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Abstract

Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously
over the entire exposure period to chemicals. In RTCA system, chemicals with different concen-
trations are applied and time-dependent concentration response curves (TCRCs) are generated. In
this thesis, we aim to study the mode of action (MOA) of tested chemicals by extracting important
information from TCRCs and then do MOA clustering. In order to reduce the number of param-
eters to be estimated when fitting the data with limited sample size and high dimension, linear
mixed effects models are applied by considering chemicals as random effects. The estimated and
predicted coefficients from individual curves can be plugged into K-means and Self-organising maps
to do clustering. Estimating curves using different functional bases corresponds to linear transfor-
mations of the data, and obtains information from various aspects of the curves. In this thesis,
two different functional bases are used when fitting linear mixed models. The first model is based
on functional principal components, which can stretch the data on a few directions that contain
almost all the information. The two largest clusters, cluster 1 and cluster 10, can be separated
with 88.24% accuracy rate on only two primary basis functions. According to the shape of the two
functions and the coefficients distribution on them, we can depict the primary difference between
clusters in terms of overall shape and local features. To detect the primary time intervals where the
difference lies in, the other basis applied to mixed model is B-spline basis because different splines
are dominant in different time intervals. The coefficients of spline basis perform well as input in
both binary and multi-cluster clustering, with the clustering accuracy rate in the range of 81.82%
to 86.54%. Those clustering results can be obtained by only using 1 to 2 primary directions in
terms of time interval and concentration level, which is helpful to establish targeted experiments

for further toxicants study.
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Chapter 1

Introduction

1.1 Introduction to functional data and their analysis

Technological progress makes it possible for scientists in various fields to collect and store a grow-
ing amount of functional data. These data have a functional nature because they can, at least
theoretically, be observed in arbitrarily fine resolution. Most commonly, these data are real-valued
one-dimensional curves observed over time. They can also be collected on higher-dimensional do-
mains such as surfaces or shapes. Giving the availability of functional data, a new branch of
statistics motivated by the desire to explore the potential of these data called functional data
analysis (FDA [18]) stepped onto stage.

In practice, the data at hand consist of vectors of discrete observations instead of continuous
functions, which look the same to multivariate data. However, the key difference between them is
that functional data are structured objects with a natural ordering in their dimensions rather than
a collection of single data points. FDA accounts for the natural ordering by treating functional data
as realizations of a stochastic process, with smoothness assumed to reflect the similarity of adjacent
values [18]. Applications of FDA are numerous and come from diverse fields, including acoustic
research in speech science, spectroscopy study in chemistry or medicine, climate and neuroimaging
data study, etc. All this raises the need to extend scalar and multivariate practical methods to
functional data analysis. For example, regression modelling, classification and clustering approaches
and dimension reduction methods, etc.

The other typical application of FDA is toxicity assessment studied in this work. As we all know,
the increasing number of chemical compounds in the environment may impose hazard effects on

human health. Some chemicals may cause toxic effects on cells such as apoptosis and necrosis [16],



while others may induce uncontrolled cellular proliferation [1]. Therefore, the important indicator
in assessing toxicity is the cellular change, where time plays a key role in the dynamic process of
interaction between chemicals and cells. In order to study the property of chemicals, the bio-activity
indices of cells need to be observed and recorded along the time, which is essentially real-valued

functional data. The study based on this data is in the scope of FDA.

1.2 Introduction to TCRCs

In the past, data used for assessing toxicity was observed and collected by applying toxic chemicals
on animals. Such experiments implemented on living organism are called in vivo assays [6], which
require a large number of samples to be observed and may cause biological contamination. Recently,
Cell-based in vitro assays [25] are universally applied. Compared with traditional in vivo assays, in
vitro alternatives are easier to carry out and less time consuming. Thus, there is an increase need
for developing effective methodologies to analyze large amount of data from in vitro assays.

The data set in this study were generated from one such in vitro assay -xCELLigence Real-Time
Cell Analysis system (RTCA) [13] developed by the ACEA Biosciences Inc. (San Diego, USA). This
system utilizes 384 well electronic plates (E-Plates 384), on the bottom of which the electric current
is impeded by cells attached to electrodes. The impedance data is recorded as direct measurement
of cellular status in real time including cell number, cell morphology and cell adhesion [20]. The

data is converted from impedance to Cell Index (CI) by the following formula [7, 12]

Rcell(fk) - 1:| (11)

Cr= knll,a)fk[ Rb(fk)

where Re.i(fx) and Ry(fi) are the electrode impedance with and without cell in the well, and k is
the discrete time point.

Our work is based on the data from the cytotoxicity profiling project carried by Alberta Center
for Toxicity. They carried out assays by the RTCA system, in which the growth of human hepato
carcinoma cells line (HepG2) were tested with 65 chemicals [23] added in basal media. Each testing
chemical obtained was at least 95% purity and then diluted into 11 concentrations for single usage.
In order to give cells a suitable growth environment, the assays simulated the human environment

and were carried out in 37°C tissue culture hood with 95% humidity and 5% CO2. The assays were



implemented in the E-plate 384 and started by seeding the HepG2 cells in the wells. 24 hours later,
when the cells attached to the bottom and adapted to the culture environment, 11 concentrations
of each testing chemical were applied. The RTCA system continuously monitored the impedance
signal in the wells for at least 76 hours, such that time-dependent concentration response curves
(TCRCs) for each test chemical were generated by converting the impedance data to CI [23].
TCRCs provide useful information about the mechanism of interaction between cells and testing
chemicals. This mechanism is referred to as mode of action (MOA) describing series of physiological
events, such as cell population, cell morphology and cellular functions [23]. Since the TCRCs don’t
provide much information of MOA before chemicals are added, they are truncated such that only
the data after treatment were kept. Different TCRCs may have different CI values at 24 hours.
What we focus on is the cellular response to testing chemicals, thus CI differences from chemical
adding and growth were minimised by using Normalized Cell Index (NCI), which is given by Zhang

et al [29] as formula(2).

where k refers to different time points after testing chemical addition, and k=0 refers to the time
point right before treatment. Using NCI also make sure all TCRCs start from almost the same
level around 1.

An example of the TCRCs after truncation for two chemicals is given in Figure 1.
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Figure 1.1: An example of the original data for two chemicals

It is noticed that time grids are not uniform in raw TCRCs. Cubic splines were fit by Zhang
et al. [29] to interpolate the non-uniform data into uniform grids . From each spline 161 evenly
spaced points (in time) were sampled to form the spline data. The spline data set is used for further

analysis in this study.

1.3 Scope of this work

In this study, we focus on MOA clustering for the 65 chemical compounds given by Alberta Center
for Toxicology. According to the MOA, the 65 chemicals were divided into 10 clusters and the
list of ten-cluster MOA classification was also provided. For example, in figure 1, “Merbarone”

and “Dimetheylenastron” have different MOA clusters, the former targeting nucleic acid, while the
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later targeting motor proteins. By comparing the two chemicals in figure 1, the TCRCs show much
similarity of some concentrations, while the TCRCs trend of concentrationl-4 are very different. It
is also noticed that even if the overall trend for concentrationl-4 TCRCs of the two chemicals are
quite different, the local curves at the very beginning (0 - 20 hours) have almost the same pattern.
Thus, we can see that some concentrations and time intervals play the import role in clustering
while others contribute a little to our study.

From the information included in the TCRCs, some indices such as LC5y, KC5y and AUC5
were extracted and used to describe the time and concentration dependent cellular activity. LC5g
represents the concentration that can kill 50% of cells [27]. K Csp uses an exponential model to
calculate the LC5 value [27, 28, 14]. AUCj5 is used to represent the area under normalized TCRCs,
which is an index of toxicity evaluation [13]. These indices were also used in statistical methods
for clustering and classification. But these indices only provide partial information of TCRCs
and some significant features may not be uncovered. In order to extract more information and
reduce the input data, wavelet transform of TCRCs was applied to MOA classification by using
the wavelet coefficients as input into machine learning methods such as artificial neurol network
(ANN) and support vector machine (SVM) [29]. The similar objective was also achieved by using
the first principal component scores of TCRCs in model-based classification approach [24]. T also
achieve this goal by applying a linear mixed model based on functional principal component analysis
to TCRCs. The advantage of using a mixed effect model is that information can be separately
extracted from different sources of variability instead of pooled variance. Thus, we can focus on
the information we are interested in and ignore the redundant information induced by replication
and measurement error. Moreover, the number of functional principal components (FPCs) for
clustering was decided by variance. The reconstructed TCRCs using truncated FPCs perform well
in capturing main features of the original TCRCs, which ensures that valid information is retained
and reduce the data dimension at the same time. A similar mixed effect model was also applied
in tissue spectroscopy study [2], where the correlation of the data comes from the process of data
collection. By separating the variance into different parts, the contribution of the tissue type, which
is the factor they are interested in, is extracted. Another similar study was motivated by the data
of coronary sinus potassium concentrations measured on 4 treatment groups of dogs [22]. In this
study, the variance induced from dogs are accounted for by regarding dog as random effect in the
mixed model.

According to the demonstration above, the main objectives of my work are twofold. First,



develop a model capable of reconstructing the TCRCs, and based on the model, we are able to
extract the effects of tested chemicals on cell population. These chemical effects can be used to
perform clustering. The clustering result is then validated with the known MOA clusters. Second,
capture and utilize the important features, for example TCRCs of interesting concentrations and
time intervals, to distinguish different clusters, such that the clustering result is as good as that
using the whole TCRCs.

An important contribution of my work is choosing the hierarchical functional linear mixed
effect model to fit the data, such that the variability of the data is broken down to different sources
induced by concentration levels, individual chemicals, replications and measurement error. By
this decomposition, we can focus on chemical effects and take advantage of information on the
variability of chemicals. In the first linear mixed effect model, functional principal component
analysis is applied to reduce dimension by constructing a new coordinate system in a way that the
largest variance is determined by the first principal component, the second largest variance on the
second principal component, and so on. It turns out that only using the first 3 components to
reconstruct the data can capture most features of the original TCRCs. The clustering results are
also satisfactory by using the scores of the first 3 components as input to k-means algorithm or self-
organized map. Since clustering is performed concentration-by-concentration, those concentrations
where the significant differences of TCRCs exist can be located. In the second functional linear
mixed model, I specify B spline basis with 4 spline functions as a new coordinate system. The
reconstructed curves and clustering result are also satisfactory by using the coefficients of the 4
basis functions. Most importantly, with the characteristic of spline basis where different splines are
dominant in different time intervals, we can find the time intervals where significant differences of
TCRCs exist.

The remainder of the thesis is organised as follows. In chapter two, statistical models and
methods are introduced, including linear mixed effect model and principal component analysis,
as well as their functional counterparts, clustering analysis and two clustering algorithms, spline
interpolation and B-spline basis. The next chapter focuses on applying linear mixed model based
on functional principal component analysis (FPC-based FLMM [2]) to the data set. The model is
validated by reconstructing the TCRCs. Different clustering methods such as k-means and self-
organised map are applied to the FPC scores. In the fourth chapter, functional linear mixed effect
model with B spline basis is used. The coefficients on the splines are chosen as input to perform

clustering. In the last chapter, main results are summarized and discussed.



Chapter 2

Statistical models and methods

This chapter gives the introduction of statistical models and methods used in the thesis. Firstly,
functional principal component analysis is introduced, followed by functional linear mixed effects
models, including model assumptions and the outline of the estimation and prediction of the pa-
rameters. Clustering analysis and clustering algorithms such as K-means and self-organising map
are explained. At last, I introduce spline interpolation and B-spline basis as preliminary knowledge

for data processing and model fitting.

2.1 Functional Principal Component Analysis

FPCA is one of the most fundamental concepts of Functional Data Analysis(FDA) and it is a
powerful tool for dimension reduction in terms of two aspects: FPC’s are coordinates maximizing
variability and an optimal orthonormal basis [5]. Coordinates maximizing variability describe
FPC’s as a projection of data to lower-dimensional space with maximizing retained variance. The
basis resulting from FPCA is optimal because the expansion of each curve in terms of FPC’s and
corresponding scores approximates the original curve as closely as possible [17]. In order to illustrate
how to derive FPC’s and the properties of FPCA, we start from multivariate PCA, which is the

counterpart of FPCA for multivariate data.

2.1.1 PCA for multivariate data

Before giving the procedure of PC’s derivation, some notations are specified. Assume x € RP to
be a random vector with mean g and variance-covariance matrix 3. X is an n X p matrix with

each row a sample from X and columns of X are centered. S is the sample variance-covariance



matrix defined by S = 15 3" (x; — X)(x; — X)T. (x,y) = xTy is the inner product of vector x and

y. ||| = (x,x)/2 is the norm of x.
The underlying idea of PCA is to find some orthonormal vectors (directions) &,k = 1,...,p
composing a basis, on which samples are projected and the variance on each of the direction is

maximized. According to this principle, PC’s can be derived as follows:

Step 1. Find a &; such that projections fi1 = (£,%;) = ¢Tx4,4 = 1,...,n on it have the maximum

variance, i.e.

1 n
€ — arguax—— 3" 13
=1

lel=1 ™ =152
n
= argmax Z (¢Tx;)? = argmax eTXTX¢ (2.1)
lel=1 » =15 lgl=1 ™=

= argmax{ T S¢ = argmax(ST¢, €)
lll=1 lll=1

The optimization problem above is equivalent to finding a unit length vector ¢ such that £¢TS¢ is
maximal. According to the spectral decomposition[5], the maximum of ¢TS¢ is given by A, the

largest eigenvalue of S and &1 = u;, the eigenvector of S corresponding to Aj.

Step 2. For the subsequent PCs &3,...£p, we follow the same principle of finding ¢{; and addi-
tional constraint(s) (&k, &) = 0,0 < i < k, which guarantees & we are finding is orthogonal to
the previous components. Similar to the derivation method of £ component, & is given by the

eigenvector of S corresponding to Ay, the k" largest eigenvalue.

We notice that deriving PC’s is essentially a procedure to solve eigen problem of sample variance-
covariance matrix S. Analogously, if the counterpart of S for functional data is defined, the similar

eigen analysis would be conducted to find FPC’s.

2.1.2 FPCA for functional data

In the view of Horvath and Kokoszka(2012) [5], some functional data falls into the “large p small
n” setting in the sense that every data object in such setting is measured by a large number of

scalar values while the sample size n is much smaller than the number of measurements. Then,



how to use only m coefficients in a standard space to represent a large number of measurements per
sample becomes an interesting topic, which can also make it feasible to apply multivariate analysis

on the data.

Definitions in functional setting
Before carring over the idea of PCA to FPCA, some definitions based on Horvath and Kokoszka(2012)
[5] and Jolliffe(2016) [9] for functional data are introduced.

Let X(t) € L?(T) be a square integrable random process. For simplicity, assume X (t) is

centered. i.e. u(t) = E[X(t)] =0. Other important definitions are as following:

K(t,t) = E[X()X (auto-covariance function)

()]
R (2.2)
C(t) = [Ky|(t)= | K(t,t)y(t)dt, ye& L*(T) (covariance operator)
T
The covariance operator is essentially a mapping that maps y(t) from L? to L2. Like the role of

variance-covariance matrix > in PCA, C(t) is the heart of FPCA. To have a better understanding

of C(t), let’s rewrite ¥ as a mapping ¥ : RP — RP like Cederbaum and Jona [2] did in 2017:

p
Zyli =Y (Sy5y;), y€RP
=1

We notice that the integration for the covariance operator is replaced by a summation, and aug-

ment ¢ is replaced by index j. Thus, covariance operator in functional setting can be regarded as

an analogue to variance-covariance matrix in mulitivariate setting.

Assume z;, i = 1,...,n are samples from X (¢). As needed in FPCA, samples are centered.

Then the sample mean is ji(t) = 1 32" | 2;(t) = 0. Sample counterparts for K (t,t) is defined as:

n

n

> lzi(t)ai(t)] (2:3)

i=1

. / 1
K(t,t) =

n—1

Deriwation for FPC’s



Similar to the idea of PCA, the aim of FPCA is to find some orthonormal functions (directions)
&k(t),k = 1,...,p composing a basis, on which samples are projected and the variance on each of

the direction is maximized. According to this principle, FPC’s can be derived in the following steps:

Step 1. Find a function &;(t) such that projections fi = (§,x:) = [F&u(t)wi(t)dt,i = 1,...,n

on it have the maximum variance, i.e.

&i(t) = argmax
le@l=1m— 1 Z

é(t); dt)
||s(>\\1”—1 (/ il

= argmax

By expanding the square term and changing the order of integral and summation, the above equa-

tion can be expressed as

)= 1nlz/x’ (/5 Jzi(t dt)é()d

§1(t) = argmax
-], <n—12% ) Jo st

—aligtﬁ'lai(/ (/ K(t,t) >§(t)dt (25)

= argmax/ K§
€@ =1

— argmax(K¢, )
lE@) =1

It was proved that K(t, ) and its sample counterpart K (t, t,) are both symmetric, positive definite
Trace class operators [5]. Then, the optimal problem (2.5) is essentially an eigen problem of K.
The supremum is reached if £&; = v; and the maximum is A;, where Ay is the largest eigenvalue of
K and vy is the corresponding eigen function defined by K vj = \jv; (see, Horvath and Kokoszka,

2012, Chapter2, Chapter3[5] )

Step 2. For the subsequent FPCs §g(t), . &p(t), we follow the same principle of finding & (t)
with additional constraint(s) (£x(t), = [F& ()& (t)dt = 0,0 < i < k, which guarantees the
&,(t) is orthogonal to the previous FPCs. Similar to the derivation method of &;(t), & (t) is given

by the eigenvector of K corresponding to Ay, the k¥ largest eigenvalue.
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Another way to look at FPCA is based on Karhunen-Loeve expasion (KL expansion) [5]. KL
expasion represents a continous stochasitc process as a linear combination of orthogonal functions.

For the zero mean random process X (t), the K-L expansion is given by
(o]
X(t) = fut(t)
k=1

where & are orthonormal functions and fr = (£, z) are uncorrelated zero mean random basis

weights with variance .

2.2 Functional linear mixed effect model

Mixed effect models extend the predictor X 3 of regression models by incorporating random effects in
addition to fixed effects 8 [3]. Unlike regression models, which are based on the assumption that the
data are independent and identically distributed, the introduction of random effects in mixed effect
model makes it possible to capture the correlation of the data on the basis of the common regression
characteristics in the population. Therefore, mixed effect models provide flexibility in analysis of
data with multiple sources of variation, such as repeated measures, clustered or longitudinal data,
or data with special structures. Random effects in the model can improve the performance of

regression by accounting for the between- and within-subject variability of responses.

2.2.1 Linear mixed effect model for scalar data

In its general form, a scalar linear mixed model can be defined as

y=XB+Zu+e (2.6)

where y = (y1,...,yn)? is a vector of n observable random response variables, X and Z are known
n X p and n X g design matrices, corresponding to the p x 1 and ¢ x 1 vectors 5 and u of fixed and
random effects, respectively.

A related situation to give some intuition of the model is the analysis of clustered data, i.e.,
when data are observed from subjects by subsampling from clusters or groups. For example, pa-
tients, students, or clients selected from hospitals, schools or firms, which are regarded as clusters.

According to the model, 5 represents the population effects and X 5 can be thought as population

mean. While wu is a vector of cluster-specific random effects, and Zu are deviations of each cluster
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from the population mean. If equation (2.6) is a standard linear model, where u is assumed to
be fixed, it is impractical in this case that the number of groups is relatively large, because the
model would under perform when the number of parameters to be estimated becomes quite large
relative to the sample size. Another advantage of mixed models is that the correlations induced by

repeated observations from clusters are taken into account during estimation[3].

Model assumption
Since the population mean is represented by the fixed effects, u and e are assumed to be inde-
pendent and both have zero mean. A common assumption is that u and e follow the multivariate

Gaussian distribution

Estimation and prediction
In the package denseFLMM [2], the package I use to fit the model in next chapter, the way of
estimation and prediction is maximizing the joint log-likelihood of y and u with respect to 8 and

u, which is given by
_ 1 Ty—1 1 »
1(B,u) —i(y—Xﬁ—Zu) by (y—X,B—Zu)—iu K1y

Maximizing the joint likelihood can be converted to minimizing the penalized least square criterion
where (y — X8 — Zu)TS ™Yy — XB — Zu) is the weighted least squares criterion and u’ K 1w is
the penalty term. Thus, the optimization of log-likelihood results in the following weighted least

squares for the fixed effects

— (Xvalx)levaly

®)

(2.7)
i=KzZ'V 1y - XpB)

where V = ZKZ" 4+ 3. The above equations in terms of B and u are not closed-form expressions
since we still don’t know K and V. Let v denote the vector of all variance parameters in the

matrices K and X, thus in V. The estimation of variance parameters v is commonly done using
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maximum likelihood and the log-likelihood is given by

1B,v) = (zogw(u)r y - XAV My X/J’)) (2.8)

!

2
In order to estimate v, we rewrite the log-likelihood as the profile log-likelihood for v, which is
defined as Ip(v) = maxgl(f,v). The ML estimate of v is obtained by maximizing the profile log-
likelihood Ip(v) with respect to v by replacing 8 with 3(v) as defined in (2.7). Equation (2.8) is
not a closed-form expression either because § is unknown. Therefore, the maximization of Ip(v)

should be obtained by iteratively plug v to equation (2.7) and B to equation (2.8).

2.2.2 Linear mixed effect model for functional data

Ma and Zhong (2008)[11] consider what can be called a functional nonparametric mixed effect

model of the form

where the population mean u(t,x;) is assumed to be a smooth mean function dependent on scalar
and/or functional covariates x;. z; is a covariate vector. U(t) denotes a vector of functional random
effects, which is a vector-valued zero mean, square integrable random process on 7. ¢;(t) represents
white noise uncorrelated along 7. They are i.i.d. mean zero random variables with variance o
for all ¢ and ¢;;. U(¢) is independent of ¢;(¢") for all ¢, ¢, t’. Usually, the functional random effects
(FRESs) include a smooth error term which is a functional random intercept (FRI) with a special
structure that captures deviations from the mean function which are correlated along 7 [2].
Model (2.9) is a “piecewise” model, whose vector of fREs U(t) is divided into G independent
blocks, one for each grouping factor, i.e., U(t) = [U1(t)T,..., Ug(t)T]T. For each factor, different
levels are represented by Ly, independent copies Uy (t),l=1,.., Ly,. Each of independent copies
consists of Py, FREs, yielding ' block Uy = [Ug1, ..., Ugt Py e UgLy, 15 s UgLyy, Py, |- Thus,
the total number of FREs in the model is 25:1 Ly, Py,. For example, there are four patients from
two hospitals. We regard hospital and patient as two grouping factors and the model includes a
FRI for each hospital and a correlated FRI and FRS (functional random slope) for each patient. In
this case, G = 2 (number of grouping factors), Ly, = 2 (number of hospitals) and Ly, = 4 (number
of patients). The number of random effects associated with grouping factor g is Py,, g = 1,2.

Thus, Py, = 1 (an FRI for each hospital) and Py, = 2 (an FRI and an FRS for each patient). The
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number of FRESs in this case is 10.

Model assumption

It is assumed that FREs in diffenrent blocks are independent and copies within each block are also
independent. Only FREs of the same copy are correlated. In the above example of patients within
hospitals, the FREs of hospitals are independent of the FREs of patients. Moreover, the FREs of
different hospitals are independent and the FREs of different patients are also independent. Only
the FREs of the same patient are correlated. Accordingly, the covariance of U(¢) is a diagonal

block matrix as following form

Cu(t,t') = diag |Cu, (t,t'), ..., Cuy (£, 1), e, Cug (£, 1), ..., Cug (8, 1) (2.10)

Ly, copies LUG copies

where Cy, (t,t') = Cov [Ug(t), Ug(t')] is a Py, x Py, covariance matrix for I =1, ..., Ly, .

Estimation and prediction

Estimation and prediction in the package denseFLMM are conducted by expanding FREs in func-
tional principal component bases. Since the process of estimation involves matrix vectorization and
Kronecker product of matrices ®, for ease of illustration, I only introduce the rough idea of each

step in estimation process.

Step 1. Estimate the mean
If the mean u(t) only depends on a discrete variable k, i.e., is a group-specific mean function g (t)
as the data set in my thesis, we can estimate it by simply averaging curves Y;(t) point-wise within

each group k.

Step 2. Estimate the covariance structure

The covariance structure can be represent as E[(Y — p) ® (Y — p)], where Y is matrix format
of the response. The covariance can be decomposed as a linear combination of block covariance
matrices Cp, in (2.10), with coefficients being piece-wise covariate design matrices consisting of
z;. Then, based on the equivalence of two representations of covariance structure, the covariance

matrices CA’Ug, g=1,...,G can be estimated based on least square.
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Step 3. Estimate the eigenfunctions and eigenvalues

Estimation of eigenfunctions and eigenvalues are obtained by using spectral decomposition of the
covariance GUQ. Estimated eigenfunctions and eigenvalues corresponding to éUg are denoted by
@gg = [A,gsg (t)],teT,s=1,., Py, and f/\gg, where k is equal to the number of time points.

Step 4. Predict the random basis weights

Based on Karhunen-Loeve expansion, the random processes Uy, g = 1,...,G,l =1, ..., Ly, can be

oo
. Ug+Uy U . .
rewritten as Uy = > £,7®,7. £,7 are uncorrelated zero mean random basis weights (also denoted
gl = Za Stk Tk Sl

as FPC scores) with variance l/gg . Thus, the random processes Uy in model (2.9) will be replaced
by the linear combination of FPC scores and eigenfunctions. Then, we can obtain the best linear

unbiased predictors (BLUPs [4]) Egl.

2.3 Clustering analysis

Clustering is the task of dividing the population or data points into a number of groups such that
data points in the same group (called a cluster) are more similar (in some sense) to each other than
to those in other groups (clusters). In simple words, the aim is to segregate groups with similar
traits and assign them into clusters. Cluster analysis itself is not one specific algorithm, but the
general task to be solved. It can be achieved by various algorithms. In this section, I will introduce

two clustering algorithms, K-means and self-organising map.

2.3.1 K-means

K-means clustering aims to partition n observations into k& clusters in which each observation be-
longs to the cluster with the nearest distance. The algorithm can be divided into the following 3

steps.

Step 1. Find the local optimum for a specific k and initial means

For a specific k, the number of clusters and an initial set of k£ means mgl), ...,mg), the algorithm
iterates between the following two steps:

(Assignment step) Assign each point to the nearest mean. The distance is measured by Eu-

clidean distance.
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(Update step) After all data points are assigned, recalculate the mean of each cluster.
The algorithm converges until the assignments no longer change. But we should notice that the
clustering result may not be the global optimaum for a specific k. Different sets of initial means

may lead to different clustering results by above iterative steps.

Step 2. Find the global optimum for a specific k
The way to obtain the global for a specific k optimal one is to choose the one with minimum total

variance within each cluster.

Step 3. Find the optimum k

Each time we add a new cluster, the total variance within each cluster is smaller than before.
Thus, we can choose the k as the optimal k, after which the variance doesn’t go down quickly. This
is conducted by using “elbow plot” (reduction of variance VS number of clusters) and pick k& by

finding the “elbow” in the plot.

2.3.2 Self-organising map

The self-organising map (SOM) is an automatic data-analysis method. It is widely used to clustering
problems. To illustrate what a SOM is, Let’s introduce some notations and definations.
(1) a sequence of n-dimetional vectors {x(t)} represents input data items, where iteration ¢t = 1,...T
with T very large
(2) G is a lattice graph with grid nodes v;,7 = 1...n
(3) {w;(t)} is a sequence of n-dimensional weights {w;}, where i is the spatial index of the grid
node with which {w;} is associated.
(4) the neighborhood function h(vy, vg,t) € [0, 1] with h(vg, vg,t) = 1 and monotonically decreasing
in terms of ¢ and the distance d(vy, vg).

The relationship between (1)-(3) is that each input data is connected to grid nodes of a lattice
graph G. Connections all have associated numbers called weights w.

The SOM algorithm is recursively determined by following equations
¢ = argmin||x(t) — w;(t)]| (2.11)
i

w;(t+1) = w;(t) + h(ve, vi, t)[x(t) — w;(t)] (2.12)
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According to equation (2.11), the input data x(t) selects the best-matching weight (winner)
associated with the node in G. Then, the weights of this node and those in its neighbor are modified
according to equation (2.12) until the weights w; doesn’t change for each ¢ [10]. Then we get stable
weights w =: {w;}. With index i of nodes v; and the data {x(¢)},t = 1,...,T, we can form the
cluster

Ac(w) ={x(t) : c= argyﬂn”a:(t) —wgl|, t=1,...,T} (2.13)

2.4 Spline

A spline is a special function defined piecewise by polynomials [21]. It provides a powerful tool for
estimating nonparametric functions. In this section, I will introduce cubic spline interpolation used
in data processing, and cubic B-spline which is chosen as basis in fitting functional linear mixed

effect model.

2.4.1 Cubic spline interpolation

In practice, we often have a number of data points, obtained by sampling and experimentation,
which represent a function that we don’t know. In this case, it is often required to construct new
data points within the range of known data points (knots). This process is called interpolation.
Consider we need to interpolate between all adjacent pairs of knots of {(x;,y;) : i = 0,...,n}.
Spline interpolation [21] uses low-degree polynomials in each of the intervals (z;—1,y;—1) and (z;, y;),
and chooses the polynomial pieces y = ¢;(x),i = 1,...,n such that they fit smoothly together. The
resulting function is called a spline. The classical approach is to use polynomials of degree 3, called
cubic splines, which can achieve the continuity of the first derivative and second derivative under

the condition that the splines pass through all the knots. More specific, y = ¢;(x) should satisfy

qi(wi) = qiv1(x0), qj(x:) = qjyq(23) and g (x;) = qf, (2;) for i=0,...,n-2.

2.4.2 B-spline

The term “B-spline” is short for basis spline. B-splines of order n are basis functions for spline
functions of the same order defined over the same knots, meaning that all possible spline functions
can be built from a linear combination of B-splines, and there is only one unique combination for
each spline function [15]. B-splines are chosen as basis in my thesis because they have local scope.

That is, the support of each individual B-spline is a closed interval so they only work locally.
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Chapter 3

Apply FPCA-based FLMM to
toxicity data

By observing the TCRC profiles in Figure 2, it is noticed that TCRCs from the same cluster
may be quite different while some from different clusters have similar profiles [29]. Therefore, a
proper way to capture correlation of profiles can not only achieve dimension reduction but increase
clustering accuracy. Wavelet transform was demonstrated in Y.Zhang [29] to be a powerful tool
for data compression and feature extraction. For the same purpose, a Linear Mixed Model based
on Functional Principal Component Analysis (FPC-based FLMM ) proposed by Jona Cederbaum
in 2017 [2] is applied in our work. Functional Liner Mixed Model (FLMM) can account for both
fixed effects and random effects, which capture different sources of variation by considering the
deviation from population mean. While Functional Principal Component Analysis (FPCA) get
data reduced based on as much as possible of the variation, by reconstructing the data using FPCs
and scores from the model results, and comparing the reconstructed data with the original, we can
demonstrate whether FPC-based FLMM is a good model to fit the data. The resulting scores can

be regarded as a new lower-dimensional data set.
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5—Fluorouracil: cluster 1 NU7026: cluster 1 FAKInhibitor14: cluster 10

monastrol: cluster 10 exo1: cluster 2

Figure 3.1: TCRCs from two different clusters

The same data was studied by Yongqing Yang in her report [26]. She clustered the 11 concen-
trations by K-means with the optimal number of clusters chosen by elbow method, and evaluated
the clustering result by adjusted rand index. According to her report, the 11 concentrations are
clustered into 3 levels with levell=(1,2,3,4), level2=(5,6,7,8), level3=(9,10,11). So, for the follow-
ing demonstration, different concentrations from the same concentration level will be thought of as

replications. For simplicity, “concentration level” is just termed as “concentration” in this thesis.

3.1 Model and model assumptions

There are multiple sources of variability in toxicity curves. First, there is variability between the
different concentrations. Second, variability is also induced by different chemicals. Third, the
repeated observations from the same chemical and same concentration induce variability. And
fourth, there may be additional measurement error. Thus, we break down the variability induced
by concentrations, chemicals and repetitions. FPC-based FLMM can allow us to decompose the
variability in our data and to take advantage of the information on all sources of variability.

Since the repeated observations are nested within chemicals, and for each chemical we have
measurements for each of the three concentrations, the FLMM here is a hierarchical model, which
includes a fixed effect for concentration. The remaining hierarchy levels are accounted for by in-

cluding random intercept. The model is in the following form
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Yieo(t) = pir(t) + Bre(t) + Ereo(t) + €rco(t) (3.1)

with 7 = 1,...;3 (concentrations), ¢ = 1,...,n. (chemicals), o = represents
1,..,3 7=3

replicates. n. is the number of chemicals used in the model. Y;.,(t) represents the TCRC of con-
centration 7, chemical ¢, and replication o at time point ¢. u.(t) is the fixed effect for concentration.
B;.(t) is a concentration-specific functional random intercept for chemicals. E;.,(t) and €,.,(t) are
a smooth error term and white noise measurement error, respectively.

We assume that Br.(t) and E;(t) are mutually uncorrelated random process with zero mean.
Since the point-wise variations of concentrations differ from each other (Figure 2), we allow that
the covariances of the chemical effects are different for each concentration, which is termed as
“concentration-specific FRI”. We assume the smooth error E..,(t) does not depend on concentra-

tion, thus is not concentration-specific.

point-wise variances
2
1

time

Figure 3.2: Point-wise variation curves per concentration

We denote the concentration-specific covariance of B,.(t) as C2(t,t'), (t = 1,...,3). The covari-
ance of the smooth error E,.,(t) is CF(t,t'). The number of covariance to be estimated is 4 (denoted
by G), which means we have 4 groups of random effects. The first three groups correspond to 1-3
concentration-specific chemical effects. The last group corresponds to the smooth error. For each
group, the numbers of levels per group are Ly, = Ly, = Ly, = ne, Ly, = ne * 11. Then we specify
one function random effect Py, = 1, g = 1,....G = 4. So, there are q = Zngl Ly, Py, = ne* 14
functional random effects in total.

According to the demonstration above and model (6), the FREs part B(t) + E(t) in model (8)

can be represented in a matrix form ZU as following (assume applying the model to all the data:
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3.2 Estimation results from R

Apply model on Clusterl and Cluster1l0 Respectively
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(a) Cluster 1 (b) Cluster 10

Figure 3.3: Point-wise mean curves for chemicals in clusterl per concentration (upper left), Point-
wise means for chemicals in clusterl0 per concentration (upper right), Point-wise mean curves for
chemicals in cluster10 per concentration (upper right), Point-wise variance curves for chemicals in
clusterl per concentration (bottom left), Point-wise variance curves for chemicals in cluster10 per
concentration (bottom right)

As showed in Figure 3, point-wise mean curves become higher with the increase of concentration
levels in both clusters. This is consistent with the fact that concentration 1 is the strongest which
kills cells most efficiently. For both clusters, point-wise variance is largest of concentration 1, which
implies in the case of high concentration, the increase in concentration will bring significant change
in chemical efficacy, while it doesn’t make much help to change the dose when the solution is not

strong enough to kill cells.

22



FPCs for conc1-specific chem effect FPCs for conc1-specific chem effect

FrCt
02 -01 00 01 02
FPC2
02 -01 00 01 02

-
FPC3
02 -01 00 01 02
FrC1
02 04 00 01 02
FPC2
02 -01 00 01 02
-
FPC3
02 04 00 01 02

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
aridpoints aridpoints aridpoints gridpoints gridpoints gridpoints
FPCs for conc2-specific chem effect FPCs for conc2-specific chem effect

FPC1
02 -01 00 01 02
FPC2
02 -01 00 01 02
P
FPC3
02 01 00 01 02
FPC1
02 -01 00 01 02
FPC2
02 -01 00 01 02
P
FPC3
02 -01 00 01 02

T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 20 3 4 5 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

T
20 30 40 5 60 70

o 10 0o 10
aridpoints gridpoints aridpoints oridpoints gridpoints aridpoints
FPCs for conc3-specific chem effect FPCs for conc3-specific chem effect

FPC:
02 01 00 01 02
FPC2
02 -01 00 01 02
P
FPC3
02 01 00 01 02
FPC
02 01 00 01 02
FPC2
02 -01 00 01 02
P
FPC3
02 -01 00 01 02

T E T e e e e AL
20 30 4 50 60 70 0 10 20 % 40 50 6 70 0 10 20 30 40 50 60 70

T T e e e e e
0 10 20 % 40 50 6 70 0 10 20 30 40 50 60 70

T
20 30 4 50 60 70

0 10 0 10
gridpoints aridpoints gridpoints gridpoints aridpoints gridpoints
FPCs for smooth error FPCs for smooth error
5 2 \—, 3 g R - \/\
B e e e L B B e e L N T T T T T T T T T B e e L N i e e e e e
0 10 20 3 40 50 60 70 0 10 20 3 40 5 &0 70 0 10 20 3 40 50 60 70 0 10 20 3 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 3 40 50 60 70
gridpoints grdpoints grdpoits gridpoits grdpoints gridpoits

(a) Cluster 1 (b) Cluster 10

Figure 3.4: FPCs for clusterl chemical effects (left) and the clusterl0 chemical effects (right): the
first 3 FPCs of conl-specific effects (the first row), he first 3 FPCs of con2-specific effects (the
second row), the first 3 FPCs of con3-specific effects (the third row), the first 3 FPCs of smooth
error term (the fourth row)

The first and dominant FPC of each concentration is simple in structure, while the second and
third FPCs have higher order. If we multiply the 3 FPCS in top right corner by -1, it is noticed
that the first two of each concentration FPCs are similar between two clusters. The significant
difference occurs in third FPC, especially for concentration 3, where the FPC in cluster10 has more

cycles.
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Apply model on all clusters
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Figure 3.5: FPCs for all chemical effects: the first 3 FPCs of conl-specific effects (the first row), he
first 3 FPCs of con2-specific effects (the second row), the first 3 FPCs of con3-specific effects (the
third row), the first 3 FPCs of smooth error term (the fourth row)

The pattern of FPCs for all data are similar to those of cluster]l and clusterl0 but the second and
third FPCs are much smoother. The second FPC for concentration 3 has two peaks at around
gridpoints 20 and 45, which seems like a combination of clusterl and cluster1l0. The third FPC
for concentration 3 is dominated by clusterl, which is consistent with the fact that sample size of
clusterl is largest.

The variability in each concentration can be decomposed into three sources as in Table 3.1.
Within concentration 1, 69.2% variability is induced by chemical effects and 29.9% is by replication.
The decomposition for concentration 2 is similar to concentration 1 with 64% variability explained
by chemical and 29.9% explained by replication. In concentration 3, a large part of variability lies

in replication while only 34.5% explained by chemical.
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variability source

concentration | chemical | replication | measurement error
1 69.2% 29.9% 0.9%
2 64.0% 35.0% 1.0%
3 34.5% 63.7% 1.8%

Table 3.1: Variance decomposition

Then, we focus on chemical effects B.. The further decomposition of chemical effects on FPCs
gives us interpretable measures of where in the TCRCs variability occurs between chemicals. For
each concentration, the estimated first three principal components of B;. are depicted in Figure 3.6.
For ease of interpretation, we show the effect of adding and of subtracting the estimated principal
components multiplied by the square root of the respective eigenvalue to the concentration-specific

mean. It can be considered as the information given by the corresponding direction (FPC).
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Figure 3.6: Concentration-specific means (black) plus (blue) and minus (red) chemical effects esti-
mated by the first three components of concentration 1 (upper 3 figures), concentration 2 (middle
3 figures), concentration 3 (bottom 3 figures). The respective proportion of variability induced by
chemical effects within concentration is given in brackets

The proportion in bracket represents the proportion of variability induced by corresponding
concentration-specific chemical effects. The variability explained by the FPCs differs between
concentrations. The first principal component of B, explains most variability in concentration2-
specific chemical effects (96.1%) followed by concentration 3 (95.6%). The first principal component
of each concentration contain the information of overall variance in TCRCs. When the concentra-
tion is weakest (concentration 3), the chemicals take a long time to show difference. But for
concentration 1 and 2, the difference of chemicals show up earlier, not because the red curve and
the blue curve of the first principal component split away earlier at about 20 hours, but also the

separation on the second principal component at the beginning. For concentration 1 and 2, we
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see a vertical shift of the second principal on the mean curve after 40 hours. The third principal

component in each concentration doesn’t carry much information.

3.3 Reconstruct random effects

After having the conception of principal components and the information they carry, we will move
on to visual presentation of random effects, chemical effects in Figure 3.7, 3.8 and replication effects
in Figure 3.9, 3.10. In the following two figures, we just show several chemicals in concentration 1
from the two largest clusters as an example. The random effects depicted are obtained by the sum

of first three principal components multiplied by the corresponding predicted scores.
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Figure 3.7: Concl-specific chemical effects (clusterl)
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Figure 3.8: Concl-specific chemical effects (cluster10)

In Figure 3.7, most concl-specific chemical effects show the similar pattern-going up at the
very beginning and going down afterwards with the slope becoming flat at the end. Chemical-13,
chemical-6, chemical-5, chemical-36 and chemical 60 have different trend from others in cluster 1
but similar to common trend in Figure 3.8-an overall increase with some having a little decrease at
the beginning. In Figure 3.8, only chemical-23 and chemical-32 are visually different from others in
cluster 10, especially chemical-23, whose end point is much lower than starting point. All chemical
effects can be thought as deviation from corresponding concentration-mean curve, which are the

important foundation for the following chemical clustering.
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Figure 3.10: real data VS estimated data of 4 chemicals (cluster10)

Figure 3.9 and 3.10 display four chemicals in cluster 1 and cluster 10, respectively. For illustra-
tion, we use the three figures of chemical-4 (upper left) as an example. The first figure corresponds

to “chemica_4” in Figure 3.7, which is predicted concentrationl-specific chemical effect. The second
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figure is the sum of random effects-replication effects added on chemical effect. The third figure
is the raw TCRCs subtracting concentrationl-mean curve. The legend “cl, ¢2, ¢3, c4” refer to 4
replications in concentration 1. By comparing “est” and “real” curves for each chemical, we notice
that the truncated FPCs and corresponding scores chosen by model (3.1) and fit the data very well.

Also, comparison between predicted data and real data provide us a visible way to choose the
number of eigen functions (see Figure 3.11 below). Using chemical-20 and chemical-26 in concen-
tration 3 as examples, it is noticed that TCRCs predicted by the first two FPCs lose significant
fluctuation while the first three FPCs capture more features of real TCRCs. That is why we choose

3 eigen functions as basis instead of 2.
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Figure 3.11: Chemical-20 in concentration 3 (the first row) and chemical-26 in concentration3 (the
second row). For each row, the left figure is real data; the middle is estimated data by first 2 FPC’s;
the right is estimated data by first 3 FPC’s
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3.4 Binary clustering

We first consider the clustering of the two largest clusters, namely cluster 1 with target class
DNA/RNA and cluster 10 with target class protein. There are 21 chemicals in cluster 1 and 13

chemicals in cluster 10.

3.4.1 Visual clustering by score plots

score plot for concentration 1 score plot for concentration 2 score plot for concentration 3
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Figure 3.12: Score plots for 3 concentrations.

Scorel and score2 are eigen values corresponding to FPC1 and FPC2 of concl-specific chemical
effects (left). Scorel and score2 are eigen values corresponding to FPC1 and FPC2 of conc2-specific
chemical effects (middle). Scorel and score2 are eigen values corresponding to FPC1 and FPC2 of
conc3-specific chemical effects (right).Red points represent chemicals in cluster 1 and blue points

are those in cluster 10.
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In the left figure, chemicals in two clusters are separated clearly except that chemical-5, chemical-
6, chemical-13, chemical-36, chemical-60 are mixed in cluster 10 and chemical-23 is almost on the
boundary of two clusters, which is consistent with what we noticed in Figure 3.7.

In the middle figure, FPC1 is dominant “direction” to separate the two clusters. Scorel of
conc2-specific chemical effects in cluster 1 is positive except chemical-5, chemical-6, chemical-60.
In cluster 10, scorel is negative with only chemical-23 positive. According to FPC1 for conc2-
specific chemical effects in Figure 3.5 (the first figure in the second row), we can deduce that
chemicals in cluster 1 have effect on killing cells with middle concentration level, while those in
cluster 10 have the opposite effect on cells. In the right figure, chemicals in concentration 3 can not
be split on FPC1. While on FPC2, chemicals in cluster 10 are all positive and they bunch together

from 0.3 to 1.0 in terms of score2.

3.4.2 Test difference by Manova

As discussed above, we choose the first three FPCs for each concentration-specific chemical effects
because they carry almost 100% variability induced from chemicals. For convenience, the scores
of concentration 1 is termed as V1, V2, V3, the scores of concentration 2 as V4, V5, V6 and
concentration 3 as V7, V8, V9. Thus, testing the difference between cluster 1 and cluster 10 is
equivalent to testing if V1-V9 in cluster 1 are equal to V1-V9 in cluster 10 correspondingly, which
is an One-Way Manova problem.

Before performing Manova, normality of data should be tested. As shown in Figure 3.13,
normality assumption of data for two clusters seems plausible. Then, R function “MVN” in package
“MVN?” is applied to test multivariate normality of data. The results of normality tests also show

that normality assumption is satisfied so that we can continue the following research.
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Figure 3.13: Chi-square Q-Q plot

Unlike Anova in which there is only one test statistic (the F-ratio) to determine significance
value, Manova provides us 4 different test statistics. As shown in table 1, the names of 4 statistics
are “Wilks”, “Pillai”, “Hotelling-Lawley” and “Roy”. The 4 test statistics are defined by Seber
in 1984 [19] in terms of two matrices B and W and their degree of freedom, where B and W are
sum of squares and cross-products matrices representing variance caused by treatment and error,
respectively. “Wilks’Lambda” statistic proposed originally by Wilks corresponds to the equivalent
form of the F-ratio in univariate case [8]. “Lawley-Hotelling Trace” and “Pillai’s Trace” statistics
are defined in terms of trace of BW~! and B(B + W)~ ! respectively. “Roy’s Largest Root”
statistic is defined as the largest eigenvalue of BW~!. Each test statistic can be constructed into
an approximation, which is based on F-distribution and can be used to determine significance value.

See Seber (1984) [19] for details.

test statistic approx F | num DF | den DF Pr(>F)
Wilks 0.25008 9 24 2.23e-05 ***
Pillai 2.9987 9 24 2.23e-05 ***
Hotelling-Lawley | 0.74992 9 24 2.23e-05 ***
Roy 2.9987 9 24 2.23e-05 ***

Table 3.2: Manova

Since the number of treatments in our case is 2 (clusterl and cluster10), degree of freedom of

B is 1. According to Seber(1984) [19], all four test statistics will lead to identical results in such
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case. S0, the result of Manova (Table 3.2) based on 4 test statistics gives us the same result, which
indicate there is significant difference between cluster 1 and cluster 10. More precisely, at least one

pair of V/s,i =1,...,9 of cluster 1 and cluster 10 are different.

3.4.3 Clustering by k-means

As the input to Manova, we apply V1-V9 as input to K-means to do clustering. Firstly, we only

choose the two largest clusters-cluster 1 and cluster 10.
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chemical index chemical real cluster | clustering result
34 5-FU 1 1
8 gemcitabine HCI 1 1
15 gemicitabine 1 1
35 Etoposide 1 1
49 Doxorubicin 1 1
10 merbarone 1 1
45 Clofarabine 1 1
46 Hydroxyurea 1 1
28 SN38 1 1
7 Topotecanhydrochloride 1 1
11 irinotecan(CPT-11) 1 1
12 cytosine b-D-arabinofuranoside 1 1
13 ABT-888 1 1
3 Mitoxantronedihydrochloride 1 1
6 CRT0044876 1 2
5 NU7026 1 2
4 MitomycinC 1 1
36 Cordycepin 1 2
42 actinomycinD 1 1
9 cisplatin 1 1
60 OchratoxinA 1 2
16 monastrol 2 2
17 stritytl-cysteine 2 2
18 dimethylenenastrone 2 2
20 Y-27632 2 2
21 Ro032-3555 2 2
22 Batimastat 2 2
23 FAKInhibitor14 2 1
24 MLCKInhibPep18 2 2
25 PF573228 2 2
26 Blebbistatin 2 2
31 ML7 hydrochloride 2 2
32 HA1100 hydrochloride 2 2
33 PF431396 2 2

In the column of “clustering result”, the red ones are miss clustered chemical. Four chemicals of
cluster 1 and one chemical of cluster 2 are miss clustered in total. Chemical-5, chemical-6, chemical-
36 and chemical-60 are clustered outside from other chemicals of cluster 1. While chemical-23 of
clustered 2 is miss clustered from others. The overall accuracy rate is 85.29%. Even though the
accuracy rate is not low, the BSS/TSS given by K-means is only 57.8%, where BSS/TSS is basically

a measure of the goodness of the clustering result K-means has found. SS obviously stands for Sum

Table 3.3: Clustering result by k-means
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of Squares, so BSS stands for “between-group deviance” and TSS stands for “total deviance”.
Ideally we want a clustering that has the properties of internal cohesion and external separation,
i.e. the BSS/TSS ratio should approach 1. A small value of BSS/TSS and large values of BSS and
TSS are probably induced from the sparsity of data in high-dimensional space. Thus, I try any
possible subset of V1-V9 to look for better clustering results and good clustering results can give
us information of the important directions where the difference between clusters lies in.

By using the subset of V1-V9 as input, a better clustering results is found. It is obtained by
using V2 and V4 as input and the accurate rate is 88.2%. The value of BSS/TSS is a little bit
higher (62.1%). By this way, we can also locate the significant difference between cluster 1 and
cluster 10 lies in FPC2 of concentrationl-specific chemical effects and FPC1 of concentration 2. In
fact, only using V4 can achieve the same accurate rate to that from V1-V9. By observing score
plot for concentration 2 in Figure 3.12, we can find that the points from cluster 1 and cluster
10 are well separated by scorel=0, which is corresponding to V4. Combining the information in
Figure 3.6, we can deduce that most chemicals in cluster 1 kill cells more efficiently than those in
cluster 10. V2 added as input giving a better clustering rate indicates that some chemicals need
concentration high enough to result in sharp change on cell population at around 20 hours, thus

can be distiguishable.

3.4.4 Clustering by SOM

Using an exhaustive search through each of the SOM parameters, the effectiveness of the SOM’s to
segregate the data by MOA could be evaluated. Those results are presented in the following tables.
The first four columns of the table denote which parameters were used for a given run of the SOM

algorithm. Column five shows the overall accuracy rate.
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neigh_func topology structure | grid | accuracy rate
Planar 6x5 79.41%
hexagonal 4x3 88.24%
Toroidal 635 88.24%
bubble 4x3 88.24%
Planar 6x5 64.71%
rectangular 4x3 88.24%
Toroidal 65 88.24%
4x3 88.24%
Planar 65 88.24%
hexagonal 4x3 82.35%
Toroidal 65 85.29%
gaussian 4x3 82.35%
Planar 635 67.65%
rectangular 4x3 82.35%
Toroidal 6x5 82.35%
4x3 82.35%

Table 3.4: Clustering results by SOM with different parameters

Table 3.5 shows a summary of the overall accuracy rate for each row shown above.

min Q1 median | mean Q3 max

64.71% | 82.35% | 83.82% | 82.90% | 88.24% | 88.24%

Table 3.5: Accuracy rate summary

It is seen that changing the SOM parameters has some effect on the overall accuracy rate,
with only two accuracy rates are below 70% and most of them are higher than 82.35%. The
highest accuracy rate 88.24% is higher than that obtained from K-means. Then, we show one SOM
clustering result in the 2-dimensional SOM plot in figure 3.14 with parameters being those in the

second row in table 3.4.
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Figure 3.14: An example of clustering result by SOM

The separation is shown by the thick black line. We can see 3 chemicals in cluster 1 (red points)

and 1 chemical (blue points) in cluster 10 are miss clustered.
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Chapter 4

Apply FLMM with B-spline basis to
toxicity data

In this chapter, I need to locate the time intervals where significant difference exists between
clusters. Apart from cluster 1 and cluster 10, the number of chemicals in other clusters are very
small. In order to avoid difficulties arising from such an imbalance among group size, I group all
other clusters together as cluster 11. With the characteristic that different splines are dominant in
different time intervals, cubic B spline is chosen as basis to fit linear mixed effect model.

According to figure 4.1, no matter which cluster or which concentration, the TCRCs go up at
the beginning and go down later, some become stable at the end. The inflection points and the
time becoming stable are different for different TCRCs. But most inflection points are before 20
hours or between 30 and 40 hours, while some after 50 hours. Overall, if we split the x-axis into
4 intervals evenly, it is enough to describe the main feature of the trend because there are not too
many local wiggles along the TCRCs. Therefore, 4 cubic B spline basis functions are chosen to fit
the TCRCs.

By comparing 3 clusters concentration by concentration in figure 4.1, we can see in concentration
1, cluster 1 and cluster 10 are relatively easy to distinguish. Most of TCRCs in cluster 1 starting
going down at 20 hours, while TCRCs in cluster 10 never go down until the end, only becoming
stable after 50 hours. The trend of TCRCs in cluster 11 is complicated, with some TCRCs are
similar to those in cluster 1 and some are similar to cluster 10. In concentration 2, some TCRCs in
cluster 1 have similar trend to those in cluster 10, only a few with significant inflection between 20

and 30 hours. Most of TCRCs in cluster 11 are similar to those in cluster 10. In concentration 3,
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only 2 TCRCs in cluster 1 going down after reaching the peak, other TCRCs, no matter in which

cluster, become stable at the end without any clear downward tendency in the whole process.
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Figure 4.1: Each black curve corresponds to the average of a chemical TCRCs in a specific concen-

tration level. The red curve is the average of black curves

4.1 Model and model assumptions

We consider the following model

Y‘rcok(t) = MTk(t) + BTC(t) + Ereo + E(t)

40
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with 7 = 1,...,3 (concentrations), ¢ = 1,...,n. (chemicals), k& = 1,10 represents clusters, n. is

1,...,4 7=1,2
the number of chemicals used in the model, 0 = ’ represents replicates. Y;cok(t)

1,...3 7=3

represents the growth curve of concentration 7, chemical ¢’s replication o and cluster k at time
point t. p(t) is the fixed effect for cluster k concentration 7. B..(t) is a functional random effect
for concentration 7 chemical c. E;.(t) is a functional random effect for concentration 7 chemical
¢’ replication o. €(t) is white noise measurement error. The fixed effects and random effects are

represented as the linear combination of spline basis functions as following

4 4

Veeor() = 3 (Braasi(®) ) + 3 (wreiti())) + 3 (wreoiti(t)) + (t) (4:2)

i=1 =1 i=1

For each chemical ¢, we vectorize Y;.ox(t), ¢i(t) and €(t) in terms of ¢ to get the following format
Yekh = XBy + Ziuc + Zow, + € (4.3)

where y., = (Y1¢k(t1), oy Yiek (tn)y ceeenns , Yaer(t1), ...,chk(tn))T. X, Z, and Z, are design matrices
in terms of ¢. B, = {BruilT = 1,..,3,k = 1,10,i = 1,..,4} (unkown fixed). wu. = {uru|T =
1,4 7=1,2

1,.,3,i = 1,..,4} (unknown random). w. = {Wrewi|T = 1,..,3,0= vi=1,..,4}

(unknown random). w and w are mutually independent.

4.2 Estimation results from R

Since cluster 11 is a combination of different small clusters, the chemicals in cluster 11 have different
MOA, with some similar to those in cluster 1 and some similar to cluster 10. Multi-cluster clustering
can not perform well in this case. Thus, we still apply binary clustering to cluster 1 and cluster 10,
cluster 1 and cluster 11, cluster 10 and cluster 11 respectively.

Table 4.1 is the fixed effect summary of linear mixed model applied to data from cluster 1 and
cluster 10. I use contrast to make cluster 1 as the baseline when I fit the model. In this table,
the Intercept corresponds to the intercept of cluster 1 and Clust 10 corresponds to the difference
between the intercept of cluster 1 and cluster 10. Meanwhile, Concl:spline[, 1] represents the slope

of cluster 1 concentration 1 on the first basis function , while Clust10:Concl:spline[, 1] corresponds
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fixed effects: Estimate | Std. Error | t value Pr(> [t])
) 3.74510 0.28393 13.190 <2e-16 ***
[, 1] -2.79439 0.28525 -9.796 | 3.35e-16 ***
[, 1] -2.87917 0.28525 -10.094 | < 2e-16 ***
Conc3:spline], 1] -2.88741 0.28575 -10.105 | < 2e-16 ***
Concl:spline], 2] -0.88395 0.34564 -2.557 0.011409 *
Conc2:spline|, 2] -0.39924 | 0.34564 -1.155 0.249662
[, 2]
[, 3]
[, 3]
[, 3]
[, 4]

(Intercept
Concl:spline|,
Conc2:spline|,

Conc3:spline|, 2 -0.79934 0.34514 -2.316 0.021747 *
Concl:spline], -2.29368 0.49839 -4.602 | 8.09e-06 ***
Conc2:spline|, -0.24343 0.49839 -0.488 0.625858
Conc3:spline|, 1.36286 0.50001 2.726 0.007072 **
Concl:spline|, -2.11754 0.40142 -5.275 | 8.18e-07 ***
Conc2:spline], 4] -1.04028 0.40142 -2.592 0.011045 *
Concl:spline], 1]:Clust10 | -0.04331 0.04424 -0.979 0.330145
Conc2:spline|, 1]:Clust10 | 0.04764 0.04424 1.077 0.284294
Conc3:spline], 1]:Clust10 | 0.03985 0.04709 0.846 0.399053
Concl:spline|, 2]:Clust10 | -1.19533 0.31876 -3.750 | 0.000302 ***
Conc2:spline|, 2]:Clust10 | -0.84400 | 0.31876 -2.648 | 0.009464 **
Conc3:spline|, 2]:Clust10 | -0.27157 | 0.32055 -0.847 0.398932
Concl:spline|, 3]:Clust10 | 2.85165 0.66240 4.305 | 4.03e-05 ***
Conc2:spline|, 3]:Clust10 | 2.63521 0.66240 3.978 | 0.000135 ***
Conc3:spline], 3]:Clust10 | 1.39085 0.66327 2.097 0.038609 *
Concl:spline], 4]:Clust10 | 1.73893 0.45890 3.789 | 0.000264 ***
Conc2:spline|, 4]:Clust10 | 1.60637 0.45890 3.500 | 0.000706 ***
[ 4]

3
3
3
4
4
Conc3:spline[, 4]:Clust10 | 0.67481 0.45918 1.470 0.144938

Table 4.1: Summary of linear mixed effect model (cluster 1 VS cluster 10)

to the difference between the slope of cluster 1 concentration 1 on the first basis function and that
of cluster 10. Reading the table this way, we can locate the significant differences between two clus-
ters by focusing on Concl:spline], 2]:Clust10, Conc2:spline[, 2]:Clust10, Concl:spline[, 3]:Clust10,
Conc2:spline|, 3|:Clust10, Conc3:spline[, 3]:Clust10, Concl:spline[, 4]:Clust10 and Conc2:spline],
4]:Clust10.

We can get a preliminary conclusion that chemicals in cluster 1 and cluster 10 show more
difference when the solution concentration level is at least 2. For both two concentration levels,
the second, third and fourth basis functions are directions that correspond to cluster differences,
which means, the significant difference happens after the first phase. According to the estimates of
significant terms, we can see the coefficients on the second spline of cluster 10 are less than those of
cluster 1, which means the cells grow faster in cluster 1 chemicals at the beginning. But on the last
two splines, the coefficients of cluster 10 are much greater. This coincides with what we observed

in figure 4.1 that chemicals in cluster 1 kill the cells more efficiently in the second half phase.
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4.3 Reconstruct the TCRCs

I use the estimation Bk, pridection u. and model (4.2) to reconstruct the TCRCs. Figure 4.2 show
three chemicals as examples. Black curves correspond to the average of replications of a specific
concentration, while the colored curves are predicted TCRCs without using replication effects. It

shows that linear mixed effect model with B spline basis perform well in capturing the overall

feature of the TCRCs.
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Figure 4.2: Raw TCRCs VS predict TCRCs

4.4 Binary clustering

chemical_28

— concZ

concl

conca
predict

[T=T /—\ o —

20 40 &0

time

Before doing clustering, we need to change the model (4.3) to the following model

The only difference between model (4.3) and (4.4) is that model (4.4) doesn’t contain cluster indices
k, thus 8 = {Br|T = 1,..,3,i = 1,..,4}. Then, the coefficients of chemical effects are extracted as
input to do clustering. For each chemical, the number of coefficients is 12, corresponding to the

length of u, =

{trei|T =1,..,3,1 =1,..,4}. By this way, the dimension of input is reduced.

Ye=XB+ Ziuc + Zow. + €

43




4.4.1 Clustering by k-means

Cluster 1 VS cluster 10

By applying all possible combinations of components in u. and comparing the clustering results,
we find that the best clustering result is given by table 4.2, where 4 chemicals in cluster 1 and 1

chemical in cluster 10 are miss clustered and the overall accurate rate is 85.29%.

1 2
clustl | 17 4
clust10 | 1 12
Accurate Rate : 85.29%

Table 4.2: Best clustering result (cluster 1 VS cluster 10)

Table 4.3 shows the three combinations as input that can obtain the best clustering result. The
dimension in the table refers to the dimension of the input into K-means algorithm. The accurate
rate is obtained by using the number of correctly-clustered chemicals divided by the total number
of chemicals of cluster 1 and cluster 10. Even though the three combinations in table 4.2 give us
the best clustering result, their values of BSS/TSS are different, where the first combination gives
the highest value (74.9%). It means that when using the coefficients on the fourth spline of the

TCRCs in concentration 1 and 2, K-means can give us the best result.

combination dimension | accurate rate | BSS/TSS
Concl:spline|, 4], Conc2:spline], 4] 2 85.29% (29/34) 74.9%
Concl:spline|, 2], Conc2:spline], 4] 2 85.29% (29/34) 45.0%
Conc3:spline|, 3], Conc2:spline], 4] 2 85.29% (29/34) 48.5%

Table 4.3: Different inputs in K-means and the corresponding results (cluster 1 VS cluster 10)

The following 2-dimensional plot of coefficients on fourth spline for concentration 1 and con-
centration 10 (figure 4.3) can demonstrate the separation clearly, where the points of cluster 1 are
around the lower left corner but those of cluster 10 are in the upper right corner. Most coefficients
of cluster 1 on fourth spline are less than 1, no matter for concentration 1 or concentration 2,

whereas for cluster 10, they are greater than 1.
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Figure 4.3: 2-dimensional plot of coefficients (cluster 1 VS cluster 10)

The explanation of figure 4.3 coincides with what we observed in figure 4.1 when comparing
cluster 1 and cluster 10 concentration by concentration. For concentration 1, most TCRCs in cluster
1 end up going down to the starting level, while TCRCs in cluster 10 go up all the way and become
stable above 2 at the end. For concentration 2, even though the TCRCs for the two clusters are
much higher than those in concentration 1, the difference between the two clusters is still obvious
in the last phase, with most of TCRCs in cluster 1 end up below 4 while in cluster 10 above 4.
That is why the coefficients on the fourth spline for cluster 1 tend to be less than those for cluster
10. For concentration 3, the difference almost disappear since the concentration of the solution is
too dilute to exert toxicity on cells. It is also noticed that even though the difference between the
two clusters are obvious for most TCRCs , a few TCRCs in cluster 1 have the similar trend to
cluster 10, and 1 TCRC in cluster 10 is far from others but is similar to cluster 1. That is why 4
chemicals in cluster 1 and 1 chemical in cluster 10 are miss clustered. The miss-clustered chemicals
are the same to what we found in chapter 3, which are “CRT0044876”, “NU7026”, “Cordycepin”
and “OchratoxinA” of cluster 1 and “FAKInhibitor14” in cluster 10.

Cluster 1 VS cluster 11

Similarly, the coefficients of all possible combinations of components in u. of cluster 1 and cluster
11 are chosen as input to do clustering and the best clustering result is given by table 4.4, where

5 chemicals in cluster 1 and 2 chemicals in cluster 11 are miss clustered and the overall accurate
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rate is 86.54%.

1 2
clustl | 16 5
clustll | 2 29

Accurate Rate : 86.54%

Table 4.4: Best clustering result (cluster 1 VS cluster 11)

Table 4.5 shows the four combinations as input that can obtain the best clustering result.
According to the values of BSS/TSS, the two combinations don’t have significant difference. We
find that they have common terms Conc2:spline], 2] and Conc3:spline], 4], which means by using the
coefficients on the second spline of the TCRCs in concentration 2 and fourth spline in concentration

3, K-means can give us the best result.

combination dimension | accurate rate | BSS/TSS
Cone2:spline|, 2|, Conc3:spline], 4] 2 86.54% 38.7%
Conc2:spline|, 2], Conc3:spline[, 4], Conc3:spline], 1] 3 86.54% 38.6%

Table 4.5: Different inputs in K-means and the corresponding results (cluster 1 VS cluster 11)

The following 2-dimensional plot of coefficients on second spline in concentration 2 and fourth
spline in concentration 3 (figure 4.4) can demonstrate the separation clearly, where the points of

cluster 1 are on the lower right side and those of cluster 11 are on the upper left.

* clust1 *
clust11 '

Conc?2 spline[ 4]
-

Conc2 spline[,2]

Figure 4.4: 2-dimensional plot of coefficients (cluster 1 VS cluster 11)

By comparing cluster 1 and cluster 11 concentration by concentration. Most TCRCs of the
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two clusters have similar trend in concentration 1, which means when the concentration is strong,
chemicals in the two clusters have similar effects on killing cells. In concentration 1, most TCRCs in
the two clusters go up at the beginning and then go down until end up at round the starting level.
For both clusters, some of the inflection points are a little bit earlier than 20 hours and some are a
little bit later. In concentration 2, even though the overall trend of the two clusters are similar with
increasing in the first half and then going a little down, the increasing patterns are different for the
two clusters. The TCRCs in cluster 1 before 30 hours is concave down, while in cluster 11 is concave
up. It means that the increasing rate of CI in cluster 1 is bigger than that in cluster 11, but it slows
down later. Between 0 to 3 hours, most TCRCs in cluster 11 are below those in cluster 1. Thus, the
coefficients of cluster 11 on second spline are much less than cluster 1. In concentration 3, the three
clusters have similar trend because of the dilute solution of chemicals. However, at the very end,
most TCRCs in cluster 1 are below 4 and more than half of the TCRCs in cluster 11 are above 4.

Thus, adding the coefficients of the fourth spline in concentration 3 can increase the clustering rate.

Cluster 10 VS cluster 11

The best clustering result of cluster 10 and cluster 11 is given by table 4.6, where only 2 chemicals

in cluster 10 and 6 chemicals in cluster 11 are miss clustered and the overall accurate rate is 81.82%.

1 2
clust10 | 11 2
clustll | 6 25
Accurate Rate : 81.82%

Table 4.6: Best clustering result (cluster 10 VS cluster 11)

Table 4.7 shows the two combinations as input that can obtain the best clustering result.
According to the values of BSS/TSS, the second combination is better. Actually, the dominant
direction is Concl:spline[, 4]. When only using the coefficients of Concl:spline|, 4], the accuracy

rate attains 79.5% and BSS/TSS is 72.5%.

combination dimension | accurate rate | BSS/TSS
Concl:spline[, 4], Conc2:spline], 2] 2 81.82% 59.6%
Concl:spline|, 4], Concl:spline[, 3], Conc3:spline], 3] 3 81.82% 62.6%

Table 4.7: Different inputs in K-means and the corresponding results (cluster 10 VS cluster 11)

The following 1-dimensional plot of coefficients on the fourth spline for concentration 1 (figure
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4.5) can demonstrate the separation clearly, where the points of cluster 10 are on the right x-axis

and those of cluster 11 are on the left. The boundary is around 0.5.

0.7

"] = clust1o
clust11

03 04 05 08

Conc1 splinel[, 4]

Figure 4.5: 1-dimensional plot of coefficients (cluster 10 VS cluster 11)

The explanation of figure 4.5 can be confirmed by comparing cluster 10 and cluster 11 concen-
tration by concentration in figure 4.1. For concentration 2 and concentration 3, the two clusters
have the similar patterns. For concentration 1, apart from several TCRCs in cluster 11 going up all
the way, which are similar to those in cluster 10 thus miss clustered, others have totally different
trend in the second half phase. TCRCs in cluster 10 go up a little after 35 hours and then become
stable, but most TCRCs in cluster 11 go down after 35 hours, no matter the inflection happens at
very early or upon the middle time. That is why the coefficients on the fourth spline for cluster 10

tend to be larger than most of those for cluster 11.

4.4.2 Clustering by SOM

When clustering TCRCs in cluster 1 and cluster 11, an exhaustive search is used through all possible
combinations of SOM parameters and coefficients as input, and then the summary of the overall
accuracy rate is obtained in table 4.8, where the “dimension of input” represents how many terms

we choose as input to do clustering.
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dimension of input min Q1 median | mean Q3 max
1 50.00% | 57.69% | 61.54% | 62.25% | 67.31% | 82.69%
2 50.00% | 57.69% | 65.38% | 64.23% | 69.23% | 84.62%
3 50.00% | 57.69% | 65.38% | 64.80% | 71.15% | 86.54%
4 50.00% | 59.62% | 65.38% | 65.06% | 71.15% | 88.46%
5 50.00% | 59.62% | 65.38% | 65.20% | 69.23% | 88.46%
6 50.00% | 59.62% | 65.38% | 65.18% | 69.23% | 88.46%
7 50.00% | 59.62% | 65.38% | 65.15% | 69.23% | 86.54%
8 50.00% | 61.54% | 65.38% | 65.26% | 69.23% | 86.54%
9 50.00% | 61.54% | 65.38% | 65.34% | 69.23% | 86.54%
10 50.00% | 61.54% | 65.38% | 65.78% | 69.23% | 86.54%
11 50.00% | 61.54% | 65.38% | 65.90% | 71.15% | 80.77%
12 55.77% | 62.98% | 65.38% | 65.87% | 69.71% | 75.00 %

Table 4.8: Accuracy rate summary (cluster 1 VS cluster 11)

It is seen that the highest accuracy rate 88.46% is higher than that obtained from K-means.
Among all combinations that can obtain the accuracy rate 88.46%, Conc2:spline[,2] is the common
term. This coincides what we found in previous section that Conc2:spline[,2] is the most important
direction where the significant difference between cluster 1 and cluster 11 lies in.

The similar exhaustive search is applied to clustering clusting cluster 1 and cluster 10, cluster 10
and cluster 11. The best accuracy rate is 91.18% for the former and 84.09% for the latter. Among
all combinations that can obtain the best accuracy rate when clustering cluster 1 and cluster 10,
Concl:spline[, 2], Conc2:spline], 3] and Conc2:spline|, 4] are the common terms, and when clustering
cluster 10 and cluster 11, Concl:spline[,4] is the common term. Those important directions are the
same to what were found in previous section by using K-means.

The clustering results given by K-means and SOM and the corresponding inputs give us impor-
tant information of distinguishing binary clusters. The interesting concentrations and time intervals
are located in the process of model fitting and clustering. The MOA difference between chemicals
in cluster 1 and cluster 10 lies in the last phase when using chemical solution with concentration 1
and 2. For cluster 1 and cluster 11, the best clustering can be obtained by applying the moderate
concentration and the difference mainly exists in the first half phase. However, cluster 10 and
cluster 11 are the most hard to distinguish, because cluster 11 is the combination of several small
clusters and the MOA of some chemicals in it is more similar to that in cluster 10. Apart from
those chemicals, the difference between cluster 10 and cluster 11 lies in the second half phase of

when applying the strongest chemical solution.
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4.5 Multi-cluster clustering

4.5.1 Clustering by k-means

The best clustering result for 3 clusters is given by table 4.9, where 5 chemicals in cluster 1, 1
chemical in cluster 10 and 8 chemicals in cluster 11 are miss clustered and the overall accurate rate

is 78.46%.

1] 2 3
clustl | 16 | 5 0
clustl0 | 0 | 12 1
clustll | 2 | 6 23
Accurate Rate : 78.46%

Table 4.9: Best clustering result by K-means (cluster 1 VS cluster 10 VS cluster 11)

Table 4.10 shows the combination as input that can obtain the best clustering result. Other
combinations with more terms are based on the combination in Table 4.10 and when the dimension

becomes higher, the value of BSS/TSS is smaller.

combination dimension | accurate rate | BSS/TSS
Concl:spline|, 4], Conc2:spline[, 2], Conc3:spline], 4] 2 78.46% 58.5%

Table 4.10: Different input in Kmeans (cluster 1 VS cluster 10 VS cluster 11)

Since three dimensional plot is hard to observe the separation, we choose the dominant combina-
tion - Concl:spline[,4] and Conc2:spline[,2], that can obtain 66.15% clustering rate. The following
2-dimensional plot of coefficients on the fourth spline for concentration 1 and second spline for
concentration 2 (figure 4.7) can demonstrate the separation. According to figure 4.7 (a), most of
the points of cluster 1 (red points) are around the lower right corner and the points of cluster
11 (green points) are around the lower left corner. Most points of cluster 10 (blue points) are
in the middle in terms of x-axis and in the upper half of the y-axis with some points from the
other two clusters mixed in this area. Conc2:spline[,2] is the most important direction that sepa-
rates cluster 1 from the other two and the difference between cluster 10 and the other two mainly
lies in Concl:spline[,3]. Some points from cluster 1 and cluster 11 with much larger coefficients
on Concl:spline[,3] are hard to distiguish from cluster 10. By comparing the two plots, we can
see many points in cluster 11 (green points) are miss clustered to cluster 1 and clusterl0. Some
miss clustered points are corrected by adding the third direction - Conc3:spline[,4] as input to do

clustering.
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Figure 4.6: 2-dimensional plot of coefficients (cluster 1 VS cluster 10 VS cluster 11)

The explanation of figure 4.7 coincides with the conclusions of binary clustering and what we
observed in figure 4.1. In binary clustering setting, Conc2:spline[,2] is one of the most important
directions that distinguishes cluster 1 and cluster 10 from cluster 11. Concl:spline[,4] is one of the
most important directions that distinguishes cluster 10 from cluster 1 and cluster 11. Con3:spline[,4]
is one of the most important directions that distinguish cluster 1 and cluster 11, that is why some
points miss clustered from cluster 11 to cluster 1 in figure 4.7 can be corrected by adding the
coefficients of Con3:spline[,4]. In figure 4.1, for concentration 1, most TCRCs in cluster 10 go up
all the way and become stable at the end while most TCRCs in cluster 1 and cluster 11 end up
at about the starting level apart from a few TCRCs with trend similar to cluster 10. Thus, the
points of cluster 10 are much higher in terms of Concl:spline[,4] with some points from cluster 1
and cluster 11 mixed in. For concentration 2, a few TCRCs in cluster 1 and cluster 11 have obvious
inflection points which cluster 10 doesn’t have, but the overall trend of the three clusters are similar
with increasing in the first half and then going a little down. However, in the first half phase, the
increasing pattern of cluster 1 is different from the other two. Most TCRCs in cluster 1 before 30
hours are concave down, while in cluster 10 and cluster 11 are a little concave up. It means that
the increasing rate of CI in cluster 1 is bigger than that in cluster 10 and cluster 11, but it slows
down later. Thus, the coefficients on Conc2:spline[,2] of cluster 1 are larger than the other two. For
concentration 3, most TCRCs in cluster 1 are below 4 at the end but more than half of the TCRCs

in cluster 11 are above 4, even though when the concentration is strong enough. Thus, adding the
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coefficients of Con3:spline[,4] can distinguish some TCRCs in cluster 1 and cluster 11 that are hard

to separate when the concentration is strong enough.

4.5.2 Clustering by SOM

When clustering TCRCs of three clusters, an exhaustive search is used through all possible combi-
nations of SOM parameters and coefficients as input, and then the summary of the overall accuracy

rate is obtained in table 4.11.

dimension of input min Q1 median | mean Q3 max

36.92% | 46.15% | 49.23% | 49.27% | 52.31% | 64.62%
36.92% | 47.69% | 50.77% | 51.47% | 55.38% | 72.31%
38.46% | 49.23% | 52.31% | 52.55% | 55.38% | 76.92%
38.46% | 49.23% | 52.31% | 53.00% | 56.92% | 75.38%
38.46% | 49.23% | 52.31% | 53.35% | 56.92% | 75.38%
40.00% | 49.23% | 52.31% | 53.55% | 56.92% | 76.92%
38.46% | 49.23% | 52.31% | 53.71% | 56.92% | 73.85%
38.46% | 49.23% | 52.31% | 53.71% | 56.92% | 75.38%
41.54% | 49.23% | 52.31% | 53.56% | 56.92% | 72.31%
41.54% | 47.69% | 52.31% | 53.21% | 56.92% | 73.85%
41.54% | 47.31% | 50.77% | 52.55% | 56.92% | 70.77%
46.15% | 47.31% | 50.77% | 52.12% | 55.38% | 64.62%
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Table 4.11: Accuracy rate summary (cluster 1 VS cluster 10 VS cluster 11)

It is seen that the highest accuracy rate 76.92%. Among all combinations that can obtain the
best accuracy rate, Concl:spline[,4], Conc2:spline[,2] and Conc2:spline[,4] are the common terms.
This almost coincides what we found in previous section by K-means. Then, we show an example
of SOM clustering result in the 2-dimensional SOM plot in figure 3.14 with parameters that can

obtain the best clustering result.
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Figure 4.7: An example of clustering result by SOM

1 2 3
clustl | 17 | 4 0
clust10 | O | 12 1
clustll | 3 | 7 21
Accurate Rate : 76.92%

Table 4.12: Best clustering result by SOM (cluster 1 VS cluster 10 VS cluster 11)

The separation is shown by table 4.12 and the thick black line in figure 4.7. The big difficulty
when doing multi-cluster clustering is that some chemicals in cluster 1 and cluster 11 have very
similar MOA to those in cluster 10. Thus, 4 chemicals in cluster 1 and 7 chemicals in cluster 11

are miss clustered into cluster 10.
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Chapter 5

Discussion and summary

A challenge of clustering functional data is that the observations are curves with distinct shapes,
but not just points in Euclidean space. Thus, with limited sample size but high-dimensional data
set, the results of clustering depend on what feasible model is chosen to fit the data. A good
model can help clustering algorithms perform well by acting as a transformation of the curves
that stretches the data in the direction corresponding to true cluster differences. The novelty of
this paper is applying linear mixed effect model on the functional TCRCs before using traditional
clustering algorithms, including a functional principal component based mixed model and a model
with spline basis. Compared with linear model with only fixed effects, mixed model is able to
effectively reduce the number of parameters need to be estimated by switching some factors from
fixed effects to random. Therefore, linear mixed effect model is very suitable for our case as
the effects of chemical within each concentration can be regarded as random deviation from the
concentration mean. The two models both perform well in extracting direction information from
different aspects to improve MOA clustering results.

The first linear mixed effect model takes advantage of functional principal component analysis,
thus fully decomposes the variability induced from different sources by only using twelve FPCs
as basis. Therefore, we can clearly know the amount of variation of chemicals and neglect the
redundant information. A proper product of FPCs and corresponding eigenvalues can describe
where in the TCRCs variability occurs between chemicals, including overall variability and local
features. The process of utilizing the truncated FPCs to reconstruct the TCRCs gives a visible
display of each chemical effect, which provides us a way to do preliminary clustering. The optimal

binary clustering rate of cluster 1 and 10 from K-means and Self-organising mapping is 88.24%
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by only using the scores on two FPCs. The dominant direction where the difference accurs is the
first FPC of concentration2-specific chemical effects and the second FPC of concentration provides
additional local information to distinguish some tricky chemicals. Carrying clustering on FPC basis
is a useful way to determine the shape difference between clusters both in overall trend and critical
local features.

The aim of fitting the other linear mixed effect model with spline basis is locating the time
intervals where the difference occurs, since each spline function is dominant in a time interval. By
specifying a cluster as reference level in the model, the directions with significant difference are
located preliminarily. Then, by choosing the coefficients on any possible combinations of the signif-
icant directions to do clustering, the optimal clustering result and the corresponding directions can
be determined by clustering accurate rate and BSS/TSS. Because group sizes for other clusters,
apart from cluster 1 and 10, are much smaller, they are gathered as a third big group-group 11.
For binary clustering, the accurate rate in the range of 79.55% to 100% is obtained. The impor-
tant directions, on which clusters are distinguishable, are determined at the same time. Another
impressive result is that multi-cluster clustering on spline basis performs well with accurate rate
73.85% and the important directions coincide with those in binary clustering. Overall, the MOA
difference between chemicals in cluster 1 and cluster 10 lies in the last phase when using chemical
solution in stronger concentration. For cluster 1 and cluster 11, the difference mainly exists in the
first half phase of moderate concentration. The difference between cluster 10 and cluster 11 mainly
lies in the second half phase of when applying the strongest chemical solution.

The MOA clustering results and the important directions found in the study have practical
meaning in toxicity research. However, it is desirable to perform a reliable validation with more
data available. In terms of future analysis, the information, especially the variance, from the linear
mixed effect model can be applied to supervised methodology by constructing the distribution of

known-cluster chemicals.
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