation between states can be accomplished by

matrix multiplication with A. In this thesis we only consider autonomous LFSM.

8

2.2 Linear Feedback Shift Registers

2.2.1 Analysis of Shift-Register Sequences

Let the sequence {am} = {aq, @1, a2, ---} represents the history of the output
stage of a shift register where a;, € {0,1}, depends on the state of the output
stage at time ¢;. The properties of this shift-register sequence can be examined
by analysis of the generating function created by the rule
0o
G(x) = Z anpz™ . (2.5)
m=0
Because the contents of an n-stage shift register eventually get shifted out
to the right to become the sequence under analysis, the initial state of the shift

register may be thought of as

A_n,Q_ny1y- " ,A_2,0_1 .

If the recurrence relation defining {am} is

n
am = Zciam_; s (2.6)
i=1

where ¢; € {0,1} depending on the feedback, then G(z) becomes [5)

Glo) = 1= oo : (2.7)

n .t
i=1 G T

Definition 2.9 The characteristic polynomial of a sequence {a.,} produced by
an LFSR is defined as

fl(z)=1- En:c,-a:i = Xn:c;:vi . (2.8)

i=1 =0
Note that ¢, = 1 for an n-stage linear feedback shift register (LFSR) with a

characteristic polynomial of degree n. The relation between a generating function

and a characteristic polynomial is

G(z) = ?%5 . (2.9)

Figure 2.1 shows two types of LFSR implementations, named Type I and
‘I'ype 11 LFSRs, based on the same characteristic polynomial 2 + 2% + 1. The
difference between them is the placement of the XOR gates. For convenience, the

Type I and II LFSRs are labeled LFSR(I) and LFSR(1I), respectively.

| 1
o S b

. [~ S: =DP—~| S,
pany

:

Figure 2.1: (a) a LFSR(I) and (b) a LFSR(II) with the common characteristic
polynomial f(z) =1+ z® + z°

(b)

e)

Example 2.1 Consider a shift-register sequence with a recursion relation
A = Qm—3 + Qmp—5 (2.10)
the characteristic polynomial of this recursion relation is
flz) =142+ 2°, (2.11)
which is shown in Figure 2.1. 0
Table 2.1 lists the sequence of 31 states that the LFSR(II) of Figure 2.1 (b)

cycles through, starting with the initial state 00001. The columns 2 to 6 list the

states in binary (where ss is the most significant bit), and the column 1 contains

the corresponding decimal representations.

10

s

32
(¢]

18

11

22

12
25

19

15
31

30

28
24

17

13
27

23
14
29

26
21

10
20

16

States of the LFSR(II) with characteristic polynomial f(z) = 1+4z°+z°
11

.
.

Table 2.1

One period of the sequence {an} (m = 31) that the fifth stage of the LFSR(II)

in Figure 2.1 (b) generates can be seen to be

{am} = ap,01,42;""*,0m-1

= 0000100101100111110001101110101 . (2.12)

Definition 2.10 [5, pp. 70] If the sequence generated by an n-stage LFSR has
period of 2" — 1, it is called a mazimum-length sequence. The characteristic poly-

nomial of a maximum-length sequence is called a primitive polynomial.

Definition 2.11 Define the reciprocal polynomial f*(z) of f(zx) as

Fr(z) =z f (1) =3 iz (2.13)
T =0
Note that if a characteristic polynomial f(z) defines a maximum-length sequence

(i.e. is a primitive polynomial), its reciprocal will also yield a maximum-length

sequence. The reciprocal polynomial is simply the time reverse of the sequence

corresponding to f(z) [5].

Theorem 2.1 [19, pp. 32]

Given an n-stage LFSR with the initial conditions
] =QA_g = *** =Qy—n = 0, A_pn =]., (214)

then the LFSR sequence {am} is periodic with a period which is the smallest
integer k for which f(z) divides 1 — z*.

Definition 2.12 If f is a polynomial which has no divisors except scalars and

scalar multiples of itself, then f is said to be an irreducible polynomial.

Theorem 2.2 [19, pp. 33] If the sequence {anm} has maximum length, its char-

acteristic polynomial is irreducible.

Theorem 2.3 [19, pp. 37] If a sequence {a,} is derived from an n-stage LFSR

with irreducible characteristic polynomial f(z), then the period of the sequence

{am} is a factor of 2" — 1.

12

A primitive polvnomial is a special case of an irreducible polynomial. Clearly,
pol} poiy \
if 2" — 1 is prime, every irreducible polynomial of degree n corresponds to a maxi-
\ g P

mum length LFSR. The irreducibility is a necessary condition for primitive poly-

nomials. The relationship between primitive polynomials and irreducible polyno-

mials is

Primitive polynomial =" 2 Irreducible polynomial

The primitive trinomials, polynomials with three nonzero coeflicients (cor-

responding to minimal cost LFSRs), of degree up to 500 have been found and

published in {4, 5, 8, 21, 32, 36].

2.2.2 The Matrix Method

Each state of an n-stage shift register can be considered as an n-dimensional
vector. The shift register is then a linear operator which changes cach state into
the next. It is a familiar fact that a linear operator, operating on n-dimensional

vectors, is most conveniently represented by an n X n matrix,

T -
+ + - 1 ‘
(s{,",s1 , ST, ,sn_z,s:_l) =M - (S0,51,52," " »Sn—2,5n-1) (2.15)

where s; denotes the present state, s} the next state, and the superscript 7" means
the transpose of the matrices.

In general, a state transition matrix M of an n-stage LFSR takes the form
(0 1)

10 - 00 a
01 --- 00 e

(o)
o
o

(2.16)

00 - 1 0 caz
Koo o 001 camy

with 1’s along the diagonal below the main diagonal, and the “feedback cocffi-

13

cients” down the last column for the LFSR(I), and

(€1 €2 -+ Ch—y Cp—y 1 \
1 ¢ --- 0 0 o
m=| 0020 (217
e 0 --- 1 0 0
kO 6 --- 0O 1 0

with 1’s along the diagonal below the main diagonal, and the “feedback coeffi-
cients” in the first row for the LFSR(II).

The characteristic equation of matrix M for LFSR(II) is

A = det{(A + M)
A4 ¢ -+ Ch—2 Cn—r 1
1 A - 0O o 0
_ 0 | I ! 0 O
0 0o --- 1 A0
0 0o --- 0 1 A
= AN+ A" A" i oA+, (2.18)

which is the characteristic polynomial of the shift register.
To determine the periodicity of an LFSR i< equivalent to finding the smallest

power p of its transition matrix M such that M? = [[19] (where [is the identity

matrix), if the matrix is non-singular’.

2.2.3 Algorithm for Finding Primitive Polynomials

One of the most practical methods of finding primitive polynomials is the sieve
method [5, 19, 32]. A series of tests is applied to determine the irreducibility of a

trial polynomial of degree n, then the primitivity.

Note: a square matrix A is said to be non-singular if and only if its determinant |A| # 0.

14

Test 1 A polynomial with all even exponents is a square and hence reducible.

Therefor. the first test rejects all polyvnomials with all even exponents, such as,

4241 =(24+r+1)2

Test 2 An irreducible polynomial has an odd number of terms, one of which is

a constant. Thus the second test rejects all polynomials that fails this simple

criterion.

Test 3 The maximum-length shift-register sequence has a period of 2" — 1. 1t is

shown [25] that if the trial polynomial g(z) is irreducible (a necessary condition

for it to be primitive), it divides 1 — z2"~1. In other words, letting f = 2" -1 ,if
z! # 1 mod ¢(z)

then g(x) is reduci®le and is discarded in favor of another trial polynomial. If,

however, 7 = 1 mod g(z), the tests continue since the trial polynomial is irre-

ducible and possibly primitive.

Test 4 It must now be determined if there is a prime factor p of f such that

z//? = 1 mod g(z). If no such prime factor can be found, g(z) is primitive.

Example 2.2 The sieve method is applied to each item of a list of several trial

polynomials to determine their primitivity:

ps(z) = z*+zx+1

pe(z) = = +z°+1.

Polynomials ps(z) and pe(z) are reciprocal, so what holds for ps(z) will also hold
for pe(z). Test 1 and Test 2 are clearly satisfied by ps(z). Test 3 is satisfied:
£15 = 1 mod ps(z), so it is irreducible. Continuing to Test 4, only z® must be

reduced mod ps(z). The result is z° = (22 + z) mod ps(x). Therefore, ps(z) and

pe(x) are primitive. o

2.2.4 Representations of LFSRs

‘There are three different representations of LFSRs: polynomials over GF(2), bi-
nary string representation, and the LFSR implementation of polynomials. Each
representation provides a convenient expression in a corresponding domain, and
can be easily transformed to either of the other two. A polynomial can be directly
mapped into an LFSR(I) implementation, where the non-zero coefficients corre-
spond to the feedback taps of the LFSR; and it can also be mapped to a binary
string, where the non-zero and zero coefficients correspond to 1’s and 0’s respec-
tively, that is, [lejcz - - - €q-11] in the equation 2.18. For example, the polynomial
2% + 23 + 1 in Figure 2.1 can be represented by [101001}.

2.3 One-dimensional Linear Hybrid Cellular Au-

tomata

Cellular Automata (CA)? are defined as uniform arrays of identical cells in an
n-dimensional space [28]. Each cell is capable of existing in a finite discrete state
space, in our case a binary state space. Further, each cell is restricted to local
neighborhood interaction only and has no global communication, i.e. the neigh-
borhood of a cell is typically taken to be the cell itself and all immediately adjacent
cells. The algorithm the cell uses to compute its successor state, based on the
information received from its nearest neighbors, is referred to as the computation

rule [37]. Cellular automata can be characterized by the four following properties:
1. the cellular geometry;

2. the neighborhood specification, where cells are restricted to local neighbor-

hood interaction and have no global communication;

2CA is used as an abbreviation i;r both Cellular Automaton and Cellular Automata, de-
pending on the context. Cellular Automaton indicates a single machine made up of a collection

of cells whereas Cellular Automata contain more than one Cellular Automaton.

16

3. the number of states per cell:

4. the algorithm to compute the successor state, called its computation rule.

based on the information received from its nearest neighbors.

2.3.1 Notations and Computation Ruls

CA are finite state machines. The next state of a A-neighbor cell depends on

the present states of itself and its k — 1 neighbors, specified by its neighborhood

function.

0—= 9oy [~ .(150) ’ .(150) (90) 1 (20) |

'51 s2 S, 84 S,

Figure 2.2: An example of CA

Figure 2.2 is an example of the type of machine being described. Let s! be
the state of the cell s; at time ¢t and the next state sf“ of the cell s5; at time £+ 1.
For a 3-neighbor cell, si*! can be represented as a function of the present states

of cells s;, s;_1 (left neighbor) and s;4, (right neighbor) at time t:

s$+l = f(s:'—la S:s s:-}-l) 1 S 1’ S n

where f is known as the rule of the cell denoting the logic, and n is the number of
cells or the length or degree of the CA. There are two possible boundary conditions,
null or cyclic. Under a null boundary condition, a constant 0 is applied from
outside, and a cyclic boundary condition requires a connection of the two ends.

If the function f(st_,,s!,s!,,) can be expressed in the form
f(sh1s8hsin) = hisi, ® kas; @ kasiy,

where each of the constants k; is either 0 or 1, and where & denotes addition over
GF(2), the machine is called a linear CA (LCA). Since a cell in a one-dimensional

LCA has at most 3 neighbors, there are 2° = 8 possible linear rules.

17

For a 3-neighbor cell containing binary states, there can be a total of 22° =
256 distinct binary rules (linear and non-linear rules). The rules by which a cell
determines its next state were named by Wolfram [37] as follows. The states of
the cell and its neighbors are written as 8 triplets in ascending (right to left)
binary order as shown in Figure 2.3. The leftmost bit of a triplet shows the
current state of the left neighboring cell, the middle bit shows the current state
of the the cell under consideration, and the rightmost bit shows the current state
of the right neighbor. The next state of the cell under consideration is written
below each triplet. The resulting group of 8 bits forms a binary number between
0 and 255; the least significant bit is the one formed from the triplet 000 and the
most significant bit is the one formed from 111. This binary number is used as
the rule, such as, for rule 90, 01011010, is decimal number 90,0, and for rule 150,
10010111, = 150;0. Figure 2.3 shows the rules for two of the possible connections.
In rule 90, the next state is the modulo-2 sum of the present states of the two
neighbors . Rule 150 derives the next state from the modulo-2 sum of the present

states of the cell and both its left and right neighbors.

Triplets 111 110 101 100 O11 010 001 000

Rule 90 0 1 0 1 1 0 1 e
Rule 150 1 0 0 1 0 1 1 1
128 64 32 16 8 4 2 1

Figure 2.3: Naming of CA Rules

The computation rules 90 and 150 are defined as follows:

Rule 90: st = s5;1 @D sit1 (2.19)
Rule 150 : sf = s;_1 & i ® Sit1

If the same rule is applied to all the cells of an LCA, then the LCA is called a
homogeneous LCA; if different rules are applied to the cells, then the LCA is called

18

a hybrid LCA (LHCA). Figure 2.2 shows a 5-cell one-dimensional null boundary
LHCA using rules 90 and 150 with the characteristic polynomial +® + % + 1.

2.3.2 1-d LHCA Transition Matrix

The states of an n-cell LHCA (or an LHCA of degree n) at time f are represented
by the vector S; = [s!,s5,---,s.], which also represents the pattern generated
by the LHCA at time t. With the representation of the state of the LHCA, we
need a linear operator to describe the computational rules that specify the state
transitions of the finite state machine. The linear operator can be represented
by an n X n square matrix. The next state of the LHCA can be obtained by

multiplying the state vector representation of a present statc by this matnix,

where all operations are modulo-2. The matrix is referred to as the transition

matrix T of the LHCA.
The state of a LHCA at time ¢ 4 1 is represented as

[5t+1] = [T][St])
and at time t + k as
[Sewr] = [TV*SH] -

Example 2.3 In Figure 2.2, the next state equations are

S-l*- = &2
5T = s1®s2Ds3
2
st = 5.Ps3P
3 = 2 3D S4
sf = s3®ss
s§ = sa, (2.20)

19

and the corresponding state transition matrix is

(0100 0)
1110
T={01110]/. (2.21)
0010
L0001 0

a

In general, the i-th row of a transition matrix 7" designates the computational
rule performed by the cell s; (numbered from left to right). For a k-neighbor cell
of a LHCA there are at most k nonzero entries in the corresponding row of the

matrix. A transition matrix is constructed by

1. Elements on the main diagonal, T;;, are denoted as d; for 1 < i < n and
d; € (0,1), where d; = 1 indicates the dependency of the next state of

the cell s; on its present state (e.g., rule 150), and d; = 0 means no such

dependency (such as, rule 90);

2. Elements on the super-diagonal, T} 1, are denoted as r; for 1 <: < n —1
and r; € (0,1). Similarly, 7; = 1 (r; = 0) indicates that the next state of

the cell s; depends (does not depend) on the present state of its immediate

right neighbor, the cell s;4,;

3. Elements on the sub-diagonal, T};_;, are denoted as {; for 2 < i < n and
[; € (0,1). I; =1 and [; = 0 represent the dependency and independency

of the next state of the cell s; on the present state of its immediate left

neighbor, cell s;_;;
4. The other elements of T are equal to 0.

Example 2.4 The transition matrix T of 4-cell null boundary LHCA is

20

d, rp 0 0 -‘
lo dy r, O
0 I3 di ra
0 0 I dy

If the rules 90 and 150 are used, then ; = 1; = 1, for all ¢, all the elements on
the super and sub diagonals are all equal to 1. For convenience, a binary string
[didz - - - dr] is used to represent an LHCA of degree n. For example, the 5-cell,
null boundary LHCA shown in Figure 2.2, consisting of the following rules from
the left to the right: [90 150 150 90 90}, can be represented by [01100]. A dot in

the cell indicates that the next state of the cell depends on its own present state,

that is, d; = 1.

2.3.3 Maximum Length 1-d LCA

An n-cell LCA is said to have a mazimum length if all 2" — 1 nonzero distinct n-
stage patterns it generates appear as successive states in a single connected cycle,
or if the output sequence it generates has period of 2" — 1. An n-cell maximum

length LCA is characterized by the following relation on its transition matrix:
T™ = I for which the smallest value of mis 2™ — 1.
The characteristic polynomial of the transition matrix 7" of a maximum length
LCA is a primitive polynomial.
There are 8 possible distinct rules for one-dimensional linear cellular au-
tomata. However, only null boundary LHCA with hybrid rules 90 and 150 cells
have maximum length cycle [10, 30]. It has been shown (3, 10] that LHCA with

cyclic boundary conditions at both ends have no maximum length sequence. For

LHCA with the boundary condition, null at one end and cyclic at another, it has

21

been found that only some of them have maximurn length sequences [3]. In this

thesis only LHCA with null boundary condition are considered.

2.3.4 LHCA and LFSRs with the Same Characteristic Poly-

nomials

As stated in section 2.2.2, there is a 1-to-1 correspondence between a LFSR and
a polynomial. In other words, given a LFSR, a unique characteristic polynomial

can be determined and vice versa.

In general, the transition matrix T" of a degree n LHCA is in the form

1 0)
1 dy 1
Tu=10 1 ds 1 0 =-co «ov oo oo 1. (2.22)
\0 O | | 1 dn)

The characteristic polynomial is defined as A,(z) = det(T, + zI). For a given
n-cell LHCA with [dyd; - - - d,.], Serra et al [30] demonstrate that the characteristic
polynomial A,(z) for the LHCA can be calculated by the recurrence relation

An(z) = (2 + di)Diror(2) + Dpa(z), k=1 (2.23)

with initial conditions Ag(z) = 1 and A_;(z) = 0.

Example 2.5 For the LHCA [01100} in Figure 2.2, the characteristic polynomial
is computed by equation (2.23) as follows.

A_](.’B) = 0
AQ(III) = 1

Ay(z) = (z+di)do(z) + A_i(z)
= (2+0)1+0

22

= x
Dx(z) = (2 + d2)A(x) + Ao(2)
= (z+1)z+1
= 224+z+1
Az(z) = (z+ d3)D2(z) + Ay(x)
= (z+1){z*+x+ 1) +x
= 2+ +1
As(z) = (z + di)As(z) + Dofz)
= (z4+0) (2 +x+1)+2°+x+)
= z¥41
As(z) = (z+ds)Au(z) + As(x)
= (z+0)(z*+ 1)+ +z+1
= z°+z°+1

Therefore, the characteristic polynomial of the LHCA is z® + 2° + 1. O

In comparison, the relations between LHCA and polynomials are more com-
plicated. As shown in [10], more thar one correspondence may exist between a
polynomial and an LHCA. When irreducibility is concerned, it has been found
that any irreducible polynomial can be mapped into two irreducible LHCA. 1ig-

ure 2.4 depicts the pictorial representation of these relations.

@ LHCA <L polynomials <tile LFSRs

(b) irreducible LHCA <«*1s irreducible polynomials <e-=--s- irreducible LFSRs

Figure 2.4: (a) General case; (b) irreducible machines and polynomials

Theorem 2.4 [30, pp. 771] If two matrices A and B have the same characteristic

polynomial A,(z) which is irreducible (or primitive), then A is similar to B. In

23

fact, there exists a non-singular matrix ¥ such that B = P~' AP, whose operation

is called a similarity transform.

Theorem 2.5 [30, pp. 771] An LCA and an LFSR with the same irreducible (or

primitive) characteristic polynomial are isomorphic.

It is known that isomorphic LCA and LFSRs have identical cycle structures.
The proof is based on the properties of group theory [33] where an element 4 is
the conjugate of ¢ in a group G if there exists an z in G such that h =z -g-z7".
Conjugate elements h and g have the same cycle structure in all permutation

representations of the group.

Example 2.6 Figure 2.5 shows an LHCA and an LFSR with their corresponding
transition matrix and their characteristic polynomial. The cycle structure is also
shown in the state transition diagrams. Since this polynomial is irreducible, but

not primitive, the states form four separate cycles, where state 0 always goes back

to itself. O

Theorem 2.5 has another meaning, i.e. the characteristic polynomial of an
LHCA determines the recurrence relation, similar to equation (2.10), that is dis-
played in the output sequence of a single 6utput stage. By the similarity, the
output sequence of the LHCA is identical to that of a stage of the similar LFSR.
It is easy to verify that the recurrence relation for the sequence {a,.} generated
by a cell of the LHCA in Figure 2.2 is also a» = @m-3 + am—s, comparing with
that of the LFSR in Figure 2.1.

2.3.5 Synthesis Algorithm

The synthesis of an LHCA for a polynomial p(z) is the process of constructing
the LHCA that has the p(z) as its characteristic polynomial over GF'(2). Cattell
and Muzio [12] have developed an LHCA synthesis algorithm based on Euclidean

Division.

24

Charactenstic
polynomial

P =X 4 x 3 x 24 x 41

/ \

LFsR [11111] LCAR [01 00}

/

) 0
E_,D__l o o0 [rsofa o0 [= 90 | D

Transition matrix

Transition matrix

Figure 2.5: Transition matrices of an LFSR(I) and an LHCA

The Euclidean division algorithm for polynomials states that for given poly-

nomials a(z) and b(z) with b(z) # 0, there exist unique polynemials g(a) and

r(z) such that

a(z) = q(z)b(z) + r(z) ,

where either the degree of 7(z) is less than the degree of b(z), or r(z) = 0. The
polynomial a(z) is the dividend, b(z) is the divisor, q(x) is the quotient, and r(x)

is the remainder.

In general, the division algorithm to compute a [d1dz - - - d,) of an LHCA with

a given irreducible polynomial An(z) is summarized as

An(z) = (:E + dn)An—l(z) + An—-2(m)
An-—l(z) = (-1' + dn—-l)An-—2(x) + An—S(x)

25

Afz) = (z+di)l+0.

Example 2.7 Given a polynomial As(z) = z® + z® + 1, we want to get a
[dyd2d3dads) of an LHCA with the characteristic polynomial As(z). Assume that
A4(z) = z* + 1. Apply the division algorithm five times,

As(z) = °+2°+1

= (z+0)(z*+1)+z°+z+1

= (x + ds)As(z) + As(x)
Ag(z) = z*+1

= (z+0)(P+z+1)+z?+z+1

= (24 da)As(z) + D2(z)
As(z) = z°+z+1

= (z+1)(+z+1)+z

= (z+ d3)Ay(z) + As(2)
Ao(z) = z+z+1

= (r+1z+1

= (z + d2)Ar(z) + Do(z)
A(z) = z

= (z+0)1+0
(z + dy)Ao(z) + Ay () ,

we have [d;d2d3d4ds] = [01100] which uniquely defines an LHCA with the char-

acteristic polynomial As(z), comparing with Example 2.5 on the page 22. O
The An_i(z) can be found by solving the equation [12]

[An-1(2)]? + (22 + DAL (2)An-1(z) + 1 = 0 mod An(z) , (2.24)

26

where A/l (z) is the formal derivative of A, (). which is calculated in the same
manner as the derivative for integer-coeflicient polvnomials, but with modulo-2.
In summary, the Euclidean division algorithm and the equation (2.24) provide a
synthesis algorithin which produces LHCA for given irreducible polynomials.
The LHCA corresponding to minimal weight primitive polynomials up to
degree 300 can be found in {11]. The minimal weight maximum length LHCA of

degrees up to 500 are listed in {13, 40].

2.4 Two-dimensional Linear Cellular Automata

Janoowalla [23] first investigated the structures and behavior of two-dimensional
linear cellular automata. In particular, interest was raised in the pseudorandom
properties of rectangle-structured LCA (RLCA). Figure 2.6 shows the general
structure of degree 4 x 4 RLCA. Since RLCA with two and threc-neighbor cells
preserve a comparable hardware cost to that of 1-d LHCA, they are of special
interest. The initial statistical and fault simulation results showed that LHCA

and the RLCA performed equally well as pseudorandom test pattern generators,

and that both are superior to LFSRs.

2.5 Fault Models

A fault is an instance of an incorrect operation of the circuit under test (CUT).
The cause of a fault may be fabrication errors, fabrication defects, and physical
failures, etc. Some examples of fabrication errors are wrong components, incor-
rect wiring, and shorts caused by improper solding. Fabrication defects result
from an imperfect manufacturing process. Most physical failures occur due to
component wear-out and/or environmental factors. The fabrication errors, fab-

rication defects, and physical failures can collectively be called physical faults

27

0] i i) 0
0 —> —> - — -0
1 - 2 ~-—13 - 4
AN S A
0 — — — —— t—— O
5 - 1s I 2 |8
S I S
Q0 —» — - : - 0
9 ~*—Ti0 - 11 |12
[} |)
S R I
Q ——o={ > e . -
13 =314 - 15 ™ 16
0 0 o) 0

Figure 2.6: The structure of rectangle-structured LCA of degree 4x4

(1, pp. 2-3]. Many different physical faults may cause the same malfunctional
effect of the circuit under test. The effect of the physical faults on the circuit’s
operation is represented by logical faults, i.e. logical faults represent the effect of
physical faults on the behavior of the modeled system. One approach to abstract
the effects of physical faults at some higher level (logic, register transfer, func-
tional block, etc.) is fault modeling. 1f the fault model accurately describes all
the physical failures of interest. then one only needs to derive tests to detect all
the faults in the fault model.

Fault models have been developed for both gate-level and transistor level
descriptions of circuits. The stuck-at fault model, which is a gate level fault model,
is by far the most prevalent, both in the literature and in the testing industry.
Although the stuck-at fault model is widely used, its validity is not universal.
Therefore other fault models have been developed which try to account for the
physical faults not adequately covered by the stuck-at fault model. Examples
of other gate level fault models are the bridging-fault model and the delay fault

28

model. An example of a transistor level fault model is the stuck-open fault model
in CMOS (complimentary metal oxide semiconductor). In this thesis. stuck-at.
stuck-open and delay fault models are considered.

We define a number of terms for later discussion. A fault set F for some
circuit is defined as a collection of fan’ts under some fault model. A test pattern
is an input vector which causes an incorrect output in the presence of some specific
faults belonging to F. A test set T is a set of test patterns. A fault [€ F is
said to be detected by a test pattern if that test pattern produces an incorrect
output in the presence of f. The test set T is evaluated by determining its quality
or effectiveness. The quality of the test set is measured by the ratio of faults it
detects to the total number of faults in F. This ratio is called fault coverage.

A fault f is said to be detectable if there exists a test ¢ that detects f,
otherwise, f is an undetectable fault. A combinational circuit that contains an
undetectable stuck fault is said to be redundant, since such a circuit can always
be simplified by removing at least one gate or gate input [1, p. 100].

In this work, only permanent faults, that is, the faults that continue to remain
in the system after their first occurrence, are considered. The stuck-at, stuck-open

and delay fault models are commonly used permanent fault models.

2.5.1 Stuck-at Fault Model

This model assumes that the physical faults in the circuit cause one or more lines
to be permanently stuck-at logic 1 or 0. If we assume that there is only a single
line in the circuit that is stuck-at 1 or 0, then the model is called the single stuck-
at fault model (SSF). A single stuck-at fault on a line [stuck-at-a, a € {0,1}, is
often denoted by {/a.

Figure 2.7 shows a simple circuit with three inputs; a, b and ¢, one output;
z, and a total of 8 line segments. If line 6 is stuck-at 1, then the line value always
remains 1 regardless of the input values a and b. In order to detect this fault by a

procedure that allows access only to the primary inputs lines (1, 2 and 3) and the

29

0/1

b=1 _ZT z
8
5
>: 7
c=1 __3___

Figure 2.7: Single stuck-at fault model

primary output line (8), it is essential that a test vector must create a change on
line 6 and ensure that the change can be seen on line 8. That is, the test vector
must produce a 0 on line 6 so that the output created on line 8 clearly shows
whether the signal on line 6 is # >t 1. In the example shown, the output z is
equal to 0 for the inputs a = 0, b == 1, and ¢ = 1 assuming no fault in the circuit.
However, z is equal to 1 if line 6 is stuck at 1 regardless of the input values. The

notation 0/1 in the figure indicates that the fault free value is 0 and the faulty

value is 1.

2.5.2 Stuck-open Fault Model

In this model the physical faults convert a combinational CMOS circuit into a
sequential one {27, pp. 46-49]. Stuck-cpen faults arc modeled at a transistor level.
A stuck-open fault incorporates memory in the circuit, i.e. the circuit retains its

previous state. The following example illustrates the effect of a stuck-open fault

on a circuit at the transistor level.

Example 2.8 Figure 2.8 shows a CMOS transistor level realization of a 2 input
NAND gate. The inputs are labeled a and b and the output is labeled z. The p-
type transistors (p) and p,) are connected in parallel, while the n-type transistors

(n; and nj) are connected in series. For z to be pulled to Vpp (logic 1), at least

30

Z (output)

n
1
ol
n,
b——{l_l:

GND

Figure 2.8: CMOS realization of a 2 input NAND gate

input:P p transistors || n transistors || conducting || output
a| b P P2 ~n1 n2 path 2
0] 0 ON ON |l OFF | OFF Vpp = = 1
011 ON | OFF || OFF | ON Vpp — 2 1
1{ 0 jl OFF] ON ON | OFF Vop — = 1
1{ 1)| OFF] OFF || ON ON z = GND 0

Table 2.2: Operation of fault free NAND gate

one of the p transistors should have an input of 0. For z to be pulled to GND
(logic 0), both n transistors should have an input of 1. Table 2.2 shows the
operation of the fault free NAND gate. Assume that there is a break in a line
as shown in Figure 2.9. The fault effect is that the transistor p; is open, i.e. it
cannot conduct. If @ = 0 and b = 1 then the output z is isolated since it is pulled
neither to Vpp (logic 1) nor to GND (logic 0). Note that transistors pz, ny and
n, are off and only p, is supposed to be on. Since z cannot take the value of Vi

or GND, it keeps its present value for at least some length of time due to load

capacitance present on the output.

31

a=0-—q"p'IJ = b—— b-=1

l * BREAK l I

7 (output)
ISOLATED
a-0—=
n
s |
GND

Figure 2.9: CMOS 2 input NAND gate with p, open

Two test patterns are required to detect a stuck-open fault: one to set the
output line to a certain value, and the next to try and change the value of that
output line and observe whether or not it retained its previous value. For the
above example, z is first set to 0 (a = 1, b= 1) and then the pattern a = 0,b=1
is applied to change the value of 2 to 1. Since p; is stuck-open, z is isolated and
retains 0, thus detecting the fault p; stuck-open. It is more difficult to test such
faults than faults such as stuck-at since two test patterns are required to detect

a stuck-open fault, whereas a stuck-at fault requires a single test pattern.

2.5.3 Transition Fault Model

For the SSF fault model, the static tests verify the functional behavior of a given
logic circuit under the assumption that the signals are allowed sufficient time to
propagate from the inputs of the circuit to its outputs. In the delay fault model,
it is assumed that some of the signals in the logic may not propagate in time
when operating at the system clock speed. The failures causing logic circuits to

malfunction at the desired clock rate are called delay faults or AC faults.

32

Two types of delay fault models have been mentioned in the literature. The
first one is the transition fault model (or gate delay fault model) [35]. The second
is the path delay fault model {31]. The path delay fault model considers the
cumulative effect of delays along a path from an input to an output. The path
delay fault may model a delay defect distributed over a region of a circuit, but
the transition fault models a localized fault. In this thesis, the testing of the
transition fault model is of interest.

Transition faults are classified into two groups, slow-to-rise and slow-to-fall
faults [35]. If a line can change from logic value 0 to 1 but not as fast as it
should, then it is said to have a slow-to-rise fault. Similarly, a slow-to-fall fault. is
associated with a line if the logic value 1 to 0 transition on the line takes longer
than it should.

Let a;,a2,...,an be the correct(expected) bit sequence for a line in a circuit.
Transition faults in that line yield a faulty bit sequence denoted by y;, y2, .

. Ym.
The slow-to-rise and slow-to-fall faults are defined as follows [35]:

. 1 fa;=1anda;.;, =1,1 <i<m
slow-to-rise y; =

0 otherwise

0 fa;=0anda;_;=0,1<i<m
slow-to-fall y; =

1 otherwise

Tables 2.3 and 2.4 show the values for a;_, a;, y; and whether a slow-to-rise
or a slow-to-fall fault can be detected, respectively.

If there are n lines in the circuit then there are 2n single transition faults
[10]. Just as for the stuck-open faults, a pair of test patterns are needed to detect
a transition fault: the first sets the line to a;_;, assumed to have a transition
fault, and the next sets the line to a;. That is, the first “sets-up” the fault, and

the second “propagates” the fault effect to an output of the circuit.

33

Current bit || Expected bit Faulty bit due to Fault detected
Slow-to-rise delay fault
a1 a; Yi
0 0 0 no
0 1 0 yes
1 0 0 no
1 1 1 no

Table 2.3: Slow-to-rise fault

Current bit || Expected bit Faulty bit due to Fault detected
Slow-to-fall delay faulit
ai—) a; Yi
0 0 0 no
0 1 1 no
1 0 1 yes
1 1 L 1 no

Table 2.4: Slow-to-fall fault

34

Chapter 3

Tree-Structured Linear Cellular

Auvcomata

It has been shown that two-dimensional rectangular-structured linear cellular au-
tomata (RLCA) preserve better test coverage than that of conventional lincar
feedback shift registers (LFSRs), and are comparalse to that of lincar hybrid
cellular automata (LHCA) [23]. Unlike their one-dimensional counterparts, two-
dimensional LCA have many choices of structural configurations. In this chapter,
we formally define tree-structured linear cellular automata (TLCA) and explore

their cyclic behavior as pseudorandom sequence generators. In particular, low

cost maximum-length TLCA are of interest.

3.1 Notations and Definitions

A tree consists of a hierarchy of nodes connected by lines. The single node at
the top level is the root of the tree. A root may have any number of dependent
nodes, called its children, directly below it. These children nodes, in turn, may
have their own children. A node that has no children is called a leaf. Two nodes
that have the same parent are said to be siblings.

The root of the tree is assigned to level 0. Its children are on level [. Its

35

children’s children are on level 2, and so on. The order of a tree is the maximum
number of children any node has. A binary tree is one of order 2, in which each
node has no more than two children. Figure 3.1 shows a binary tree.
level0 root //®~\
Sivdren of the root & |

level 2 nodes

children of level 1 nodes @ @ @

level 3 nodes
children of level 4 nodes @ 0 o
Figure 3.1: A binary tree structure

A tree-structured linear cellular automata (TLCA) is a linear finite state
machine consisting of a two-dimensional array of storage cells interconnected as
a binary tree. A TLCA is capable of performing linear operations over GF (2).
The cells of a TLCA are numbered in an ascending order from the root to the
leaf, and from the left to the right on each level. The number of cells in a TLCA
is defined as the degree of the TLCA. Figure 3.2 shows an example of a TLCA.
The cell numbers are given at the bottom left corners of the cells. The arrows
represent the same meaning as that of LFSRs and LHCA representations, i.e. an

in-coming arrow to a cell indicates an input signal and an out-going arrow is an

output of the cell.

3.1.1 Computation Rules

Cells in a TLCA perform linear computational rules. However, the numbering
convention of the computational rules used in LHCA is inapplicable to TLCA. A
cell in a LHCA has 3 possible neighbors (left, right and itself), which permits a
total of 22° or 256 distinct binary rules (see section 2.3.1). We use the numbers

0 to 255 to represent the rules. The representations are convenient since the

numbers are small.

36

@ 1 \

3
4 < 5 6 -3

() /1\\;
I,

4 < S 6

Figure 3.2: (a) A complete TLCA of odd degree 7 (b) A complete TLCA of even
degree 6

On the other hand, in a TLCA, there are 5 possible neighbors for cach cell.
Therefore there are 22° or 4,294,967,296 distinct binary rules. The numbers are
too large to be used conveniently as rule numbers. Since linear machines are the
concern of this research, we consider linear rules only. Let s! be the state of the
cell s; at time ¢t and si*! be the next state of the cell s; at time ¢t + 1. The

dependency function of the next state of a cell s; in TLCA is

f(st[i/2_|’s:as§+1’S;i’s;i-i-l) = klsii/zj ® kas; @ k3s§+, D kasy D kssyy,

where a coefficient k; can be either 0 or 1, and |real] is the floor function, which
rounds the real down to the maximum integer smaller than the real.

There exists a total of 2% or 32 linear computational rules for TLCA. We
number them from 0 to 31. A 5-bit binary string is used to represent the com-
putation rule performed by a TLCA cell. Each bit corresponds to one of the five

neighbors. From the most to the least significant bits, they correspond to the

37

15

Y

11

1N e—— 15

31
/1
11
15
LR

Figure 3.3: A TLCA of degree 7 using rules 31, 23 and 11

self, parent, sibling, left child, and right child of the cell, respectively. A ‘1" in a
bit denotes that the next state of the cell depends on the neighbor corresponding
to the bit position, and a ‘0’ denotes no dependency. Similar to that of LHCA,
we use the decimal numbers corresponding to the binary strings to name the
computation rules. Table 3.1 shows the definitions of all the linear rules.

A root or a leaf TLCA cell does not have the same number of neighbors as
the others. Similar to that of LHCA, a null boundary condition, i.e. a constant 0
input to a root or a leaf cell, is assumed in this research. The alternative boundary
conditions shall be investigated in future research.

We classify the linear rules into two categories: self-neighboring rules and
non-self-neighboring rules. Self-neighboring rules encompass rules 16-31, and non-
self-neighboring rules include rules 0-15. A cell performing a self-neighboring rule
is called a self-neighboring cell, otherwise, it is called a non-self-neighboring cell.
The next state of a self-neighboring cell is linearly dependent on its own current
state, while that of a non-self-neighboring cell has no such dependency.

Computation rules of a TLCA are closely related to its topological structure.
The structure of a TLCA represents the interconnections among the cells. The
second, third, fourth and fifth bits of the binary representation of a computational
rule represent the dependency of the cell of interest on its neighbors which corre-
spond to the interconnections in the structure. The first bit of the rule indicates

if the cell is self-neighboring, and can be reflected in the TLCA configuration. A

38

Computation Rule

O

~

o

10
11

12

13
14
15

16

7

18

19

20

21

22

24

26

27

28

29
30

31

Right child

Left child

Sibling

Parent

Self

: TLCA rules

Table 3.1

39

configuration refers to a particular TLCA, where the computational rules of all

cells are specified.

Figure 3.4: An example of a cell in a TLCA without one input

If each cell in a TLCA has inputs from all its neighbors, the structure of
the TLCA is complete. Otherwise, it is incomplete. An n-cell TLCA has one
complete and (4!)* — 1 = 24™ — 1 incomplete structures. Figure 3.2 and Figure 3.4
show examples of complete and incomplete TLCA, respectively.

An n-cell TLCA has 24™ structures. A structure has n! configurations. Since

each cell in a TLCA can perform any one of the 2° = 32 computation rules, an

n-cell TLCA has 24™ x n! possible configurations.

Example 3.1 Figure 3.3 shows a configuration of a degree 7 TLCA, where Rule
31 is used for cell 1, Rule 23 for the other cells with odd numbers, and Rule 11

for the cells with even numbers.

3.1.2 Regularly Structured TLCA

To illustrate the complexity of TLCA structures, let us consider a TLCA of 30
cells. Since each cell can perform any one of the 32 linear computation rules
defined, there are 243° ~ 2.5 x 10*! possible structures. In order to reduce the
number of the structures, let us consider the rules with two 1% {i.e. the cells with
{wo neighbors) only. A 30-cell TLCA then still has (C})® = 6% ~ 2.2 x 10%
possible structures. For a small TLCA as such, the number of possible TLCA

structures is already very large.

40

Definition 3.1 A TLCA configuration is regular if the all even numbered cells
perform either computation rules ¢ or i + 16 and the all odd cells perform either

computation rules j or j+16. where j may or may not equal to7, and 0 < 7,7 < 15.
Definition 3.2 If a TLCA configuration is regular, then its structure is regular.

It can be proven that a TLCA has C{;+ Cq = 136 regular structures, which
is indeed a practical number for consideration. The number is independent of
degrees of TLCA. In the rest of this thesis, only TLCA with regular structures

and configurations are considered.
The number of possible regular configurations of a n-cell TLCA is
n! < Ci (3.1)
if the even and odd cells employ different computation rules, and is
n! x 16 (3.2)

if the same rule is used for all cells.

3.2 Transition Matrices of TLCA

A n > n transition matrix, T, is used to represent a TLCA of degree n. The é-th
row of the matrix defines the computation rules performed by the i-th cell of the
TLCA. For a TLCA cell with k neighbors, where 0 < k£ < 5, ther¢ are exactly
k non-zero elements on the corresponding row of the matrix. The element T} ;

designates whether the cell i depends on the cell ;.

Example 3.2 The TLCA shown in Figure 3.3 has the following next state equa-

tions

st = si®@s2Pss
+ .
S; = S51Ds4Dss

41

= 51% 525585 St

sy = s2

ST = 5.8 54

sg§ = s3

s = 538 s7. (3.3)

Therefore its corresponding state transition matrix is

(

1110000\

1001100

1100011
T=]/0100000 (3.4)

0101 GG O

0010000

K0010010)
(]

Let ¢ and j be the row and column indices of T. T;; can refer to any element

in the matrix. In general, the transition matrix T of a TLCA of degree n is

characterized by the following notations:

1. an element on the main-diagonal, T}, here denoted as d;, indicates if there
is a dependency of the cell on itself. If d;i = 1, then the next state of the

cell i depends on its present state, and if d; = 0 then it does not, where

1 <1< m

2. an element denoted as a; represents the dependency of the next state of the
cell i on the present state of its parent if a; = 1. The element is positioned

on the row i and column |i/2], i.e., T;,|i/2), where 2 < i < n;

3. an element denoted as b; states the dependency of the next state of the cell

i on its sibling’s present state if b; = 1. The element is placed on the row 2

42

and the column k. where

EF=1+1 if i = even
k=71—-1 if 1 = odd .

ie., T;x, were 2 < 1 < n;

4. an element c¢; denotes the dependency of the next state of the cell 1 on the
present state of its left child if ¢; = 1. The element is located on the row

and column 21, i.e., T;,;, where 1 <1 < n;

5. an element e; states the dependency of the next state of the cell 7 on the
present state of its right child if e; = 1. The element is placed on the row :

and column 2z 4+ 1, i.e. T;2;41, where 1 <1 < n;

6. all the other elements are 0.

Example 3.3 The transition matrix of an TLCA of degree 7 is

(di &, ¢ 0 0 0 0)
a da by c2 e2 0 O
az bz dz 0 0 c3 e3
0 a; 0 d¢ b 0 O |- (3.5)
0 a5 0 by ds 0 O
0 0 ac 0 0 ds bg
0 0 ar 0 O b dr

3.3 Maximum Length TLCA

In testing applications, pseudorandom sequence generators with maximum length
cycle are often required to produce maximum numbers of unique test stimuli, and

to exercise as many parts of circuits as possible. Similar to the definition of a

43

maximum length 1-d LHCA or LFSR in the matrix method, the transition matrix

of a maximum length TLCA of degree n satisfies the equation

where the smallest value of m is 2" — 1. That is, the output sequence of the TLCA
has a period of 2* —1. The characteristic polynomial of the transition matrix T of
a maximum length TLCA is a primitive polynomial (see Section 2.3.3). Therefore,

a mazimum length TLCA is also called a primitive TLCA.

Definition 3.3 A TLCA structure is primitive if at least one primitive TLCA

configuration of the structure exists at every degree, otherwise, it is non-primitive.

In this section, we identify primitive and non-primitive TLCA structures by
means of computer simulation, and define the computation rules associated with
the structures. The transition matrix of each primitive TLCA structure is defined
and illustrated by an example. The implementation cost of the TLCA structures
is evaluated.

Exhaustive simulations are performed for the TLCA from degree 2 to 60.
This limitation on degrees is due to the complexity of TLCA configuration and
the computation power available. For each TLCA, all possible one and two com-
binations of the 32 computation rules are applied to even and odd cells, and
the primitivity test is conducted using Algorithm I described in Section 4.1. It
has been found that certain TLCA structures do not have maximum length ma-

chines. A comprehensive exposition of primitive TLCA structures will be given

in Section 3.3.2.

3.3.1 Non-primitive TLCA Structures

In Section 3.1.2, it is given that the number of the possible regularly structured

TLCA is 136. The results of our simulations show that most TLCA structures

define non-primitive machines. Only five primitive TLCA structures are found
from degree 2 to 60.

We intend to characterize non-primitive structures from primitive ones. It is
easy to verify that a TLCA structure is non-primitive if a cell in the TLCA does
not have any input from the other cells. This criteria rejects a large number of
non-primitive TLCA. Figure 3.4 shows an example of a degree 7 non-primitive
TLCA structure. However, it is also” found that a TLCA structure can be non-
primitive even if every cell has at least one input from the others. Figure 3.5

)
depicts some examples of non-primitive TLCA structures.

3.3.2 Primitive TLCA Structures

Five TLCA structures with maximal length cycles have been found. For conve-

nience, we use TLCA(I) to denote the Type I TLCA structure, TLCA(II) for the
Type II TLCA structure, and so on.

Our exhaustive simulation results show that from degree 2 to 60:

1. all the five primitive TLCA structures are incomplete;

2. certain computation rules used in certain TLCA structures result in primi-

tive machines;

3. cells of a TCLA sharing an identical computation rule do no! :--»'t in

primitive machines.

Table 3.2 summarizes the self- and non-self-neighboring rules whi.i: can be

used in the five primitive TLCA structures. The rule numbers without parentheses
are non-self-neighboring rules and the ones in parentheses are self-neighboring
rules. A pair of rules in an entry indicates that either can be used for the cell
type of a TLCA structure. This is implies that the maximum number of rules
that the cells of a TLCA structure can have is four. A TLCA may have three or
two different computation rules. Slight modifications are required for TLCA(I)

and TLCA(IV) of even degrees. We will discuss it later in this section.

45

@

=
\
=

o)

X N\

N

N\
M
" W/

TN

U /

&

< 7 (]

Figure 3.5: Examples of non-primitive TLCA structures

46

N

Y

Cells in TLCA(I) | TLCA(II) | TLCA(II1) | TLCA(IV) | TLCA(V)
even numbers 9(25) 11(27) 11(27) 6(22) 14(30)
odd numbers 5(21) 7(23) 15(31) | 14(30) 10(26)

Table 3.2: Computation rules of five primitive TLCA structures

The five primitive TLCA structures are depicted in Figures 3.6, 3.7, 3.8, 3.9
and 3.10. The number at the top right corner of each cell is the computational
rule using the same convention as explained for Table 3.2.

We describe the detailed structures and configurations of the five primitive

TLCA, and provide examples using degree 6 and 7 TLCA.

1. The TLCA(I) structure shown in Figure 3.6 (a) uses rule 9 (or rule 25)
for the cells with even numbers, and rule 5 (or rule 21) for the cells with
odd numbers. However, if a degree n is even, this structure nceds to be
slightly modified, i.e. the parcnt cell of the last cell of the TLCA employs
rule 6 (or rule 22). The modification rule is as follows. In Figure 3.6 (a),
the cells 3, 6 and 7 form a circle. If the cell 7 is removed to construct a
degree 6 TLCA, it would break the circular connections between the cells 3
and 6. The modification of the computation rule for the cell 3 retains the
primitivity of TLCA(I) of even degrees. The modification rule is applicable

to TLCA(I) of higher degrees and TLCA(IV). Figure 3.6 (b) demonstrates
the structure of a TLCA(I) of degree 6.

S(31)

(@) \

$175)

N N\

5{21)

(0)

/

9125) ol 5(21) §(25) ol 531
[1

(25 |

I

9{25}

N

—al 5020

L

/

] 5(21)

9(25)

Figure 3.6: (a) TLCA(I) structure of odd degree (b) TLCA(I) of even degree

The non-zero elements of the transition matrix of the TLCA(I) are

a; =]
b, =0
(1) >
C; =
8,'=1)
a; =)
b;=1
(2) g
Cc; =
e,~=1)

if row 7 = even

if row 7 = odd

(3.6)

Example 3.4 The transition matrix of TLCA(I) of degree 7 (an odd de-

gree) is

(d, 0 1

1 d 0O

0 1 ds

=10 1 o0

0 0 0

0 0 1

\ 0 0 0

48

&

S o o - o

o O

o o o

[=

o O o = O O

) (3.7)

and the transition matrix of TLCA(I) of degree 6 (an even degree) is

)

(dy 0 1 0 0
1 d2 0 0 1
0 1 ds 0 0
0 1 0d 0 O
0 0 0 1 ds O
L0 0 1 0 0 d)

~ o O

(3.8)

Note that the matrix T of degree 6 is exactly the same as the sub-matrix of
the transition matrix T of degree 7, except for the difference in the clements
on the row 3 and the column 6, i.e. the underlined elements. They reflect
the difference in the computational rules before and after the modification

of the parent cell of the last leaf cell. O

. The TLCA(II) structure shown ii. Figure 3.7 uses rule 1! (or rule 27) for
the cells with even numbers, and rule 7 (or rule 23) for other ceils with odd
numbers. Note that since a circular connection exists between the cells 5 and

6 of a TLCA(II) of degree 6, the TLCA(II) does not require a modification

of cell 3.
/ |

11(27)
2 3

N/

1127 () 127 23)
4 5 6 7

7(23)

1(23)

Figure 3.7: TLCA(II) structure

49

The non-zero elements of the transition matrix of the TLCA are

\
a.-=l
b; =0
(1) > if row 1 = even
¢ =1
e.-—l
3 (3.9)
a; =0
b;=1
(2) > if row 1 = odd
C,'=1
e,'=1‘
Example 3.5 The transition matrix of TLCA(II) of degree 7 is
(d, 1 1 0 0 0 0)
1 d4 0 1 1 0 O
0 1 d 0 0 1 1
T=}10 1 0 di 6 C 0 (3-10)
0 0 0 1 d 0 O
0 0 1 0 0 ds O
\ 0 0 0 0 0 1 d7)
c

3. The TLCA(III) structure shown in Figure 3.8 uses rule 11 (or rule 27) for

the cells with even numbers, and rule 15 (or rule 31) for other cells with

odd numbers.

50

15(31)

2

1127)

4

1121

N

15¢31)

-

5

]

11(27)

3

15(31)

w1 15(31)

7

Figure 3.8: TLCA(III) structure

The non-zero elements of the transition matrix of the TLCA are

(1)

(2)

a; =1
b;=0
¢ =1
e;=1
a; =1
bi=1
c =1
e; =1

)

|

/

]

/

if row 7 = even

if row 1 = odd

Example 3.6 The transition matrix of TLCA(III) of degree 7 is

(

d 1
A
11
0 1
0 1
0 0

\0 0

1
0
da

— e O O

51

0
1

0
1
0
0
ds

0
0

(3.11)
0 0)
0 O
1 1
0 0 (3.12)
0 O
d¢ O
1 d7)
0

4. The TLCA(IV) structure shown in Figure 3.9 (a) uses rule 6 (or rule 22) for

the cells with even numbers, and rule 14 (or rule 30) for the cells with odd

numbers. But for a TLCA(IV) of even degree, the last cell of the TLCA is

modified to use rule 14 (or rule 30) in order to retain the circular structure

between the cells 3 and 6. Figure 3.9 (b) illustrates a TLCA(IV) of degree

6.

(a)

8122)}

€{22)]

14(30)

N

N\

5

13(30)

14(30)

3
§(22

\

)

o 14030

7

${23

6(22)

1

14(30)

[

3430y

5

Figure 3.9: (a) TLCA(IV) structure of odd degree (b) TLCA(IV) of even degree

The non-zero elements of the transition matrix of the TLCA are

a; =

b; =
(1)

C; =

e; =

a; =

b =
(2)

C; =

€ =

0
b
1

0)
1]
by
1
0)

52

if row 2 = even

if row 2 = odd

(3.13)

Example 3.7 The transition matrix of TLCA(IV) of degree 7 is
(dy 1 0 0 0
0 & 1t 1 0 O

ds 0 0 1
0 d¢ 1 O
0 1 ds O
0 0 0 ds
0 1 0 0 1 dr)

0

, (3.14)

o o O O -

\

and the transition matrix of TLCA(IV) of degree 6 is
(d, 1. 0 0 0 0 W
0 d2 1 1 0 0

1 1 ds 0 0 1
T = : (3.15)

o o ©
—
- o O
(]
&
(o]

a

5. The TLCA(V) structure shown in Figure 3.10 uses rule 14 (or rulc 30) for

the cells with even numbers, and rule 10 (or rule 26) for other cells with

odd numbers.

The non-zero elements of the transition matrix of the TLCA are

a; =1 1
b;=1

(1) L if row 2 = even
c;=1
i=0
€ : (3.16)
a; =1 1
b;=0

(2) k if row © = odd
¢ =1
ei=0 |

53

16126)
/1 \
14139) 10(28)
2 3

N 7

OO g} 10(26) 14(30) | 10(26)

4 5 § 4 ?

Figure 3.10: TLCA(V) structure

Example 3.8 The transition matrix of TLCA(V) of degree 7 is

(d, 1 0 0

0 0 0}
1 d 1 1 0 0 0
1 0 ds 0 0 1 0
T=|0 1 0 dy 1 0 0 |- (3.17)
0 1 0 0 ds 0 O
0 0 1 0 0 ds 1
Ko 01 0 0 0 dr)

3.3.3 Hardware Cost of TL<A Structures

Hardware cost of pseudorandom sequence generators (PSG) is an important is-
sue in BIST design and implementation. The exact hardware cost of a PSG can
be obtained by implementing the machine using a computer-aided design (CAD)
tool. However, the result of this estimation depends on many factors of the imple-
mentation of the CAD tool used, such as the placement and routing algorithms,
and the implementation of the cell libraries. Here, we are interested in obtaining
a rough estimation of the hardware cost of TLCA in order to compare the results

with that of LHCA. We use a gate counting method, which is independent of
CAD tools and implementation technology.

54

A LHCA or TLCA cell consists of a storage element and some XOR gates to
perform required computation. Since a storage element is required for both LHCA
and TLCA. the hardware cost can be evaluated only on the cost of XOR. gates.
Given a TLCA defined by the major diagonal elements of its transition matrix
and its structure type, the number of XOR gates required is calculated using the
following rules: a 1’ major diagonal element indicates a self-neighboring cell, i.c.
having three neigliors, including itself, thus, requires two 2-input XOR gates;
a ‘0’ major diagonal element represents a non-self-neighboring cell requiring one
2-input XOR gate.

Consider LHCA and TLCA with non-self-neighboring cells only, and let n

be the degree of the machines. A 1-d LHCA requires (n — 2) 2-input XOR gates.
A TLCA(I) needs

if n = even (3.18)
n—3

if n = odd

<

2-input XOR gates. A TLCA of a Type II, IV or V structure shares the same
number of XOR gates as that of 1-d LHCA, n—2. TLCA(III) is the most expensive

type, which requires

3:2224+2 ifn=oda (3.19)

e if n = even

XOR gates.

Table 3.3 summarizes the number of XOR gates required for machines of
degrees up to 15. It can be scen that TLCA(I) is the most cost effective structure,
which permits about 50% fewer XOR gates than that of LHCA. In other words,
its cost is closer to that of commonly used LFSRs. TLCA(II), (IV) and (V) have

the same cost as 1-d LHCA. TLCA (11I), however, requires almost 1.5 times the
number of XOR gates of 1-d LHCA.

H5d

Degree | LHCA | TLCA(I) | TLCA(II) | TLCA(III) | TLCA(IV) | TLCA(V)
2 0 0 0 0 0 0
3 1 0 1 2 1 1
4 2 1 2 3 2 3
5 3 1 3 5 3 3
6 4 2 4 6 4 4
7 5 2 5 8 5 5
8 6 3 6 9 6 6
9 7 3 7 11 7 7
10 8 4 8 12 8 8
11 9 4 9 14 9 9
12 10 5 10 15 10 10
13 11 5 11 17 11 11
14 12 6 12 18 12 12
15 13 6 13 20 13 13

Table 3.3: Number of XORs in LHCA and Types I to V TLCA

56

3.4 Summary

In this chapter, we formally introduced tree-structured linear cellular automata
(TLCA), and defined their computation rules and transition matrices. The five
types of maximum length TLCA were found. The hardware cost of the maxi-
mum length TLCA were evaluated in comparison to 1-d LHCA. The TLCA(1)
is the most cost effective implementation among the 1-d and 2-d linear cellular
automata. In following chapters, we will examine the pseudorandom behavior

of TLCA, and their potentials as pseudorandom sequence generators in testing

applications.

57

Chapter 4
“iaximum Length TLCA

Linear finite state machines (LFSMs) with maximum length cycle have been found
to be particularly useful in engineering applications. To determine if a LFSM has
the maximum length cycle is a computationally intensive task. A common practice
today is to use lookup tables that contain lists of LFSMs with desired properties,
provided by researchers and scientists.

In the previous chapter, we defined the structures, configurations and opera-
tions of tree-structured linear cellular automata (TLCA). In the rest of this thesis,
the term TLCA refers to a configuration of a TLCA structure. In this chapter, we
present two computational algorithms that determine maximum length TLCA.
Special consideration is given to the implementation of the algorithms, due to their

computational complexity. Lookup tables of low cost maximum length TLCA are

provided up to degree 60.

4.1 Algorithm I

Similar to one-dimensional LFSMs, LFSRs and LHCA, a length n TLCA is defined
by a n x n transition matrix. The mapping between characteristic polynomials
and transition matrices is one-to-one. Therefore, the polynomial sieve methods

given in Section 2.2.3 can be adopted to determine the primitivity of a given

58

TLCA. The sieve algorithm proposed here is based on matrix multiplication and
is called Algorithm I. Conceptually, it consists of two tests: irreducibility and
primitivity tests. Only the TLCA that passes the irreducibility test are tested for

their primitivity.

Recall in Section 2.2.2. an n x n transition matrix 7' of a length n LI"SR

<atisfies the equation
TV =1 o T*=T,

where i < n, and I is the identity matrix. The period of the output sequence
defined by the equations is (2° — 1). If i = n, the characteristic polynomial of
the matrix T is irreducible; otherwise, it is reducible. Since the irreducibility of
& polynomial is a necessary condition for primitivity, a reducible polynomial is
non-primitive, thus, it does not have the maximum length cycle.

For a TLCA under test, the detailed algorithm is as follows:

1. compute all prime cofactors® of 2" — 1, add 1 to each number obtaincd, and

store them in a table F;

. construct the transition matrix T of the TLCA following the equations given

in Section 3.3.2;
3. irreducibility test:

(1) compute T? fori=1,2, --,n—1, using the powering algorithm
described in Section 4.2.4. If the equation 7% = T holds for any

i, reject the TLCA, go to step 5; otherwise, go to step 3 (2);

(2) compute T2". If T?" = T, the TLCA is irreducible, go to step 4;
otherwise reject the TLCA, go to step 5;

1If p is a prime factor of an integer g, i.e. plg and pis prime, then k = ¢/pis a prime cofactor
of ¢.

59

4. primitivity test: compute T? for each element g in the table F, again using
the powering algorithm. If T? = T for any g, reject the TLCA, go to step
5; otherwise the TLCA is primitive, go to step 3;

<]

. the end of test.

The primitivity test is non-deterministic since it depends on both the num-
ber of prime factors of 2* — 1 and which prime factor in the table rejects the
TLCA under consideration. In contrast, the computational complexity of the

irreducibility test can be determined.

An element of the product of two matrices, A and B, is calculated by

z Aim * bmj- (4.1)
m=1

Assuming that a;n - bm; takes a constant CPU time, c, the computation time
required by Equation 4.1 is cn. The time required by the entire matrix multipli-
cation is en-n -n = cn3. To compute T?", the CPU time required is n - cn® = en?
(see Section 4.2.4). Thus, the computational complexity of the irreducibility test
is O(n?).

In Figure 4.1 the stars show the actual CPU time taken to test the irre-
ducibility of a given matrix as a function of degrees of TLCA on a SUN SPARC-20
workstation. The solid line represents the CPU times predicted by the computa-

tional complexity analysis given above, where ¢ = 6.31293232 x 10~7 seconds is

used in the calculation.

4.2 Implementation of Algorithm I

As stated in the previous section, Algorithm I is computationally intensive. When
the implementation of the algorithm is concerned, there are two main problems:

the system limits of integer representation, and the CPU speed of a computer

system.

60

700 T T v

* computer simulation [
- G.31293232e-7'degree"4

a

CPU Time (second)

0 —

i T —t
0 20 40 60 80 100 120 140 160 180
Degree of TLCA

4

Figure 4.1: Computational complexity {O{n*})) of the irreducibility test

For the former, consider a degree 60 polynomial that defines a TLCA of
degree 60 and a commonly used 32-bit computer. To test the primitivity of the
TLCA, we need to find all the prime factors of 2°—1 (= 1, 152, 921, 504, 606, 846, 975),
which far exceeds the system limit on the maximum integer, typically, 2*! — 1 =
2,147,483,647.

For the latter, it is not uncommon in engineering practice that LFSMs over
degree 100 are required. LFSMs of degree two to three hundred are desirable in
some testing applications. When running Algorithm I for high degree polynomials,
the speed of a computer system is crucial. This section is devoted to the special
treatments of implementation issues of the algorithm. The complete C code of

the implementation can be found in Appendix B.

4.2.1 Multiple Precision Integers

A solution to representing integers that exceed the system limits of a computer
system is to impose a data structure on the basic data type, single-precision inte-

ger [18, 29]. The data structure is capable of representing a multiprecision integer

61

d (or mulliple precision integer). The integer d is partitioned into ! segments
(do,dy,- -+ ,di_,y) of single-precision integers. The least significant segment is do,

and the most significant segment is di_;. Then, the multiprecision integer can be

represented by

-1
d=>d:p . (4.2)

=0

where 3 is the base, i.c. the maximum value represented by d;. 3 may be any
positive integer between 2 and the upper limit of a single-precision integer.

The data structure can be implemented by a linked list where each node in

the linked list is of the form

[DiGIT | LNk |

The field DIGIT contains a base-8 integer and the field LINK consists of a pointer
pointed to the next node of the linked list, or 2 NULL pointer indicating the end
of the list. Thus the equation (4.2) can be represented by the linked list

oo T F—le = ~ —lo]

Example 4.1 Let 8 = 10%. Partition the decimal number 210 — 1099511627776
into four segments, 1 0995 1162 7776. Then the linked list representing the num-

ber is

g —=f7776 | F—ofmt6e2 | —F—fosos | F—{ 1 | —]|

O

The algorithms performing the multiprecision integer addition and multipli-
cation can be found in [29]. In our implementation, the GNU Multiple Precision

Arithmetic Library [20] is used to process multiprecision integers.

62

4.2.2 Prime Factors of 2" — 1

To test primitivity of a given transition matrix of a TLCA of degree n, the prime
factors of 2 — 1 are needed. Since the primitivity test of TLCA of the same
degree share the same set of prime factors, we precompute the factors and store
them in a look-up table in order to avoid the repeat calculation and reduce the
computation time. One should be aware of the fact that the calculation of prime
factors is extremely CPU-intensive. It may take months for the calculations of
large degree. The table of prime factors are partly obtained by using Maple [14]
and PARI [6], and partly from the report of Cunningham Project {9].

4.2.3 Idatrix Multiplication

In Algorithm I, matrix multiplication (in binary field) is the most extensively
used operation. Therefore, the efficiency of its implementation has a significant

impact on the efficiency of the algorithm.

We use integer comparisons and additions in the following pseudo-code

cfil (3] := 0; {* two-dimensional array *}
form := 1 to n do
begin
if (ali][m]
clil (3]

1)
(cfil (3] + bImI[j]1) mod 2;

end
to perform the product of matrices A and B

n
cij = Y @im bmj .
m=1

It has been shown that the implementation of the pseudo-code is at least two

times faster than that of the direct multiplication on SPARCstations.

63

4.2.4 Powering Algorithm

‘I'he powering algorithm [15] is used in both the irreducibility and primitivity tests

of Algorithm 1. It provides an efficient implementation of

a* mod p (4.3)

for an integer k. If we write the integer k in binary as
{log; k] _
k= > b2 (4.4)
i=0
where b; € {0,1}, and |real] is the floor function, which is the n..ximum integer

smaller than the real, then a* can be computed by

{log, k} :
a* = H a®?,

i=0
Therefore, the modular operation (4.3) can be efficiently accomplished by repeatly

squaring (a? = (a?7)?).
Example 4.2 To calculate 7!' mod 17, we first calculate
72 mod 17 =15, 7'mod17=152=4, 7 mod17=4>=16.

Since 71! = 7. 72 - 78, 7' mod 17 equals to the product of the remainders of 72,

74 and 7% modl17, i.e.
M =7-15-16 =14.
a

The complexity of the powering algorithm is O(log, k), as opposed to O(k)

for the direct computation.

64

4.3 Algorithm II

Algorithm I presented in the previous section is a sieve method based on matrix

multiplication. Algorithm II that we propose here uses a more direct approach.

It derives recurrence relations of d,, ds, ---, and d,, to form the characteristic

polynomial of the transition matrix of a TLCA. The principles of the algorithm
are derived from Definition 2.10 and Theorems 2.4 and 2.5.

Algorithm II is given as follows:

1. Form the transition matrix of a TLCA;

. Compute the characteristic polynomial of the transition matrix by using

recurrence relations;

3. Check if the characteristic polynomial is primitive. If the polynomial is

primitive then a maximum length machine has been found.

The recurrence relations can be determined by using Laplace Expansion of
a determinant. Let Aj(z) be the characteristic polynomial of degree k. For a
transition matrix of TLCA(III) described in Section 3.3.2, we have the follow-

ing recurrence relations, similar to Equation (2.23), to obtain its characteristic

polynomial:
Ar(z) = geDp-1(x) + Qr-1, ¢ = even (4.5)
and
Ar1(2) = Grr Ak(z) + Qur-1(ge + 1), (4.6)

with the initial conditions A_;(z) = 0 and No(z) = 1, where g == = + d;. and

Qx—1 is the quotient of

Ak-1($) = GkJ2 " Qk—l(w) + Rk, (4.7)
where Rj_; is the reminder.

The proof of the equations (4.5), (4.6), and (4.7) requires the induction

method, which is tedious. Here we give two examples to verify them.

65

Example 4.3 The transition matrix of a maximum length TLCA(11I) [1100] is

1110

11 01
T =

1100

0100

Its characteristic polynomial is computed as follows.

A_I(III) = 0
Ao(:l:) = 1
=2Q-1=0

A(z) = gho+ Q-1(g-1+1)
= q
=21 =1
Az = A+ O
= G201 +1
Az = gsl2+ Qi(g2+1)
= g3g201 +9gst+g2+1
= @3 = g3g1 + 1
Ay = b3+ Qs
= g4939291 + 9493 + 9492 + 94 + g3g1 + 1 .

After replacing gy =+ 1,92 =2+ 1, g3 = = in A4, and g4 = z, and simplifying

it, we have the characteristic polynomial
Aq = 1?4 +z+1.

The look-up tables of TLCA and their corresponding characteristic polynomials
are given in Section 5.4 from page 79 to 81. O

66

Example 4.4 The characteristic polynomial of transition matrix of TLCA(111)

of degree 6 is

g 1 1 0 0 O
1 g 0 1 1 O
Ag = 1 1 g3 0 0 1
0 1 0 g4 0O O
0 1 0 1 g5 O
0 0 1 0 0 gs
g 1 1 0 O
1 g2 0 1 1
= gsAs+| 0 1 0 g4 O
0 1 0 1 gs
0 01 0 O
g 1 0 0
= gels + e 11
0 1 g4 O
0 1 1 gs
= gels+ s

and the characteristic polynomial of the transition matrix of TLCA(III) of degree
7 is

gg 1 1 0 0 0 O

1 g0 0 1 1 0 O

1 1 g3 0 0 1 1

A = |0 1 0 g0 0 0 O
0 1 0 1 g 0 O

0 01 0 0 g O
0O 0 1 0 0 1 g

67

g 1 1 0 0 O

1 g 01 1 0

0 1 0 0 0
= grle+ 94

0 1 0 1 g5 O

0 01 0 0 gs

0 01 0 0 1

1 g2 1 1 0 O

0 1 g¢6 0 0 O
= grle+ !

0 1 1 gs 0 0

0 0 0 0 g 1

0o 0 0 0 1 1

q 1 0 0

1 g 1 1 ge 1
= g:le+

0 1 g4 O1{1 1

0 1 1 gs

= grle + @s(gs + 1),

but the characteristic polynomial of the transition matrix of TLCA(III) of degree

is

ot

g 1 1 0 0
1 go 0 1 1
As = |1 1 g3 0 0O
0 1 0 g4 O
0 1 0 1 gs
g1 1 0 0 1 ¢go 1 1
1 g2 1 1 11 0 0
=9301g40+01g40
0 1 1 gs| {0 1 1 gs

= gals + Hs

where the quotient and reminder are

QRs =

Rs =

respectively.

gqi 1 0 0
1 g2 1 |
0 1 gs 0
01 1 g
I g 1]

1 1 0 0

0 1 g4 O

0 1 1 gs

Similarly, we have derived the recurrence relations for:

1. TLCA(])
Ax(z) =
A (z) =
Apr(z) =

2. TLCA(IV)
Ax(z) =
Arpi(z) =

Ak_l(w) =

3. TLCA(II) and TLCA(V)

Ak(:c) =
Apya(z) =
Ap_i(z) =

grDr—1(x) + Qp—1, k = cven
g1 9k D1 () + Qi

gky2 - Qr—1(2) + Rr—y

gDk (2) + Qr-1, k = cven
(gr+19% + 1)A1 () + Qi

grj2 * Qi—1(x) + Ri—y

gkAk_l(:L‘) + Qk-1, k = cven
Ier1Dk(T) + Qi1

9/ - Qr-r(x) + Ri—1.

69

(4.8)

(4.9)

(4.10)

The algorithm has been implemented in Maple [14], a powerful symbolic
computation package. Since the algorithm requires many polynomial computa-
tions using the recurrence relations, the implementation is very computational
intensive. The current version of Maple is inefficient for multi-variable polyno-

mial multiplication. This makes the algorithm impractical for TLCA when degree

n > 25 for the time being.

4.4 Minimal Cost Maximum Length TLCA

As stated in Section 3.3.3, LFSMs of all types require one storage device per cell.
‘Therefore, the hardware cost of TLCA can be measured by the number of XOR
gates required in their implementation. Maximum length TLCA with 2 minimum
number of 1’s corresponds to the most cost effective implementations of maximum
length TLCA. Furthermore, due to the computational intensive nature of the
maximum length TLCA searching algorithms, minimal cost machines require the
least CPU times and are the only practical machines to find for TLCA of large
degree using the comp:itational power available today.

Tables 4.1, 1.2, 4.3, 4.4 and 4.5 list the five types of minimal cost maximum
length TLCA machines of degrees up to 60. To be more specific, the second
columns consist of the diagonal elements [dydads - - - dn] of the transition matri-
ces of the TLCA, and numbers in the first columns represent the corresponding
degrees.

To implement a low cost primitive TLCA of degree n of a chosen type (e.g.
TLCA(1I1)), one (a) constructs a binary tree of n cells, and labels the cells from
levei 0 to level logyn, and from the left to right at each level, {b) connects the n
cells according to the structure definitions given in Figures 3.6, 3.7, 3.8,3.90r3.10
(e.g. using Figure 3.8 for TLCA(I1I)}, and (c) determines the computation rules
of the cells using Table 3.2 and Tables 4.1, 4.2, 4.3, 4.4, or 4.5: (c.1) first finds the

diagonal elements [dyd; - - - d,] from the respective minimal cost maximum length

7%

TLCA table (e.g. Table 4.3 for TLCA(IID)). A 4, in the obtained binary string is
corresponding to cell 7 in the TLCA: then, (c.2) uses Table 3.2. If di = 1. th~
computation rule in the parentheses of the chosen TLCA type should be :
Otherwise, i.e. d; = 0, the computation rule outside the parentheses shoula

taken. Note that cell with even and odd numbers perform different computation

rules (see Table 3.2).

Example 4.5 On the fourth row of Table 4.3, the binary string 1100 represents

the transition matrix

1110
1101
T = ,
1 10 0
0100

which defines a minimal cost maximum length TLCA(II1) of degree 4. The two
1’s of 1100 indicate that the first two cells of the TLCA use the computation
rules in parentheses in Table 3.2, i.e. rule 31 for the cell 1 and rule 27 for the cell
2. The last two 0’s indicate the last two cells use the computation rules without

parentheses in Table 3.2, i.e. rule 15 for the cell I and rule 11 for the cell4. 0O

For a given type of TLCA of each degree, a brute-force search of maximum-
iength TLCA is conducted. We first generate all of the TLCA with a single
self-neighboring rule cell. If no primitive machines are found, we then generate
all of the TLCA that have a pair of self-neighboring cells. If this fails, we try all
of the TLCA which have three cells using self-neighboiing rules , and so on. For
each degree, the search is stopped when the first TLCA with the maximum length
cvcle is found. T!e maximum-length TLCA in these tables have an average of
four self-neighboring cells for the degrees up to 5Q.

The search is very computatior.al intensive. Here are some examples of CPU

time required by Algorithm I running or. a SPARC-20:

71

degree | Type]l TLCA
2 10
3 100
4 1010
5 10100
6 110000
7 1000000
8 11100001
9 100000011
10 0100111000
11 00000110000

12 010101100000

13 0000001000000

14 00010000000000

15 011000000000000

16 0000000001000001

17 00010000000000011

18 001100000100000000
19 0001000001000000000
20 0001 1000001000000000
21 00010600000000000001 1
22 | 001111000:.00000C0N00600

23 1010010073001010007:00000
24 $1100010¢ . 39000090000701
25 101001 1.30u0u 1000000000000

26 100001 00000001 10000000000C
27 101001000000010000000000000
28 110000100000001 0000000000000
29 1000001 106000001 00000000000000
30 100000100000000000000000000000
31 1000000000000000000000000000000
32 100000010000000166000000000G0001
33 10000100000000000000000000000001 1
34 1000000100000000010000000000000000
35 11000001000000000100000000000000000
36 11000001 0000000001000000000000000001
37 1100100000010000001000000000000000000
38 01001 110000000000000000000000000000000
39 11001 1 000000000000000000000000000000000
41 10000001 10000000000000000000000000000001 1
42 000001 1000¢2 X0000000011000000¢000000009000
44 000011 10010600000000000000000000000000000001
45 100001 100000000000000011000000000000000000000
46 100001 10000000000000000060000000000000000000000
47 000001 100
48 11100000000000000000G000010000000000000000000001
49 1000001000000000000000001 1 10000000000000000000000
50 00100010000000000000000001 100000000000000000000000
60 000000010000000000000000000100000000000000000000000000000001

Table 4.1: List of minimal cost maximum-length TLCA(I)

72

degree | Type II TLCA

10

111

0001

10100

100001

0001100

00001000

000110000

0101000000

00100000000

100000100000

i3 1000001000000

14 01000000000000

15 000110000000000

16 0001000010000000

17 00000000000000011

18 101000010000000000

19 0001100000000000000

20 10100000000000000001

21 0001 100006 10000000000

22 0101100000000000000000

23 00001000000000011000000

24 000110000001 100000000000

25 1010001000000000000000011

26 01011000000100000000000001

27 110000100000000000000000000

28 100001 1000000000000000000001

29 1000001000000300000000000001 1

30 101000000000000000000000000001

31 1000000001 100110000000000000000

32 10100001100000000000000000000001

33 101000010000000110000000000000000

34 000010000001 1001000000000000000000

35 00000001 100000000001 100000000000000

36 000110000000000000000000000000000001

37 0100100000000000010000000000000000011

38 01001000000000000000000000000000000000

39 01001 1100000000000000000000000000000000

40 00001 000000000695000010000000000000011000

41 00100000000000000601 100000000000000000000

42 0001000001 10000000000000000000000000000001

43 0110100000100000000000000000000000000000000

44 0001000000000000000000100001 1300000000000000
45 000100000100000000000010000000000000000000000
46 ©00000000000001 10000000000000000000000000000001
47 0001 100
48 0101 1001
49 101001 1
50 10000010000000000000000001 100000000000000000000000
60 100000000000000000000000000000100000000000000000000000000000

T B
HESO®EN00AWN

Table 4.2: List of minimal cost maximum-length TLCA(1I)

73

degree | Type 111 TLCA

2 10
100

4 1100

5 00100

6 000110

7 1000000

8 10010000

9 000010000

10 0000000001

11 10000000000
12 101001000000

2 1000010000000

14 00000110000110

15 011000000000000

16 0010000010000000

17 00100000100000000

18 100110000000000001

19 0100000000000000000

20 00000000010000000000

21 01 1000000100000000000
22 00001001 30000000000001
23 11011000000000000000000

24 111000000000100000000000

25 1110000000001000000000000

26 11100000000000000000000001

27 111001000000000000000000000

28 0100010000000100000000000000

29 11050000000001000000000000000

30 1000001 11000000000000000000001

31 1000000000000000000010000000000

32 10010001000000001000000000000000
32 100100000000000010000000000000000
34 10000001 00011000000000000000000001
35 100000000100000000011000000000000C0

36 100100010000000000100000000000000000
37 1001000000000000010000000000000003000
38 11001 000100000000000000000000000000001

39 110000000000000000000000000000000000000

40 0010000000000000000010000000000000000001
41 10010000010000000000100000000000000000000
42 100100000109000000000000000000000000000001

43 00100

414 00110000000000000000010000000000000000000000

45 101000000010000000000010000000000000000000000

46 10000000C0111000000000000000000G:00000000000001

47 00100

48 001000000000000000000001000000000000000000000001

49 000000000001 1000000000001000000000000000000000000

50 1000R0000041 10000000000000000000000000000000000001

60 000000000000000000000000000001000000000000000000000000000000

Table 4.3: List of minimal cost maximum-length TLCA(III)

74

degree | Type IV TLCA

2 10

3 111

4 0001

5 01000

6 000001

7 0100000 2
8 00000001

9 010000010

10 0000100000

11 00010000000

12 101001100000

13 1001000000000

14 10000000000001

15 100100000000000

16 1000100000000001

17 10000000000000000

18 000001100000000001

19 1000000100000000000

20 10100001001000000000

21 000001 10010000G000000

22 0100010000010000000001

23 000001 11000000000000000

24 0000001 10000000000000001

25 0000001000010000000000000

26 01010000000000000000000001

27 010000000000000000000000000

28 0000000110000000000000000001

29 01000000000001000000000000010

30 010000000000001000000000000001

31 0100000000000000000000000000000

32 001000001 00000000520000000700001

33 000000001000000063:00000000000000

34 00000001000000000000C*:000000000100

35 00000000010000000000000000000000000

36 001101000000000000000000000000000001

37 0010000000000001000000000000000000000

38 0001000010000000000000000G0C0000000001

39 00£:300000100000000000000000000000000000

40 00090+:300011000009000000000¢-300000000001
00000N000010000000000000000000000000N0000

42 ¢ 000000000110000000000000000200000000000100

43 0001000000000000000000000000000000000000000

44 00100100000001000000000000000000000000000001

45 0010000000000000000001000000000005600001U000000

46 00010000000000010060000000000000000G0G000000001
47 001001 100000000000000000000000000000V000009FIC0
48 00000000000001 10000000000000000000000000v..4,:00001
49 0010010000000060000000000000000000000000000000000
50 001000000000100000000000100000000000000000G0000000
60 100101000000001000000000000000000C0000000000000000000000001

Y
-

Table 4.4: List of minimal cost maximum-length TLCA(IV)

75

degree | Type V TLCA
2 10

3 111

4 0001
[10100
6 100001
7

8

9

0001100

00001000

000110000

10 0101000000

11 00100000000

12 100000100000

13 1000001000000

14 01000000000000

15 000110000000000

16 0001000010000000

17 00000000000000011

18 101000010000000000

19 0001100000000000000

<€ 10100000000000000001

' ¢070110000010000000000

2 0101100000000000000000

73 1 90001000000000011000000

‘ £ 000110000001 100000000000

i 1010001000000000000000011

: 6 01011000000100000000000001

27 110000100000000000000000000

28 100001 1000000000000000000001

29 1000001000000000000000000001 1

30 101000000000000006000000000001

31 1000000001 100110000000000000000

32 10100001 100000000000000000000001

33 101000010090000110000000000000000

34 000010000001 1001000000060000000000

35 00100001 100000000001 100000000000000

36 0001 10000000000000000000000000000001

37 010010000000000001000000000000000001 1

38 01001000000000000000000000000000000000

39 01001110000000000000000000000000000¢ > D

10 000010000000000000001000000000000001 - J

41 00100000000000000001 100000000020000900000

42 000100000110000C00006000000000000000000001

43 011010500010000000/00N000000000000000000000
44 0001000000000000000000i..-"M11050000000000000
45 0001000001000000000000100000000650006000000000
46 0000000000000110000000000000000000000000000001
47 0001 100
48 010110000006000000000000000000000000000000000001
49 1010000000000000000000000000000000000C.2000000001 1

Table 4.5: List of minimal cost maximum-length TLCA(V)

76

1. For a minimal cost maximum-length TLCA of degree 50 having 3 self-

neighboring cells, the CPU time is about

(CL, + C% + C3) - (6.31293232 x 1077)50" = 503259 scconds

= 140 hours

= 5.8 days.

2. For a minimal cost maximum-length TLCA of degree 60 having 3 self-

neighboring cells, the CPU time is at least

(C& + C% 4+ C3,) - (6.31293232 x 1077)60" = 866686 seconds
= 240 hours

= 10 days.

3. For a minimal cost maximum-length TLCA of degree 200 having 2 self-

neighboring cells, the CPU time required is at least

(Cloo + C250) - (6.31293232 x 1077)200*

40604780 scconds
= 11279 hours

= 470 days

which is very 4ifficult to finish.

4.5 Maximum Length TLCA vs Primitive Poly-

nomials

Aippendix A lisis the number of primitive polynomials for degrees up to 24. Ta-
ble 4.6 lists all maximum length TLCA(I11) for degree up to 12, and their cor-
responding primitive characteristic polynomials. The first << sinn in the table
consists of a bit string representing the diagonal elements {d:dydy - - - d,] in the

transition matrix of TLCA(III). The second column represents the coefficients

(the highest order coefficient first) of the characteristic polynomial of the tran-
sition matrix. For example, the TLCA string, 1101, represents the diagonal ele-
ments [1101] of its transition matrix of degree 4, and the polynomial string, 11001,
represents its characteristic polynomial z* + z® + 1 (see Section 2.2.4).

From the simulation results, it can be seen that

1. The mappings between maximum length TLCA and primitive polynomials

are either

0—to—1 or
2—to—1 or

l1—to—1.

2. The number of maximum-length TLCA is much less than the number of

primitive polynomials of the same degree when degree n > 6.

3. When degree n > 7, no primitive characteristic polynomials of the TLCA
corresponding to the minimum weight primitive polynomials listed in [5])

can be found. Similar results are also found for the other types of TLCA.

The results indicate that unlike LFSRs and LHCA, the majority of TLCA do
not have one to one correspondence with primitive polynomials. Thus, there are
far fewer choices of machines at each degree. However, in engineering applications,
low cost maximum length machines are often the most cost effective ones among

all machines. Therefore the lack of choices may nc. be a problem after all.

78

degree = 2

total # of maximal length TLCA 2
total # of primitive polynomials 1
TLCA(111) characteristic polynomial
o1 111
10 111
degree = 3
total # of maximal length TLCA 2
total # of primitive polynomials 2
TLCA(III) characteristic polynomial
011 1011
100 1101
degree = 4
total # of maximal length TLCA 3
total # of primitive polynomials 2
TLCA(III) characteristic polynomial
1101 11001
0011 10011
1100 10011
degree = 5
total # of maximal length TLCA 4
total # of primitive polynomials 6
TLCA(III) characteristic polynomial
00111 111011 7
00100 101111
11011 100101
11000 110111
degree = 6
total # of maximal length TLCA 2
total # of primitive polynomials 6
TLCA(III) characteristic polynomial
000110 1000011
111110 1110011
degree = 7
total # of maximal length TLCA 6
total # of primitive polynomials 18
TLCA(III) characteristic polynomial
0111111 10111001
1101100 10000011
0010011 11111101
1010011 1000011
010110C 11111101
1000000 11010011
(continued)

79

degree = 8

total # of maximal length TLCA 6
total # of primitive polynomials 16
TLCA(III) characteristic polynomial
10010001 110000111
01001000 100101011
10010000 100101101
11110110 100101011
11110111 110000111
11101001 111001111
degree = 9
total # of maximal length TLCA 13
total # of primitive polynomials 48
TLCA(LII) characteristic polynomial
000011111 1101011011
000101111 1101110011
010010000 1010000111
111010000 1001110111
110010011 1100100011
011011111 1110111001
101101111 1111111011
001101111 1010100101
000010000 1101101101
001101100 1000110011
100100000 1011010001
110010000 1111001011
111101111 1001101111
degree = 10
total # of maximal length TLCA 9
total # of primitive polynomials 60
TLCA(III) characteristic polynomial
1111100110 11011011111
1110000110 ii111110011
1011111110 10100110001
0100000001 10000100111
0001111001 11110001101
000001100t 11010110101
0000000001 11101010101
0001111110 10011010111
1111711110 11101000111
(continued)

80

degree = 11

total # of maximal length TLCA 23

total # of primitive polynomials 176
TLCMX(III) characteristic polynomial
01111111111 101100001001
01100111111 100100101001
01001110011 101101000001
01011111111 110010111111
00010110011 110000001011
00001111100 110000001011
10011000000 111000110011
11101001100 101000000111
11001000011 110111010111
11100111111 110100011101
10110001100 110101011001
00100110000 111111101001
01010111200 101101000001
00101110011 101110110111
10101000011 110101011001
10000000000 11010000001 1
01000000000 110010010111
10100000000 101011011111
00110111100 101110110111
11010001 110 110111010111
11011001111 100010011111
11110000011 101000000111
00011000000 101100010001

=12
of maximal length TLCA 9

toval # of primitive polynomials 144
TLCA(III) characteristic polynomial
110011000110 10¢ 110011001
101001000000 1100100011011
111100100110 1101011110101
010010100111 1001310001110t
101110111111 1000100110011
110101011000 1001110011001
110111011110 1111110011001
111010111000 1101011110101
010100111001 1001100011101

Table 4.6: Primitive TLCA(I1I) and their characteristic polynormials

81

Chapter 5

Pseudorandomness of LFSMs:

Theory and Simulation

In Chapter 3, the structures and operations of TL.CA are formally defined. This
chapter addresses the pseudorandom issues of T1L.CA. We review theoretical and
practical measures of pseudorandom sequences in Section 1. In Section 2, we
examine the pseudorandom behavior of TLCA and compare them to existing
LFSMs. We present extensive fault simulas‘on results under various faui: models
using TLCA as tiie test sequence generator. The final section of this chapter is

devoted to special discussions on the pseudorandomness of test sequences and

their relation ts cst coverage.

5.1 Measures of Pseudorandomness

Extensive study on the quality of random and pseudorandom sequences has been
reported in the literature. In the first two subsections, we discuss the statistical
tests for random numbers, and the more commonly wuscd visual test and correlation
test for binary sequences. We ther discuss the role of computer simulation in test

coverage, and how the pseudorandon:nes: measures are related i the guality of

the testing of digital circuits.

]
]

5.1.1 Equidistribution Test

The equidistribution test is one of the statistical tests for a sequence of random
integer and real numbers [24, pp. 54-65]. It tests if numbers in a sequence are
uniformly distributed among categories 0, 1, - - -, k— 1. The test has been adapted
to measure the pseudorandom quality of binary sequences [22, 23]. In these ap-
plications, a binary sequence is treated a- a sequence of integers. Then, the

chi-square test (x?) is used to compare i+ ohserved and expected distributions,
and to provide a pass/fail result.

We conduct a set of equidistribui.«: tests on binary sequences generated
by three types of LFSMs: LFSR, LHCA and TLCA. To examine the impact of
different initial states of LFSMs anl \i{ferent number of category values, k, on the
final statistical results, three differet initial states and four randomly generated k

values are applied to two machines of different degrees for cach type. The detaited

test procedures are as follows:

1. generate N successive n-bit binary patterns using a maximum length LIFSR,

LHCA or TLCA;

2. convert the N binary patterns into their corresponding decimal values,

where the left most bits of the binary patterns are the most significant

bits;

3. reduce the decimal values to the numbers ranging from 0 to k — 1 by taking
modulo k operations, where k is an arbitrarily chosen prime number. The
decimal numbers in the k categories are called the observed results. Let Y;

be the total number of observed results that fall into category i, that is, the

decimal values that equal to i;

compute the expected values Np;, assuming that the distribution of the test

is the probability p; = ¢ for each category ?;
5. apply the chi-square test (x?) for the comparison

83

k=1 [y- -2
. (Yi — Np) -
Vo= —_— 5.1
2 (V) ‘

6. repeat steps 1 to 5 three times for three difference initial binary states;

7. repeat steps 1 to 6 four times for four different values of &.

Once a value V is obtained, one can refer to the chi-square distribution table
in [24, pp. 39] to find the closest corresponding probability P. That is, the table
entry z in row v and column P should be closest value to V'. The v is the degree
of freedom and equals to k — 1. The interpretation is that the quantity V" will be
greater than z with probability P. For example, the 5 percent entry in row 10 is
18.31; this says we will have V' > 18.31 only 5% of the time.

The criteria to fail and pass the randomness test are suggested in [24, pp.
39-40):

1. if the value of V lies beyond columns 1% to 99%, then the sequence is

rejected as a random sequence;

if the value of V lies between the columns 1 and 5% or 95 and 99%, then

the sequence is called “suspect” in randomness behavior;

3. if V lies between columns 10 and 90%, then the sequence is said to be fully

acceptable as a random sequence.

Tables 5.1, 5.2, and 5.3 list the results of the equidistributic test for the three
types of LFSMs of degrees 32 and 60. The binary representations of the LFSMs
configurations can be found in Appendix E. The length of the sequence under test
is 10,000, i.e. N = 10,000. It can be seen that all the LFSRs fail the tests, and
both LHCA and TLCA pass the tests. The statistical tests show that 1-d and 2-d
LCA are better than LFSRs in pseudorandom behavior, which is consistent with
the previous work reported in [23]. However, the tests do not provide quantitative

measures of pseaudorandomness within LHCA and TLCA types, and between the

84

two types. In Section 5.2, we will show that fault simulation is a more reliable

measure of pseudorandomness of binary sequences in testing applications.

5.1.2 Visual Test and Correlation Test

‘Two binary sequence test approaches used by some researchers and test engineers
are known as the visual test and the correlation test.

The visual te-t employs graphical outputs of a binary sequence to observe
the regularities and randomness. A binary sequence of ¢ n-bit birary patterns can
be treated as a graph with n x t tiles, where n is the length of the binary patterns
and t is the time space. If one uses a star and a blank to represent the two types
of tiles to build the graph, and uses the star to denote a logic 1 output and the
blank for a logic 0, a graphical output of a binary sequence can be produced.

Figure 5.1 shows the visual test graphs generated by the three maximum
length LFMS: LFSR, LHCA and TLCA(III) of degree 20. The characteristic
polynomial of the LFSR is 22°+z3+1. The LHCA is from [40]. The TLCA(III) is
from Table 4.3. All the three machines produce one 20-bit wide binary pattern at a
time, and run for 80 consecutive clock cycles, starting from the same initial pattern
00000000010100000000. Figure 5.2 displays the binary patterns of 240 consecutive
clock cycles in three blocks generated by the same LFSR. The regularity of the
LFSR patterns can be clearly identified in Figures 5.1 (a) and 5.2. In comparison,
in Figure 5.1 (b), the patterns of the LHCA graph look more random. However,
there are some regular triangular shaped patterns scattered across the picture.
Figure 5.1 (c) depicts the 80 patterns generated by a 20-bit TLCA(III), where
almost no regularities can be visually detected.

The correlation Test reveals the dependence of one pattern in a binary
sequence over the others. There are two correlation measures: auto and cross
correlation. Let < X >= Xo,X1,.-.,Xn-1 and < Y >= Yo, Y1,...,Yn_1 repre-

sent two patterns of length of n bits. The cross correlation coefficient, denoted by

85

Machine # of 2 Probability
of degree | Categories \Y% P (%) Random?
initial state 00---001
11 6.94 70 Y
32 37 22.71 85 Y
61 56.99 60 Y
89 72.47 70 Y
initial state 100- - -001
11 2.67 98 S
32 37 23.51 85 Y
61 49.07 75 Y
89 104.38 20 Y
initial state 111111111100- - 001
1 1 22.50 2 S
32 37 9x10!® 0 N
61 54.07 60 Y
89 98.87 28 Y
initial state 00---001
11 149.46 0 N
60 37 114.56 N
61 121.51 0 N
89 107.32 20 Y
initial state 100- .- 001
11 153.45 N
60 37 114.87 N
61 124.50 0 N
89 109.83 20 Y
initial state 111111111100---001
11 6.33 80 Y
60 37 20.82 95 S
61 98.23 4 S
89 543.17 N

Table 5.1: Equidistribution test for the LFSRs (Y=Yes, S=Suspect, N=No)
86

Machine | # of x? | Probability
of degree | (‘ategories \Y L P (%) Random?
initial state 00---001
11 6.58 80 Y
32 37 33.84 60 Y
61 79.34 15 Y
89 101.82 | 25 Y
initial state 100- - -001
11 8.63 55 Y
32 37 43.06 30 Y
61 45.42 80 Y
89 89.93 | 4 S
initial state 111111111106- - 001
11 13.84 20 Y
32 37 37.76 45 Y
61 71.81 25 Y
89 60.69 96 S
initial state 00- - -001
11 8.09 65 Y
60 37 45.41 25 Y
61 62.29 45 Y
89 97.67 30 Y
initial state 100- - 001
11 7.63 70 Y
60 37 25.34 85 Y
61 59.35 50 Y
89 84.39 60 Y
initial state 111111111100 --001
11 6.78 75 Y
60 37 19.56 96 S
61 52.02 70 Y
89 86.99 60 Y

Table 5.2: Equidistribution test for the LHCA (Y=Yes, S=Suspect, N=No)
87

(&

Machine # of \ Probability

of degree | Categories AS P (%) Random?
initial state 00- - -001
11 15.23 10 Y
32 37 34.87 60 Y
61 62.51 45
89 100.13 25
initial state 100- - -001
11 4.15 92
32 37 35.54 55
61 55.77 70
89 81.49 10 Y B
initial state _ 111111111100- - 001
11 7.08 70 Y
32 37 63.90 3 S
61 55.54 70
89 99.85 25 Y
initial state 00---001
11 7.99 65 Y
60 37 47.28 20 Y
61 74.24 20 Y
89 89.89 50 Y
initial state 100- - -001 —‘
11 4.54 90 Y
60 37 37.17 52 Y
61 63.16 45 Y
89 110.33 20 Y
initial state 111111111100- --001
11 10.92 30 Y
60 37 34.50 60 Y
61 53.97 68 Y
89 90.16 45 Y

Table 5.3: Equidistribution test for the TLCA(III) (Y=Yes, S=Suspect, N=No)
88

24 S RinE ¢ e RER AU RER AL SRER 4 o E 4 S F 3 RS & RERERE
* tut 4 ¢ 4 £ 8 & & 4 448 L] 0e & 26 eéRdR & &6 B¢ & N2
TR EEEE TR IR & .. s dNBER B EERENE €BY & 8 e e B [T 3%
" He e £t [4 t tr @ n‘nnoﬁu "~¢.¢n ”at utonntuanua
4 spde 2 @ e 28R €2 0t i h 3.4-& X X
[23 4 464 % % 48 4 % % &2 2 4 8 % 4% 32 @2 FYTIE TR BN B R Ko
+ sek & 3 #e @ wRRE_¥% € TR LR L LI TR A | * #% degs W
[IEEIEEREMRIN ¥ T IN FYIR T PR e ko % & % w
Pl TTI TR T T R B L £ % * * 84 # # wied 2¥8 B *e M
‘”¢-¢"n .na-&tn * “ nunatoncwwgtm“.&"wad‘nutt“t. ” * n E % ‘" d”catc&.ﬂotﬂt‘tmwt et
4 A
4% @ & w& AR wd e & abnde 8 Anenes Aok & # £ f2 ® #¢ ¢ & # a
* RERE & @ s Sudn T IR I hake [2 sa ob % %# n
* 4t # & L2 3R [TI2 20K 5 28 4 e 2] aF SEE Sud we & ¥ wd aAnd &
Sae Sasdsnd HEE #E 6E o & * # #é PR R I IR AL * [IR 4
* RER #E AASE R * *+r e At S2 & A4S RS b £ ~
$ 8688 IR 1] LR I 2 2N L & (221 2% akase £ *¥ 4 #% U
sed #0 FYIR T TR O A e b @ + 26 & $¥ [1 BRI ERRLE ~/
* aeRERER 2 4 € & REIRE B8 ARt * (21 £ 8 # 462 €04 €2 2 644
PR AR AR R R " R #2 € #2320 SRR [. @ SRELE €84
* * * 4ne 2 2 # 4 00 ® 22 % ¥ $4428 24 IR LKL LIR -4
* # ¢ #ak # & & ¥R FEE U #E AR @ AREEE 8B ¥ ad Gee 4%
L2 2K BN 8 Be ¥ #4 ke ak # shsusE % hn dhde B ek ¢ & O HH#
[3 «] 64 4 8 & a2 R0 4 A6 #2 B RAERS .8 & 40 Hite Bes w6
(3R .8 2 e & erse o“ [3K 1] S48 & @ RERR 2 & 4488 * 284 48 +
.) 24 S 2atisn & ¢ 4 SR 4 & SB% & & 42fR +
st qm- * taed ton tn* *end t“ . nnnwtt tﬁ e % ‘ttuucma* atno *u 4#
* - ahe & [aie # & a4 (1] #) *
L 2R) & & & %0 & * sieE € ek Hi# @ & #& REEE% &
e s & #05 REER B £4 A4 98 BE AL £0 e« 2 B R 43 4% 08
[3K] * SedSE 4R 4 RAE S84 0§ [2 2 L 22K ® 8 e 8 * & €
* L B8 @ & $6 4 & 2E Ruie 4454 +H L ke & S48 ES ¢ e tE4ie D
. ¢ & i Rk w8 Gubdd BE BB SeSBRSEE ¥ R¥ L & % %3 #fidud safeks w
| § ahe ¥ 48 wise * S48 8% &% it e ek #% & 488
[N [T LK] . as SR B SE444GEE S RETRE % 8 tReg sr @
* MR S 4 & R RAR S SR U6 & HREND (1) $ 6% RAT XRE HE 4 S & M
® an ased & @ HARE 3t ROREAS *d ITEREIPE LB * FY K X]
s & sedatie € #4545 2% @ 8 Ak¥ ax auan AEE § F HEEE de 0 & #4844
o 4% € & suser & ik 4 ¥ wEs % FANES stuted #eH *
] 2 o & % seene & FIZ I IR 2 2R 21 t ts&ss A4RIRE RS *
» ® 2 "8 & * » L 2 4 % 29 ¢ P8 & I 3R J
‘e (R IR [(K 2 4% B2 2 @ LK 1
L3R [3R TR e [3R (IR IR LN L]
* * ". < * @ * & % %4 48 ¢ @ t‘.
[2K] *Re * e [3 [.4 *
‘e . *% @ 4 @] oa .ot" tuwu 4 L K
e L3 TR) * e L3R & 4% 48 &8 & L3R
L3R | ¢ g€ & IR] [K] 4 64 24 0% ¢ . *
3K * e & [3R 2 L 2R) * 65 49 #¢ & s ®]
* IR . LIRS [T TR TR . e LN
| ® fe * [K J | 2 & B9 58 B9 # L 2 J » im
-.ousno .. [t e ® 2% 42 0% & [2K] .o..
[} (RS IR IR LR LK
* e @ L 2R 4 L 2 n.ac.otﬁa .« e ® tw
¢ an e (3K} LN IR I 1IN [3K LR 2
-« &% ¢ “« & 4 & 4 4 6 BE & « ¢ 4 & & @~
¢ e @ L R [2R] s on €% e ® L 3K * @ « sed
. 60 @ “« 4 . e 48 86 S0 ¢ « ¢ 6 # a8
e b . .. ¢ 48 S% ob ¢ (3K ; s e & 40 ¢
. e . s IR % 40 28 S ¢ s . s s % 85 9

Visual test for LFSR, LHCA and TLCA of degree 20

.
.

Figure 5.1

2 200 S 9 ¢ re3e el ey SRES B SeaR BeER P 4 4 &3 & 4 &p Rede 2 @
tde o8¢ 20 0 ¢ pene pee ani eeRe 8 ees e o »
e ssee ebe ses aded o wbin
. KLl 208 SRS R st
IR ass BEEE B BEOD 8
sene S4n e8e 408é 2 GeRp ¢
2000 400 seth ¥ €200 €8¢
thot SERS

sebe R0 € ¢ & 2 & @ b2 eser ¢ ¢ * @ &2
PEe SEEE & SPRE S9FE P e e R & R
soRs wee *Ep €o0e @ K008 dRen s & s & . 4e *

288 S38s & G422 RENE ¢ B 8 *é & & s &3
8¢ REOS ¥ Lo ERES ¥ P& £2 8 2 80 040
ase BESE B 44D Rete 2 & 2 8¢ 5 & 8¢ Bese
06 4SS £ RBEE SR8e £ 0 P et @ ¢ Be Ssae &

IR R4 a2 e 28 & t RE £RBE 4 1]
e 083 v BeEE e ¢ ¥ AT IR I IR T2 1 N B ¢ B e B
a8 48 MYt IR IT ORI 44 g & & AL 4 o sder ¥ ® L [IR LR34 +
(2 X120 244 59 2948 € SeNg #Pee * % e B & B &8 BeN® ¢ ¥ 2 8 &9 0@ Rdd
fted wte ted eSR€ ¢ ERes RFe & e R S0 £ ¢ 2E FEER % 2 e & e B *e

41

tic polynomial z?° + =

1S

.

90

t12211] (X3 [T21X] SPRBE 2 &€ «8 %E * 2 Reed & L 3 %*% # B ® @& L 3K 48 *
“sos of sekae ¢-u-*¢¢ u- e e . “mo‘ 'y ® nactx.. s e e s sae 3
“«6e Ag 45048 PUER (. P48 Re E 1] 3 R0kP B * L] 2 #» * » 1] *e
AP LiBeEY N0 A0 e 2 e sanb e &F BN T s e a ass wadd
€ e ARESE REPEE BR #4R 6 4¢ @ 4 RERE 2 * TR IR I 0 N 8% ARREE
*8 4420 28848 24 *uy e 4% L § * ‘Aﬁ‘ # + a2 & % & & # *He® AR €A ¥
”‘ .”“““' .."“.0.@0 ITT 2R 22N 1 2 ..0“‘“. 2 0‘ ‘“t.t‘.‘#ﬁ‘ t‘ﬂ #“O ‘"‘G"“J‘
] * 4 %99 %8 4 * +* L 1 L 2 48

e Rititd n-uun. sv’ ese ad e v e e e AR U cam" s o:xuc‘uu.
L] 248¢€ o4 +* * B £ 3.4 F L3N 4 * ® 2E® R RARBRAEDR
shded scade 43 aie b w6 % & aken 4 F #PVNTT T aed” seseasiniae
FY ST TIITAR TN 1 3 4 48 #2 2 % q4Rde & * [T 2K K 2K 4 TR 2K 2.) PRGRESRARNS

[T211] SBR%E &% E 21 2% 4% # + Fien 8 * RiNN] E 3R 2 IR S84 t&*t‘.&‘t‘t
eass Jlre e e we ab e Sl .t SN ORI L s 4
] * * k1 ® * E 4 e 24BN G SH RN (1]
55400 -3-1-3-A - A -5 LY S-S A T 2 2 B Eh s R AR R E wEE P-3-3-84-8-4-4-+-3-1 1
L R R RN 11111 Ol D
e* sentn o wbn s wd 2 4 it e 2NN T see sareriiiser daes 4
2 Htane 43 T2 2 S B T R SeeR P * % ¢ R 8 6 &2 HER SERCRARENEER RING 2%

Visual test for the LFSR with character

Figure 5.2

C'Q., measures the dependencies between < X > and < Y > and is calculated by
co. = :‘:O‘(X Ye) — (Fi5e Xi 35 Yi)
V(n z:;o* X — (Lo Xa?)(n ::o‘ Y2 - (S Ya)?)

The auto correlation coefficient, denoted by CO,, measures the correlation

as

(5.2)

of elements within a patiern. For a pattern < X >, CO, is computed using the
same formula as that of CO. except that the sequence < Y > is replaced by the
pattern < X > cyclically shifted : positions, where i ranges from 0,...,n — 1.

The coefficients CO, and CO. lie in the range -1 to +1. A coeflicient of
near zero indicates that the patterns are independent of each other or are not
correlated. On the other hand, a value of close to %1 tells us that the patterns
are dependent or are correlated.

Only the absolute value of the correlation coefficients, ranged from 0 to +1,
needs to be considered for the computation of the correlation coefficients of binary
patterns. Under this situation, the equation 5.2 can be simplified to

o, = B0 B X V)
Ve Ti X — (S X0 (n 53 Y — (Ti Y)?)

The following procedures are used to compute the correlation coeflicients of

(5.3)

n-bit binary patterns generated by one of a maximum length LFSR, 1-d LHCA
and TLCA.

1. Successively generate n n-bit binary patterns.

2. Test the first pattern generated at time ¢ = 0 (denoted by Qo) against all
the patterns Q; including itself by using the following method:

FOR t FROM 0 TO n— 1 DO
FOR j FROM 0 TO n — 1 DO

| n—1i R .. ne1 . — .
CO[t, 3] = — "Z_lsgfﬂﬂ@'lfﬂ mod :ljl—(Z‘ii,? Qo[*l‘;,:g"ie[tl). .
\ﬂ" " Qoli)~(Timy RoliN?)(n YTy Qeli+imodn]— (3717 Qeli+imodn})?)
END
END

91

Note that CO. is a two dimensional array of size(0..n — 1.0..n — 1). When ¢ =0
the method computes the auto correlations of the sequence Qo.

Figures 5.3, 5.4, and 5.5 demonstrate the auto and cross correlation of max-
imum length LFSR, LHCA and TLCA(ILI) of degree 36 in 3-dimensional plots
respectively. The X axis (labeled time) represents the time displacement since
different patterns are generated at different times. The Y axis (labeled sequence)
represents sequence displacement, that is, how many bits shifted for the same
pattern. The correlation coefficient is shown in the Z axis. The auto correlation
can be read from the curve on the plane vertical to the time axis. The cross
correlation of the pattern cyclically shified some bits can be read from the values

on the plane vertical to sequence axis.

correlation

30 sequence
time

Figure 5.3: Auto and cross correlation test for LFSR of degree 36

The high correlation for patterns from the LFSRs is indicated by the diago-
nal ridge in Figure 5.3. This is because the pattern Qo and the pattern Q. shifted
t positions are almost identical for most t’s. The regularity of the patterns gen-

erated can also be seen by the wave-like patterns of the correlation coefficients

92

08~
c . :
5064 :
EO 2N 3
£ 04 N ’355}“\ 0
8" 1ol Niee,
© AN
024 A %‘\‘ 10
NS
AR
0 0
¢ 20
sequence

time
Figure 5.4: Auto and cross correlation test for LHCA of degree 36

o T NIRRT T
~~~~~~ A ; ‘,"‘g.\,
08+ AN IR TN :
- AT AN ,e
S 06+ T S AN NN %
£ . /[”":J:‘S‘,\'ii‘ AT ;’Q“’«» N 1
® - K b\' /l”’i"“"‘\ﬂ N T LN TS v :
€04 FENT A | PN I IZNESE 0
R AN AN SO N S ]
/] XTI 20 NN\~ AR, 4
RPNy NS 717 SN Ny
R RIS
0 > ,;1
0

30 ' sequence

time

Figure 5.5: Auto and cross correlation for TLCA(III) of degree 36

93



on the two sides of the main diagonal ridge. Figures 5.4 and 5.5 show the cor-
relation coefficients for the patterns generated from 1-d LHCA and TLCA(UI)
respectively. They both show no diagonal ridge and wave-like regularity of the

correlation coefficients.

5.1.3 The Role of Fault Simulation

Statistical tests were originally designed for randomness tests of integer or real
numbers. It has been a long, unresolved, argument in the testing community on
the value of these tests for binary sequences.

Extensive visual tests have been conducted to examine the psecudorandom
properties of binary sequence generators. It has been reported that the pscu-
dorandom sequences generated by RLCA (2-d machines) are superior to that of
LHCA, and in turn that of LHCA are better than that of LFSRs {22, 23]. However,
visual tests, similar to the equidistribution statistical tests discussed in Section
5.1.1, do not provide quantitative measures of the pseudorandomness within cach
type of the machines and among the three different types. Correlation tests suffer
a similar problem. Visually, one can claim that a binary sequence produced by
one machine has a higher correlation than another. Again, there is no quantita-
tive measure which can be used to differentiate the degree of correlation in binary
sequences.

The quality of test sequences greatly influences the quality of the testing
of digital circuits. In practice, fault sirnulation is commonly used to determine
the quality of a test set. Fault simulation consists of simulating a circuit in the
presence of faults. Physical defects of digital circuitry are represented by a number
of fault models. The commonly used fault models have been discussed in Chapter
2 of this thesis. Comparing the fault simulation results with those of the fault-free
simulation of the same circuit simulated with the same applied test set T', one
can determine the faults detected by T'. Therefore, the quality of a test sequence

can also be measured by the fault coverage of test 7. A common practice is to

94



apply a test sequence to a set of standard benchmark circuits, then conduct the
fault simulation for a chosen fault model and evaluate the fault coverage.

It has been reported that the quality measures of test sequences obtained
from fault simulation often contradict the theoretical quality measures introduced
in the previous two subsections. One intuitive explanation is that the tests per-
form independent measures of a sequence, while fault simulation examines the
consequences of a test application. In other words, something is missing in the
measures performed by the theoretical tests. A notable attempt made to relate
a test sequence to the test coverage of digital circuits is the two-pattern transi-
tion property [17, 39]. It is proposed for delay fault coverage. The term transition
coverage is introduced to indicate the number of possible transitions in the consec-
utive pairs of test patterns. It is claimed that the higher the transition coverage,
the better the fault coverage. However, we will show later in Section 5.3 that our
simulation results, using TLCA as test generators, provide counter examples of
this claim.

It appears that fault simulation is the only means that provides an unarguable
measure of the quality of a test sequence. In the next section, we will present our
fault simulation results on the quality and effectiveness of test sequences produced

by various LFSMs on the standard ISCAS ’85 benchmark circuits.

5.2 Fault Simulation

In this section, we first introduce the the simulation environment. Then we present
the simulation results on test coverage for stuck-at, transition, and stuck-open

fault models separately. Discussions and observations on the simulation results

are also given.

95



5.2.1 Simulation Environment

5.2.1.1 Fault Simulator

A fault simulator. called sim3, is used in this investigation. Sim3 was developed
in the VLSI Research Center, University of Victoria, Canada. It has been tested
and used by a number of researchers. The results of their simulations have been
reported in technical journals and international conferences {38, 41].

Sim3 employs the fault collapsing technique to group equivalent {aults in the
original fault set in order to form a reduced fault set [I, pp. 216]. FFault simula-
tion then is performed for all faults in the reduced set, and the simulation time
is reduced. Moreover, sim3 uses the Parallel Pattern Single Fault Propagation
(PPSFP) technique [34] in the implementation. It allows several binary test vec-

tors to be applied simultaneously, hence, speeding up the simulation process. The

main features of szm3 are:

1. it supports three fault models: stuck-at, transition, and stuck-open fault

models;

2. it provides several choices of built-in binary test pattern generators, includ-

ing LFSR(I), LFSR(II) and LHCA;
3. it is capable of accepting test patterns supplied externally by an user.

The manual page of sim3 can be found in Append:x C.

5.2.1.2 ISCAS ’85 Benchmark Circuits

ISCAS ’85 benchmarks consist of ten combinational circuits and were issued hy
the 1985 International Symposium on Circuits and Systems [16]. They have been
widely used by researchers and engineers to measure and compare the effective-
ness of test generation algorithms and test sequences. A brief description of the

characteristics of the circuits can be found in Table 5.4.

96



—_(-Iircuit Circuit Total Input | Output
Name Function Gates Lines Lines
432 Priority Decoder 160 (18 EXOR) 36 7
C499 ECAT 202 (104 EXOR) 41 32
(2880 ALU and Control 383 60 26
C1355 ECAT 546 41 32
C1908 ECAT 880 33 25
C2670 || ALU and Control 1193 233 140
C3540 || ALU and Control 1669 30 22
C5315 || ALU and Selector 2307 178 123

6288 16-bit Multiplier 2406 32 32
C7552 || ALU and Control 3512 207 108

Table 5.4: Characteristics of ISCAS °85 Benchmark Circuits
5.2.2 Simulation Results

As stated earlier, fault simulation can be used to determine the fault coverage of a
test sequence. Extensive fault simulation is conducted under three fault models:
stuck-at, transition and stuck-open.

We choose to use 102,000 test vectors in this experiment. This number is
taken from [35] as a typical number used in testing applications. We use primitive
LFSRs, LHCA, and TLCA as the test pattern generators. It is assumed that the
length of a sequence generator equals the number of inputs of a benchmark circuit
under evaluation. In the tables below, we give the types of the generators only,
such as LFSR, LHCA, etc. The intention is to examine the different types of
machines. However, there are many different choices of machines under each
type. For example, there are 2,048 primitive polynomials in degree 16, and each
can be used as the generator. Taking the hardware cost of the implementation of
machines into consideration, we choose to use low cost machines only. Similarly,
for low cost machines of a given degree, there may exist more than one choice.

The actual LFSMs of each type used in the simulations are listed in Appendix E.

97



For all the simulation results except those in Section 5.2.2.1, an initial state of
00--- 001 is used for the test pattern generators. In i 7w 5.2.2.1, we explore the
effect of initial states of test generators on test coverage. ™ sdimulation results
show that the impact of chosen initial states on the test coverage is negligible for
the test lengths used in practical today (> 100, 000).

Given a benchmark circuit, the following simulation process is applied to
all the simulations: sim3 enumerates each fault under a given fault model, and
injects one fault to the fault-free circuit at a time. Then, siin3 applies the test
patterns generated by a chosen LFSM (for example, an LFSR) to the faulty
circuit, and evaluates the output responses against the fault-free outputs. If an
output responding to a test vector is equal to the fault-free output of the same
test input, the injected fault is said to be undetectable by the test vector. I the
fault can not be detected by any of the 102,000 test vectors generated, the fault
is undetectable by the given test sequence; otherwise, it is detectable.

The fault coverage of a benchmark circuit under a chosen fault model is
defined as the ratio of the number of detected faults over the total number of
simulated faults (N), where the number of detected faults is equal to the total

number of simulated faults minus the number of undetected faults (U), i.e.

Fault coverage = N ;, v x 100%.

Note that a 100% fault coverage may still fail to detect faults outside a considered

fault model.

5.2.2.1 Single Stuck-at Fault Coverage

Table 5.5 lists the single stuck-at fault coverage of the fixed test length (102,000)
generated by the LFSR(II), LHCA, and TLCA. The results show that the three
LFSMs share the same single stuck-at fault coverage. The results obtained for
LFSR(II) and LHCA is consistent with the investigation reported in (10, 23].

It is well known that fault coverage has close correlation with test length.

98



€432: Priarity Decoder, 36 inputs and 7 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 560 40 92.86
1-d LHCA 560 40 92.86
TLCA(I) 560 40 92.86
TLCA(II) 560 40 92.86
TLCA(II) 560 40 92.86
TLCA(IV) 560 40 92.86
TLCA(V) 560 40 92.86

C499: ECAT, 41 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 1158 8 99.31
1-d LHCA 1158 8 99.31
TLCA(I) 1158 8 99.31
TLCAL 1158 8 99.31
TLCA(III) 1158 8 99.31
TLCA(IV) 1158 8 99.31
TLCA(V) 1158 8 99.31

C880: ALU and Control, 60 inputs and 26 outputs

Total Faults | Undetected Faults | Fault Coveragé %)

LFSR 942 ) 100.00
1-d LHCA 942 0 100.00
TLCA(I) 942 0 100.00
TLCA(II) 942 ) 100.00
TLCA(III) 942 ) 100.00
TLCA(IV) 942 0 100.00
TLCA(V) 942 ) 100.00

C1355: ECAT, 41 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 1574 8 99.49
1-d LHCA 157¢ 8 99.49
TLCA(I) 1574 8 99.49
TLCA(II) 1574 8 99.49
TLCA(II) 1574 8 99.49
TLCA(IV) 1574 8 99.49
TLCA(V) 1574 8 99.49
(continued)

99




C1908: ECAT, 33 inputs and 25 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 1879 9 99.52
1-d LHCA 1879 9 99.52
TLCA(I) 1879 9 99.52
TLCA(IL) 1879 9 99.52
TLCA(III) 1879 9 99.52
TLCA(IV) 1879 9 99.52
TLCA(V) 1879 9 99.52

C3540: ALU and Control, 50 inputs and 22 oultputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 3428 137 96.00
1-d LHCA 3428 137 96.00
TLCA(I) 3428 137 96.00
TLCA(II) 3428 137 96.00
TLCA (III) 3428 137 96.00
TLCA(IV) 3428 137 96.00
TLCA(V) 3428 137 96.00

€6288: 16-bit Multiplier, 32 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 7744 34 99.56
1-d LHCA 7744 34 99.56
TLCA(I) 7744 34 99.56
TLCA(II) 7744 34 99.56
TLCA(III) 7744 34 99.56
TLCA(IV) 7744 34 99.56
TLCA(V) 7744 34 99.56

Table 5.5: Stuck-at fault simulation results for LFSR, LHCA and TLCA

100



In general, the lunger the test length, the higher the fault coverage. To further
investigate the effectiveness of the test sequences generated by difierent LFSM
structures, fault simulations with different test lengths are conducted. Table
5.6 shows the stuck-at fault coverage as a function of test length using different
pscudorandom sources, for the benchmark circuits C1355, C3540, and C880. It
can be seen that at short test lengths, TLCA perform better than LHCA, and
both are better than LFSR. However, if test lengths are sufficiently long, the fault
coverage of the machines of all types is asymptotic to a constant. This implies

that the effectiveness of the machines as a sequence generator is best judged at

shorter lengths.

5.2.2.2 Transition Fault Coverage

Table 5.7 lists the transition fault coverage of the fixed length test patterns gener-
ated from the LFSR(II), 1-d CA and TLCA. Comparing TLCA with 1-d LHCA, it
can be seen that the former has the same, better, and slightly worse performance
than the latter at a length of 32, 33 and 36, respectively. For longer machines
(> 41), TLCA are always better than LHCA. Comparison is also made between
TLCA and rectangular-structured LCA. Only two case studies (for lengths 32 and
36 only) were reported in [23]. The fault coverage of TLCA is comparable to that
of RLCA at degree 32, but is a little worse than RLCA at degree 36. Overall, all
1-d and 2-d CA perform much better than LFSRs.

The performance of each type of test sequence generator is also examined
against test lengths. Figures 5.6, 5.7 and 5.8 illustrate the transition fault coverage
as a function of the number of test patterns, using the benchmark circuits C1355,
(3540, and C880. The three circuits are the largest we can simulate in this set
of benchmarks due to the limitation of computer power. The solid, dash-dotted,
and dotted lines show the fault coverage of TLCA(III), 1-d LHCA, and LFSRs,
respectively. The ‘+’ points represent the performances of TLCA(I) and the ‘o’
represents TLCA(II). The tabular data used to generate the plots can be found

101



C1355: ECAT, 41 inputs and 32 outputs

Length | LFSR | LHCA | TLCA(IIl) | TLCA(IV) TLCA(D
100 77.32 76.24 88.25 89.39 87.99
500 89.64 92.38 95.43 96.12 94.79
700 94.60 93.20 96.76 97.7 96.32
1000 98.03 95.81 98.28 99.30 97.65
2000 99.36 99.30 99.49 99.40 99.49
4000 99.49 99.49 99.49 99.49 99.49
5000 99.49 99.49 99.49 99.49 99.49
7000 99.49 99.49 99.49 99.49 99.49
102000 | 99.49 99.49 99.49 99.49 99.49

C3540: ALU and Control, 50 inputs and 22 outputs
Length | LFSR | LHCA | TLCA(III) | TLCA(1l) TLCA(])

100 51.40 76.72 81.53 82.44 79.64
500 90.34 90.43 91.45 92.01 91.48
1000 94.71 94.11 94.22 94.75 94.19
2000 95.60 95.54 95.33 95.60 95.48
4000 95.71 95.83 95.71 | 95.80 95.83
5000 95.80 95.89 95.83 95.85 95.92
7000 95.89 95.95 95.89 95.86 95.92
10000 95.92 95.97 95.89 95.89 95.95
20000 95.97 95.97 95.97 95.92 95.97
1 60000 96.00 96.00 96.00 96.00 96.00
102000 96.00 96.00 96.00 96.00 96.00
€880: ALU and Control, 60 inputs and 26 outputs
Length | LFSR | LHCA | TLCA(IIl) | TLCA{ll) | TLCA(])
200 45.75 91.19 94.90 94.06 93.52
400 53.29 95.44 96.60 96.50 95.97
500 58.39 96.60 96.71 96.82 96.39
700 63.91 97.24 97.24 96.82 96.92
1000 77.60 97.77 97.98 97.35 97.45
2000 88.96 98.62 99.26 98.94 99.04
5300 96.18 99.04 99.56 99.58 99.58
10000 99.47 98.58 99.89 99.58 99.89
20000 99.79 99.88 99.90 99.79 99.89
60000 102.0 100.0 100.0 100.0 100.0
102000 100.0 100.0 100.0 100.0 100.0

Table 5.6: Stuck-at fault coverages at different lengths

102



C'432: Priority Decoder, 36 inputs and 7 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 772 97 87.44
1-d LHCA 772 44 94.30
TLCA(I) 772 48 93.78
TLCA(IT) 772 48 93.78
TrLca(m) 772 63 91.84
TLCA(IV) 772 67 91.32
TLCA(V) 772 44 94.30

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 1572 41 a97.39
1-d LHCA 1572 _99.43
TLCA(I) 1572 8 99.49
TLCA(II) 1572 9 99.43
TLCA(III) 1572 8 99.49
TLCA(IV) 1572 11 99.30
TLCA(V) 1572 10 99.36

C880: ALU and Control, 60 inputs and 26 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 1313 48 96.24
1-d LHCA 1313 7 99.47
TLCA()) 1313 9 99.31
TLCA(II) 1313 ] 99.62
TLCA(III) 1313 3 99.77
TLCA(IV) 1313 6 99.54

C1355: ECAT, 41 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 2092 79 96.22
1-d LHCA 2092 35 98.33
TLCA®) 2092 34 98.37
TLCA(II) 2092 33 98.42
TLCA(III) 2072 31 98.56
TLCA(1IV) 2092 34 98.37
TLCA(V) 2092 40 8.09

{continued)

103




C1908: ECAT, 33 inputs and 25 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 2497 65 97.40
i-d LHCA 2497 42 98.32
TLCA(I) 2497 28 98.88
TLCA(II) 2497 39 98.44
TLCA(III) 2497 19 99.24
TLCA(IV) 2497 48 98.08
TLCA(V) 2497 49 98.04

C3540: ALU and Control, 50 inputs and 22 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 4707 484 89.72
1-d LHCA 4707 307 93.48
TLCA(I) 4707 308 93.46
TLCA(I) 4707 222 95.28
TLCA(III) 4707 233 95.05 B
TuCA(IV) 4707 271 94.24

C6288: 16-bit Multiplier, 32 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 10128 102 98.99
1-d LHCA 10128 69 99.32
TLCA(]) 10128 77 99.24
TLCA(II) 10128 77 99.24
TLCA(III) 10128 70 99.31
TLCA(IV) 10128 68 99.33
TLCA(V) 10128 77 99.24

Table 5.7: Transition fault simulation results for LFSR, LHCA and TLCA

104



in Appendix D.
It appears that for the transition fault model TLCA( III) always have superior
performance than LHCA, regardless the test lengths. TLCAC(I) gives a comparable

fault coverage as LHCA. TLCA(II) are never inferior to LHCA. Both LHCA and
TLCA(III) are better than LFSRs.

5.2.2.3 Stuck-open Fault Coverage

Table 5.8 lists the stuck-open fault covcrage of the fixed length test patterns
generated from the LFSR(II), the 1-d CA and the TLCA. It is observed that
TLCA are superior to LHCA except at the length 36.

Comparing TLCA with the rectangular-structured LCA (only two cases were
reported in [23]), the stuck-open fault coverage of TLCA is comparable to that
of RLCA at degree 32, but is slightly worse at degree 36. Again, all 1-d and 2-d
CA perferm much better than LFSRs.

Similarly, Figures 5.9, 5.10 and 5.11 depict the stuck-open fault coverage as
a function of the number of test patterns. The tabular data used to generate
the plots are given in Appendix D. It is shown that for the stuck-open model,
TLCA(I), TLCA(Il), and TLCA(III) perform better than LHCA, independent of

the test lengths. The LHCA and the three types of TLCA are superior to the
LFSR. '

5.2.2.4 Fault Coverage vs Initial States of Test Pattern Generators

There are two scenarios to be considered: the effect of initial states of test pattern
generators on test coverage of digital circuits when test lengths are shorter and
longer than (or equal to) the period of the test pattern generators. The latter
refers to the simulations where exhaustive input patterns are apphad to a CUT.
Therefore, the test coverage is completely independent of the initial states of
the generators. However, in test applications, it is often impractical to have

exhaustive testing, even for circuits of moderate sizes (e.g. with 100 inputs) due

105



100 T T T T T T -+~ T T
o TLCA(I) Delay Fault Model
+ TLCA(Y)
oot A
R LHCA i
g
-]
(=]
[}
S 4
3
(&7
35
@
Ww o
LFSR
.
gsH! : L
.
h -
i C1355
4 . - 1 1 A 1 i L L 1
8 1 3 4 5 6 7 8 9 10
Length of Test Pattems x 10

a7 T T T T T T ! ' v
o TLCA(!1) Delay Fault Model
96 4+ TLCA() ]
)
YT Tea T T T T T
: C3540

o7 —1 > s 5 6 7 8 98 10
Length of Test Pattems ¥

x 10

Figure 5.7: Transition fault coverage vs test length using C3540 (50 inputs)

106



100 T L T T LS T T T T

o TLCA(Il)
+ T_uA(l) |
€
Q
[=.]
g
g 4
Q
(&) [
5 L,
£ b’ LFSR... T
9B/ e .
]
[}
!
1 -
bl | T Delay Fault Model
h: : c880
. :
4 Y 1 I I ] 1 1 1 1
s 1 2 3 4 5 6 7 8 9 10

Length of Test Patterns x10°

Figure 5.8: Transition fault coverage vs test length using C880 (60 inputs)

98 T L T T T T T T T

o TLCA(ll) Stuck-open Fault Model
97F 4+ TLCAQ) )

[7-] 7]
(5] [

©
-

Fault Coverage (%)
©w [7e]
N W

o
-

©
[=]
T

89t

C1355

1 1 I I 1 1

1 2 3 4 5 6 10
Length of Test Pattems x 10°

-~}
(-]
[ie]

Figure 5.9: Stuck-open fault coverage vs test length using C1355 (41 inputs)

107



96 T ™ T ~T T ~Y T T ——
o TLCAMY Stuck-open Fault Model
aqt + TLCA(l) |
TLCA
92} ]
+
. +
Ro0p 7+ ) [
o v -7 - LHCA
o ’
Q887 i
3 !
35 !
S8sr|! J
!
84+ J
TR LFSR ..........
82H! 4
: 3540
80 3 1 | . 1 L 1 L 1 -
1 4 5 6 7 8 9 10
Length of Test Pattems

Figure 5.10: Stuck-open fault coverage vs test length using C3540 (50 inputs)

100 T —

T T T T

99 o TLCA(I)) Stuck-open Fault Model
+ TLCA()

g

-]

[=]

©

2

[+

O

=

(]

w
o2 :
91H E

Cc880
%0 1 2 4 5 6 7 8 9 10
Length of Tast Patterns

x 10

Figure 5.11: Stuck-open fault coverage vs test length using C880 (60 inputs)

108



C'432: Priority Decoder, 36 inputs and 7 outputs

Total Faults

Undetected Faults

Fault Coverage (%)

LFSR

670 81 87.91
1-d LHCA 670 44 93.43
TLCA(I) 670 53 92.09
TLCA(II) 670 53 92.09
TLCA(III) 670 66 90.15
TLCA(1V) 670 60 91.04
TLCA(V) 670 52 92.24
C499: ECAT 41 inputs and 32 outputs
Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 1708 84 95.08
1-d LHCA 1708 34 98.01
TLCA(I) 1708 | 30 98.24
TLCA(II) 1708 32 98.13
TLCA(IIL; 1708 35 97.95
TLCA(IV) 1708 37 97.83
TLCA(V) 1708 34 98.01
C880: ALU and Control, 60 inputs and 26 outputs
Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 1157 62 94.64
1-d LHCA 1157 39 96.63
TLCA(I) 1157 25 97.84
TLCA(II) 1157 23 98.01
TLCA(III) 1157 28 97.58
TLCA(IV) 1157 41 96.46
C1355: ECAT, 41 inputs and 32 outpu‘s
Total Faults | Undetected Faults | Fault Coverage (%)
LFSR 1604 106 93.39
1-d LHCA 1604 60 96.26
TLCA(I) 1604 56 96.51
TLCA(II) 1604 56 96.51
TLCA(I1I) 1604 38 96.38
TLCA(IV) 1604 59 96.32
TLCA(V) 1604 63 96.07
(continued)

109




C1908: ECAT, 33 inputs and 25 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 2094 260 87.58
1-d LHCA 2094 237 88.68
TLCA(I) 2094 218 89.59
TLCA(IL) 2094 228 89.11
TLCA(III) 2094 139 93.36
TLCA(IV) 2094 224 89.30
TLCA(V) 2094 196 90.64

C3540: ALU and Control, 50 inputs and 22 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 4708 788 83.26
1-d LHCA 4708 470 90.02
TLCA(Y) 4708 406 91.38
TLCA(1I) 4708 331 92.97
TLCA(III) 4708 324 93.12
TLCA(IV) 4708 390 91.72

C6288: 16-bit Multiplier, 32 inputs and 32 outputs

Total Faults | Undetected Faults | Fault Coverage (%)

LFSR 7472 101 98.65
1-d LHCA 7472 93 98.76
TLCA(]) 7472 82 98.90
TLCA(II) 7472 81 98.92
TLCA(III) 7472 92 98.77
TLCA(IV) 7472 75 99.00
TLCA(V) 7472 - 84 98.88

Table 5.8: Stuck-open fault simulation results for LFSR, LHCA and TLCA

110



to the testing time and cost. In this section, we investigate the impact of initial
states of pattern generators on test coverage for the former scenario by fault
sirnulations.

Table 5.9 lists the fault coverage of the three types of LFSMs with 10 ran-
domly chosen initial states, where the LFSMs are length 41 machines used to gen-
erate test patterns for the 41-input ISCAS ’85 benchmark circuit C1355, under
the three fault models for 102,000 test patterns. Then, we apply three statisti-
cal analyses, the mean m, variance o2 and standard deviation o, to the data in
Table 5.9 to examine the effects. Table 5.10 summarizes these statistical results

obtained by using the following equations [2]:

1 &=
m = ;7:;1:;
o = ;II—Z(x,—m)z

c = Vo?

where n, is the number of observed results and z; is observed result.

The results in Table 5.10 show that (1) the initial states of the test pat-
tern generators do not affect the test coverage of stuck-at faults, and (2) for the
sequential type faults, transition and stuck-open faults, slight variations on test
coverage can be found when the different initial states of the generators are used.
It is understandable that stuck-at faults are least sensitive to the “randomness”
of the test sequence among the three fault models. Since 102,000 test vectors are
long enough to contain the patterns in the minimum test test and to detect all
the faults in circuit. The sequential type faults are defined with respect to time
t, therefore, they are more likely dependent on the number of transitions between
two adjacent patterns and among all the patterns in a test set. The variations
of test coverage using different initial states are small. In practice, the decisions
on if to conduct extensive fault simulation to find the best initial state of a test

generator for a given circuit should be made by test engineers based on tradeoff

111



Fault Model

Stuck-at

Initial State LFSR | LHCA | TLCA(I)
10000000000000000000000000000000000000001 | 99.49 | 99.49 99.49
11111111110000000000000000000000000000001 | 99.49 | 99.49 99.49
11111000000000000000000000000000000000001 | 99.49 | 99.49 99.49
10000000000000000000000000000001111111111 | 99.49 | 99.49 9Y.49
10000000000000000000000000000000000011111 | 99.49 | 99.49 99.49
111110000000000600000000000000000000011111 | 99.49 | 99.49 99.49
10000000000000011111111111000000000000001 | 99.49 99.49 99.49
1000111000000000000000000001 1111000010001 | 99.49 | 99.49 99.49
10110000000001100000000011000001100000001 | 99.49 | 99.49 99.49
10001110001110000011100011100001110000001 | 99.49 99.49 99.49

Fault Model Transition

Initial State LFSR | LHCA | TLCA(II)
10000000000000000000000000000000000000001 | 96.27 | 98.66 98.53
11111111110000000000000000000000000000001 | 96.27 | 98.57 98.66
1111100¢%,00000000000000000000000000000001 | 96.27 | 98.57 98.66
10000000000000000000000000000001111113111 | 96.32 | UB.66 98.52
10000000000000000000000000000000000011111 | 96.22 | 98.61 98.57
11111000000000000000000000000000000011111 | 96.27 | 98.52 98.71
10000000000000011111111111000000000000001 | 96.22 | 98.47 98.61
10001 110000000000000000000011111000010001 | 96.13 | 98.66 98.42
10110000000001100000000011000001:00000001 | 96.08 | 98.57 98.47
10001116001110000011100011100001110000001 | 96.37 | 98.33 98.61

Fauit Model Stuck-open

Initial State LFSR | LHCA | TLCA(11l)
100000000000000000000000000006000000000001 | 93.83 | 96.95 96.51
11111111110000000000000000000000000000001 | 93.64 | 96.82 96.88
11111000000009000000000000000000000000001 | 93.89 | 96.57 97.07
10000000000000000000000000000001111111111 | 93.70 | 96.82 96.57

10000000000000000000000000000000000011111 | 93.70 | 96.70 96.70
11111000000000000000000000000000000011111 | 93.70 | ©5.63 96.76
10000000000000011111111111000000000000001 | 93.83 | 96.63 97.01
10001110000000000000000000011111000010001 | 93.58 | 96.95 96.70
10110000000001100000000011000001100000001 | 93.70 | 96.63 96.82
10001110001110000011100011100001110000001 | 93.58 | 96.32 96.70

Table 5.9: Fault coverage of three types of LFSMs with different initial states

112



Stuck-at Transition Stuck-open
Mean | Variance | Deviation | Mean | Variance | Deviation | Mean Variance | Deviation
LFSM wm g2 e m o2 - m o2 o
LFSR 99.49 0.000 0.00 96.24 0.006 0.08 93.71 0.010 0.10
LHCA 99.49 0.000 0.00 98.56 0.009 0.09 93.70 0.033 0.18
TLCA 99.49 0.000 0.00 98.57 0.007 0.08 93.77 0.017 0.16

Table 5.10: Characteristics of fault coverage distribution of three types of LESMs

between the time of test generation and the test quality. Overall, it appears that

TLCA provide the best test coverage regardless of initial states.

5.2.2.5 Summary

The five types of maximum length TLCA, TLCA(I), TLCA(II), and TLCA(III)
have some desirable features in testing applications. The hardware cost of TLCA(I)
is lower than that of LHCA, and only slightly higher than that of LFSRs. How-
ever, its fault coverage is inferior to that of LHCA but superior to that of LFSRs.
TLCA(II) have comparable hardware costs and better fault coverage than LHCA.
TLCA(III) is the most expensive type in implementation among the three, but it
retains the highest average fault coverage among all types of the pseudorandom
sequence generators.

In some eng aeering applications, hardware cost of sequence generators may
not be a main concern. For example, if a LFSM is used as an external source of
test vectors (rather than a built-in source), or if it is used in a communication
system as a cyclic code generator, the cost of the extra XOR gates in TLCA (IV)
and (V) could be negligible.

The most notable feature of primitive TLCA over all the other types is their
superior performance on fault coverage at large degrees (i.e. when a machine
length is > 41) and at chort sequence length (for example, when T = 10,000). It
implies that using a TLCA as a test pattern generator can achieve high testing

quality and reduce the testing time. Therefore, maximum length TLCA are a

113



viable alternative to the conventional LFSRs and the more recent LHCA, as
pseudorandom sequence generators.

In the past several years, extensive study on the pseudorandom behavior
of LHCA has been reported mainly from academia. It appears that industrial
practitioners have just begun to accept LHCA as an alternative or a replacement
to LFSRs in testing applications. The recent study in RLCA and our study in
TLCA here have increased our understanding of the structures, operations, and

behavior of two-dimensional LCA. The potential applications of these ma<chines

in other fields require further investigation.

5.3 A Note on the Two-pattern Transition Prop-
erty

Faults with sequential behavior such as stuck-open and delay faults need two test
patterns to detect a fault. A method for assessing the two test pattern testing
capabilities of linear test pattern generators is given in [17]. The paper introduced
a metric called the transition coverage which indicates the number of transitions in
the consecutive pairs of test patterns [39]. It was claimed the higher the transition

coverage, the better the fault coverage for stuck-open and delay faults.

Definition 5.1 [39] For a given n-cell LFSM state vector s = (5182 5n), Sp €

{0,1},1<p<n,a k-cell substate vector w of s is defined by

w = (s,-,s,-z---s,'k) (5.4)

and a transition corresponding to w is defined as

<(sixsiz"'sik)a(s;'ts?;"'sit‘) >, (

Py )
o
S

where1§ij<i-1§nfor1§j<l_<_k.

114



It should be noted that even if (si,si,---58i,) = (sfsk---s],) one transition is

counted because the derivation of a general equation to evaluate the number of
transitions for a given substate vector is simplified.

Table 5.11 shows the test vectors generated by the LFSR(I), the LFSR(II),
the LHCA and the TLCA(III) defined by the same characteristic polynomial
5 4+ z3 + 1. It is observed that the machines produce the same output stream in
cach bit position. For example, starting at 0 marked for each state s; in Table 5.11,

we can see that the sequences on each state s; produced by the four LFSMs are

identical.

Example 5.1 For the four LFSMs in Table 5.11, if s = (s152835455) = (00111)

and w = (s25354), then the transition corresponding to w is < (s28354), (s3s3st) >,

which is

< (011),(011) >
< (011),(001) >
< (011),(101) >
< (011),(001) >

for the LFSR(I) because s* = (10111),
for the LFSR(II) because s* = (00011),
for the LHCA because st = (01011),

for the TLCA(III) because st = (10010).

For any particular substate vector, we can count the total number of transi-
tions for the given substate vector for the LFSMs. For example, for w = (s254)

in Table 5.11, we have the following transitions:

LHCA TLCA(III)

< (01),(11) >
< (01), (00) >
< (11), (00) >
< (10), (00) >
< (00), (01) >
< (10),(11) >
< (00), (00) >
< (10),(01) >

< (11),(01) >
< (00),(11) >
< (00),(10) >
< (11),(10) >
< (01),(10) >
< (11),(11) >
< (10),(10) >
< (01),(01) >

< (10),(11) >
< (11),(00) >
< (00), (00) >
< (00), (10) >
< (11),(10) >
< (10),(01) >
< (01),(11) >
< (01),(01) >

115




Time | LFSR(I) | LFSR(I1) | LHCA | TLCAQI))
(o] 00001 00001 00001 00001
1 10100 10000 00010 01001
2 01010 01000 00111 10110
3 00101 00100 01011 00111
4 10110 10010 11001 10010
5 010z1 01001 00110 10111
6 10001 10100 01001 01110
7 11100 11010 11110 00100

01110 01101 01101 10000

00111 00110 10000 11100
10 10111 10011 11000 10011
11 11111 11001 00100 11110
12 11011 11100 01110 11000
13 11001 11110 10101 00011
14 11000 11111 10100 00010
15 01100 01111 10110 01011
16 00110 00111 10001 11101
17 00011 00011 11010 11010
18 10101 10001 00011 01000
19 11110 11000 00101 11111
20 01111 01100 01100 10001
21 10011 10110 10010 10101
22 11101 11011 11111 Q0101
23 110190 11101 01111 11001
24 01107 01110 10111 01010
25 10010 10111 10011 10100
26 01001 01011 11101 01100
27 10000 10101 01000 o111
28 01000 01010 11100 01101
29 00100 00101 01010 00110
30 00010 00010 11011 11011
31 00001 00001 00001 00001

Table 5.11: Test vectors produced by the LFSR(I), LFSR(II), LHCA and
TLCA(III) with characteristic polynomial 8423 +1

116



substate vector || LFSR(I) | LFSR(II) | LHCA | TLCA(III)
(51, 52) 8 8 8 16
{s1.53) 16 16 16 9
(51,54) 16 16 16 16
(s1,55) 8 16 16 16
(s2,53) 16 8 16 16
(s2,54) 16 16 16 8
(s2,5s) 16 16 16 16
(s3,54) 8 8 16 16
(53, 55) 16 16 16 .16
(sa, s5) 8 8 8 8

Table 5.12: Number of the transitions of different LFSM of degree 5

giving a total of 16 transitions for LHCA and 8 transitions for TLCA(III). Ob-
viously, the maximum number of transitions in this case is 24 = 16. The LHCA
generates all the possible number of transitions, but the TLCA(III) produces
only half of the maximum possible number of transitions for this substate. The
complete list of all the transitions for 2-cell substate vectors for the LFSMs from

Table 5.11 is given in Table 5.12. m]
Definition 5.2 The rank of a matrix is equal to the maximum number of linear
independent rows or columns.
In general, the next state w* of substate vector w is
w"’ = Tww + Tmlz) (5-6)

where W is used for notional convenience to denote a substate vector of s with
cells which are not in w. A key to determining if a given k-cell substate vector w
has 2% transition capability is to check whether the corresponding T has rank &k

[17]. It should be noted that the diagonal components of T are never included.

117



Example 5.2 For w = (s254) in the last example, we have

(o)

Il
3
N
[ ]
N
S~—’
+
&
» o
[

for 1-d LHCA. The rank of Ty is 2, i.e.

the substate is with 22f transition
capability, such that the substate would be counted in Table 5.13.

But we have

TN
n 7]
&g N4

S5
S1
S2
= Tw ( ) + T 83
S4
Ss

for TLCA(III). In this case, the rank of Ty is 1, i.e. the substate is without 22k

transition capability such that the substate would not be counted in Table 5.13.

118



Table 5.13 lists the number of different k-cell substate vectors, which have
922k transition capability, with k£ = |n/2] for the LFSR, LHCA, and TLCA(III) of
degrees up to 20. The data in the table for the LHCA and the LFSR are from [39).

The third column noted C* gives the maximum number, which is k-combinations

of n given by
!
ko n.
Cn = kKl(n— k)~
The data in the table has been confirmed by direct calculation from the test
pattern sequence generated.

Let f(r) be the number of transitions of TLCA(III) of degree n. From the

data in Table 5.13, the recurrence relations can be derived as:

fin)= f(n—-1)+ f(n —2) if n = odd (5.7)
f(7s; = 2llog2n] if n = even .

The number of transitions of TLCA is very close to that of LFSRs, but
much less than that of LHCA. Using the transition coverage measure of the two-
pattern transition property, one would consider that LHCA provides much better
transition fault coverage than TLCA and LFSRs. However, our simulation results
demonstrate that the transition fault coverage using TLCA as pseudorandom test
pattern generator is better than using LHCA, much better than using LFSRs.
This contradiction suggests that the transition property may not be a viable
measure of transition fault coverage as it intended to be. Therefore, how to
measure pseudorandom sequences and their test coverages remain an open and

interesting problem for future research.

119



degree | k=|n/2) | Ck | LFSR(I) | LFSR(II) | LHCA | TLCA(I1})
3 1 3 3 2 3 3
5 2 10 7 6 8 7
7 3 35 13 10 20 1
9 4 126 21 15 48 19
11 5 462 31 21 112 27
13 6 1716 43 28 256 35
15 7 6432 57 36 576 43
17 8 24310 73 45 1280 59
19 9 92378 91 55 2816 75
2 1 2 2 2 2 2
2 6 3 3 4 4
3 20 4 4 8 4
8 4 70 5 5 16 8
10 5 252 6 6 32 8
12 6 924 7 7 64 8
14 7 3432 8 8 128 8
16 8 12870 9 9 256 16
18 9 48620 10 10 512 16
20 10 184756 11 11 1024 16 ]

Table 5.13: Number of different k-cell substate vectors with 2%* transition capa-

bility

120



Chapter 6
Conclusion

Linear finite state machines (LFSMs), such as linear feedback shift registers (LF-
SRs) and linear hybrid cellular automata (LHCA), are widely used in digital
system testing, communication systems, encipherment, error-correcting coding
and cryptography.

In digital testing, LFSMs are often used as pseudorandom binary sequence
generators. The quality of test sequences greatly influences the ultimate quality
of digital circuits and largely contributes to the overall cost of testing. This the-
sis addresses theoretical and practical issues of pseudorandom binary sequence
generation. This research has increased our understanding of the structures, op-
erations and pseudorandom behavior of LFSMs. The result of this research shall

not be limited to testing application.

The main contributions of this thesis are:

(1) it introduces a novel implementation structure of LFSMs, named tree-
structured cellular automata (TLCA). We formally define the structures and op-
erations of TLCA, and specify thirty two linear computational rules performed
by TLCA cells and the transition matrix of TLCA. We identify five types of max-
imum length TLCA, which are capable of generating the maximum numbers of
unique binary patterns and are of great interest in engineering applications;

(2) two computer algorithms to discover maximum length TLCA are devel-

121



oped and the solutions to the implementation issues of the algorithms are pre-
sented. Algorithm I makes use of matrix computation and sieve methods. The
complete C programming code of the implementation and its manual page are
given in Appendix B.

Algorithm II employs a more direct approach, i.e. finding a maximum length
machine by means of testing the primitivity of the characteristic polynomial of
the transition matrix of the TLCA. It is implemented in Maple [14].

Lookup “ables of low cost maximum length TLCA are provided up to degree
60. All maximum length TLCA(III) of degree 2 to 12 and their corresponding
primitive characteristic polynomials are also given;

(3) a comparative study of the pseudorandom behavior of the LFFSMs, lin-
ear feedback shift registers (LFSRs), linear hybrid cellular automata (LHCA),
rectangular-structured linear cellular automata (RLCA) and TLCA, is conducted.
The relations between the pseudorandomness of binary sequences and their effect
on test coverage are investigated by computer simulation on the standard ISCAS

'85 benchmark circuits.

The results of this study show that maximum length TLCA have many fea-
tures desirable in engineering applications:

(1) all maximum length TLCA except the TLCA(III) preserve a comparable
or lower hardware cost in implementation than that of LHCA, where TLCA(1)
requires 50% less XOR gates than LHCA, and forms the most cost effective ma-
chines among one and two-dimensional linear cellular automata;

(2) TLCA of all five types provide superior or comparable test coverage to
the other types of LFSMs under stuck-at, stuck-open and transition fault models
for the conventional test length. In particular, TLCA demonstrate superior test
coverage for stuck-open and transition faults. Moreover, the high test coverage of
TLCA is best reflected at short test lengths (i.e. for test lengths < 10,000). This
implies that the use of TLCA as test sequence generators can reduce test time,

thus, reducing test cost while still retaining high test quality. TLCA of all types

122



preserve superior test coverage to conventional LFSRs under all fault models for
all test length;

(3) unlike LFSRs and LHCA, the majority of TLCA do not have one-to-
one correspondence with primitive polynomials, therefore, there are far fewer
choices of machines at each degree. However, in engineering applications, low
cost maximum length machines are often the most cost effective choice among all
machines. Therefore the lack of choices may not be a problem;

(4) our simulation results suggest that ihe existing theoretical measures of
pseudorandom sequences do not reflect the quality of the test sequences in terms of
test coverage of digital circuits. For instance, the number of two-pattern transition
of TLCA is comparable to that of LFSRs and much less than LHCA. Using this
measurement, TLCA would be considered to have a comparable and lower test
coverage than LFSRs and LHCA, respectively. Our simulation results contradict
this conclusion, however, and this leads to an interesting open problem for future
research.

The result of this research suggests that low cost maximum length TLCA
be a viable alternative to the conventional LFSRs and LHCA as pseudorandom
sequence generators. It should therefore allow digital circuits to be tested more
economically and.effectively.

The suggested future research includes

(1) the practical implementation of Algorithm II, and the development of
more effective algorithms to find maximum length TLCA;

(2) the investigation of higher order TLCA (for example, cells with 3 or 4
children) and the other LFSM structures (for example, higher dimensional LCA,
under the null and different boundary conditions);

(3) the behavior of TLCA as parallel pseudorandom array generators [5]; and

(4) the quantitative measures of test coverage and pseudorandomness of bi-

nary sequences.

123



Bibliography

(1]

(2]

[4]

(5]

(6]

[7]

[8]

M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing
and Testable Design. Computer Science Press, 1990.

M. Abramowitz. Handbook of Mathematical Functions with Formulas,

Graphs, nd Mathematical Tables, volume I. Washington, U.S. Government
Printing Office, 1964.

P.H. Bardell. Analysis of Cellular Automata used as Pseudorandom Pattern

Generators. In Proceedings of the IEEE International Test Conference, pages
762-767, 1985.

P.H. Bardell. Primitive polynomials of degree 301 through 500. Journal of
Electronic Testing: Theory and Application, 3:175-176, 1992.

P.H. Bardell, W.H. McAnney, and J. Savir. Built-In Test for VLSI: Psendo-
random Techniques. John Wiley & Sons, 1987.

C. Batut, D. Bernardi, H. Coher, and M. Olivier. PARI. Version 1.39 fiped

from megrez.math.u-bordeaux.fr, 1995.

R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley
Publishing Company, 1983.

I. F. Blake, Shuhong Gao, and R. Lambert. Constructive Problems for Ir-
reducible Polynomials over Finite Fields. In T.A. Gulliver and N.P. Secord,
editor, Information Thec~y. Springer-Verlag, 1994.

124



[4]

[10]

(11]

[12)

[13]

[14]

[16]

J. Brillhart, D. H. Lehmer, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff.
Factorizations of b® £ 1, b=2,2,5,6,7,10,11,12 up to high powers. Contempo-
rary mathematics, Vol. 22, American Mathematical Society, Providence, R.

1., 1983.

K. Cattell, D.M. Miller, J.C. Muzio, M. Serra, and S. Zhang. One-Dimention
Lincar Hydrid Cellular Automata: Synthesis, Properties, and Applications
in VLSI. Submitted to IEEFE Design & Test of Computers, 1994.

K. Cattell and J.C. Muzio. Table of Linear Cellular Automata for Minimal
Weight Primitive Polynomials of degree up to 300. Technical Report DCS-
163-IR. Department of Computer Science. University of Victoria, Victoria,

BC, Canada, June 1991.

K. Cattell and J.C. Muzio. Synthesis of One-dimensional Linear Hybrid

Cellular Automata. Submiited to IEEE Transactions on Computer-Aided
Design, 1994.

K. Cattell and S. Zhang. One-Dimention Linear Hydrid Cellular Automata:
Synthesis, Properties, and Applications in VLSI. Submitted to Journal of
Electronic Testing: Theory and Application, 1995.

B.W. Char, K. O. Geddes, G.H. Gonnet, B.L.Leong, M.B. Monagan, and
S. M. Watt. Maple V Language Reference Menual. Springer-Verlag, 1992.

H. Cohen. A Course in Computational Algebraic Number Theory. Springer-
Verlag, 1993.

F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Proc. IEEE Int. Symposium
on Circuits and Systems, pages 663-698. Special Session on ATPG and Fault

Simulation, June 1985.

125



(17

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

K. Furuva and E. J. McCluskey. Two-Pattern Test Capabilities of Au-

tonomous TPG Circuits. In Proceedings of the IEEE International Test
Conference, pages 704-711, Oct. 1991.

K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Alge-
bra. Kluwer Academic Publishers, 1992.

S.W. Golomb. Skift Register Sequences. Aegean Park Press, Laguna Hills,
CA, 1982.

Torbjorn Granlund. The GNU Multiple Precision Arithmetic Library. Ver-
sion 1.3.2 ftped from prep.ai.mit.edu, 1993.

T. Hansen and G. L. Mullen. Primitive Polynomials over Finite Fields. Math-

ematics of Computation, 59:639-643, 1992.

P. D. Hortensius, R. D. Mcleod, and H. C. Card. Parallel Random Number
Generation for VLSI Systems Using Cellular Automata. IEEE Transcalions
on Computers, 38(10):1466-1473, Oct. 1989.

H. Janoowalla. Analysis of Two-dimensional Cellular Automota. Master’s

thesis, Department of Computer Science, University of Victoria, Victoria,
BC, Canada, 1992.

D. E. Knuth. The Art of Computer Programming: Seminumerical Algo-
rithms, volume 2. Addison-Wesley, 1969.

R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia Math. App., Vol.
20, Addison-Wesley, Reading, Mass., 1983.

B. Nadeau-Dostie, D. Burek, and A. Hassan. ScanBist: A Muttifrequency

Scan-Based BIST Method. IEEE Design & Test of Computers, pages 7-17,
Spring 1994.

126



[27] D. K. Pradhan, editor. Fault Tolerant Computing: Theory and Techniques.
Prentice-Hall, 1986.

[28] W. Pries, A.Thanailakis, and H. C. Card. Group Properties of Cellular
Automata and VLSI Application. IEEE Transcations on Computers, C-
35(12):1013-1024, December 1986.

[29] H. Riesel. Prime Numbers and Computer Methods for Factorization.
Birkhauser, 1994.

[30] M. Serra, T. Slater, J.C. Muzio, and D.M. Miller. The Analysis of One-
dimensional Linear Cellular Automata and their Aliasing Properties. IEEE

Transactions on Computer-Aided Design, 9(7):767-778, July 1990.

[31] G.L. Smith. Model For Delay Faults Based Upon Paths. In Proceedings of
the IEEE Internationel :-st Conference, pages 342-349, November 1985.

[32) Wayne Stahnke. Primitive Binary Polynomials. Mathematics of Computa-
tion, 27(124):977-980, October 1973.

[33] H. S. Stone. Discrete Mathematical Structures and Their Applications. Sci-

ence Research Associates Inc., 1973.

[34] J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E. Lindbleo:, and
T. McCarthy. Fault Simulation for Structured VLSI. VLSI Systems De-
sign, 6(12):20-32, December 1985.

[35] J.A. Waicukauski, E. Lindbloom, B.K. Rosen, and V.S. Iyengar. Transition
Fault Simulation. IEEE Design & Test of Computers, 4(2):32-38, April 1987.

[36] E.J. Watson. Primitive Polynomials (mod 2). Mathematics of Computation,
16:368-369, 1962.

[37] S. Wolfram. Statistical Mechanics of Cellular Automata. Reviews of Modern
Physics, 55(3):601-644, July 1983.

127



(38]

[39]

[40]

[41]

S. Zhang, R. Byrne, J.C. Muzio, and D.M. Miller. _‘'he Evaluation of Linear
Finite State Machine as Generator. Technical Report DCS-227-1R, Depart-

ment of Computer Science, University of Victoria, Victoria, BC. Canada,

January 1994.

S. Zhang, R. Byrne, J.C. Muzio, and D.M. Miller. Why Cellular Automata
are Better than LFSRs as Built-In Self-Test Generators for Sequential-type
Faults. In Proceedings of the IEEE International Symposium on Circuils and
Systems, pages 69-72, May 1994.

S. Zhang, D.M. Miller, and J.C. Muzio. Determination of Minimal Cost

One-dimensional Linear Hybrid Cellular Automata. IEE Electronics Letlers,

27(18):1625-1627, August 1991.

Z. Zhang, R.D. Mcleod, D.M. Miller, and S. Zhang. Statistically Es*imating
Path Delay Fault Coverage in Combinational Circuits. In Proceedings of the
IEEFE Pacific Rim Conference, pages 461-464, May 1995.

128



Appendix A

Number of Primitive Polynomials

and Irreducible Polynomials

The number of primitive polynomials of degree n is given by[25]

ao(n) = 21

- (A.1)

where the Euker -function is defined by

sm =nT1 (1-1) (A.2)

pln p
where p runs through the prime dividing n. In particular, if P denotes a prime,
#(F: P —1,if Q is also a prime, ¢(PQ) = (P — 1)(Q — 1). Also, o(P?) =
pp- 1.

The number of irreducible polynomials modulo 2 of degree n is given by

Uy(n) = %dlznzdu (3) (A3)

where the sum is extended over all positive divisor d of n, and p-function is the
Mobius function. If P is a prime, u(P) = —1. If Q is also a prime, u(PQ) = +1,

while g(P?) = 0. The values of X\3(n) and ¥,(n) are included in Table A.1 for
n < 24.

129



n 2" -1 A2(n) Ya(n)

1 1 1 2

2 3 1 1

3 7 2 2

4 15 2 3

5 31 6 6

6 63 6 9

7 127 18 18

8 255 16 30

9 511 48 56

10 1,023 60 99

11 2,047 176 186

12 4,095 144 335

13 8,191 630 630

14 16,383 756 1,161
15 32,767 1,800 2,182
16 65,535 2,048 4,080
17 131,071 7,710 7,710
18 262,143 8,064 14,532
19 524,287 27,594 27,594
20 1,048,575 24,000 52,377
21 2,097,151 84,672 99,858
22 4,194,303 120,032 | 190,557
23 8,388,607 356,960 | 364,722
24 16,777,215 | 276,480 | 698,870

Table A.1: Number of primitive polynomials of degree n

130



Appendix B

Implementation of Algorithm

B.1 Source Code

find minimal-cost maximum=-length
Tree-structured Linear Cellular Automata
using Algorithm I

Jin Li
Spring, 1995

[E X X X X 2 J

./

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gmp.h>

#define DEGREE 61
typedef short int matrix[DEGREE] [DEGREE];

void assn(matrix m3, matrix mi, int deg);
void mat_plus(matrix m3, matrix ml, matrix m2, int deg);
void mat_mult(matrix m3, matrix mi, matrix m2, int deg);
int mat_cmp(matrix mi, matrix m2, int deg);
int irreducible(matrix m, int deg);

int primitive(matrix m, int deg);

void mini(matrix mt, int deg);

void min2(matrix mt, int deg);

void min3(matrix mt, int deg);

void mind(matrix mt, int deg);

void minS(matrix mt, int deg);

void min6(matrix mt, int deg);

void min7(matrix mt, int deg);

void min8(matrix mt, int deg);

void min9(matrix mt, int deg);

void min1O(matrix mt, int deg);

void gen_mat_I(matrix m, int deg);

void gen_mat_II(matrix m, int deg);

void gen_mat_III(matrix m, int deg);

void gen_mat_IV(matrix m, int deg);

void gen_mat_V(matrix m, int deg);

void read_factor(int deg);

NP_INT factor(20];

int num_fac; /* number of factors */
matrix mat [DEGREE+i];
FILE ®ofp;

extern char soptarg;

131



extarn int optind;
void main(int argc, char =argvil)

char ®ofile;
char c;

int deg;
char type;

int n, i_case;
matrix mt;

ofp = stdout; /* initialization */

/* decode arguments »/
while ((c = getopt(argc, argv, "d:t:o:m:")) != -1)
suitch () {
case 'd’:
deg = atoi(optarg);
break;
case ’t}:
type = optarglo];
break;
case 'n’:
i_case = atoi(optarg);
break;
case ‘ol:
ofile = optarg;
ofp = fopen(ofile, “a");

break;
e 227
fprintf(stderr, .
“Usage: min -d degree -t type [-n number_one’s] [-o output_file]\n"):
break;

if( argc < 5 ) {
fprintf(stderr,

"Usage: min ~d degree -t type [-n number_one’s] [-o output_filel\n");
exit(1);

/* initialize factor[]l s/
for(n=0; n<20; n++)
mpz_init(&kfactornl);

read_factor(deg); /* load cofactors #/

/* construct proper matrix */
if( type == 1’ )
gen_mat_I(mt, deg);
else if( type == 2’ )
gen_mat_IIl(mt, deg);
else if( type == 3’ )
gen_mat_III(mt, deg);
else if( type == 4’ )
ger.mat_IV(mt, deg);
else if( type == ’5’ )
gen_mat_V(mt, deg);
else {

fprintf(stderr, "Wrong type number. 12345 only\n");
exit(2);

/* number of 1°’s s/
switch( i_case ) {

case 1:

minl(mt, deg); break;
case 2:

min2(mt, deg); break;

case 3:
min3(mt, deg); break;
case 4:

mind(mt, deg); break;
case 5:

min5(mt, deg); break;
case 6:

min6(mt, deg); break;

case T7:
min7(mt, deg); break;
case 8:

min8(mt, deg); break;
case 9:

min9(mt, deg); break;
default:

mint(mt, deg);

132



min2(mt, deg);
min3(mt, deg);
mind(mt, deg);
win5(mt, deg);
min6(mt, deg):
min7(mt, deg);
min8(mt, deg);
min9(mt, deg);
min10(mt, deg);
} break;

fprintf(ofp, “No primitive found from command: “);
for{n=0; n<argc; n++)

fprintf(ofp, "%s ", argvinl);
fprintf(ofp, "\n");

exit(0);
}

/* read_factor()
¢ read in cofactors of 2°n -1

.
void read_factor(int deg)
{

FILE edatafile;
int i;
char junk[1000];

datafile = fopen("factor.dat", “r");

for(i=0; i<(deg-3); i++) { /+* skip (deg-3) lines */
fgets(junk, 1000, datafile);

fscanf(datafile, "%d", &num_fac);

for(i=0; i<num_fac; i++) {
fscanf (datafile, "¥%s*, junk);
mpz_set_str(kfactor[i], junk, 10);

return;

/+ gen_mat()
* generates proper matrix of deg for type I
o/

void gen_mat_I(matrix m, int deg)

int i, j;
int hdeg;
int move;

hdeg = deg / 2;

for(ix=0; i<deg; i++)
for(j=0; j<deg; j++)

m[il[j] = O;

move = 1;

for(i=0; i<hdeg; i++) {
movet++;
m{i]l [move++] = 1;

move = 1;

for(i=0; i<hdeg; i++) {
mlmove++][i] = 1;
move++;

for(im2; icdeg; i=i+2)
m[iJ{i-1] = 1;

1£C degh2 == 0 )
m[hdeg-1] [deg-1] = 1;
return;

/¢ gen_mat()

133



¢ generates proper matrix of deg for type II
-
void gen_mat_II(matrix m, int deg)
int i, j;
int hdeg:;
int move;

hdeg = deg / 2;
for(i=0; i<deg; i++)
for(j=0; j<deg; j++)
m[il[j] = O;

move = 1;

for(i=0; i<hdeg; i++) {
m[i) [move++)] = 1;
m{i] [move++] 1;

move = 1;

for(i=0; ic<hdeg; i++) {
mlmove++1{i] = 1;
movet+;

}
for(i=2; i<deg; i=i+2)
mlil[i-1] = 1;

return;

/* gen_mat()

* generates proper matrix of deg for type III
=/

void gen_mat_III(matrix m, int deg)
int i,
int hde

o

hdeg = deg / 2;

for(i=0; i<deg; it++)
for(j=0; j<deg; j++)

m[il[3] = 0;

move = 1;

for(i=0; ic<hdeg; i++) {
mli]l [move++] = 1
m[i] [move++] = 1;

move = 1;

for(i=0; i<hdeg; i++) {
m[move++][i] = 1;
mimove++][i] 1;

for(i=2; i<deg; i=i+2)
m{il [i-1]1 = 1;

return;

/* gen_mat()

* generates proper matrix of deg for type IV
*/

void gen_mat_IV(matrix m, int dag)

int i, j;
int hdeg;
int move;

hdeg = deg / 2;
for(i=0; i<deg; i++)
for(j=0; j<deg; j++)
m[il[j] = O;
move = 1;
for(i=0; i<hdeg; i++) {

m{i] [move++] = 1;
move++;

134



}

/

v

}

move = 1;

for(i=0; i<hdeg; i++) {
move++;
m[move++]{i] = 1;

for(i=2; i<deg; i=i+2) {
mlil(i-1) = 1;
mli-1][3i] = t;

if( degih2 == 0 )
m{deg-1] [hdeg-11 = 1;

return;

s gen_mat()

* generates proper matrix of deg for type V

./
oid gen_mat_V(matrix m, int deg)
int i, j;

int hdeg;

int move;

hdeg = deg / 2;

for(i=0; i<deg; i++)
for(j=0; j<deg: j++)

m{il1[5] = O;

move = 1;

for(i=0; i<hdeg; i++) {
mlmove++][i] = 1;
mimove++][i] = 1;

move = 1;

for(i=0; i<hdeg; i++) {
mi] [move++] = 1;
move++;

}

for(i=2; i<deg; i=i+2)
m[i-1][i] = 1;

return;

/e

¢ weight 1

«/
void mini(matrix mt, int deg)

int i, j;
for(i=0; i<deg; i++) {
me{i} (i) = 1;
if( irreducidble(mt, deg) ) {

if( primitive(mt, deg) ) {
for(j=0; j<deg; j++) {
fprintf(ofp, "%d", mt[j1(j1):

}
fprintf(ofp, " primitive degree = %d\n",

y exit(C);
}
mt[i1[i] = O;
}

return;

/®
¢ weight 2

./
void min2(matrix mt, int deg)

{

deg) ;

135



int i, j, n;

for(i=0; i<deg; i++) {

mt[il[i] = 1;
for(3=(i+1); j<deg: j++) {
mef31051 = 1;

if( irreducible(mt, deg) ) {

if( primitive(mt, deg) ) {
for(n=0; n<deg: n++) {
fprintf(ofp, “%d", metlnllnd);

fprintf(ofp, " primitive degree = %d\n", deg);
exit(0);

}
) mt(j103] = O;
mt[i1[i] = O3

return;

/>
* weight 3
./
void min3(matrix mt, int deg)
int i, j, k, n;
for(i=0; i<deg; i++) {
mt[i1[i] = 1;
for(j=(i+1); j<deg; j++) {
mt{j103] = 1;
for(k=(j+1); k<deg: k++) {
me{x] (k] = 1;

if( irreducible(mt, deg) ) {

if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, "%d", mtlnlinl);
}
fprintf(ofp, " primitive degree = %d\n", deg);
exit(0);

y :%\t[k] {x] = 0;
N mt{j103j] = 0;

mtli] [i] = O;

return;

/*
* weight 4
*/
void min4(matrix mt, int deg)

int i, j, k, n;
int s;
for(i=0; i<deg; i++) {
me[il (i] = 1;
for(j=(i+1); j<deg; j++) {
w1051 = 1;
for(k=(j+1); k<deg; k++) {
mt(k1[k] = 1;
for(s=(k+1); s<deg; s++) {
mt{s](s] = 1;

if( irreducible(mt, deg) ) {

if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf (ofp, "%d", mt[nlln]);

136



zprintf(ofp. “ primitive degree = %d\n", deg);
exit(0);

y nt(s] (8] = O;
) mt{x][k] = O;
) mt(§1[ji] = O;

) me (i [i] = O;

return;

/s
* weight §
o/
void min5(matrix mt, int deg)

int i, j, k, n;
int 8, ¢;
for(i=0; i<deg; i++) {
me[i][i] = 1;
for(j=(i+1); j<deg; j++) {
me[31053 = 1;
for(k=(j+1); k<deg; k++) {
mt[kx][k] = 1;
for(s=(k+1); ac<deg; s++) {
mtlsl(s] = 1;
for(t=(s+1); t<deg; t++) {
mele]ft] = 1;

if( irreducible(mt, deg) ) {

if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, "%d", mtIn)(n]);

}
fprintf(ofp, " primitive degree = %d\n", deg);
exit(0);

zt[t][t] = 0;
mt(s][s] = 0;
;t[k][k] = 0;
me (3131 = 0;
}

mt[il[i] = O;

return;

/e

* weight 6

*

void min6(matrix mt, int deg)

int i, j, k, n;
int 8, %, p;

Loxr(i=0; i<deg; i++) {
wt(i)[i]l = 1;
for(j=(i+1); j<deg; j++) {
mt{3303] = 1;
for(k=(j+1); k<deg; k++) {
mt k][] = 1;
for(s=(k+1); s<deg; s++) {
mt[s]{s] = 1;
for(t=(s+1); t<deg; t++) {
mt(t]t] = 1;
for(p=(t+1); p<deg; t++) {
mt{plipl = 1;

if( irreducible(mt, deg) ) {

137



if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, "%d", mtin]l(nl);

fprintf(ofp, " primitive degree = %d\n", deg);
axit(0);

}

mtlpl[p] = O}

mtlt][t] = O;
mtls][s] = 0;
l]l;t[k] [x] = o;
mt[3103] = O;

mt{i] [i] = O;
}

return;

/*
* weight 7

*/
void min7(matrix mt, int deg)

int i, j, k, n;
int 8, t, p, q;
for(i=0; i<deg; i++) {
mt[il[i] = 1;
for(j=(i+1); j<deg; j++) {
me{j10j] = 1;
for(k=(j+1); k<deg; k++) {
mt(k][x] = 1;
for(s=(k+1); s<deg; s++) {
mt[s](s] = 1;
for(t=(s+1); t<deg; t++) {
mtlt1[t] = 1;
for(p=(t+1); p<deg; t++) {
mtlplipl = 1;
for(q=(p+1); q<deg; q++) {
mtlqllq) = 1;

if( irreducible(mt, deg) ) {
if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, "Vd", mtnl(nl);

'%printf(ofp, “ primitive degree = %d\n", deg);
exit(0);

}

mt(qllq] = 0O;

mt(pllp] = O;
mt[t]{t] = O;
mt{s][s] = O;
y mt{kl[x] = 0;
y mt[j1C3] = o;

me[i][i] = O;

return;

.
* weight 8

o
s

138



void min8(maLrix mL, int deg)

int i, j. k, n;
int 8, t, p. q, &8;

for(i=0; i<deg; i++) {
mel(iJ[i) = 1;
for(j=(i+1); j<deg: j++) {
mtl3103] = 1;
for(k=(j+1); k<leg; k++) {
mtik]llk] = 1;
for(s=(k+1); s<deg; s++) {
mtislls] = 1;
for(t=(s+1); t<deg; t++) {
meltllt] = 1;
for(p=(t+1); p<deg; t++) {
mt{pllpl = 1;
for(g=(p+1); gq<deg; q++) {
milqllql = 1;
for(a=(q+1); a<deg; a++) {
wtlalla] = 1;

if( irreducible(mt, deg) ) {
if{ primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, "%d*, smtinlinl);

fprintf(ofp, " primitive degree = %d\n*, deg);
exit(0);

zt[alfe.] =0;
mtiqliql = O;
mtipllp] = O;
-}nt[t] {t] = O;
zt[s] s8] = 0;
ntik]l (k] = O;
me[j1[j] = O;
}

mt[iJ[i] = O;

return;

/e

* weight 9

-/

void min9(matrix mt, int deg)

int &, j, X, n;
int s, t, p, q, a, b;

for(i=0; i<deg; i++) {
mt[i][i) > 1;
for(j=(i+1); j<deg; j++) {
me{j103§] = 1;
for(k=(j+1); k&<deg; k++) {
mt[k1[k] = 1;
for(s=(k+1); s<deg; s++) {
mtlslls] = 1;
for(t=(s+1); t<deg; t++) {
me(t]1{t] = 1;
for(p=(t+1); pcdeg; t++) {
mt{plipl = 1;
for(qe(p+1); g<deg; g++) {
mtlqllq) = 1;
for(a=(q+1); acdeg; a++) {
mt{al[al = 1;
for(b=(a+1); b<deg; b++) {
mt[bl[b] = 1;

if( irreducible(mt, deg) ) {
if( primitive(mt, deg) ) {

139



for(n=0; n<deg: n++) {
fprintf(ofp, “%a", mtin}lndd;
}
fprintf(ofp, * primitive degree = %d\n*, deg):
exit(0);

;t[b] [b] = 0;
:}nt[a][a] = 0;
-}-t[q] [ql = 0;
me{pllpl = O;
mt[t}t] = O;
mt{slls] = O;
znt[k] [x1 = 0;
mt{3j1[j] = O;
}

mt[il[i] = O;

return;

/*
* geight 10
./
void miniO(matrix mt, int deg)

int i, j, k, n;

int s, t, p, q, a, b, c;

for(i=0; i<deg; i++) {

mt{ij[il = 1;
for(j=(i+1); j<deg; j++) {
mtl3105] = 1;
for(k=(j+1); k<deg; k++) {
mt{k][k] = 1;
for(s=(k+1); s<deg; s++) {
mtlslis] = 1;
for(t=(s+1); t<deg; t++) {
mtft]ie] = 1;
for(p=(t+1); p<deg; t++) {
at(pllp] = 1;
for(q=(p+1); q<deg; q++) {
mtiqllql = 1;
for(a=(q+1); acdeg; a++) {
mtfal(al = 1;
for(b=(a*1); db<deg; b++) {
mt[b][b] = 1;
for(c=(b+1); c<deg; c++) {
mtlcl{c] = 1;

if( irreducible(mt, deg) ) {
if( primitive(mt, deg) ) {
for(n=0; n<deg; n++) {
fprintf(ofp, “%d", mtlnlinl);
;printf(ofp, * primitive degree = %d\n", deg);
exit(0);
y ;t[f.'][d = 0;
y mt[bl[b] = O;
N mt[al[a] = O;
mt[ql[q] = O;
N mt{pl{p] = O;
mt{t][t] = O;
nt{s](s]) = O;

140



}
N me _: ]1[k] = 0;
N mt(jl1Lj]1 = o;
mt[il (il = O;
}

return;

/+ assn()
* assign one matrix to another

./
void assn(matrix m3, matrix mi, int deg)
int i, j;

for(i=0Q; i<deg; i++) {
for(j=0; j<deg; j++) {
) m3[il (5] = m1Ci10353;

}

/* mat_plus()
» matrix addition

-
void mat_plus(matrix m3, matrix m1, matrix w2, int deg)
int i, j;

for(i=0; i<deg; i++) {
for(j=0; j<deg; j++) {
} m3[i](j] = m1[i1[3§] -~ m2[i3103];

}
}

/* mat_mult() )
* matrix multiplication

-/

void mat_mult(matrix m3, matrix mi, matrix m2, int deg)
int &, j, n;
for(i=0; i<deg; i++) {

for(j=0; j<deg; j++) {
m3[il[j] = 0;

for(n=0; n<deg; n++) {

if( mi1fi )
NBT&?IH“L m2[nl[j];

¥

/* mat_cmp()
* compares the equality of two matrices
* return O mnot equal
¢ return 1 equal
»/
int mat_cmp(matrix ml, matrix m2, int deg)

int 4, j;

for(i=0; ic<deg; i++) {
for(j=0; j<deg; j++) {
if( m1{i] [jg 1= m204i1035) )
return O;
}
}

return 1;

/+ irreducible()
¢ check whether input matrix is irreducible
v return 1: irreducible

141



* return O: recducible

i;é irreducible(matrix m, int deg)
int §;
assn(mat[0], m, deg);

/*
s i=1,..., deg-1, see W {27{i}} = M -> reducible
-/
for(i=1; i<deg; i++) {
mat_mult(matli], mat(i-11, mat[i-1], deg);
if( mat_cmp(mat[il, m, deg) ) {
return O; /* reducible matrix =/
}
/s i=deg »/
mat_mult(mat[deg), mat{deg-1], mat{deg-11, deg);
if( mat_cmp(mat{degl, m, deg) )
return 1;

else
return O;

}

/+ primitive()
* test primitive after testing irreducible
-
int primitive(matrix m, int deg)
int i, j;
int len;
int n_power;
int pf20];
char str{1000];

matrix m_current, m_t;

for(i=0; i<num_fac; i++) {
n_pover = 0;

mpz_get._str(str, 2, kfactorlil);
len = strlen(str);

for(j=0; j<lem; j++) {
if( St!‘[j] == 11?7 )
pln_power++] = len - j - 1;

assn(m_current, mat{ pf{0]l ], deg);

for(j=1; j<n_power; j++) {
mat_mult(m_t, m_current, mat[ p[j] 1, deg):
assn(m_current, m_t, deg);

if( mat_cmp(m_current, m, deg) ) {
return 0O;

}}

return 1;

B.2 Manual Page
NAME
min — the program to search minimal-cost maximum length TLCA
SYNOPSIS
min -d degree -t type [ -o outfile ]

142



DESCRIPTION
The software is an implementation of Algorithm I. The program finds minimal-

cost maximum length tree-structured linear cellular automata.

OPTIONS

-d degree  input degree of TLCA requested.
-t type choose certain type of TLCA requested, where type is a number
from 1 to 5, corresponding to certain types of TLCA.
1 — Type I TLCA.
2 — Type 11 TLCA.
3 — Type I1I TLCA.
4 — Type IV TLCA.
5 — Type V TLCA.
-0 outfile  send the output produced to the file outfile. By default,

the output is written to the standard output stdout.

EXAMPLE
min -d 41 -t 3

gives the type IIl of minimal-cost maximum length TLCA of degree 41.

143



Appendix C

User Manual for the Fault

Simulator

C.1 Manual Page

«User’s Manual of Parallel Pattern Single Fault Propagation simulator”
developed by Mr. S. Zhang

Department of Computer Science, University of Victoria
NAME
sim3 — a combinational logic fault simulator
SYNOPSIS

sim3 [ options ] circuit. file

DESCRIPTION

Read in a description of a combinational circuit from a circuit_file with
the ISCAS [16] netlist format produced by OASIS (an Open Architecture
Silicon Implementation Software). Simulate fault-free, single stuck-at faults,
and/or single delay faults and/or single transistor stuck-open faults for a
given pseudorandom test pattern generator implemented by either a CA,

LFSR, XCA or Birary-Counter. The test patterns can also be from a file or

144



the standard input. sim3 evaluates exact fault coverage and the number
of undetected faults. The fault coverage is given by ((N-U)/N)*100 where
N is the number of total faults of the type being considered and U is the

number of undetected faults.

The implementation of sim3 is based on the PPSFP (parallel Pattern Single
Fault Propagation) technique, and the comprehensive fault equivalence rules
for fault collapsing are applied. Before simulating stuck-open faults, sim3
replaces XOR, AND and OR gates with NAND, NOR and NOT gates in
the circuit under test. The CA considered is one-dimensional linear cellular
automata. Two kinds of CA are used, namely CA with minimum cost
and CA corresponding to the LFSR with minimum cost. The types of
linear feedback shift register (LFSR) used are the LFSR with minimum
cost, LFSR with half taps evenly distributed and LFSR similar to the CA

with minimum cost.

sim3 can also produce the circuit netlist with the local format and a truth

table with the espresso format.

OPTIONS

-V Produce circuit file with local format.

-F Produce a truth table with the espresso format.

-R Replace XOR, AND and OR with NOT, NAND and NOR gates in
the circuit under test.

-S Simulate Stuck-at faults.

-D Simulate Delay faults.

-0 Simulate Stuck-Open faults ( imply option -R).

-Gn Choose test pattern generator, where n is a number from

the range 0 to 5, corresponding to the following types
of the test pattern generator:

0 — CA with minimum cost (default).

145



X

-Q

-1 seed

-1 length

-v vectorfile

-T
-0 outfile

1 — CA corresponding to the LFSR with minimum cost.

2 — LFSR with minimum cost.

3 — LFSR with half taps evenly distributed.

4 — LFSR corresponding to the CA with minimum cost.

5 — Binary Counter.

If -Gn is not specified, then the default

test pattern generator is taken to be

the CA with minimum cost.

Used for specifying Type I LFSR (XORs are between the cells).
By default, Type II LFSR (XORs are on the feedback chain)
will be used. This option only works with the option -G2.
Used for specifying the XCA. This option only works with the
option -GO.

Include all zeros pattern for the CA and LFSR generator.

Set initial random seed for the generator. The seed is a
positive number for producing a random value.

Set test sequer- - length. By default, the length of sequence is
2™ where m is the number of inputs in the circuit.

If m > 30, this option must be specified.

Test patterns are from the vectorfile. If using option

-v +, the test patterns are read from the standard input
stdin. If the -v option is specified, then the option

-Gn will be ignored.

Produce fault coverage for each 256 test patterns.

send the output produced to the file outfile. By default,

the output is written to the standard output stdout.

146



Appendix D

Data of Test Length vs Fault

Coverage

This appendix lists the data of the stuck-at fault, delay fault and stuck-open fault
coverage as a function of number of test patterns. The test pattern generators
include LFSR(I1), LHCA, TLCA(I), TLCA(II) and TLCA(III). The plots of the
data are illustrated in Figures 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 of Chapter 5.

147



l C1355: ECAT 41 inputs and 32 outputs J

Fault Model STUCK-AT
Length | LFSR | LHCA | TLCA(Ill) | TLCA(Il) | TLCA(D)
100 77.32 | 76.24 88.25 89.39 87.99
500 89.64 | 92.38 95.43 96.12 94.79
700 94.60 | 93.20 96.76 97.78 96.32
1000 98.03 | 95.81 98.28 99.30 97.65
2000 99.36 | 99.30 99.49 99.40 99.49
4000 9949 | 9949 | 99.49 99.49 99.49
5000 99.49 | 99.49 99.49 99.49 99.49
7000 99.49 | 99.49 99.49 99.49 99.49
102000 | 99.49 | 99.49 99.49 99.49 99.49

Fault Model DELAY
Length | LFSR | LHCA | TLCA(IIl) | TLCA(II) | TLCA(I)
100 47.75 | 38.91 71.51 75.67 70.46
500 69.89 | 82.31 88.91 90.11 86.57
700 79.59 | 84.61 91.20 91.68 90.15
1000 86.04 | 89.29 93.83 93.88 92.78
2000 92.02 | 95.65 96.99 97.04 96.70
4000 94.93 | 97.51 97.85 98.04 97.94
5000 95.60 | 97.85 97.99 98.04 98.09
7000 95.79 | 97.90 98.14 98.04 98.09
10000 95.79 | 98.04 98.14 98.04 98.09
20000 95.94 | 98.04 98.28 98.04 98.14
60000 96.13 | 98.28 98.47 98.23 98.28
102000 | 96.22 | 98.33 98.56 98.42 98.37

Fault Model STUCK-OPEN
Length | LFSR | LHCA | TLCA(III) | TLCA(II) | TLCA(I)
100 45.70 | 34.79 64.28 68.20 63.34
500 63.47 | 76.62 82.17 83.98 81.67
700 71.32 | 79.11 84.66 85.35 84.23
1000 77.06 | 83.73 89.52 87.59 86.47
2000 84.41 | 89.21 91.02 91.77 91.15
4000 89.84 | 91.96 93.14 9333 § 92.77
5000 91.08 | 92.39 93.39 93.45 93.08
10000 92,02 | 93.64 94.14 94.39 93.52
20000 92.58 | 94.70 95.07 95.14 94.58
60090 93.27 | 95.82 96.38 96.26 96.07
102000 | 93.39 | 96.26 96.38 96.51 96.51

Table D.1: Fault coverages at different number of test patterns

148



L €3540: ALU and Control 50 inputs and 22 outputs
Fault Model STUCK-AT
Length | LFSR | LHCA | TLCA(III) | TLCA(II) | TLCA(I)
100 51.40 76.72 81.53 82.44 79.64
500 90.24 90.43 91.45 92.01 91.48
1000 94.71 94.11 94.22 94.75 94.19
2000 95.60 95.54 95.33 95.60 95.48
4000 95.71 95.83 95.71 95.80 95.83
5000 95.80 95.89 95.83 95.85 95.92
7000 95.89 95.95 95.89 95.86 95.92
10000 95.92 95.97 95.89 95.89 95.95
20000 95.97 95.97 95.97 95.92 95.97
60000 96.00 96.00 96.00 96.00 96.00
102000 96.00 96.00 96.00 96.00 96.00
Fault Model DELAY
Length | LFSR | LHCA | TLCA(III) | TLCA(II) | TLCA(I)
100 28.79 60.40 68.64 67.71 62.91
500 74.48 79.80 83.60 84.85 91.48
1000 82.96 86.30 88.78 89.78 88.02
2000 87.51 90.80 92.18 92.84 91.86
4000 88.97 92.54 94.07 94.29 92.95
5000 89.25 92.97 94.50 94.67 93.07
7000 89.48 93.16 94.73 94.86 93.20
10000 89.57 93.29 94.77 95.07 93.27
20000 89.67 93.33 94.99 95.16 93.29
60000 89.72 93.48 95.05 95.24 93.44
102000 89.72 93.48 95.05 95.28 93.46
Fault Model STUCK-OPEN
Length | LFSR | LHCA | TLCA(IIl) | TLCA(II) | TLCA(I)
100 24.58 51.02 58.14 57.03 53.02
500 65.78 71.05 75.15 77.17 73.26
1000 74.51 79.23 81.71 82.75 80.37
2000 79.80 84.71 86.53 87.00 86.41
4000 81.86 87.23 89.36 89.51 88.83
5000 82.18 87.96 90.00 90.14 89.21
7000 82.52 88.62 90.70 90.74 89.95
10000 82.73 89.08 91.08 91.25 90.42
20000 83.01 89.51 91.93 92.01 90.74
60000 83.18 89.93 92.95 92.80 91.23
102000 | 83.26 90.02 93.12 92.97 91.38

Table D.2: Fault coverages at different number of test patterns

149



C880: ALU and Control 60 inputs and 26 outputs ‘
Fault Model STUCK-AT
Length | LFSR | LHCA | TLCA(111) | TLCA(I1) | TLCA(l)
200 45.75 91.19 94.90 94.06 93.52
400 53.29 95.44 96.60 96.50 96.97
500 58.39 96.60 96.71 96.82 96.39
700 63.91 97.24 T.24 96.82 96.92
1000 77.60 9777 97.98 97.356 97.45
2000 88.96 98.62 99.26 98.94 99.04
5000 96.18 99.04 99.56 99.58 99.58
10000 99.47 99.58 99.89 99.58 99.89
20000 99.79 99.88 99.90 99.79 99.89
60000 100.0 100.0 100.0 100.0 100.0
102000 100.0 100.0 100.0 100.0 100.0
Fault Model DELAY
Length | LFSR | LHCA | TLCA(III) | TLCA(II) | TLCA(1)
200 19.27 82.94 88.65 87.81 86.14
400 26.50 89.87 92.00 92.00 90.78
500 30.92 91.32 92.46 92.16 86.78
700 37.17 92.16 93.68 92.61 92.99
1000 49.43 93.75 95.66 93.37 93.91
2000 67.33 95.96 97.41 96.19 97.03
5000 86.06 96.57 98.48 98.10 98.17
10000 95.43 98.25 99.31 98.86 98.63
20000 95.89 99.24 99.54 99.16 98.93
60000 96.34 99.47 99.77 99.62 99.31
102000 96.34 99.47 99.77 99.62 99.31
Fault Mode! STUCK-OPEN
Length | LFSR | LHCA | TLCA(III) | TLCA(II) | TLCA(1}) ]
200 17.89 78.65 82.28 81.24 81.16
400 25.50 85.31 86.00 86.78 86.17
500 30.92 87.12 86.95 87.64 86.78
700 37.86 88.25 88.42 92.61 88.42
1000 48.40 89.71 90.06 89.71 89.46
2000 66.12 93.00 93.43 92.83 93.26
5000 83.75 93.78 94.90 94.99 94.38
10000 87.99 95.25 ¢ 95.28 96.02 95.25
20000 93.78 96.02 96.80 97.23 96.37
60000 94.64 96.54 97.32 97.93 97.67
102000 | 94.64 96.63 97.58 98.01 97.84

Table D.3: Fault coverages at different number of test patterns

150



Appendix E

The LFSRs, LHCA and TLCA in

Fault Coverage Simulations

This appendix lists the actual LFSMs, LFSR(II), LHCA, and types I to V TLCA,
used in the fault coverage simulations of Chapter 5. Their binary string represen-

tations are given.

151



LFSM Degree | Representation of binary string

LFSR 32 10001 100000000000000000000000001 1

LFSR 33 1000000000000000000100000000000001

LFSR 36 10000000000000000000000001 00000000001

LFSR 41 1000000000¢N000000000000000000000000001 G601

LFSR 50 100000000000000000000001 10000000000000000000000001 1

LFSR 60 1 0000000000000000000000000000000000000000000000000000000000 11
LHCA 32 10000000000000000000000010000000

LHCA 33 100000000000000000000000000000000

LHCA 26 000001000000000000000009000000000000

LHCA 41 10000000000000000000000000000000000000000

LHCA 50 00000000001000000000000000000000000000000000000000

LHCA 60 010000000000000000000000000000000000010000000000000000000000
TLCA(I) 32 10000001 000000010000000000000001

TLCA(I) 33 10000100000000000000000000000001 1

TLCA(I) 36 110000010000000001000000000000000001

TLCA(I) 41 10000001 10000000000000000000000000000001 1

TLCA(I) 50 00100010000000000000000001 100300000000000000000000

TLCA(T) 60 00000001 3000000000000000000 100000000000000000000000000000001
TLCA(II) 32 10100001 100000000000000000000001

TLCA(II) 33 1010000100000001 10000000000000000

TLCA(II) 36 000110000000000000000000000000000001

TLCA(II) 41 00100000000000000001 100000000000000000000

TLCA(II) 50 10000010000000000000000001 1 00000000000000000000000

TLCA(II) 60 100000000000000000000000000000100000000000000000000000000000
TLCA(III) 32 10010001000000001000000000000000

TLCA(III) 33 10010000000000001.0000000000000000

TLCA(III) 36 100100010000000000100000000000000000

TLCA(III) 41 10019000010000002000100000000000000000000

TLCA(III) 50 100000000001 10000000000000000000000G30000000000001

TLCA(III) 60 ©00000000000000G0G00000000000010000000000:00000000000000000000
TLCA(IV) 32 00100000100000000000000000000001

TLCAQV) 33 0000000010005000000000000000G3000

TLCA(IV) 36 001101000000000000000000000000000001

TLCA(IV) 41 00000000001000000000000000000000000000000

TLCA(1IV) 50 00100005000010000000000010000000000000C000GO0000G0

TLCA(IV) 60 1001010000000001 00000000000000000000000000000000000000000001
TLCA(V) 32 10100001 100000600000000003000091

TLCA(V) 33 10100006100000001 1600GO00000000000

TLCA(V) 36 000110000000000000000000000000000001

TLCA(V) 41 00100000600C000006011000000000000000:0000

Table E.1: The LFSMs used in fault coverage simulations in Chapter 5

152



