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Abstract

In this thesis, a multiple server queue, in which each server tatex 4 va: »ti0n
after serving one customer is studied. The arrival process is Pusssr. 0 v
vice time is exponential. The duration of a vacation is a ranéess: va::able with
known distribution. Two types of distributions are considies.1- expone: -1al
and a phase distribution of order 2.

This kind of queue has not been considered in the litersture hefore This
queueing model can be used for the analysis of differemt &inds of commu-
nication networks, such as multislotted networks, multisde -ken rings atd
multiple server polling systems.

We apply two techniques to do the steady state anmbsis of t5i< medel:

1. Balance Equation.
2. Matrix Geometric Method.

Using the first technique we are able to derive the mean queue length when
the number of servers (S) in the system is less than 4. But the second
technique, which is algorithmic, gives us the mean queue length and mean
waiting time of the customers for any value of S.
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Chapter 1
Introduction

Queueing Systems with Vacations, are those in which the server(s) take “time
off” or a vacation. In contrast to most queueing systems, the server is not
there are still customers to be served. A number of phenomena, which occur
in real life, can be classified as a queueing system in which the server takes a
vacation. A good example, that may be observed by a person almost daily,
happens at a traffic light crossing where the color of traffic light indicates
whether the server is on vacation or not. For the drivers (customers), the
green light for their lane means that the server is present, while the red light,
means it is on vacation. In the latter case, the drivers must wait for the green
light (server) to return. All the results which are important in the analysis
of this system are generally relevant to other vacation systems. The main
points of interest are the traffic accumulation and the average waiting time of

the traffic at the lights, which in queueing theory are termed as queue length



distribution and mean waiting time. By this example, it is clear why the
the analysis of Queueing Systems with Vacations.
In this thesis, we study these two performance measures for a queuing

system with multiple servers that take vacations.

1.1 Applications of Vacation Models

Queueing Systems in which the server is on vacation for a certain duration
of time, arise in many computer, communication and other systems. The
reason for the server vacation may be due to lack of work, server failure or
due to some other task being assigned. An example of the latter case occurs
in the traffic light crossing analogy. In which, when the server is on vacation
for drivers in the red light lane, it is serving the drivers in the green light
lane.

We will discuss in detail various problems which can be reduced to queue-
ing systems with vacation. The emphasis will be on problems related to

computer systems and communication.

1. Computer Maintenance and Testing: Processors in computer and com-
munication systems are required to do considerable testing and mainte-
nance besides doing other primary functions (for example: processing
telephone calls, receiving and transmitting data). Testing and mainte-
nance is required for proper functioning and to increase the reliability

of the system. The period during which the testing and maintenance



is done can be viewed as a vacation of the system, thus these problems

can be analyzed as vacation models(5).

. CPU Scheduling: The scheduling of different tasks can be analyzed by
using a vacation model. The time during which a task does 1/0 and
waits for the CPU can be considered as a CPU(server) vacation. These
cases can be modelled as queues with multiple servers or a single server
depending on the number of CPUs. These problems are also referred to
as cyclic queues with different tasks switching between 1/O and CPU

bursts, until a task is over, when it is replaced by another task.

. Polling Systems: A polling system is a system of multiple queues, ac-
cessed by a server(s) in a cyclic order, with a switch over time from
queue ¢ to queue 7 + 1. These systems are also referred to as cyclic
queues. Depending on the number of servers present in the system,
they are classified as single or multiple server polling systems. They
arise in many communication systems in which the different stations
are served in a cyclic order. Token Ring and Token Bus protocols are
good examples. In these systems the token(server) moves from one sta-
tion to another in cyclic order and the station with the token is given
the privilege of transmitting the message. After the message reaches
the destination station the token moves to the next station. The va-
cation for a particular queue, in this case, is the time when the token
is at other queues. Many researchers have analyzed these queues by

using the results of single server queues with vacation(for example [4]).

To analyze multiserver polling systems, which arise for example in mul-



tiple token ring systems, we can similiarily use the results of multiple

server queues with vacation.

{. Time Division Multiple Access: The study of multiple access from a
set of N data sources, to a single packet-switched data communication
channel, can be done using queueing models with vacation times. Time
Division Multiple Access (TDMA)[16] is a good example. In TDMA,
each data source generates fixed size packets to be transmitted on a
FCFS basis. The system assigns to each data source a periodic sequence
of time slots on the channel (packet transmission time being equal to
one slot). The channel slots are usually switched to users in a cyclic
order. This system can be modelled by single server queues, where one
slot is assigned to each source and thus vacation time is fixed at N—1

slots[25].

5. Priority Queues: In a two priority non pre emptive queueing system,
we consider the time period when the server is serving the low priority
customers, to be the server vacation from the viewpoint of high priority
customers. Using this concept, priority queues can be modelled as
single server vacation models[20]. An N priority queue can be analyzed
by a similiar model. In this case, for class : customers, the server’s

vacation is the time between successive visits to that class.

. Machine Breakdown and Maintenance in Production Systems: In a pro-
duction system the machines may break down at random, thus causing

a “rest period” or vacation. Thus, maintenance has to be scheduled so



as to minimize the random breakdowns. The maintenance and break-

modelled as a single-server queue with vacation.

7. Related Models: Various other situations where the server is not always
available to serve its primary customers are closely related to vacation
models as mentioned in[5]. One example is queueing systems that re-
quire set-up time. During the set-up time the server is not available

for service and this can be viewed as being on vacation,

1.2 Background

In this section we will discuss the parameters which describe a Queueing
System. These parameters are known or assumed before the analysis of
the system is done. In the analysis, different results which are important
measures of system performance are derived (for example, queue length dis-
tribution). The shorthand notation that is used to specify a queueing system
is also described.

To specify a queueing system, in which a server(s) takes vacations, it is
required that the stochastic processes, which describe the arrival stream, the
service facility and the vacation be identified.

The arrival process is described in terms of interarrival time by a proba-

bility distribution, denoted by A(t) where,

A(t) = P[time between arrivals < .



P[X] denotes the probability of event X. In this thesis, the arrival process
is assumed to be Poisson, which means that A(¢) = 1 — e~*!, where A is the
mean arrival rate.

Two important aspects to describe the service process are the service
time distribution and the order of service. The service process is described
in terms of service time and is denoted by B(z) where,

B(z) = Pl[service time < z].

When the service time is exponential, B(z) = 1 — e™#*, where u is the
mean service rate and i is the mean service time. The order in which the
customers are served is also important in describing the queueing discipline.
First Come First Serve(FCFS), Last Come First Serve(LCFS) and Random
Order of Service(ROS) are the standard queueing disciplines. The thesis
assumes exponential service time and the order FCFS.

There are three important aspects to describe the vacation process: dis-
tribution of vacation time and specifications of when the vacation starts and
ends. The vacation process is described in terms of vacation time (length of

time the server is on vacation) and is denoted by V'(z).
V(z) = Pl|vacation time < z]

If exponential, the vacation process can be described in the same way as the
service process, that is, V(z) = 1 — e~%, where 8 is the mean vacation rate
and ¥ = } is the mean vacation time of the server. In this thesis, we consider
two distributions: exponential and phase.

When the vacation process follows a Phase Distribution it is described

by (v,T) and by the order of the phase distribution. The phase distribution



is a generalization of Erlang’s Method of Stages[15]. A phase distribution of
order m has m + 1 stages(phases). The m + 1 phase is the absorbing stage,
and the rest of the stages are transient states. The vector v gives the initial
when the vacation process comes into the absorbing stage. The transition
rate among the transient stages is given by the m x m matrix, T. The mean
vacation time is given by & = —vT~'€, where € is a column vector of size
m + 1 with all elements equal to 1. The phase distribution will be described
in more detail in Chapter 4.

The time at which the server takes vacation is an important parameter
to characterize vacation models. In some of the models, vacation starts only
when the queue is empty. This kind of service is referred to as ezhaustive,
since all waiting customers are served. In other models, vacation starts at a
random time (for example, due to server breakdown), which is independent
of the state of the queue. This can be referred to as non-ezhaustive. Finally,
vacation may start after a server has served k customers and this is called
k-limited service. Though in queueing theory the convention of exhaustive,
non-exhaustive and 1-limited are attributes of service but here we have used
for the vacation also since it gives time when the server goes for vacation.

To characterize a vacation, the behaviour of a server on arrival to an
empty queue after vacation completion is also important. In some cases, the
server waits at the queue for the customer arrival. While in other cases,
the server will take another vacation and will continue doing so as long as
the queue is empty when the server returns. These cases are referred to as

Single(Vs) and Multiple(Vys) Vacations, respectively. In this thesis we look



at a 1-limited multiple vacation model.

To specify a queueing system, a standard shorthand notation is used, as
in [Kleinrock, Vol I, Pg.viii]. For example, a single server queue in which the
arrival rate is Poisson(M), service time is generalized(G) and the server takes

multiple vactions, is denoted by M/G/1/Vjs.

1.3 Problem Definition and Motivation

In this thesis, a multiple server queue, in which each server takes vacation
after serving one customer is studied. During their vacation time the servers
can do other assigned work, like serving other queues in the case of Polling
Systems. The arrival process is Poisson and service time is exponential.
The duration of a vacation is a random variable with known distribution.
Two models are considered. In the first, vacation follows an exponential
distribution. In the second, the vacation follows a phase distribution of order
2. In both cases, it is a multiple vacation model. The shorthand notation
to specify these queues is M/M/S/Vas with 1-limited service. We derive the
mean and the second moment of queue length and mean waiting time for
this model.

Exponential distributions for service and vacation time, and the Poisson

ponential distribution and the related Poisson process makes the analysis

easier and also, they are accurate in some applications. By assuming a phase



using the techniques discussed in [23)].

Multiple server vacation systems have not been studied much even though

be used. Single server queues with vacations have been used to study sin-
gle server cyclic queues[4], similiarly multiple server queues with vacations
can be used to study multiple server cyclic queues. Cyclic queues arise in
multiprocessor system[22], multiple token ring and multislotted networks[11].
In these applications, generally, only one message or task is serviced before
the server moves to the next queue. Therefore, this motivates the study of
M/M/S Vacation queues where one customer is serviced per visit by a server,

The study of a second model in which the vacation period is phase dis-
tributed is done because the approximate analysis of multiple server cyclic
queues can be done better. The vacation of the servers of the cyclic queues
can be modeled more accurately by using a phase distribution.

To summarize, the main motivating factor of studying M/M/S/Vjs queues
has been its applications in communication networks (Multiple Token Ring,
Multiple Server Polling), and multiprocessor systems. All these systems can
be treated as multiple server cyclic queues but analyzing these queues directly
is very complex which is clear from the techniques used in the analysis of

single server cyclic queues[28].

1.4 Thesis Overview

The thesis organization is as follows. In this chapter various applications

of vacation models were discussed. The problem to be analyzed and the



describing the M/G/1 and M/M/S type Vacation queues. The basic queueing
techniques which have been used by different researchers to analyze these
queues are also explained.

In Chapter 3, the analysis of our model for exponential vacation time is
done. The properties of z-transforms are used along with Balance Equations
to study the model. The method proves to be incapable of handling cases
where the number of servers is four or more.

In Chapter 4, a Matrix Geometric Method has been used to analyze both
our models. In the first model, the vacation is exponential and in the second
it follows a phase distribution of order 2. Instead of obtaining explicit results
for the steady state probability and mean waiting time, an algorithm must
be followed to get the results using this technique.

The analysis of the results is presented in Chapter 5. Chapter 6 summa-

rizes the research conclusions and provides suggestions for future work.

10



Chapter 2

A Survey of Analytical Models

for Queues with Vacations

There are numerous applications which can be analyzed using vacation mod-
els. Depending on these applications, different kinds of vacation models have
been studied. In this chapter we will discuss some of these vacation mod-
els. M/G/1/Vy and M/M/S/Vis models are discussed in detail. Models with
multiple vacations are discussed because these type of vacations are generally
applicable in communication and multiprocessor systems and secondly, these
models have been extensively studied. The different techniques that have
been used to analyze these queues are outlined. The results of the analysis,
for example, mean queue length and mean waiting time, are presented.

The purpose of this chapter is to present the techniques that have been

used in the study of Vacation models and to summarize the results. This



in later chapters.

2.1 Single Server Vacation Models

Single Server Vacation models have been studied for different arrival, ser-
vice and vacation characterstics (for example, Poisson or exponential(M) and
general(G)). In these models, the server can take vacation at one of the fol-
lowing time instances: when the queue is depleted of messages(exhaustive),
or the server has served k-customers(k-limited) or at some random time(non-
exhaustive).

In the first part of this section, the various techniques used in the analysis
of M/G/1/Vy models are presented along with the important results. In the
second part, we list other single server vacation models and the techniques

used for their analysis.

2.1.1 M/G/1/Vy Queues

In this section we will discuss M/G/1/V)yy model with exhaustive service.
The éatransferm of queue length distribution(Q(z)) and Laplace Stieltjes
Transform(LST) of waiting time distribution(W*(s)) of the model are derived
by following the different methods used by various researchers. Q(z) and

W*(s) are defined as follows:

Q(z) = )_ P[Number of customers at the queue=i]z*
=0
We(s) =

‘/u > e *w(t)dt

12



where w(t) is the probability density function(pdf) of the waiting time.

Different techniques that have been used to analyze this model[5] are:
1. Embedded Markov-Chain Approach.
2. Decomposition Method.

3. Level Crossing Argument.

Embedded Markov-Chain Approach

Levy and Yechiali[18], Scholl and Kleinrock[25], Cooper[4] and Heyman[10]
have all analyzed these queues using the Embedded Markov Chain Approach.
This technique is very prevalant in queueing theory and has been used in the
study of M/G/1 queues with no vacations. The fundamental idea behind
this method is to simplify the description of states from the 2-dimensional
description [N(t),Xo(t)], where N(t) is the number of customers in the system
and Xo(t) is the time for which the current customer has received service,
to a one dimensional description N(t). The specification of Xg(t) is required
for a generalized service distribution because it does not have the memory-
less characteristic like the exponential service distribution [Kleinrock Vol I,
Pg.66]. Using only N(t) to describe the system implies that the time ex-
pended on service for the customer in service should be implicit. Thus, the
system is examined at departure instances, where Xy(t) is 0.

To analyze an M/G/1 queue with vacations, the system is studied at
vacation termination and service completion instances[17, 18]. The states of

the Markov chain with transitions occurring at these instances are defined



as {(¢,j): i = 0,1; j = 0,1,...}, where, when ¢ = 0, j is the number of
customers at vacation termination and, when ¢ = 1, j denotes the number of
customers immediately after a service completion. If ¢, is the nth transition
epoch and i, and j, are the values of i and j at the nth transition, then we

can write the following transition laws:

(iﬂ+’lijﬁ+1) = (lljﬂ+ﬁi:1)g lf]ﬁ 21
(0,N"), if (4n,Jn) = (1,0)

where ¢ is the number of arrivals during a service time and N* is the number
of customers present at the end of a vacation period.

The first transition law relates to service completion and the second re-
lates to the vacation termination. The first law says that if, at the nth
transition, there are j,(= 1) customers and the server is present (i, = 1)
at the queue, then, at the (n + 1)th transition, the number of customers
will be equal to the number of customers present immediately after the nth
transition minus 1 (the customer that leaves at the (n + 1) transition) plus
the number of customers that arrive during service time of the customer (¢),
whose service completion will occur at the (n + 1)th transition epoch. The
second law says that if on the nth transition there are no customers left in the
queue then on the (n + 1)th transition which occurs at vacation termination,
the number of customers will be equal to the number of arrivals during the
vacation period of the server (N*).

The steady state transition, m;; = LimncoP(in = i, Jﬂ = j) can then
be obtained from the transition laws. The z-transform of the steady state

probability, 7;(z) = %2 7i;2’ can then be obtained.

14
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The number of customers seen by an arbitrary service completion of a
customer, is simply the random variable j conditioned on the event ¢ = 1.
This is equal to Q(z) = ﬁf-((f% These are given by Eqs. 32 and 33 in [18],

respectively. Thus,
H(2)(V(z) = 1) (1 = Az)

=) = = THGE T h
_ HE)(1 =p)1—2) 1-V(2)
Hz) -2z (1-2)Ao

where p = A%, H(z) and V(z) are the z-transforms of the distribution func-
tions of the number of customer arrivals during the service time of a customer
and server vacation, respectively.

The first factor on the right hand side is the z-transform of the number of
customers at a service completion epoch in the standard M/G/1 queue and
the second term is the z-transform of the number of arrivals during a forward
recurrence time of a vacation. The forward recurrence time of a vacation is
the time remaining in any random vacation at an arbitrary time instant.

In the FIFO queueing discipline, the customers left behind by a departing
customer are precisely those which arrive during the departing customer’s
sojourn time (waiting time + service time), thus

Q(z) = Lm i (Ak;')ke““zj.s(t)dt

jgﬂ
= S*(\ = Az2)
where s(t) is the pdf of sojourn time and §*(A— Az) is the LST of the number
of arrivals in the sojourn time.

Assuming (A — Az) = s, the value of $*(s) can be derived from the



following relation:
$*(s) = Q(1 - 5/)
The sojourn time is the sum of waiting time and service time, hence,
S*(s) = B*(s)W*(s) (2.1)

Thus we can obtain the value of W*(s) from the following relation:

We(s) = QL=3/)

T B(s)
Decomposition Method

The expressions of Q(z) and W*(s), derived in the previous section can

this section, how these results are derived using a decomposition form are
presented.

The Embedded Markov Chain approach showed that the number of cus-
tomers present in the system at a random point in time at equilibrium is
distributed as the sum of the following two independent random variables[7]:

1. The number of Poisson arrivals during a time interval which is dis-

tributed as the equilibrium forward recurrence time(residual life) of a

vacation.

2. The number of customers present at a random point in time at equi-

librium in the corresponding standard M/G/1 queueing system,



That is,

Q(2) = Qmyan(2)V(2)

where Qr/c/1(2) represents the z-transform of the distribution function of
the number of customers in a regular (no vacation) M/G/1 queue( Kleinrock

Vol-1, Eq. 5.86):

Qmcn(z) = H(z)ﬂ_l_;_'[_(fz_)_)(l___—zjl

and Vy(z) represents the z-transform of the distribution function of the num-
ber of arrivals during a time interval distributed as the forward recurrence
time of a vacation(Kleinrock Vol-I, Eq. 5.11)

An intuitive explanation for this result is given by Furhmann[7]. He defines
“primary customers” to be the customers which arrive while the server is on
vacation and “secondary customers” to be those which arrive while the server
is busy. He defines a “Virtual 1-busy period” to be the time interval from
when the server begins serving a primary customer until the next point when
the primary customer and all the secondary customers that arrived during
its sojourn time have departed. Each of these virtual 1-busy periods follow
the same stochastic laws as does a 1-busy period in the standard M/G/1
and each one is independent. A 1-busy period, as defined for the standard
M/G/1 queue, is the duration for which the server is busy. The period starts
with an arrival of a customer to an idle queue and terminates when there are

no customers present[15].
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Using the properties of the Poisson arrival he shows that the number of
primary customers that a random(tagged) customer leaves behind is Vy(z2).
The total number of customers left behind by the tagged customer is the sum
of the number of primary customers and the number of secondary customers.

Thus
Q(z) = Vo(2)Qm/ap(2)

Since the probability generating function of a virtual 1-busy period follows
the same stochastic laws as a 1-busy period in the standard M/G/1 queue,
the number of secondary customers that the tagged customer leaves behind
will have the same distribution as does the number of customers left behind
by a random departure in a standard M/G/1 queue, that is Qr/c/1(2).

This result is valid for any non-preemptive queueing discipline that selects
customers in a manner that is independent of the service time because the
distribution of the number of customers in the system is the same in all these
queues.

Furhamnn also showed that for the FIFO queueing discipline,

5*(s) = Vg () Siyjan (s)

where S}/g/1(s) is LST of the pdf of sojourn time in a standard M/G/1 queue
and V' (s) is the LST of the pdf of forward recurrence time of vacation.

For a FIFO queueing discipline, the relation between Q(z) and 5*(s) was
derived in a previous section. Using this relation the above decomposition

property can be proved.

S*(s) = Q(1~-s/))

18
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= Vy(s)@myen(l — s/A)
= V5 (s)Suyan(s)

Since Vo(z) = V5 (A — Az) from the Eq. 5.46 in [15]. Using Eq. 2.1, we can

obtain the following relation:

Wi(s) = Vo (s)Wiyan(s)

Level Crossing Approach

A level crossing technique has been used to study related vacation models.
Brill and Posner in [3] showed that for a stable M/G/1 type queue, the rate
D(z) at which work decreases at level £ > 0 is equal to the pdf of waiting
time, w(z), and should equal the rate at which work jumps from below z to
above z. The work in the system at time ¢ is defined as the time required to
empty the system of all customers present at time ¢. It is often referred to
as unfinished work[15].

A similiar argument is used by Shantikumar[26] for the vacation model.

He treats the vacation period to be additional work having the same distri-

that w(z) in a stable M/G/1 queue is equal to the rate at which work exceeds

level z. The level crossing result for the M/G/1/Vy model gives
(@) = w(@)=A [ w)(1 - Blz - y))dy
+ w(0)(1 - V(z)), (z>0)

where w(0) = l—;_i, since vacation is treated as additional work. Using the

Laplace transform, we get the same result for the LST of w(z) as obtained



in the previous section:

1-V*s)  s(1—p)

Wi(s) = ——— 8= A+ AB*(s)

= Vo' (s)Wiyan(8)

2.1.2 Related Models

In this section we will briefly discuss other single server vacation models and
the queueing techniques used in their analysis.

A single server, single vacation model has been studied by Levy and
Yechiali using the Embedded Markov Approach[18]. They derive the LST of
waiting time and the z-transform of the number of customers in the queue.
Itzhak and Naor in [2] have analyzed an M/G/1 model in which the server
goes for vacations under different circumstances. An M/G/1 vacation model
with finite waiting time is studied by Lee[17], using an embedded Markov
chain to determine the queue length. The blocking probability and wait-
ing time distribution of the system are also studied using supplementary
variables and a sample biasing technique. The study of an M/G/1 queueing
system with vacation and non-exhaustive service has been done by Furhmann
and Cooper(8] and by Ali and Neuts[1]. Their analysis revealed a 3-way de-
composition of queue length distribution which is in contrast to the 2-way
decomposition for exhaustive service discipline, discussed in Section 2.1.1. A
probabilistic argument of this 3-way decomposition is given by Furhmann
and Cooper(8].

The study of queues having non-Markovian arrival with server vaca-
tion have not been so fruitful owing to the complexity of the problem.

There are very few results about the queue length distribution. Gelenbe
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and lasnogarodsk(9] and Keilson and Servi[13] have studied the G/G/1/Vy

model and have derived waiting time[5].

2.2 Multipie Server Vacation Models

In this section, M/M/S queues, in which the servers take exponentially dis-
tributed vacation, after all the customers in the queue are served (exhaustive)
or at some random time (non-exhaustive) are discussed. The 1-limited case
has not been studied in the literature and will be presented in this thesis.
The techniques used to analyze these queues and the results are presented.
In the first part we consider the M/M/S/V)s model with exhaustive service

and in the second part, other types of multiple server models are presented.

2.2.1 M/M/S/Vy Queues

An M/M/S queue with server vacations and exhaustive service has been
analyzed by Levy and Yechiali[19], Kao and Kumar[12]. In both of these
papers the servers are considered to be identical with service rate 1 and the
arrival is Poisson with rate A. When the queue is depleted of messages, the

servers go for an exponentially distributed vacation, with mean vacation time

oy

. Two techniques are used to analyze this model:

1. Balance Equation Method.

It

. Matrix Geometric Approach.
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Balance Equation Method

The steady state analysis using balance equations has been done for many
Markovian queues, (for example, M/M/1, M/M/S, etc. [15]). Levy and
Yechiali, in [19], have used a balance equation method to derive the distri-
bution of the number of busy servers and the mean number of customers in
the system(L).

The process has been formulated as a continous time Markov Chain with
a state space {(J,7); j=0,1,...S; 7 > j}, where j denotes the number of
busy servers and i the number of customers in the system. The steady
stute probabilities for these states is defined by p;;. Balance equations were
written for all the states. The number of variables in the equations exceed
the number of equations thus a technique, used by Mitrani and Ivi-Itzhak[21]
and by Yechiali[29] to analyze other models, is employed. The approach is
to define a partial generating function for the number of busy servers j,
Gi(z) = TZ; p;i#' and to exploit its properties. The set of simultaneous
equations are obtained from the balance equations and can be written in

matrix form as:

- -

A(2)g(2) = b(z)

where A(z) is the coefficient matrix of size (S + 1)*(S + 1) and g(_:z), b(;)
are column vectors. _q(Tz) is [Go(2), G1(2),...,Gs(2)]* and b(;) consists of the
right hand side constants.

Using Cramer’s rule they obtained the following relation:

|A(2)IGi(2) = |4;(2)I, i=0,1,...,8 (2.2)
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where |A] is the determinant of A. The matrix A;(z) is obtained by replacing
the j th column of A(z) by b(;). For G;(z) to be positive, every root of |A(z)|
should also be a root of |4;(z)|. Using this argument they derive § ~ |
relations in terms of p;.’s, (probability that j servers are busy), by putting
the S — 1 roots (2;’s) of |A(z)] into |A;(z)| and equating it to zero.

In this work they are able to find explicit formulas for the unknown prob-

abilities p; 4’s as given below:

i=1

Pie = 3 fi(2i)Dijo1(2i)Pin/b;(2;) §=1,2,...,85~1

i=0

where

(o) = M Sk
D) = Mo )

fi(z2) = Az(1 = 2) — kpu(l - 2)
hi(z) = (S—k)o=
This set of recursive equations, together with Zf_._, Ipj. = %, is used to find
values of py o, p2,e- . Pse as a function of pge. Then py, is obtained from the
normalizing equation }:3?;0 Pie = 1.
The distribution of the number of busy servers, that is G;(z), is obtained
from Eq. 2.2 by substituting the values of p;.’s in |A;(2)].
The mean number of customers in the system(L) is given by

S
L = 3 Gj1)
i=0
p 1 3
- l—P#J )

A~

ju .
5 + 7)pi..

where p = -‘f\g



Matrix Geometric Approach

An M/M/S/Vi model exactly like the one discussed in the previous section
has been studied by Kao and Kumar [12]. They use a matrix-geometric ap-
proach for modelling the system. They derive the stationary, joint probability
distribution of queue length and the number of busy servers, the waiting time
distribution and the length of busy period.

The state variables are identical to those used by Levy and Yechiali [19]
except they are listed in reverse order (i,j), in order to get the structure
of a Quasi-Birth-Death(QBD) process in a form identical to that of Neuts
[23]. Recall that i denotes the number of customers in the system and j
denotes the number of busy servers. Using the elementary argument of birth-
death processes they obtain the infinitesimal generator Q for the Continuous
transition among different states. The stationary probability of Q is denoted
by X = (&, £1,...), where Z} is a vector of size min(S,k)+1 and each of its

terms gives the stationary joint probability of k customers present at the

of the previous model).

The normal procedure to solve for the joint probability vector X is to use
%Q = 0 equations and the normalizing equation Yo Ti€; =1, where €] is a
column vector of size min(S,7)+1 with all elements equal to 1. The solution
using the above procedure seems quite impossible due to the infinite number
of unknown variables. But the stationary joint probability X is “modified

matrix-geometric”, that is, it is of the form £} = Z5R*~°, k > 9, where R
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is an (S 4 1)x (5 + 1) matrix. Therefore it is only required to obtain the
values of (Zp, £,...,%s) by using the normal procedure and the rest can be
obtained by using the “matrix-geometric” property.

The stationary queue length(L) is given by

=)
L = Y ifie
i=0
§=1 a0 ]
= S ifiéi+a5Y (i + S)RicE.
=0 i=0

For this model the waiting time distribution and the busy period are also

derived. Algorithms must be followed to get these results.

2.2.2 Related Models

There are few other M/M/S vacation models that have been studied. In this
section we briefly discuss the technique used and the results obtained for
each of them.

Levy and Yechiali[19], have studied the M/M/S/Vs queue using the same
model as they used for the Vjy model discussed in the Section 2.2.1. They
outline methods to obtain probabilities to derive mean queue length and the
stationary probabilities of finding k busy servers.

A steady state M/M/S queueing system where each server is subjected to
a random breakdown of exponentially distributed duration has been studied
down server is brought back to an operative state by a repair process that

starts immediately after the occurrence of the breakdown. This model can be

o |}



viewed as a preemptive priority system with two classes of customers where
there are S high priority customers.

Mitrany and Avi-Itzhak have used the balance equation method similiar
to the one used by Levy and Yechiali[19] to obtain the generating function
of the queue size. For S < 2, they derive the explicit form but for large S a
numerical method is suggested.

Neuts and Lucantoni used the Matrix Gerometric Method to solve this
model and they obtained an algorithm to solve the waiting time distribution
and steady state probability. The state variables are the same as those used

in [12], the matrix geometric model described in the previous section.

2.3 Summary

In this chapter we discussed the various vacation models studied by different

clear from the survey presented in this chapter. The analysis of multiple
server models is quite complicated due to the extra variables required to
describe a state. Hence, few multiple server models have been analyzed. The
teehniqueé used in the analysis of single server and multiple server queues
are also very different. While in the single server case, the techniques give
explicit formulas for waiting and queue length distribution, in the multiple
server case, we are not able to obtain formulae for mean waiting time by
the balance equation method, even for the case in which all the processes,
that is, arrival, service and vacation, are exponential. The Matrix Geometric

Approach does give the distribution for waiting time and queue length. But



in this technique an algorithm must be followed to get the queune length and
waiting time distribution.

In spite of the complexity of the multiserver queues, they need to be
studied more as their results can be used in the study of cyclic queues with
multiple servers, which arise in many communication and multiprocessors
systems,

In the thesis, M/M/S/Vy, a 1-limited vacation model is considered. The
1-limited case has been studied for single server case by Ali and Neuts[1]
but has not been studied for multiple servers. To analyze this multi server
vacation model we have used the Balance Equation Method and Matrix Ge-

ometric Approach discussed in this chapter.
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Chapter 3

Balance Equation Method

The balance equation technique can be used to study those models in which
the different processes, that is arrival, departure and vacation are exponen-
tial or Poisson. Multiple server vacation models with exhaustive service
have been studied using this technique as well[19, 21]. In this chapter, an

M/M/S/Vym queueing system with 1-limited service is studied.

3.1 Mathematical Model

The system can be formulated as a Continuous Time Markov Chain (CTMC)

with states defined as
{(i’j) ) 2.7)] = 0,1’“"5}

where § is the number of customers and j is the number of busy servers in
the system. § > j because the number of servers should be less than or equal

to the number of customers in a Vi type model.
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Let p; ; = P[i customers and j servers are present at the queue] and A, u, @
denote the arrival, departure and vacation rates, respectively. In equilibrium,
that is when the system is in steady state, the rate of leaving a state is equal
to the rate of entering the state. On the basis of this fundamental rule we

can obtain the following Balance Equations for our model:

Apoo = pprg (3.1)

(A+Spio = Api-10 + ppis11; t=1,2,.., (3.2)
(A+ippii = (S—3+1)0pji-1 + (J + 1)epizrjn

i=12..,8-1 (3.3)

(Su+Apss = Opss- (3.4)

M+ip+(S=4)0pi; = (S—=j+1)8pijo1 4 Apicrj + (J + 1) apisr i
| i=1,2..,5-1;i>j (3.5)
(A+ Sp)pis = Opis-1+ Api-rsi i > 8 (3.6)

derstood. The left hand side of this equation gives the rate of leaving state
(j,j) which can happen by an arrival of a customer or by a departure of any
one of the j servers on service completion. The right hand side gives the rate
of entering state (j,j), which can happen by an arrival of a server to state
(7,5 —1) or by the departure of any one of j -+ 1 servers on service completion.

Equating these two rates gives Eq. 3.3.
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that j servers are busy. Using this definition, the summation of Eq, 3.2, for




t=1,2,... and Eq. 3.1 yields:
S0po,o = SO0peo — 1pe,s (3.7)
Summing Eq. 3.5 for ¢ = j 4 1,... and Eq. 3.3 we get

(S —34)0pj; + (S — 3)0pe; = (§ + L)ptpe i1
= [§ = (§ = D)]0pj-1,i-1 =[S = (7 = 1)]0ps,j-1 + JEPs,;

On the basis of the above equation we can inductively obtain the following

set of equations:

(S =7)0pi; = (S = 3)0pe; — (4 + 1)pe,j41
j=1,2,...,8~2 (3.8)

Summing Eq. 3.6 for ¢ = S +1,... and Eq. 3.4 yields
0ps-1,5-1 = Ope,s-1 — Sppe,s (3.9)

which is similar to Eq. 3.8.
To solve for p,; we have (S + 2) equations and they are: Egs. 3.1, 3.7
3.8 and 3.9 along with the normalization equation:
s
Y pes=1 (3.10)
=0
Unfortunately, these (S +2) equations have 25 +1 unknown variables. These
are the p;;’s and the p, ;’s. Since the number of equations is less than the
number of unknowns, we have to follow a different approach to find the values

of the unknowns.
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3.2 Generating Function

The approach is to define a partial generating function for the number of
busy servers and to exploit its properties. A similar method has been used
in [19, 21, 29].

We define the generating function of p;; as G;(z) = L2, pi,;z' where
(7=0,1,2,...5;|2] £1). Using generating functions we will try to represent
the balance equations in terms of G;(z)’s and p,;’s. The advantage of this
is that we will obtain more equations with fewer unknown variables and
secondly, we can exploit the generating function properties to obtain more
equations.

After multiplying Eq. 3.2 by 2‘, summing over all ¢ and adding Eq. 3.1
gives us

[A(1 = 2) + S6]Gu(2) = SOpoo + LG (2)

Replacing S0po o by Eq. 3.7 yields

[AM1 = 2) + 50)2Go(2) — uG1(2) = S0zp,o — pzpe, (3.11)
Multiplying Eq. 3.5 by 2, summing over all i and adding Eq. 3.3 multiplied

by 27 gives

Q1 = 2) +ju+ (S - 5)0)Gj(2) — (S = § + 1)8G;-1(2)

i +1 o . -
. z )pgjﬂ(g) = (8 = j)0p;;z’ — (S = j +1)0pj-1,i-12"™"

Now, substituting for p;; and p;_;, ;-1 the values obtained from Eq. 3.8, gives

us

M1 = 2) + i + (S = §)8)2Gj(2) = (S =  + 102G (2)
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= (7 + 1)uGjs1(2) = [(S = j)0ps,; = (J + 1)ptpe,js1] 2+
—[(8 = +1)8pej-1 = jupe ] 2%; j=1,...,8 =1 (3.12)

Multiplying Eq. 3.6 by 2*, summing over all ¢ and adding Eq. 3.4 multiplied
by 27 yields

(A + Su)Gs(2) = Ops-1,5-12°"" + AzGs-1(2)
Replacing ps-1,s-1 by Eq. 3.9
[AM1 = 2) + Sp) 2Gs(z) = 0Gs-1(2)z = —={0pas,s-1 — Supes}z®  (3.13)

From Eqs. 3.11, 3.12 and 3.13 we can calculate the values of all G;(z)’s if we
know the values of p, ;'s. This implies that we should have (S + 1) equations
in the p, ; unknowns. After summing Eq. 3.12 (for all j=1 to §—1), Eq. 3.11,

Eq. 3.13 and substituting z = 1, we get
A ) = .
2 3Gi(1) == =3 jp; (3.14)
J=1 K j=1
since G;(1) = 32, pi,j-
Including the normalizing equation Eq. 3.10 and the above relation we

have 2 equations in p,;'s.

3.3 Busy Servers Probability

In this section we derive the probability of finding j busy servers, that is p, ;,
and show how the generating function is used to derive the values of p, ;.
The values are obtained for S < 3. After derivation the p, ;’s are used to

find values of the queue length distribution and the mean queue length.
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3.3.1 S=1and S =2 Cases

For the § = 1 case, we can solve for p,¢ and p,,, the only two unknowns,

from Eqs. 3.10 and 3.14. The values of the probability of 0 and 1 server

Pep = 11—~
- A
Peg = =

H

To solve for the S = 2 case we have Eqs. 3.1, 3.7, 3.9, 3.10 and 3.14 which
have 5 unknowns: psgo, Pe,1, Pe,2, Poo and py;. Thus we can use these 5

equations and solve for p, 0, pe,1 and p, ;. The values we obtain are:

P = 00020 + N0 + p)
2pu)0 — A0 + 24°)
w2p+ )0 +p)
2020 + puN?
2u(2p + A)(0 + p)

P-,l

Da2

3.3.2 S >2Case
To solve for S > 2, there are (25 + 1) unknowns and we already have S + 3
relations: Eqgs. 3.14, 3.10, 3.1, 3.7, 3.8 and 3.9. We require (S —~2) more equa-
tions in p, ;'s to find these unknowns. We use generating function properties
to derive these relations (for example, G;(2) >0for 0 £z < 1).

As mentioned in Chapter 2, models in [19, 21, 29], require S — 1 relations
in p.js along with Egqs. 3.14 and 3.10. For our model we require S ~ 2

relations, since the equations we are using to solve for the unknowns are



different. We are using Eqgs. 3.1, 3.7 and 3.8 in addition to Eqgs. 3.14 and

3.10 which are used by other authors.
Let fi(z) = Az(1 — 2) + kpz and hi(z) = (S — k)0z. Eq. 3.11, 3.12 and

- -

3.13 can be written in the form of a matrix as A(z)g(z) = b(z) where

A(2)

o()
b(z)
where
bo(2)
bi(2)

bs(z)

[ fo(z) + ho(2)
—ho(z)

0

L

[GO(z)’ G (z)s G2(z)7 ttty GS(Z)]t

i
f1(z) + b1 (2)
—hy(2)

[bo(2), b1(2), ba(2), -+, bs(2)]

S0zpeo — pzp.a

{(S = k)0pe — (k + 1)ppo 41} 2"

(3.15)
—Su
fs(2) + hs(2) |
(3.16)
(3.17)
(3.18)
(3.19)

{(S — k + 1)8pe -1 — kupep}2®; k=1,2,---,5 ~1 (3.20)

—{0pe,5-1 — S#P-.S}zs

Relation A(z)g(z) = b(z) represents a set of (S + 1) relations.

Using Cramer’s Rule

|A(2)IGi(2) = |145(2)|

(3.21)

(3.22)

where |A;(2)| is obtained by replacing the jth column of |A(z)]| by b(;),

we should be able to determine all G;(2)s, if we know all the unknowns in

|4;(z)|, that is, the p_;’s. Since for 0 < z < 1, G;(z) > 0, every z which is a
root of |A(z)] should also be a root of |A4;(z)|. For each root we have (S +1)
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equations but all these equations are dependent, that is, each of them can be
obtained by multiplying an appropriate constant to any other equation, since
ﬁ-:%))- = g:—%f))- Thus, what we require is that we should have at least § — 2
roots (2z;) of |A(z)| between 0 and 1 so that we can have (S ~ 2) equations
by putting |A;(z¢)| = 0.

In our model, when S is even, |A(z)| has £ —1 roots between 0 and | and
S=1 roots when S is odd (for Proof see Appendix A). When S = 3 we have
a root of A(z) between 0 and 1, the value of which depends on A, u and 6.
Using the |A;(z)| = 0 relationship, we can find an equation in p, ;'s. Thus,
we have the required (S ~ 2) more relations to get the values of pe0, Pe,1, Pea
and p, 3.

Unfortunately, for values of S > 4, the number of roots is not sufficient
(< (S —2)) to derive the values of the p, ;'s.

The reason for not getting the required number of roots may be the large

number of multiple roots which exist at z = 0.

3.4 Distribution of the Number in the Queue
and Mean Queue Length

The z-transform of the distribution of the number of customers in the queue
is given by

S
G(z) = z_;o G;(2) (3.23)

The values of G;(z)’s (distribution of the number of busy servers) can be

obtained from Eq. 3.22, for S < 3.



The mean queue length can be derived by differentiating Eq. 3.23 and
substituting z = 1.
! 3 "
L=G'(1)=)_G;(1)
j=0
All the above results can be derived for S £ 3 but the expressions are large

and are not presented here.

3.5 Summary

In this chapter by using the Balance Equation method we derived mean
queue length for S = 1,2,3 cases. For higher values of S the method fails
to give results due to enough relations. In the next chapter we use a Matrix
Geometric Method to obtain mean queue length and mean waiting time for

any value of S.
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Chapter 4
Matrix Geometric Approach

The approach followed in the previous chapter proved incapable of handling
the S > 4 cases of our model. Hence, a different technique, namely the
Matrix Geometric, is used to derive the joint probability of queue length and
the number of servers and the mean waiting time. A review of the Matrix
Geometric Method is given in Appendix C. This technique can be used to
algorithmically obtain results for any value of S. We consider two types of
vacation distributions in this chapter: exponential and phase distribution, It

is easier to solve for the former case but the latter is more generally applicable.

Part 1: Exponential Case

4.1 Model Description

with the number of customers and the servers present at a queue describing
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to that described in the previous chapter, where i denotes the number of
customers and j denotes the number of servers at the queue. These variables
can take on the following values 0 < i < oo and 0 £ j £ S. The value of j
must be < 1, since this is a multiple vacation model. That is, if there are 2
customers present at a queue then there can be 0,1,2, ... min(i,S) servers at
the queue.

The rate of transition from one state to another can be written in a matrix
form referred to as an infinitesimal generator.

We can define this infinitesimal generator Q as follows:

A9 A8
A} Al Al
A} A} Al

A A A3

(sz; .
ASTY AT A5
AS A A
As A Ay

38

where the elements (A’s) of Q are matrices. @ is an infinitesimal generator

and hence A)€+ AL+ AL€ = 0 and Ap€ + A€ + A€ = 0 are satisfied. The
€ is a column vectors with all elements equal to 1, its size depends on the
matrices with which it is multiplied.

The row and column position of each submatrix in Q indicate the number



of customers present at the queue before and after the transition, respec-
tively. For example, A}’s row number is i and column is i = 1, thus there are
¢ customers before and i — 1 customers after the transition (row and column

numbers start from 0). In a similar way, the row and column of the elements

the number of customers corresponding to that submatrix or by the number
of servers. For example, A} can have 0,1,...,7 servers; while the A matri-
ces without any superscript can have 0,1,...,5 servers(here the dimension is
limited by the number of servers, which cannot exceed S). Thus the A, A}
and A} submatrices are of varying dimensions since their size is limited by
the customers; while the matrices Ag, A; and A; are of the same dimensions,
that is, (S +1) X (S + 1), since their size is limited by the number of servers,

The submatrices with subscript 0 denote the rate at which a server leaves
the queue and hence a customer as well, submatrices with subscript 1 denote
the rate at which a customer arrives at the queue and submatrices with
subscript 2 denote the rate at which the pumber of customers remain the
same though there may be a change in the number of servers at the queue
after the transition.

Let A, u, 0 represent arrival, service and vacation rates for Poisson arrival
and exponential service and vacation processes. On the basis of our model
we can obtain the values of the submatrices. The matrices A9 and A} are

—A and [ A0 ] respectively.
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The matrix A} is an (i + 1) x i matrix for i= 1 to S and its contents are

0

g 0

A = 2u 0

0

ipJ

It gives the rate of departure of a customer and therefore also the server.
The matrix A} is of size (i+ 1) x (£ +2), for i=1 to S—1, and its contents

are

It gives the rate of arrival of a customer at the queue.

We can write the contents of A}, where i=1to S as

-

—(A + S6) 50
—(A+p+(S~-1)0) (S-1)6

(S—i+1)8
—(A+ip) |

It has dimension (¢ + 1) % (2 + 1). The off-diagonal elements give the rate

of server arrival to the queue and the diagonal elements give the rate at
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which the state remains the same and are obtained using the relationship
ALE+ Ale+ Aig = 0.

When the number of customers at a queue exceeds S, the matrices A},
Aj and A} corresponds to Ag, A; and A,, respectively. Their dimensions are
(S+1)x(5+1).

The matrix A; = A, Ag is
[ 0
g0
Ag = 21 0

The matrix A, is as follows

—(A+ 50) S6
~(A+p+(S-1)0) (S-1)8

—(A+ Sp)

o




matrix A = Ay + A; + A;. Thus A can be written as

-S0 S0
o =(p+(S-10) (5-1)0

0
Sp =Sp

Matrix A is stochastic. The stationary probability vector II = (mo,m,
...,ms) of A can be obhtained using the [IA = O relationship along with
the normalizing equation 35 ,7; = 1. On solving these equations we get
= ( (%)i % Using the stability condition, that is, [IA€ < [1Ag€
AT v
(refer to Appendix C) we get the following condition for the equilibrium of
the queue and also the condition for @ to be positive recurrent. Positive
recurrent means that the sum of probabilities of coming back to the same
state after any number of transitions (that is 1,2,...,00) is 1. Due to the
positive recurrence, the matrix geometric property can be applied (refer to

Appendix C) for solving the system. The stability condition is
S |s i \§
3 ( )(z) S
=0 i [ . I

This simplifies to,

(4.1)
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The above relation implies that the mean customer interarrival time should

reach steady state.

4.1.2 Steady State Probabilities

We now solve the steady state joint probabilities for @ by using the stochastic
properties of infinitesimal generator Q and the “matrix geometric® property
which the steady state probabilities satisfy.

Let ® = [Zo,&1,...,%5-1,%5,Ls41,...] be the steady state probability
vector of the CTMC with generator Q. &) =(&,0,Zk1, - . +Ek,min(8S,k) ), Where
zi; gives the probability of k customers and i servers being present at the
queue. X satisfies the “modified matrix geometric” property, that is, &) =
#sR*S, k> S. Ris an (S + 1)x (S + 1) matrix and is the minimal non-

negative solution of the quadratic equation(refer to Appendix C)
R*Ag+ RA1 + A, =0 (4.2)

The value of R can be obtained from the above quadratic equation and the
following relation:

RAGE = A8 (4.3)

The above equation implies that the rate of transition from a state where
there are i1 customers, to a state with i + 1 matches the transition rate from
itoi—1.

Using the simultaneous equations obtained from

13



[50)511--"£S—I’£S)ES+I""]Q=O

FoA] + F1A) = 0 (4.4)
Fo1 AV + T AT + B AT = Ofor1<r<S-1 (4.5)
1AV +Z5(AS +RA)) = O (4.6)

and the normalizing equation
To+ T1€+...+Ts1€+Fs(I-R)'€=1 (4.7)

we can solve for [Zo,Z1,...,Z5-1, %8, Ts+1y-- )
These steady state joint probabilities are then used to find the mean and
the second moment of queue length and finally to derive the mean waiting

time.

4.2 The S =1 Case

For the case of 1 server, the value of R can be obtained from Eqs. 4.2 and 4.3
explicitly in term of A, 4 and 6. The values of the steady state probabilities
are then obtained using the method described in the last section.
When S=1,

00 —(A+6 0 A0
Ao=[ ,A1= (+) ]a,ndA2=[ ]

u 0 ] —(u+A) 0 A
Using equations 4.3 and 4.2 we get,

R= [ (b +N)Mp~1671 ! }

(4.8)
A2p-1g-1 Au~l



The equations corresponding to 4.4, 4.6 and 4.7 are

I
=

I
=

FoAj + Z1(A] + RAp)
Zo+ #,(] - R)-'¢

i
—

where & = [zog], £1 = [T1,0,%1,1] and & = [x;0, 2] for i = 2,.... Using
these equations we obtain
- [p,(? o AB]
T = |————
uo

L[N0 = A = 20)N (46 = A = AG)A]
= 03,2 ’ 430

We can write p, o and p,; that is, the probability of finding no server and a
server at the queue, respectively, as
Pepo = ZToo+T10+Tz0+ T30+ ...

Peq = Tyatz2a+230+...

[Pe0sPe1] = [200,0] + &1 + F2R+ #R*+...
= [w0,0,0] + &i(I - R)™
- [ﬂ i]
b p
= [1-p.l

where p is the utilization.
The above result is the same as that obtained by using the Balance Equa-

tion Method in Chapter 3.
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4.3 The S > 1 Case

It is difficult to obtain R for S > 1 using the same method as applied to
S =1 in the previous section since there are a large number of unknowns
and also some of the relations are quadratic (obtained from Eq. 4.2).

As specified in Chapter 2, in [12] and [24] the matrix geometric method
is used to study different types of queueing systems. In the model discussed
in [12] the matrices are all upper triangular, which makes it simpler to derive
imation method to find the value of R. To find X the idea in [24] is used.
For their model, all matrices are of the same dimensions and are square.
Hence modifications are required for our model due to the non-squareness

and varying dimensions of the matrices (A}, A} and A}) %X of our model.

4.3.1 Solution for R
We know that
R?Ap + RA, + A =0
=2 R= 'f—*AgAiil -_ REAQATI
Taking the initial value of R = 0 we can iteratively solve for R and can check
the accuracy of this approximation by using Equation 4.3.
The value of R will converge since —A;?! and (A4; + R?Ay) are positive.

Hence, in each iteration, the value of R will increase monotonically.
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4.3.2 Solution of X

To solve for X, we represent each T, where k < 5 in terms of #5 and then

",

obtain the value of ¥s. We can write £s = ¥sl.

Using Equation 4.6 we can write

where As_1(A™1) is of dimension (S+1) x S and all its elements are 0 except,
where the indices are equal, the value of that element is A\~!.
From Equation 4.5 we get
Bger = —(Fgerpr A7 + Fsorya A7) A5, (A7)
forr=2toS

where Ag_.(A"!) is of dimension (S =74 2) x (S =7+ 1).

To represent &) for k < S in terms of Zs, we assume
Ts_p = TsCs_, r=0to S (4.9)
The value that C; will take at different ¢ is as follows:
Cs =1
Cs-1 = —(A¥ + RAp)As_1(A7") (4.10)

Csr = —(Csersr A7 " + Csmppa A "+) A5, (A7)

forr=2t8S

The dimension of Cs., is (S + 1) x (S —r + 1). From the above set of

equations we can recursively solve for C;(i = 0,1,...,5 - 1)..



Using Eq. 4.9, we can represent Z;(i = 0,1,...,5 — 1) in terms of &g.
Now using Equation 4.7 and the equations obtained from XQ = 0, that is,

Eqgs. 4.4- 4.6, we can solve for 7s.

:z:‘s[sf Ce+ (I - R =1 (4.11)

Fs[Cry AV + CLAT+ ALY = 0 forr=1toS—-1 (4.12)
#s[CoA) + C1A]] = 0 (4.13)

For each value of r we will get only one equation, thus using the S + 1
equations we can find the S 4+ 1 unknowns of &s.

From Zg, we can find the values of 7;, for i = 0,1,... 5, by using Eq. 4.9
and &, for k > S, by using the relation #, = #sR*~5. In this way, we can

obtain the steady state joint probability vector %, for any value of S.

4.4 The Mean and Second Moment of the

Number of Customers

The mean and second moment of the number of customers at the queue can

be obtained exactly as in [12, 23, 24].
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5
= Y 2Fe - Fs[(S2- 25 4+ 1)(I = R)™' + (28 = 3)((J - R)™')?
i=1

+2((1 = R)7')?® -~ §%)¢ (4.15)

4.5 Waiting Time Analysis

To derive the waiting time distribution the waiting time of an arriving (tagged)
customer is considered. States corresponding to the number of customers
present in the queue {0,1,2,...} and an absorbing state { *} form the state
space of the CTMC. Thus the state space of the CTMC is {*}uU{0,1,2,...,
S$~1,58,8+1,...}. On entering the absorbing state denoted by *, a tagged
customer starts receiving service. This happens at the arrival of a server from
vacation when the customer is at the head of the line.

The transition rate matrix @, for this CTMC is as follows

=

1 c1 Bi D1
2 Ca Bg .Dg

S cs Bs D




Each element of the state space except * represents min(z, S) + 1 state pairs,
(,7), corresponding to (2,0),(%,1)... (¢, min(z,S)), where (7, j) represents ¢
customers and j servers at the queue.

¢; is a column vector of size i 4+ 1, whose last element has value (S — 7)0.
This value gives the rate at which the tagged customer enters the absorbing
state. The value is 0 for all states except where the number of customers
present equals the number of servers serving the queue. B; gives the rate
at which the customers ahead of the tagged customer leave the queue and
hence is identical to Aj. D; is equal to A} + AI — diag{0,...,(S —i)8}. It
gives the rate at which the number of servers increases and the rate at which
the customers ahead of a tagged customer remain same.

D has the same significance as D; and is identical to A;+AJ. In matrix @4,
A, the customer arrival rate is not required since we are considering a FCFS
queue and hence customers that arrive after the tagged customer do not have
any impact on the analysis of waiting time. The transition rate matrix @, is
infinitesimal generator. Hence ¢; + B;€+ D;é€ = 0 and Aye+ D€ = 0.

To derive the mean waiting time, Wé apply a method used in [12] and
[24] with modifications as required by our model. The basic intent is to find
the time it takes for the tagged customer to reach the absorbing state (x).
At steady state, the tagged customer on its arrival will see the system in
state (2, j) with probability z; ;. The tagged customer will not receive service
immediately on arrival as it must wait for the customers which are ahead of

it to receive service (handled by B’s and Ay’s). If all customers ahead of it
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have received or are receiving service it must wait for a server to arrive from
its vacation (handled by ¢;’s). Thus the tagged customer receives service only
when the number of servers in the queue becomes equal to the number of
customers present and then a server arrives at the queue after vacation,

Let y(t) = (y.(t),yo(t),y1(t),...), where y;(t) = {y:;(t)} is of size min(i,
S) + 1 and corresponds to the probabilities of 0,1,... min(i,5) servers and

¢ customers present at time t. y.(t) is the probability that the tagged cus-
tomer is in the absorbing state at time ¢. In our case, at time 0, y(0) =
{0, %o, &), 72, ...}, where &5 are the steady state probabilities obtained ear-
lier. Let w(t) denote the pdf of waiting time. Then w(t) = y.(1).

The tagged customer sees the system in state (i, j) with probability y;;(0)
for i > S, the LST of the first passage time to a state (S,j') in S is given by
the j'th element of the row vector ¥(s).

W(s) = 3 Vi(O)(s ~ D) Agfi™S (4.16)

=5
Let ¢;(¢,s) be the LST of the absorption time to state * given that the

process starts from state (¢,7),for 0 < i < 5,0 < j < i. Let ®(7, s) denote
the column vector of dimension (i + 1) containing ¢;(z,s). On the basis of
(1 we can write the following relations:
®(0,s) = (sI—-Dgy) ' (4.17)
'I’(l + 13 S) = (SI - .Di+1 )5151‘.}.1'@(2:, -S) + (SI - Di,H )—IEH,] (418)
0<i£85~1
The LST for the waiting time distribution is given by
§-1

W*(s) = 3 yi(0)®(i, s) + ¥(s)®(S, ) (4.19)

i=0



Mean Waiting Time
The mean waiting time can be obtained from W*(s):
5-1
E[W] ==Y 5(0)®'(i,0) — ¥'(0)& — ¥(0)®'(S,0) (4.20)
i=0
customer if the system is in a state < (S — 1) on its arrival; the second and
third terms give the time to reach the absorbing state if the system is in state
> S on the arrival of a tagged customer.
To solve for the mean waiting time we must calculate the value of each
term in Equation 4.20. Differentiating and substituting s = 0 in Eq. 4.17

will give

8'(0,0) = —(=Do)~'I(—Do)'co
= —(56)7! (4.21)

Similarily, differentiating ®(¢ + 1, s) and substituting s = 0 in Eq. 4.18 and

using the relation B;€+ D;€+ ¢; = 0 gives
®(i +1,0) = D\ (£~ Biya (i, 0)] (4.22)

Thus we can find ®'(i,0) recursively.

The value of ¥(0) = ¥52¢ #;(0)U5, where U = (—=D)~! Ay, is obtained
by substituting s = 0 in Eq. 4.16. The value of ¥(0)& = 1 — ©7=! #;€, since
Ué& = € due to the relation Ag€'+ D& = 0. The value of ¥(0)€ can also be
used, as mentioned in [12] to obtain an approximate value of ¥(0) by finite

summation.
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To obtain ¥'(0) we have to differentiate Eq. 4.16 and substitute s = 0

U'(s) = zyk+s(0)2[(sl - D)~ ‘Aul'—{(az - D)~ Ay)

i=0

[(sI — D)~ 1.4.,]”
v'(0) = —Zykﬁm)zu* =D)~ Uk

i=0

where U = (—D)~! Ay. Using the U€ = € relationship we obtain

oo k=1
- V(0)= kZ Yies(O) L U(-D)7'E - (4.29)

To obtain the value of —¥'(0)& from Eq. 4.23 we modify the method nsed
in [12] and [24]. We define a stochastic matrix U° of order S by deleting
the last row and column of our U matrix. We can obtain the values of vector
ud by using the relations which it should satisfy w0l = ud and ud& = 1. A

square matrix U can be constructed in the following way

(V)i = ul, for0<k<S, 05k <S~1

= D, for k' =S,

The following relation is satisfied owing to the property UU, = U,U = U,
k=1
N U I~-U+U)=1-U"+kU, (4.24)
r=0

Using this relation and the fact that (7 — U + U;)™? exists(see Appendix B

for Proof), Eq. 4.23 can be simplified to
v'(0)e = {Z Yk+s(0) - Z Yi+s(0)U*

+ Z kyiss(0)U2}(I = U + Up)™'(=D)™'&  (4.25)
k=1 »
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The value of —¥'(0)€ can be calculated by substituting the following values:

kf:)’lws(o) = Fs((I-R)™'-1)
=1
3 Ves(OUF = W(0) — 7
k=1 :
kf:k)'le(o) = &s((/ - R)™*R)
=1

The second relation is obtained from Eq. 4.16 by putting s = 0. This gives

us all the values required to solve Eq. 4.20.

4.6 Summary

Using the matrix geometric approach, we have developed a means of finding
the steady state joint probability of the number of customers and servers at
a queue and the mean waiting time for exponential vacation model. In the
second part we derive these two performance measures for vacation having

phase distribution.

Part 2: Phase Distribution Case

In this part we assume the probability distribution of vacation to be of
phase type. ‘The phase distribution is a generalization of Erlang’s method
of stages [15] and is well-suited for numerical computation[23]. Since it is

more general but still numerically solvable, it is preferred to the exponential



T"'
s

distribution. The advantage of using this distribution is more accurate mod-
Secondly, a large number of distributions are special types of phase distribu-
tions, for example an n-stage Erlangian distribution can be treated as an »
order phase distribution, similiarily a 1-stage exponential distribution can be
treated as a phase distribution of order 1, by properly choosing the values of
parameters required to describe a phase distribution. Thus from the results

of phase distribution we can derive results for other distributions as well.

4.7 Phase Distribution

A phase distribution of order m is described by an (m + 1) state Markov

T T°

Q=|
0 0

where the m x m matrix T satisfies T; < 0, for i < m and 20, fori #j.
The elements of T, T;;, give the rate of transition from phase i to phase j.
The column vector T° gives the rate of entering the absorption phase from
the different phases. Also T&+ T° = 0 since @ is an infinitesimal generator.
The initial probability vector of Q is given by (v, Vpu41) With vE+ vy = 1.
All the states 1,...,m are transient, so that the absorption into state m + 1
from any initial state is certain. In our model, this implies that the vacation

time is finite. The mean vacation time is given by # = ~»T-1¢&
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Phase 3

T2
T;1 T22

Figure 4.1: Phase Distribution of order 2

A phase distribution of order 2 is shown in Fig. 4.1 and describes the
vacations of our model. A server on vacation can move between phase 1 or 2.
Once it enters phase 3 (the absorbing phase), it returns to the queue and, if
no unserved customer is present, it will immediately take another vacation.
When a server leaves the queue (either upon service completion or if it arrives
at an empty queue) it will enter either phase 1 or 2 with probability v or
v, respectively. In our case the value of v3 = 0, since a server must take a

vacation when it leaves a queue.

4.8 Model Description

The model can be formulated as a continous time Markov chain. The possible
states are defined by (¢, j; k,1) where ¢ denotes the number of customers, j
denotes the number of servers at the queue, and k and ! denote the number of

servers in phase 1 and pha,se»2 of the vacation distribution respectively. These
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variables can take on the following values: 0 < i < o0 and 0 < j, k1 < 5,
such that j +k+1! = S. Being a multiple vacation model, the i = j condition
holds. Thus the valid states corresponding to ¢ £ S are

(],’\",l) = {(0; 0, S),(D, 1,5 -_ 1)‘((),2‘; - 2)““‘((); S‘Q);
(1;0,8 = 1),(1;1,5 = 2),...(1; 5 = 1,0);
(2;0’5 32)1(2!115 53),(235 EZ,())‘
(40,8 =), (431, =i =1),...,(&;5 = i,0)}.

For i > S, the valid states are the same as for the case of 2 = S.

As in Part 1 we can define the infinitesimal generator @) as follows:

vy
A} Al A}
A} A? A}
Ay A} A}
Q=
AF7Y AT AT
A5 A7 Ay
Ao Ar Ay

The matrix Q is stochastic and hence A}&+ Ai&+ A€ = 0 and Ay€'+ A&+
Aq€ = 0 are satisfied.
The meaning of A; submatrices is the same as in the previous part. The

superscript of the A;’s gives the number of customers in the queue hefore the



transition. The entries within the submatrices however, are matrices (B;’s
and FE’s), which are defined below. We define I; as the identity matrix of
dimension (S — j + 1) x (S — j +1). The matrix 0/; is a square matrix
whose elements are all zeros of the same dimension as /;. We define OIJ'-, as a
(S—j+1)x(S—7) matrix whose elements are all zero. The B; and E matrices
are used for the ease of representing the A submatrices and are referred to
as subsubmatrices. The superscript of these subsubmatrices give the number
of servers at the queue before transition. The positions of elements within
the subsubmatrices correspond to the number of servers in phase 1 and 2
of vacation. For example, if there are j servers serving the queue then the
rest of the S — j servers should be in one of the two phases. For S = 3,
the structure of the different matrices has been described at the end of the
section to make the explanation more clear.

B denotes the rate of entering one of the phases of vacation after service
completion by a server. Thus, the transition occurs from (z,j;k,1) — (¢ —
Lj— Lk, ) forj=1,...5.

Juve jun
B = '

Juve jun

The dimensions of the matrix B} are ($ - j + 1)x(S—j5+2).
B{ denotes the rate of transition of servers among the two phases and the

rate at which the number of servers and customers remains the same at the
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queue, where (i,j; k,1) = (i,7;k',0') for j = 0...5. Its contents are

(8 = j)Ty (S = j)Ta ]
Ti 2

B
I

W+ (S-j-1)Ty

Ty
(S =i)Te (S=J)Tw |

= (A+jw)i;

Bg denotes the rate of vacation termination of a server, thus (¢,j; k,[) —
(G,j+L;k,0),5=0,...,8~1.

[ (5 - j)1®

o (S-i-1T

(S-j-n1¢ T

(5 =)} |

B} denotes the rate of customer arrival, hence (i, j; k,{) — (i + 1, j; k, 1)
forj=0,...5.

The dimensions of Bj are (S —j +1) x (S —j + 1).
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E' denotes the rate of transition when there are servers on vacation but
there are no more customers to be served at the que. |, thus (¢,7;k,1) —
(i,j, k', ') for i = j = 0,...,8. In this case, a server, after completing its
vacation, checks the queue, finds it empty and then goes for another vacation

instantaneously.

[ (5- )15 v (8§ = §)Ton
TPva (§=i=1)T7wm+ TP

&
I

Tgﬂ 1541

(S=9)TPvy, (S—0)TPw

Next, we will define the submatrices of Q. A9 = BY 4+ E° and A} =
[ BY oI, ]

i gives the rate at which the server leaves and hence a customer leaves

after service completion. The value of A}, wherei =1,...5 is as follows:

ok .
B} oL
Ay = B?
07;
| B; |

The dimensions of the matrix Aj, are (‘i"fi)('ggﬁ“ﬂ X g(gsggi)_

The definition of A} is as follows. The off-diagonal matrices of A} give

the rate of server arrival to the queue and the diagonal matrices give the rate



at which the number of customers and the servers at the queue remains the
same though the number of servers in the two phases may change and are
obtained using the relationship Aje'+ Ai€'+ AL€ = 0. The value of Ai, where

t=1,...5 is as follows:

[ By BY
Bl B;
A} =
B!
i B + E' |
The dimensions of the matrix A} are ("“mzs“—i) X g+|)(22s+z-.').

The matrix A} gives the rate of arrival of a customer. The value of Aj,

wheret = 1,...5 — 1 is as follows:

B:’; 0r; ]

(i41)(2542~i) _ (i42)(25+1=i)
2 x ) .

The dimensions of the matrix A} are
When the number of customers at a queue exceeds S, the matrices Aj,

A} and A} correspond to Ay, A; and A; and are defined as follows:

0l
B} ol
Ao = Bg 012

BS 0ls
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By By
B B
Ay = ’
By B!
BY
- B .
Bl
Ay = 3
Bs |
The dimensions of Ao, A; and A, are LS’FD;;SEFQ) X @ﬂgsﬂ)i
An Example
For S = 3 the contents of Q are
[ A9 A2
A) Al A}
oo AL A2 A2
| AR AY A,
Ao A1 A

We define the submatrices A}, A! and A} to explain the contents of @ in a
clear way. From the above explanation we know that
0l

A=’
B} |




This can be expanded to the following form:

r .

0 0 0 0
0 0 0 0
0 0 0 0
A=l 0 o o o
nya py 0 0
0 pvy py 0
| 0 0 pyvy pin |

The rows of A} corresponds to states (j; k, 1) =(0;0,3), (0;1,2), (0;2,1), (0;3,0),
(1;0,2), (1;1,1) and (1;2,0). The columns correspond to (0;0,3), (0;1,2), (0;2,1)

and (0;3,0). The terms uv; and pv, gives the rate of departure of the server

from a queue and then of entering phase 1 or 2 of the vacation respectively.

The submatrix A} is

Al = BY BY
of, B!+ E
This is equivalent to:
[ 3Ty, 3Ty 0 0 3TY 0
Ty Tu+2T 2Ty 0 T? 27%
0 2Ty, 2T + T2 Ty 0 27y
0 0 3T, 3Th 0 0
0 0 0 0 2Ty + 2T, 2Ty + 2T,
0 0 0 ] T+ TPve  Ti + Tag + Tve + TPy
| o 0 0 0 0 2T} + 2TV,
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0
0
¥
377
0
Ty + T3y
2T + TP |




The rows and columns of A} correspond to (0;0,3), (0;1,2), (0;2,1), (0;3,0),
(1;0,2), (1;1,1) and (1;2,0) states.

B3
A} = 3 ,
B} on

This is equivalent to

A 0 000000 O]
0 A00000O0GOO
0 0A0O0GOT OO OO
00 0AXAO0OTO0O 0O
0 000AXAOTO OO
00000 AXNGOT OO
(0000000 X0 0]

The rows of A} correspond to (0;0,3), (0;1,2), (0;2,1), (0;3,0), (1;0,2), (1;1,1)
and (1;2,0). The columns correspond to (0;0,3), (0;1,2), (0;2,1), (0;3,0),
(1;0,2), (1;1,1), (1;2,0), (2;0,1), and (2;1,0).

G4

A0DO0O0 0 0
0A00 O 0
00 A0 0 0
-{0 00X o0 0
0000 Atp 0
0000 0 Atp
0000 o 0

+ o o o = =




65

Similarly all other submatrices of Q can be expanded. From the above

matrices it is easy to see that the relation A}&+ A}&+ AL = 0 is satisfied.

4.8.1 Stability Condition

As the infinitesimal generator @ has been defined completely, we now derive

the condition for the system to reach steady state. To do this we define

matrix A = Ag+ Ay + A;. A can be written as
BY+ BY  Bj

By B} + By B

A=
B
B By + Bj |

The stationary probability vector IT = (7, T, ... 7Ts) of A can be obtained
using the IIA = 0 relationship and the normalizing relationship, &, 7;¢; = 1,
where the vector €] is a column vector of 1's of size (S —j + 1).

Using the stability condition, that is IIA;€ < ITA(E (see Appendix C),
we can verify that for the equiiibrium and also for @ to be positive recurrent,

the following equation should be satisfied.

i< (4.26)
g

The above relation means that the sum of mean vacation time and service
time divided by S (equivalent to mean server availability) should be less than

the mean interarrival time for the system to achieve steady state.



4.8.2 Steady State Probabilities

To derive the steady state joint probabilities of {, we first calculate the rate
matrix R. The method used in the previous model to calculate the value of
R can be used here as well.
vector, &; =(Z 0,81, .. 1Fimin(s,)), Where & ; =(2(iji0,5-3)) T(i,ji1,5=j=1)s ++
Z(i,j;:8-4,0)) T(ij:kg) denotes the probability of ¢ customers, j servers present
at the queue and k and [ servers present in phase 1 and 2 of the vacation
distribution respectively. The value of Zi, where k > S can be obtained by
the relation ) = FgRF-S.

The boundary probabilities, that is (Zo, Z1,...,Zs) can be obtained from
Eq. 4.12 and 4.13. In this case each value of r will give S — r 4 1 equations.
Using the normalizing equation, that is, Eq. 4.11 we will have the required

number of equations to obtain the value of Z's.
4.8.3 Mean and the second moment of the number of

customers

The mean and the second moment of the number of customers can be be
obtained from Equations 4.14 and 4.15, respectively.
4.9 Waiting Time Analysis

The method of solving the mean waiting time is the same as that used in the

previous model, except that the infinitesimal rate matrix for this CTMC is
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different.
We define the transition rate matrix for this CTMC as Q. lts contents

are as follows;

[
* 0 0
0 g Do
1 an kK D
2 g2 F, D,
Q2= :
S—=1 | gs1 Fs-1 Ds_
S gs Fs D
S+1 Ao D
542 Ay D

gi is a column vector of size %ﬂ:ﬂ and is given by

Os41
0s

Os—i+1
(5~ )13
+(S-i-1)717

g

(5 - ¢




where 0; is a column vector of size ¢ with all elements equal to 0. ¢; gives
the rate at which the tagged customer enters the absorbing state. This only
equal to the number of servers at the queue and then a server arrives after
completing its vacation,

The matrix D; = A} — diag(0541;0s;. . . 0i415(S—=1)TL, Ty +(S—i—1)T2,...
(S = 7)TY), where 0i is a sequence of k 0s. It gives the rate at which the
number of servers increases and the rate at which the customers ahead of
tagged customer remain same. The matrix A is the same as A} but without
the \’s and E*. It gives the rate at which the customers ahead of the tagged
customer [eave the queue. The reason for not requiring ) is explained in the
previous model. E' is also not included because the analysis is done by using
a tagged customer hence, at the server arrival instant, when the number of
customers are equal to the number of servers, it will find the tagged customer

and will not take another vacation instantaneously.

(5+1)(5+2) (5+1)(5+2)
2 b4 o

here I is an identity matrix of dimensions
A technique and argument similar to that used in the previous model will

give us the value of mean waiting time.
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4.10 Summary

In this part we have analyzed a model in which the vacation time of the
servers follows a more generalized distribution compared to the exponential
model which was discussed in Part 1. We are able to calculate the value of
steady state joint probability and the mean waiting time using algorithms

for this model.

4.11 Conclusion

In this chapter we have done the analysis of our model using the Matrix Ge-
ometric Method. In the first part, the vacation time is assumed to follow an
exponential distribution and in the second we assumed a phase distribution.
The method of calculating the steady state probabilities, mean and second
moment of queue length and the mean waiting time are presented.

In the next chapter we present and analyse the results obtained from

following these algorithms.



Chapter 5

Numerical Results and Their

Analysis

In this chapter we present the results obtained for our model using the tech-
niques described in Chapter 3 and 4. In the first section we discuss the effect
of different parameters ), 1 and 8 on the mean queue length; in the second
section we discuss the effect on the waiting time. In the third section we
study the effect of the different parameters at constant load on both per-
formance measures. In the fourth section the results of the case in which

vacation follows phase distribution are presented and analyzed.

5.1 Mean Queue Length

In Chapter 3, using the Balance Equation Method we derived the queue

length for 5 < 4 for exponential vacation time.
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) (Balance) (Matrix Geometric)
2|1 1 | 1.2 8909090913 8.908472
2.5 .5 .56 16.41269842 16.408384
213 .3 .35 10.41025641 10.407523
31.56].251¢1 1 5.299186077 5, 298858
3(.61.25[] .6 14.66924628 14.666427
3|1 2,262961
32| 12.332067

Table 5.1: Comparison of Mean Queue Length obtained from Balance lqua-
tion and Matrix Geometric Methods

In Table 5.1, we give the mean queue length obtained from the Balance
Equation and the Matrix Geometric Method for different values of A, g and
6. This table provides a check of the correctness of the implementation of the
two methods. As is shown in the table, the results by the Balance Equation
and Matrix Geometric Methods for S = 2 and S = 3 are the same.

As derived in Chapter 3 (see Appendix A) and Chapter 4, the stability
condition for our model is

1 1
>=*(=4

S u )

B |
||

the mean server availability. This is similiar to an M/M/1 queue where the
server is always present to serve the queue and so the stability condition is
3> i— and we define the load as p = %({ 1). Using the same definition we

define the load per server for our model as p = 4 * (L + ).
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Figure 5.2: Mean Queue Length vs A ( S =8, u =4)

5.1.1 Effect of A on Queue Length

Fig. 5.2 gives the change in queue length as A is changed. As expected,
an increase in arrival rate of customers causes an increase in queue length.
When the average load ner server, that is p, approaches 1, the queue length
increases in an unbounded fashion since at this high load the servers are
unable to cope with the arrival rate of customers. The value of A when the
queue length starts increasing in an unbounded fashion is larger for higher
values of . This can be understood mathematically from the definition of
the load per server. The analytical explanation is as follows. For higher
values of 8, that is for low mean vacation time, the arrival rate of the system
can be higher since the mean time between server availabilty is small. We

observe the same effect for different values of u.
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Figure 5.3: Mean Queue Length vs p (S =8, A = 1)

5.1.2 Effect of 1 on Queue Length

When the service rate, u, increases, the mean service time decreases and
hence, the queue length decreases. With the increase in p the customers are
served faster, and therefore, leave the queue faster. This is shown in Figs. 5.3
and 5.4. When the arrival rate is low (Fig. 5.3), the number of customers at
the queue beyond the point of high load are fewer than in the high arrival
rate case (Fig. 5.4). Hence, an increase in service rate and vacation rate
does not have much effect on the queue length and the lines for different
values of @ are therefore close together. At high arrival rate, the number
of customers are greater and the probability that servers are busy is more.
Thus increasing the vacation or service rate has an appreciable effect which

is clear from Fig. 5.4. Table 5.2 shows that at low load, the servers are free
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compared to the high load case and hence the increase in service or vacation

rate should obviously have more effect at high load.

Number of Busy | 1) | Probability() = 8)
Servers (0=20=15,p=.15) | (0=35,0 =15,p = .95)

0 604733 070634
.305785 .216804
.075870 299828
012129 241099
.001368 122407
.000110 .040009

.000005 .008202

[

L IR

6
7 .000000 .000964
8 .000051

Table 5.2: Probability of Busy Servers for S=8, at p = .15 and p = .95

5.1.3 Effect of § on Queue Length
The effect of 8 on queue length is similar to that of y. This is clear from
Figs. 5.5 and 5.6. The reason for this behaviour is similar to that given in the
previous section, that is, when 0 is higher, vacation times are shorter making

the server availability greater.

5.2 Mean Waiting Time

time for exponential vacation times.
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Figure 5.5: Mean Queue Length vs 8 (S =8, A =1)
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5.2.1 Effect of A on Waiting Time

increases. As p — 1, the waiting time increases in an unbounded fashion.
Higher A means the rate of customer arrival is greater and hence an arriving
customer sees on average more customers in the queue (see Fig. 5.2) and thus
must wait for more time before receiving service. As shown in the figure, for
higher values of § we can accommodate a higher arrival rate without an
increase in waiting time. The same behaviour occurs for higher values of p
which is not shown here. The reason is that for higher 6 or u, the mean server
availability increases and thus reduces the time for which the customers must

wait.
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Figure 5.9: Mean Waiting Time vs § (S =5, A = 2)

5.2.2 Effect of § on Mean Waiting Time

When the vacation rate () increases the server is available more often for
service, hence, the waiting time decreases. As shown in Figs. 5.8 and 5.9 the
effect of 0 on waiting time is similar to its effect on queue length (shown in
Figs. 5.5 and 5.6). The reason is that when we keep A, 1 and S the same the
customers in the queue are served faster due to increased server availability.

The effect of increasing 1 has not been included here but is similar to 4.

5.3 Analysis at Constant Load

In this section we study the effect of increasing the number of servers on the

mean queue length and mean waiting time when the load is kept constant.
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Figure 5.10: Mean Queue Length vs S (1 = 2, 0 = 2.5)

5.3.1 Effect of S on Queue Length

In Fig. 5.10 we plot queue length against the number of servers at different
loads. To keep the load constant for one particular curve we change the value
of A with §. The figure shows that, at constant load, when we increase 5
and A, there is a slight increase in queue length. This is due to the increase
in the arrival rate of customers which increases the number of customers,
Though the number of servers are increased proportionally, the servers still
must take vacations and do not serve the queue all the time. Therefore the
arrival rate has more effect than the increase of servers on queue length,

In Figs. 5.11 and 5.12 we plot the queue length against S and keep the
load the same by changing the vacation rate and service rate, respectively,

We see that the increase in service time causes the queue length to rise for
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This is because the queue length depends more on how fast the customers
are serviced than on how fast the server comes to the queue. The customers
currently being served are included in this queue length, hence, it is important
to remove these from the system to reduce queue length.

As shown in Figs. 5.11 and 5.12 the mean queue length decreases ard
then increases again. This occurs for cases where the initial value (in this
case, at S = 1) of @ (or ) is very high compared to u (or 8). In Fig. 5.11 the
value of 6 at S =1 when A = .868 is 10 and when A = .633,0=2at S =1.
Thus the ratio of # and u is 10 and 2 respectively at S = 1. Choosing a high
value of @ results in higher A (.868 in this case), which a single server is not

able to handle. This is reflected by the larger mean queue length at S = 1
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Figure 5.12: Mean Queue Length vs S, varying it (p = .95, 0 = 1)

when A is high. On increasing the number of servers to 2, the value of queune
length decreases. It increases aga’ . because of the increase in vacation time.
The similiar argument applies to Fig. 5.12 to explain the decrease and

then increase in mean queue length.

5.3.2 Effect of S on Waiting Time

In Fig. 5.13 we plot the inean waiting time against S where X is varied
to keep the load constant at .9 and .5. We find that with the increase in the
number of servers the mean waiting time reduces considerably. This change
is due to the increase in the number of servers which are able to serve the
queve better even though there is a slight increase in queue length due to

increased arrival rate (Fig. 5.10). The waiting time also becomes relatively
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we increase S further there is no decrease in the waiting time.

In Figs. 5.14 and 5.15 we plot the waiting time against S for loads of
.9 and .5 respectively. We notice that with an increase in service time the
mean waiting time decreases and with an increase in vacation time the mean
waiting time increases. The waiting time does not include the service time of
the customer and hence the effect of increasing u is not as great as the effect
of increasing 0. Due to the increase in the number of servers, the waiting
time decreases initially and then becomes constant. The decrease is due to
the increase in number of servers. When we vary 6, we see that there is a
sharp rise, this initial rise is because there is a large change in the value of 4
from $ =1to § = 2 case (§ = 20 when S = 1,0 = 2.8571 when S = 2 and
) = 1.5385 when S = 3).
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Figure 5.14: Mean Waiting Time vs 8 (p= .9, A = 3)

The vacation time has more effect on the waiting time than g has this

is clear from the Figs 5.14 and 5.15. This is because the customer has to

Hence the waiting depends more on how fast the server arrives at the queune

from vacation.

5.4 Phase Distribution Results

In this section we present results of the case in which the vacation time
follows a phase distribution. The effect of A, ;2 and # are similar to the case
when vacation follows an exponential distribution. The stability condition
for the case of phase distribution is the same as that for exponential vacation

time and hence the definition of load per server remains the same.,
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The steady state vector X satisfies
o= S RR=S ar kS § ¢
7 = rsR fork> S (C.9)

This relation is referred to as Modified Matrix Geometric. The initial S+ 1
components of the steady state probability vector x, (#0,43,...,2s) can be
derived by solving the S + 1 linear equations obtained from xQ and the

norializing equation:

&+as(l-R)"'=1 (C.10)

_
™M
g b

I
(=1

The other F’s can be found by using the relation C.9.



6
5
4
Mean
waiting 3
Time
25
20
Mean 15
Queue
Length 10
5
0

Figure 5.16: Mean Queue Length vs A (S = 4, p = 4, Phase Distribution)
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Figure 5.17: Mean Waiting Time vs A (S = 4, u = 4, Phase Distribution)

As shown in Fig. 5.16 the queue length increases as )\ increases in the
same way as for the exponential case in Fig. 5.2. Also, in Fig. 5.17 the
waiting time increases as expected, similar to Fig. 5.7.

In Table 5.3 we list the queue length and mean waiting time for the same
mean vacation time but different phase distribution parameters. Two cases
are considered. In the first Tj; = .2 and T3, = .1 and in the second T3 = .1
and Ty, = .2. The values of Ty;, Tz, are changed to produce the mean
vacation times (9) of the table for each case. We assume values of v, and 1,
to be .5 in all the cases.

For mean queue length, the results are similar given the same mean va-
cation time. However, for waiting time, even with the same mean vacation

time, the results differ (particularly at higher loads). This shows that higher
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moments, which can be obtained from v = —vT "€, have some effect on

waiting time and not so much on queue length.

ﬁg T, =.2,T5 =.1 Ty, = 1,15 = .2
Queue Length | Waiting Time | Queue Length | Waiting Time

.08 6.322659 43.824955 6.342331 25.317085

A 3.194856 11.936825 3.199655 9.367373
.16 1.844811 3.335114 1.846804 3.3256833

2 1.572331 2.232178 1.572999 2.076606
44 1.216201 .801337 1.215032 793002
.53 1.174503 675197 1.179302 683038

Table 5.3: Comparison of Mean Queue Length and Mean Waiting Time at
the same first but different higher moments of vacation time(A = .2, 1 = .2)

5.5 Conclusions

In this chapter we have presented the numerical results obtained for our
model. The reasons for getting these results are also analyzed. Here are
some of the observations which we feel are pertinent to our model.

In the 1-limited service queues, the servers have to take a vacation after
serving one customer. Due to this reason we notice that on increasing the
number of servers and the arrival rate to keep the load the same, we get
a slight increase in the queue length. We were expecting that in such a
situation the queue size should reduce since more servers should be able to
handle the system in a better way at the same load.

The waiting time is influenced more by 6 than by p since the customer

36



waiting for service must wait for a new server to arrive after vacation comple-
tion, and the servers at the queue for vacation after serving their respective
customers. The queue length is influenced more by p than the waiting time,

since, the queue length includes customers which are being serviced.



Chapter 6
Summary and Future Work

6.1 Summary

The steady state analysis of the M/M/S/Vp queue with 1-limited service is
done in this thesis. Two types of distributions are assumed for the vacation
time: exponential and phase distribution of order 2. This queue has not been
studied before and has applications in communication networks.

Two techniques are used to study this model. From the Balance Equation
method we are able to derive explicit equations for mean queue length when
S < 4, and the vacation time is exponentially distributed. The other tech-
nique, Matrix Geometric, gives us the mean and second moment of queue
length and the mean waiting time for both exponential as well as phase
distributed vacation times. These performance measures are found algorith-
mically. As shown in Chapter 5, the balance equation method is used to

verify the implementation of the matrix geometric method.
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From the study, we make the foHowing import snt conclusions about this

type of queue:

!’u.,ﬂ:

The mean queue length is dep:-l+1  more on service rate than on

vacation rate.

For mean waiting time, the vacation rate is more important than service

rate.

By increasing the number of servers and the arrival rate to keep the
load the same, we get a slight increase in the queue length. But in the

same situation the waiting time decreases.

As expected, increasing A results in increased mean queue length and
mean waiting time; while increasing u or @ results in decrease.

When vacation time is phase distributed the results are similiar to that
of the exponential case. However, there are some differences in mean
waiting time for the same mean vacation time when higher moments
differ. The queue length does not vary much for the same mean vacation

time.

6.2 Future Work

There are two possible directions in which the future work can be conducted.

One may look into improving the efficiency of the algorithms and also into

using these queues to model communication network applications.
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6.2.1 Improve Algorithm Efficiency

The algorithms used in the Matrix Geometric technique to calculate the
steady state probability, mean queue length and mean waiting time may
be made more efficient if the structural properties of the matrices can be
exploited.

In [12], the authors were able to exploit the structure of their matrices

(see Chapter 4) but the tridiagonal nature of our matrices make the task
difficult. This needs to be investigated further.

This is particularly true in the phase distribution case, as is clear from the
representation of Ag’s, A;’s and Aj,’s that have elements which are matrices.
We would like to find a way of solving the different performance measures
without expanding these matrices and thus deal with smaller dimension ma-

trices.

6.2.2 Applications of these Queues

Single server cyclic queues have been studied using M/G/1 vacation queues.
Similarly we can do the study of multiple server cyclic queues with 1-limited
service by using the M/M/S/Vjs 1-limited queue discussed in this thesis.
These cyclic queues arise in many communication networks: multiple token
ring, multislotted networks, mutliple server polling systems (see Chapter 1).

We now give a brief description of how cyclic queues can be modelled as a
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Figure 6.18: Cyclic Queue with N Stations and 3 Servers

vacation queue. In cyclic queues there are N queues which are served in
cyclic order by different servers (Fig. 6.18). The time it takes for the server
to move from queue i to queue i+ 1 is the switch over time. To analyze these
cyclic queues as a single vacation queue we look at the performance measures
at a tagged queue. If we can find the time it takes for a server to move to
other queues and serve them and finally return to the tagged queue then we
can find the mean waiting time and queue length at the tagged queue. But
this is not a simple problem, particularly in the case of multiple servers. We
consider the time between visits of the server to the tagged queue as the
vacation time of the server. This includes the time it serves other queues
and the walking time of the server. Here we state a simple and approximate

algorithm of finding the vacation time for a symmetric system.
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model each of the these queues using an M/M/S/Vj queuc
Let s(x) be the probability density function (pdf) of time spent at a
queue. Hence s(z) = the probability that there is a customer waiting«b(xr),

where b(z) is the pdf cf service time. The vacation time can be obtained as:
v=1tn+82+wy+sat+...4+ 1wy

where w; is the walking time from queue i to queue ¢ + | and s; is the time
spent at queue i. Assuming w;’s and s;’s to be independent and identical we
can write the mean vacation time o as

—N*W'F(NE—I)*Z(])', == Pi,i)*z (()1)

i=0

o]
I

where W is the mean walking time and b is service time. # is the sum of two
terms, the first term gives the total walking time and the second gives the
total time spent at the other N — 1 queues.

We can solve for  and use it to get modified values of p_; and p;; to use
in the next iteration. We must iterate until the value of % converges.

The above approximation assumes an exponential distribution and, hence,
we have just used the first moments that is, the means, to find vacation rate,
6. (Eq. 6.1). In the phase distribution we will use the higher moments to
define the parameters of the phase distributed vacation and thus we can

model the vacation time more accurately.



6.3 Conclusions

We have found a method of finding the steady state joint probability of
queue length and busy servers, the mean and the second moment of queue
length and mean waiting time for the M/M/S/Vas 1-limited model. From
these results we have found that for applications which can be modelled as
1-limited service models, the service rate should be kept high if it is required
to have smaller queue lengths. But if the emphasis is on having a smaller
waiting time then the vacation rate should be high.

The vacation time can be modelled more effectively by phase distribution
since there are more parameters describing it. These parameters do make a
difference in performance particularly in the waiting time case. Thus it is
our belief that by assuming phase distribution for the vacation time, cyclic

queues can be analyzed in a better way.
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Appendix A
The Roots of |A(z)]

The fundamental mathematical theorm used for finding the roots is as fol-

lows:

If f is continous on [a,b] and f(a) < 0 < f(b), then there is some
z in [a,b] such that f(z) = 0[27].

The proof uses the technique of [21] but is more complex since the method
must be divided into even and odd cases.

Let Mi(2) = fi(2) + hi(2) = 2{A\(1 — z) + kp + (S — k)8}, where fi(z) =
Az(1 = z) + kpz and hy(2) = (S — k)0z.

Let

Qﬂ(g) = 1
Ql(g) = iMa(E)
Qa(z) = i Ms_1(2) =Sp

Wy

~hs-1(z) Ms(z)
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M](Z) —2[1
~h(z
Qs(z) = % 1(2)
—Su
—0z Ms(z)
Mo(z) —p
-h
(1-Qsu() = =|
z -Su
—02 Ms(z)

where the value of () is the number of roots of |A(z)| at z = 0 and will be
determined later. We can write |A(2)| = (1 — 2)2*Qs41(2).

We can write @;(z) in the form of polynomials as follows:

Qolz) = 1 (A1)
Quia(s) = [Ms-at4a(s)?* Quece(2) -

(S — 2k + 3)(2k — 2)0uz* Qz1-3(2)) (A.2)

Quu(z) = zl—k[Ms-zk+1(z)sz2k—1(z) ~ (S — 2k + 2)(2k — 1)0p2*Qar-2(2)]

where k = 1,2,... | £] (A.3)

(1=-2)Qsp(2) = z;‘“ [Mo(z)z’ngs(z) - Seuz‘}"'le_l(z)] where S is even (A.4)

Qs(e) = —ggrlMh(2)s*F Qama(s) — 28 — Vs FQsa(2)]
where S is odd (A.5)
(1 - 2)Qss1(2) = ?%_T[Mo(z)z%"’Qs(z) — S0uz$*Qs1(2)] where S is odd(A.6)
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A.1 Proof of Polynomials

For the first few values of & we can show that the equations are correct by
direct calculation. Now using induction we can prove the rest.
Let A;(z) be the determinant of the matrix formed by taking the ¢ rows
and i columns from the bottom right corner of A(z).
We assume that for i = 2k — 1 and i = 2k the equations are correct, that
is,
Qa-1(2) = ;_kA;?k—I(E)

1 [ f e ¥
j[Msak..sg(s)sLngkgg(g) -

(S — 2k + 3)(2k = 2)0uz"Qak-3(2)] (A.7)
Quiz) = —Au(2)
= ;—E[Ms—zkﬂ(g)skf?zkel(z)—
(S — 2k + 2)(2k — 1)82* Qpal(2)] (A.8)

We can write the value of determinant Aj(g41)-1 from the corresponding
matrix as follows
Agki1)-1(2) = Ms_ar(2)Aa(2) = (S = 2k + 1)hs-2i(2)Azk-1(2)  (A.9)
Using A.7 and A.8 we get the following:
Ag(ks1)-1(2) = 2 [No-2k(2)Qak(2) = (S — 2k + 1)2k04uQ2k-1(2)]  (A.10)
In the above equation, Ns_gx(2z) = 2= Ms_2:(2). Dividing the above equa-
tion by zFt! we get:

) 1 -
Qapa)-1(2) = g7 Aaean)-1(2)
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= arIMs-an(2)2*Quu(z) -

(S = 2k + 1)2k0p2F Qa1 (2)) (A.11)

as required.

Similarily we can prove the ¢ = 2(k + 1) case.

A.2 Properties of Q;(z)

From the Q;(z) relationships we can obtain the following properties:

1. Qi(2) and Qi41(2), i=1,...,5 do not have any joint roots in (0,00). H
we assume that this statement is false then using A.2 and A.3, the

equation A.1 can be proved false.

2. Qi-1(z0) is opposite in sign to Qit1(20) if Qi(20) = 0. If Qs(z0) = 0
then Qs41(20) and Qs-1(20) are opposite in sign when 20 < 1 and

similiarly if zo > 1. This follows directly from the relationships.

3. Qi(1)>0,i=1,2,...,5.
Rs+1(1) = gi5lA(2) =1 = =S (p + 0)51[Sub ~ A(u + )] < 0.
Remark: For the system to reach steady state [Suf — A(u + 6)] > 0.
This is also verified using the Matrix Geometric Method (Chapter 4).

4. Sign[Qo(0)] = +ve
Sign[Q2x-1(0)]=(—1)¥"1 and Sign[Q:(0)]=(=1)%, k = 1,2,...,|5].
This property can be proved by induction. Using the equation A.4
we can verify that Sign[Qs41(0)]=Sign[Qs(0)] if S is even and using
A.6 we can show that Sign[Qs,.1(0)]=-Sign[@s(0)] if S is odd.
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5. Sign[Qs41(00)] = (—1)° since the largest term is Q;f

A.3 Location of Roots of |A(z)|

Q1(z) is of degree 1 and should have 1 root only. Since @(0) > 0, @(1) > 0
and @1(o0) < 0, using properties (4), (3) and (5), it implies that the root is
between 1 and co. Let the root be z ;.

Q2(2z) has degree 3 and should have 3 roots. @2(0) < 0, @2(1) > 0,
@2(21,1) < 0, @(00) > 0, using properties (4), (3), (2) and (5). Thus each
of the intervals, that is (0,1), (1,21,1) and (2,1,00), has a root. Let the roots
be 2331 < 222 < 223.

Q3(z) has degree 4 and should have 4 roots. Q3(0) < 0, @3(z21) < 0,
@s(1) > 0, @3(222) < 0, Qs(z23) > 0, Qa(c0) < 0. Except for the first
interval, the rest of the intervals have a root each. Thus there is one root
between 0 and 1 and 3 roots between 1 and co. Let the roots be 23, < 232 <
233 < Z34.

@4(z) has degree 6 and should have 6 roots. Q4(0) > 0, Qq4(23,;) < 0,
Q4(1) > 0, Q4(232) <0, Qa(z33) > 0, Qu(234) < 0, Q4(0c0) > 0. This shows
that there is a root in each of the intervals. Thus there are 2 roots between
0 and 1 and 4 roots between 1 and oo.

Let us assume that the above pattern is true for Qar—1(2) and Qak(2)
which implies that Qax-1(2) is of degree 2(2k — 1) — k =3k = 2, has k — 1
roots between 0 and 1 and the rest 2k — 1 roots between 1 and oco. Q3x(2) is
of degree 4k — k = 3k and has k roots between 0 and 1 and the rest 2k roots

between 1 and oco.
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From Qgi(z) we know that there are (k + 1) intervals in 0 and 1, i.e.
(0,22k,1), (22K, 22k,2)5: - - (22k,k,1). To show that there are k roots of Q2(k+1)-1(2)
we show that there is no root in the first interval.

From (4) Sign[Qa(k+1)-1(0)]=-Sign[Q2x-1(0)]. Since zyx,1 < 2251, from
the induction assumption i.e. there is a root in each interval for Qa:(2), this
implies that Sign[Qzk~1(22k,1)] = Sign[Q2x—1(0)], from (2) Sign[Qa(k+1)~1(224,1)]
= -Sign[Qzk-1(22k,1)]. Hence Sign[Qak41)-1(0)] = Sign[Qa(zk41)-1(22,1)] this
implies that there is no root of @(x41)-1(2) in the first interval. The k roots
between 0 and 1 are there in the k other intervals. From Q4x(2) we know that
there are (2k+1) intervals between 1 and oo i.e. (1, Zak k41)) (228,041, Z2k,k42),
.+ (22k,3k, 00). The 2(k + 1) — 1 roots which should exist between 1 and oo
are one in each interval.

In a similiar way we can prove that Qs(x+1)(2) has (k + 1) roots between

0 and 1 and (2k + 2) roots between 1 and oco.

A.3.1 The S+41 case: S Even

From induction we know that Qg(z) has % roots between 0 and 1 and S

roots between 1 and co. We now show that there are no roots in the interval
(0,251) and (z4,5,1).

From (4) we know that Sign[Qs.41(0)] = -Sign[@s-1(0)], from (2) we know
that Sign[Qs+1(2s,1)] = -Sign[Qs-1(2s,1)], from the induction assumption we
know that Sign[@s-1(2s1)] = Sign[Q@s-1(0)] since z5; < zs-1,1. All these
relations imply that Sign[Q@s4+1(0)] = Sign[@s41(2s,], thus there is no root

in this interval.
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From (3) we know that Sign[Qs41(1)] = -Sign[Q@s-1(1)] and from (2) we
know that Sign[Qs41(z45)] = =Sign[Qg,1(:S'gg)], Sigﬂ[Qsan(-‘-‘Sig)] = Sign
[@s-1(1)] since 255 > 255 g, All this implies that Sign[Qss(1)] =
Sign[QgiH(gsig)] and hence there is no root in the interval (25,8 1). Thus of
the % roots of Qs41(z), & — 1 roots are between 0 and 1 and S + 1 roots are
in each of the S + 1 intervals in the 1 and oo range.

We are able to locate all 2(S + 1) roots of |A(z)|. It has £ + | roots at
z=0, % — 1 roots between 0 and 1, 1 root at z =1 and the remaining S + |

between 1 and oco.

A.3.2 S+41 Case: S Odd

From induction we know that Qg(z) has %l — 1 roots between 0 and 1 and
S roots between 1 and co. We now show that there is no root in the interval
(25,851, 1).

We will first show that the first interval i.e. (0, zs,1) has a root. Sign[Qs41(0)]
= -Sign[Qs-1(0)] from property 4. Sign[Q@s_1(2s,1)] = -Sign[@s-1(0)] because
Zg—1,1 < 2s,1, from induction we know that there is no root of Qs(z) between
0 and 25.,, since S is odd. Sign[Qs41(zs,1)] = -Sign[Q@s-1(zs,1)], property
2. All these relations imply that Sign[@s41(0)] = -Sign[Q@s41(2s,1)]. Hence
there is a root between interval (0, zs,).

There is no root in the interval (25 gz1,1). This can be proved in a similiar
way as for S even. Thus of the 22t roots of Qs.1(2), £ roots are between
0 and 1, and the remaining S 4 1 roots are in each of the S 4 1 intervals

between 1 and oco.
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|A(z)| has i‘,f—'— roots at z = 0, %i roots between 0 and 1, 1 root at 2 =1

and S + 1 roots between 1 and oo. Thus we are able to locate all the roots

of |A(2)]-



Appendix B
Proof That (I - U + Uy)~1 Exists

For (I — (U — U,))~! to exist (U — U;)" as n — oo should equal 0 (Theorm
1.11.1 in [14]). (U =U3)* = U™ = U, due to UU; = U, and U;U; = U,. Now
we have to prove that U™ = U; as n — oo.

If we consider only U° part of U matrix then from Theorm 4.1.3, 4.1.4
and 4.1.6 in [14]

Uy Uz ... Ug

(U)o = Uy =

“y Uz ... MNg

Now if we consider U as a whole then due to the structure of the matrix

Wy Uz ... Ug

Uﬂ

=00

0,
u; uz ... ug 0
0
0

Uy Uz ... Ug
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The zeros in the last column of the above matrix are due to zeros in the last
column of I/. Due to 1 in the last row of U we get the same elements in the
last row as in the other S rows. The intermediate results of the last row does

not have any effect due to zero in the last column of U.



Appendix C

Review of Matrix Geometric

Method

In this appendix we present the properties of the matrix geometric solutions

and related definitions used in the matrix geometric approach.

The Continuous Time Markov Chain (CTMC) of GI/M/1 type called

quasi-birth and death processes have a transition rate matrix Q as follows:

O

where B’s and A’s are matrices.

[ B, 4,
Bi A A
Ao Ay
Ao

Since the matrix @ is an infinitesimal generator, the following relation is
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satisfied:
Bo€+ A€ = Bi&+ AjE+ A€ = (Ao + A1 + Ag)E= 0

where 0 is a column vector with all its elements equal to zero.

These CTMC of GI/M/1 type satisfy the following relation:

7% = ZoRF, fork>0

109

(C.2)

where R is the nonnegative solution to a matrix-quadratic equation[6], see

Eq. C.3. The steady state probability vector x=[#0,%},%3,. . .] of Q, is referred

to as a matrix-geometric vector and the above relation C.2 is referred to as

matrix geometric. Since x is a probability vector hence Y2, ;€ = 1.

We now present the Theorem 3.1.1 of [23]. This theorem has been used

extensively in the analysis of our model.

Theorm 3.1.1. The process Q is positive recurrent if and only

if the minimal nonnegative solution R to the matrix quadratic

equation
R2A0 + RA] + Az =0

(C.3)

has all its eigenvalues inside the unit disk, that is sp(R) < 1 and

the finite system of equations

#5(Bo+ RBy) = 0
Gl - R8¢ = 1

has a unique positive solution .

(C.4)
(C.5)
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If matrix A = Ag + Ay + A; is irreducible, then sp(R) < 1 if and
only if
TA€ < A (C.6)
where 7 is the stationary probability vector of A, The above
inequality is also referred to as the stability condition of Q.

The stationary probability vector x=[a%,41,...] of Q is given by

&; = To R’ 120 (C.7)
The equalities
RAwE~ A& = RB,& — Bye¢ =0 (C.8)

hold.

The transition rate matrix Q in certain complicated CTMCs is of type

vy ;
A Al A
A AP A
A3 A3 A3
Q=
AT AT AT
A5 A A
Ay Ay A

In this case the matrices in the first S + 1 rows are all unique and after that

the matrices in all the rows are same as in the previous CTMC.



