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Abstract

Actor-Critics are a popular class of algorithms for control. Their ability to

learn complex behaviours in continuous-action environments make them di-

rectly applicable to many real-world scenarios. These algorithms are composed

of two parts – a critic and an actor. The critic learns to critique actions taken

by the actor. The actor, a policy, uses this criticism to learn to attain higher

rewards. Generally, this policy is improved by matching it to the Boltzmann

distribution over action values. In this thesis, we introduce an alternative

policy update, based on the cross-entropy method (CEM). This Conditional

CEM (CCEM) applies the CEM to maximize an action-value critic condi-

tioned on state. The algorithm works by initializing the actor policy as a

wide distribution and iteratively concentrating on highly valued actions by

using a maximum likelihood update toward the top percentile of an empir-

ical action distribution. This empirical action distribution is generated by

an additional, entropy regularized proposal policy that also concentrates on

maximally valued actions, although more slowly. Under ideal conditions, the

CCEM guarantees policy improvement and tracks the expected solution of the

CEM across states. Finally, we introduce a new actor-critic algorithm called

Greedy Actor-Critic that uses the CCEM for policy improvement. We empiri-

cally show that Greedy Actor-Critic can perform better than Soft Actor-Critic

on a suite of classic control environments and is somewhat less sensitive to

hyperparameters than SAC is on this environmental suite.
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Chapter 1

Introduction

Reinforcement learning (RL) is the study of sequential decision making. The

canonical description is that of some intelligent agent interacting with its en-

vironment. The interaction is not without purpose. Rather, the agent receives

rewards for selecting actions, and it is this cumulative reward signal that the

agent seeks to maximize over time.

The method by which the reward signal is maximized is through the agent’s

policy, which is a function mapping environmental states to probability distri-

butions over actions. By learning an appropriate policy, the agent can learn

to take actions which maximize cumulative future rewards. Two classes of al-

gorithms exist for learning this policy. Value-based methods learn this policy

indirectly. Policy-search methods actively search the space of policies to find

one which maximizes cumulative future rewards.

Benefits exist for both approaches. Arguably, value-based methods are

faster to train in discrete-action environments, where the number of available

actions is finite. Value-based methods are also better understood than policy-

search methods. Compared to value-based methods, policy-search methods are

often harder to work with due to the sensitivity of their performance (Hen-

derson et al., 2018; Islam et al., 2017; Neumann et al., 2022; Pourchot et

al., 2019). Even so, policy-search methods can find better stochastic policies

than value-based methods (Sutton et al., 2018). Furthermore, the application

of value-based methods to continuous-action environments is not straightfor-

ward, and we must turn to policy-search methods in these cases. Because our
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world is inherently continuous, policy-search methods are an important tool

for real-world learning and are the subject of this thesis.

The study of policy-search methods has produced many successful algo-

rithms over the years. Many of the earliest reinforcement learning algorithms

were policy-search algorithms which could solve a variety of now considered

simple problems (Barto et al., 1983; Sutton, 1984; Williams, 1992; Williams

et al., 1991; Witten, 1977). Recently, there has been a surge of algorithmic

development in this area. Many algorithms are able to effectively solve com-

plex simulations (Abdolmaleki et al., 2018; Ciosek et al., 2018, 2020; Degris

et al., 2012b; Fujimoto et al., 2018; Haarnoja et al., 2018, 2019; Lillicrap et al.,

2016; Mnih et al., 2016; Schulman et al., 2015, 2017; Silver et al., 2014). Oth-

ers have been used effectively in robotic control (Haarnoja et al., 2018, 2019;

Khan et al., 2020).

The class of actor-critic algorithms has been especially popular recently.

This class of algorithms learns an actor, which interacts with the environment,

and a critic, which critiques the actor. The actor learns which actions lead to

maximum reward through the constructive criticism of the critic. These algo-

rithms have become popular because they are sample efficient and can learn

in real-time, in contrast to other forms of policy-search which can only learn

once the environmental interaction is over. Actor-Critic algorithms are espe-

cially well-suited for control problems where actions are naturally continuous.

Since our world is inherently continuous, actor-critic algorithms are useful for

solving real-world control problems.

Despite their popularity, actor-critic algorithms possess a few limitations.

The policy that is learned is generally restricted to a class of distributions, and

an optimal policy may not exist in this class of distributions. In addition, the

critic must be sufficiently accurate in order to improve the actor adequately.

Perhaps the most pressing issue is that these algorithms are fragile and hard to

use. Actor-Critic algorithms generally exhibit sensitivity to hyperparameters

(Duan et al., 2016; Haarnoja et al., 2018, 2019; Henderson et al., 2018; Islam

et al., 2017; Neumann et al., 2022; Pourchot et al., 2019). Because of this, hy-
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perparameter selection for these algorithms is generally both computationally

expensive and time consuming. Further exacerbating this issue, a given hyper-

parameter setting for an algorithm may work well on one environment but not

another. Even with a well-tuned hyperparameter setting, these algorithms can

exhibit high variability in performance (Clary et al., 2018; Henderson et al.,

2018; Islam et al., 2017). Finally, small, code-level optimizations have been

shown to drastically affect the performance of these algorithms; performance

improvements of some algorithms may simply be due to implementation and

not novel algorithmic techniques(Engstrom et al., 2020; Tomar et al., 2020).

Better understanding actor-critic algorithms is essential for addressing these

limitations and progressing in algorithmic development.

To learn a policy, many policy-search algorithms utilize action-value func-

tions. An action value function measures the value of an action in a given

state, defined to be the expected sum of future rewards received after taking

that action in a given state. We typically learn an approximation to each ac-

tion’s true value using TD learning (Sutton, 1988). If the agent can estimate

action values, then it can learn to take highly valued actions more often.

The operator that changes the agent’s policy to take highly valued actions

more often is called the greedification or policy improvement operator. Many

policy-search and actor-critic algorithms use a greedification operator that per-

forms distribution matching, whereby the learned policy is gradually matched

to some target distribution that is known a priori to be performant (Chan

et al., 2021). Given an appropriate selection for a target policy, the policy

improvement operator can guarantee policy improvement: the updated policy

will achieve at least the same amount of reward over time as that achieved by

the previous policy, if not more. One popular choice of target policy is the

Boltzmann policy, which selects an action proportional to the exponential of

that action’s value. An improvement operator based on the Boltzmann policy

can guarantee policy improvement (Chan et al., 2021; Haarnoja et al., 2018,

2019).

This Boltzmann policy does have several limitations. The policy improve-

3



ment guarantee is a theoretical guarantee that requires certain assumptions

to be satisfied – assumptions that are almost never satisfied in practice. Even

if all assumptions are satisfied, this guarantee exists for a slightly modified

problem rather than for the problem which we actually care about in practice.

Although this modified problem can be more easily solved due to increased

exploration (Mei et al., 2019; Ziebart et al., 2008) and smoother optimization

landscapes (Ahmed et al., 2019; Shani et al., 2020), it introduces a trade off

between finding the optimal policy on the original problem and an improved

learning process.

This thesis introduces a new greedification operator for policy-search based

on the Cross-Entropy Method (Rubinstein, 1997, 1999, 2001) (CEM). The idea

is intuitive and simple: sample many actions and take the most valuable of

these actions more often. We call this greedification operator the Conditional

CEM (CCEM), since it is somewhat equivalent to the CEM applied on a

state-by-state basis. The CCEM slowly concentrates on actions that result in

the highest cumulative future reward. The CCEM is agnostic to the policy

parameterization or form of the action-value function; it is modular and can be

inserted to learn a policy in any existing actor-critic algorithm. In this thesis,

we introduce a specific algorithm that uses the CCEM to learn its policy, called

Greedy Actor-Critic.

The CCEM has several advantages which we will explore throughout the

remainder of this thesis, and which we summarize here. First, the CCEM is a

0-order, global optimization strategy; the algorithm explicitly searches for the

global maximum of a non-concave action-value function and can be used to

optimize non-differentiable action-value functions, as in the case of discrete-

action environments. Similar to the Boltzmann policy, the CCEM provides

guaranteed policy improvement. In contrast to the Boltzmann policy, this

guarantee is for both the original problem and the entropy regularized problem.

Finally, to prevent policy collapse, CCEM incorporates entropy regularization

through a proposal policy used only within the CCEM update. The proposal

policy selects which actions the algorithm should reason about and update
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with; the entropy regularization ensures the proposal policy is wide, providing

a broad range of actions to reason about while still concentrating on the actions

of maximal value over time. Furthermore, as we show empirically, the CCEM

can reduce the sensitivity of actor-critic algorithms to certain hyperparameters

such as the entropy regularization scale.

Contributions.

• We develop a novel policy improvement operator, the Conditional Cross-

Entropy Method (CCEM), for actor-critic algorithms which is designed

to reduce the hyperparameter sensitivity of these algorithms, particularly

the entropy scale. The CCEM guarantees policy improvement when the

true action-value function is known. The CCEM tracks the expected

CEM optimizer across states.

• We develop a novel actor-critic algorithm, Greedy Actor-Critic, which

uses the CCEM for policy improvement and performs well empirically

on a small classic control suite. Furthermore, Greedy Actor-Critic ex-

hibits lower hyperparameter sensitivity than two baseline algorithms,

Soft Actor-Critic and Vanilla Actor-Critic, on this suite of environments.
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Chapter 2

Background

In this section, we provide a summary of fundamental concepts and notations

used throughout this thesis. In the first section, we describe the RL problem

formulation, objectives, and value functions. After that, we discuss policy

optimization, one of the major forms of model-free reinforcement learning for

control. The next section discusses the cross-entropy optimization algorithm,

which is the foundation upon which our novel policy greedification operator

is built upon. Readers familiar with reinforcement learning can skip to Sec-

tion 2.4. Readers familiar with the cross-entropy optimization method can

skip Section 2.4.

2.1 The Reinforcement Learning Framework

In the reinforcement learning framework, an intelligent agent interacts with

an environment by taking actions which alter the environmental state. Upon

taking an action in some state, the agent receives a scalar reward, and the

environment transitions to a new state. Informally, the agent’s goal is to

maximize the sum of rewards it receives over time. In this section, we formalize

this goal as well as solution methods for reaching this goal.

2.1.1 Markov Decision Processes

In a formal mathematical sense, the interaction between the agent and envi-

ronment is formalized as a Markov Decision Process (MDP). MDPs can be
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described as a tuple (S, d0,A,R,P, γ). S denotes the set of all environmental

states. The state which the MDP starts in is drawn from a starting state

distribution d0. A denotes the set of all, possibly multi-dimensional, actions.

R : S×A×S→ R is the reward function, where R(s, a, s′) denotes the reward

for taking action a in state s and transitioning to state s′1. We assume that

the rewards are bounded rmin ≤ R(s, a, s′) ≤ rmax for some rmin, rmax ∈ R.

P : S× A× S→ [0,∞) is the one-step state transition dynamics. Finally,

γ ∈ [0, 1] is the discount factor which determines the importance of delayed,

future rewards.

The agent-environment interaction is as follows. At each discrete timestep

t, the agent finds itself in some environmental state St ∈ S. Based on this

state, the agent selects an action At ∈ A, which is drawn from its policy

π(· | St), a function which maps states to distributions over actions. Upon

taking action At, the environment transitions the agent to a new state St+1

determined by the transition dynamics P and provides the agent with a reward

Rt+1 = R(St, At, St+1).

2.1.2 The Optimization Problem

In an MDP, rewards are given based on the state the agent is in and the action

it takes. The return is defined as the infinite sum of discounted2 future rewards

after timestep t:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑︂
k=0

γkRt+k+1 (2.1)

where γ is a discount factor.

We consider two different problem formulations. Episodic MDPs are those

which naturally break the agent-environment interaction into disjoint episodes,

whereas in continuing MDPs, the agent-environment interaction goes on in-

definitely with no end. In order for Equation 2.1 to be well-defined in episodic
1We assume rewards are deterministic. In general, rewards may be stochastic, and the

reward for taking action a in state s and transitioning to state s′ may be drawn from the
distribution R(s, a, s′).

2We ignore the average reward formulation of RL in this thesis.
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environments, we consider episode termination to be the entering of an ab-

sorbing state which transitions only to itself and returns only a reward of 0.

In episodic MDPs, γ ∈ [0, 1]. In continuing MDPs, we must restrict γ to be in

[0, 1) in order for Equation 2.1 to be well-defined.

Informally, the goal of the agent is to find some policy that attains maxi-

mum expected return. The reward hypothesis (Sutton et al., 2018) puts this

more formally:

That all of what we mean by goals and purposes can be well thought

of as the maximization of the expected value of the cumulative sum

of a received scalar signal (called reward).

In a more mathematical sense, we denote π∗ as a non-unique policy that attains

maximum expected return, and we refer to it as an optimal policy. Mathemat-

ically, the agent’s goal is to solve the following optimization problem:

J(π)
.
= Eπ[Gt] (2.2)

π∗ = argmax
π

J(π) (2.3)

where the expectation is with respect to the agent’s policy π and implicitly

with respect to the start state distribution d0 and the transition dynamics P.

2.1.3 Value Functions

To solve the maximization problem in Equation 2.3, many RL algorithms use

value functions. State value functions measure the value of a state s ∈ S, which

is the expected return after arriving in s and following the agent’s policy π

thereafter:

vπ(s)
.
= Eπ[Gt | St = s]

= Eπ

[︄
∞∑︂
k=0

γkRt+k+1 | St = s

]︄
(2.4)

How the agent arrives in this state in left unaccounted for by the state-value

function.
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An action-value function measures the expected return after taking action

a in state s and then following the agent’s policy π thereafter:

qπ(s, a)
.
= Eπ[Gt | St = s, At = a]

= Eπ

[︄
∞∑︂
k=0

γkRt+k+1 | St = s, At = a

]︄
(2.5)

How the agent arrives in this state or select this action is left unaccounted

for by the action-value function. State- and action-value functions have the

relation that the value of a state s is the expected action value in that state:

vπ(s) = Eπ[qπ(s, A)] (2.6)

There is exactly one state-value function v∗ such that v∗(s) ≥ vπ(s) ∀s ∈

S, ∀π. This is known as the optimal value function. Any optimal policy

necessarily induces this value function such that vπ∗(s) = v∗(s) ∀s ∈ S. Solving

the optimization problem in Equation 2.3 reduces to finding some policy that

induces v∗.

Soft Value Functions

Soft value functions are value functions which take the stochasticity of the

learned policy into account. Soft state-value functions are defined as the ex-

pected return after arriving in a state s ∈ S, augmented by the entropy of the

policy:

vτπ(s)
.
= Eπ

[︄
∞∑︂
k=0

γk[Rt+k+1 + τHt+k] | St = s

]︄
(2.7)

where Ht = H(π(· | St)) is the Shannon entropy of the policy in state St

defined as H(π(· | St)) = −Eπ[lnπ(· | St)]. τ ∈ R+ determines the relative

importance of rewards and entropy and is referred to as the entropy scale.

Similarly, soft action-value functions are defined as the expected return after

taking an action a ∈ A in state s, augmented by the entropy of the policy:

qτπ(s, a)
.
= Eπ [Rt+1 + γvτπ(St+1) | St = s, At = a]

= Eπ

[︄
Rt+1 +

∞∑︂
k=1

γk(Rt+k+1 + τHt+k) | St = s, At = a

]︄
(2.8)

9



Soft value functions are generalizations of value functions, which can be recov-

ered when τ = 0.

2.1.4 Generalized Policy Iteration

Many algorithms in RL extensively utilize value functions. These value func-

tions satisfy recursive relationships, known as Bellman equations, which allow

them to be effectively learned. The recursive relationships relate the (soft)

value of a state or state-action pair to the (soft) value of a successive state or

state-action pair respectively. The Bellman equations for each type of value

function are:

vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s]

vτπ(s) = Eπ[Rt+1 + τHt + γvτπ(St+1) | St = s]

qπ(s, a) = Eπ[Rt+1 + γvπ(St+1) | St = s, At = a]

= Eπ[Rt+1 + γEπ[qπ(St+1, At+1) | St+1] | St = s, At = a]

qτπ(s, a) = Eπ[Rt+1 + γvτπ(St+1) | St = s, At = a]

= Eπ[Rt+1 + γ(τHt+1 + Eπ[q
τ
π(St+1, At+1) | St+1]) | St = s, At = a]

A process known as Generalized Policy Iteration (GPI) uses the Bellman

equations to find an optimal policy. GPI refers to the general idea of inter-

leaving two processes, policy evaluation and policy improvement. Policy eval-

uation refers to learning the value function of some policy, typically through

an approximate dynamic programming algorithm utilizing the Bellman equa-

tions, such as TD learning or Sarsa (Rummery et al., 1994; Sutton, 1988;

Sutton et al., 2018). Policy improvement refers to improving a policy using

its learned value function estimate, typically by increasing the likelihood with

which highly-valued actions are selected. We refer to the operator which im-

proves the policy as the policy improvement or greedification operator. Given

some policy π, the greedification operator produces another policy π′ such

that:

vπ(s) ≤ vπ′(s) ∀s ∈ S (2.9)
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We say that π′ is at least as good as π since it will achieve at least as much

return from each state as π, if not more. If the equality is strict, then we say

that π′ is better than π. The classical policy improvement theorem states that

the interleaving of these two processes, policy evaluation and policy improve-

ment, will eventually recover the optimal policy and optimal value function in

a finite number of iterations (Sutton et al., 2018).

Whereas GPI refers to interleaving policy evaluation and policy improve-

ment, policy iteration (PI) refers to the extreme case of GPI. In PI, each stage

is carried out to completion. Policy evaluation exactly computes the value

function of the policy. Policy improvement exactly improves the policy.

Sarsa

Many different GPI algorithms exist, but perhaps the most popular are temporal-

difference (TD) methods (Sutton, 1988). TD methods are attractive because

they allow learning in real-time from raw trial-and-error interactions with the

environment, without any model of the environment dynamics. Sarsa is such

a TD algorithm (Rummery et al., 1994; Sutton et al., 2018). Sarsa works by

initializing an action value function estimate Q(s, a) ≈ qπ(s, a). At each step

of the agent-environment interaction, the agent finds itself in state St. An

action At is selected from the agent’s policy, usually an ε-greedy policy where

the probability of sampling each action is:

π(a | St) =

⎧⎨⎩1− ε+ ε
|A| if a = argmax

a′∈A
Q(St, a

′)

ε
|A| otherwise

(2.10)

The action At is sent to the environment, transitioning to a new state St+1 and

providing the agent with a reward Rt+1. The Sarsa algorithm then updates

the action-value estimate as:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (2.11)

where α ∈ R+ is called the step-size and At+1 ∼ π(· | St+1). The ε-greedy

policy is then improved implicitly due to the updated action value function

estimate.
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2.1.5 Function Approximation and Policy Iteration

Until now, we have focused on algorithms in a tabular setting, in which the

policy and value function could be stored in a table. This is possible when the

state and action spaces are small and discrete. In many interesting problems

though, the state space S is continuous; in such cases we can no longer store

our estimates in a table and must turn to function approximation, the pro-

cess of approximating an unknown function using a parameterized function.

When using function approximation in the context of GPI, we refer to GPI as

Approximate Policy Iteration (API), since a function approximator approxi-

mates the true underlying function of interest. In contrast to PI, API only

approximates each step of GPI.

We can extend the Sarsa algorithm above to work in the function ap-

proximation setting. Consider the approximate action-value function qθ with

parameters θ. Semi-gradient Sarsa (Sutton et al., 2018) is an extension of

Sarsa to work in the function approximation setting. This algorithm utilizes

the following update:

θ ← θ + α(Rt+1 + γqθ(St+1, At+1)− qθ(St, At))∇θqθ(St, At) (2.12)

where α ∈ R+ is the step-size. We refer to this algorithm as a semi-gradient

algorithm because the update above uses only a part of the gradient of the

true objective function of interest (Sutton et al., 2018).

One of the simplest ways to parameterize a value function is with linear

function approximation. In this case, our value function approximation is

qθ(s, a) = θ⊤F, where F ∈ Rn are some features and θ ∈ Rn×p. In the dis-

crete action setting we typically use state features F = F(s) with p = |A|.

In the continuous action setting, we typically use state and action features

F= F(s, a) with p being the action dimensionality A⊆ Rp. Linear function

approximation is simple to use and computationally efficient. Linear func-

tion approximators in RL are also well-understood, and certain convergence

guarantees exist(Sutton et al., 2008, 2009, 2016). Unfortunately, the quality

of approximation may depend on the state features. In contrast, nonlinear
12



function approximators such as neural networks are able to learn complicated,

nonlinear features and can provide better approximations than linear function

approximators in some cases. Nevertheless, the nonlinear setting is not as well

understood as the linear case.

The previous examples considered discrete action spaces, but action spaces

can be continuous as well. In such a case, we must turn to function approx-

imation to approximate both value function and policy. The value function

can be approximated as previously described. To be able to efficiently select

actions in environments with continuous action spaces, we use a parameterized

policy πϕ with parameters ϕ. For example, we can approximate a Gaussian

policy πϕ(· | s) = N(µ, σ) using linear function approximation:[︃
µ
lnσ

]︃
= ϕ⊤F(s)

with the state features F(s) ∈ Rm and ϕ ∈ Rm×2. Similar to the case of value-

functions, we can use linear or non-linear function approximators to learn a

policy.

2.2 A Gentle Introduction to Policy Optimiza-
tion

In the previous section, we discussed parameterized policies, but we did not

describe how these policies are learned. In this section, we discuss policy

optimization, the process of searching the space of policies, or a subset thereof,

to find one which maximizes Equation 2.3. We first discuss one of the seminal

results of policy optimization. Next, we discuss difficulties in learning the

parameters of a parameterized policy and how to circumvent some of these

issues. Next, we discuss actor-critic algorithms, and theory tying many policy

optimization algorithms together. Finally, we discuss a number of specific

actor-critic algorithms considered in this thesis.
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2.2.1 The Policy Gradient Theorem

One of the seminal results of policy optimization is the policy gradient theorem

(Sutton et al., 1999), which provides the gradient of Equation 2.3:

∇ϕJ(πϕ) = ∇Eπϕ [Gt]

= ESt∼dπϕ ,At∼πϕ
[︁
qπϕ(St, At)∇ ln πϕ(At | St)

]︁
= ESt∼dπϕ ,At∼πϕ [Gt∇ ln πϕ(At | St)]

(2.13)

where dπϕ is the normalized discounted state visitation distribution3 defined

as:

dπϕ(s)
.
= (1− γ)

∞∑︂
k=0

γkP(Sk = s) (2.14)

and P denotes the probability of some event. Policy gradient methods comprise

a class of algorithms that utilize Equation 2.13 in the policy improvement step

of approximate policy iteration. These algorithms generally estimate the re-

turn Gt using Monte Carlo rollouts or a value function and greedify the policy

by taking an ascent step in the direction of the policy gradient∇ϕJ(πϕ). Many

on-policy methods (Schulman et al., 2015, 2017; Williams, 1992) attempt to

obtain unbiased samples of the policy gradient and update the policy parame-

ters in this unbiased direction. In general though, an unbiased estimate of the

policy gradient is difficult to obtain.

2.2.2 Difficulties with Unbiased Gradient Estimates

The difficulty in obtaining unbiased estimates of the policy gradient stems

from a sampling issue: full return trajectories from states weighted under

dπϕ must be sampled. Many episodes of agent-environment interaction are

required to obtain a sufficiently accurate, unbiased estimate of the return in

the policy gradient, Equation 2.13, making this sampling procedure inefficient.

Furthermore, in practice we cannot sample from dπϕ but rather sample from

the so-called on-policy distribution, the proportion of time spent in each state.

In this case, the policy gradient is weighted by γt, decreasing its magnitude
3In many works, dπϕ

is not a distribution because it does not integrate to 1. Here, we
have normalized dπϕ

so that Equation 2.13 is well-defined.
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as time goes on and increasing the number samples required to estimate the

gradient.

2.2.3 Increasing Sample Efficiency

Because obtaining an unbiased policy gradient estimate is inefficient, many

algorithms utilize tricks to increase sample efficiency while also increasing bias

in the policy gradient estimate. Typical algorithms ignore the γt term when

sampling from the on-policy distribution, introducing bias while increasing

sample efficiency (Nota et al., 2020). To further increase sample efficiency,

off-policy algorithms do not even attempt to sample states according to the

discounted state visitation distribution dπϕ (Degris et al., 2012b; Fujimoto

et al., 2018; Haarnoja et al., 2018, 2019; Lillicrap et al., 2016; Silver et al.,

2014; Wang et al., 2017). Instead, these algorithms sample states from other

distributions, typically induced by an experience replay buffer (Lin, 1992),

which is a method of storing transitions of states, actions, and rewards in a

buffer and later using these transitions to update the policy parameters. This

practice increases sample efficiency by allowing the algorithm to make updates

at arbitrary states arbitrarily often, but incurs the risk of increasing the bias

of the gradient estimate. The bias of the policy gradient has been analyzed for

the on-policy (Nota et al., 2020; Thomas, 2014) and off-policy (Graves et al.,

2021; Imani et al., 2018) settings.

2.2.4 Actor-Critic Algorithms

Many algorithms further increase sample efficiency – at the cost of increased

bias to the gradient estimate – by using biased estimates of the return Gt in

the form of a value function approximation. These algorithms are collectively

known as actor-critic algorithms and are the focus of this thesis. Actor-Critic

algorithms are comprised of two parts. The actor is a learned parametric

policy. The critic is a value function, typically a parametric value-function

approximation learned using some temporal difference algorithm. Actor-Critic

algorithms use the critic as a biased estimate of the return in Equation 2.13
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(Degris et al., 2012a,b; Mnih et al., 2016). An estimate of the policy gradient

can be constructed with a state-value critic, an action-value critic, or both:

∇ϕJ(πϕ) ≈ ESt∼D,At∼πϕ [(Rt+1 + γvw(St+1)− b(St))∇ lnπϕ(At | St)]

∇ϕJ(πϕ) ≈ ESt∼D,At∼πϕ [(qθ(St, At)− b(St))∇ lnπϕ(At | St)]
(2.15)

where vw is a state-value approximation, qθ is an action-value approximation,

and D denotes some distribution which induces an importance over states; for

example D could be the discounted state visitation distribution or a distribu-

tion induced by a replay buffer. Typically, a baseline b that depends only on

state is also incorporated. A common choice for a baseline is the state-value,

approximated using either a parameterized state-value function approxima-

tion or using a sampled expectation as in Equation 2.6. The baseline serves

to decrease the variance in the gradient estimate without introducing any ad-

ditional bias. Action-value baselines can also be used (Liu et al., 2018; Wu

et al., 2018) but may not have any benefit over state-value baselines (Tucker

et al., 2018).

The use of Equation 2.15 is not a strict requirement for actor-critic algo-

rithms, and many actor-critic algorithms utilize different methods to learn a

policy (Fujimoto et al., 2018; Haarnoja et al., 2018, 2019; Lillicrap et al., 2016;

Silver et al., 2014). Although this class of algorithms may seem somewhat in-

cohesive, recent research has shown that a large number of these algorithms

can actually be seen as instances of API, where the policy improvement op-

erator for each algorithm is based on the same distribution – the Boltzmann

distribution.

2.2.5 A Common Framework for Policy Optimization

In this section, we discuss theory which ties together many policy gradient and

actor-critic algorithms into a common framework. We begin by discussing the

Boltzmann distribution and its use in the policy improvement step of many

policy gradient and actor-critic algorithms. Next, we discuss the entropy-

regularized RL objective which is induced by the Boltzmann distribution. Fi-

nally, we discuss theoretical guarantees of using the Boltzmann distribution in
16



the policy improvement step.

Recent work has unified many policy gradient and actor-critic algorithms

into a common framework as approximate policy iteration (Chan et al., 2021;

Ghosh et al., 2020; Lazić et al., 2021; Tomar et al., 2020; Vieillard et al., 2020).

In particular, many of these algorithms implement the policy improvement step

of API by matching the learned policy to the Boltzmann policy, defined as:

Bτq
τ
π(s, a) =

exp(qτπ(s, a)τ
−1)∫︁

A
exp(qτπ(s, b)τ

−1)db
(2.16)

with entropy scale parameter τ ∈ R+. When τ is non-zero, the Boltzmann

distribution induces a new, entropy-regularized RL objective:

Jτ (π)
.
= Eπ

[︄
Gt + τ

∞∑︂
k=0

H(π(· | St+k))

]︄
(2.17)

π∗
τ = argmax

π
Jτ (π) (2.18)

This objective is referred to as the maximum-entropy or entropy-regularized

objective. Algorithms that optimize this objective for non-zero τ are some-

times referred to as maximum-entropy algorithms. As τ → 0, the original

objective (Equation 2.3) is recovered.

The Boltzmann policy provides guaranteed policy improvement, which is

likely a major reasons for its widespread adoption in actor-critic algorithms.

The Boltzmann policy is guaranteed to be at least as good as the current

policy π under the soft value functions: the soft value of any state under Bτqπ

is at least as high as the soft value of any state under π, if not higher:

vτBτ qτπ
(s) ≥ vτπ(s) ∀s ∈ S

By completely matching π to the Boltzmann policy, the updated policy π′ will

be guaranteed to be at least as good as the previous policy. In theory, we could

eventually recover an optimal policy due to the policy improvement theorem.

Generally, recovering an optimal policy is not possible in practice. Since

tractable policies are preferred, parameterized policies πϕ belonging to a spe-

cific distributional family are most often used. Hence, the learned policy πϕ
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may belong to a different class of distributions than Bτq
τ
πϕ

, meaning that these

distributions cannot be matched exactly. Even if a general policy were used,

local optimization algorithms would typically be unable to completely match

this policy to the Boltzmann policy.

One may wonder why not use the Boltzmann directly instead of a param-

eterized policy πϕ. Although this is theoretically possible, it is not practically

feasible. Sampling from the Boltzmann policy is prohibitively expensive. In-

stead, many policy gradient and actor-critic algorithms use a parameterized

policy, πϕ, and match this policy to the Boltzmann policy by reducing a KL

divergence. Sampling from the parameterized policy is simple and mimics

sampling from the Boltzmann policy.

2.3 Algorithms Considered in this Thesis

In this thesis, we focus on four different actor-critic algorithms. The first

of these algorithms is a novel algorithm which we introduce in Chapter 4. In

Chapter 3 we consider a case study on two actor-critic algorithms: the original

variant of Soft Actor-Critic (Haarnoja et al., 2018) and Deep Deterministic

Policy Gradient (Lillicrap et al., 2016). In later chapters, we compare our

novel actor-critic algorithm to two baseline algorithms, the modern version of

Soft Actor-Critic (Haarnoja et al., 2019) and Vanilla Actor-Critic.

2.3.1 Soft Actor-Critic

Soft Actor-Critic (Haarnoja et al., 2018, 2019) is an off-policy actor-critic

algorithm which maximizes the entropy regularized objective in Equation 2.17.

This algorithm has two different widely used variants, the original variant

(SAC) was proposed by Haarnoja et al. (2018) and a modern variant (SAC-

M) was proposed by Haarnoja et al. (2019). We compare our novel actor-

critic algorithm to a SAC-M baseline (Haarnoja et al., 2019) for a number

of reasons. First, SAC-M is widely considered to outperform its predecessor

SAC. Second, using Soft Actor-Critic as a baseline allows us to compare the

18



Boltzmann target policy over soft action values to the target policy used by

our novel algorithm. Third, SAC-M optimizes a different objective from our

novel algorithm and allows us to make comparisons between these objective

functions. Finally, SAC-M possesses many tricks to improve performance and

has widely reported success, making it a strong baseline algorithm on many

challenging benchmark environments4.

Algorithm 1: Modern Soft Actor-Critic
1 Input: b ∈ N; αcritic, αactor ∈ R+; β ∈ (0, 1]; τ ∈ R

2 Initialize: parameters θ1,θ2,θtarg1 ,θtarg2 ,ϕ and replay buffer B;
3 Define: qτθmin

(S,A) = mini∈{1,2} q
τ
θi
(S,A)

4 Obtain: initial state Scurrent
5 while Scurrent not terminal do
6 Take action Acurrent ∼ πϕ(· | Scurrent) and observe Rnext, Snext
7 Add (Scurrent, Acurrent, Rnext, Snext) to replay buffer B

8 Sample a random batch of transitions B = (S,A,R, S ′)bi=1 ∼ B

9 Update parameters θ1,θ2 with A′ ∼ πϕ(· | S ′):
10 gi ← ∇θi

∑︁
(S,A,R,S′)∈B

(R + γqτ
θtargmin

(S ′, A′)− τ ln(πϕ(A
′ | S ′))− qτθi(S,A))

2

11 θi ← θi + giαcritic
12 Update target parameters θtarg1 ,θtarg2 :
13 θtargi ← (1− β)θtargi + βθi
14 Update parameters ϕ:
15 ϕ← ϕ+ αactor∇

∑︁
S∈B KL(πϕ(· | S) || Bτq

τ
θmin

(· | S))
16 Scurrent ← Snext

end

Modern Soft Actor-Critic, shown in Algorithm 1, utilizes experience replay

to learn both actor and critic. The critic consists of two soft action-value func-

tions, qτθ1 and qτθ2 , which can alleviate positive bias known to degrade perfor-

mance of some algorithms (Fujimoto et al., 2018; Hasselt, 2010). The effective

action-value predicted by the critic is the minimum action-value predicted by

qτθ1 and qτθ2 , shown in line 3 of Algorithm 1. The critic is learned using the Sarsa

algorithm (Rummery et al., 1994; Sutton et al., 2018) (Algorithm 1, lines 9 to

11). States, actions, rewards, and next states are sampled from an experience

replay buffer (Algorithm 1, line 8), and the next action is sampled on-policy
4See https://spinningup.openai.com/en/latest/spinningup/bench.html
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(Algorithm 1, line 9). The next-action value for the Sarsa update is predicted

as the minimum action-value of two target networks (Algorithm 1, line 10).

The two target networks are learned by slowly updating the weights of each

target network toward the weights of the respective action-value function of

the critic (Algorithm 1, line 13).

Algorithm 2: Soft Actor-Critic
1 Input: b ∈ N; αaction, αstate, αactor ∈ R+; β ∈ (0, 1]; τ ∈ R

2 Initialize: parameters θ1,θ2,w,wtarg,ϕ, and replay buffer B;
3 Define: qτθmin

(S,A) = mini∈{1,2} q
τ
θi
(S,A)

4 Obtain: initial state Scurrent
5 while Scurrent not terminal do
6 Take action Acurrent ∼ πϕ(· | Scurrent) and observe Rnext, Snext
7 Add (Scurrent, Acurrent, Rnext, Snext) to replay buffer B

8 Sample a random batch of transitions B = (S,A,R, S ′)bi=1 ∼ B

9 Update parameters w with A′ ∼ πϕ(· | S):
10 gw ← ∇w

∑︁
S∈B

[︁
vτw(S)− qτθmin

(S,A′) + τ lnπϕ(A
′ | S)

]︁2
11 w ← w + gwαstate
12 Update parameters θ1,θ2:
13 gθi ← ∇θi

∑︁
(S,A,R,S′)∈B

(R + γvτwtarg(S ′)− qτθ(S,A))
2

14 θi ← θi + gθiαaction
15 Update target parameters wtarg:
16 wtarg ← (1− β)wtarg + βw
17 Update parameters ϕ:
18 ϕ← ϕ+ αactor∇

∑︁
S∈B KL(πϕ(· | S) || Bτq

τ
θmin

(· | S))
19 Scurrent ← Snext

end

To learn a policy πϕ, SAC-M minimizes the KL divergence (denoted as

KL) between its learned parametric policy and the Boltzmann distribution

over soft action-values, where the Boltzmann distribution is approximated us-

ing the double soft action-value critic, rather than the true soft action-value

function (Algorithm 1, line 15). Soft Actor-Critic was originally developed for

the continuous action setting (Haarnoja et al., 2018, 2019), but can be ex-

tended to the discrete action setting. In the continuous action setting, SAC-M

typically utilizes a squashed Gaussian policy which ensures actions are sampled
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in the legal range for the environment. Furthermore Gaussian policies allow

for the use of the reparameterization trick to estimate the gradient in line 15

of Algorithm 1, which can result in a lower variance estimate (Haarnoja et al.,

2018, 2019). In the case of discrete actions, we can compute, rather than esti-

mate, this gradient exactly (assuming the true action-values are known) using

the likelihood trick (Chan et al., 2021).

Modern Soft Actor-Critic also has the ability to automatically tune the

entropy scale hyperparameter τ during learning. We do not use automatic

entropy tuning in our experiments in future chapters since we are interested in

characterizing the sensitivity of SAC-M to the entropy scale. Because of this,

we do not include any further discussion on automatic entropy tuning, neither

is it included in Algorithm 1.

We now briefly list the major differences between SAC and SAC-M. The

overall SAC algorithm is shown in Algorithm 2:

1. SAC learns a state-value function vτw (Algorithm 2, lines 9 to 11) while

SAC-M does not.

2. SAC uses a target state-value function. SAC-M uses target action-value

functions.

3. The target for the action-value update in SAC is computed with a state-

value target network (Algorithm 2, lines 12 to 14). SAC-M uses an

action-value target network.

4. The target for the action-value update in SAC utilizes a state-value ap-

proximation (Algorithm 2, lines 12 to 14). The target for the action-value

update in SAC-M uses on-policy actions and an action-value approxima-

tion (Algorithm 1, lines 9 to 11).

2.3.2 Vanilla Actor-Critic

The next baseline we consider is an off-policy actor-critic algorithm called

Vanilla Actor-Critic (VanillaAC), shown in Algorithm 3. VanillaAC maximizes

21



Algorithm 3: Vanilla Actor-Critic
1 Input: b,K ∈ N; αcritic, αactor ∈ R+; β ∈ (0, 1]; τ ∈ R

2 Initialize: parameters θ,θtarg,ϕ, and replay buffer B

3 Define: v̂θ(s) =
1
K

∑︁K
i=1 qθ(s, A) with A ∼ π(· | s)

4 Obtain: initial state Scurrent
5 while Scurrent not terminal do
6 Take action Acurrent ∼ πϕ(· | Scurrent) and observe Rnext, Snext
7 Add (Scurrent, Acurrent, Rnext, Snext) to replay buffer B

8 Sample a random batch of transitions B = (S,A,R, S ′)bi=1 ∼ B

9 Update parameters θ with A′ ∼ πϕ(· | S ′):
10 g ← ∇θ

∑︁
(S,A,R,S′)∈B

(R + γqθtarg(S
′, A′)− qθ(S,A))

2

11 θ ← θ + gαcritic
12 Update target parameters θtarg:
13 θtarg ← (1− β)θtarg + βθ
14 Update parameters ϕ:
15 ϕ← ϕ+ αactor∇

∑︁
S∈B KL[πϕ(· | S) || Bτ (qθ(· | S)− v̂θ(S))]

16 Scurrent ← Snext
end

the standard RL objective (Equation 2.3). We compare our novel algorithm

to a VanillaAC baseline for a number of reasons. First, VanillaAC uses the

Boltzmann target policy over action values, a different target policy from the

one used by SAC-M. Using VanillaAC as a baseline allows us to compare this

version of the Boltzmann target policy to the target policy used by our novel

algorithm. Second, both VanillaAC and our novel algorithm optimize the same

objective, allowing us to compare the quality of each optimization process.

Third, VanillaAC still utilizes entropy regularization to improve the learning

process, as does our novel algorithm. Finally, VanillaAC possesses fewer tricks

to improve performance than SAC-M. VanillaAC therefore provides a baseline

of minimum performance to exceed, since it is a basic algorithm.

Vanilla Actor-Critic utilizes experience replay to learn both actor and critic.

The critic itself consists of a single action-value function, in contrast to the

critic of SAC-M which uses two soft action-value functions. This action-value

function is learned using a Sarsa update (Algorithm 3, line 10) with states,

actions, rewards, and next states sampled from an experience replay buffer
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(Algorithm 3, line 8) and the next action sampled on-policy (Algorithm 3,

line 9). Vanilla Actor-Critic utilizes a critic target network to predict the

next action-value in the Sarsa update (Algorithm 3, line 10). The target

network is updated through a polyak average of target network and critic

weights (Algorithm 3, line 13).

Vanilla Actor-Critic learns a parameterized policy by minimizing a KL

divergence between the learned policy and the Boltzmann distribution over

action-values (Algorithm 3, line 15). Equivalently, VanillaAC utilizes the gra-

dient in Equation 2.15, but with an added entropy regularization term con-

trolled by τ . An approximate state-value baseline is incorporated into the

gradient by sampling a number of actions and computing the average action-

value of the sample (Algorithm 3, lines 3 and 15). This provides a lower

variance gradient estimate without introducing any additional bias.

2.3.3 Deep Deterministic Policy Gradient.

Deep Deterministic Policy Gradient (DDPG) is an off-policy actor-critic algo-

rithm, outlined in Algorithm 4. DDPG maximizes the standard RL objective

in Equation 2.3 and learns a deterministic policy. We do not use DDPG as a

baseline against which we compare our novel actor-critic algorithm. Instead,

we include DDPG in a case study in Chapter 3 where we consider the current

state of deep actor-critic algorithms.

DDPG uses experience replay to learn both actor and critic. Unlike SAC,

SAC-M, and VanillaAC which use a Sarsa algorithm to learn a critic, DDPG

uses an approximate Q-learning update rule to learn its critic, which consists of

a single action-value function (Algorithm 4, lines 9 to 11). DDPG uses a target

critic to provide the next action-value in the target of the critic update. DDPG

also keeps a deterministic target policy which provides the approximate action

of maximal value for the Q-learning update (Algorithm 4, line 10). Both the

target critic and target policy are learned through a polyak average of network

weights (Algorithm 4, lines 14 to 16).

DDPG learns a parameterized, deterministic policy and can be seen as
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Algorithm 4: Deep Deterministic Policy Gradient
1 Input: b ∈ N; αcritic, αactor ∈ R+; β ∈ (0, 1], σ ∈ R+

2 Initialize: parameters θ,θtarg,ϕ,ϕtarg; replay buffer B;
3 Obtain: initial state Scurrent
4 while Scurrent not terminal do
5 Take action Acrurent = πϕ(Scurrent) + ε with ε ∼N(0, σ)
6 Observe Rnext, Snext
7 Add (Scurrent, Acurrent, Rnext, Snext) to replay buffer B

8 Sample a random batch of size B = (S,A,R, S ′)bi=1 ∼ B

9 Update parameters θ:
10 g ← ∇θ

∑︁
(S,A,R,S′)∈B

[R + γqθtarg(S
′, πϕtarg(S ′))− qθ(S,A)]

2

11 θ ← θ + gαcritic
12 Update parameters ϕ:
13 ϕ← ϕ+ αactor∇ϕ

∑︁
S∈B qθ(S, πϕ(S))

14 Update target parameters θtarg,ϕtarg:
15 θtarg ← (1− β)θtarg + βθ
16 ϕtarg ← (1− β)ϕtarg + βϕ
17 Scurrent ← Snext

end

reducing a reverse KL divergence to the Boltzmann distribution in a somewhat

degenerate form (Chan et al., 2021). Because DDPG tries to mimic Q-learning

in a continuous action setting, its policy attempts to track the maximally-

valued action under its critic qθ. Since the critic is differentiable with respect

to its action argument and the policy is deterministic, DDPG improves its

policy by taking an ascent step in the direction of the gradient of the critic

with respect to the policy parameters (Algorithm 4, lines 12 to 13).

Since DDPG learns a deterministic policy, it may not explore sufficiently

well. Because of this, random noise is added to the action (Algorithm 4,

line 5). Any kind of random noise can be added to the action, but generally

noise drawn from a Gaussian distribution (as outlined in Algorithm 4) or an

Ornstein-Uhlenbeck process (Uhlenbeck et al., 1930) is used.
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Figure 2.1: Visual depic-
tion of a single CEM opti-
mization update. At the
beginning of the update,
{Xi}Ni=1 are sampled from
the density hψt (red).
The images of these sam-
ples under H (open cir-
cles on H) are then or-
dered. The parameters
are updated to produce
hψt+1 (blue), which places
higher density than hψt

on the top percentile of
{X}Ni=1 under H. These
steps are repeated until
convergence to a maxi-
mum of H.

2.4 The Cross-Entropy Method for Optimiza-
tion

In this section, we provide a brief discussion of the Cross-Entropy Optimiza-

tion Method (CEM), the optimization algorithm upon which our novel policy

greedification algorithm is based. The concern of this section is to understand

the CEM algorithm at an intuitive level: the algorithm is left in a somewhat

black-box form. For a more formal, mathematical derivation of the CEM, see

Appendix B.

The CEM algorithm is a 0-order, global optimization algorithm (Rubin-

stein, 1999, 2001) originally developed for rare-event probability estimation

(Rubinstein, 1997). The algorithm is not new to RL and has been used in

the control setting before (Boer et al., 2005; Mannor et al., 2003; Pourchot

et al., 2019; Szita et al., 2006). The CEM makes intuitive sense, even without

a complete understanding of the underlying mathematics, and is comprised of

two phases which are iteratively repeated until the maximum of a function H

is discovered. At a high-level, these phases are (1) randomly sample a number
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of points and (2) increase the probability of sampling points near those which

resulted in the highest images under H.

At a mathematical level, consider an objective function H : dom(H)→ R

where dom(H) is the domain of H. Consider a probability distribution with

density hψ parameterized by ψ ∈ R|ψ| and support over dom(H). The idea of

the CEM is to iteratively update ψ such that hψ slowly concentrates support

on argmaxx∈dom(H) H. In the discussion below, we consider dom(H) = R,

but the algorithm can be trivially extended to higher dimensions and discrete

functions.

Algorithm 5 outlines the intuitive algorithm and Figure 2.1 graphically

depicts a single CEM optimization update. We start the update at arbitrary

time t ∈ N with density hψt . In the first phase of the CEM update, we

sample N ∈ N actions from hψt (Algorithm 5, line 3). Denote the set of

sampled values as I = {x1, x2, . . . , xN}. In the second phase of the CEM

update, we then order these actions based on their images under H : H1 =

xi1 ≤ H2 = xi2 ≤ . . . ≤ HN = xiN and construct an empirical percentile

distribution that contains the ⌊ρN⌋ actions of largest magnitude under H for

some ρ ∈ (0, 1): I∗ =
{︂
xi⌈(1−ρ)N⌉ , xi⌈(1−ρ)N⌉+1

, . . . , xN

}︂
(Algorithm 5, line 4).

We complete the second phase by updating ψt to increase the density of the

actions in I∗ under h, which can be done by increasing the log-likelihood of

these actions5 (Algorithm 5, line 5):

ψt+1 ← ψt + α∇ψ
∑︂
x∈I∗

lnhψ(x) (2.19)

By iteratively repeating this process over and over, we will eventually recover

an optimum of H which can be estimated by:

max
x∈R

H(x) ≈ 1

K

K∑︂
i=1

H(Xi) where Xi ∼ hψT
(2.20)

for some K ∈ N and where T is the final iteration of the algorithm (Algo-

rithm 5, line 6). Generally, the parameters ψ0 are initialized such that hψ0 is
5In reality, ψt+1 should be computed as argmaxψ

1
N

∑︁
x∈I∗ lnhψ(x), but that is not

important for this discussion based on intuition.
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wide, which increases the probability of converging to the global optimum of

H.

Algorithm 5: Cross-Entropy Method for Optimization
1 Input: objective function H; initial density h; ρ ∈ (0, 1); N,K ∈ N

2 while not converged do
3 I ← N random samples from h;
4 I∗ ← ⌊ρN⌋ samples in I with highest magnitude under H;
5 Increase the probability of sampling the values in I∗ under h;

end

6 return max
x∈R

H ≈ 1
K

K∑︁
i=1

H(Xi) where Xi ∼ h

The CEM has a number of benefits over gradient-based optimization al-

gorithms. First, the CEM is a global optimization algorithm. Although this

does not guarantee that a global optimum will be found, global optimization

algorithms generally find global optima somewhat more frequently than local

optimization algorithms do. Second, the CEM can be used to optimize a dis-

continuous function, whereas gradient based optimization algorithms cannot

be used at function discontinuities. Finally, the CEM can be used to optimize

both continuous and discrete functions whereas gradient-based optimization

algorithms are limited to optimizing continuous functions.

2.5 Summary

In this chapter, we discussed background topics needed for future chapters.

We began our discussion by formalizing the reinforcement learning problem.

In particular, we discussed MDPs, value functions, optimal value functions,

policies, and optimal policies. We also discussed the generalized policy it-

eration framework whereby iteratively learning the value function of a policy,

then adjusting the policy based on its value function, will result in the eventual

discovery of an optimal value function and optimal policy.

Next, we briefly discussed policy optimization. We talked about the policy

gradient theorem and issues with attaining an unbiased sample of the gradient
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of the reinforcement learning objective in Equation 2.3. We discussed a few

commonly used techniques to increase sample efficiency while increasing bias

when estimating this gradient. Finally, we discussed actor-critic algorithms.

In the following section, we tied many policy gradient and actor-critic meth-

ods together into a common framework. In particular, we discussed how these

algorithms can be seen as instances of approximate policy iteration where the

policy greedification step moves the learned policy toward the Boltzmann pol-

icy over actions values. We discussed how the Boltzmann policy induces a new

reinforcement learning objective, Equation 2.17.

Next, we briefly outlined a number of actor-critic algorithms, Soft Actor-

Critic (Haarnoja et al., 2018, 2019) (SAC and SAC-M), Vanilla Actor-Critic

(VanillaAC), and Deep Deterministic Policy Gradient (Lillicrap et al., 2016)

(DDPG). Soft Actor-Critic is a supposed state-of-the-art algorithm which

works in the maximum entropy framework and has many tricks to improve

performance such as a double action-value critic and reparameterized action

sampling. VanillaAC does not work in the maximum entropy framework and

does not have so many tricks to improve performance but still utilizes entropy

regularization. DDPG is an actor-critic algorithm that learns a deterministic

policy and utilizes an approximation to Q-learning to learn a critic.

Finally, we discussed the Cross-Entropy Optimization Method (CEM) at

an intuitive level, without heavily discussing its mathematical derivation. This

algorithm is a 0-order, global optimization algorithm that works by repeatedly

randomly sampling values and optimizing over only these sampled values. By

iteratively repeating this random sampling procedure, the algorithm slowly

concentrates on the maximum of a function. The algorithm can also be used

to optimize discontinuous and discrete functions where gradient-based opti-

mization algorithms are not available.
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Chapter 3

The Fragility of State-of-the-Art
Actor-Critic Methods: A Case
Study

One of first jobs of an algorithm designer is to understand existing algorithms.

Without understanding existing algorithms, the designer cannot know how to

improve these algorithms nor address their limitations. In this section, we

dive into a case study attempting to better understand a supposed state-of-

the-art algorithm, Soft Actor-Critic (Haarnoja et al., 2018). In particular,

we attempt to reproduce the experiments of Haarnoja et al. (2018) comparing

SAC to DDPG on the HalfCheetah environment. During this process, we come

to different conclusions from those of Haarnoja et al. (2018).

We begin with a few important notes. The purpose of this chapter is neither

to degrade a specific paper or algorithm nor to imply that such a paper was

purposefully designed to mislead. Instead, the purpose of this section is to

try to understand a supposed state-of-the-art algorithm at a deeper level. We

study SAC because it is a popular, highly-cited algorithm with widely-reported

success1. Furthermore, the algorithm is widely regarded as state-of-the-art

(Ciosek et al., 2019; Haarnoja et al., 2018, 2019; Yu et al., 2021). Finally, this

section is not meant to be a comprehensive list of all issues addressed by our

novel actor-critic algorithm which is introduced in Chapter 4.

During our attempt to reproduce the comparison of SAC and DDPG on
1See https://spinningup.openai.com/en/latest/spinningup/bench.html
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HalfCheetah as implemented in OpenAI Gym (Brockman et al., 2016), we tried

to be as fair as possible to the original work of Haarnoja et al. (2018). We

used the original SAC codebase2 (SAC-CB) with the tuned hyperparameters

reported by Haarnoja et al. (2018). We used a DDPG baseline implemented

in the RLLab codebase3 (RLLab-CB) with the hyperparameters set to those

used by default in the codebase (Duan et al., 2016), except that the replay

buffer capacity, batch size, and network architectures were adjusted to match

those used by SAC. Although Haarnoja et al. (2018) did not mention the

hyperparameters used for DDPG, their GitHub repository left a number of

hints on the configuration of the DDPG baseline as well as the implementation

used4. In this chapter, we evaluate algorithms in a deterministic fashion by

removing any exploration noise for DDPG and selecting only the modal action

for SAC as was also done by Haarnoja et al. (2018).

3.1 Reproducing Published Results

In this section, we discuss our attempt to recreate the results of Haarnoja et al.

(2018). We encountered a number of difficulties during this process. First, the

default implementation of a number of policies in SAC-CB utilize some form

of regularization in addition to entropy regularization. Since the paper does

not mention regularization, we did not include it in our experiments. Second,

many code examples in SAC-CB use action normalization. Since Haarnoja

et al. (2018) do not mention action normalization, we did not include it in

our experiments either. Finally, two versions of environment wrappers exist in

these codebases to alter the interface of OpenAI Gym environments (Brockman

et al., 2016) to be compatible with the algorithms from these codebases. One

wrapper is implemented in SAC-CB, another in RLLab-CB. We assumed that

SAC used the environment wrapper from its own codebase, SAC-CB. Since the
2The original SAC codebase can be found at github.com/haarnoja/sac
3The RLLab codebase can be found at github.com/rll/rllab
4See https://github.com/rail-berkeley/softlearning/issues/27. It is mentioned

that the original paper used the implementation of DDPG from RLLab-CB with hyperpa-
rameters set similarly to those used by SAC where applicable.

30

github.com/haarnoja/sac
github.com/rll/rllab
https://github.com/rail-berkeley/softlearning/issues/27


0 3
Timesteps (Millions)

0

7000

14000

Av
er

ag
e 

Re
tu

rn
SAC
DDPG-R
DDPG-S

Figure 3.1: Our attempt to recreate the learning curves of Haarnoja et al.
(2018) on HalfCheetah. Solid lines denote mean performance over 30 runs with
shaded regions denoting minimum and maximum performance. The average
performance of SAC is lower than reported by Haarnoja et al. (2018).

DDPG baselines is compatible with both implementations, we included two

versions of DDPG, one run on the RLLab-CB environment wrapper (DDPG-

R) and another run on the SAC-CB environment wrapper (DDPG-S).

We ran SAC and DDPG on the OpenAI Gym (Brockman et al., 2016)

implementation of HalfCheetah for 3 million timesteps over 30 runs. For each

of the 30 runs, the episodic return was recorded and averaged over runs to

produce the learning curves in Figure 3.1, with shaded regions denoting mini-

mum and maximum performance. Compared to the learning curves reported

by Haarnoja et al. (2018), SAC exhibits lower average performance and higher

variation in performance.

Upon studying RLLab-CB more closely, we identified a potential bug in the

environmental wrapper which causes episode cutoffs to be handled incorrectly.

Some algorithms in RLLab-CB have the option to bootstrap on episode cutoffs,

considering treating the cutoff state as terminal – using a next-state value of 0

in the TD-error. In this case, the environment is no longer Markovian. Even

if this option is explicitly turned off, some algorithms will still incorrectly
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Figure 3.2: Our best attempt to recreate the results of Haarnoja et al. (2018)
on HalfCheetah. Solid lines represent mean performance over 5 runs with
shaded regions denoting minimum and maximum performance. We tuned
random seeds by selecting the 5 runs which induced the highest performance
for each algorithm.

bootstrap on episode cutoffs5. Given the default settings in RLLab-CB, this

implementation flaw will occur. Although we cannot know if this bug affected

the results of Haarnoja et al. (2018), the DDPG baseline may have been given

a significant disadvantage.

A significant amount of guess work was required to reproduce the results

reported by Haarnoja et al. (2018) to the best of our abilities, shown in Fig-

ure 3.2. Perhaps Haarnoja et al. (2018) used too few seeds, resulting in op-

timistic estimates of expected performance and variance in performance. A

number of lucky seeds could have been inadvertently used for which SAC per-

forms well. We emulate this by tuning seeds in Figure 3.2, where we report

performance over the 5 runs for which each algorithm attained highest per-

formance out of all 30 runs. These results closely match the original results

reported by Haarnoja et al. (2018).
5This occurs when the wrapped environment has an episode cutoff less than or equal to

the cutoff set in the wrapper, which happens by default in the codebase.
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3.2 Tuning the Baseline

During our study, we noticed that the performance of DDPG on HalfCheetah

was under-reported by Haarnoja et al. (2018)6. To better gauge the perfor-

mance of SAC, we ran similar experiments to those previously described except

with a DDPG baseline tuned for HalfCheetah. We used the tuned hyperpa-
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Figure 3.3: Performance of tuned SAC and DDPG on HalfCheetah. Solid lines
denote mean performance over 30 runs with shaded regions denote standard
error from the mean. The DDPG baseline now performs competitively with
SAC.

rameters for DDPG as reported by SpinningUp7. We also used uncorrelated,

unbounded Gaussian noise for action exploration in DDPG as we found it to

outperform OU noise (Uhlenbeck et al., 1930).

We ran SAC and DDPG on HalfCheetah for 3 million timesteps over

30 runs on the environmental wrapper in SAC-CB. The episodic return was

recorded and averaged over all 30 runs to generate the learning curves in Fig-

ure 3.3, with shaded regions denoting standard error from the mean perfor-
6Fujimoto et al. (2018) report higher performance for a modified version of DDPG

on HalfCheetah. SpinningUp also reports significantly higher performance for DDPG on
HalfCheetah: https://spinningup.openai.com/en/latest/spinningup/bench.html

7See https://spinningup.openai.com/en/latest/spinningup/bench.html
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mance. A tuned version of DDPG seems competitive with SAC on HalfChee-

tah, in contradiction to the performance of DDPG reported by Haarnoja et al.

(2018).

3.3 Conclusion

Our journey to better understand SAC has led us to different conclusions from

those drawn by Haarnoja et al. (2018). In particular, the performance of SAC

as reported by Haarnoja et al. (2018) seems optimistic on HalfCheetah. SAC

may not be as performant as originally reported, and perhaps better algorithms

can be constructed by focusing on solving the original MDP rather than an

entropy regularized one. This is the subject of the next chapter.
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Chapter 4

The Conditional Cross-Entropy
Method and Greedy Actor-Critic

Although the Boltzmann policy is a popular choice for policy greedification,

it has limitations. The primary of which is that algorithms based on the

Boltzmann are sensitive to the choice of entropy (Chan et al., 2021; Haarnoja et

al., 2018, 2019; Neumann et al., 2022; Pourchot et al., 2019). Given that actor-

critic algorithms can be viewed as utilizing API, a natural question is which

greedification operators are sensible for use within actor-critic algorithms. In

this section, we propose and motivate a new greedification operator based on

the CEM algorithm. The Conditional CEM (CCEM) algorithm greedifies a

policy using a CEM update to find maximally valued actions per-state given

an action-value function.

4.1 The Conditional Cross-Entropy Optimiza-
tion Algorithm

We are interested in utilizing the CEM optimization algorithm to optimize an

action-value critic. Unfortunately, this process is not straightforward. The

CEM algorithm finds a single best set of parameters for a single optimization

problem. For example, the CEM can be used to optimize the parameters of a

neural network or linear function approximator, which has been studied in RL

before (Boer et al., 2005; Mannor et al., 2003; Szita et al., 2006). In contrast,

using the CEM to optimize an action-value function has not been thoroughly
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studied, perhaps since performing this optimization on an action-value critic

can be seen as a sequence of non-stationary optimization problems, and the

CEM was not designed for this. In this section, we study how the CEM can

be adapted to optimize an action-value critic.

Our goal is to adapt the CEM to find maximally valued actions in each

state for a parameterized action-value critic qθ ≈ qπϕ :

a∗
.
= argmax

a∈A
qθ(s, ·) (4.1)

where the action-value critic can be learned through any TD method such as

Sarsa(λ). We could simply use the CEM to find these highly valued actions

without learning the weights for any parametric policy, and simply take one

of these highly valued actions in the environment (Kalashnikov et al., 2018);

such a procedure throws away prior information obtained from the optimiza-

tion process and can be prohibitively expensive with high-dimensional action

spaces. A better approach is to implicitly learn the parameters of a policy

which places high density on these highly valued actions. Such a process re-

tains valuable information obtained during the optimization procedure, allows

for better generalization between states, and results in a policy that is simple

and efficient to sample from. Furthermore, this policy can be seen as caching

an approximate CEM solution at each state. Once we know the approximate

solution at each state, we can select actions by sampling rather than completely

re-applying the CEM procedure in each state.

The CCEM extends the CEM to (1) be conditioned on state and (2) be

learned iteratively over time1. Unlike the CEM which uses a single distribu-

tion over which to optimize a single and fixed function, the CCEM utilizes a

parameterized policy πϕ(· | s) to optimize a parameterized action-value critic

qθ. The parametric critic can be seen as a set of objective functions to op-

timize, one objective per state. The parametric policy can be seen as a set
1The CEM does optimize a function iteratively, but the CCEM differs by learning the

expected CEM solution to a sequence of optimization problems – one for each state – which
are changing over time due to a changing action value critic. Therefore, we say that the
CCEM extends the CEM to be learned iteratively over time.
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Action Set

Highly Valued Actions
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Figure 4.1: The CCEM works by keeping a separate proposal policy which
samples an action set to reason about. A set of actions is sampled from the
proposal policy and the density of the ⌊ρN⌋ actions of highest value is then
increased in both the proposal policy and the actor policy. The proposal policy
uses entropy regularization while the actor policy does not. The blue arrows
denote agent-environment interactions, while the red arrows denote processes
occurring during learning.

of distributions, conditioned on environmental state, used in the CEM opti-

mization process. The CCEM adapts the parametric policy to concentrate on

maximally valued actions under the action-value critic on a state-by-state ba-

sis. The CCEM is not simply the CEM applied on a set of objective functions.

Since the critic is learned over time, the set of objective functions to optimize

is non-stationary. Since the policy and critic are both parameterized, state

aliasing and generalization between action distributions will occur. These two

key facts are accounted for in the CCEM but not in the original formulation

of the CEM.

Another key difference between the CEM for optimization and the CCEM

is that the CCEM uses a separate parameterized proposal policy ˜︁πϕprop which

samples actions to reason about while a parameterized actor policy πϕ selects

actions to take in the environment. Both the proposal and actor policies track

the actions of maximal value per-state over time. The crucial detail is that the

proposal policy concentrate more slowly than the actor policy to ensure a broad

range of actions are considered at each iteration of the optimization process.

This is both theoretically and practically important because the action-value

critic, the function over which we optimize, is non-stationary. The algorithm
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Figure 4.2: Left An example progression of the CCEM for multiple updates
in a single state. In general, the CCEM is run once per state, with a new
state sampled after each update. We use a uniform actor (black) and proposal
(red) policy in the figure. From left to right, we see in the first sub-plot a
number of actions being sampled (shown as red ticks on the x-axis), with the
highest valued actions denoted in black boxes as I∗. In the next sub-plot, the
actor and proposal policies have been updated, placing more density on I∗.
A new set of actions is then sampled. In the rightmost sub-plot, we see that
the actor and proposal policies have been once again updated, but that the
actor policy more quickly concentrates on highly valued actions than does the
proposal policy. Right An actual progression of the CCEM using Gaussian
policies on the action values shown in the leftmost figure.

must actively track the optimum of a changing function. We do not want to

settle on the optimum of a single instance of the action-value critic in time. To

ensure this proposal policy concentrates more slowly than the actor policy, we

utilize entropy regularization in the proposal policy2. In the actor policy, we

do not use entropy regularization, which allows it to concentrate more quickly

on greedy actions. This usage of entropy regularization mitigates policy col-

lapse. Figure 4.1 graphically shows the relationship between the environment,

actor policy, proposal policy, and critic during the CCEM update. Figure 4.2

demonstrates how the actor and proposal policies change during the CCEM

update.

The full CCEM algorithm is presented in Algorithm 6. Similarly to the

CEM optimization algorithm, the CCEM uses a two-phase, multi-level ap-
2The theory requires a number of conditions to be satisfied for the proposal policy to

ensure that it changes slowly enough. These conditions are not always satisfied in practice.
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proach for optimization. We first choose a threshold value ζt and then update

the parameters of the actor and proposal policies to increase the likelihood of

actions which are valued higher than this threshold. To choose ζt, we use the

same repeated random sampling procedure as the CEM with hyperparameter

ρt ∈ (0, 1). In general ρt may depend on time, but we will use a constant

ρt = ρ ∈ (0, 1) for simplicity. Furthermore, the general case of the CCEM can

utilize ρactor for the actor policy and ρprop for the proposal policy, but we will

use ρ = ρactor = ρprop for simplicity3.

The CCEM algorithm proceeds in the following manner. The proposal

policy ˜︁πϕprop(· | s) is sampled to provide a set of N ∈ N actions to reason

about I(s) = {a1, a2, . . . , aN} in state s ∈ S (Algorithm 6, line 6). Similarly

to the CEM, we then order each action based on its value (Algorithm 6, line

7) such that:

q
(1)
θ = qθ(s, ai1) ≤ q

(2)
θ = qθ(s, ai2) ≤ . . . ≤ q

(N)
θ = qθ(s, aiN ) (4.2)

where the superscript denotes an ordering of the action-values q
(i)
θ . We then

set ζt as the empirical (1− ρ)-percentile of action-values (Algorithm 6, line 9):

ζt
.
= q

(⌈(1−ρ)N⌉)
θ = qθ(s, ai⌈(1−ρ)N⌉) (4.3)

We then construct a set I∗(s) = {ai | qθ(s, ai) ≥ ζt, ai ∈ I(s)} of highly valued

actions (Algorithm 6, line 10) and update the parameters of the actor policy

using a gradient ascent step on the log-likelihood of actions I∗(s) (Algorithm 6,

line 14). We perform a similar update for the proposal policy, except that we

utilize entropy regularization (Algorithm 6, lines 11 to 13). Upon transitioning

to the next state, the entire algorithm is run again.

One caveat to the CCEM exists that warrants discussion. In later sections,

we discuss theoretical results which require that the actor and proposal poli-

cies come from the same distributional family. Empirically, we noticed that

the algorithm performed satisfactorily when using proposal and actor policies
3This perhaps suggests another method to keep the proposal policy highly stochastic,

other than entropy regularization
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Algorithm 6: Conditional Cross-Entropy Method
1 Input: N ∈ N, ρ ∈ (0, 1), qθ, s ∈ S, α, τ ∈ R+

2 if A is discrete and finite then
3 I∗(s)← argmaxa∈A qθ(s, a)

4 else
5 Get a sorted list of action samples:
6 I(s)← {a1, a2, . . . , aN} for ai ∼ ˜︁πϕprop(· | s)
7 q

(1)
θ = qθ(s, ai1) ≤ . . . ≤ q

(N)
θ = qθ(s, aiN )

8 Construct the empirical percentile distribution:
9 ζt ← q

(⌈(1−ρ)N⌉)
θ

10 I∗(s)← {ai | qθ(s, ai) ≥ ζt, ai ∈ I(s)}
11 Update the proposal policy
12 g ←

∑︁
a∈I∗(s)∇ϕprop ln ˜︁πϕprop(a | s) + τ∇ϕpropH(˜︁πϕprop(· | s))

13 ϕprop ← ϕprop + αg

14 ϕ← ϕ+ α
∑︁

a∈I∗(s)∇ϕ lnπϕ(a | s)

from different distributional families. Future research should more carefully

characterize the theoretical and empirical implications of selecting actor and

proposal policies from differing distributional families. For the purposes of

this thesis, we will take each distribution to be in the same family in order to

match the theory presented in later sections.

The CCEM can be seen in the following, perhaps overly simplistic, manner.

Upon transitioning to state s ∈ S, we perform a CEM optimization update on

the action-value critic, using samples drawn from the agent’s proposal policy

and using entropy regularization where applicable. If we ignored this CEM

update at all other states and assume the action-value critic is not changing,

then the next time we transition to state s, we will perform this CEM update

again. As time goes on, this CEM update is performed over and over again, and

the CEM optimization algorithm is in effect recovered in this state under two

different policies. One policy, the proposal policy, is kept wider than the other,

the actor policy. The caveat is that the CEM updates at states other than s are

not actually ignored and the action-value critic is learned concurrently with

the policy. This intertwining of CEM updates at each state while updating

the action-value critic causes the CCEM algorithm to track the expected CEM
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optimizer across states. By track, we mean that the CCEM slowly solves a

non-stationary problem. By expected, we mean that this solution is the average

solution across states. In the next section, we more carefully characterize this

phrase.

CCEM for Discrete Actions. The discussion above has solely consid-

ered the continuous action setting. The CCEM attempts to find an action

of maximal value in each state. In the continuous action setting, this is ac-

complished through randomly sampling actions. In the discrete action setting

though, this optimization procedure is greatly simplified. We instead per-

form a maximum likelihood update on all maximally valued actions in the set

I∗(s) = {a | qθ(s, a) = maxb∈Aqθ(s, b)} (Algorithm 6, line 3). We no longer

have the proposal policy ˜︁πϕprop as it is no longer necessary. Furthermore,

entropy regularization is no longer used.

4.2 The CCEM Tracks the Expected CEM Op-
timizer

In this section, we discuss the asymptotic solution of the CCEM. First proven

by Neumann et al. (2022), the CCEM tracks the expected solution found by

the CEM across states. We first informally reiterate this result and outline

the necessary assumptions thereof. We then discuss the significance of this

theoretical result and comment on its limitations.

4.2.1 Informal Result

We would like to understand the properties of the stochastic CCEM algorithm.

At an intuitive level, we would expect the CCEM to behave similarly to the

CEM on a state-by-state basis as outlined at the close of the previous section.

There are two caveats though. The first is that the CCEM uses a parameter-

ized policy conditioned on state, representing possibly infinitely many different

probability distributions, where we have one distribution per state. Aliasing
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between action distributions will therefore occur. In contrast, the CEM con-

siders only a single distribution for optimization purposes and does not take

into account any such aliasing. Second, the CCEM optimizes an action-value

critic, which is a function changing with time and is an inaccurate approxi-

mation to the true function we would like to optimize, the true action-value

function.

To address the first difficulty, Neumann et al. (2022) identify a number of

conditions on the policy parameterization to ensure well-behaved CEM up-

dates and use an ODE that takes expectations over states to analyze the

algorithm. To address the second difficulty, Neumann et al. (2022) use a

two-timescale stochastic approximation approach where the action-value critic

qθ changes more slowly than the policy πϕ which allows the policy to track

the maximal action. To account for its own parameters changing, the pol-

icy itself has two timescales. Actions for the maximum likelihood step are

sampled according to a distribution parameterized by older (slower-moving)

parameters. This ensures that the maximum-likelihood update to the primary

(faster-moving) parameters uses samples from what look like a fixed distri-

bution. These two distributions correspond to the proposal (slow) and actor

(fast) policies in the CCEM algorithm.

Informal Result: Let θt be the parameters of the action-value critic with

stepsize αθ, ϕt the policy parameters with stepsize αϕ, and ϕpropt a more slowly

changing set of policy parameters set to ϕpropt = (1 − αϕprop)ϕpropt−1 + αϕpropϕt

for stepsize αϕprop ∈ (0, 1]. Assume:

1. States St ∈ S are sampled from a fixed marginal distribution

2. ∇ ln πϕ(· | s) is locally Lipschitz w.r.t. ϕ ∀s ∈ S

3. Parameters ϕt and θt remain bounded almost surely

4. Stepsizes are chosen for three different timescales: ϕt evolves faster than

ϕpropt , and ϕpropt evolves faster than θt
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Then the CCEM actor tracks the expected CEM optimizer across states 4.

Why is this result useful? The primary concern is that the CCEM is not a

gradient-descent approach and so requires a different analysis to ensure that

the stochastic noise in the update remains bounded and is asymptotically neg-

ligible. In particular, the underlying ODE for the CCEM update needs to be

characterized. Furthermore, any classical results of the CEM do not immedi-

ately apply to the CCEM because such results assume distribution parameters

can be computed directly (for example, the mean and variance of a Gaussian)

and are not the outputs of parameterized functions such as neural networks.

The conditions and result stated above ensure that the CCEM updates are

well-behaved and that the stochastic noise is asymptotically negligible.

4.2.2 Limitations

As is often the case, the theory does not perfectly characterize the CCEM

algorithm we use in practice. The theory requires a number of assumptions

to hold, but in practice these assumptions are generally relaxed. The above

theoretical result, although useful, has several limitations.

First, in practice we do not use the update ϕpropt = (1 − αϕprop)ϕpropt−1 +

αϕpropϕt to learn the weights of the proposal policy. We instead use a maxi-

mum likelihood update on the top percentile of actions with entropy regular-

ization. The entropy regularization causes the proposal policy to concentrate

more slowly than the actor policy. Hence, the principle of a proposal policy

which learns slower than the actor policy is kept, but does not perfectly match

the theory. Future research should more carefully study the theoretical and

empirical implications of using an entropy regularized proposal policy in place

of this parameter update.

Second, as previously mentioned, we do not generally in practice require

that the proposal policy and actor policy be from the same family of dis-
4We say the CCEM actor tracks the expected CEM optimizer because θ and ϕprop are

changing with time.
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tributions even though the theory assumes so. Future research should more

carefully characterize the theoretical implications of this choice.

Finally, the theory assumes that the state distribution is fixed. Such an as-

sumption is necessarily unfulfilled. The actor policy πϕ affects which states are

encountered. Nevertheless, this assumption is a standard first-step assumption

when analyzing off-policy algorithms (Jaakkola et al., 1994) and allows us to

simply ask if the algorithm will eventually recover greedy actions across states.

Future research should study the theoretical implications of having a changing

state distribution when using the CCEM algorithm.

4.3 The CCEM Guarantees Policy Improvement
in an Idealized Setting

In this section, we prove that the CCEM provides guaranteed policy improve-

ment in an idealized setting, when the algorithm has access to the true action-

value function and performs a complete optimization on each step. Analyzing

the properties of policy improvement operators in an idealized setting is com-

mon (Chan et al., 2021; Ghosh et al., 2020; Haarnoja et al., 2018, 2019) and

was even used in the original policy improvement theorem (Sutton et al., 2018).

In fact, theoretical policy improvement is a desirable characteristic; it shows

that in the best case scenario our algorithm will converge to an optimal pol-

icy. Without such theoretical guarantees, the utility of a policy improvement

operator may be in question. The above discussion of the CCEM assumed

an action-value critic is learned. Here, we assume that the true action-value

function qπ is known.

As discussed in Chapter 2, many actor-critic algorithms reduce the distance

between the learned policy and the Boltzmann policy. A reasonable question

is whether the CCEM also uses distribution matching, and if so, which target

policy the CCEM matches the learned policy to. The CCEM does perform

distribution matching, as we now discuss.
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Let Tρ(s) ∀s ∈ S be defined such that the following holds:∫︂
{a∈A|qπ(s,a)≥Tρ(s)}

π(a | s) da = ρ (4.4)

that is, Tρ(s) is the (1 − ρ)-percentile of action-values. Then, the percentile-

greedy policy of π is defined as:

ϱπρ(a | s) =

{︄
π(a|s)
ρ

if qπ(s, a) ≥ Tρ(s)

0 otherwise
(4.5)

This percentile-greedy policy represents the target of our CCEM update, which

matches the actor policy to ϱ
πϕ
ρ by minimizing KL

(︁
ϱ
πϕ
ρ || πϕ

)︁
The percentile-

greedy target policy is approximated using an empirical percentile distribution.

Intuitively, the percentile-greedy policy should be an improvement over

the learned actor policy πϕ since it redistributes probability density from low-

valued actions to high-valued actions proportional to the density of high-valued

actions under πϕ. We now formally show that the percentile-greedy policy is

indeed an improvement over the actor policy.

Theorem 4.3.1 For a given policy π, action-value function qπ, and ρ ∈ (0, 1),

the percentile-greedy policy ϱπρ of π is guaranteed to be at least as good as π in

all states:

vϱπρ (s) =

∫︂
A

ϱπρ(a | s)qϱπρ (s, a)da ≥
∫︂
A

π(a | s)qπ(s, a)da = vπ(s)

Proof. The proof follows a simple modification of the standard policy im-

provement theorem. Notice that by the definition of percentiles, for any state

s ∈ Swe have:∫︂
A

ϱπρ(a | s)qπ(s, a)da =

∫︂
{a∈A|qπ(s,a)≥Tρ}

π(a | s)
ρ

qπ(s, a)da

= Eϱπρ [qπ(s, A)]

≥
∫︂
A

π(a | s)qπ(s, a)da

= Eπ[qπ(s, A)]
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Using these properties, we can derive a policy improvement guarantee. For

any state s ∈ S:

vπ(s) = Eπ[qπ(s, A)] ≤ Eϱπρ [qπ(s, A)]

= Eϱπρ [Rt+1 + γEπ[qπ(St+1, At+1)] | St = s]

≤ Eϱπρ [Rt+1 + γEϱπρ [qπ(St+1, At+1)] | St = s]

≤ Eϱπρ [Rt+1 + γRt+2 + γ2Eπ[qπ(St+2, At+2)] | St = s]

≤ . . .

≤ Eϱπρ [Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γT−1RT | St = s]

= Eϱπρ [qϱπρ (s, A)] = vϱπρ (s)

Q.E.D.

Therefore, if we perform a full optimization to reduce KL(ϱ
πϕ
ρ || πϕ) = 0 and

if we have access to the true action-value function qπϕ , then the newly learned

policy is guaranteed to be at least as good as the previous policy:

vπϕt−1
(s) ≤ vπϕt (s) ∀s ∈ S

and an iterative application of the CCEM will eventually recover an optimal

policy in a finite number of steps. Of course in practice, we do not have access

to the true action-value function, nor can we completely minimize the distance

between ϱ
πϕ
ρ and πϕ.

This result is a sanity check to ensure that our algorithm utilizes a sensible

target policy. Although this policy improvement requirement seems simple, it

is often not satisfied in practice since the Boltzmann policy does not induce

policy improvement with respect to the state and action values. Instead, the

Boltzmann policy provides guaranteed policy improvement in terms of the

soft state and action values, meaning that methods based on the Boltzmann

distribution may uncover an optimal policy for the entropy-regularized version

of the original MDP. Theorem 4.3.1 holds equally both for the state and action

values as well as for the soft state and soft action values, meaning that the

percentile-greedy policy can provide guaranteed policy improvement for an

MDP or its entropy-regularized counterpart.
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If this percentile-greedy policy is so great, why do we use a parameter-

ized policy instead of directly using the percentile-greedy policy? Similarly

to the case of the Boltzmann policy, computing ϱπρ would be onerous in the

continuous action setting and so we cannot simply use it. Instead, we use a

parameterized policy to mimic the percentile-greedy policy. In the discrete-

action setting, the percentile-greedy policy is the greedy policy with respect to

the true action values qπ. Indeed, it would be desirable to utilize such a policy,

but unfortunately in practice qπ is unknown and we use an action-value critic,

an inaccurate approximation to qπ. Using a greedy policy with respect to the

critic can degrade performance by reducing exploration. Slowly matching a

parameterized policy to the greedy policy with respect to the critic can ensure

enough stochasticity is kept in the policy for adequate exploration.

4.4 A Full Reinforcement Learning Algorithm:
Greedy Actor-Critic

The CCEM itself is not a full reinforcement learning algorithm but rather an

algorithm for policy improvement. In this section, we discuss a new actor-critic

algorithm which utilizes the CCEM for policy improvement and approximately

satisfies the theoretical conditions required by the CCEM. We call this algo-

rithm Greedy Actor-Critic (GreedyAC). Although this algorithm is agnostic

to the specific function approximation scheme used and whether on-policy or

off-policy data is used, we specifically discuss the case of using neural network

function approximation and off-policy data generated from an experience re-

play buffer. The full GreedyAC algorithm is given in Algorithm 7.

Greedy Actor-Critic learns a single action-value critic qθ with parameters

θ ∈ R|θ| using a semi-gradient Sarsa update; a target critic network qθtarg

with parameters θtarg ∈ R|θ| provides the next action-value for the Sarsa

update as is common practice with deep reinforcement learning algorithms

(Algorithm 7, line 11). At each step, a batch B of states, actions, rewards,

and next-states is sampled from an experience replay buffer B (Algorithm 7,
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line 9). For each tuple in the batch, denoted as (S,A,R, S ′), an on-policy

action, A′, is sampled and the critic parameters are updated by minimizing

the mean squared Bellman residual:

1

2|B|
∑︂

(S,A,R,S′)∈B

(R + γqθtarg(S
′, A′)− qθ(S,A))

2

resulting in the gradient:

gcritic
.
= − 1

|B|
∑︂

(S,A,R,S′)∈B

(R + γqθtarg(S
′, A′)− qθ(S,A))∇θqθ(S,A)

where A′ ∼ πϕ(· | S ′) in both of the preceding equations. The parameters of

the critic are updated using a single gradient descent step, and the parame-

ters of the target network are updated using a polyak average between target

network and critic weights (Algorithm 7, lines 10 to 13):

θ ← θ + αcriticgcritic (4.6)

θtarg ← (1− β)θtarg + βθ (4.7)

where αcritic ∈ R is the step-size for learning the critic weights and β ∈ (0, 1)

controls the amount by which the target network parameters are updated

toward the critic parameters.

To learn the actor policy πϕ and proposal policy ˜︁πϕprop , Greedy Actor-Critic

utilizes the CCEM algorithm. This involves (1) obtaining the sets I∗(S) for

each state S in the batch B, (2) estimating the entropy of the proposal policy,

and (3) updating the actor and proposal policies with the respective gradients.

To start, N ∈ N actions are sampled from the proposal policy ˜︁πϕprop(· | S) for

each state S ∈ B. Denote each of these sets I(S) for each S ∈ B. To obtain

the sets I∗(S), the action-values of each action in I(S) are calculated using qθ.

I∗(S) is then comprised of the ⌊ρN⌋ actions of highest value. To estimate the

entropy of the proposal policy in each state S, we uniformly randomly select

an action AH
S from I(S), where the superscript H simply denotes that this

action is used for entropy regularization, and the subscript S indexes state.
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Algorithm 7: Greedy Actor-Critic
1 Input: b,N ∈ N; αcritic, αactor, αprop ∈ R+; β ∈ (0, 1]; ρ ∈ (0, 1)
2 if A is discrete and finite then
3 Initialize: parameters θ,θtarg,ϕ,ϕprop, and replay buffer B

4 else
5 Initialize: parameters θ,θtarg,ϕ, and replay buffer B

end
6 Obtain: initial state Scurrent

while Scurrent not terminal do
7 Take action Acurrent ∼ πϕ(· | Scurrent) and observe Rnext, Snext
8 Add (Scurrent, Acurrent, Rnext, Snext) to replay buffer B

9 Sample a random batch B = (S,A,R, S ′)bi=1 ∼ B

10 Update parameters θ using Sarsa with batch B:
11 θ ← θ + αcriticgcritic
12 Update target parameters θtarg:
13 θtarg ← (1− β)θtarg + βθ
14 Update parameters ϕ using Algorithm 6 and S ∈ B
15 if A is continuous or countably infinite then
16 Update parameters ϕprop using Algorithm 6 and S ∈ B

17 Scurrent ← Snext
end

We then estimate the gradient of the entropy as5:

∇H(˜︁πϕprop(· | S)) ≈ − ln ˜︁πϕprop(AH
S | S) ∇ϕprop ln ˜︁πϕprop(AH

S | S).

The following gradients are then calculated:

gactor
.
=

1

|B|
∑︂
S∈B

∑︂
a∈I∗(S)

∇ϕ ln πϕ(a | S)

gprop
.
=

1

|B|
∑︂
S∈B

⎛⎝ ∑︂
a∈I∗(S)

∇ϕprop ln ˜︁πϕprop(a | S) + τ∇ϕpropH(˜︁πϕprop(· | S))

⎞⎠
where τ ∈ R controls the degree of entropy regularization to the proposal

policy. The parameters of the actor and proposal policy are then updated

by following a single gradient ascent step, resulting in a maximum-likelihood
5Alternatively, the analytic form of the gradient of the entropy of a distribution can be

used when possible.
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update on the actions in I∗(S) for each S ∈ B (Algorithm 7, lines 14 to 16):

ϕ← ϕ+ αactorgactor (4.8)

ϕprop ← ϕprop + αpropgprop (4.9)

where αactor ∈ R and αprop ∈ R are the actor policy and proposal policy step-

sizes. Although the general case of Greedy Actor-Critic allows for separate

step-sizes for the actor and proposal policies, we use a single step-size for

both, αactor = αprop, which reduces the number of hyperparameters we sweep

in our experiments.

The above discussion focuses on the continuous-action version of GreedyAC.

In the case of discrete-action environments, GreedyAC is simplified. Although

we still use Algorithm 6 for the policy improvement step, GreedyAC no longer

uses a proposal policy. Instead of repeatedly randomly sampling from a pro-

posal policy to generate the empirical percentile distribution I∗(S), we instead

set I∗(S) = argmaxa∈Aqθ(S, a) in each state S ∈ S.

4.5 Conclusion

In this section, we discussed the Conditional Cross-Entropy Optimization

Method, a new policy improvement operator for actor-critic algorithms. We

discussed the differences between the continuous action and discrete action

versions of the CCEM as well as a number of theoretical results. Particularly,

we discussed how the CCEM tracks the expected CEM optimizer. We also dis-

cussed how, given idealized conditions, the CCEM provides guaranteed policy

improvement, unlike policy improvement operators based on the Boltzmann

policy. Finally, we discussed Greedy Actor-Critic, a full actor-critic algorithm

that utilizes the CCEM for policy improvement.
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Chapter 5

Experiment Setup

This chapter describes the experimental setup used to empirically study the

CCEM and GreedyAC. We first describe the environments that we run exper-

iments on. Next, we discuss the hyperparameters swept, neural network ar-

chitectures, policy parameterizations, and other relevant experimental details.

We compare GreedyAC in a number of settings to two baseline algorithms:

SAC-M and VanillaAC, which are described in detail in Chapter 2. For the

remainder of this thesis, we will no longer work with the variant of SAC in-

troduced by Haarnoja et al. (2018). Instead, we only work with the modern

version, SAC-M, introduced by Haarnoja et al. (2019). For simplicity, we will

refer to SAC-M simply as SAC for the rest of this thesis.

5.1 Environments

The empirical study is run on small, yet challenging environments which allow

for extensive experimental repetition leading to both statistical significance of

results and a careful exploration of hyperparameters and sensitivity. We study

the performance and hyperparameter sensitivity of the aforementioned algo-

rithms on three classic control environments: Mountain Car (Sutton et al.,

2018), Pendulum (Degris et al., 2012a), and Acrobot (Sutton et al., 2018).

We use both continuous and discrete action versions of all environments. The

Mountain Car and Acrobot environments are episodic. The agent-environment

interaction naturally breaks into separate episodes. The Pendulum environ-
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ment is continuing; the agent-environment interaction goes on forever and does

not naturally end. These classic control environments are a challenge for deep

RL algorithms (Ghiassian et al., 2020), and performance differences on sim-

ple environments such as these have been shown to extend to more complex

environments (Obando-Ceron et al., 2021).

In the Mountain Car environment, the agent controls a car at the bottom

of a valley with a hill on each side. The goal is to drive the car up the

hill on the right, but the car is underpowered and cannot directly drive up

the hill. The agent must learn to rock the car back and forth, from one

hill to the next, until it reaches to goal state at the top of the right-hand

hill. State observations consist of the car’s horizontal position and velocity in

[−1.2, 0.6] × [−0.07, 0.07]. The agent starts with a velocity of 0 in a position

drawn randomly from [−0.6,−0.4], which is near the bottom of the valley.

Actions consist of the force to apply to the car and are bounded in [−1.0, 1.0]

for continuous actions. For discrete actions, the force is chosen from the set

{−1, 0, 1}. The reward is -1 per step.

In the Pendulum environment, the agent controls a pendulum attached at

a fixed base. The goal is to swing the pendulum and hold it in an upright

position. Similarly to Mountain Car, the force applied to the pendulum is

underpowered, and the pendulum cannot be directly swung into the upright

position. State observations consist of the angle of the pendulum, normalized

to be in [−π, π), and the angular velocity of the pendulum in [−1, 1]. The

environment starts with the pendulum facing straight downwards, an angle

of −π, with angular velocity of 0. Actions consist of the torque applied to

the pendulum at its fixed base and are bounded in [−2.0, 2.0] for continuous

actions. For discrete actions, the torque is chosen from the set {−2, 0, 2}. The

reward is the cosine of the angle from the positive y-axis, where an angle of 0

indicates the pendulum coincides with the positive y-axis (i.e. the pendulum

faces upwards).

In the Acrobot environment, the agent controls a double hinged pendulum

attached at a fixed base. The goal is to swing the end of the second link above
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the fixed base by one link’s length. State observations consist of the angle

of each link, normalized in [−π, π), and the angular velocity of each link, in

[−4π, 4π] for the first link and in [−9π, 9π] for the second link. An angle of

0 indicates the respective link is facing straight downwards. The agent starts

with random angles and angular velocities drawn uniformly randomly from the

interval [−0.1, 0.1]. Actions consist of the torque to apply to the pendulum

at its fixed base and are bounded in [−1.0, 1.0] for continuous actions. For

discrete actions, the torque is chosen from the set {−1, 0, 1}. The reward is -1

per step.

We used the following environment-specific settings in our experiments. All

environments use a discount factor of γ = 0.99. Episodes are cut off at 1,000

timesteps. At episode cutoffs, the agent is transitioned to a random state in the

domain of starting states. Episode cutoffs do not induce a termination to the

agent-environment interaction. Each experiment is run for 100,000 timesteps,

and the agent is updated at each step.

5.2 Experiment Details

For each algorithm, we swept and tuned hyperparameters. To begin, we swept

all hyperparameter combinations over 10 initial runs with different random

seeds for each run. Hyperparameters were tuned by selecting the hyperpa-

rameter setting which resulted in the agent achieving the highest score, for

example the highest average episodic return over runs. Each experiment used

a different definition of score depending on the goal of the experiment, and

the exact definition of score is mentioned in the experimental descriptions in

each subsequent chapter. After a hyperparameter setting was chosen, an addi-

tional 30 experiments were run with these chosen hyperparameters for different

random seeds from the initial 10 runs.

We now describe the hyperparameters swept for all algorithms. Critic

step-sizes were swept in the set αcritic ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. Actor

step-sizes were set to be αactor = κ × αcritic, and κ was swept in the set
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{10−3, 10−2, 10−1, 1.0, 2.0, 10.0}. For experience replay, the buffer capacity was

set at 100,000 samples so that all environmental transitions were stored in

the buffer. A constant batch size of 32 was used for all algorithms. Target

networks were updated at each timestep using a polyak average with fixed

β = 0.01. Entropy scales were swept τ ∈ {10−3, 10−2, 10−1, 1.0, 10.0}. For

Greedy Actor-Critic, we fixed ρ = 0.1 and sampled N = 30 actions per state.

For Vanilla Actor-Critic, we also sampled a total of 30 actions where 1 was

used to predict the action-value in the gradient, 1 was used to estimate the

entropy, and 28 were used to estimate a state-value baseline using a stochastic

sample of Equation 2.6.

The continuous and discrete action versions of environments require dif-

ferent policy parameterizations. For continuous action environments, we pa-

rameterized the learned policies as Gaussian distributions for GreedyAC and

VanillaAC. For SAC, we used a squashed Gaussian policy following the orig-

inal work (Haarnoja et al., 2018, 2019) since we found it performed better

with a squashed Gaussian than with a Gaussian policy. For discrete actions,

we parameterized the learned policies as Softmax distributions for all algo-

rithms. All algorithm evaluation was performed during training and includes

the stochastic noise in the learned policies. That is, actions are sampled from

the learned policies, rather than selecting the modal actions.

For all algorithms, the actor and critic were parameterized using neural

network function approximators. For the critic, we used three hidden layers of

64 hidden units each with ReLU activations. For the parameterized policies,

we also used three hidden layers of 64 hidden units with ReLU activations.

In the case of Gaussian or squashed Gaussian policies, the networks predicted

the mean and log standard deviation of the policy. For Gaussian policies, the

mean was computed by passing the output of the last hidden layer through

a hyperbolic tangent nonlinearity and then rescaling to ensure the mean was

within the action bounds of the environment. This was not required for the

squashed Gaussian policy used by SAC, since this policy bounds actions to be

within the action range of the environment. In the case of Softmax policies,
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the networks predicted one logit for each action.
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Chapter 6

Experiments with
Hyperparameter Tuning

In this chapter, we discuss our first experiments. In these experiments, we run

GreedyAC, VanillaAC, and SAC on the three classic on control environments

of Mountain Car, Pendulum, and Acrobot with both discrete and continuous

actions. In this chapter, we refer to environment E using continuous actions

as E-CA and using discrete actions as E-DA.

These experiments consider the performance of all three algorithms under

two different hyperparameter tuning regimes. The first of which is the per-

environment hyperparameter tuning regime. This regime reflects the best-

case performance of an algorithm, which is when the algorithm can be in-

tricately tuned to a specific problem environment. Typically, this regime is

available only in simulation, but is a common method to analyze actor-critic

algorithms. The second regime we consider is one in which hyperparameters

are tuned across environments. This regime reflects how sensitive an algo-

rithm is to its hyperparameters and whether the algorithm is able to find a

single hyperparameter setting that works well in an assortment of problems.

An algorithm that is insensitive to hyperparameters should see little degra-

dation in performance when moving from the per-environment regime to the

across-environment regime. Ideally, we would like our algorithms to have equal

performance in both regimes, indicating that the algorithm performs well and

is insensitive to hyperparameters across different environments.
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Figure 6.1: Learning curves on Pendulum when tuning per-environment.
Learning curves are averaged over 30 runs with shaded regions denoting stan-
dard error from the mean performance. On Pendulum-CA, SAC learned faster
than both GreedyAC and VanillaAC. On Pendulum-DA, GreedyAC learned
slowest, but exhibited highest final performance. Hyperparameters were tuned
over an initial 10 runs with different random seeds from the results shown here.

6.1 Per-Environment Hyperparameter Tuning

Our first experiment examines how well each algorithm can perform if tuned

to a single problem – on a per-environment basis. Each algorithm’s hyperpa-

rameters were tuned on each of the six environments by selecting the hyper-

parameter setting inducing the highest performance, calculated as the average

episodic return per run over 10 initial runs. We tuned for discrete and contin-

uous action environments separately. The chosen hyperparameter settings are

listed in Appendix A. After the hyperparameters were tuned, an additional 30

runs were conducted on each environment.

For each of 30 runs with tuned hyperparameters, the episodic return was

recorded and averaged over runs to produce the mean learning curves with

standard error in Figures 6.1, 6.2, and 6.3 for Pendulum, Mountain Car, and

Acrobot respectively. For the continuing environment Pendulum, learning

curves were constructed by averaging each episode’s performance over runs

since each run had exactly 100 episodes completed. For the episodic environ-
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Figure 6.2: Learning curves on Mountain Car when tuning per-
environment. Learning curves are averaged over 30 runs with shaded regions
denoting standard error from the mean performance. GreedyAC was able to
learn quickly on Mountain Car. GreedyAC learned faster than both baselines
on Mountain Car-CA. On Mountain Car-DA, GreedyAC matched the per-
formance of VanillaAC in terms of learning speed and final episodic return.
Compared to GreedyAC and VanillaAC, SAC learned slowest and attained
lowest final performance on Mountain Car-DA. Hyperparameters were tuned
over an initial 10 runs with different random seeds from the results shown here.

ments, each run had a different number of episodes completed in the budget

100,000 timesteps. To average over runs, we repeated each episode’s return n

times, where n is the number of completed timesteps in each episode, result-

ing in 100,000 readings of performance for each run. These readings were then

averaged over runs to produce the learning curves.

On Pendulum, all algorithms performed well, as depicted in Figure 6.1,

indicating that this environment is perhaps easy for these algorithms to solve.

On Pendulum-DA, VanillaAC and SAC learned faster than GreedyAC, yet

exhibited lower final performance than that of GreedyAC. Upon convergence,

all algorithms exhibited stable performance. On Pendulum-CA, SAC attained

the highest episodic return over time and exhibited nearly zero variance both

across runs and across consecutive episodes. SAC was also able to attain

high average episodic return faster than GreedyAC and VanillaAC. GreedyAC

learned slower than SAC on Pendulum-CA and exhibited lower final perfor-
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Figure 6.3: Learning curves on Acrobot when tuning per-environment.
Learning curves are averaged over 30 runs with shaded regions denoting stan-
dard error from the mean performance. On Acrobot-CA, all algorithms begin
learning at the same speed. VanillaAC and GreedyAC converge to a similar
final performance, higher than the final performance of SAC. On Acrobot-DA,
GreedyAC nearly matches the performance of VanillaAC. Hyperparameters
were tuned over an initial 10 runs with different random seeds from the results
shown here.

mance. VanillaAC learned the slowest and attained the lowest average episodic

return over time.

Mountain Car proved to be somewhat more difficult for SAC, as shown in

Figure 6.2. Overall, GreedyAC performed well on Mountain Car. Under the

discrete-action setting, GreedyAC approximately matched the performance of

the VanillaAC baseline, and both algorithms performed satisfactorily. SAC

performed worse out of all three algorithms on Mountain Car-DA. On Moun-

tain Car-CA, GreedyAC exhibited the highest final performance of all three

algorithms and also learned the fastest. VanillaAC and SAC performed simi-

larly on Mountain Car-CA, exhibiting poor performance overall.

Figure 6.3 outlines the performance of each algorithm on Acrobot. On

Acrobot-DA, both VanillaAC and GreedyAC learned rapidly, yet VanillaAC

converged to its final performance faster than GreedyAC did. SAC began

the experiment learning at approximately the same speed as VanillaAC and

GreedyAC. After a short learning interval, the performance of SAC degraded.
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After this degradation, SAC began learning again and converged to a final

performance similar to that exhibited by GreedyAC. On Acrobot-CA, all al-

gorithms learned at approximately the same speed until about halfway through

the experiment. At this point, GreedyAC and VanillaAC continued to learn,

converging to a similar final performance. On the other hand, the performance

of SAC began to degrade at this point. The final performance of SAC was lower

than that of GreedyAC and VanillaAC. Although common knowledge is that

actor-critic algorithms struggle to learn on the Acrobot environment, both

VanillaAC and GreedyAC performed satisfactorily.

GreedyAC exhibits satisfactory performance on this classic control suite

of environments. The algorithm generally exhibits higher performance than

SAC, which is widely regarded as state-of-the-art. Furthermore, GreedyAC

performs similarly to the VanillaAC baseline in many cases. We note that in

the discrete action setting, GreedyAC does not utilize entropy regularization.

This can be seen as an advantage or disadvantage for GreedyAC. On the one

hand, this may make the algorithm easier to tune than the baseline algorithms.

On the other hand, the baseline algorithms were given 5 times more hyperpa-

rameter settings to tune over than GreedyAC was given, perhaps giving the

baselines an advantage. Overall on this small classic control suite, GreedyAC

can outperform both baseline algorithms, Whether this is a general character-

istic of these algorithms under the per-environment tuning regime is unclear

and is a topic for future research.

6.2 Across-Environment Hyperparameter Tun-
ing

In this section, we discuss our second experiment. This goal of this experiment

is to see whether or not Greedy Actor-Critic can find a single hyperparameter

setting that works well across all six environments in the classic control suite.

Actor-Critic algorithms are known to be sensitive to hyperparameters (Chan

et al., 2021; Degris et al., 2012a; Haarnoja et al., 2018; Pourchot et al., 2019).
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Such sensitivity demonstrates the difficulty of applying these algorithms to new

problems and is relevant for both pure and applied settings. Often, finding a

hyperparameters setting that works well for a single problem is computation-

ally expensive. Such a hyperparameter setting is often appropriate only for the

original problem for which it was found. If this hyperparameter setting were

applied on a new problem, the algorithm would most likely perform poorly.

One may wonder why hyperparameter sensitivity is problematic at all when

parallel computing exists that allows extensive hyperparameter sweeps in a

short amount of time using simulators. The difficulty is that although this

extensive experimentation is possible when using simulators, it is not generally

possible in the real world, limiting the applicability of actor-critic algorithms

to industry. This is what we focus on in this section: can Greedy Actor-Critic

find a single hyperparameter setting which works well across the environments

in the classic control suite?

6.2.1 Hyperparameter Selection

In order to tune an algorithm across all six environments, we must take the

performance on each environment into account. Because each environment has

a different reward scheme from the others, we used a normalization approach

to ensure the performance on each environment contributed approximately

equally to the hyperparameter selection process.

For each environment, we normalized performance by first finding the high-

est episodic return achieved over all algorithms, for all hyperparameter set-

tings, and over all of the 10 initial runs. Denote this value as G∗(E) for

environment E. We used G∗(E) as an approximation to the highest attainable

return on environment E. Table 6.1 lists these approximately-optimal returns

for each environment for both continuous and discrete action settings.

After the approximately optimal return was found, we normalized perfor-

mance as:

N(p(E))
.
= 1− G∗(E)− p(E)

|G∗(E)|
where p(E) is the performance on environment E to normalize. In this ex-
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Environment Continuous Discrete
Acrobot -56 -56

Mountain Car -65 -83
Pendulum 930 932

Table 6.1: Approximately optimal returns on each environment for continuous
and discrete action settings. The optimal return is the highest return possible
on each environment and is approximated by the highest return achieved over
all algorithms, hyperparameter settings, and runs.

periment, the performance p(E) was the average episodic return. Each hyper-

parameter setting was then assigned a score equal to the average normalized

performance over all environments, episodes, and runs. The hyperparame-

ter setting which achieved the highest score was then selected for each algo-

rithm. These settings are listed in Appendix A. After the hyperparameters

were tuned, an additional 30 runs were conducted for each algorithm using

different random seeds from the initial 10 runs.

6.2.2 Results and Discussion

Considering how the performance should change in comparison to the pre-

vious section is useful. Because each algorithm is forced to select a single

hyperparameter setting across all environments, we would expect to see some

degradation in performance when compared to the results of the preceding sec-

tion which focused on finding hyperparameter settings on an per-environment

basis. Algorithms that are sensitive to their hyperparameter settings should

experience a larger degradation in performance compared to those which are

more robust to changes in their hyperparameter settings. Figures 6.4, 6.5, and

6.6 show the learning curves for each algorithm on Pendulum, Mountain Car,

and Acrobot respectively. These figures were constructed in the same manner

discussed in Section 6.1.

Figure 6.4 shows the performance of each algorithm on Pendulum. On

Pendulum-CA, all algorithms performed poorly. GreedyAC and VanillaAC

each learned faster than SAC did. On the other hand, GreedyAC achieved the

highest episodic return over time on Pendulum-DA and, upon convergence,
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Figure 6.4: Learning curves on Pendulum when tuning across-
environments. On Pendulum-CA, all algorithms exhibited low performance,
with SAC learning slowest. On Pendulum-DA, GreedyAC learned fastest and
exhibited highest final performance. Upon convergence, GreedyAC also ex-
hibited low variation in performance across runs and on consecutive episodes.
Hyperparameters were tuned over an initial 10 runs with different random
seeds from the results shown here.

evinced stable performance both across runs and on consecutive episodes. On

the other hand, SAC performed worse on Pendulum-DA, than on Pendulum-

CA. VanillaAC achieved similar episodic return and stability in performance

on both the discrete and continuous action versions of Pendulum.

On both continuous and discrete action versions of Mountain Car, SAC

achieved the lowest performance, shown in Figure 6.5. For nearly all episodes,

SAC achieved the lowest average episodic return possible for both the con-

tinuous and discrete action versions of Mountain Car. VanillaAC exhibited

higher performance on Mountain Car-CA than it did on Mountain Car-DA.

GreedyAC matched the performance of VanillaAC on Mountain Car-CA and

outperformed both baseline algorithms on Mountain Car-DA.

The learning curves on Acrobot are shown in Figure 6.6. On Acrobot-DA,

GreedyAC and VanillaAC began learning at the same speed until approxi-

mately halfway through the experiment. After this point, the learning speed

of VanillaAC declined. SAC learned slowest but matched the final performance
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Figure 6.5: Learning curves on Mountain Car when tuning across-
environment. Learning curves are averaged over 30 runs with shaded regions
denoting standard error from the mean performance. GreedyAC learned faster
on Mountain Car-DA than it did on Mountain Car-CA. SAC failed to learn on
both environments, and VanillaAC did not learn on Mountain Car-DA. Hy-
perparameters were tuned over an initial 10 runs with different random seeds
from the results shown here.

of GreedyAC. On Acrobot-CA, all algorithms learned at a similar pace until

approximately halfway through learning, at which point the performance of

SAC began to degrade. GreedyAC matched the final performance of Vanil-

laAC on Acrobot-CA.

On this small classic control suite, GreedyAC seems less sensitive to its hy-

perparameters than either SAC or VanillaAC. Although the algorithm some-

times learns slower in this regime than under per-environment tuning, it per-

forms satisfactorily. In the across-environment tuning regime here, VanillaAC

and SAC each perform well in several of the environments, but are not able to

match the performance of GreedyAC; GreedyAC performs at least as well as

the baseline algorithms, and is able to outperform the baseline algorithms in a

number of cases. Whether or not GreedyAC can find a single hyperparameter

setting that works well across a general set of environments is unclear. Further-

more, whether GreedyAC can achieve higher performance than the baseline

algorithms when tuning across a general set of environments is also unclear.
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Figure 6.6: Learning curves on Acrobot when tuning across-environment.
Learning curves are averaged over 30 runs with shaded regions denoting stan-
dard error from the mean performance. On Acrobot-CA, all algorithms began
the experiment learning at approximately the same speed, and GreedyAC
matched the final performance of VanillaAC and outperformed SAC. On
Acrobot-DA, GreedyAC matched the final performance of SAC. Hyperparam-
eters were tuned over an initial 10 runs with different random seeds from the
results shown here.

6.3 Conclusion

In this chapter, we discussed the performance of GreedyAC, VanillaAC, and

SAC under two different hyperparameter tuning regimes. The per-environment

regime is when hyperparameters are tuned to a specific environment. This

regime demonstrates the approximate best-case performance of an algorithm.

The across-environment regime is when hyperparameters are tuned across a

set of environments. This regime demonstrates the sensitivity of an algorithm

to its hyperparameters across environments. If the algorithm is robust to

hyperparameters, then a single hyperparameter setting should exist for which

the performance of the algorithm is high on each environment. An ideal case

would be when the performance of the algorithm in this regime coincides with

its performance in the per-environment regime, indicating little sensitivity to

hyperparameters.

We saw that under per-environment tuning, both GreedyAC and Vanil-
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laAC performed well on all environments. In comparison, SAC performed

best on Pendulum. When switching to the across-environment regime, we

saw that GreedyAC was somewhat more robust to its hyperparameters than

both baseline algorithms on this small classic control suite. Whether this is a

general characteristic of the algorithm is unclear.
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Chapter 7

Hyperparameter Sensitivity
Analysis

The previous chapter provided an analysis of GreedyAC in terms of overall

performance for a fixed hyperparameter setting, tuned on a per- or across-

environment basis. The across-environment tuning experiments provided a

small glimpse into the sensitivity of GreedyAC to its hyperparameters. A

complete sensitivity analysis of the algorithm to specific hyperparameters was

lacking in the previous chapter, as we only studied hyperparameters as a com-

plete set.

In this chapter, we first provide a systematic analysis of the sensitivity of

GreedyAC to a single hyperparameter that many actor-critic algorithms are

sensitive to, the entropy scale (Chan et al., 2021; Haarnoja et al., 2018). Then,

we discuss the sensitivity of GreedyAC to the number of action samples used

in the CCEM update. Because GreedyAC does not use entropy regularization

nor action sampling in the discrete action setting, this chapter is restricted to

continuous action environments alone. Because of this, whenever we refer to

an environment in this chapter, we drop the -CA suffix and the environment

should be taken as the continuous action version.

7.1 Entropy Scale Sensitivity

In this section, we discuss the sensitivity of GreedyAC to the entropy scale

hyperparameter and compare to the sensitivity of SAC. Since entropy regular-
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ization affects the proposal policy of GreedyAC, rather than its actor policy,

we would expect GreedyAC to be somewhat less sensitive to the entropy scale

hyperparameter than SAC is. For GreedyAC, the entropy scale affects the

actions we reason about for the policy update, but only indirectly affects the

actions taken in the environment.

Figure 7.1 depicts the sensitivity regions of GreedyAC and SAC to the

entropy scale hyperparameter. The plot is generated by sweeping over all

hyperparameters listed in Chapter 5 over 40 runs in the following manner. We

first fixed the entropy scale to one of the values swept over, which is listed

in Chapter 5. Then, we fixed the critic step-size to one of values swept over,

also listed in Chapter 5. We then tuned over all other hyperparameters to find

the setting for the fixed entropy scale and critic step-size that resulted in the

highest average episodic return over all runs. This value was then plotted on

the y-axis for the fixed entropy scale and critic step-size. Once this had been

done for each entropy scale and critic step-size, we were left with a set of lines.

Each line denoted the sensitivity of the algorithm to the critic step-size at a

set entropy scale. The region between all these lines was then filled in, with

the critic step-size being plotted on a logarithmic scale.

The width of the resulting shape outlines the variability in performance

across all entropy scales for a given critic step-size. If the plot is narrow, this

indicates low sensitivity to the entropy scale hyperparameter and that the

step-size, rather than the entropy scale, was the major factor in performance

variability. On the other hand, a wide shape indicates high sensitivity to the

entropy scale. If the plot has a sharp U-shape, then this indicates sensitivity

to the critic step-size. If the plot is nearly horizontal, this indicates low sen-

sitivity to the critic step-size. Narrow bands near the top of the plot indicate

desirable performance – achieving high episodic return with low sensitivity to

the entropy scale. Undesirable performance is characterized by wide bands,

especially near the bottom of the y-axis. Optimal performance would be char-

acterized by a single horizontal line at the top of each plot, indicating no

sensitivity to either hyperparameter and optimal episodic returns achieved.
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Figure 7.1: A sensitivity region plot for the entropy scale hyperparameter
for Greedy Actor-Critic (top) and Soft Actor-Critic (bottom) in the continu-
ous action setting over 40 runs. At a given critic step-size, the width of the
shape indicates the range of performance across all entropy scales. Desirable
performance is characterized by a narrow band near the top of the y-axis.
GreedyAC generally exhibits less sensitivity to the entropy scale than SAC
does.

Overall, GreedyAC seems to be less sensitive to the entropy scale than SAC

is on the classic control suite of environments. On Pendulum, the sensitivity

regions of GreedyAC are narrower than the sensitivity regions of SAC. For

many critic step-sizes on Mountain Car, GreedyAC also exhibits narrower

sensitivity regions than SAC exhibits. On Acrobot, the sensitivity regions of

GreedyAC are widest of all environments and are sometimes wider than those

of SAC. Although SAC exhibits narrower sensitivity regions than GreedyAC

under some critic step-sizes on both Mountain Car and Acrobot, these regions

are generally near the bottom of the plot, indicating poor performance.

From Figure 7.1, one can see that overall, SAC exhibited poor sensitivity to

the entropy scale. Its sensitivity regions are wide and average return generally

low. On Pendulum, SAC achieved near-optimal performance, as can be seen at

critic step-sizes of 10−3 and 10−2; yet at these step-sizes, SAC also exhibited

high sensitivity to the entropy scale. On both Mountain Car and Acrobot,

SAC achieved nearly the lowest possible return for many critic step-sizes and
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entropy scales, causing its sensitivity to appear low. Likely, this is an optimistic

estimate of sensitivity.

Greedy Actor-Critic generally exhibited narrow sensitivity regions, indi-

cating that the critic step-size was the dominant factor to affect performance

rather than the entropy scale on these environments. Overall, GreedyAC is

somewhat less sensitive to the entropy scale than SAC is on this small clas-

sic control suite. Whether this is a general characteristic of the algorithm is

uncertain.

7.2 Sample Size Sensitivity

Greedy Actor-Critic, and the CCEM in general, introduces two new hyperpa-

rameters: the number of samples to consider for each policy update, N ∈ N,

and the proportion of these samples which are effectively used in the gradient

update, ρ ∈ (0, 1). The time complexity of the CCEM linearly depends on N .

At each policy update, N actions must be sampled and sorted by value. This

part of the CCEM algorithm can be the longest, in terms of wall-clock time,

given large enough N . A reasonable question is whether N can be reduced

without negatively impacting performance.

To examine how the number of sampled actions N affects performance, we

ran GreedyAC on the continuous action versions of Mountain Car, Pendulum,

and Acrobot for 10 runs. All hyperparameters were swept from the same sets

as mentioned in Chapter 5 except that a critic step-size of 10−5 was not swept

nor was an actor step-size scale of 10. The hyperparameter N was swept in

{10, 20, 30}. For each value of N , we set ρ = 3
N

such that the algorithm always

updates with the 3 actions of highest value. We tune hyperparameters on a

per-environment basis.

Before considering the results, we can consider what to expect. In the

ideal case, when we have access to the true action values, we would ideally

like to sample every action. This would provide us with perfect information

about the optimization landscape, but unfortunately is impossible. In reality,
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Figure 7.2: Mean learning curves with standard error of Greedy Actor-Critic
over 10 runs. Each curve denotes the performance of Greedy Actor-Critic using
a different value for the hyperparameter N , the number of actions sampled for
the CCEM update. For each curve, ρ is set to be 3

N
such that each CCEM

update increases the density under the actor and proposal policies of the 3
actions of highest value from the set of actions sampled.

we optimize an action-value critic, which may be an inaccurate approximation

to the true action values. To avoid rapid convergence to an inaccurate critic

optimum, we may desire to limit the number of action samples. Rather than

quickly converge to an optimum of the critic, we want to slowly track the

critic’s increasingly more accurate optima. We must therefore find a number

of action samples to balance these two phenomena.

Figure 7.2 shows the mean learning curves over 10 runs, constructed in

the same way as described in Section 6.1. On each environment, lowering the

value of N did not significantly degrade performance, and in some cases it

increased the speed of learning. This is most noticeable on Pendulum, where

using N = 10 resulted in rapid early learning, high final performance, and

stable performance on consecutive episodes.

We now return to the original question. Can we reduce the number of

action samples used by the CCEM update? In some situations, lowering the

value of this hyperparameter seems acceptable, if not desirable. By sampling

fewer actions, the learned policy may be kept more exploratory. Varying the

value of N between 10 and 30 (while keeping ρN fixed) does not seem to

significantly impact the performance of GreedyAC on the classic control suite.

Whether this is a general characteristic of the CCEM is unclear.
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7.3 Conclusion

In this section, we studied the sensitivity of Greedy Actor-Critic to its hy-

perparameters on three classic control problems with continuous actions. In

general, GreedyAC seems somewhat robust to its entropy scale hyperparame-

ter. In particular, GreedyAC exhibits less sensitivity to the entropy scale than

SAC does on the classic control suite. GreedyAC also seems to be somewhat

insensitive to N , the number of action samples used in the CCEM update, on

the classic control suite given that ρN is fixed.
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Chapter 8

Conclusion and Future Work

This thesis has introduced both a new actor-critic algorithm, Greedy Actor-

Critic, and a new policy improvement operator specific to actor-critic algo-

rithms. Many current actor-critic algorithms use an improvement operator

based on the Boltzmann policy which guarantees policy improvement; each

consecutive policy learned is guaranteed to be an improvement over the pre-

vious policy under ideal conditions.

Two potential issues exist with using the Boltzmann policy in this fashion.

The policy improvement guarantee is with respect to a different problem, an

entropy regularized one. Therefore, algorithms which use the Boltzmann tar-

get policy in the policy improvement step may not find an optimal policy of

the original problem. Furthermore, methods based on the Boltzmann policy

are typically sensitive to the entropy scale hyperparameter (Chan et al., 2021;

Haarnoja et al., 2018, 2019), as we have empirically seen in previous chapters.

The Conditional Cross-Entropy Method (CCEM) is a policy improvement

algorithm based on the Cross-Entropy Method for optimization (CEM) and

attempts to address these two problems by decoupling entropy regularization

from the actor policy. The CCEM algorithm is both simple and intuitive;

it works by keeping a separate, entropy regularized proposal policy which

selects the actions to reason about. Given this set of actions, the CCEM

then performs a maximum likelihood update on the top percentile of actions,

ordered according to action-values produced by a critic. In this way, the CCEM

uses an iterative, multi-level approach which slowly settles the learned policy
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on an optimal one.

Unlike the Boltzmann policy, the CCEM provides guaranteed policy im-

provement on whichever problem it is used in. If the MDP is entropy regular-

ized, then each consecutively learned policy will be a guaranteed improvement

in terms of the soft action-values. If the MDP is not entropy regularized, this

guarantee is with respect to the action values. In this way, the CCEM will

theoretically recover an optimal policy in a finite number of updates, given

ideal conditions. The Boltzmann policy does not provide such guarantees.

Whereas the CEM attempts to find an optimum of a single function, the

CCEM attempts to find an optimum of an action-value critic, which can be

problematic. Since this critic is both an inaccurate approximation of the true

function we wish to maximize (the action values of the current policy) and a

function which changes with time, the theoretical results of the CEM do not

immediately apply to the CCEM. Theoretical results demonstrate how the

CCEM tracks the expected solution of the CEM across states, given certain

assumptions. These theoretical results outline how the updates performed

by the CCEM are reasonable and asymptotically unaffected by the stochastic

noise in the update.

Greedy Actor-Critic (GreedyAC) is an actor-critic algorithm which uses

the CCEM for policy improvement. We compared Greedy Actor-Critic to

two baselines: Soft Actor-Critic (SAC) and Vanilla Actor-Critic (VanillaAC).

We saw how GreedyAC was able to match the best-case performance of both

baselines algorithms on a small suite of classic control environments. We

also demonstrated that a single hyperparameter setting exists for GreedyAC

which induces satisfactory performance on nearly every environment in the

suite. The baseline algorithms were not able to perform as well as GreedyAC

when forced to choose a single hyperparameter setting. This indicates that

Greedy Actor-Critic may be less sensitive to its hyperparameters than the two

baseline algorithms.

We then studied the sensitivity of GreedyAC to its hyperparameters. In

particular, we saw that GreedyAC is somewhat less sensitive to the entropy
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scale hyperparameter than SAC is on the classic control suite. Such a result

demonstrates the utility of isolating entropy regularization to a separate policy,

not involved with action selection. We also studied the effects of hyperparam-

eters specific to the CCEM on GreedyAC, in particular the number of action

samples for the CCEM update. We saw that the algorithm may be insensitive

to this hyperparameter on the classic control suite.

We hope that future research will take the foundation of the CCEM as

introduced in this thesis and build upon it to further increase the effective-

ness of this policy improvement operator. In particular, we hope that future

research will consider theoretical characterizations of the CCEM algorithm ac-

tually used in practice. The theory we have presented is a first-step in this

direction, but requires assumptions which do not hold in practice. We also en-

courage future research to explore different distribution matching techniques

for the CCEM. The CCEM minimizes a forward KL divergence between the

percentile-greedy policy and the learned policy. Because the forward KL is

well-known to be mean seeking, this procedure could be problematic in envi-

ronments with multiple global optima. Implementing a CCEM algorithm that

reduces a reverse KL divergence could circumvent this. Finally, a promising

direction to explore is the construction of the empirical percentile distribution

for the CCEM update. The CCEM, as we have presented it, uses a repeated

random sampling procedure to construct this set of actions, but future research

should consider more effective ways of constructing this set. Since the quality

of actions in this set directly affects the CCEM update, better constructing

this set could improve the CCEM as a whole.
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Appendix A

Hyperparameter Settings

In this section, we outline the tuned hyperparameters for each algorithm on

each environment in our experiments in Chapter 6. For each algorithm, hy-

perparameters were tuned over an initial 10 runs with different random seeds.

Each algorithm saw the same 10 initial random seeds. For a list of all hy-

perparameters swept, see Chapter 5. For a description of the exact tuning

procedure on a per-environment basis, see Section 6.1. For a description of

the exact tuning procedure on an across-environment basis, see Section 6.2. In

Table A.1, we list the tuned hyperparameters for each algorithm when tuning

across environments. In Tables A.2, A.3, and A.4, we list the tuned hyperpa-

rameters when tuning per-environment for GreedyAC, VanillaAC, and SAC

respectively.

Hyperparameter κ αcritic τ
Greedy Actor-Critic 2.0 1e-3 1e-2
Vanilla Actor-Critic 2.0 1e-3 1e-3
Soft Actor-Critic 10.0 1e-5 10.0

Table A.1: Hyperparameters tuned across-environments for GreedyAC, Vanil-
laAC, and SAC.
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Hyperparameter κ αcritic τ
Acrobot-CA 1e-1 1e-3 1e-2
Acrobot-DA 1e-1 1e-2 -

Mountain Car-CA 1.0 1e-3 10.0
Mountain Car-DA 2.0 1e-3 -

Pendulum-CA 1e-1 1e-2 10.0
Pendulum-DA 1.0 1e-3 -

Table A.2: Hyperparameters tuned per-environment for GreedyAC.

Hyperparameter κ αcritic τ
Acrobot-CA 2.0 1e-3 1e-3
Acrobot-DA 1e-1 1e-2 1e-2

Mountain Car-CA 2.0 1e-3 1e-3
Mountain Car-DA 1.0 1e-3 1e-2

Pendulum-CA 1e-2 1e-2 1e-2
Pendulum-DA 2.0 1e-3 1.0

Table A.3: Hyperparameters tuned per-environment for VanillaAC.

Hyperparameter κ αcritic τ
Acrobot-CA 10.0 1e-5 10.0
Acrobot-DA 2.0 1e-5 10.0

Mountain Car-CA 1.0 1e-3 1e-3
Mountain Car-DA 1.0 1e-3 1e-2

Pendulum-CA 1e-1 1e-2 1e-1
Pendulum-DA 1.0 1e-3 1.0

Table A.4: Hyperparameters tuned per-environment for SAC.
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Appendix B

The Cross-Entropy Method: A
Derivation

In this section, we discuss an algorithm upon which we build our novel policy

greedification operator. The cross-entropy method (CEM) is both an opti-

mization algorithm and an estimation algorithm, initially developed to esti-

mate the probability of rare events (Boer et al., 2005; Rubinstein, 1997, 1999,

2001). The optimization algorithm is a global, 0-order optimization algorithm

which makes it specifically designed to optimize non-concave and even non-

differentiable functions. This makes it a desirable optimization algorithm for

reinforcement learning where it can be utilized to optimize an action-value

function which may not be differentiable.

In this section, we focus on the case of continuous random variables. The

results presented here are trivially extended to the discrete case.

B.1 The Cross-Entropy Method for Estimation

In this section, we discuss how the CEM can be applied to estimate the prob-

ability of rare events. The problem is as follows: given some probability dis-

tribution with density function f , we want to find the probability of some rare

event E(Y ), where Y ∼ f 1. In theory, we could use Monte Carlo simulation:
1For notational convenience, we may sometimes refer to a random variable being drawn

from a density function. In reality, we mean that the random variable is drawn from the
distribution which induces the density.
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draw many samples from f and compute the relative frequency of E(Y ). Un-

fortunately, such a method is problematic: gathering a sufficient number of

samples to accurately estimate the probability of E(Y ) is prohibitively expen-

sive. The CEM works by finding some other distribution g ̸= f for which E

has high probability. Using importance sampling, the probability of E under

f can then be computed using an expectation:

Pf (E(Y )) = Ef [I(E(Y ))] = Eg

[︃
f(Y )

g(Y )
I(E(Y ))

]︃
where P indicates the probability of some event, I is the indicator function

which is 1 when its argument is true and 0 otherwise.

In a more formal mathematical sense, consider some function H : Y→ R

and some event Eζ(Y ) = {H(Y ) ≥ ζ} for ζ ∈ R. Suppose that we wish to

estimate the probability of this event with a non-zero estimate. The objective

then is to evaluate the following expectation:

p= Pfξ(Eζ(Y )) = Efξ [I(Eζ(Y ))] (B.1)

To estimate the probability p using the CEM, we construct an importance

sampling distribution g for which Eζ is known a priori to be likely. We can

then estimate p with the stochastic estimate:

p̂
.
=

1

K

K∑︂
i=1

fξ(Yi)

g(Yi)
I(Eζ(Yi)) ≈ Eg

[︃
fξ(Y )

g(Y )
I(Eζ(Y ))

]︃
= p (B.2)

with samples Yi drawn from g and for some K ∈ N. If g is chosen such that

the probability of Eζ is large enough, then this computation is cheap. In fact,

g can be chosen such that the estimator p̂ has zero variance and a single

sample from g can be used to recover p exactly. This is known as the optimal

importance sampling distribution and is defined as:

g∗(Y )
.
=

I(Eζ(Y )) fξ(Y )

p
(B.3)

Evaluating Equation B.2 with a single sample from g∗ will result in exactly

p. If we are able to construct this distribution, then estimating p is simple

84



and easy. The difficulty is that generally we cannot compute g∗ at all since it

requires that we know the solution p beforehand. It seems that we have not

made any progress in finding an estimate of Equation B.1.

Instead of computing g∗, we can use an additional parametric distribution

hψ with parameters ψ ∈ R|ψ|. For convenience, we often choose this distribu-

tion to be in the same class as fξ, in which case we refer to ψ as the reference

parameters. The idea is to make hψ as close to g∗ as possible and then use

hψ in place of g∗ to compute p̂. As long as hψ places sufficient density on the

event Eζ , then we will be able to estimate p efficiently using Equation B.2

with hψ in place of g. To match hψ to g∗, we can minimize the KL divergence

between the two densities:

ψ∗ = argmin
ψ

KL(g∗ || hψ) (B.4)

= argmin
ψ

Eg∗

[︃
ln

(︃
g∗(Y )

hψ(Y )

)︃]︃
(B.5)

= argmin
ψ

(Eg∗ [ln g
∗(Y )]− Eg∗ [lnhψ(Y )]) (B.6)

= argmin
ψ

⎛⎝∫︂
Y

g∗(Y ) ln g∗(Y ) dY −
∫︂
Y

g∗(Y ) lnhψ(Y ) dY

⎞⎠ (B.7)

= argmin
ψ

⎛⎝−∫︂
Y

g∗(Y ) lnhψ(Y ) dY

⎞⎠ (B.8)

= argmin
ψ

⎛⎝−∫︂
Y

I(Eζ(Y )) fξ(Y )

p
lnhψ(Y ) dY

⎞⎠ (B.9)

= argmax
ψ

Efξ [I(Eζ(Y )) lnhψ(Y )] (B.10)

In Equation B.8 we have used the fact that the first term of Equation B.7

does not depend on ψ and therefore will not change the argument at which

the minimum is attained. In Equation B.10 we have used the fact that p is

constant and therefore does not change the argument at which the maximum

is attained. At last, we have developed some quantity to optimize which will

produce the parameters ψ∗ to compute an approximation hψ∗ ≈ g∗, allowing

us to compute the rare event probability p. A careful reader will note that we
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still have a problem. The expectation in Equation B.10 is with respect to the

objective density fξ, and the argument to the expectation contains an indicator

to the rare event which should be 0 almost always when sampling from fξ.

Optimizing Equation B.10 using Monte Carlo estimates will be infeasible. We

once again turn to importance sampling.

Consider hχ, a distribution from the same family as hψ with parameters

χ ∈ R|χ|2. We can rewrite Equation B.10 using importance sampling:

ψ∗ = argmax
ψ

Ehχ

[︃
fξ(Y )

hχ(Y )
I(Eζ(Y )) lnhψ(Y )

]︃
(B.11)

By solving Equation B.11, we can compute the optimal reference parameters

ψ∗. We can then use hψ∗ to estimate p, our original objective. Generally, the

optimal reference parameters can be estimated using a stochastic estimate of

Equation B.11:

ψ̂
∗
= argmax

ψ

1

K

K∑︂
i=1

fξ(Yi)

hχ(Yi)
I(Eζ(Yi)) lnhψ(Yi) where Yi ∼ hχ (B.12)

= argmax
ψ

L(ψ) (B.13)

where K ∈ N, and L is defined implicitly. If L is differentiable with respect

to ψ, we can approximately solve for ψ̂
∗

using gradient-based optimization

algorithms. If the reference distributions hψ and hχ are from the natural

exponential family, then Equation B.12 can be solved analytically. Finally, we

can estimate p as:

p̂=
1

K

K∑︂
i=1

fξ(Yi)

hψ̂∗(Yi)
I(Eζ(Yi)) where Yi ∼ hψ̂∗ (B.14)

for some K ∈ N.
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Algorithm 8: Iterative CEM Algorithm for Estimation
1 Input: function H : Y→ R defining event Eζ ; N,K ∈ N

2 ψ0 ← ξ
3 t← 0
4 do
5 Set ρt ∈ (0, 1)
6 χt ← ψt
7 Generate N random samples from hχt : Y1,Y2, . . . ,YN
8 Sort the images of each Yi under H:
9 H1 = H(Yi1) ≤ . . . ≤ HN = H(YiN )

10 Compute ζ̂t using Equation B.17:
11 ζt̂ = min

(︁
ζ, H⌈(1−ρt)N⌉

)︁
12 Solve Equation B.12 for event Eζ̂t

:
13 ψt+1 = argmaxψ

1
N

∑︁N
i=1

fξ(Yi)

hχt (Yi)
I(Eζ̂t

(Yi)) lnhψ(Yi)

14 t← t+ 1

while ζ̂t ̸= ζ
15 T ← t
16 Estimate p using Equation B.14:
17 p̂= 1

K

∑︁K
i=1

fξ(Yi)

hψt
(Yi)

I(E(Yi)) where Yi ∼ hψT

B.2 The Two-Phase, Multi-Level Algorithm

The algorithm outlined in the previous section is only of practical utility when

the probability of the event Eζ is not too small under the distributions hψ

and hχ. Otherwise, the CEM may produce inaccurate estimates of ψ∗ and p

due to the indicator functions in Equations B.12 and B.14 respectively. In the

worst case, an arbitrary value can be assigned to ψ∗, which will produce an

inaccurate estimate of p with high probability. This is further exacerbated by

the fact that the distributional families of hψ and hχ as well as the parameters

χ must be specified beforehand. The parameters χ should place sufficient

probability on event Eζ , but a priori knowledge of these parameters is difficult
2In reality, hχ need not be in the same family as hψ if using a single iteration of the CEM

algorithm. If the full, iterative, multi-level algorithm is used, then these two distributions
should be from the same family, otherwise the algorithm may become needlessly complex.
For notational convenience, and because the CEM is generally used in its full, iterative,
multi-level form, we consider both distributions to be from the same family and use the
same symbols for both distributions. In fact this reflects the choices in our novel policy
improvement operator.
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to obtain. Instead, an iterative approach to the CEM algorithm is often useful.

The idea is to generate a sequence of thresholds ζt and a sequence of parameters

χt and ψt such that hψt iteratively places more density on the event Eζ .

We begin by choosing a value ρ0 ∈ (0, 1) and setting χ0 = ξ. We will solve

a simpler problem by reducing the threshold of optimization ζ0 ≤ ζ, where the

threshold ζ0 is induced by ρ0. Reducing the threshold of optimization results

in a new event Eζ0 which is less rare than the original event of interest Eζ .

Estimating the probability of Eζ0 will be easier than estimating the probability

of Eζ . Let us denote

pt
.
= Ehχt

[I(Eζt(Y ))] ≤ ρt (B.15)

where ζt is set such that the above equation holds. We then estimate p0 using

the CEM (that is, solving Equation B.12). Let ψ1 be the optimal reference

parameters for estimating p0. We then set χ1 = ψ1, choose ρ1, compute ζ1,

and solve for ψ2. We repeat this two-fold process iteratively to eventually

estimate both p and ψ∗. In the most common case, we fix ρt = ρ ∈ (0, 1) ∀t,

but for completeness we deal with the more general case where ρ changes at

each iteration.

We must now address the question of setting ρt, which induces the threshold

ζt. The goal is to start with a low threshold and iteratively increase it such

that limt→∞ ζt ≈ ζ. A simple way to set ζt is to use the (1− ρt)-percentile of

H under hχt :

pt = Ehχt
[I(Eζt(Y ))] = ρt

Ehχt
[I(EC

ζt(Y ))] = 1− ρt
(B.16)

where EC
ζt

is the complement of event Eζt . A simple estimator ζ̂t ≈ ζt can

be computed using repeated random sampling. We draw a random sample

Y1,Y2, . . . ,YN from hχt , compute the images of each sample Hj = H(Yij),

and sort these images from least to greatest such that H1 = H(Yi1) ≤ H2 =

H(Yi2),≤ . . . ≤ HN = H(YiN ). Finally, we compute ζ̂t as the minimum

between ζ and the empirical (1− ρt)-percentile of H:

ζ̂t = min
(︁
ζ, H⌈(1−ρt)N⌉

)︁
(B.17)
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If we find ourselves in the situation where ζ̂t has been capped at ζ, then we

have successfully recovered an importance sampling distribution with which

we can efficiently estimate p, and we can stop the iterative procedure. At this

point the empirical (1−ρt) percentile will be larger than ζ, indicating that the

likelihood of the event of interest Eζ is approximately larger than or equal to

ρt under hχt . The full iterative CEM algorithm for estimating the probability

of a rare event is given in Algorithm 8.

B.3 The Cross-Entropy Method for Optimiza-
tion

Soon after the CEM was introduced, it was realized that the algorithm could

be extended for use in optimization problems (Rubinstein, 1999, 2001). In this

section, we discuss this extension of the CEM algorithm.

Let Y ⊆ Rn and H : Y→ R be some performance function. We would

like to discover the maximum attainable performance:

ζ∗
.
= H(y∗) = max

y∈Y
H(y) (B.18)

We can replace the optimization problem in Equation B.18 with an estimation

problem, where we estimate the probability of H taking on high values under

some distribution. If the threshold defining high values is sufficiently large,

then we can obtain an approximate optima of H using the CEM for rare event

probability estimation.

Let fξ be some distribution parameterized by ξ ∈ R|ξ|. Similar to the

case of rare event probability estimation, we are interested in computing the

following probability:

p(ζ)
.
= Pfξ(Eζ(Y )) (B.19)

where p is a function of ζ ∈ R. Here Eζ(Y ) = {H(Y ) ≥ ζ} as in the pre-

vious section. We can use the method of rare-event probability estimation to

estimate this quantity; we will utilize the solution to Equation B.10, which we
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reiterate here:

ψ∗ = argmax
ψ

Efξ [I(Eζ(Y )) lnhψ(Y )]

where hψ is some distribution from the same family as fξ for mathematical

convenience, similar to the previous section. We can estimate this quantity

using a sample of the expectation:

ψ̂
∗
= argmax

ψ

1

K

K∑︂
i=1

I(Eζ(Yi)) lnhψ(Yi) where Yi ∼ fξ (B.20)

where K ∈ N. At this point, we should recall what these equations are specifi-

cally doing. By computing ψ̂
∗
, we find a distribution hψ̂∗ from which we should

sample in order to approximate p(ζ) in Equation B.19 using importance sam-

pling. In essence, what we have achieved at this point is a distribution hψ̂∗

which places higher density than fξ on values closer to a maximum of H.

Algorithm 9: Iterative CEM Algorithm for Optimization
1 Input: objective function H : Y→ R; N,K, d ∈ N; δ ∈ R small
2 t← 0
3 ψ0 ← ξ
4 do
5 t← t+ 1
6 Set ρt ∈ (0, 1)
7 Generate N random samples from hψt−1 : Y1,Y2, . . . ,YN
8 Sort the images of each Yi under H:
9 H1 = H(Yi1) ≤ . . . ≤ HN = H(YiN )

10 Compute ζt:
11 ζt = H⌈(1−ρt)N⌉
12 Solve Equation B.20 for event Eζt :
13 ψt = argmaxψ

1
N

∑︁N
i=1 I(Eζt(Yi)) lnhψ(Yi)

while t ≤ d or |ζt − ζt−1|, . . . , |ζt−d+1 − ζt−d| ≥ δ
14 T ← t
15 Estimate ζ∗:
16 ζ∗ ≈ EhψT

[H(Y )] ≈ 1
K

∑︁K
i=1 H(Yi) = ζ̂

∗
where Yi ∼ hψT

A major difference exists between the optimization and estimation versions

of the CEM. In the case of the latter, we are given a distribution with density

fξ and a value ζ which defines an event Eζ(Y ) = {H(Y ) ≥ ζ}. We then
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approximate the probability of this given event under the given distribution fξ.

In the optimization case, we must ourselves specify ζ and ξ. At a qualitative

level, the utility of Equation B.20 is inversely related to magnitude of ζ. As the

rarity of event Eζ increases, I(Eζ(Y )) = 0 for nearly all samples and ψ̂
∗

may

no longer be accurate if indeed useful at all. In the worst case, an arbitrary

value for ψ̂
∗

will satisfy Equation B.20. A trade off exists in setting both ζ

and ξ: ζ should be set close to ζ∗ in order that hψ∗ place sufficient density

around ζ∗ and is therefore useful for generating an approximate solution to

Equation B.18. On the other hand, ξ should be set such that Pfξ(Eζ) is not

too low, otherwise the estimator ψ̂
∗

may not be accurate. The issue is that in

setting ζ close to ζ∗, we implicitly decrease the Pfξ(Eζ).

Unsurprisingly, we find ourselves in a dilemma quite similar to that which

we experienced when studying the CEM for estimation. The solution is also

similar: use an iterative, two-step approach. In this approach, we start with

a low value for threshold ζt and solve Equation B.20 with samples from hψt−1

to find the parameters ψt. We then increase the threshold ζt+1 ≥ ζt and solve

Equation B.20 with samples from hψt to find the parameters ψt+1. Iteratively,

we adjust our distribution parameters to place higher density on values for

which the objective H is maximized while increasing the threshold over time.

We repeat this process with the goal of eventually recovering both the max-

imum performance ζ∗ = maxy∈YH(y) and the parameters ψ∗ which assign

density only to argmaxy∈YH(y). The final CEM algorithm for optimization

is given in Algorithm 9.

The CEM algorithm for optimization is designed to find the maximum of

a performance function ζ̂
∗
≈ maxy∈YH(y). Given that the final iteration of

Algorithm 9 is T , we can estimate the set argmaxy∈YH(y) in a few different

ways. We can use the modes of hψT
. We can use a random sample drawn

from hψT
. In the case of unimodal hψT

, we can use its mean to approximate

a single argmax.
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