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Abstract

An interaction by exchange with the conditional mean (IECM) micromix-

ing model is coupled to a three-dimensional single-particle Lagrangian stochas-

tic (LS) model to estimate concentration fluctuations in plumes of a passive

(i.e., non-buoyant), non-reactive (i.e., no chemistry) tracer dispersing from a

variety of source configurations in four neutrally stratified flows: a horizontally-

homogeneous wall shear layer flow; a horizontally-homogeneous representation

of the Tombstone canopy flow; a three-dimensional inhomogeneous represen-

tation of the Tombstone canopy flow; and a three-dimensional inhomogeneous

representation of the Mock Urban Setting Trials (MUST) canopy flow. The

IECM micromixing model incorporates the combined effects of turbulent and

molecular mixing on particle concentration. This allows the numerical esti-

mation of all moments of the scalar concentration field, which is a significant

advance over traditional LS models given that concentration fluctuations are

a ubiquitous feature of a dispersing plume.

The single-particle implementation of the LS-IECM model is based upon a

previously reported implementation that used simultaneously computed parti-



cle trajectories to estimate the conditional mean concentration field [Cassiani,

M. A., Franzese, P. A. and Giostra, U. A.: 2005, A PDF micromixing model

of dispersion for atmospheric flow. Part I: development of model, application

to homogeneous turbulence and to a neutral boundary layer, Atmospheric

Environment 39, 1457-1469]. The model used in this thesis pre-calculates

the conditional mean concentration field with an LS model for use with the

IECM model, which runs as a separate simulation. The principal advantage

of this single-particle approach is the performance increase on parallel com-

puter architecture, which scales directly with the number of processors. The

simulations presented in this thesis go beyond those performed with the pre-

vious model by considering three-dimensional inhomogeneous flows, as well as

one-dimensional horizontally-homogeneous flows.

The accuracy of the LS-IECM model was good for the flows with horizontal-

homogeneity, and comparable to the results of previous simulations from older

models. Rogue velocities in the simulations utilising inhomogeneous flow

statistics resulted in acceptable to poor accuracy in these simulations. Sug-

gestions for improvements to the model are made.
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NMSE normalised mean square error

PDF probability density function

SDE stochastic differential equation

RANS Reynolds-averaged Navier-Stokes

RMS root-mean-square

TKE turbulent kinetic energy

WMC well-mixed condition

Upper-case Roman Letters

Af frontal area of a canopy element

Ai exact acceleration term

AL lot area

As area of the source

BQ bias error in quantity Q

C a constant

CD effective drag coefficient

C0 Kolmogorov constant

Cij the covariance matrix

C−1
ij the inverse of the covariance matrix

Cr Richardson constant

D molecular diffusivity

DL
ij second-order Lagrangian structure function

DQ deterministic error in quantity Q



E energy spectrum function

Fu CDF for Eulerian velocity

G a domain in a turbulent flow

Km eddy viscosity for momentum

Kuφ excess kurtosis of φ

Ku∗
φ excess kurtosis of dimensionless φ

L length scale of the most energetic eddies

M spatial resolution, M = Nx ×Ny ×Nz

N number of particles used by SPMMM

Np number of computer processors

Nφ number of particles used by MEANS

N v
φ number of particles that visit a velocity bin

Nu number of streamwise velocity bins

Nv number of spanwise velocity bins

Nw number of vertical velocity bins

Nx number of streamwise bins

Nvel
x number of streamwise velocity statistic bins

Ny number of spanwise bins

Nvel
y number of spanwise velocity statistic bins

Nz number of vertical bins

Nvel
z number of vertical velocity statistic bins

P the pressure

Ps shear production of TKE

Pw wake production of TKE

Prob probability of an event occurring



Q source strength

Qo an observed quantity (i.e., from experiment)

Qp a predicted quantity (i.e., from simulation)

R Lagrangian velocity auto-correlation function

Rr Lagrangian relative velocity auto-corr. function

Rij Reynolds stress tensor

Re Reynolds number for the flow

Reδ Reynolds number at the top of the boundary layer

Rel Reynolds number for an eddy of size l

Reη Reynolds number for the Kolmogorov scales

S(φ) chemical reaction source term

SQ discretisation error in quantity Q

Sc the Schmidt number

Skφ skewness of φ

Sk∗
φ skewness of dimensionless φ

TL Lagrangian integral timescale

Tr integral timescale for relative velocities

T TKE transfer rate

Td dispersive transport of TKE

Tm molecular transport of TKE

Tp pressure transport of TKE

Tt turbulent transport of TKE

U Lagrangian vector velocity U = (U, V,W )

U ′ fluctuating component of above velocity

U Lagrangian streamwise speed



U ′ fluctuating Lagrangian streamwise speed

V Lagrangian spanwise speed

V ′ fluctuating Lagrangian spanwise speed

V sample space variable for U

V volume

W Lagrangian vertical speed

Wc vertical speed of the plume centre of mass

Wr Lagrangian relative vertical speed

W ′ fluctuating Lagrangian vertical speed

X Lagrangian vector position, X = (X,Y, Z)

X Lagrangian streamwise position

Y Lagrangian spanwise position

Z Lagrangian vertical position

Zc vertical position of the plume centre of mass

Zr Lagrangian relative vertical position

Lower-case Roman Letters

a element area density

ai deterministic drift term

bij stochastic diffusion term

d displacement height

dr relative plume width

ds source diameter

dξi incremental Wiener process



fc Coriolis parameter

fFi
form drag vector

fu one-point, one-time PDF of u

fVi
viscous drag vector

fφ one-point, one-time PDF of the φ

fφ|u conditional PDF for φ and u

fuφ joint PDF for u and φ

g gravitational force per unit mass

g local gravitational acceleration

ga density function of fluid particles

gt density function of tracer particles

hc canopy height

h∗c = A
1/2
f length scale for flow interaction

k turbulent kinetic energy

kv von Kármán constant

l characteristic length scale of an eddy

ℓ Prandtl – von Kármán mixing length

p modified pressure (includes gravitational terms)

t time

t′ a dummy variable for time

t′′ another dummy variable for time

t0 source timescale scaled by C
1/3
r

tm micromixing timescale

ts characteristic timescale of the source

tt turbulence timescale



tr residence time in bin (I, J, L)

tvr residence time in bin (I, J,K, L,M,N)

u Eulerian vector velocity, u = (u, v, w)

u Eulerian streamwise speed

u′ fluctuating component of Eulerian velocity

u′ fluctuating Eulerian streamwise speed

uL velocity scale the most energetic eddies

uℓ velocity scale of an eddy with size ℓ

ur turbulent relative velocity

us streamwise source speed

u∗ friction velocity

〈u〉c mean streamwise speed at canopy top

〈u〉δ mean streamwise speed at z = δ

〈u〉s mean streamwise speed at source height

v Eulerian spanwise speed

v′ fluctuating Eulerian spanwise speed

w Eulerian vertical speed

w′ fluctuating Eulerian vertical speed

x Eulerian vector position, x = (x, y, z)

x Eulerian position on x-axis

y Eulerian position on y-axis

z Eulerian position on z-axis

z0 roughness length

zs source height

zrflt the reflection height
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∆ represents an interval, i.e ∆x is the x bin width

Φ Φ/ga is the drift correction term in ai

Ψ the gravitational potential

ΣQ statistical error in quantity Q

Θ exact diffusion-reaction term

Lower-case Greek Letters

β extinction parameter

δ boundary layer depth

δij Kronecker delta

δy spanwise plume halfwidth

δz vertical plume halfwidth

ǫijk alternating unit tensor

ǫQ total error

ǫn numerical error

ǫp physical error

ε turbulent kinetic energy dissipation rate

κ a wavenumber

λB Batchelor scale

λd diffusion length scale

λf frontal area index



λp plan area index

µ the micromixing constant

µn nth central moment

µr scale factor for x, y, z space

µs scale factor for the initial source distribution

µt scale factor for the timestep

µv scale factor for u, v, w space

ν kinematic viscosity

ω angular velocity of Earth

ρ constant density

φ scalar concentration

φs scalar concentration at source

φ∗ = φ/φs dimensionless scalar concentration

φ∗ temperature scale

φ′ fluctuating component of scalar concentration

ϕ latitude

ψ sample space variable for scalar concentration

σ standard deviation

σφ standard deviation of φ

σ∗
φ standard deviation of dimensionless φ

σ0 initial source distribution

σr width of the instantaneous plume

σz width of the absolute plume in z

σ2 variance

σui
tensor form of the velocity variance



σ2
Ur

variance of Ur

σ2
wr

variance of Wr

τa an advection timescale

τL turnover timescale of the most energetic eddies

τℓ turnover timescale of an eddy

θ generic micromixing model
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Chapter 1

Introduction

1.1 Motivation

Modern society produces many potentially harmful materials: the man-

ufacturing sector requires and produces chemicals; power generation some-

times produces nuclear by-products; hospitals and research establishments

frequently produce and use biohazardous and radiological materials. For the

most part these chemical, biological, radiological, and nuclear (CBRN) mate-

rials are highly controlled and produced, used, and disposed of in a manner

that is completely safe. However, in their transport from production sites to

factories or storage facilities, there is a risk of release of one of these harmful

substances into the environment. Alternatively, the material may end up in

the hands of an ill-intentioned group or state. Given that transportation net-

works frequently run into the heart of cities, and that terrorists try to maximise

terror, the possibility of an accidental or intentional release of a CBRN agent

into a densely populated urban centre is real, albeit low. Given the potential

consequences of such a release, an improved understanding of the transport

and dispersion of the agent once in the environment is necessary (or certainly,



2

desirable) to predict and evaluate the possible impacts of such a release and

to support the formulation of appropriate mitigation strategies.

Imagine that there was a train derailment and that a tanker car carrying

a toxic chemical ruptured and was releasing its contents into the atmosphere.

The subsequent exposure of the population in the vicinity of the spill can be

assessed using the dosage, which is defined as the concentration integrated

over time:

Dosage =

∫ t2

t1

φ dt, (1.1)

where the concentration is denoted by φ. Note that the dosage is not neces-

sarily in linear relation with the total uptake by an organism, the latter being

a potentially complex function of such factors as breathing rate, shelter, et

cetera. Until recently the vast majority of computer models only predicted

the mean concentration 〈φ〉, ignoring all higher-order moments of the concen-

tration field such as the concentration variance σ2
φ, the concentration skewness

Skφ, the concentration kurtosis Kuφ
∗, and so on. Thus dosage estimates were

based upon the integral of the mean concentration.

Clearly, the inclusion of these higher-order moments would allow various

statistical characteristics of the dosage (other than simply its mean value) to

be used in the hazard assessment. For example, if the concentration field were

Gaussian then the prescription of the mean concentration and the concentra-

tion variance would describe the full concentration probability density function

(PDF), thus providing a full statistical description of the dosage that the ex-

posed population may have been subject to. Therefore, from an emergency

preparedness and risk assessment standpoint, it is rational to pursue the devel-

∗Note that in this thesis the term “kurtosis” refers to the excess kurtosis. See Section
A.4.2 in Appendix A.
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opment of models that predict the higher-order moments of the concentration

field. Coupled to this, there must be development of a model that can accu-

rately estimate the concentration field in the highly disturbed flow frequently

found in urban environments where human habitation is concentrated. Again,

until recently many models focused on highly idealised terrain.

From a scientific standpoint, modelling the concentration variance and the

other higher-order moments of the concentration field is the next logical pro-

gression after modelling the mean concentration. It is also logical to pursue

development of dispersion models for complex and disturbed flows such as

those found in urban areas. It is worth noting that the complex problems

involved with modelling the higher-order moments of the concentration field,

and dispersion in highly disturbed flows, have thus far hindered progress in this

research area. Theoretical developments have been slow and, until recently,

comprehensive data sets of concentration fluctuations in canopy flows were

unavailable. These facts, combined with a lack of computational resources,

have resulted in limited advances in the development of numerical models of

dispersion in a canopy environment.

In this work we aim to increase the understanding of dispersion of a pas-

sive scalar in complex canopy flows through the use of the interaction by

exchange with the conditional mean (IECM) micromixing model coupled to a

single-particle Lagrangian stochastic (LS) trajectory model. The LS trajectory

model governs the evolution of the position and velocity of a tracer particle

via specified equations. In addition to the position and velocity, the tracer

particle also has a concentration variable assigned to it, the evolution of which

is governed by the IECM micromixing model. Combined, these two models
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allow the prediction of the higher-order moments of the scalar concentration

field.

1.2 Previous Work

Before proceeding it is necessary to introduce the notation used throughout

this thesis. Vectors shall be represented by bold typeface and both tensor

notation and standard meteorological notation will be used, i.e.

u(x, t) = ui = (u1, u2, u3) = (u, v, w),

x = xi = (x1, x2, x3) = (x, y, z).

A vector field such as that of velocity is denoted as u(x, t). Eulerian quantities

shall be denoted by lower-case letters (i.e. u) while Lagrangian quantities shall

be denoted by upper-case letters (i.e., U ). Other notation will be introduced as

needed. Appendix A contains a brief review of the mathematics and statistics

necessary to fully appreciate this thesis. For more thorough descriptions of the

statistics used in the atmospheric sciences see Van Kampen (1981), Gardiner

(1983), Rodean (1996), or Pope (2000).

The second-order statistic of the scalar concentration field is the concentra-

tion variance. There are several approaches to modelling concentration vari-

ance. Direct numerical simulation could be used to solve the Navier-Stokes

and advection-diffusion equations down to the smallest scales of space and time

from which the concentration variance could be determined. At present, com-

putational limitations make this approach infeasible for atmospheric science

applications.

In Reynolds averaged form, the Eulerian scalar variance budget equation



5

is

∂〈φ′2〉
∂t

+ 〈ui〉
∂〈φ′2〉
∂xi

= −2〈u′iφ′〉∂〈φ〉
∂xi

− ∂

∂xi
〈u′iφ′2〉

− 2D
〈
∂φ′

∂xi

∂φ′

∂xi

〉

+ D∂
2〈φ′2〉
∂xi∂xi

, (1.2)

where D is the molecular diffusivity of the scalar in air and u′i and φ′ are

the fluctuating components of Eulerian velocity and scalar concentration, re-

spectively. Equation (1.2) cannot be solved unless closure assumptions are

made for the scalar flux 〈u′iφ′〉, the triple correlation 〈u′iφ′2〉, and the scalar

dissipation 2D
〈
∂φ′

∂xi

∂φ′

∂xi

〉

. Closure assumptions that have been suggested in the

literature range from being overly simplistic to being formidably complicated.

In the former case, the result is often a less realistic model. In the latter case,

the difficulty in calculating the numerical solution is increased. A thorough

discussion of closure assumptions can be found in Launder (1978), and Chap-

ter 6 of Stull (1988). The approach of directly solving the Reynolds-averaged

Navier-Stokes (RANS) equations, along with various closure assumptions, was

used with good success to model scalar dispersion in the idealised Mock Urban

Setting Trials (MUST) Canopy (Yee and Biltoft, 2004) by Hsieh et al. (2007),

and Wang et al. (2009).

Fluctuating plume models have been successfully used to calculate the

concentration variance and other higher-order moments of concentration for

non-reactive scalars (Yee et al., 1994; Yee and Wilson, 2000; Luhar et al.,

2000; Franzese, 2003; Gailis et al., 2006). These models add parametrised

relative in-plume concentration fluctuations to a meandering plume model

(Gifford, 1959). This approach is not followed here as future work may involve

working with reactive scalars, perhaps in the context of air-quality modelling,

for example. As will be shown below, the IECM model handles chemical
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reactions naturally.

Another group of models that have been used to compute concentration

variance can be collectively referred to as “PDF modelling techniques”. The

assumed PDF method specifies the form of the concentration PDF, which con-

tains some unknown parameters. Using the transport equations for the mean

concentration and the concentration variance, the values of these parameters

can be determined thereby fully defining the concentration PDF which can be

used to predict all higher-order moments of the concentration field. Yee et al.

(2009) recently applied this technique with good success to an experimental

urban canopy composed of rows of aligned cubes. Another promising approach

is transported PDF modelling. One implementation of this approach numeri-

cally solves for the one-point, one-time joint velocity and concentration PDF,

which is denoted by fuφ. There are two main advantages to this approach:

the results are approximations to the PDF from which all joint concentration-

velocity statistics can be derived; and all chemical reactions are treated exactly

with no closure assumptions.

However, the transport equation for the joint velocity and concentration

PDF of a single scalar species in three spatial dimensions has at least eight

degrees of freedom associated with it: three space variables, three velocity

variables, a scalar concentration variable, and time. This fact alone makes

an Eulerian approach impractical, unless symmetries of the experimental sce-

nario reduce the dimensionality. Furthermore, numerical techniques must be

employed to ensure that fuφ is well behaved (i.e., non-negative and normalised

at all points in space and time) which increases the complexity of the code

(Fox, 2003). Eulerian methods also suffer from numerical diffusion and alias-
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ing. In contrast to Eulerian methods, Lagrangian stochastic (LS) methods are

grid free and thus can handle many independent variables with ease, making

them well suited for transported PDF methods. Since LS models use a finite

number of particles, the simulation results will contain error. Provided that

this error is understood (Xu and Pope, 1999), LS-PDF methods are a powerful

tool for the determination of concentration statistics. In practice, a desired

level of accuracy can be achieved by utilising more particles.

The influential paper by Taylor (1921) gave LS methods their start. Since

then they have become widely used. Examples of their application can be

found in: Wilson and Sawford (1996); Pope (2000); Fox (2003). Single-particle

LS models are straightforward and easy to implement; however, the higher-

order moments of concentration cannot be determined from single-particle

trajectories. To obtain the concentration variance through purely LS methods

requires using a two-particle model (Durbin, 1980; Thomson, 1990). If the

third-order concentration moment is desired, then a three-particle model must

be used, and so on. Multi-particle LS models require multi-point relative ve-

locity statistics to describe the flow. Unfortunately, except in idealised regimes

of turbulence, these are difficult to obtain and therefore multi-particle models

are not highly developed for use as predictive tools

By coupling a single-particle LS model to a micromixing model to describe

molecular mixing, all higher-order concentration moments can be calculated

without the need of multi-point relative velocity statistics. Dopazo et al. (1997)

review many micromixing models. One of the earliest and simplest micromix-

ing models is the interaction by exchange with the mean (IEM) model (Dopazo

and O’Brien, 1974; Pope, 1985). It has some drawbacks, such as affecting first-
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order statistics due to a spurious term in the scalar flux budget equation (Pope,

1998; Sawford, 2004a). In spite of this, due to its simplicity, the IEM model is

still widely used in areas ranging from combustion (Pope, 1985) to atmospheric

science (Sawford, 2004a,b). In Section 3.2 the scalar flux budget equation is

presented and the spurious term discussed further.

The IECM model (Fox, 1996; Pope, 1998) does not suffer from the spurious

flux and its implementation is not significantly more complicated than IEM

models. Sawford (2004b) showed that the IECM model can be related to a

meandering plume model and applied the technique successfully to simulate

concentration statistics due to a continuous line source in grid turbulence.

Recent applications of IECM models to atmospheric flows include simulations

of dispersion of passive (i.e., non-buoyant), non-reactive (i.e., no chemistry)

scalars within the neutral boundary layer (Cassiani, Franzese and Giostra,

2005a), within the convective boundary layer (Cassiani, Franzese and Giostra,

2005b; Luhar and Sawford, 2005) and within a canopy layer (Cassiani, Radicchi

and Giostra, 2005; Cassiani et al., 2007).

1.3 Outline

The remainder of this thesis is laid out as follows. Chapter 2 covers the

necessary mathematics and governing equations required to fully appreciate

the models. It begins with some introductory terms and concepts of turbu-

lence followed by a statement of the fundamental transport equations. The

two flow types considered in this thesis (neutral wall shear layer flow, and neu-

tral canopy flow) are then described in general. A mathematical description

of dispersion, diffusion, and mixing follows. The chapter concludes with a pre-
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sentation of the analytical PDF transport equation, highlighting the unclosed

terms that require modelling. Chapter 3 presents the LS and IECM models

used to close the unclosed terms in the PDF transport equation, and provides

a detailed description on how they are implemented numerically. Chapter 4

opens with a description of the Fackrell and Robins (1982; FR82) wind-tunnel

experiments of dispersion of a passive, non-reactive scalar from continuous

elevated and ground-level point sources. A comparison of model predictions

to experimental data follows, along with a discussion of the numerical error

associated with the micromixing model. Dispersion of a passive, non-reactive

scalar through a model plant canopy, consisting of a diamond array of rigid

obstacles, is the topic of Chapter 5. Experimental data for this Tombstone

Canopy (Raupach et al., 1986; Coppin et al., 1986; Legg et al., 1986; Rau-

pach et al., 1987) are available from wind-tunnel experiments utilising an el-

evated, in-canopy, cross-wind continuous line source (Legg et al., 1986), and

from water-channel experiments of a near ground-level continuous point source

(Hilderman and Chong, 2007). The velocity statistics from the two data

sets are compared to show their compatibility, and then the model predic-

tions of the concentration fluctuations are presented and discussed. Two flow

regimes are investigated for the point source simulations: a spatially averaged,

horizontally-homogeneous flow, and a flow with inhomogeneities between the

canopy elements. Chapter 6 discusses the results of simulations of dispersion

of a passive, non-reactive scalar from a continuous ground-level point source

in the Mock Urban Setting Trials (MUST) model urban canopy, consisting of

a regular array of building-like obstacles (Yee and Biltoft, 2004). The velocity

statistics for these simulations came from water-channel experiments of the
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full-scale field experiments (Hilderman and Chong, 2007). Chapter 7 provides

an overall discussion and summary of the work contained in this thesis, states

conclusions, and makes suggestions for further advances.
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Chapter 2

Background Theory

In atmospheric science we are interested in how the properties of the air

(i.e. momentum and scalar concentration of a tracer in air) change in space

and time. The vector field representing momentum varies in both space and

time u(x, t), as does the scalar field representing the tracer concentration

φ(x, t). Collectively we refer to these as random fields. Dealing with these

four-dimensional random fields is difficult and frequently leads to unsolvable

equations. Therefore assumptions and idealisations are frequently made when

modelling these fields, to simplify the mathematics.

The remainder of the chapter is structured as follows. Some introductory

terms and concepts of turbulence as they pertain to this work are introduced.

The equations governing fluid flow are then stated and the mathematical prop-

erties of a wall shear layer flow and a canopy flow are discussed. Details of

specific flows encountered in this thesis are discussed in later chapters. Next

there is a mathematical description of dispersion, diffusion, and mixing. This

chapter concludes with a presentation of the analytical PDF transport equa-

tion, highlighting the unclosed terms that require modelling.
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2.1 Turbulence

Practically all flows of engineering interest involve and are affected by tur-

bulence: through an exchange of momentum, turbulence increases drag on

automobiles, planes, and ships; when designing cooling systems for electronics

and other applications turbulent heat transfer is used to disperse the heat as

rapidly as possible; and turbulent mixing is very important in chemical en-

gineering applications. The study of turbulent flow is therefore important to

many aspects of our society.

By examining fluid flow in a pipe, Reynolds (1894) discovered that a flow

could be characterised by a single dimensionless number that is constructed

from a length scale L (the pipe diameter or radius), a velocity scale U (typically

the centreline mean velocity), and the kinematic viscosity ν. This is the so-

called Reynolds number

Re =
UL
ν
. (2.1)

For the pipe flow examined by Reynolds, the flow was laminar for Re . 2300

and turbulent for Re & 4000. Laminar flow is characterised by parallel stream-

lines and poor mixing as shown in the left panel of Figure 2.1. In contrast,

turbulent flows are very efficient at mixing and are characterised by non-

parallel streamlines with a chaotic appearance as shown in the right panel

of Figure 2.1. The transition from laminar flow to turbulent flow depends on

the setup of the system in question. Near ground, the atmosphere has charac-

teristic scales of L ∼ 100 m and U ∼ 5 m s−1. The kinematic viscosity of air is

νair = 1.5×10−5 m2 s−1. The corresponding Reynolds number for surface layer

atmospheric flow is thus Re ∼ 107, well within the turbulent regime.

As the winds blow across the landscape they exchange momentum with
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(a) Laminar pipe flow (b) Turbulent pipe flow

Figure 2.1: Laminar and turbulent flow in a pipe. Reynolds (1894) found that
the pipe flow was laminar for Re . 2400 and turbulent for Re & 4000.

the surface features and vegetation producing turbulent kinetic energy (TKE;

denoted k) via shear production and wake production (discussed more in Sec-

tion 2.4). This energy is pumped into eddies that have a characteristic size L,

comparable to the characteristic length scale of the flow domain. The term

eddy is a somewhat vague conceptual term that can be thought of as all tur-

bulent motions (i.e., blobs of vorticity, ∇×u) occupying some region of space

and time. Richardson (1922) proposed a largely heuristic model to explain

the fate of the TKE contained in the large length scales. The model has two

principal assumptions: that turbulence is composed of eddies of different sizes

(eddy length scale l) which can occupy the same volume, hence a large eddy

is coincident with several smaller eddies; and that as long as the Reynolds

number for the eddy (Rel) is large, viscous stresses acting on large eddies will

be negligible.

Numerous studies have shown that eddies with a characteristic size l ≈ L

contain the bulk of the TKE. This is therefore referred to as the energy-

containing range. The eddies in this range are large, anisotropic, and unstable.

Hence they break up and transfer their energy downwards in scale to smaller

eddies. Eddies in the energy-containing range have Reynolds number compa-
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rable to that of the bulk flow and thus an insignificant amount of energy is

lost through viscous dissipation during the transfer. As this process continues,

larger eddies breakup into smaller eddies and transfer their energy downwards

in scale. At each step the Reynolds number of the eddies decreases, but is

still sufficiently large to render the viscous stresses negligible. Physically, the

eddies are being stretched and twisted by the velocity field into tubes and

sheets, and becoming more localised. Their characteristic size is decreasing

and energy is being transferred to smaller length scales.

Eventually the eddies are so small that they are no longer part of the

energy-containing range and are part of the universal equilibrium range. This

range is characterised by the fact that the eddies are isotropic (i.e. retain no

memory of the geometry of the mean flow and the largest energy-containing

eddies), and again in this range vortex interaction assures the transfer of eddy

kinetic energy to smaller and smaller scales until eventually viscosity can act

to dissipate the TKE. A turn-over timescale can be defined as the quotient of

the characteristic length scale of an eddy divided by the characteristic velocity

scale (ul) for the eddy: τl = l/ul. Eddies in the universal equilibrium range are

able to quickly adapt to the energy transfer rate from the energy-containing

range since the turn-over time τl = l/ul is small compared to the turn-over

time of the largest eddies, τL = L/uL. This range is divided into two sub-

ranges: the inertial subrange where energy transfer is dominated by inertia;

and the dissipation range, where the eddies are very small (characteristic size

comparable to the Kolmogorov microscale η) and the Reynolds number of the

eddies is sufficiently small such that viscous forces dissipate the TKE. This

process is referred to as the energy cascade and is illustrated in Figure 2.2.
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Justification for the length scales demarcating the energy-containing range,

the inertial subrange, and the dissipation range can be found in Pope (2000).

6
1 L

Range

Inertial SubrangeDissipation
Range

Universal Equilibrium Range

η

TKE Transfer

TKE Production

Dissipation
TKE 

1 Re

60 Lη

l

Energy−Containing

Figure 2.2: Turbulent scales of motion and the energy cascade for high
Reynolds number turbulence. TKE enters the cascade in the energy-containing
range and is transferred to smaller scales of motion in the inertial subrange. At
each step in the cascade viscous losses are negligible until the dissipation range.
At these small length scales Rel → Reη → 1, and viscous forces dissipate the
TKE. Note the x-axis is not to scale.

The TKE contained within the eddy is proportional to the characteristic

velocity squared, k ∝ u2
l . Based on dimensional arguments, an energy transfer

rate from one eddy to the next can then be computed as T = u2
l /τl = u3

l /l.

This TKE transfer rate must be the same across all eddy sizes otherwise there

would be a build up of energy at some length scale. What goes in must come
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out. This is true across all scales of motion, right down to the smallest scales

where the actions of viscosity dissipate the TKE. Consequently, the turbulent

kinetic energy dissipation rate must also be equal to the TKE transfer rate,

ε = T . Thus the rate of TKE production at the largest scales sets the rate of

TKE transfer across scales at all scales of turbulent motion.

The energy cascade was put on a firmer mathematical footing by Kol-

mogorov (1941). An English translation can be found in Kolmogorov (1991).

Thorough descriptions of turbulence can be found in Pope (2000) and David-

son (2004). Here we only briefly summarise some of the key findings. The

length, velocity, and time scales of the smallest, dissipative scales of motion

can be determined (by dimensional analysis) from ε and ν. They are

η ≡ (ν3/ε)1/4, (2.2)

uη ≡ (εν)1/4, (2.3)

τη ≡ (ν/ǫ)1/2. (2.4)

These are the Kolmogorov scales. Note that Reη = 1 at this scale, consistent

with the above assertion that the Reynolds number characterising eddy motion

decreases at each step in the energy cascade. Kolmogorov (1941) proposed two

similarity hypotheses for high Reynolds number turbulence. They are, loosely

stated:

1. In the universal equilibrium range, the statistics of the small-scale mo-

tions for a high Reynolds number turbulent flow have a universal form

that is determined uniquely by ε and ν.

2. In the inertial subrange, the statistics of the small-scale motions for
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a high Reynolds number turbulent flow have a universal form that is

determined uniquely by ε and independent of ν (in effect this conjecture

defines the inertial subrange).

These hypotheses were refined (Kolmogorov, 1962) to account for intermit-

tency in the rate of energy dissipation (i.e., the rate of energy dissipation is

not constant, but exhibits spatial inhomogeneities).

A triumph of the Kolmogorov hypotheses is what is known as the “five-

thirds law”. The wavenumber corresponding to an eddy with size l is κ =

2π/l. Let E(κ, t) represent the energy spectrum function. The quantity

E(κ, t) dκ thus represents the contribution to the TKE of all modes in the

range [κ, κ + dκ). By integrating over all wavenumbers the TKE is recov-

ered k =
∫ ∞

0
E(κ, t) dκ. The energy spectrum in the inertial subrange for

homogeneous turbulence (according to Kolmogorov’s analysis) is

E(κ) = Cε2/3κ−5/3, (2.5)

where C is a universal constant. Experimental evidence suggests that C = 0.5,

with an uncertainty perhaps as small as 0.02 (Sreenivasan, 1995). The Kansas

experiments produced a value of 0.52 ± 0.04 with atmospheric measurements

(Wyngaard and Coté, 1971). The energy spectrum function in the inertial

subrange has a five-thirds dependence on the wavenumber and is proportional

only to ε as suggested in the second similarity hypothesis. We shall return to

equation (2.5) when developing the micromixing model in Chapter 3.

The energy cascade is not the whole story of turbulence however. Of partic-

ular interest to some turbulence theorists are the so-called coherent structures,

whose large scale and whose intensity recommend that their contribution to
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transport and mixing be accounted explicitly, rather than submerged (and

presumably mis-represented) in the statistical description (a visible example

from the atmosphere would be the dust devil). They were first visualised in a

mixing layer by Brown and Roshko (1974), whose results showed that coherent

structures vary discontinuously in space and size (due to merging with neigh-

bouring structures), and that they convect at a nearly constant speed. Their

results also showed that the mixing layer is dominated by these structures. A

brief review of coherent structures can be found in Lumley and Yaglom (2001)

and references therein. The fact that they receive no further mention in this

thesis is not to deny their potential importance in the context of concentra-

tion fluctuations. However for the present their explicit treatment is rather

intractable.

Returning to the statistical theory and the tools provided by Kolmogorov,

the second-order Lagrangian structure function,

DL
ij(t

′) ≡ 〈[Ui(t+ t′) − Ui(t)][Uj(t+ t′) − Uj(t)]〉, (2.6)

provides information regarding the structure of a turbulent flow, and will prove

useful in the development of the models in the next chapter. For time offsets

t′ in the range τη ≪ t′ ≪ TL (where TL is the Lagrangian integral time scale)

the Kolmogorov hypotheses predict

DL
ij(t

′) = δijC0εt
′, (2.7)

where C0 is the Kolmogorov constant, and δij is the Kronecker delta. To be

consistent with the Kolmogorov hypotheses, the Lagrangian-stochastic (LS)

model described in Chapter 3 must reproduce equation (2.7). The Kolmogorov

constant is universal, although its value has yet to be determined with great
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certainty. Values in the range of two to seven are considered acceptable.

2.2 The Governing Equations

An arbitrary volume of fluid (i.e., a fluid element) experiences two types of

forces: those which are molecular in origin and arise through various stresses

(denoted by τij = τji) are called surface forces; while those which act without

contact are called body forces. Gravity is the body force of interest for the

fluids encountered in this thesis. The gravitational acceleration (and also

the field) remains approximately constant, with a value of g ≈ 9.81 m s−2, for

several kilometres above the surface. The gravitational potential per unit mass

for a constant gravitational field is Ψ = gz, and the gravitational force per unit

mass is g = −∇Ψ. In atmospheric science one must also consider the effects of

the fictitious Coriolis force, when sufficiently far from the surface. The Coriolis

force is denoted by fcǫij3uj, where fc = 2ω sinϕ is the Coriolis parameter, the

scalar ǫijk is the alternating unit tensor, ω is the angular velocity of the Earth,

and ϕ is the latitude. Considering the above forces, an application of Newton’s

second law results in the transport equation for momentum:

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

∂τij
∂xj

− ∂Ψ

∂xi
− fcǫij3uj, (2.8)

where ρ is the mass density. The data sets used to validate the models in this

thesis are from wind-tunnel and water-channel experiments. At the relatively

small time and velocity scales of these experiments, the contribution of the

Coriolis force to the momentum budget can be neglected, and we do so, in all

but one instance. However, if the models developed in this thesis are used for

full-scale atmospheric applications, then the Coriolis effects must be included.
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The continuity or mass-conservation equation is

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (2.9)

which, assuming the mass density of the fluid to be constant, simplifies to

∂ui
∂xi

= ∇ · u = 0, (2.10)

demonstrating that the velocity field of a constant density fluid is non-divergent.

The fluids of interest for the work described in this thesis are air and

water, both of which are Newtonian fluids. A Newtonian fluid is one whose

shear stress is linearly proportional to the velocity gradient perpendicular to

the shear plane. The constant of proportionality is called the viscosity (µ).

The stress tensor for a Newtonian fluid is

τij = −Pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)

, (2.11)

where P is the pressure. Substituting equation (2.11) into equation (2.8), and

using the non-divergence of the velocity field (equation (2.10)) to eliminate

some terms, results in the constant density Navier-Stokes equation for a non-

divergent flow:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
− ∂Ψ

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.12)

where ν = µ/ρ is the kinematic viscosity. Henceforth equation (2.12) shall

simply be referred to as the Navier-Stokes equation. Following Pope (2000)

we define the modified pressure to be p = P + ρΨ (herein referred to as

pressure), which simplifies the Navier-Stokes equation to

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (2.13)
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From left to right in equation (2.13) the terms represent the storage of momen-

tum, advection of momentum, pressure-gradient forces, and viscous transport

of momentum. Note that owing to the (assumed) non-divergence of the ve-

locity field, the advection term may equivalently be written in “transport” or

“flux” form as a flux divergence,

uj
∂ui
∂xj

=
∂

∂xj
uiuj. (2.14)

In constant density flow, there are no buoyancy forces and no relationship

between density and pressure (Pope, 2000). To determine what (if any) the

restrictions upon p are, take the divergence of the Navier-Stokes (equation

(2.13)) and simplify,

(
∂

∂t
+ uj

∂

∂xj
− ν

∂2

∂xj∂xj

) (
∂ui
∂xi

)

= −1

ρ

∂2p

∂xi∂xi
− ∂ui
∂xj

∂uj
∂xi

. (2.15)

If the initial and boundary conditions to the above equation were ∂ui/∂xi = 0,

then the only solution possible is if, and only if, the right-hand side equals zero

everywhere (Pope, 2000). Therefore for a non-divergent velocity field to remain

non-divergent it must satisfy the following Poisson equation:

∂2p

∂xi∂xi
= ∇2p = −ρ∂ui

∂xj

∂uj
∂xi

. (2.16)

This equation demonstrates the complex, non-linear coupling between the ve-

locity and pressure fields, a coupling which gives rise to well known pitfalls in

the numerical procedure for solving finite difference approximations to these

differential equations. Analytical solutions to equation (2.16) can only be

found in the simplest case of highly symmetric laminar flow.

The transport equation for a reactive scalar, denoted by φ(x, t), is

∂φ

∂t
+ uj

∂φ

∂xj
= D ∂2φ

∂xj∂xj
+ S(φ(x, t)), (2.17)
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where D is the molecular diffusivity of the scalar in the bulk fluid (here con-

sidered to be constant and uniform across the flow), and S(φ) is the chemical

reaction source term. From left to right in equation (2.17), the terms represent

the storage of the scalar, advection of the scalar, molecular diffusion (trans-

port) of the scalar, and the chemical reaction source term. We shall leave the

chemical source term in the equations for now to highlight one of the advan-

tages of the IECM modelling approach, even though all scalars considered in

this work are non-reactive. If the scalar was not reactive then S(φ) = 0 and

the conservation equation in Lagrangian form becomes

dφ

dt
= D∇2φ. (2.18)

In this Lagrangian form, we see that diffusion is solely responsible for the

evolution of the scalar concentration. Note that since φ does not appear in

the Navier-Stokes equation it is a passive scalar (viz. it has no effect on the

flow).

2.3 The Mean Flow Equations

The problem of turbulence is so difficult that it has evaded an exact math-

ematical description for hundreds of years. The majority of the progress made

in understanding turbulence has been through a statistical approach. Much

of what follows in this section comes from Gardiner (1983) and Pope (2000),

although many other good books describing these statistics exist.

The descriptive power of the Navier-Stokes equation is also its shortcoming.

Equation (2.13) describes all scales of motion from the smallest to the largest.

Laminar flow solutions to the Navier-Stokes equation can found or approxi-
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mated numerically. As the Reynolds number increases, the flow becomes more

and more turbulent and the number of available degrees of freedom increases.

In other words, there are more and more scales of motion that need to be

simulated. The number of degrees of freedom is proportional to the ratio of

the characteristic sizes of the largest eddies to the smallest eddies, L/η. This

ratio increases drastically with the Reynolds number.

With direct numerical simulation (DNS) all scales of motion can be com-

puted. However, this approach is extremely computationally intensive and,

given the limitation of computational resources, not yet practical for the at-

mospheric sciences. Recall that the Reynolds number for a typical atmospheric

flow is around Re ∼ 107. By using η = (ν3/ε)1/4 (equation (2.2)) and the re-

lation ε ∼ u3
L/L, the Reynolds number dependence between the smallest and

largest scales of motion is found to be η/L ∼ Re−3/4 (Pope, 2000). If we

take L ∼ 100 m, then η ∼ 10−4 m for atmospheric flow. To simulate all scales

of motion of this flow with DNS would require computational resources to

deal with a range of spatial scales that covers six orders of magnitude. The

computational resources required to undertake such a simulation do not yet

exist.

Large eddy simulation (LES) reduces the computational complexity (i.e.,

the number of degrees of freedom) by resolving only the flow dependent, large

scales. This approach is also computationally intensive (although not as in-

tensive as DNS) but, due to recent (and expected future) advances in com-

putational power, stands at the forefront of promising modelling efforts. For

example, Yue et al. (2007) used an LES model to simulate turbulent flow in a

corn canopy. Their model even resolved gusts that penetrated deeply into the
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canopy, as did the model of Finnigan et al. (2009) (this paper has beautiful,

colour visualisations of eddy evolution). LES models will undoubtedly benefit

future dispersion models.

The most severe reduction in the number of degrees of freedom can be

achieved by statistical averaging (instead of filtering), leading to the Reynolds-

averaged Navier-Stokes (RANS) equations. An instantaneous signal can be

thought of as being composed of a mean component and a fluctuating com-

ponent. For example, a velocity measurement from a turbulent flow can be

written as

ui(x, t) = 〈ui(x, t)〉 + u′i(x, t), (2.19)

where 〈ui〉 is the mean component of the velocity and u′i is the fluctuating

component. Taking the derivative of equation (2.19) and using equation (2.10)

gives

∂

∂xi
(〈ui〉 + u′i) =

∂〈ui〉
∂xi

+
∂u′i
∂xi

= 0. (2.20)

Taking the mean of equation (2.10) leads to the conclusion that ∂〈ui〉/∂xi = 0,

and since u is non-divergent, it follows from this that the velocity fluctuations

are also non-divergent, ∂u′i/∂xi = 0.

The RANS equation can be derived by utilising Reynolds decomposition,

taking the mean of the Navier-Stokes equation (2.13), assuming non-divergence,

utilising Reynolds decomposition and some algebra. Doing so results in the

RANS equation

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

− ∂

∂xj
〈u′iu′j〉

︸ ︷︷ ︸

new term

. (2.21)

Comparing equations (2.13) and (2.21), we see that the third term on the

right-hand side of equation (2.21) does not appear in equation (2.13). This
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new term represents the contributions of the Reynolds stresses, which are

momentum fluxes. To conceptualise the Reynolds stresses imagine a cube

within a fluid flow. Momentum flux from the fluid can interact with the cube,

via turbulent eddies, through any one of the six faces. If, for example, it enters

(or leaves) only one face, the momentum on that side of the cube will begin

to increase (or decrease), causing it to accelerate (or decelerate). Meanwhile,

the motion of the other sides of the cube, whose momentum is not changing,

remain the same. The end result is deformation of the cube.

The eddy momentum flux density, which has up to three spatial compo-

nents (i.e., x, y, z directions), can enter any of the three directional faces of the

cube; therefore the Reynolds stresses have nine components. It is convenient

to represent them in tensor notation,

〈u′iu′j〉 = Rij =









〈u′1u′1〉 〈u′1u′2〉 〈u′1u′3〉

〈u′2u′1〉 〈u′2u′2〉 〈u′2u′3〉

〈u′3u′1〉 〈u′3u′2〉 〈u′3u′3〉









=









〈u′u′〉 〈u′v′〉 〈u′w′〉

〈v′u′〉 〈v′v′〉 〈v′w′〉

〈w′u′〉 〈w′v′〉 〈w′w′〉









. (2.22)

This is the Reynolds stress tensor. It is symmetric, 〈u′iu′j〉 = 〈u′ju′i〉. The three

diagonal elements of the above array are called the normal Reynolds stresses

which are in fact variances

〈u′1u′1〉 = σ2
u, (2.23)

〈u′2u′2〉 = σ2
v , (2.24)

〈u′3u′3〉 = σ2
w. (2.25)
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By definition, the TKE is one half of the trace of the Reynolds stress tensor,

k ≡ 1

2
〈u′iu′i〉 =

1

2
(σ2

u + σ2
v + σ2

w). (2.26)

The six off-diagonal elements of the above array are called the shear (or tangen-

tial) Reynolds stresses and are simply velocity covariances with the following

form:

〈u′1u′2〉 = 〈u′v′〉, (2.27)

〈u′1u′3〉 = 〈u′w′〉, (2.28)

〈u′2u′3〉 = 〈v′w′〉. (2.29)

The process of deriving the mean scalar equation is the same as deriving

the RANS equation. We begin by decomposing the scalar into mean and

fluctuating component

φ(x, t) = 〈φ(x, t)〉 + φ′(x, t) (2.30)

and taking the mean of the conservation equation (2.17). Again non-divergence

is assumed and Reynolds decomposition is used on the velocity. After some

algebra we arrive at

∂〈φ〉
∂t

+ 〈uj〉
∂〈φ〉
∂xj

= D ∂2〈φ〉
∂xj∂xj

−
∂〈u′jφ′〉
∂xj

︸ ︷︷ ︸

new term

+〈S(φ)〉. (2.31)

Upon comparison of equations (2.17) and (2.31) we see that once again the

result of the Reynolds averaging is a new term in 〈u′jφ′〉. This quantity, called

the scalar flux (strictly the scalar eddy flux density), represents the flux of

the scalar due to the fluctuating velocity field. To simplify the wording in the

remainder of this work we hereafter will refer to φ as the concentration.
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2.4 Atmospheric Flows

We now have sufficient background knowledge to discuss the types of atmo-

spheric flows of interest to us in this thesis, and the associated mathematics.

Two types of flows will be considered: wall shear layer flow, and canopy flow.

Before these considerations, let us briefly discuss the region of the atmosphere

that we are interested in. For a more thorough coverage the reader is directed

to Stull (1988) or Garratt (1992).

Figure 2.3 presents a highly simplified view of the lower portion of the

atmosphere. The layers shown in the figure are all part of the troposphere

which extends from ground level to the tropopause, roughly eleven kilometres

above the surface. The atmospheric boundary layer (ABL) is the region of the

Figure 2.3: A highly simplified diagram of the atmosphere highlighting the
region of interest to this work (in grey). The boundary layer depth is denoted
by δ.
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atmosphere that is in contact with, and directly influenced by, the surface of

the Earth on a timescale of roughly one hour. Its thickness (denoted by δ) is

approximately 100 to 3000 metres and varies in both space and time in response

to forcings such as: terrain-induced frictional drag, heat transfer, thermal

stratification of the layer (i.e., stability), and evaporation and transpiration.

It undergoes diurnal variation and is generally thicker during the day than

during the night. Radiative cooling at cloud tops or radiative heating at the

ground, results in convectively driven turbulence which mixes momentum,

moisture, heat, and pollutants throughout the ABL.

The bottom 10% (nominally) of the ABL is called the atmospheric surface

layer (ASL). The primary feature of the ASL is that the turbulent fluxes

and stresses vary by less than 10% relative to their surface values and, as

a consequence, the ASL is sometimes referred to as the constant stress layer.

This is rather ironic given that the gradients of the turbulent fluxes and stresses

are actually steepest in the bottom 10% of the ABL (as consideration of the

RANS equations easily shows). The ASL is commonly modelled as being

horizontally-homogeneous. In parts of the bottom portion of the ASL there

are plants, trees, and buildings. Collectively, if in some sense uniform in their

distribution, and of sufficiently high density on the landscape, these objects

are referred to as a canopy, and the layer they produce is called the canopy

layer. This layer of strong mean wind shear and mixing has a drastically

different state of motion than would occur in the absence of a canopy. Since

practically all of land-based biological organisms live in the ABL, our work

is focused on this layer. Above the ABL there is a region, known as the free

atmosphere, that does not respond to forcing caused by terrain features, other
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than on longer timescales.

2.4.1 Neutral Wall Shear Layer Flow

This simplest real world turbulent flow that can be imagined is when wind

blows over a flat, uniform surface. Friction at the surface extracts momentum

from the winds and alters the flow. The situation can be further simplified if we

assume that there are no buoyancy forces (i.e., the flow is neutral). If we choose

the Cartesian coordinate system such that the x-axis is aligned along the mean

wind direction, assume stationarity and horizontal-homogeneity, neglect the

effects of viscosity, and include the effects of the Coriolis force, the RANS

equation (2.21) becomes

∂〈u′w′〉
∂z

= −1

ρ

∂〈p〉
∂x

+ fc〈v〉

= fc

(

− 1

ρfc

∂〈p〉
∂x

+ 〈v〉
)

. (2.32)

At mid-latitudes the Coriolis parameter is on the order of fc ∼ 10−4. The first

term on the right hand side of equation (2.32) defines the y-component of the

geostrophic wind and is on the order of ∼ 10 m s−1. In the surface layer (where

〈v〉 = 0, by choice of the orientation of the coordinate system) we therefore

have

∂〈u′w′〉
∂z

≈ 10−3 ≈ 0, (2.33)

supporting the above assertion of the surface being a constant stress layer. We

note, however, that the stress gradient is at its maximum at ground. Never-

theless, the approximation of the surface layer as a constant stress layer is a

convenient fiction. Similar arguments can be made for the other stresses.
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An important scaling variable can be defined from the magnitude of the

Reynolds stresses at the surface. The friction velocity is defined in relation to

the total vertical flux of horizontal momentum,

u2
∗ ≡

(
〈u′w′〉2 + 〈v′w′〉2

)1/2
. (2.34)

With the appropriate choice of coordinates this expression may be simplified

to

u2
∗ ≡ (〈u′w′〉2)1/2 (2.35)

Note that in this work it will be assumed that values of u∗ are for the surface

unless otherwise stated. When scaled by u∗, velocity statistics from flows of

different scales take on a similar form, thus allowing us to simulate a neu-

tral ABL in a wind-tunnel or water-channel with good confidence that the

turbulence is being well represented.

The prognostic equation for 〈u′w′〉 contains triple correlation terms such

as 〈w′u′w′〉. The prognostic equations for these triple correlations in turn have

quadruple correlation terms in them. This problem continues as we move

to higher orders. This proliferation of unknowns is the turbulence closure

problem. To get around this closure problem there is no alternative but to

introduce a model to provide additional relationships between the unknowns,

the simplest such closure being the gradient-diffusion paradigm, known by

many other names, including K-theory. It is fundamentally incorrect but in

certain circumstances can produce accurate results. One such circumstance

is when seeking an expression for the vertical profile of the mean streamwise

velocity for a neutral wall shear layer flow under the horizontally homogeneous

and stationary assumptions.
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Assume that there is a simple relation between the shear stress and vertical

gradient of mean streamwise velocity

〈u′w′〉 = −Km
∂〈u〉
∂z

, (2.36)

where Km is the eddy viscosity, or eddy diffusivity for momentum. It has

the dimensions of a diffusivity (i.e., m2 s−1). Heuristically, equation (2.36) is

related to how efficiently turbulence transports momentum down the gradient.

On dimensional grounds we may assume that Km is the product of an appro-

priate velocity fluctuation scale (habitually taken as u∗, although a priori
√
k

would at first appear equally legitimate) and an appropriate length scale. It

turns out to “work” if the latter is specified as the distance z to the boundary,

such that in short Km = kvu∗z where kv = 0.4 is a constant of proportionality

known as the von Kármán constant. Thus by equations (2.35) and (2.36) we

have

u2
∗ = kvu∗z

∂〈u〉
∂z

, (2.37)

which rearranged gives

∂〈u〉
∂z

=
u∗
kvz

. (2.38)

Integration of this equation with respect to z yields the log-law for streamwise

velocity

〈u〉 =
u∗
kv

ln

(
z

z0

)

. (2.39)

The constant of integration z0 is called the roughness length. There is a re-

lationship between the roughness length and the heights of the individual

roughness elements (i.e. grasses, trees, buildings, etc.) but they are not equal.

The roughness length is smaller than the height of the roughness elements. A

typical value for a flat, grass covered prairie is on the order of 0.01 m, for a city
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centre z0 ∼ 1 m (Stull, 1988). To determine the roughness length in neutral

flows one may plot ln(z) versus 〈u〉 and extrapolate the plot to where 〈u〉 = 0

on the ordinate axis. The intercept on the abscissa axis allows the roughness

length to be determined.

The TKE budget equation for a neutral wall shear flow is

∂k

∂t
+ 〈uj〉

∂k

∂xj
= −〈u′iu′j〉

∂〈ui〉
∂xj

− 1

2

∂〈u′iu′iu′j〉
∂xj

− 1

ρ

∂〈u′jp′〉
∂xj

− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉

+ ν
∂2k

∂xj∂xj
, (2.40)

(see Stull, 1988 for a derivation). The terms of the right-hand-side represent:

shear production (Ps), turbulent transport (Tt), pressure correlation, dissipa-

tion (−ε), and viscous diffusion. Under the assumptions stated throughout

this section, neglecting the viscous diffusion (suitable for high Reynolds num-

ber flows), and with the further assumption of local equilibrium (viz., turbu-

lent transport can be ignored), production and dissipation terms balance and

equation (2.40) simplifies to

ε = −〈u′w′〉∂〈u〉
∂z

. (2.41)

Substituting equations (2.35) and (2.38) in the above expression yields the

TKE dissipation rate for a neutral wall shear flow, subject to the stated as-

sumptions

ε = u2
∗

u∗
kvz

=
u3
∗

kvz
. (2.42)

Numerous measurements of wall shear layer flows in the atmosphere, wind-

tunnels, and water-channels have shown equation (2.39) and, with slightly

lower fidelity, equation (2.42) to be valid, regardless of the assumptions made

in their derivation. One example of their validity will be shown in Chapter 4.
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Both equations can be derived using Monin-Obukhov similarity theory as in

Stull (1988); Garratt (1992); Kaimal and Finnigan (1994). Since it does not

add to this thesis, we do not cover it here.

2.4.2 Canopy Flow

As conveniently simple and comprehensible as a wall shear layer is, its

occurrence in the natural world is rare. The surface of the earth is for the most

part neither flat nor uniform. It is covered with different types of vegetation

and buildings of different shapes. These plants and buildings are collectively

known as a canopy. In the case of a city, the term mixed canopy is appropriate

as over small distances the individual canopy elements change rapidly as we

pass over parks, downtown cores, and residential areas. There are however

also large areas where the canopy is approximately uniform. Modern suburban

areas for example have row upon row of similarly shaped and sized houses, and

many forests contain very similarly aged and sized trees. Perhaps the most

uniform canopy can be found in crops, a monoculture of equally aged and

uniformly spaced plants, such as a cornfield.

Regardless of their composition canopies share a common feature: through

momentum exchange they strongly alter the flow. Canopies can be charac-

terised in several ways. The frontal area index is calculated as the ratio of

the frontal (streamwise) area of a canopy element to the lot area (the area on

which a single obstacle sits in the array), λf ≡ Af/AL. The plan area index is

defined as λp ≡ Ap/AL, where Ap is the plan (floor) area of a canopy element.

Finally, the element area density (denoted by a), or surface area density, is

calculated as the frontal area per unit volume, where the volume is calculated



34

as the product of the lot area and the canopy height.

Provided the canopy is sufficiently dense, equations (2.39) and (2.42) can

still be used in the region above the canopy, with a minor modification. In

this situation the tops of the canopy elements act as one and displace the

flow upwards. The minor modification to the equations is the addition of a

displacement height d,

〈u〉 =
u∗
kv

ln

(
z − d

z0

)

, (2.43)

ε =
u3
∗

kv(z − d)
. (2.44)

The displacement height is generally around seventy-five percent of the height

of the canopy elements, d ∼ 0.75hc (Kaimal and Finnigan, 1994). It can be

determined in the neutral case by plotting ln(z− d) versus 〈u〉 over a range of

different values for d. When d is correctly set the line should have no curvature,

a slope of u∗/kv, and have an intercept with the abscissa axis that allows z0 to

be inferred. When utilising the above equations it is important to note that

the values for u∗ and z0 are for the displacement height, not the ground level.

Analytical expressions for the mean streamwise velocity and the TKE dissi-

pation are harder to determine inside the canopy. Given present mathematical

tools an exact treatment of the problem is impossible. Real world canopies are

simply too complex, with too many length scales. Consider the fractal nature

of trees, or the architectural subtleties of many buildings. To approach this

problem requires simplifications and assumptions. Given the complex nature

of canopies, the governing equations must be spatially-averaged (represented

by the square brackets in this section only), shown here for 〈u〉,

[〈u〉](x, t) =
1

V

∫∫∫

V

〈u〉(x + r, t)dr. (2.45)
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The averaging volume is denoted by V . The departure from the spatially-

averaged quantity is denoted by a double prime

〈u〉 = [〈u〉]+ 〈u〉′′, (2.46)

and satisfies [〈u〉′′] = 0.

The spatially-averaged transport equation for mean momentum within a

canopy is

∂[〈ui〉]
∂t

+ [〈uj〉]
∂[〈ui〉]
∂xj

= −1

ρ

∂[〈p〉]
∂xi

−
∂[〈u′iu′j〉]
∂xj

− ∂[〈ui〉′′〈uj〉′′]
∂xj

+ ν
∂2[〈ui〉]
∂xj∂xj

+ fFi
+ fVi

, (2.47)

where fFi
and fVi

are the form and viscous drag force vectors respectively

(Raupach et al., 1986) and formally represent the flux of momentum to solid

surfaces within the averaging volume. The third term on the right-hand-side

is new, and represents the dispersive flux.

Within the canopy, momentum absorption rapidly attenuates the mean

streamwise velocity. A popular model for the in-canopy mean streamwise

velocity can be found, once again, via K-theory. Consider a canopy composed

of rigid elements of height hc, and assume that the turbulence is stationary and

the flow is neutral with no streamwise evolution within or above the canopy.

To a good approximation the spatially averaged velocity statistics within the

canopy are horizontally-homogeneous (Raupach et al., 1986). Under these

assumptions, the streamwise component of equation (2.47) is

∂[〈u′w′〉]
∂z

+
∂[〈u〉′′〈w〉′′]

∂z
− ν

∂2[〈u〉]
∂z2

= fFx
+ fVx

. (2.48)

This equation can be further simplified by considering only the dominant
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terms,

∂[〈u′w′〉]
∂z

= −1

2
CDa[〈u〉]2, (2.49)

where the right-hand-side is the parametrisation of the form drag with CD

being the drag coefficient. Using equation (2.36) to parametrise the Reynolds

stress term, and the Prandtl-von Kármán mixing-length theory to specify the

form of the eddy diffusivity,

Km = ℓ2
d[〈u〉]
dz

(2.50)

(where the mixing length ℓ is assumed to be constant within the canopy), and

solving gives

[〈u〉](z) = 〈u〉c exp

(

−β
(

1 − z

hc

))

. (2.51)

Here, 〈u〉c = 〈u〉(hc) is the mean streamwise velocity at the canopy height.

The extinction parameter β can be connected with the eddy diffusivity of the

K-theory model but is frequently left as a fitting parameter. Even though this

equation violates the no-slip condition (i.e, 〈u〉(0) 6= 0), it has been shown to

capture the essence of the mean streamwise velocity within a canopy reason-

ably well. Equations (2.43) and (2.51) can be combined (with small modifica-

tions to ensure that the velocity is continuous across the z = hc interface) to

parametrise the mean streamwise velocity at any location within or above the

canopy,

[〈u〉] = 〈u〉c exp

(

−β
(

1 − z

hc

))

, for z ≤ hc (2.52)

〈u〉 = 〈u〉c +
u∗
kv

ln

(
z/hc − d/hc

1 − d/hc

)

, for z > hc (2.53)

where u∗ is calculated based on the shear stresses at the canopy top.
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As Raupach et al. (1986) displayed, the volume averaged TKE budget

equation under the above assumptions is

∂[k]

∂t
= −[〈u′w′〉]∂[〈u〉]

∂z
−

[

〈u′iu′j〉′′
∂〈ui〉′′
∂xj

]

− 1

2

∂[〈w′u′iu
′
i〉]

∂z

− 1

2

∂[〈w〉′′〈u′iu′i〉′′]
∂z

− ∂[〈p′w′〉]
∂z

+ ν
∂2[k]

∂z2
− [ε], (2.54)

The rigidity of the canopy elements allows one to neglect the contributions of

canopy waving to the TKE budget. On the right-hand side of equation (2.54)

the terms, from left to right, represent: shear production (Ps), wake production

(Pw) above and around the canopy elements, turbulent transport of TKE (Tt),

dispersive transport (Td), pressure transport (Tp), molecular transport (Tm),

and TKE dissipation. Raupach et al. (1986) showed how to evaluate the wake

production in terms of measurable quantities. By assuming that dispersive and

molecular contributions to the shear stress are negligible, the wake production

term can be written as

Pw = [〈u〉]∂[〈u′w′〉]
∂z

. (2.55)

For the Tombstone Canopy (Raupach et al., 1986; Coppin et al., 1986; Legg

et al., 1986; Raupach et al., 1987), it was shown that the TKE dissipation rate

can be calculated as

[ε] = [〈u′w′〉]∂[〈u〉]
∂z

+

[

〈u′iu′j〉′′
∂〈ui〉′′
∂xj

]

+
1

2

∂[〈w′u′iu
′
i〉]

∂z

= Ps + Pw + Tt, (2.56)

by assuming that the production of TKE equaled the dissipation of TKE, and

that most of the transport terms were negligible. The shear production and

wake production are in closed form and are readily calculable. The turbulent

transport term is unclosed and needs to be modelled. The particulars of the

Tombstone Canopy and flow will be more thoroughly described in Chapter 5.
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2.5 Turbulent Dispersion and Mixing

When a scalar is released into a flow it spreads out and mixes with the

ambient environment. We are familiar with this phenomenon by observing

pollutants emitted from smokestacks, exhaust from automobile tailpipes, and

smoke from the end of a cigarette, to give some examples. Mixing of the scalar

into the ambient environment is caused either by the effects of the turbulent

flow or the effects of molecular diffusion. The left panel of Figure 2.4 shows

alternating layers of pure air (white) and a scalar (black). This setup will be

taken as the initial conditions for the discussion below.

The ratio of the kinematic viscosity to the molecular diffusivity is called

the Schmidt number

Sc ≡ ν

D . (2.57)

The Schmidt number relates the smallest length scale of the scalar field to the

Kolmogorov scale as

λB ≡ Sc−1/2η, (2.58)

for fluids with Sc ≥ 1. This is called the Batchelor scale and it represents the

smallest scale where turbulent diffusion is balanced by molecular mixing (see

Fox (2003)). For fluids with Sc ≪ 1, a different diffusion scale applies,

λd ≡ Sc−3/4η. (2.59)

For gases Sc ≈ 1 and so λB ≈ η. For scalar eddies much larger than the

Batchelor scale, molecular diffusion can be ignored and the transport equation

for the passive, non-reactive scalar becomes

∂φ

∂t
+ uj

∂φ

∂xj
=
dφ

dt
= 0. (2.60)
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This shows that at these larger scales the scalar will be redistributed but

not mixed via molecular diffusion towards the mean concentration. This is

illustrated in the centre panel of Figure 2.4 . After larger-scale mixing, the

regions of pure scalar and pure air have been stretched and deformed but

they have not mixed to produce regions of intermediate scalar concentration.

When the scalar eddies are comparable in size to the Batchelor scale, molecular

diffusion cannot be neglected and the mixing towards the mean concentration

occurs. This is shown in the right panel of Figure 2.4 by the grey scale shading.

There are no longer areas of completely pure air or completely pure scalar.

Diffusion has resulted in regions with scalar concentrations somewhere between

the two extremes. Given enough time the entire box would reach a more or

less uniform scalar concentration.

(a) Initial conditions (b) Without diffusion (c) With diffusion

Figure 2.4: This figure illustrates two mixing scenarios for the initial slab
conditions shown in (a). The first is when the scalar eddies are much larger
than the Batchelor scale and thus molecular diffusion is ignored and the scalar
is only redistributed (b). The result is regions of pure air and regions of
pure scalar. When the scalar eddies are comparable in size to the Batchelor
scale, molecular diffusion cannot be ignored which results in the scalar mixing
with the pure air to give intermediate concentrations (c). As time progresses
molecular diffusion makes it increasing difficult to find areas of pure air or
pure scalar. The eventual end state in this scenario is a more or less uniform
scalar concentration. Figures after Fox (2003).

The relative sizes of the contaminant plume and the eddies have a marked
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effect on the development of a plume. Consider the train derailment shown

in Figure 2.5. One of the cars has ruptured and is releasing a contaminant

into the atmosphere. The figure shows the instantaneous plume which is a

snapshot of the plume. The average plume is the area that the instantaneous

plume covers in some large amount of time. To view the average plume one

could take a long, open exposure photograph of the instantaneous plume.

When the plume is small relative to the characteristic eddy size it is simply

pushed back and forth by the flow in a process called meandering. A detector

on the centreline of the time-averaged plume would detect concentration fluc-

tuations as the plume sweeps back and forth over it. When the plume grows to

a size comparable to the characteristic eddies it incorporates uncontaminated

air into it in a process called entrainment. Some meandering of the plume still

occurs but its effects are becoming less significant. Concentration fluctuations

observed by a detector in this region of the plume are a result of alternating

regions of relatively pure, freshly entrained air, and impure contaminated ma-

terial passing the detector. Other than at the source of a very small release,

the plume will always be larger than the Batchelor scale. Molecular diffusion

will become important when material lines in the plume have been folded and

stretched by the turbulent motions as to be sufficiently thin (comparable to

Batchelor scale) to allow molecular diffusion to act. This generally occurs

when the plume is much larger than the characteristic eddies. At this point

concentration fluctuations are generated principally through dissipation and

internal fluctuations. Small-scale structure in the plume is fine enough to allow

molecular diffusion to be significant, resulting in the dissipation of the scalar

fluctuations.
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Characteristic Eddy Size

Entrainment

Meandering

Internal Fluctuations

Dissipation

Figure 2.5: The three stages of plume development. Initially the plume is
smaller than the characteristic eddies and it meanders back and forth. When
the plume is comparable in size to the characteristic eddies entrainment incor-
porates uncontaminated air into contaminated air. Once the plume is much
larger than the characteristic eddies, molecular diffusion acts to homogenise
the fluctuations in scalar concentration.
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There are two views on dispersion: absolute dispersion, where we are in-

terested in the properties of the average plume; and relative dispersion, where

we are interested the statistical properties of the plume relative to its instan-

taneous centreline (i.e., the instantaneous plume). It both cases mathematical

analysis can be applied to determine the rate of growth of the plume. We

begin first with absolute dispersion. This problem, first given a mathemati-

cal foundation by Taylor (1921), considers the average distance that a single

particle moves from its source in some amount of time as a result of turbulent

motion.

Let us assume that a passive, non-reactive scalar is being released into

homogeneous, isotropic, and stationary turbulence. For simplicity we only

consider motion on the z-axis. At t = 0 a tracer particle∗ is released from

Z(0) = 0 with a vertical velocity of W (t). Lagrangian notation is used since

we are following the particle. The particle’s position at time t is computed as

Z(t) =

∫ t

0

W (t′)dt′. (2.61)

If we considered an ensemble of tracer particles, then the spread of the plume

could be defined as

σ2
z ≡ 〈Z2〉, (2.62)

and the time evolution of this spread calculated as

dσ2
z

dt
= 2

〈

Z
dZ

dt

〉

, (2.63)

where we have made use of the property that the operation of ensemble aver-

aging commutes with differentiation. Utilising equation (2.61), the preceding

∗A tracer particle is one which follows the flow exactly; it does not have buoyancy and
does not undergo gravitational settling.
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equation can be expressed as

dσ2
z

dt
= 2

〈∫ t

0

W (t′)dt′
d

dt

∫ t

0

W (t′′)dt′′
〉

= 2

〈

W (t)

∫ t

0

W (t′)dt′
〉

, (2.64)

where t′ and t′′ are dummy variables for time. Changing notation, let τ = t−t′

be a time lag and define

R(τ) ≡ 〈W (t)W (t− τ)〉
σ2
w

(2.65)

as the Lagrangian velocity auto-correlation function, which will be discussed

below. Note that since the turbulence is stationary R(τ) is not a function of

time. The vertical velocity variance is denoted by σ2
w. We now have

dσ2
z

dt
= 2

∫ t

0

〈W (t)W (t− τ)〉 dτ

= 2

∫ t

0

σ2
wR(τ)dτ (2.66)

which brings us to Taylor’s result,

dσ2
z

dt
= 2σ2

w

∫ t

0

R(τ)dτ. (2.67)

To proceed further, knowledge of the Lagrangian velocity auto-correlation

function is needed. The Lagrangian integral timescale is defined as the area

beneath the Lagrangian velocity auto-correlation function

TL =

∫ ∞

0

R(τ)dτ. (2.68)

It can be thought of as the characteristic persistence time of a vertical velocity

fluctuation. At very small time lags (τ ≃ 0), we would expect W (t) ≃ W (t−τ)

and thus R ≃ 1 as the two velocities are highly correlated. Hence, upon
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integration of equation (2.67), the evolution of σ2
z in the near field (i.e., close

to the source) is

σ2
z = σ2

wt
2. (2.69)

Alternatively, in the far field (τ ≫ TL) we expect the plume to grow as

σ2
z = 2σ2

wTLt. (2.70)

This result is consistent with pure Fickian diffusion which predicts σz ∝
√
t.

Now let us consider relative dispersion. To find the growth rates of the

instantaneous plume relative to its centreline, let us consider the rate of

separation of two tracer particles released simultaneously into homogeneous,

isotropic, and stationary turbulence as Richardson (1926) did. Let Zc repre-

sent position of the centre of mass for the two particles and Wc represent the

vertical velocity of the centre of mass. The position and velocity of a particle

relative to the centre of mass are respectively Zr = Z−Zc and Wr = W −Wc.

Modifying equation (2.62) to deal with relative positions we have

σ2
r ≡ 〈Z2

r 〉. (2.71)

At small times, close to the source, relative dispersion proceeds by diffusion

only and the evolution equation for σ2
r can be written as

dσ2
r

dt
= 2D, (2.72)

the integration of which yields σ2
r = σ2

0 + 2Dt, where the initial source distri-

bution σ0 accounts for a finite sized source.

The above result for plume growth should be valid to times that are small

with respect to the Kolmogorov time scale τη. Now consider the situation

when relative dispersion is accomplished by convection. In intermediate times
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when η ≪ σr ≪ L (i.e., the inertial subrange), eddies with a characteristic

size comparable to the size of the instantaneous plume (l ∼ σr) are responsible

for plume growth. Recall from Section 2.1 that the energy transfer rate down

the cascade to smaller length scales was shown to be T ∼ ε ∼ u3
l /l, which is

rearranged to give

ul ∼ (εl)1/3 ∼ (εσr)
1/3. (2.73)

Since only eddies with a characteristic size comparable to the size of the in-

stantaneous plume are responsible for plume growth we have

dσr
dt

∼ ul ∼ (εσr)
1/3. (2.74)

This is rearranged and integrated to give

σ2
r − σ2

0 = Crεt
3, (2.75)

where Cr is a constant of proportionality called the Richardson constant and

σ0 is a constant of integration which accounts for the finite source size. Upon

defining t0 = (σ2
r/Crε)

1/3 we arrive at the Richardson Law

σ2
r = Crε(t+ t0)

3. (2.76)

The Richardson Law is sometimes called the Richardson-Obukhov Law, and

the Richardson constant the Richardson-Obukhov constant, in honour of the

man who gave the Richardson Law a solid mathematical footing, Obukhov

(1941a,b). The details of Obukhov’s work can be found in English in Monin

and Yaglom (1975).

The value of the Richardson constant is not yet known with great certainty.

Values found in the literature are in the range 0.1 . Cr . 6, depending on
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the type of model used to estimate it. Franzese and Cassiani (2007) and refer-

ences therein provide many examples of Richardson constant value estimates

from various models. In addition, they relate the Richardson constant to the

Kolmogorov constant for homogeneous isotropic turbulence. They find that

Cr ≈ C0/11. This will be a useful guide for tuning the micromixing model in

later chapters.

At large times the centre of mass of the plume is no longer subject to

displacement as it has grown large relative to the eddies. In this time regime

the evolution of the relative plume is the same as the evolution of the absolute

plume,

dσ2
r

dt
= 2σ2

wr
Tr, (2.77)

which upon integration yields

σ2
r = σ2

0 + 2σ2
wr
Trt, (2.78)

where σ2
wr

= 〈W 2
r 〉 is the variance of the relative vertical velocity. Again there

is Fickian diffusion type behaviour. Table 2.1 summarises the growth rates of

the absolute plume and the instantaneous plume at various times.

Time Absolute Dispersion Relative Dispersion
(Average Plume) (Instantaneous Plume)

t→ 0 σz ∝ t σr ∝ t1/2

0 ≪ t≪ TL σr ∝ t3/2

t≫ TL σz ∝ t1/2 σr ∝ t1/2

Table 2.1: Summary of the growth rate of a plume for absolute dispersion and
relative dispersion.
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2.6 Probability Density Function Modelling

The one-point, one-time, joint velocity and concentration probability den-

sity function (fuφ = fuφ(v, ψ; x, t)) can provide all one-point and one-time

statistical information about the underlying velocity and concentration fields.

The PDF is a density with respect to the quantities to the left of the semi-colon,

and a function with respect to the quantities to the right of the semi-colon. To

the left of the semi-colon there are: v, the sample space (i.e., dummy) variable

for u; and ψ, the sample space variable for φ. Arguments of fuφ will be omit-

ted (but implied) for notational simplicity. As the velocity and concentration

fields have associated transport equations, so too does the joint velocity and

concentration PDF,

∂fuφ

∂t
+ vi

∂fuφ

∂xi
= − ∂

∂vi
[〈Ai|v, ψ〉fuφ] −

∂

∂ψ
[〈Θ|v, ψ〉fuφ]. (2.79)

There are multiple ways to derive this equation, but all are quite lengthy,

and would not add much to the present discussion. The interested reader is

directed to Pope (1985, 2000) or Fox (2003) for its derivation. The coefficient

Ai comes from the Navier-Stokes equation (2.13),

Ai = ν
∂2ui
∂xj∂xj

− 1

ρ

∂p

∂xi
. (2.80)

The coefficient Θ comes from the transport equation for a scalar (2.17) and

is a combination of molecular diffusion and a chemical source term which

represents chemical reactions,

Θ = D ∂2φ

∂xj∂xj
+ S(φ). (2.81)

Equation (2.79) has two unclosed terms in it: the conditional mean accel-
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eration

〈Ai|v, ψ〉 =

〈

ν
∂2ui
∂xj∂xj

− 1

ρ

∂p

∂xi

∣
∣
∣v, ψ

〉

, (2.82)

which corresponds to viscous dissipation and pressure fluctuations; and the

conditional mean diffusion-reaction

〈Θ|v, ψ〉 =

〈

D ∂2φ

∂xj∂xj
+ S(φ)

∣
∣
∣v, ψ

〉

=

〈

D ∂2φ

∂xj∂xj

∣
∣
∣v, ψ

〉

+ S(ψ), (2.83)

which corresponds to molecular diffusion and chemical reactions (Fox, 2003).

In equations (2.82) and (2.83) the means are conditioned upon the velocity

and the concentration respectively. To better understand terms such as these

consider the question, “what is the mean acceleration (diffusion-reaction) of

a fluid element given its velocity (concentration)?” Fluid elements with a

different velocity and/or concentration will likely (but not necessarily) have

different mean accelerations and diffusion-reactions.

Note that the chemical source term appears in closed form in equation

(2.83). Exact representation of S(φ) is a major advantage of the IEM and

the IECM approach as the chemical source term is often a complicated, non-

linear function. Since this project pertains to non-reactive scalars, we now

set S(φ) = 0, and the conditional mean diffusion-reaction is now simply the

conditional mean diffusion.

From equations (2.79), (2.82), and (2.83) it is seen that the evolution of the

joint PDF of velocity and concentration is driven by transport in: real space

through vi; velocity phase space through 〈Ai|v, ψ〉; and in composition phase

space through 〈Θ|v, ψ〉 (Fox, 2003). If we wish to simulate the evolution of

the joint velocity-concentration PDF then models must be prescribed for the

conditional mean acceleration and the conditional mean diffusion-reaction. In
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the next chapter, a single-particle LS scheme will be coupled to the IECM

micromixing model to close these terms.
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Chapter 3

Closure and Numerical Modelling

Chapter 2 concluded with the presentation of the unclosed terms in the

transport equation of the one-point, one-time joint velocity and concentration

PDF. In this chapter, models to close these conditional fluxes will be presented

and their implementation discussed.

3.1 Lagrangian-Stochastic Trajectory Modelling

To close the conditional mean acceleration (equation (2.82)) a LS trajectory

model is employed. Under the assumption that the velocity and position of a

fluid element are jointly a continuous Markov process, and assuming validity of

the Kolmogorov similarity relationship for the Lagrangian second-order struc-

ture function (equation (2.7)), it follows that the motion of N independent

tracer particles is governed by the following stochastic equations:

dU ′
i = ai(X,U ′, t)dt+ bij(X,U ′, t)dξj(t), (3.1)

dXi = (〈ui〉 + U ′
i) dt, (3.2)

where U ′
i is the Lagrangian velocity fluctuation relative to the Eulerian mean,

dt is a small timestep and dξj(t) represents an incremental Wiener process with
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zero mean and variance dt. On the right-hand-side of equation (3.1) we have

the deterministic term aidt, and the stochastic diffusion term bijdξj. Thomson

(1987) considered five criteria for LS models of particle trajectories which aid

in the determination of ai and bij:

1. “The well-mixed condition” (WMC): if the tracer particles are initially

well-mixed in position and velocity space, will they remain so?

2. “The small-time behaviour of the velocity distribution of particles from

a point source”: is it correct?

3. “The requirement of compatibility with the Eulerian equations”: are the

true Eulerian equations and those derived from the Lagrangian model

compatible?

4. “Forward and reverse dispersion”: is there consistency between the for-

ward and reverse formulations of the dispersion?

5. “The small-timescale limit”: as the Lagrangian timescale tends towards

zero does the model reduce to a diffusion equation?

He then went on to show that criteria 2-4 are mathematically equivalent to

criterion 1, and that criterion 5 is a weaker condition than criterion 1. Let

gt(x,u
′, t) represent the density function of the (x,u′) phase space distribution

of the tracer particles and ga(x,u
′, t) represent the density function of the

distribution of fluid elements. If the tracer is well-mixed, and there are no

sources or sinks for the tracer, then by definition gt is proportional to ga,

or alternatively, the ratio gt/ga is constant. Thomson (1987) showed that

satisfaction of the WMC ensures satisfaction of the other criteria.
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Solutions for the deterministic coefficient ai will be discussed briefly, but

first we discuss the form of the stochastic diffusion coefficient. An expression

for bij can be found by assuring consistency with Kolmogorov’s theory of local

isotropy for the Lagrangian structure function (equation (2.7)) as outlined in

Thomson (1987). For dt≪ TL, the diffusion process in equation (3.1) produces

the following expression for the second-order Lagrangian structure function,

DL
ik = 〈bijbjk〉dt. (3.3)

Equating the above equation with equation (2.7) gives

〈bijbjk〉 = δijC0ε. (3.4)

Consistency of the LS model and Kolmogorov’s theory of local isotropy is

assured by the specification

bij = δij(C0ε)
1/2. (3.5)

Solutions for the deterministic coefficient ai are found by imposing the

WMC. Equations (3.1) & (3.2) imply that ga (or gt, since the two are propor-

tional in the well-mixed state) satisfies the following Fokker-Planck equation:

∂ga
∂t

+
∂

∂xi
[(〈vi〉 + V ′

i )ga] = − ∂

∂V ′
i

(aiga) +
∂2

∂V ′
i ∂V

′
k

(
1

2
bijbjkga

)

. (3.6)

By isolating aiga from the above equation we arrive at a mathematical expres-

sion of the well-mixed condition,

aiga =
∂

∂V ′
k

(
1

2
bijbjkga

)

+ Φi, (3.7)

∂Φi

∂V ′
i

= −∂ga
∂t

− ∂

∂xi
[(〈vi〉 + V ′

i )ga], (3.8)
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with Φ(x,U ′, t) → 0 as U ′ → ∞. For more details on this derivation the

interested reader is directed to Thomson (1987) and Rodean (1996). Before

continuing further in the determination of the deterministic coefficient in equa-

tion (3.1), we must first specify the form of the PDF of the Eulerian velocity

fluctuations. For many cases of practical importance and interest a Gaussian

form is sufficient:

ga(x,u
′) =

[det(R−1)]1/2

(2π)3/2
exp

(

−1

2
u′iR

−1
ij u

′
j

)

, (3.9)

with R−1
ij (x) being the inverse Reynolds stress tensor, where stationarity has

been assumed (but is not necessary), therefore the Reynolds stresses are inde-

pendent of time. Even under these conditions the WMC (equations (3.7) and

(3.8)) cannot produce a unique solution for ai for two or three-dimensional

turbulence. In fact, a unique solution is only possible in the one-dimensional

case.

The “simplest” solution for ai in three-dimensions for Gaussian turbulence,

which is attributed to Thomson (1987), is

ai = T
(0)
i + T

(1)
ij U

′
j + T

(2)
ijkU

′
jU

′
k, (3.10)

where

T
(0)
i ≡ 1

2

∂Riℓ

∂xℓ
, (3.11)

T
(1)
ij ≡ −1

2
(C0ε)R

−1
ij +

1

2
R−1
jℓ

∂Riℓ

∂xk
〈uk〉,

= −1

2
(C0ε)R

−1
ij + T

(2)
ijk 〈uk〉, (3.12)

T
(2)
ijk ≡ 1

2
R−1
jℓ

∂Riℓ

∂xk
, (3.13)

where 〈uk〉 is the mean Eulerian velocity and Rij is the Reynolds stress tensor

(equation (2.22)). The first term in equation (3.12) is called the fading memory
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term, and all of the other terms relate to drift correction for inhomogeneous

turbulence. With equations (3.5 & 3.10), along with equations (3.11 – 3.13),

the evolution equations for the Lagrangian velocity and position (equations

(3.1) & (3.2)) can be rewritten

dU ′
i =

(

T
(0)
i + T

(1)
ij U

′
j + T

(2)
ijkU

′
jU

′
k

)

dt+ (C0ε)
1/2dξi(t), (3.14)

dXi = (〈ui〉 + U ′
i) dt. (3.15)

In homogeneous-isotropic turbulence the Reynolds stress tensor is diagonal

and equation (3.14) simplifies to

dU ′
i = −C0ε

2σ2
U ′
idt+ (C0ε)

1/2dξi(t), (3.16)

where the velocity variance σ2 is the same in all directions, due to isotropy.

These are the familiar Langevin equations; the stochastic differential equa-

tions associated with the simplest, statistically stationary diffusion process,

the Ornstein-Uhlenbeck process (Pope, 2000).

If the fields of the mean velocities and the Reynolds stresses possess steep

and/or erratic gradients or local distortions, such as those found in canopies,

then the Thomson model described above may produce unrealistic velocities,

commonly referred to as rogue trajectories or rogue velocities. Yee and Wilson

(2007) suggested that rogue velocities arise due to dynamical and/or numerical

instabilities within the Langevin equations, and proposed a method to prevent

them. Unfortunately, the prevention algorithm proposed by those authors

requires significant computational overhead and is not employed in the model

presented here. Whenever a rogue velocity is produced by the models used

in this thesis (here detected when the velocity fluctuation is greater than six
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times the local standard deviation), the three components of the velocity are

re-initialised based upon the local velocity statistics.

In practice, the derivatives in equations (3.14) and (3.15) are replaced by

forward difference equations so that the updated velocity and positions are

given as

U ′
i(t+ ∆t) = U ′

i(t) + ai∆t+ (C0ε)
1/2∆ξi(t), (3.17)

Xi(t+ ∆t) = Xi(t) + (〈ui〉 + U ′
i) ∆t, (3.18)

where equation (3.10) was used to simplify equation (3.17). In this thesis, the

timestep is chosen to be a fraction of the Lagrangian integral timescale

∆t = µt min[TLu
, TLv

, TLw
] (3.19)

where µt ≪ 1 is the timestep constant and the Lagrangian integral timescales

associated with the u, v, and w velocities are calculated as

TLu
=

2σ2
u

C0ε
, TLv

=
2σ2

v

C0ε
, TLw

=
2σ2

w

C0ε
. (3.20)

Together, equations (3.14) and (3.15) can only provide information about

first-order statistics such as the mean concentration. A micromixing model

may be used to calculate the higher-order moments of the concentration field,

in which case the compound Markovian state variable is enlarged to (U ′
i , Xi, φ).

3.2 The IECM Micromixing Model

The rate of change in concentration as calculated by the IECM model is

dφ

dt
= θ(x, ψ, t) = − 1

tm
(φ− 〈φ|u〉), (3.21)
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where ψ is the sample space variable for φ, tm is the mixing timescale, and

〈φ|u〉 is the scalar concentration conditioned on the local velocity (also called

the conditional concentration). To better understand the conditional concen-

tration consider the question, “what is the concentration of the scalar given its

velocity?” The mathematically simpler IEM model can be attained by substi-

tuting the unconditional mean concentration 〈φ〉 for 〈φ|u〉 in equation (3.21).

The unconditional and conditional mean concentrations are related through

〈φ〉 =

∫

v

〈φ|v〉fu(v) dv, (3.22)

where (once again) v is the sample space variable for u. In the IECM model,

the particle’s concentration will relax to the local mean concentration condi-

tioned on velocity, via equation (3.21). The rate at which this mixing occurs is

inversely proportional to the micromixing timescale tm. Heuristically, condi-

tional scalar mixing can be thought of as occurring between all fluid elements

that occupy the same eddy. Furthermore, fluid elements with the same veloc-

ity are more likely to remain together for times comparable to the Lagrangian

integral time and therefore are more likely to mix (Fox, 1996; Pope, 1998).

Plume flapping or meandering contributes to the scalar variance but not to

the scalar dissipation (Sawford, 2004a). It is important for a mixing model

to properly represent the bulk motions and the in-plume, variance-dissipating

motions. By conditioning on velocity, the IECM model achieves this segrega-

tion (Sawford, 2004a).

The Fokker-Planck (FP) equation corresponding to equations (3.1), (3.2)
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and (3.21) is

∂fuφ

∂t
+ (〈vi〉 + V ′

i )
∂fuφ

∂xi
= − ∂

∂vi
[ai(V

′, ψ)fuφ] −
∂

∂ψ
[θ(ψ)fuφ]

+
1

2
C0ε

∂2fuφ

∂vi∂vi
, (3.23)

(Pope, 1985, 2000; Fox, 2003). Comparing the exact equation (2.79) with the

modelled equation (3.23), we see that the closure for the conditional mean

acceleration is

∂

∂vi

[〈

ν
∂2ui
∂xj∂xj

− 1

ρ

∂p

∂xi

∣
∣
∣v, ψ

〉

fuφ

]

=
∂

∂vi
[ai(V

′,ψ)fuφ]

− 1

2
C0ε

∂2fuφ

∂vi∂vi
, (3.24)

and the closure for the conditional mean diffusion is
〈

D ∂2φ

∂xj∂xj

∣
∣
∣v, ψ

〉

= θ(ψ) = − 1

tm
(φ− 〈φ|v〉). (3.25)

The budget equation for the mean concentration can be retrieved by mul-

tiplying equation (3.23) by ψ and integrating over (u, φ) phase space. The

result is

∂〈φ〉
∂t

+ 〈ui〉
∂〈φ〉
∂xi

+
∂

∂xi
〈U ′

iφ
′〉 = 〈θ〉 = 0. (3.26)

This expression involves the scalar flux 〈U ′
iφ

′〉 which should not be affected

by any aspect of the micromixing model. To see if this is the case derive

the budget equation for the scalar flux by multiplying equation (3.23) by vjψ

and integrating over (u, φ) phase space, using the mean momentum and mean

concentration equations to eliminate the extra terms. The resulting equation

is

∂〈U ′
jφ

′〉
∂t

+ 〈ui〉
∂

∂xi
〈U ′

jφ
′〉+〈U ′

iU
′
j〉
∂〈φ〉
∂xi

+ 〈U ′
iφ

′〉∂〈uj〉
∂xi

+
∂

∂xi
〈U ′

iU
′
jφ

′〉 = 〈ajφ〉 + 〈ujθ〉. (3.27)
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The first term on the right-hand-side is due to the LS closure for the conditional

mean acceleration, and is equal to zero. The effects of the micromixing model

are manifested through the last term on the right-hand-side. In order to have

no effect on the scalar flux 〈uiθ〉 = 0 is required. For the IEM model we have

〈ujθ〉 = − 1

tm
〈uj(φ− 〈φ〉)〉 = − 1

tm
〈ujφ′〉 6= 0. (3.28)

From this equation we see that the IEM model has a spurious term in the

scalar flux budget equation. In the literature this extra term is referred to as

the “spurious flux”.

In contrast, the IECM model does not have a spurious flux,

〈ujθ〉 = − 1

tm
〈uj(φ− 〈φ|v〉)〉

= − 1

tm
〈ujφ− uj〈φ|v〉〉 (3.29)

= − 1

tm
(〈ujφ〉 − 〈uj〈φ|v〉〉) = 0.

In the above demonstration, the definitions of the mean and the conditional

PDF were used:

〈uj〈φ|v〉〉 =

〈

uj

∫

ψ

ψfφ|u dψ

〉

=

〈∫

ψ

vjψfφ|u dψ

〉

=

∫

v

∫

ψ

vjψfφ|u dψfu dv (3.30)

=

∫

v

∫

ψ

vjψfuφ dψ dv

= 〈ujφ〉.

Therefore the IECM model does not alter first-order statistics of the concen-

tration field while the IEM model does. The spurious flux acts as a source,
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or more commonly a sink, of the scalar flux (Pope, 1998). The significance of

not having a spurious flux is that single-particle trajectories can be used to

pre-calculate the conditional mean concentrations, resulting in greatly reduced

computational loads.

3.2.1 The Micromixing Timescale

Equation (3.21) has one free parameter, the micromixing timescale, tm.

Through this parameter all of the processes that contribute to mixing are

heuristically included into the model. Some early micromixing models (Pope,

1985) assumed the micromixing timescale to be equal to the turbulence timescale,

commonly modelled as

tt ≡ k/ε. (3.31)

When the length scale of the turbulence is much smaller than the length scale

of the source, then this assumption produces reasonable results. However,

this is not the case for most atmospheric science applications. Consequently,

for problems involving atmospheric dispersion the relationship between the

micromixing timescale and the turbulence timescale is more complicated, and

furthermore is time dependent (Sykes et al., 1984).

Mixing is intimately related to the growth of the plume about its instanta-

neous centreline and thus to relative dispersion (Sawford, 2004b). Therefore, it

is reasonable to expect the mixing timescale to evolve with the instantaneous

plume size as

tm ∼
(
σ2
r

σ2
Ur

)1/2

, (3.32)

where σ2
Ur

= 〈U 2
r 〉 is the variance of the Lagrangian relative velocity fluctua-

tions (Luhar and Sawford, 2005). To calculate Ur, take the difference between
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the turbulent velocity and the velocity of the instantaneous centre of mass.

To determine the evolution of the mixing timescale, consider dispersion from

a localised point source of diameter σ0 for which one may define a charac-

teristic timescale ts = (σ2
0/ε)

1/3. At early times t ≪ ts, when the plume is

small, the source characteristics dominate the evolution of the plume and thus

we expect tm ∝ ts. As discussed in Section 2.5, Richardson’s t3 law (equa-

tion (2.76)) applies in the inertial subrange ts ≪ t ≪ TL. The instantaneous

plume grows as σ2
r ∝ t3 and σ2

Ur
grows as t. Therefore, by equation (3.32),

we expect tm ∝ t. At late times, t ≫ TL, the instantaneous plume has grown

to fill the time-averaged envelope of the absolute plume. During this regime

of plume development, σ2
r grows proportionally to t and σ2

Ur
is constant. We

therefore expect tm ∝ t1/2. Table 3.1 summarises the expected behaviour of

the micromixing timescale in the three time regimes discussed above. The

parametrisation of tm used in the IECM model should reproduce these expec-

tations.

Regime Time Behaviour of tm

1 t→ 0 tm ∝ ts
2 ts ≪ t≪ TL tm ∝ t
3 t≫ TL tm ∝ t1/2

Table 3.1: Summary of the expected time behaviour of the micromixing
timescale in three regimes of plume development.

We begin by describing the parametrisation of the micromixing timescale

for homogeneous and isotropic turbulence. Following Sykes et al. (1984);

Sawford (2004b); and Cassiani, Franzese and Giostra (2005a), for short and
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medium times we assume that

tm = µ

(
σ2
r

σ2
Ur

)1/2

. (3.33)

The micromixing constant (µ) is empirically determined and depends upon

the type of turbulence, the source configuration, and the stage of develop-

ment of the plume. It is treated as a “tuning” parameter. The variance of

the Lagrangian relative velocity fluctuations (σ2
Ur

) is in general very difficult

to calculate. However, it represents the fraction of the energy responsible for

expansion of the plume about its instantaneous centreline. It is possible to esti-

mate an expression for it in the inertial subrange by integrating Kolmogorov’s

5/3 law (equation (2.5)) with respect to the wavenumber

∫ ∞

κ

Eκ′ dκ
′ =

∫ ∞

κ

Cε2/3κ′−5/3dκ

= −3

2
Cε2/3κ−2/3. (3.34)

Casting this result in terms of the eddy sizes with l = 2π/κ, we find that

the energy available for plume expansion is proportional to l 2/3. The largest,

energy-containing eddies have size L, so the total amount of energy available

for plume expansion is proportional to L2/3.

By constructing a ratio of the instantaneous plume width to the largest

eddies Franzese (2003) and Cassiani, Franzese and Giostra (2005a) modelled

σ2
Ur

as

σ2
Ur

= σ2
(σr
L

)2/3

, (3.35)

where σ2 = 2
3
k is the turbulent velocity variance (energy) in a given direction

(assumed to be the same in every direction because of isotropy). When σr > L

the constraint σ2
Ur

= σ2 is imposed. The lengthscale of the most energetic
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eddies is calculated as

L =
(3σ2/2)3/2

ε
. (3.36)

The instantaneous plume spread is modelled as

σ2
r =

d2
r

1 + (d2
r − σ2

0)/(σ
2
0 + 2σ2TLt)

, (3.37)

where dr is the separation between two particles in the instantaneous plume

and calculated with the Richardson Law

d2
r = Crε(t+ t0)

3. (3.38)

The constant t0 = ts/C
1/3
r (where ts = (σ2

0/ε)
1/3 is the characteristic timescale

of the source) ensures that tm → ts as t → 0. The time evolution of the

mixing timescale scaled by the source timescale, as predicted by equations

(3.33)–(3.38) for homogeneous-isotropic turbulence, is shown in Figure 3.1.

We see that this parametrisation for the micromixing timescale does indeed

result in the proper time behaviour. The asymptotic values for tm are:

tm = µ(3/2)1/2ts t→ 0; Regime 1,

tm = µ(3/2)1/2C1/3
r t ts ≪ t≪ TL; Regime 2, (3.39)

tm = µ
√

2TLt t≫ TL; Regime 3,

all of which have the expected time dependence (Cassiani, Franzese and Gios-

tra, 2005a). They are represented by the dashed lines in Figure 3.1.

In non-homogeneous, non-isotropic turbulence the parametrisation of tm is

slightly modified. As in Cassiani, Franzese and Giostra (2005a), local equilib-

rium and local isotropy are assumed and the variance used in equation (3.35)

is replaced by a local mean variance

σ2 =
σ2
u + σ2

v + σ2
w

3
. (3.40)
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Figure 3.1: Evolution of the dimensionless mixing timescale in homogeneous-
isotropic turbulence. The short, dashed lines represent the asymptotic values
given by equation grouping (3.39).
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Equation (3.38) is discretised by invoking linearisation, viz.

d2
r(t+ ∆t) = d2

r(t) + 3Crε(t0 + t)2∆t, (3.41)

and enforcing the constraint σ2
r(t+ ∆t) ≥ σ2

r(t).

3.3 Description of the SPMMM Model Suite

The micromixing model used in this thesis is called SPMMM. This is an

acronym for Single Particle MicroMixing Model. In contrast to the simulta-

neous release of N particles to determine the concentration statistics, as used

by Cassiani, Franzese and Giostra (2005a), SPMMM releases a single particle at

a time. The particle samples a pre-calculated conditional mean concentration

field that is provided by a program called MEANS. This single-particle, pre-

calculation architecture of the model is permitted since the IECM model has

no spurious flux, as shown in Section 3.2. Collectively MEANS and SPMMM shall

be referred to as the SPMMM model suite. In theory, these models can provide

all moments of the scalar field. In practice, however, this is limited by the

availability of the computational resources. The use of single-particle trajec-

tories results in computational simplicity, but comes at the cost of not being

able to calculate the concentration field of reactive species, as would be the

case if simultaneous particle trajectories were used. Since we only consider

non-reactive species in this thesis, this is not a cause of concern.

While the use of simultaneous trajectories allows the incorporation of chem-

ical reaction, it is much more difficult to parallelise since the particles are in-

teractive in that at each time step the conditional mean concentration must be

calculated based on the particles that occupy a particular region of space. If the
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particles within a region are being processed by different computer processors

(which is very likely), then there will be a large computational communication

overhead since at each time step, the processors will have to pause, share par-

ticle data, then continue. In contrast, the single-particle trajectory framework

allows for trivial parallelisation and a direct increase in performance; the time

required to run SPMMM on Np computer processors is ∼ 1/Np the time required

to run SPMMM on one computer processor. The only time the processors must

communicate is when sharing the plume extent data, at the beginning of the

simulation.

Before describing the models some terminology must be introduced. For

both models, space is divided into three spatial dimensions x = (x, y, z) and

three velocity dimensions u = (u, v, w). The spatial dimensions shall at times

be referred to as the physical space or physical domain and the velocity di-

mensions shall at times be referred to at the velocity space or velocity domain.

Collectively, the six spatial and velocity dimensions shall sometimes be referred

to as the simulation domain. The user-specified extent of the physical domain

has dimensions of xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax.

These physical domain boundaries are set at the beginning of simulation.

The velocity domain boundaries: umin ≤ u ≤ umax, vmin ≤ v ≤ vmax, and

wmin ≤ w ≤ wmax, are determined by the program MEANS as will be described

below. The simulation domain is discretised into Nx streamwise bins, Ny

spanwise bins, Nz vertical bins, Nu streamwise velocity bins, Nv spanwise

velocity bins, and Nw vertical velocity bins. Upper-case subscripts (and in-

dices) will be used to denote this discretisation; (x, y, z) ⇒ (xI , yJ , zK) and

(u, v, w) ⇒ (uL, vM , wN). The source region refers to where the emissions
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originate.

Perfectly reflective boundary conditions are used on the upstream face and

at the bounding horizontal planes. That is, if X < xmin then

X = 2xmin −X,

U ′ = −U ′, (3.42)

W ′ = −W ′;

if Z < zrflt, where zrflt is the height of the reflection surface near the bottom

of the physical domain then,

Z = 2zrflt − Z,

U ′ = −U ′, (3.43)

W ′ = −W ′;

and if Z > zmax then

Z = 2zmax − Z,

U ′ = −U ′, (3.44)

W ′ = −W ′.

Periodic boundary conditions are used on the lateral faces, if Y < ymin then

Y = ymax − ymin + Y, (3.45)

and if Y > ymax then

Y = ymin − ymax + Y. (3.46)

The velocity statistics used to drive the models are in discretised form.

These velocity statistics can be obtained from discretisations of analytical
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equations, from interpolations of experimentally measured flow fields, or pro-

vided by another model. The discretisation of the velocity statistics is not

necessarily the same as the discretisation of the physical space. We therefore

let Nvel
x , Nvel

y , Nvel
z represent the number of velocity statistics bins in physical

space in the streamwise, spanwise, and vertical directions respectively.

The descriptions of the MEANS and SPMMM models below will be for the full

six-dimensional simulation domain, (x, y, z, u, v, w). For illustrative purposes,

a simplified three-dimensional domain (x, z, w) will be used. This simplified

domain will be discretised into Nx = 5, Nz = 3, and Nw = 4 bins. The source

region will be represented by an arrow.

3.3.1 The MEANS Pre-calculation Program

MEANS is an implementation of equations described in Section 3.1. The

purpose of MEANS is to pre-calculate the unconditional mean concentration

field 〈φ〉 and the conditional mean concentration field 〈φ|u〉 for use by SPMMM.

To maximise the spatial resolution of the model, the calculation of the mean

concentrations is carried out on a dynamic grid that encompasses the plume.

The approximate spatial extent of the plume is determined from the release

of a small sub-ensemble of particles, released from the source region, into the

domain. The fetch (i.e., xmax − xmin) is divided into Nx extraction planes

resulting in a streamwise bin width of

∆x =
xmax − xmin

Nx

. (3.47)

As the particles’ trajectories cross these extraction planes, their spanwise and

vertical positions are recorded. Once all the particles in the sub-ensemble
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have completed their trajectories, the extrema in the physical space at the Ith

extraction plane (1 ≤ I ≤ Nx) can be determined as

yImin = 〈y〉 − µrσy, (3.48)

yImax = 〈y〉 + µrσy, (3.49)

zImin = 〈z〉 − µrσz, (3.50)

zImax = 〈z〉 + µrσz, (3.51)

where µr is a scale factor that is set by the user and σy and σz are the root

mean square values (over the sub-ensemble) of particle displacements from the

the centroids 〈y〉 and 〈z〉 at sample plane I. For all simulations reported in

this thesis we set µr = 6.0.

Once the spatial extrema at each extraction plane have been determined,

the spanwise and vertical bin widths at the Ith plane are calculated as

∆yI =
yImax − yImin

Ny

, (3.52)

∆zI =
zImax − zImin

Nz

. (3.53)

A two-dimensional representation of the resulting physical grid is shown in

Figure 3.2. The extraction planes are represented by dotted lines and the

sub-domain where φ 6= 0 (i.e. the tracer concentration is non-zero) is shaded.

The extent of the velocity domain is determined from the driving velocity

statistics. For each position in the discretised physical space the mean ve-

locities and the velocity variances are known. From these the global velocity
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Figure 3.2: A two-dimensional representation showing the physical grid result-
ing from the dynamic discretisation procedure with Nx = 5 and Nz = 3. The
extraction planes are represented by dotted lines and the sub-domain where
φ 6= 0 is shaded. Note how the vertical bin width expands with the plume.
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extrema can be computed as

umin = min[〈u(xI , yJ , zK)〉 − µvσu(xI , yJ , zK)], (3.54)

umax = max[〈u(xI , yJ , zK)〉 + µvσu(xI , yJ , zK)], (3.55)

vmin = min[〈v(xI , yJ , zK)〉 − µvσv(xI , yJ , zK)], (3.56)

vmax = max[〈v(xI , yJ , zK)〉 + µvσv(xI , yJ , zK)], (3.57)

wmin = min[〈w(xI , yJ , zK)〉 − µvσw(xI , yJ , zK)], (3.58)

wmax = max[〈w(xI , yJ , zK)〉 + µvσw(xI , yJ , zK)], (3.59)

where the scale factor µv is set by the user. The global velocity bin widths are

then calculated as

∆u =
umax − umin

Nu

, (3.60)

∆v =
vmax − vmin

Nv

, (3.61)

∆w =
wmax − wmin

Nw

. (3.62)

A physical domain is created for each velocity domain, as shown in Figure 3.3.

For all simulations reported in this thesis we set µv = 6.0.

The boundaries that partition both physical and velocity space are now

known. To determine the unconditional and conditional mean concentrations,

Nφ particles are released from the source region and tracked downstream until

they leave the domain. The amount of time that a particle spends in each

physical and velocity bin is related to the concentration in that bin, and is

recorded as shown in Figure 3.4. For clarity, these residence times are only

shown for a single physical bin in each of the four velocity bins in the figure.

In actuality the residences times are being accumulated for every bin. From
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Figure 3.3: The resulting physical and velocity grids resulting from the dy-
namic discretisation procedure with Nx = 5, Nz = 3, and Nw = 4. Note that
the physical grid is the same for each velocity bin.
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Figure 3.4: The accumulation of residence times in the simulation domain. The
dashed lines represent particle trajectories. Note that for clarity the residence
times are only shown for a single physical bin in each of the four velocity bins.
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these residence times

tvr = tvr(xI , yJ , zK , uL, vM , wN), (3.63)

the conditional and unconditional mean concentration fields (for a given source

configuration and flow) can be determined. A residence time approach was cho-

sen over a flux method (where the concentration at a position is proportional

to the number of particles that cross though a rectangular bin perpendicular

to the mean streamwise flow at that location) for determining the mean con-

centrations as the intended use for the model is with highly disturbed flows

where there is the potential for significant upstream travel. A residence time

approach can capture the effects of this upstream travel on the mean fields

better than a flux approach, since in the flux approach the upstream travel

may occur between two of the extraction planes and thus never get “noticed”

by the model.

To calculate the unconditional mean concentration for each physical bin,

we need to sum over all velocity bins to compute the unconditional residence

time as

tr = tr(xI , yJ , zK) =
∑

L,M,N

tvr(xI , yJ , zK , uL, vM , wN). (3.64)

The unconditional mean concentration in physical bin (xI , yJ , zK) is then com-

puted as

〈φ〉 = 〈φ(xI , yJ , zK)〉 =
Qtr
VNφ

, (3.65)

where Q is the source strength and V = V(xI , yJ , zK) is the volume of the

physical bin. The conditional mean concentration in physical bin (xI , yJ , zK)

and velocity bin (uL, vM , wN) is computed as

〈φ|u〉 = 〈φ|u〉(xI , yJ , zK , uL, vM , wN) =
Qtvr
VN v

φ

, (3.66)
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where

N v
φ = N v

φ(xI , yJ , zK , uL, vM , wN) (3.67)

is the number of particles that visit bin (xI , yJ , zK , uL, vM , wN) during the

simulation. Due to computer memory limitations N v
φ is not tracked explicitly.

Instead it is estimated from the velocity PDF, fu = fu(v; x) as

N v
φ = Nφfu∆u∆v∆w, (3.68)

giving

〈φ|u〉 =
Qtvr

VNφfu∆u∆v∆w
. (3.69)

The result of the MEANS pre-calculation program is a file containing the con-

ditional mean concentrations to be used by SPMMM. The unconditional mean

concentrations are used solely to confirm or investigate consistency between

MEANS and SPMMM in the first-order statistics. Figure 3.5 shows the resulting

conditional mean concentrations for the small illustrative simulation domain.

The different shades of grey represent different conditional mean concentra-

tions.

The estimation of N v
φ via equation (3.69) allows MEANS and SPMMM to be run

at double the resolution they could be if N v
φ was being accumulated numeri-

cally. However there is a potential source of error involved with determining

N v
φ in this manner. In many situations, the spatial resolution of the condi-

tional concentration field may be coarser than the spatial resolution of the

driving velocity statistics. Alternatively a conditional concentration bin may

span two driving velocity statistic bins. The value of fu varies in each veloc-

ity statistic bin thus MEANS computes an average velocity PDF for each of its

conditional concentration bins. Figure 3.6 demonstrates this situation for the
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Figure 3.5: The conditional mean concentration fields that result from a
MEANS simulation. The different shades of grey represent different conditional
mean concentrations. Note that each velocity bin has a different conditional
mean concentration field. This data is used by SPMMM to allow the calculation
of the higher-order moments of the concentration field.
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case of horizontally homogeneous velocity statistics and a single, large con-

ditional concentration bin which spans three velocity statistic bins (shown in

grey). In this case, MEANS will estimate the velocity PDF in the conditional

concentration bin as 〈fu〉 = 1
3
[fu(z2) + fu(z3) + fu(z4)]. In many cases this

mean value well approximates the actual PDF. However, if the driving ve-

locity statistics are discretised into more bins than the spatial domain (i.e.

Nvel
x > Nx, N

vel
y > Ny, N

vel
z > Nz) then this approximation can lead to error,

as will be demonstrated in Section 4.3.

Figure 3.6: The approximation of the velocity PDF in the situation where
the resolution of the velocity statistics is greater than the resolution of the
conditional concentration field as determined by MEANS. In this situation the
velocity PDF in the conditional concentration bin (shown in grey) will be
estimated to be 〈fu〉 = 1

3
[fu(z2) + fu(z3) + fu(z4)].
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3.3.2 The SPMMM Micromixing Model

Once the unconditional and conditional mean concentrations have been

computed by MEANS, the next step is to use the SPMMM micromixing model to

allow mixing to occur in order to provide information on the higher-order mo-

ments of the concentration field. The first step is to compute the micromixing

timescales on the physical grid. Again a small sub-ensemble of particles are

released from the source region one at a time and tracked downstream. As

the particles pass through each bin in physical space, tm is computed accord-

ing to the equations in Section 3.2.1 and recorded. Since the particles will

all follow different trajectories, the computed value of tm for a given physical

bin may differ greatly from particle to particle. Once all the particles in the

sub-ensemble have exited the physical domain through x ≥ xmax, the mean

micromixing timescale in bin (xI , yJ , zK) is calculated for use in the next stage

of the simulation. If the micromixing timescale is larger than the turbulence

timescale, then tm is reset to tt. Furthermore, in regions outside the plume,

mixing still occurs and does so at a rate governed by the turbulence timescale,

hence for these regions tm = tt. For the remainder of the SPMMM simulation, the

timestep as shown in equation (3.19) is modified to include the micromixing

timescale

∆t = µt min[TLu
, TLv

, TLw
, tm]. (3.70)

During the micromixing stage of the SPMMM model suite, N particles are

uniformly released, one at a time, anywhere on the upstream face of the simu-

lation domain . If the particle originates outside of the source region it is given

an initial concentration of φ0 = 0, as shown in the left panel of Figure 3.7.

Otherwise it is given an initial concentration of φ0 = φsrc, where φsrc is the
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source concentration which varies according to the source configuration and

type. This is shown in the right panel of Figure 3.7 where φsrc = 1.7. The

source configuration in SPMMM can be either a circular point or a cross-wind line.

The initial distribution of particles about this source is Gaussian or tophat.

The source concentration profiles for the Gaussian sources are,

φsrc =
Q

2πσ2
0U

exp

(−r2

2σ2
0

)

Gaussian point source, (3.71)

φsrc =
Q√

2πσ0U
exp

(−r2

2σ2
0

)

Gaussian line source. (3.72)

For tophat sources they are,

φsrc =
4Q

πd2
sU

tophat point source, (3.73)

φsrc =
Q

dsU
tophat line source. (3.74)

The initial source distribution is σ0 = µsds, where ds is the physical diameter

of the source and µs is the source constant, a tunable parameter (σ0 = ds

for tophat sources). For point sources, the distance from the particle position

to the source centre in the yz-plane is r2 = (y − ys)
2 + (z − zs)

2. For cross-

wind line sources, the distance from the particle position to the line source

is r2 = (z − zs)
2. For Gaussian sources, a particle is considered to be in the

source region if it is initialised within five initial source distributions of the

source centre, r ≤ 5σ0. For tophat sources, a particle is considered to a source

particle if it falls within the area occupied by the source.

As the particle travels downstream, its concentration is compared to the

conditional mean concentration of the physical bin and velocity bin that the

particle occupies and the micromixing timescale for the physical bin is re-

trieved. Mixing then occurs according to equation (3.21). Under the assump-
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tion that 〈φ|u〉 is approximately constant (it is in fact very slowly varying for

sufficiently small timestep ∆t) equation (3.21) can be solved to give

φ(t+ ∆t) = φ(t) exp(−∆t/tm) + 〈φ|u〉(1 − exp(−∆t/tm)), (3.75)

which is the equation used by SPMMM to update the particle’s concentration.

Equation (3.75) always results in the concentration of the particle mixing

towards the conditional mean concentration. This is illustrated in both panels

of Figure 3.7. In the left panel φ0 = 0.0 and 〈φ|w〉 = 0.9. After mixing,

φ1 = 0.5, having mixed towards 〈φ|w〉 = 0.9. In the right panel φ0 = 1.7

and 〈φ|w〉 = 1.1. After mixing, φ1 = 1.3, again having mixed towards the

conditional mean concentration of 〈φ|w〉 = 1.1.

Figure 3.7: The two possible initial particle positions for SPMMM. The panel
on the left shows a particle initialised outside the source region and thus given
an initial concentration of φ0 = 0. The panel on the right shows a particle
initialised in the source region and thus given an initial concentration of φ0 =
φsrc, set here to be 1.7. Note that mixing via equation (3.75) results in φ
moving towards 〈φ|w〉.

As a particle travels downstream, it passes through user-specified extrac-

tion planes and its position and concentration are saved to file for future pro-

cessing. The extraction planes need not be uniformly spaced and they are

not necessarily the same extraction planes used to determine the extent of the
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plume in MEANS. From this output data, another grid can be imposed and

the higher order moments of the concentration field calculated, as shown in

Figure 3.8. This processing grid is frequently the same size as the grid used in

MEANS to determine the mean concentrations. However it need not be, in the

event of a low particle number simulation for example.

The decision to process the raw data outside of the SPMMM program was

made to allow the user to decide which statistics to view after the simulation

was completed. To decide beforehand would limit the order of the statistic

to view as the ability to calculate the statistic would have to be coded into

the program. If, for whatever reason, the user wished to view the seventeenth

moment of the concentration field after the simulation had finished the option

still exists if the data is processed outside of the program. The Interactive Data

Language (IDL) by ITT Visual Information Solutions was used to process

the data. Given the stochastic nature of the models described above the

data contains statistical noise. A Savitzky-Golay smoothing filter was used to

remove this noise while maintaining the signal. An example of the statistical

noise and the smoothing filter is presented in Chapter 4 (see Figure 4.10).

3.4 Model Evaluation Methodology

Model evaluation is best performed both qualitatively and quantitatively.

The qualitative assessment will be carried out through comparison of the model

predictions with the experimental observations. These comparisons will be in

the form of plots of various profiles showing the observed and predicted values.

The quantitative assessment will utilise the statistical, bias, and discretisation

errors as defined in Xu and Pope (1999), and some of the performance measures
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Figure 3.8: Data extraction and the determination of concentration statistics
for SPMMM. The panel on the left shows an extraction plane (dotted line) and
three particle trajectories (propagated individually, not simultaneously). As
a particle crosses through the plane its position and concentration is saved to
file. From this data, concentration statistics can be determined, as shown in
the right panel for the mean concentration and concentration variance.

outlined in Hanna (1989), Hanna et al. (1993) and Chang and Hanna (2004).

In the following discussion, Qo shall represent an observed quantity, which in

our case is a wind-tunnel, water-channel, or atmospheric measurement, and Qp

shall represent a quantity predicted by the model. The model predictions are

functions of the number of particles used in the simulations (N), the spatial

discretisation of the simulation domain (M = Nx×Ny×Nz), and the timestep

(∆t). Since the simulations in this thesis were run at the smallest practical

timestep, we do not consider the contribution of the timestep to the error.

The error between a predicted quantity and an observed quantity is defined

as the difference between them. It is composed of a physical error, which is

a result of the models not representing the physical processes exactly, and a

numerical error:

ǫQ ≡ QN,M
p −Qo = ǫp + ǫn, (3.76)

where ǫp and ǫn are the physical and numerical errors respectively. The nu-

merical error can be further decomposed into statistical error (ΣQ) and de-
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terministic error (DQ), which is the combination of the bias error (BQ) and

discretisation error (SQ),

ǫn = ΣQ +DQ = ΣQ +BQ + SQ. (3.77)

The statistical error results from utilising a finite number of particles in

the simulations. It can be identified as

ΣQ = QN,M
p − 〈QN,M

p 〉
E
, (3.78)

where 〈 〉
E

denotes the ensemble average. It is expected to scale as

ΣQ ∝ N−1/2, (3.79)

(Xu and Pope, 1999). The bias error is a deterministic error that results from

statistical error and is identified as

BQ = 〈QN,M
p 〉

E
−Q∞,M

p , (3.80)

where Q∞,M
p = lim

N→∞
QN,M
p . The bias is expected to scale as

BQ ∝ N−1, (3.81)

(Xu and Pope, 1999). Terms such as the deterministic coefficient in equation

(3.1) and the conditional mean concentration in equation (3.21) involve ve-

locity fluctuations or the velocity. If these quantities where computed by the

model then they would have an associated statistical error (due to the use

of a finite number of particles to calculate them) that would feedback into

the model and induce bias (Xu and Pope, 1999). In the SPMMM micromix-

ing model, the velocity statistics are externally supplied and the conditional

concentrations are pre-calculated by MEANS. Therefore, even though the con-

ditional concentrations probably have a bias error associated with them (due
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to their determination from a finite number of particles) no further bias error

should be introduced into the SPMMM micromixing model as the conditional

concentrations are not re-computed at each timestep in SPMMM. We expect

SPMMM to therefore have minimal bias error (only that which is contained in

the conditional mean concentration field). The discretisation error is identified

as

SQ = Q∞,M
p −Qo, (3.82)

and is expected to decrease with an increasing spatial resolution (i.e., more

bins). The use of more bins requires the use of more particles to maintain

the number of particles per bin to keep the magnitude of the statistical er-

ror constant. Increasing the spatial resolution therefore greatly increases the

computational costs.

We now introduce the performance measures used in this thesis. The first

performance measure to consider is the fractional bias,

FB =
(Qo −Qp)

0.5(Qo + Qp)
, (3.83)

where the over-bar indicates an arithmetic mean of all (or some subset of) the

available observations or predictions. The FB is a measure of the systematic

bias of the model, the difference between the observed and predicted quantities

Qo − Qp. As such, if the model both under-predicts and over-predicts the

results, it is possible for FB = 0.0 due to the cancellation of errors. To this end

we can decompose the fractional bias into two parts, one part which considers

over-predicted results, or false positives,

FBfp =
0.5[|Qo −Qp| + (Qp −Qo)]

0.5(Qo + Qp)
; (3.84)
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and another part which considers under-predicted results, or false negatives,

FBfn =
0.5[|Qo −Qp| + (Qo −Qp)]

0.5(Qo + Qp)
. (3.85)

The original fractional bias is recovered through FB = FBfn − FBfp.

To better understand the FB, rearrange equation (3.83) to give

Qp

Qo

=
1 − 1

2
FB

1 + 1
2
FB

. (3.86)

From this equation, we can infer that FB should be zero for a perfect model as

then the ratio of the mean predicted quantity and the mean observed quantity

would be unity, implying that they are identical. If FB = 2/3 then Qp/Qo =

1/2 implying a factor of two under-prediction and if FB = −2/3 then Qp/Qo =

2 implying a factor of two over-prediction. Chang and Hanna (2004) suggest

−0.3 < FB < 0.3 as an acceptable range for the FB.

The normalised mean square error is defined by

NMSE =
(Qo −Qp)2

QoQp

. (3.87)

It is a measure of the mean relative scatter of the model results. A perfect

model would have no scatter and thus have NMSE = 0. For the sake of

understanding let NMSE = 1, implying that (Qo −Qp)2 = QoQp. Now assume

that the observed data and predicted results are uncorrelated (this of course

means that the model is very poor at predicting the observed results) allowing

QoQp = QoQp. If we further assume that Qp = Qo then we have (Qo −Qp)2 =

Qo
2
. That is, the root-mean-square error is equal to the mean. As the NMSE

gets larger, so too does the scatter in the predicted results. Chang and Hanna

(2004) suggest an acceptable value of NMSE < 4. Note that since the error in

equation (3.87) is squared the NMSE is susceptible to outliers.
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The fraction of data within a factor of 2 of the observations is determined

by

FAC2 = fraction of data that satisfy: 0.5 ≤ Qp

Qo

≤ 2.0. (3.88)

It is a robust performance measure as it is not susceptible to outliers in the

data. A perfect model would have FAC2 = 1, that is one hundred percent

of all data would be within a factor of two of the observations. Chang and

Hanna (2004) suggest FAC2 > 0.5 for an acceptable model.

The last performance measure to be used is the normalised absolute error,

NAE =
|Qo −Qp|

0.5(Qo + Qp)
= FBfp + FBfn. (3.89)

Like the FAC2 it is not susceptible to outliers. A perfect model would have

NAE = 0. No value for the NAE for an acceptable model could be found in the

literature. As with all error though we seek to minimise the NAE. Table 3.2

summarises the values of the four main statistical evaluations used in this work

for a perfect model and for an acceptable model.

Performance Measure Perfect Model Acceptable Model

FB 0 −0.3 - 0.3
NMSE 0 < 4
FAC2 1 > 0.5
NAE 0 minimised

Table 3.2: Values of the performance measures for a perfect model and an
acceptable model.

The acceptable values of the FB, NMSE, and FAC2 reported by Chang

and Hanna (2004) were determined by evaluating the performance measures

reported in many field experiments and model simulations, and determining

which of these experiments and simulations had “good” results (quotation
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marks are also in their paper). While “good” is a very subjective term, the

simulation results of MEANS and SPMMM presented in the next three chapters sup-

port the acceptable values listed in Table 3.2 put forth by Chang and Hanna

(2004) in that the profiles and transects of various quantities (e.g., mean con-

centration, concentration variance, etc.) for simulations which produced per-

formance measures in the acceptable ranges looked qualitatively similar to the

observed profiles and transects.
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Chapter 4

Dispersion in a Neutral Wall Shear Layer Flow

4.1 Experimental and Computational Setup

To evaluate the SPMMM model suite we simulated the concentration fluctua-

tions due to a continuous point source emitting into a neutral wall shear layer

flow, which is arguably the simplest regime of atmospheric turbulence. In par-

ticular, in the constant stress layer well-known analytic profiles of the key ob-

servables (mean wind speed, shear stress, TKE and its dissipation rate) satisfy

appropriately simplified governing equations. The Fackrell and Robins (1982;

FR82) experiments were designed to investigate the effects of the source size

on the concentration fluctuations. They were carried out in the Marchwood

Engineering Laboratories’ open-circuit wind-tunnel, measuring 24 × 9.1 × 2.7

metres. A neutral wall shear layer, corresponding to a natural atmospheric

boundary layer, was grown within the wind-tunnel. The boundary layer depth

was δ = 1.2 m, the mean streamwise velocity at the top of the boundary layer

(the free-stream velocity) was 〈u〉δ = 4.0 m s−1, resulting in a Reynolds num-

ber of Reδ ≈ 320 000 (based on δ and 〈u〉δ). The friction velocity was reported

as u∗ = 0.188 m s−1, the roughness length as z0 = 2.88 × 10−4 m.
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A neutrally buoyant mixture of propane and helium was released isoki-

netically from horizontally-oriented ground-level and elevated point sources.

The ground-level sources had diameters of 3, 9, and 15 mm, while the ele-

vated sources had diameters of: 3, 8.5, 9, 15, 25 and 35 mm. The height of

the elevated source was zs = 0.19δ = 0.228 m. Propane concentration mea-

surements were extracted at several downstream locations with a modified

flame-ionisation detection system described in Fackrell (1980). These data

were used to evaluate the SPMMM model suite.

The measured velocity statistics and the TKE dissipation rate for the flow

are shown as symbols in Figure 4.1. The solid lines are the profiles used

to drive the SPMMM model suite. For the mean streamwise velocity and the

TKE dissipation rate, the solid lines represent equations (2.39) and (2.42)

respectively. These show that the assumptions made in deriving these two

equations are valid. For the velocity variances and the covariance, the solid

lines represent the best fit to the measured data. Since the fetch available

for measurements within the wind-tunnel was relatively short there was no

significant streamwise evolution of the velocity statistics where the data were

extracted. The flow was therefore assumed to be fully-developed, as well as

being horizontally-homogeneous and stationary.

4.2 Parameter Calibration of MEANS

Since the SPMMM micromixing model and the MEANS pre-calculation model

must agree at the level of first-order statistics, we can use MEANS for the initial

calibration of the model suite. The tunable parameters in MEANS are: the

Kolmogorov constant, the timestep, and the initial source distribution. In
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Figure 4.1: Dimensionless velocity statistics and TKE dissipation rate for the
FR82 neutral wall shear layer flow. The symbols are extracted from Figure 1
of Fackrell and Robins (1982). The lines are the fitted profiles used to drive
the MEANS and SPMMM models. In the case of the mean streamwise velocity
and the TKE dissipation rate, the solid lines represent equations (2.39) and
(2.42) respectively. For the stresses, the solid lines represent the best fit to the
experimental data.
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the simulations used in the calibration of the model, the spatial resolution

was set higher than a typical simulation to minimise as much as possible

the discretisation error caused by the spatial resolution. This was possible

because the conditional mean concentrations were not needed and thus velocity

space was treated as a single large bin (Nu = Nv = Nw = 1), which freed

computational resources for physical space discretisation. The numbers of

bins in the streamwise, spanwise, and vertical directions were 100, 60, and

60 respectively. The particle number in the simulations was Nφ = 2 × 107.

One hundred vertical bins (Nvel
z = 100) were used to discretise the velocity

statistics. The elevated point source had a diameter of ds = 8.5 mm and the

initial source distribution was set to σ0 = 0.5ds, with the exception of the

initial source distribution tuning simulations, where σ0 varied.

Of all of the free parameters in the model, the Kolmogorov constant ar-

guably has the greatest influence on the model since it appears in both the

stochastic term (equation (3.5)) and the deterministic drift term (equation

(3.12)) of the LS model. We therefore begin by tuning it. Several runs of

the MEANS pre-calculation program were carried out with differing values of

C0. The results from three of these simulations can be seen in Figure 4.2.

This figure shows the vertical profiles of the normalised mean concentration

on the plume centreline at five downstream positions. The symbols represent

the FR82 wind-tunnel measurements and the lines are the MEANS results. Note

that at each position the data has been normalised by maximum mean con-

centration at that position, hence in each panel the data ranges from zero to

one. The advection timescale is calculated as τa = x/(〈u〉(zs)). The ratio

τa(zs)/TL(zs) (displayed as τa/TL on the figure) is an estimation of how many
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Lagrangian integral timescales have passed since a particle’s release. Values

less than one suggest that the particle remembers the conditions of its release.

Of the three simulations shown in Figure 4.2, the results from the C0 = 6.0

Figure 4.2: Vertical profiles of the normalised mean concentration on the plume
centreline for an elevated point source at five downstream locations in the FR82
flow. The open circles are from the FR82 wind-tunnel experiments. The lines
are simulation results from MEANS with differing values of the Kolmogorov
constant. The source diameter was 8.5 mm and the source height was 0.19δ.

simulations fit the FR82 the best, particularly near ground-level.

By comparing the vertical profiles of the normalised mean concentration

from MEANS with those from the FR82 experiments, the various performance

measures can be calculated. Figure 4.3 shows the behaviour of four perfor-

mance measures (FAC2, FB, NMSE, NAE), based upon the 37 FR82 data

points in Figure 4.2, in response to altering the Kolmogorov constant. To re-
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Figure 4.3: Behaviour of the performance measures for MEANS simulations of
dispersion from an 8.5 mm elevated point source in the FR82 flow in response to
altering the Kolmogorov constant. The performance measures were calculated
by comparing the profile of normalised mean concentration from MEANS with
those from the FR82 experiments.
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duce clutter on the plots (both below and for the remainder of the thesis),

only the FB is shown. In situations where FB ≈ 0, the values of FBfp and

FBfn will be reported. The FB is near its optimal value of zero for C0 = 4.5

– 5.0. However, this is due to cancellation of FBfp and FBfn. For example,

for C0 = 5.0, FBfp = 0.0530 and FBfn = 0.0531. The NMSE and the NAE

are optimised for C0 ≈ 6.0 and FAC2 is closest to its optimal value of one for

C0 = 4.0 – 5.0. The FAC2 value at C0 = 6.0 is 0.892 compared with 0.946 at

C0 = 4.5. This difference arises from the top two data points in the fifth panel

of Figure 4.2. Given that the C0 = 6.0 simulations produced the best fit to

the FR82 data (particularly near ground-level) and the performance measures

are optimised (or near to it) at this value of C0, the Kolmogorov constant will

be set to this value for the remainder of the simulations of the FR82 flow, and

for most of the other simulations in later chapters.

The effects of altering the timestep were investigated by running several

MEANS simulations with various timesteps, achieved by altering the timestep

constant. Figure 4.4 shows the vertical profiles of normalised mean concentra-

tion for three timesteps, with timestep constants of: µt = 0.02, µt = 0.10, and

µt = 0.20. There is little difference amongst the profiles in the left two panels

(nearer to the source) before there has been significant contact between the

plume and the ground. In the right three panels, the ground-level performance

of the simulations with smaller timesteps is seen to be better, suggesting that

smaller timesteps improve the performance of the reflection algorithm. In the

last panel on the right, the performance of the simulation with µt = 0.02 shows

the best performance over all heights.

Figure 4.5 shows the performance measures from the timestep tuning sim-
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Figure 4.4: Vertical profiles of the normalised mean concentration on the plume
centreline for an elevated point source at five downstream locations in the FR82
flow. The open circles are from the FR82 wind-tunnel experiments. The lines
are simulation results from MEANS with differing values of the timestep. The
source diameter was 8.5 mm and the source height was 0.19δ.
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ulations. The performance of MEANS can be seen to improve with decreasing

timestep. The FB, NMSE, and NAE steadily decrease while the FAC2 re-

mains approximately constant. Despite the fact that better performance is

Figure 4.5: Behaviour of the performance measures for MEANS simulations of
dispersion from an 8.5 mm elevated point source in the FR82 flow in response to
altering the timestep. Recall that ∆t = µt min(TLu

, TLv
, TLw

) in the MEANS pre-
calculation program.

realised with a smaller timestep there are also practical considerations; smaller

timesteps lead to longer simulations. We therefore set µt = 0.02 to provide

accurate results with reasonable run times. With this timestep, a 107 particle

MEANS simulation of the FR82 elevated source experiments takes approximately

two hours on a 3.0 GHz Pentium 4 processor.

Figure 4.6 shows that the vertical profiles of the normalised mean concen-
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tration produced by MEANS are not sensitive to the initial source distribution,

at least at these five downstream locations. Cassiani, Franzese and Giostra

(2005a) also noted that the source size “does not significantly influence the

mean field”. However, it is expected that the initial source distribution would

have a great effect on the concentration fluctuations, particularly near the

source, where meandering of the instantaneous plume is principally responsi-

ble for giving rise to concentration fluctuations. MEANS however cannot predict

concentration fluctuations and thus the tuning of initial source distribution

must be performed using SPMMM.

4.3 Model Consistency

There are two types of consistency expected from the SPMMM micromixing

model. First, the velocity statistics of the N particles should reproduce the

driving velocity statistics. Second, there should be a consistency between

the first-order concentration statistics produced by MEANS and the first-order

concentration statistics produced by SPMMM. For these consistency simulations

the Kolmogorov constant was set to C0 = 6.0, the initial source distribution

was σ0 = 0.5ds, and the timestep constant was µt = 0.02. Since the IECM

model does not suffer from a spurious flux (as displayed by equation (3.29)), the

micromixing timescale parameters should not affect the first-order consistency

between MEANS and SPMMM. For these simulations we set the micromixing

model’s free parameters to Cr = 0.30, the value used by Borgas and Sawford

(1994) and Cassiani, Franzese and Giostra (2005a), and µ = 0.70. However, as

stated above, the micromixing model should not affect first-order concentration

statistics, so these are arbitrary values. In order to preserve the computational
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Figure 4.6: Vertical profiles of the normalised mean concentration on the plume
centreline for an elevated point source at five downstream locations in the FR82
flow. The open circles are from the FR82 wind-tunnel experiments. The lines
are simulation results from MEANS with differing values of the initial source
distribution (σ0). The source diameter was 8.5 mm and the source height was
0.19δ.
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resources for the velocity space resolution, the physical space resolution was

reduced to Nx = 40, Ny = 40 and Nz = 40. The driving velocity statistics had

the same vertical resolution Nvel
z = 40. No velocity component was favoured,

thus Nu = Nv = Nw. Six simulations with 53, 103, 153, 203, 253, and 303

velocity bins were carried out.

To produce equivalent statistics, the number of particles used in SPMMM must

be greater than the number used in MEANS. This is because in MEANS the par-

ticles all originate in the source region whereas in SPMMM the particles originate

anywhere on the upstream face of the simulation domain. Thus, the probabil-

ity of a particle passing through a specific region of the plume in SPMMM is much

lower than the corresponding probability for MEANS. The magnitude of this

effect is much larger near the source, where the plume dimensions are much

smaller. To this end, 2× 107 particles were used in the MEANS simulations and

10 ensembles of 107 particles were used for the SPMMM simulations.

The consistency of SPMMM with the velocity statistics was checked at two lo-

cations: a point away from the reflection boundary, (x, y, z) = (0.6,−0.5, 0.3);

and a point near the reflection boundary, (x, y, z) = (5.0, 0.0, 0.05). This point

was chosen to evaluate the effect of the reflection algorithm on the consistency

of the model. Table 4.1 displays the results. At both locations SPMMM repro-

duced very well the driving velocity statistics, as required.

As discussed in Section 3.2, the IECM model does not suffer from a spuri-

ous flux and thus does not alter first-order concentration statistics. Therefore,

the mean concentration profiles from MEANS and SPMMM should (in theory) be

identical. In practice, the agreement of the first-order statistics will depend on

the resolution of the model. Recall from Chapter 3 the relationship between
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Statistic Input Value SPMMM Value Input Value SPMMM Value

〈u〉 3.29 3.30 2.18 2.19
〈v〉 0.00 0.0002 0.00 0.0002
〈w〉 0.00 0.0045 0.00 -0.001
σ2
u 0.1042 0.1052 0.191 0.194
σ2
v 0.0619 0.0624 0.0955 0.0961
σ2
w 0.0460 0.0465 0.0534 0.0540

〈u′w′〉 0.0289 0.0281 0.0345 0.0343

(x, y, z) = (0.6,−0.5, 0.3) (x, y, z) = (5.0, 0.0, 0.005)

Table 4.1: Comparison of the input driving velocity statistics with the velocity
statistics produced by SPMMM at two locations, one far away from the reflec-
tion boundary (columns 2 and 3) and one just above the reflection boundary
(columns 4 and 5).

the unconditional and conditional mean concentrations

〈φ〉 =

∫

v

〈φ|v〉fu dv. (3.22)

The velocity space in SPMMM is discretised into Nu×Nv×Nw bins. As a parti-

cle propagates downstream in the simulation domain it samples the discretised

conditional mean concentration field, rather than the continuous space condi-

tional mean concentration field as shown in the above equation. This results

in numerical error, an investigation of which is the main focus of this section.

Figure 4.7 shows the vertical profiles of the mean concentration on the

plume centreline at five downstream locations for the 103 and 303 velocity bin

simulations, as produced by MEANS and SPMMM. Note that the data have not

been normalised. The consistency between the two models is clearly better for

the 303 velocity bin simulation than for the 103 velocity bin simulation. The

discrepancy between MEANS and SPMMM in the left-most panel of both plots is

due to the number of particles used in the SPMMM simulations, and thus to the
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(a) 103 velocity bins

(b) 303 velocity bins

Figure 4.7: Vertical profiles of the mean concentration on the plume centreline
for an elevated point source at five downstream positions in the FR82 flow
produced by MEANS and SPMMM for the 103 and 303 velocity bin simulations. The
source diameter was 8.5 mm and the source height was 0.19δ. The consistency
between MEANS and SPMMM increases with the number of velocity bins used in
the simulations.
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number of particles that originate in the source region. When fewer particles

are used this discrepancy is worse.

Figure 4.8 shows four performance measures for six MEANS and SPMMM con-

sistency check simulations. The performance measures were calculated from

the data in Figure 4.7 and the equivalent data from other simulations. In

order to show the variation of the performance measures for larger numbers

of velocity bins, the performance measures for the 53 velocity bin simulations

were left off of the figure as they were orders of magnitude different than the

values from the other simulations. They were: FB = −1.68, NMSE = 29.31,

FAC2 = 0.00535, and NAE = 1.69. When there are fewer than 153 velocity

bins the first-order consistency between MEANS and SPMMM worsens. At 203 the

four performance measures level off and hold approximately the same values

for larger numbers of velocity bins. This is because at approximately 203 ve-

locity bins the numerical integral of the velocity PDF is unity (to within the

numerical precision of the computer),

Nu∑

L=1

Nv∑

M=1

Nw∑

N=1

fu(xI , yJ , zK , uL, vM , wN)∆u∆v∆w = fu(xI , yJ , zK) = 1. (4.1)

Therefore the normalisation constants for the conditional residence times (N v
φ)

computed by equation (3.67) are accurate. This is fortunate as it allows

SPMMM to be run at a reasonably low velocity space resolution thereby al-

lowing a greater spatial resolution. However, a more distorted velocity field

(e.g., canopy flow) may require higher velocity space resolution. For the re-

mainder of the FR82 simulations 203 velocity bins are utilised. We found that

up to five percent error in equation (4.1) (i.e., 0.95–1.05) had little effect on

the results of the models.

Recall in Section 3.3.1 it was mentioned that the process of estimating the
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Figure 4.8: Behaviour of the performance measures for the MEANS and
SPMMM first-order consistency check simulations in response to the velocity
space resolution. The simulations were for an 8.5 mm elevated point source in
the FR82 flow. The performance measures were calculated from the data in
Figure 4.7 and the equivalent data from other simulations.
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value of the velocity PDF in a situation where the resolution of the driving

velocity statistics is greater than the resolution of the conditional concentra-

tion bin field (see Figure 3.6) can lead to error. Figure 4.9 demonstrates this

error for the case where Nz = 40 and Nvel
z = 100. Away from ground-level,

Figure 4.9: Vertical profiles of the mean concentration on the plume centreline
for an elevated point source at five downstream locations in the FR82 flow. The
source diameter was 8.5 mm and the source height was 0.19δ. This figure shows
the inconsistency between MEANS and SPMMM that arises as a result of a poor
estimation of the velocity PDF in bins near ground-level, where the driving
velocity statistics vary rapidly in the vertical direction. This inconsistency
arises due to the poor estimation of fu, and thus N v

φ , when Nvel
z > Nz.

where the velocity statistics vary relatively slowly, there are no major incon-

sistencies between MEANS and SPMMM. In contrast, near ground-level, there are

major inconsistencies between MEANS and SPMMM, as a result of a poor esti-

mation of fu in these lower bins. A poor estimation of fu in turn results in
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a poor estimation of the conditional residence time normalising constant, N v
φ

(see equation (3.68)). The inconsistency is worse at the farther downstream

locations for two reasons. First, as the plume grows, so too does the size of the

individual conditional mean concentration bins and they thus span more veloc-

ity statistic bins resulting in a poorer estimate of fu. Second, once a particle

enters the ground-level region its concentration will mix toward an improperly

normalised conditional concentration. Since, in Figure 4.9, the SPMMM profiles

show greater mean concentrations near ground-level than the MEANS profiles

we can conclude that the conditional mean concentrations were too high, and

thus the normalising constants were too low. If the particle eventually travels

upwards it will take this excess concentration (and inconsistency) up with it.

Fortunately, this error is easy to avoid by ensuring that Nvel
z ≤ Nz.

4.4 Comparison to FR82 Experimental Data

Having identified optimal values of the free parameters for both MEANS and

SPMMM, and having shown that they are consistent with one another, we now

compare the results of the SPMMM micromixing model with the FR82 exper-

imental data. For all simulations in this section, the Kolmogorov constant

was set to C0 = 6.0 and the timestep constant was µt = 0.02. To determine

the conditional mean concentration field, MEANS used Nφ = 2 × 107 parti-

cles. Ten ensembles of two million particles (N = 10 × (2 × 106)) were used

in SPMMM simulations. Physical space was discretised into forty bins in each

of the three spatial dimensions (Nx = Ny = Nz = 40). The driving velocity

statistics were discretised into forty bins as well (Nvel
z = 40). Velocity space

was discretised into twenty bins in each direction (Nu = Nv = Nw = 20).
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Given the stochastic nature of the models, the resulting profiles sometimes

contain statistical noise. This noise was removed with a fourth-order Savitzky-

Golay smoothing filter. This filter was chosen as it minimises the bias intro-

duced by the filter, preserves higher moments within the data, and in general,

preserves heights and widths of the profiles being smoothed. Figure 4.10 dis-

plays a vertical profile of concentration variance, calculated with the raw data

from a 107 particle SPMMM simulation, and the corresponding profile calculated

with the same data smoothed with the Savitzky-Golay filter. Also shown is a

profile of vertical concentration variance calculated with the raw data from a

108 particle SPMMM simulation. By comparing the smoothed 107 particle profile

Figure 4.10: This figure shows the vertical profiles of concentration vari-
ance from two SPMMM simulations (raw data), and the corresponding profile
smoothed with a fourth-order Savitzky-Golay filter.
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with the raw 108 particle profile, it can be seen that the Savitzky-Golay filter

is effective at reducing the noise in a signal while retaining the general shape

and amplitude of the signal.

4.4.1 Dispersion from an Elevated Point Source

We begin the comparison of SPMMM with the FR82 experimental data by

comparing concentration statistics from simulations of dispersion from an

8.5 mm elevated point source at a height of 0.19δ. The vertical profiles of

the normalised mean concentration for an elevated point source at five down-

stream locations are shown in Figure 4.11. Also shown are the corresponding

profiles from MEANS. Good agreement is seen overall between the predictions

from the two models and the FR82 observations, at all downstream locations.

By increasing the Kolmogorov constant this far-field ground-level fit can be

improved, but at the cost of a poorer fit overall (see Figure 4.3). Since the

data at each location has been scaled by the maximum mean concentration at

the location, it can only be used to evaluate the shape of the profiles and not

the magnitude of the mean concentration.

To examine the magnitude of the mean concentration, Fackrell and Robins

(1982) provided the streamwise transect of the dimensionless maximum mean

concentration, as displayed in Figure 4.12. The maximum mean concentration

was made dimensionless by multiplying by the mean streamwise velocity at

source height (〈u〉s) and the boundary layer depth squared, then dividing

by the source strength. Good agreement between the FR82 results and the

SPMMM simulations can be seen in the figure. Furthermore, we see that SPMMM is

consistent with MEANS, as it should be since max(〈φ〉) is a first-order statistic.
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Figure 4.11: Vertical profiles of the normalised mean concentration on the
plume centreline for an elevated point source at five downstream locations in
the FR82 flow. The open circles are from the FR82 wind-tunnel experiments.
The lines are simulation results from MEANS and SPMMM. The source diameter
was 8.5 mm and the source height was 0.19δ.
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Figure 4.12: The streamwise transect of the dimensionless maximum mean
concentration for an elevated point source in the FR82 flow. The open circles
are from the FR82 wind-tunnel experiments. The lines are simulation results
from MEANS and SPMMM. The source diameter was 8.5 mm and the source height
was 0.19δ.
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Figure 4.13 shows the plume halfwidths in the spanwise direction (δy) and

the vertical direction (δz). Fackrell and Robins (1982) defined the plume

halfwidth as the distance between the location of the maximum mean concen-

tration and the location where the mean concentration is one-half its maximum

value. The data were made dimensionless by scaling with the boundary layer

depth. Fackrell and Robins (1982) observed that the transition of the plume

Figure 4.13: The streamwise transects of the spanwise halfwidth (δy) and the
vertical halfwidth (δz) for an elevated point source in the FR82 flow as simu-
lated by MEANS and SPMMM. The halfwidths have been scaled by the boundary
layer depth (δ). The open symbols are from the FR82 wind-tunnel experi-
ments. The lines are simulation results from MEANS and SPMMM. The source
diameter was 8.5 mm and the source height was 0.19δ.

from an elevated form (i.e., max(〈φ〉) above ground-level) to a ground-level

form (i.e., max(〈φ〉) at ground-level) “actually develops in a rather complex
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manner”. Although not shown, the SPMMM simulations displayed this complex

behaviour as well. Consequently, FR82 fitted the vertical profiles of mean

concentration with a reflected Gaussian profile of the form

φ(z) ∼ exp

(

−0.693
(z + zs)

2

δ2
z

)

+ exp

(

−0.693
(z − zs)

2

δ2
z

)

, (4.2)

where the vertical plume halfwidth was left as a fitting parameter, resulting

in “a straightforward growth of the vertical spread with distance”. The same

process was carried out with the SPMMM simulation results, and therefore the

vertical halfwidth data and simulation results in Figure 4.13 represent the best

fit to equation (4.2). The spanwise halfwidth profiles were computed according

to the FR82 definition mentioned above, near the beginning of this paragraph.

Good agreement between SPMMM, MEANS, and the FR82 data is realised for

the both the spanwise and vertical halfwidths. Since the halfwidths are related

to the mean concentration, we once again expect MEANS and SPMMM to produce

consistent results, as they did. For x/δ . 2.0 the simulated plume grew

more slowly than the experimental plume in the spanwise direction. Lower

values of the Kolmogorov constant resulted in a better fit to the FR82 data in

the near field at the cost of a poorer fit in the far field. After x/δ & 2.0 the

agreement between the experimental and simulated spanwise plume halfwidths

is excellent. There is good agreement between the simulated transect of the

vertical plume halfwidth and the FR82 experimental observations. We note

that equation (4.2) is sensitive to the value of δz, and that small changes in its

value resulted in a better or worse fit to the experimental transect. However,

the fit was always qualitatively acceptable.

To check that SPMMM does not affect the first-order concentration statistics,

three simulations with varying values of the IECM model’s two free parameters
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(µ and Cr) were performed. Figure 4.14 shows vertical profiles of mean con-

centration at five downstream positions for the three simulations. The shaded

region in the figure represents plus or minus one standard error. As all the

curves lie within a standard error of each other it is evident that the IECM

model does not affect the first-order statistics.

Figure 4.14: Vertical profiles of the normalised mean concentration on the
plume centreline for an elevated point source at five downstream locations in
the FR82 flow. The shaded region represents plus or minus one standard error.
The source diameter was 8.5 mm and the source height was 0.19δ. Differing
values of IECM model’s two free parameters have been used in each simulation
to illustrate that the IECM model does not affect first-order statistics.

Having shown that SPMMM can accurately simulate the first-order concen-

tration statistics from the FR82 experiments, we now move on to evaluate

its performance in simulating the second-order concentration statistics. To
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determine the optimal values of µ and Cr we compared the SPMMM simulation

results with the streamwise transect of the concentration fluctuation intensity,

defined by FR82 as max(σφ)/max(〈φ〉), where σφ = σφ(x, y, z) is the stan-

dard deviation of the concentration. FR82 provided profiles for 3 mm, 9 mm,

15 mm, 25 mm, and 35 mm elevated sources and for 3, 9 and 15 mm ground-

level sources. To calibrate µ and Cr, we utilised only the 9 mm data as it was

closest to the 8.5 mm elevated source used to determine the vertical profiles of

normalised concentration and normalised variance. The initial source distribu-

tion was set to σ0 = 0.7ds for the tuning of the IECM models’ free parameters.

Once µ and Cr were tuned then σ0 was tuned. Figure 4.15 shows an example

of the influence µ and Cr can have over the SPMMM simulation results. From

this figure it is clear that increasing the micromixing timescale results in larger

concentration fluctuations.

Numerous SPMMM simulations were performed while varying the µ and Cr.

Performance measures were calculated by comparing model results with the

FR82 experimental results and then contouring in µ - Cr parameter space.

The performance measures were based upon six FR82 data points shown in

Figure 4.15. The available FR82 vertical profile of concentration variance data

has 38 data points, but unfortunately it is normalised, with no information on

the maximum concentration variance to denormalise it. As a consequence, it

can only be used to evaluate relative magnitudes of the concentration variance,

and therefore is not a suitable data set with which to determine µ and Cr.

Figure 4.16 shows the contours of the FB, NMSE, FAC2, and NAE. In these

figures lighter shades of grey signify better performance of the model.

Examining the FB contours, we see that for Cr in the range 0.30 – 0.60, FB
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Figure 4.15: Streamwise transects of the concentration fluctuation intensity.
The open circles are from the FR82 wind-tunnel experiments. The lines are
simulation results from SPMMM. The source diameter was 9 mm and the source
height was 0.19δ. This figure shows the marked effects that the IECM model’s
two free parameters can have on the simulation results of second-order con-
centration statistics.
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(a) FB (b) NMSE

(c) FAC2 (d) NAE

Figure 4.16: Contours in µ - Cr parameter space of the performance measures
for the concentration fluctuation intensity. The data used to calculate the
performance measures were from SPMMM simulations of an elevated point source
in the FR82 flow. The source diameter was 9 mm and the source height was
0.19δ. Lighter shades of grey signify better performance.
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is optimised for µ ≈ 0.77 – 0.67 respectively. For Cr = 0.30− 0.60, the NMSE

is optimised for µ ≈ 0.85 – 0.66. The FAC2 contours do not provide much

information regarding the optimal values of µ and Cr, since for many values

of these two free parameters the resulting model profiles were with a factor of

two of the FR82 observations. We can see that if Cr & 0.40 and µ & 0.65 then

FAC2 = 1. The NAE contours perhaps provide the most definitive information

on the optimal values of the free parameters as its contours have an island

of optimisation, as opposed to the bands of optimisation seen in the FB and

NMSE contour plots. The NAE is minimised for µ ≈ 0.72 – 0.77 and Cr ≈ 0.40

– 0.50.

There was no single simulation whose values of µ and Cr simultaneously

optimised the FB, NMSE, and the NAE. The FB was optimised for (µ,Cr) =

(0.70, 0.50), the NMSE was optimised for (µ,Cr) = (0.75, 0.50), and the NAE

was optimised for (µ,Cr) = (0.75, 0.45). The resulting streamwise transects of

the concentration fluctuation intensity for these three simulations are shown

in Figure 4.17. The results from the three simulations look similar. However,

the run which optimised the NAE appears to have the best overall fit to the

FR82 data and we therefore set µ = 0.75 and Cr = 0.45 for the remainder of

the simulations in this thesis (except for one in Chapter 5 where SPMMM will be

compared with a previously reported model). These values differ slightly from

the values used by Cassiani, Franzese and Giostra (2005a). For their model,

the latter authors used µ ≈ 0.65 and Cr = 0.30. A reason for this difference

in model tuning is suggested below.

With the optimised values of the micromixing model parameters set, the

initial source distribution can be tuned. Six simulations with differing values
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Figure 4.17: Streamwise transects of the concentration fluctuation intensity for
an elevated point source in the FR82 flow. The open circles are from the FR82
wind-tunnel experiments. The lines are simulation results from SPMMM. The
source diameter was 9 mm and the source height was 0.19δ. The SPMMM profiles
shown are for the three runs that optimised the FB (µ = 0.70, Cr = 0.50), the
NAE (µ = 0.75, Cr = 0.45), and the NMSE (µ = 0.75, Cr = 0.50).
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of σ0 were performed. The resulting streamwise transects of concentration

fluctuation intensity varied only close to the source, where meandering of the

plume is the principal source of concentration fluctuations. The performance

measures from these simulations are displayed in Figure 4.18. As the initial

source distribution increased in size, the model results displayed more bias

towards under-prediction (a positive FB). The near zero value of FB at σ0 =

0.9ds is due to a cancellation of FBfp and FBfn. Both the NMSE and the NAE

are optimised at σ0 = 0.8ds. The FAC2 is unity for all σ0 investigated here.

Based on these results we set the initial source distribution to σ0 = 0.8ds. For

comparison, Cassiani, Franzese and Giostra (2005a) used σ0 ≈ 0.82ds.

With the free parameters optimised, simulations of dispersion from elevated

sources (ES) with diameters of 3 mm, 9 mm, 15 mm, 25 mm, 35 mm, and from a

15 mm ground-level source (GLS) were carried out and the resulting streamwise

concentration fluctuation intensity profiles constructed. They are shown in

Figure 4.19. As it was shown in FR82 that the relative fluctuation intensity

for ground-level sources was not sensitive to the source size, we only display the

results for a 15 mm ground-level source. The simulation results for the 3 and

9 mm ground-level sources agreed with the findings of FR82. The symbols in

Figure 4.19 are FR82 observations and the lines are SPMMM simulation results.

The profiles for the elevated sources all display the same trend, an initial rise

followed by a slow decay. Since the model was tuned to the 9 mm profile it is

not surprising that the corresponding profile displays the best fit to the FR82

observations. The initial rise of the concentration fluctuation intensity is too

low for the 3 mm elevated source but captured reasonably well for the other

sources. Farther downstream, it appears that the mixing is too vigorous for
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Figure 4.18: Behaviour of the performance measures for SPMMM simulations of
dispersion from an 8.5 mm elevated point source in the FR82 flow in response
to altering the initial source distribution. The performance measures were
calculated by comparing the streamwise transect of concentration fluctuation
intensity from SPMMM with those from the FR82 experiments. The diameter of
the source is denoted by ds.
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0.80 . x/δ . 2.0. In this range the modelled fluctuations from the 15 mm,

25 mm, and 35 mm sources are approximately ten to fifteen percent too low. It

is interesting to compare the resulting profiles from the 15 mm elevated source

simulations to those from the 15 mm ground-level source simulations. Both

profiles start at approximately the same value but the profile for the elevated

source increased substantially before undergoing a slow decay whereas the

profile for the ground-level source exhibits a very small rise and then stays

approximately constant. Physically this is caused by increased stretching,

twisting, and folding of the material lines due to increased velocity shear near

ground-level. This figure shows that the parametrisation for the micromixing

timescale captures reasonably well this effect. The SPMMM results displayed in

this figure are very similar to the results of similar simulations performed by

Cassiani, Franzese and Giostra (2005a).

Figure 4.20 shows vertical profiles of the normalised concentration variance

on the plume centreline for an 8.5 mm elevated point source at five downstream

locations from an SPMMM simulation with the optimised values of µ, Cr, and

σ0. The area shaded grey represents plus or minus one standard error. Also

shown for comparison are the corresponding results from Cassiani, Franzese

and Giostra (2005a; CASS). The performance measures for this simulation are:

FB = 0.166, NMSE = 0.108, FAC2 = 0.816, and NAE = 0.254. In the first

panel from the left (x/δ = 0.96) the agreement between SPMMM and the FR82

measurements is generally quite good. The height of the maximum variance

occurs a bit too low in the SPMMM results and the modelled variance near the

very top of the plume is too low as well. Farther downstream, the modelled

maximum variance is always at a greater height than the FR82 measurements,
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Figure 4.19: Streamwise transects of the concentration fluctuation intensity
for elevated point sources of various sizes, and a ground-level source, in the
FR82 flow. The open circles are from the FR82 wind-tunnel experiments. The
lines are simulation results from SPMMM. The source height was 0.19δ.



121

as seen in the last four panels. The modelled variance close to the ground is low

compared with the FR82 measurements. The general shapes of the modelled

profiles are very similar to the experimental profiles but they appear to be

shifted upwards in height.

Figure 4.20: Vertical profiles of the normalised concentration variance on the
plume centreline for an elevated point source at five downstream locations in
the FR82 flow. The source diameter was 8.5 mm and the source height was
0.19δ. The open circles are from the FR82 wind-tunnel experiments. The
lines are simulation results from SPMMM utilising optimised values of the free
parameters: µ = 0.75, Cr = 0.45, and σ0 = 0.8ds. The area shaded grey
represents plus or minus one standard error. The CASS profiles are from
Cassiani, Franzese and Giostra (2005a), whose model was tuned differently:
µ ≈ 0.65, Cr = 0.3, and C0 = 5.0

From Figure 4.20, it appears that mixing near the ground-level is too vig-

orous resulting in the concentration fluctuations being dissipated too rapidly.
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Increasing the micromixing timescale (to slow the rate of mixing) resulted in a

much better fit to the FR82 vertical profile of normalised concentration vari-

ance data, but at the cost of a poorer fit to the reported streamwise transect

of concentration fluctuation intensity data. For example, SPMMM simulations

with µ = 1.60 and Cr = 0.30 produced an excellent fit to the observed verti-

cal profiles of normalised concentration variance (FB = 0.010, NMSE = 0.014,

FAC2 = 0.919, NAE = 0.086), but a very poor fit to the streamwise transect

of concentration fluctuation intensity. If simulating normalised quantities then

this is an acceptable solution. However, normalised data is rarely as useful of

non-normalised data. It was thought that the poor ground-level performance

may have been related to the reflection algorithm, but numerous investigations

into it revealed no problems.

The Cassiani, Franzese and Giostra (2005a) vertical profiles of concentra-

tion variance displayed a better agreement with the FR82 measurements for

z/δ . 0.2. One possible explanation for this lies in the nature of the two

models. The Cassiani, Franzese and Giostra (2005a) model utilised simulta-

neous particle trajectories, and the conditional mean concentration in a bin

was computed at each time step by considering the concentrations and veloc-

ities of the particles that lay within that bin at a particular timestep. It is

therefore conceivable that conditional mean concentration in the bin would

vary slightly from step to step. Mixing towards this varying conditional mean

concentration may result in increased concentration fluctuations. In contrast,

the conditional mean concentrations in SPMMM are pre-calculated and remain

the same throughout the simulation. For each step in a particular spatial bin

a particle’s concentration mixes with unchanging conditional mean concentra-
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tion of that bin. If the particle’s concentration reaches the conditional mean

concentration then no more mixing will occur. In practise, this will not happen

due to the exponential nature of the relaxation towards the conditional mean,

however the particle’s concentration will closely approximate the conditional

mean concentration. If many particles that travel through this bin reach the

conditional mean concentration then concentration fluctuations will decrease.

This hypothesis is supported by two pieces of evidence. First, the fit be-

tween SPMMM and the FR82 measurements in the left-most panel of Figure 4.20

is quite good. This panel corresponds to the earliest available travel time, and

therefore the particles’ concentrations have not yet had much time to mix

towards the conditional mean concentration. Second, increasing the mixing

timescale resulted in a better fit to the normalised data in the figure. A longer

mixing timescale results in the particles’ concentrations mixing more slowly to

the conditional mean concentrations. This hypothesis may also explain why

Cassiani, Franzese and Giostra (2005a) used smaller values of µ and Cr than

were used with SPMMM.

Another possible source of the discrepancy (again related to the implemen-

tation of the models) is that by calculating the conditional mean concentration

on the fly the Cassiani, Franzese and Giostra (2005a) model contains more bias

error than SPMMM, which has the pre-calculated conditional mean concentration

supplied to it. A bias towards over-prediction would improve the results of the

SPMMM simulations, although it would be due to error and not model accu-

racy. Given that both the Cassiani, Franzese and Giostra (2005a) model and

SPMMM utilise the same micromixing model, it is possible that the better results

obtained by Cassiani, Franzese and Giostra (2005a) for the vertical profiles of
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normalised concentration variance are due to bias and may be fortuitous.

4.4.2 Dispersion from a Ground-level Point Source

We now consider dispersion from a 15 mm ground-level source. As for the

elevated sources, various profiles from SPMMM will be compared with their coun-

terparts from the FR82 experiments. Figure 4.21 shows the vertical profile

of the normalised mean concentration on the plume centreline at five down-

stream locations. The filled circles are FR82 data in the downstream region

1.67 ≤ x/δ ≤ 5.92. The other symbols correspond to SPMMM simulation results

at the specified extraction locations. The vertical coordinate has been scaled

by the vertical plume halfwidth to display the self-preserving nature of the

plume (i.e., the shape of the plume is invariant). Excellent agreement between

SPMMM and the FR82 experiments is realised in this figure. The self-preserving

nature of the plume is evident as the profiles from the five extraction locations

lie over one another.

Similarly, the vertical profile of the normalised concentration variance from

the SPMMM simulations shows excellent agreement with the FR82 experimen-

tal data, as seen in Figure 4.22. The variance profile for the ground-level

source fits the observations much better than the variance profile from the el-

evated source. Recall that the TKE production and dissipation rates increase

towards the ground. This leads to increased mixing and dissipation of the

concentration fluctuations near the ground. Evidently, the parametrisation of

the micromixing timescale used in this thesis captures this effect.
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Figure 4.21: Vertical profile of the normalised mean concentration on the
plume centreline for a ground-level point source at five downstream locations
in the FR82 flow in the downstream region 1.67 ≤ x/δ ≤ 5.92. The filled
circles are from the FR82 wind-tunnel experiments. The other symbols are
SPMMM simulation results. The source diameter was 15 mm. The vertical co-
ordinate has been scaled by the vertical plume halfwidth to display the self-
preserving nature of the plume.
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Figure 4.22: Vertical profiles of the normalised concentration variance on the
plume centreline for a ground-level point source at five downstream locations
in the FR82 flow in the downstream region 1.67 ≤ x/δ ≤ 5.92. The filled
circles are from the FR82 wind-tunnel experiments. The other symbols are
SPMMM simulation results. The source diameter was 15 mm. The vertical co-
ordinate has been scaled by the vertical plume halfwidth to display the self-
preserving nature of the plume.
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4.5 Error Analysis

In this section we investigate the statistical, bias, and discretisation errors

in the SPMMM simulation results. These errors are investigated for both mean

concentration and concentration variance for an 8.5 mm elevated point source

utilising the vertical profiles of the respective quantity (i.e., Figures 4.11 and

4.20). As there are 37 data points for the mean concentration data, and 38

for the concentration variance data, only a subset of these will be shown.

Figure 4.23 shows the statistical error (as the root-mean-square (RMS) of Σ)

in mean concentration and concentration variance at three positions on loga-

rithmic axes. The expected behaviour of the statistical error (Σ ∝ N−1/2) is

(a) RMS(Σ) in 〈φ〉 (b) RMS(Σ) in σ2

φ

Figure 4.23: Statistical error in the mean concentration and the concentration
variance at three positions from SPMMM simulations.

realised as all the slopes are close to −1/2 on the log–log plots. The spatial

resolution was held constant at M = 403 for these simulations.

As discussed in Section 3.4, SPMMM should have minimal bias error due to

the fact that the velocity statistics and the conditional mean concentration

are supplied or calculated externally. Figure 4.24 shows the bias error for the



128

mean concentration and the concentration variance to demonstrate that it is

approximately zero. It is believed that the small non-zero values represent

the bias error contained in the conditional mean concentration field, or are a

result of using a very large particle simulation (N = 108) to represent Q∞,M
p in

equation (3.80). Regardless, the bias error is one to three orders of magnitude

smaller than the statistical error.

(a) Bias error in 〈φ〉 (b) Bias error in σ2

φ

Figure 4.24: Bias error in the mean concentration and the concentration vari-
ance from SPMMM simulations.

Lastly we investigate the scaling behaviour of the discretisation error with

respect to the number of bins used to discretise the physical space. To pro-

duce a better estimate, the discretisation error was calculated as the difference

between the total error and the statistical error (S + ǫp = ǫ − Σ; see equa-

tions (3.76) and (3.77)). This estimation was possible due to the very small

bias error. Note that we have assumed that the physical error is constant

and therefore would not alter the scaling behaviour of the discretisation error.

The simulations were conducted with different spatial resolutions while main-

taining the number of particles per bin to keep the statistical error constant

between simulations. Simulations with M = 103, 203, 303, and 403 spatial bins
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were carried out. However, the available FR82 data is for the plume centre-

line, so in reality we investigated the discretisation error along the z-axis only.

Figure 4.25 displays the absolute value of the discretisation error in mean con-

centration and concentration variance plotted against the inverse number of

vertical bins at three positions. From left to right, the four data points in each

line of the plots correspond to N−1
z = 40−1, 30−1, 20−1, and 10−1. In both

mean concentration and concentration variance we see that the discretisation

error decreases linearly with increasing resolution along the z-axis.

(a) Discretisation error in 〈φ〉 (b) Discretisation error in σ2

φ

Figure 4.25: Scaling behaviour of the discretisation error in the mean concen-
tration and the concentration variance from SPMMM simulations.

4.6 Chapter Summary

In this chapter the ability of SPMMM to simulate dispersion from elevated

and ground-level point sources in the FR82 wall shear layer flow was investi-

gated. By comparing vertical profiles of normalised mean concentration from

MEANS simulations with those from the FR82 experiments, it was determined

that C0 = 6.0 produced the best fit to the experimental data and that the
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performance of MEANS improved with decreasing timestep. However, based on

the practical consideration of having reasonable simulation times, the timestep

constant was set to µt = 0.02.

MEANS and SPMMM have been shown to be consistent by comparing first-

order concentration statistics. The modelled profiles of the normalised mean

concentration, plume halfwidths, and the maximum mean concentrations for

plumes resulting from dispersion of an 8.5 mm elevated point source were in

very good agreement with the FR82 measurements. We found that MEANS and

SPMMM were consistent provided that at least 153 velocity bins were used in

the simulations. We therefore and thereafter discretised the velocity space

into 203 bins to ensure consistency and to allow simulations with a higher

spatial resolution. The modelled ground-level plume also had a vertical profile

of normalised mean concentration that matched the FR82 measurements very

well.

By comparing the streamwise transect of the concentration fluctuation in-

tensity from SPMMM simulations to the corresponding FR82 measurements for

a 9 mm elevated point source, the free parameters of the micromixing model

have been optimised to µ = 0.75 and Cr = 0.45. The optimal initial source

distribution was found to be σ0 = 0.8ds. These optimised values resulted in

an acceptable agreement with the measured concentration fluctuation inten-

sity profiles for other elevated source sizes (3 mm 15 mm, 25 mm, 35mm), as

well as for a 15 mm ground-level source. The modelled profiles for the ele-

vated sources were ten to fifteen percent lower than the measured values in

the downstream range 0.80 . x/δ . 2.0.

The modelled vertical profiles of normalised concentration variance from an
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8.5 mm elevated source were in reasonable agreement with the FR82 measure-

ments, although the SPMMM produced variance levels near ground-level were

too low compared to the measurements. It was hypothesised that this may be

related to the fact that SPMMM mixes a particle’s concentration towards the un-

changing, pre-calculated conditional concentrations. Much better SPMMM pro-

files could be produced by setting µ = 1.60 and Cr = 0.30, but at the cost

of an unacceptably poor modelled streamwise transect of concentration fluc-

tuation intensity. The modelled ground-level vertical profile of normalised

concentration variance was much better than the elevated source results.

The error in the SPMMM micromixing model results for mean concentration

and concentration variance behaved as expected. The statistical error went as

Σ ∝ N−1/2, the bias error was approximately zero, and the discretisation error

along the z-axis decreased with increasing spatial resolution as |S| ∝ N−1
z .

The SPMMM micromixing model displayed a good overall agreement with

the FR82 measurements for dispersion of a passive scalar in a wall shear layer

flow for elevated and ground-level sources. We now move on to simulating

dispersion of a passive scalar in a more complicated canopy flow.
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Chapter 5

Tombstone Canopy Simulations

5.1 Experimental and Computational Setup

The Tombstone Canopy consisted of a regular diamond-shaped array of

thin billboard-like obstacles intended (by the originators, i.e., Raupach, Cop-

pin, Legg) to represent a uniform plant canopy. Each obstacle was a rectangu-

lar aluminum tab measuring 10 mm in width, 1 mm in streamwise thickness,

and hc = 60 mm in height. The centre to centre streamwise and spanwise

spacings of the tabs were 44 mm and 60 mm, respectively. This distribution of

canopy elements resulted in a frontal area index of λf = 0.23 and a plan area

index of λp ≈ 0. As the canopy is regular, it can be geometrically represented

by tiling a unit cell in the streamwise and spanwise directions, although the

flow itself was not exactly periodic in the sense of repeating from cell to cell

(i.e. there were flow gradients in the horizontal, albeit quite weak, on a scale

exceeding the unit cell size). Figure 5.1 shows a unit cell in plan view. The

lettered points in the figure correspond to velocity statistic data extraction lo-

cations used by Raupach et al. (1986) and Hilderman and Chong (2007). The

dotted lines show the grid we have used to discretise the data. Both the points
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and the grid are discussed below. Experimental data sets from the original

wind-tunnel experiments and the subsequent water-channel experiments are

considered in this thesis.

Figure 5.1: Plan view of a Tombstone canopy unit cell. The location and size
of the canopy obstacles are shown by the thin, orange rectangles. Points A – J
(blue points) are velocity statistic data extraction locations used by Raupach
et al. (1986). Hilderman and Chong (2007) extracted velocity statistics not
only at A-J, but also at the remaining points shown (viz. K-S; green points).
Primed points share the u and w velocity statistics of the corresponding un-
primed points, but have their v velocity statistics reflected about zero (e.g.,
〈v〉C′ = −〈v〉C). The dotted lines show the grid used to discretise the data.

The results of the wind-tunnel experiments are contained in three pa-

pers: Raupach et al. (1986) describes the turbulence structure within and

above the canopy∗; Coppin et al. (1986) describes the results of scalar disper-

∗There were two errors in the axes labels of Figure 6 in Raupach et al. (1986). The figure
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sion experiments from an elevated plane source (which was in reality several

line sources); and Legg et al. (1986) describes the results of scalar disper-

sion experiments from an elevated line source. The experiments were car-

ried out at the Commonwealth Scientific and Industrial Research Organisation

Pye Laboratory open-return blower tunnel with a working section measuring

10.6 m × 1.78 m × 0.65 m in length, width, and height respectively. A neutral

boundary layer was grown over a rough surface (consisting of gravel) and then

encountered the Tombstone Canopy, which extended for three metres in the

streamwise direction and covered the entire span of the wind-tunnel. Veloc-

ity statistics for the u and w components were extracted from the flow at

points A – J using a three element hot-wire anemometer and a miniature one-

component sonic anemometer. However, these measurements were restricted

to heights z < 5
3
hc = 100 mm. At point D, velocity statistics were extracted

up to z = 20
3
hc = 400 mm. These data are shown in Figure 5.2 as dashed

lines. Also shown are the spatially-averaged velocity statistics from the water-

channel experiments (circles and solid lines), which will be described in detail

below.

For now we will focus only on the wind-tunnel profiles. The displayed

profiles are polynomial interpolations to the data presented in Figure 6 of

Raupach et al. (1986) and Raupach et al. (1987), as used by Cassiani et al.

(2007) to drive their model. We chose to use these profiles as we wish to

make a direct comparison of the SPMMM simulation results to the results of

the Cassiani et al. (2007) model, and thus identical velocity statistics must

be used. Since the Raupach et al. (1986) velocity data did not include any

is corrected in Raupach et al. (1987).
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v-component measurements, the standard deviation of the spanwise velocity

was estimated as σ2
v = (σ2

uσ
2
w)1/2, as suggested by Brunet et al. (1994), and

used by Cassiani et al. (2007).

The boundary layer depth at point D was δ = 540 mm, and the free-

stream velocity was 〈u〉δ = 11.25 m s−1. The Reynolds number for the flow

(based on δ and 〈u〉δ) was Reδ ≈ 4.0 × 105. Raupach et al. (1986) reported

the friction velocity (based on the spatially-averaged† mean shear stress just

above the canopy) as u∗ = 1.03 m s−1, the roughness length (deduced from the

spatially-averaged mean streamwise wind profile well above the canopy) as

z0 = 8.3 mm, and the spatially-averaged mean streamwise velocity at canopy

height as 〈u〉c = 3.40 m s−1. Based on 〈u〉c and hc the Reynolds number was

Rec ≈ 1.4 × 104.

The source in the continuous, cross-wind, elevated line source experiments

was a 0.9 mm diameter hot wire at a height of zs = 0.85hc = 51 mm, placed

midway between two rows of obstacles. The source strength varied from

Q = 60 – 350 W m−1 from experiment to experiment. The heat generated by

the wire was sufficiently low such that it did not alter the turbulence structure.

This was ensured and confirmed by: insulating the floor of the wind-tunnel and

measuring the heat flux through the floor; allowing the experimental apparatus

to establish thermal equilibrium before measurements were made by leaving it

running overnight; and by measuring the heat flux within the canopy elements

and through planes normal to the mean flow. The measurements showed: the

heat flux through the floor to be negligible; the integrated heat flux through

planes normal to the mean flow to be conserved; that at a measurement loca-

†Spatial-averaging was performed over the unit cell area.
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Figure 5.2: Vertical profiles of the spatially-averaged Tombstone canopy veloc-
ity statistics from water-channel experiments and the corresponding measure-
ments from the wind-tunnel experiments. For the water-channel experiments,
the symbols are flow measurements and the lines are the cubic spline interpo-
lations used to drive the models. The dotted line in the vertical profile of the
streamwise velocity represents equations (2.52) and (2.53), with β = 1.1 and
a displacement height of d = 43 mm ≈ 0.72hc, the value reported by Raupach
et al. (1986). Note that for the wind-tunnel the σv profile was estimated as
σ2
v = (σ2

uσ
2
w)1/2 as no v-component velocity measurements were made.
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tion 0.023 m from the source (i.e., the closest measurement location); the heat

flux per unit ground area within the canopy elements was less than 5% the

vertical heat flux in the air (Coppin et al., 1986; Legg et al., 1986).

The ratio of the buoyancy forces to the inertial forces (calculated as the

Grashof Number/(Reynolds Number)2) close to the source was 0.0015, and

the maximum gradient Richardson number 0.023 m from the source was -0.001

below the plume, and 0.005 above the plume (Legg et al., 1986). Therefore it is

concluded with good certainty that the heat from the source was non-buoyant

and a passive tracer, allowing the temperature fluctuations to be interpreted

as concentration fluctuations. Concentration statistics were extracted with a

cold-wire resistance thermometer and made dimensionless with

φ∗ =
Q

ρcpzs〈u〉s
, (5.1)

where cp is the heat capacity of air at constant pressure and 〈u〉s is the mean

streamwise velocity at source height.

Hilderman and Chong (2007) revisited scalar dispersion in the Tombstone

Canopy using a near ground-level point source, a tracer dispersion configura-

tion that was not examined by the original wind-tunnel study. The experi-

ments were performed in the Coanda Research and Development Corporation

(Burnaby, British Columbia) recirculating water-channel, with a test section

measuring 10.0 m × 1.5 m × 1.0 m in length, width, and depth respectively.

There were 210 rows of canopy elements (which were identical to those used

in the wind-tunnel experiments) within the test section of the water-channel.

As for the wind-tunnel experiments, the neutrally-stratified wall shear layer

was fully-developed in the upstream fetch, before interacting with the canopy

in the test section of the tunnel.
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The flow was seeded with titanium dioxide particles to allow the extraction

of velocity statistics with laser Doppler velocimetry (LDV). Measurements of

the u, v, and w velocity components at the nineteen points A – S were made

in the unit cell centred on the seventh tab of row 160, x = 7.04 m into the

canopy and y = 0.42 m from the sidewall of the water-channel. At all points,

velocity measurements were made up to a height of 3hc = 180 mm. For points

D and J, velocity measurements were made up to a height of 12hc = 720 mm.

The u and w velocity statistics of the primed points are identical to their

corresponding unprimed points, but the v statistics have to be reflected about

zero (e.g., 〈v〉C′ = −〈v〉C). For the work in this thesis, the Coanda velocity

statistic data from the ten points A –J were spatially-averaged as

(A + B + 2C + D + E + (F + G)/2 + 2H + 2I + J)

12
, (5.2)

where each point has been weighted by the total fraction of the unit cell area

occupied by the lot in which it sits‡. The spatially-averaged velocity statistics

from the water-channel experiments are shown in Figure 5.2. The symbols

are flow measurements and the lines are the cubic spline interpolations used

to drive the models. From this figure we can see that the wind-tunnel and

water-channel statistics are similar to one another within the canopy, but this

similarity decreases above the canopy.

In the vertical profile of the mean streamwise velocity, the analytical pro-

file as predicted by equations (2.52) and (2.53) is also shown for β = 1.1

and d = 43 mm ≈ 0.72hc (the value reported by Raupach et al. (1986)).

Within the canopy, the β-profile fits the experimental data quite well. The

‡To determine the lot areas, draw lines midway between all neighbouring points (only A
– J). The area of the resulting rectangles is easily calculated.
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above canopy fit, in the wall shear layer region, is poorer. For both data sets

the streamwise velocity profile is attenuated more rapidly than predicted by

equation (2.53). However, this discrepancy can be eliminated by tuning the

displacement height. A value of d = 10 mm ≈ 0.17hc results in an excellent

fit to the water-channel data, whereas a value of d = 30 mm = 0.5hc results

in an improved fit to the wind-tunnel data. These values for d are both less

than the reported value, a finding also noted by Wilson et al. (1998).

From the spatially-averaged velocity statistics, the friction velocity at the

top of the canopy for the water-channel simulations was determined to be u∗ =

0.018 m s−1, and the roughness length was z0 = 9 mm. The boundary layer

depth was δ = 540 mm and the free-stream velocity was 〈u〉δ = 0.175 m s−1,

giving a Reynolds number (based on δ and 〈u〉δ) of Reδ = 9.4 × 104. At the

top of the canopy the mean streamwise velocity was 〈u〉δ = 0.07 m s−1, giving

Rec = 4.2× 103. When scaled by their respective friction velocities, the wind-

tunnel and water-channel velocity statistics are similar. Table 5.1 summarises

physical and aerodynamic parameters from the wind-tunnel and water-channel

Tombstone canopy experiments.

To drive simulations with locally inhomogeneous velocity statistics (where

the velocity statistics change from one location to another within the unit

cell but have no large-scale inhomogeneities), the point data from A–S have

been interpolated onto a grid consisting of Nvel
x = 22 bins in the streamwise

direction, Nvel
y = 15 bins in the spanwise direction (as shown in Figure 5.1

by the grid of dotted lines), and Nvel
z = 40 bins in the vertical direction. For

each point, vertical profiles of the statistics have been produced using cubic

spline interpolation. Below 3hc each point has its own unique velocity statis-
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Parameter Symbol Wind-tunnel Water-channel

Source configuration line point
Source diameter ds 0.9 mm 15 mm
Source height zs 0.85hc 0.2hc
Friction velocity u∗ 1.03 m s−1 0.018 m s−1

Roughness length z0 8.7 mm 9 mm
Boundary layer depth δ 540 mm 540 mm
Free-stream velocity 〈u〉δ 11.25 m s−1 0.175 m s−1

Reynolds numbers Reδ 4.0 × 105 9.4 × 104

Rec 1.4 × 104 4.2 × 103

Table 5.1: Physical and aerodynamic parameters from the Tombstone canopy
wind-tunnel and water-channel experiments. The Reynolds number was based
upon the boundary layer depth and the free-stream velocity (Reδ = 〈u〉δδ/ν).
The canopy was identical for both the wind-tunnel and water-channel exper-
iments: a canopy height of hc = 60 mm; a streamwise obstacle spacing of
44 mm; and a centre to centre spanwise obstacle spacing of 60 mm

tics. Above, the average of the full height profiles (up to 12hc) from points

D and J was used for each point. Therefore, below 3hc the flow is locally in-

homogeneous, and above 3hc the flow quickly attains horizontal-homogeneity.

Results from the interpolation procedure described above are shown for the

mean streamwise velocity at points A and R in Figure 5.3. The transition

from a locally inhomogeneous flow to a horizontally-homogeneous flow occurs

between z = 3hc and z = 3.5hc

The vertical profiles were then interpolated onto the Nvel
x × Nvel

y grid for

each vertical level using thin plate splines. Thin plate splines were used be-

cause they: pass through the experimentally measured data points; grow lin-

early when far away from the control points (i.e., the experimental data); are

smooth functions with continuous first derivatives; are able to model func-

tions with complex local distortions, such as those which may be found within
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Figure 5.3: Vertical profiles of the mean streamwise velocity from the Tomb-
stone canopy water-channel experiments and the resulting interpolation.
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a canopy. Figure 5.4 displays four streamwise transects of the mean stream-

wise velocity for y = 0 mm, and four spanwise transects for x = 2 mm, just

behind the central obstacle, through point A. The horizontal axes are unscaled

to facilitate comparison with Figure 5.1. From Figure 5.4(a) it is evident that

〈u〉 6= 0 inside the obstacle, located at x = 0 mm. This is true for the other

statistics as well and is due to interpolation through the obstacle. This was

permitted to avoid singularities in the Reynolds stress tensor and to prevent a

particle getting “stuck” in the simulation domain (i.e., not propagating down-

stream to xmax). For future obstacle resolving versions of SPMMM, the obstacles

will be boundaries and reflection will occur when a particle encounters them.

In the Coanda water-channel experiments, a continuous point source with

a diameter of ds = 15 mm was positioned immediately behind the centre tab of

row 116 at a height of zs = 12 mm = 0.2hc. Since the sharp sided, aluminum

tabs are very efficient turbulence generators, Hilderman and Chong (2007)

found that the resulting concentration field resulting from dispersion from a

very small source was extremely sensitive to the exact placement within the

canopy, and that the resulting plume could easily be biased to one side of the

channel or the other by a slight change in the release angle or velocity. As this

is undesirable from the standpoint of being able to reproduce experimental

results, a relatively large source was used. The source was designed to have

minimal momentum and had a fine mesh over the end, to ensure a uniform

distribution of the dye over the source area. Due to the physical size of the tube

that composed the source, the front of the source was 26 mm downstream from

row 116. Sodium fluorescein dye was used as the dynamically passive tracer.

The velocity of the dye at the source was us = 2.264 × 10−3 m s−1, which
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(a) Streamwise transects of 〈u〉/u∗ along y = 0mm

(b) Spanwise transects of 〈u〉/u∗ along x = 2mm

Figure 5.4: Streamwise and spanwise transects of the interpolated mean
streamwise velocity at four heights for the water-channel Tombstone canopy
experiments. The horizontal axes are unscaled to facilitate comparison with
Figure 5.1.
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corresponds to a release rate of Q = 24 mL min−1. Sodium fluorescein is a

weakly diffusive scalar, with a (molecular) Schmidt number of 1920 in water.

Laser induced fluorescence (LIF) techniques were used to extract concen-

tration data 1, 2, 4, 7, 8, 12, and 16 rows downstream from the source at

7 to 10 heights, depending on the location. The measurements were made

dimensionless by dividing by the source concentration, i.e., φ∗ = φ/φs where

φs =
Q

Asus
, (5.3)

with As representing the area of the source. Once dimensionless, higher-order

statistical quantities were calculated. In this thesis, the dimensionless quanti-

ties are denoted with a superscript asterisk: 〈φ∗〉 for the mean dimensionless

concentration, σ∗
φ for the standard deviation of the dimensionless concentra-

tion, Sk∗
φ for the skewness of the dimensionless concentration, and Ku∗

φ for the

kurtosis of the dimensionless concentration.

In addition to the driving velocity statistics, the TKE dissipation rate is

needed to drive the models (see equations (3.17), (3.20), (3.36), and (3.38)).

The left panel of Figure 5.5 shows three different determinations of the TKE

dissipation rate from Figure 15 of Raupach et al. (1986): from the u-velocity

spectra; from the w-velocity spectra; and from a residual calculation according

to

ε = Ps + Pw + Tt, (2.56)

which was first encountered in Section 2.4.2. The lines in the figure are to aid

the eye. The three measurements agree reasonably well within the canopy but

display a factor of two discrepancy between the spectral and residual methods

above the canopy. The right panel of Figure 5.5 shows the polynomial fit to
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the far field Lagrangian integral timescale from Figure 10 of Legg et al. (1986),

used by Cassiani et al. (2007) to infer the TKE dissipation rate to drive their

model.

In their determination of the TL profile, Legg et al. (1986) assumed the

Lagrangian vertical velocity autocorrelation function to be exponential, and

that the variances of Eulerian and Lagrangian vertical velocities were equal,

which is strictly true only in homogeneous turbulence. Consequently, the

profile is meant to provide some indication of the behaviour of TL, not represent

it exactly. No measurements of TL were made above 3hc; above this height

the value is held constant.

Figure 5.5: Vertical profiles of the TKE dissipation rate (left; lines added to
aid the eye) and the far field Lagrangian integral timescale (right) from the
Tombstone canopy wind-tunnel experiments. The TKE dissipation data are
from three different determinations: from the u-velocity spectra; from the w-
velocity spectra; and from a residual calculation according to equation (2.56).
Above 3hc there were no measurements of the Lagrangian integral timescale
so the value was held constant. The data in the left hand panel are also shown
in Figure 5.6 along with various formulae.

Figure 5.6 shows modelled, vertical profiles of the TKE dissipation rate,

along with the analytical profile for a displaced wall shear layer (equation

(2.44)) above the canopy. The u-spectral determination and (to a lesser extent)
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the w-spectral determination agree quite well with the displaced wall shear

layer profile for the range z/hc = 2–3, lending support to the assumptions

made in deriving equation (2.44). The residual determination does not show

good agreement with the analytical profile. Cassiani et al. (2007) interpreted

the Lagrangian integral timescale measurements of Legg et al. (1986) to be

TLw
and used the relation TLw

= 2σ2
w/C0ε to determine the TKE dissipation

rate. They found that C0 = 2.0 produced an acceptable fit to the measured

TKE dissipation data, as shown in Figure 5.6. While at the lower end of the

currently entertained range of C0, this value is substantially different than C0 =

6.0 used in the FR82 simulations. However, the TKE dissipation rate implied

from TL with C0 = 6.0 does not fit any of the in-canopy TKE dissipation

measurement very well, as seen in the figure. A second method of calculating

the TKE dissipation rate is with equation (2.56).

As shown in Chapter 2, the shear production and wake production of TKE

are in closed form and are readily calculated from the available velocity statis-

tics. However, the turbulent transport of TKE is unclosed and must be mod-

elled, which has the undesirable side-effect of introducing more arbitrary con-

stants into the model. We therefore chose simplicity and assumed local equi-

librium and calculated the TKE dissipation rate as ε = Ps + Pw. Overall this

method produced a better fit to the experimental data, and to the displaced

wall shear layer profile, than the method of inferring a TKE dissipation rate

from a profile of the Lagrangian integral timescale, as seen in Figure 5.6. Fur-

thermore, it does so with no reference to (or dependence upon a chosen value

of) the Kolmogorov constant. A Savitzky-Golay filter was used to remove

noise from the profile. The assumption of local equilibrium within the canopy
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Figure 5.6: Measured and modelled vertical profiles of the Tombstone canopy
TKE dissipation rate.
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is certainly incorrect. Raupach et al. (1986) note that turbulent transport was

a major loss in the TKE budget just above the canopy and was the principal

gain within the upper canopy. Thus, the inclusion of Tt in the calculation

of the TKE dissipation rate would probably result in better fit to the exper-

imental data. However, as shown by the resulting profile in Figure 5.6, the

assumption of local equilibrium can be used to determine a reasonably accu-

rate TKE dissipation rate, without the need of introducing further tunable

parameters into the model.

5.2 Dispersion from a Continuous Line Source

In this section we report on results of simulations of dispersion from a

continuous cross-wind elevated line source with the characteristics discussed

above. The horizontally-homogeneous, spatially averaged, wind-tunnel mea-

sured, velocity statistics shown in Figure 5.2 were used to drive SPMMM. These

were the same as the velocity statistics used by Cassiani et al. (2007). The

vertical profile of TKE dissipation determined by assuming local equilibrium

was used.

The use of a continuous line source effectively reduces the simulations to

two dimensions allowing the use of fewer particles. To pre-calculate the condi-

tional mean concentration field, we usedNφ = 2×106 particles. Similarly, since

in a line source simulation there is a much greater chance of a particle being a

source particle in SPMMM, we used N = 2× 106 particles. The simulations were

performed at the same spatial, velocity, and temporal resolution as the FR82

simulations: 403 spatial bins, 203 velocity bins (which was enough to ensure

that the velocity PDF integrates to unity; equation (4.1)), and µt = 0.02. The
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driving velocity statistics were discretised with forty bins as well, Nvel
z = 40.

An initial source distribution of σ0 = 2.0ds was found to produce the best

fit (albeit not a great fit) to the experimental measurements of the standard

deviation of concentration close to the source.

In Section 4.4.1, the micromixing model parameters had been optimised

to µ = 0.75 and Cr = 0.45 by simulating dispersion from an elevated point

source in the FR82 wall shear layer flow. As discussed in Thomson (1996),

Sawford (2004b), and Luhar and Sawford (2005), the micromixing constant

will be larger for a line source than for a point source since mixing is more

efficient for a point source plume. This is because for a line source plume

entrainment only occurs in the vertical direction as opposed to the spanwise

and vertical directions for a point source plume. Investigation showed that

increasing the micromixing model constant to µ = 0.80 – 0.85 resulted in a

slightly better fit to the experimental data above the height of the maximum

concentration standard deviation and a slightly poorer fit below. Overall,

the performance measures did improve slightly upon increasing µ, but the

difference was not marked, so we used µ = 0.75 and Cr = 0.45 for the majority

of the simulations to avoid arbitrarily re-tuning of the model. The Kolmogorov

constant was specified as C0 = 6.0, which is unchanged in view of its earlier

“tuning” relative to the FR82 experiment.

Figure 5.7 displays the vertical profile of the dimensionless mean concen-

tration at three downstream positions. As for the FR82 results, an estimation

of the characteristic timescale τa/TL is displayed in each panel of the figure.

The grey shaded area represents plus or minus one standard error (note: in

this plot the error is too small to see). The symbols are the experimental re-
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sults from Legg et al. (1986; TOMB3) and the lines are the SPMMM results. The

Figure 5.7: Vertical profiles of the dimensionless mean concentration from
SPMMM simulations of an elevated, cross-wind line source (zs/hc = 0.85) in the
Tombstone canopy flow. Horizontally-homogeneous velocity statistics were
used to drive this simulation. The symbols are wind-tunnel experimental re-
sults and the lines are SPMMM predictions.

performance measures for the data displayed in the figure are: FB = 0.295,

NMSE = 0.491, FAC2 = 0.729, and NAE = 0.415, all within their respective

limits for an acceptable model.

Qualitatively, the simulation matches the experimental data reasonably

well. At all three locations the model produced profiles with a similar shape

and magnitude to the experimental data. The fit is better above the canopy.

This may be related to the Kolmogorov constant, as it is the only tunable
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parameter that affects the mean concentration, as shown in Chapter 4. Poggi

et al. (2008) investigated the behaviour of C0 inside dense canopies. They

found that C0 is reduced by a factor of ∼5 relative to its ASL value due to

wake production, and a factor of ∼1.5 due to finite Reynolds number effects.

These reductions were offset by an increase in C0, due to a short circuiting of

the energy cascade within the canopy, but not enough to compensate for the

reductions. Although not shown, a re-tuning of the Kolmogorov constant to

C0 = 4.0 does improve the agreement between the experimental data and the

present simulations.

The discrepancy may also be related to the driving velocity statistics,

or the modelled TKE dissipation rate. An earlier single-particle LS model

(Flesch and Wilson, 1992) produced more accurate results than those shown

in Figure 5.7 (particularly below canopy at x/hc = 2.78), probably because

those authors had formulated their model in terms of the Lagrangian integral

timescale (TLw
; as opposed to the TKE dissipation rate), and used the pro-

file of TLw
from Legg et al. (1986). As shown in Figure 5.6, in order to get

an acceptable fit to the measured TKE dissipation rate data the Kolmogorov

constant must be C0 ≈ 2.0, at the low end of its recently reported estimates.

Since the water-channel Tombstone canopy measurements do not include any

data on the TKE dissipation rate or the Lagrangian integral timescale, and for

the reasons mentioned in Section 5.1 above, we opted to calculate the TKE

dissipation rate as the sum of shear production and wake production. How-

ever, below we show the results of a simulation carried out using the TKE

dissipation rate inferred from the Lagrangian integral timescale reported by

Legg et al. (1986), when comparing our model to the model of Cassiani et al.
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(2007).

Figure 5.8 displays three vertical profiles of the dimensionless standard

deviation of concentration. Experimental data for the standard deviation

Figure 5.8: Vertical profiles of the dimensionless standard deviation of con-
centration from SPMMM simulations of an elevated, cross-wind, line source
(zs/hc = 0.85) in the Tombstone canopy flow. Horizontally-homogeneous ve-
locity statistics were used to drive this simulation. The symbols are wind-
tunnel experimental results and the lines are SPMMM predictions. The grey
shading (very small to invisible) represents plus or minus one standard error.

at x/hc = 0.38 and z/hc ≈ 1 (left-most panel) was not presented in the

original paper (Legg et al., 1986), and therefore cannot be presented here.

The performance measures for these data are: FB = 0.650, NMSE = 1.487,

FAC2 = 0.625, and NAE = 0.680. The FB is outside of its acceptable range

due to the simulated standard deviation of concentration being significantly
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under-predicted at x/hc = 0.38. No amount of tuning of σ0 could eliminate

the under-prediction from the model at this location. This seems to suggest

that the present parametrisation of the micromixing timescale cannot capture

near source phenomena accurately, or that the velocity statistics are not suffi-

ciently detailed or realistic. The other performance measures are within their

respective acceptable ranges. Qualitatively, the model predictions and the ex-

perimental data show good agreement, especially for z/hc . 2 at x/hc = 2.78

and x/hc = 11.6.

The streamwise transect of the ground-level dimensionless mean concen-

tration is shown in Figure 5.9. The performance measures for these data are:

FB = 0.728, NMSE = 1.141, FAC2 = 0.444, and NAE = 0.803. For x/hc . 6

the fit is poor with the mean concentration under-predicted. The x/hc = 2.78

panel in Figure 5.7 displays the cause of these poor results. At this location

SPMMM does not accurately simulate the ground-level mean concentration. For

x/hc & 6 the simulations agree better with the experimental data.

The SPMMM predictions for the streamwise transect of the concentration

fluctuation intensity (defined here as max(σφ)/max 〈φ〉) are much better, as

seen in Figure 5.10. For the data shown in the figure, the performance mea-

sures are: FB = -0.030, NMSE = 0.034, FAC2 = 1.000, and NAE = 0.149.

In Figure 5.8 we saw that SPMMM accurately simulates the magnitude of the

concentration standard deviation away from the source (the centre and right

panels). Thus for x/hc . 6, the observed over-prediction of the concentration

fluctuation intensity is due to the under-prediction of the mean concentration.

Likewise, the observed under-prediction of the concentration fluctuation in-

tensity for x/hc & 6 is due to the over-prediction of the mean concentration.
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Figure 5.9: Streamwise transect of the ground-level dimensionless mean con-
centration from SPMMM simulations of an elevated, cross-wind, line source
(zs/hc = 0.85) in the Tombstone canopy flow. Horizontally-homogeneous ve-
locity statistics were used to drive this simulation.
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Figure 5.10: Streamwise transect of the concentration fluctuation intensity
from SPMMM simulations of an elevated line, cross-wind line source (zs/hc =
0.85) in the Tombstone canopy flow. Horizontally-homogeneous velocity statis-
tics were used to drive this simulation.
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As for the simulations of the FR82 flow in Chapter 4, we see that SPMMM does

not capture fully the large initial rise in the concentration fluctuation intensity

close to the source. The modelled value is approximately twenty percent too

low, equal to the discrepancy noted in the simulations of the FR82 flow shown

in Figure 4.19.

5.2.1 Comparison of SPMMM to the Model of Cassiani

et al.

For comparison with the Cassiani et al. (2007; CASS) results, a simulation

was performed using the TKE dissipation profile inferred from the vertical

profile of TL shown in Figure 5.6 with a Kolmogorov constant of C0 = 2.0.

As briefly mentioned in Chapter 2, Franzese and Cassiani (2007) derived the

relation Cr ≈ C0/11 for homogeneous isotropic turbulence. Cassiani et al.

(2007) mention that for a smaller C0 a proportionally smaller Cr must be

used. Although not explicitly stated in their paper, we assumed that they

used Cr = 2/11 ≈ 0.18, as did we for the comparison simulation.

The vertical profiles of the dimensionless mean concentration at three lo-

cations for this simulation are shown in Figure 5.11. The results from the two

models are very similar, but the magnitudes of the SPMMM results are slightly

smaller than the corresponding CASS results. Figure 5.12 compares the di-

mensionless concentration standard deviation. Again the two models produced

similar results. The differences are likely due to the implementation of the two

models as discussed in Chapter 4 (SPMMM used single-particle trajectories with

a pre-calculated conditional mean concentration field, whereas model of Cas-

siani et al. (2007) used simultaneous trajectories and calculated the conditional
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Figure 5.11: Comparison of the vertical profiles of the dimensionless mean
concentration from an elevated, cross-wind line source (zs/hc = 0.85) in the
wind-tunnel tombstone canopy flow as simulated by SPMMM and Cassiani et al.
(2007). Horizontally-homogeneous velocity statistics were used to drive these
simulations.
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Figure 5.12: Comparison of the vertical profiles of the dimensionless standard
deviation of concentration from an elevated, cross-wind line source (zs/hc =
0.85) in the Tombstone canopy flow as simulated by SPMMM and Cassiani et al.
(2007). Horizontally-homogeneous velocity statistics were used to drive these
simulations.
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mean concentration field at each timestep).

Lastly, we note that the SPMMM results shown in Figure 5.11 resemble the

Flesch and Wilson (1992; Figure 6) simulation results more than the SPMMM re-

sults shown in Figure 5.7. This is probably due to using a TKE dissipation

profile inferred from the vertical profile of TL, which is more in line with the

Lagrangian integral timescale formulation of the Flesch and Wilson (1992)

model.

5.3 Dispersion from a Continuous Point Source

The spatial, temporal, and velocity resolution for the simulations of the

continuous point source in the Tombstone canopy flow were the same as for

the continuous line source simulations above. The free parameters, with the

exception of σ0, were assigned the same values as above: C0 = 6.0, Cr = 0.45,

and µ = 0.75. Since the experimental source was designed to have a uniform

concentration over its outlet area, in SPMMM it was modelled as a tophat source.

Due to the increased dimensionality of the problem, the number of particles

used was increased to 2 × 107 for both the MEANS pre-calculation simulations

and the SPMMM micromixing simulations. Simulations were performed using

the spatially averaged, horizontally-homogeneous velocity statistics (denoted

as SPMMM-HH in the figures below) and using the locally inhomogeneous A –

S point data (denoted as SPMMM-LI in the figures below). The experimental

measurements of Hilderman and Chong (2007) are denoted as COANDA. The

next several pages display the results of the simulations, arranged in increasing

order of the moment of the concentration field: mean, standard deviation,

skewness, and kurtosis. Note that in the following figures the scales on the
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vertical axes change between panels.

Before examining the simulation results, a brief discussion on the consis-

tency between the MEANS and SPMMM simulated mean concentration is required.

The discretised unit cell shown in Figure 5.1 measures 88 mm× 66 mm, and is

divided into Nvel
x = 22 by Nvel

y = 15 velocity statistic bins in the streamwise

and spanwise directions, respectively. Within the simulation domain there are

8 unit cells in the streamwise direction and 20 in the spanwise direction, for

a total of 176 × 300 velocity statistic bins in the xy-plane in the simulation

domain. In order to accurately estimate the velocity PDF in each velocity

bin, and thus provide an accurate estimate of the number of normalising par-

ticles (recall equation (3.68): N v
φ = Nφfu∆u∆v∆w) for each residence time

bin, MEANS should be run with a horizontal resolution of at least Nx = 176

and Ny = 300 (refer back to the end of Section 3.3.1 and Section 4.3 for

more information). In this way each conditional concentration bin will con-

tain only a single value of the velocity PDF when the plume is fully expanded,

and equation (3.68) will produce accurate values. However, with Nx = 176,

Ny = 300, Nz = Nvel
z = 40, and 203 velocity bins, the residence time array

in MEANS alone would require 62.9 GB of memory§, well beyond the amount

that is available. To get around this limitation, the velocity PDF in equa-

tion (3.68) was replaced by a horizontally-homogeneous velocity PDF that

resulted from taking a spatial average of the varying velocity PDF across the

unit cell. This method resulted in acceptable mean concentration consistency

between MEANS and SPMMM and allowed the models to be run with the available

computational resources.

§At single precision the number of bytes is 4 × Nx × Ny × Nz × Nu × Nv × Nw.
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Figure 5.13 shows the vertical profiles of the cross-wind integrated mean

concentration from MEANS and SPMMM simulations utilising locally inhomoge-

neous velocity statistics, 16 rows downstream from the source. While accept-

able, the consistency is not as good as for the horizontally-homogeneous sim-

ulation (not shown, but are as good as the horizontally-homogeneous FR82 re-

sults shown in Figure 4.7(b)). The major differences between the SPMMM-HH and

the SPMMM-LI simulations are: the use of the spatially-averaged velocity PDF

in equation (3.68) for the SPMMM-LI simulations; and the occurrence of rogue

velocities in the SPMMM-LI simulations, there were none in the SPMMM-HH sim-

ulations. These two factors are believed to have caused the discrepancy seen

in Figure 5.13. The effects of rogue velocities on the conditional concentration

field and first-order consistency are more thoroughly examined in Chapter 6.

Figure 5.14 shows the streamwise transects of the mean dimensionless con-

centration at six heights on the plume centreline. Close to the source (x/hc .

2.0), the SPMMM-LI results fit the experimental data better than the SPMMM-HH re-

sults, at all heights. This is likely due to the relatively large positive mean

vertical velocity found in the regions where the flow went up and over an ob-

stacle (i.e., near point A in Figure 5.1). Farther from the source (x/hc & 2.0),

there is little difference between the SPMMM-LI results and the SPMMM-HH results

within the canopy (z/hc < 1.0). At the top of the canopy (z/hc = 1.0), the

SPMMM-LI results are slightly poorer than the SPMMM-HH results. Above the

canopy (z/hc > 1.0), the SPMMM-LI results are consistently higher than the

SPMMM-HH results and therefore closer to the experimental measurements, but

the agreement between experiment and simulation is still marginal at best.

For both the SPMMM-HH and SPMMM-LI simulations it appears that the parti-
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Figure 5.13: The vertical profiles of the cross-wind integrated mean concen-
tration from MEANS and SPMMM simulations utilising locally inhomogeneous ve-
locity statistics 16 rows downstream from the source. The discrepancies are
due to the use of a spatially-averaged velocity PDF in the normalising particle
count calculation (see equation (3.68)), and the presence of rogue velocities in
the SPMMM-LI simulations.
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Figure 5.14: Streamwise transects of the mean dimensionless concentration at
selected heights on the plume centreline from SPMMM simulations of an elevated
point source (zs/hc = 0.2) in the Tombstone canopy flow.
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cles are not escaping the canopy as rapidly as they should have, resulting in

over-predicted concentrations within the canopy, and under-predicted concen-

trations above the canopy.

Table 5.2 presents the performance measures for the Figure 5.14 data.

From these performance measures we can see that the use of locally inhomo-

z/hc flow FB NMSE FAC2 NAE

0.1
HH -0.686 0.760 0.143 0.686
LI -0.607 0.511 0.143 0.607

0.2
HH -0.565 0.471 0.286 0.565
LI -0.436 0.234 0.286 0.436

0.6
HH -0.082 0.656 0.429 0.666
LI -0.230 0.556 0.286 0.637

1.0
HH 0.194 1.196 0.143 0.866
LI -0.321 0.403 0.429 0.578

1.5
HH 1.007 1.959 0.400 1.007
LI 0.311 0.364 0.600 0.522

2.0
HH 1.352 3.525 0.250 1.352
LI 0.640 0.591 0.500 0.640

Table 5.2: Performance measures for the mean dimensionless concentration
on the plume centreline from SPMMM simulations of an elevated point source
(zs/hc = 0.2) in the Tombstone canopy flow. The performance measures were
calculated from the data displayed in Figure 5.14.

geneous velocity statistics leads to a generally better fit to the experimental

data overall. We note however that many of these performance measures lie

outside of their acceptable ranges (e.g., FAC2).

Figures 5.15 – 5.17 show the spanwise transects of the mean dimension-

less concentration 1, 2, 4, 8, 12, and 16 rows downstream of the source

(x/hc = 0.67, 1.40, 2.87, 5.80, 8.73, 11.7) at three heights: within the canopy

at source height (z/hc = 0.2); at the canopy top (z/hc = 1.0); and above
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the canopy (z/hc = 1.5 for rows 1,2,4,8; z/hc = 3.0 for rows 12 and 16, as

this is the lowest above canopy measurement location for these rows). Note

once again that the scales on the vertical axes may vary between panels. The

water-channel experimental data sets are very large, and so to reduce clutter

on the graphs every twentieth Coanda experimental data point is plotted in the

spanwise transects. These figures support the statements made above: close

to the source (Figure 5.15), at all heights the SPMMM-LI simulations match

the experimental data better that the SPMMM-HH data; farther from the source

(Figures 5.16 & 5.17), both simulations produced comparable results within

the canopy; at the canopy top SPMMM-HH outperformed SPMMM-LI, and above

the canopy SPMMM-LI outperformed SPMMM-HH. From these figures it appears

that using locally inhomogeneous velocity statistics results in more lateral dis-

persion of the particles and thus a better fit to the experimental measurements.

With respect to the standard deviation of the dimensionless concentration

on the plume centreline (Figure 5.18), the SPMMM-LI results are more accu-

rate than the SPMMM-HH results close to the source (x/hc . 2.0), and less

accurate farther from the source (x/hc & 2.0). Table 5.3 presents the perfor-

mance measures for this figure. With respect to the FB, the SPMMM-LI sim-

ulations performed better than the SPMMM-HH simulations, and were within

the acceptable range. This is due to the better near field predictions of the

SPMMM-LI simulations. This better near field prediction, and reasonable far

field predictions, also resulted in NMSE values within acceptable limits for

the SPMMM-LI simulations. The NMSE values of the SPMMM-HH simulations are

consistently greater than those of the SPMMM-LI simulations, and above the
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Figure 5.15: Spanwise transects of the dimensionless mean concentration at
selected heights, one row (x/hc = 0.67; left column) and two rows (x/hc =
1.40; right column) downstream from the source from SPMMM simulations of an
elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.16: Spanwise transects of the dimensionless mean concentration at
selected heights, four rows (x/hc = 2.87; left column) and eight rows (x/hc =
5.80; right column) downstream from the source from SPMMM simulations of an
elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.17: Spanwise transects of the dimensionless mean concentration at
selected heights, twelve rows (x/hc = 8.73; left column) and sixteen rows
(x/hc = 11.7; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.18: Streamwise transects of the standard deviation of the dimension-
less concentration at selected heights on the plume centreline from SPMMM sim-
ulations of an elevated point source (zs/hc = 0.2) in the Tombstone canopy
flow.
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z/hc flow FB NMSE FAC2 NAE

0.1
HH 0.152 0.317 0.714 0.266
LI -0.271 0.178 0.286 0.367

0.2
HH 0.158 0.186 0.714 0.204
LI -0.193 0.143 0.286 0.352

0.6
HH 0.774 3.851 0.571 0.832
LI 0.098 1.288 0.143 0.710

1.0
HH 1.107 8.242 0.714 1.198
LI -0.148 0.779 0.286 0.703

1.5
HH 1.491 10.81 0.400 1.491
LI 0.268 1.378 0.400 0.879

2.0
HH 1.429 6.703 0.250 1.429
LI 0.063 0.653 0.250 0.690

Table 5.3: Performance measures for the standard deviation of the dimen-
sionless concentration on the plume centreline from SPMMM simulations of an
elevated point source (z/hc = 0.2) in the Tombstone canopy flow. The per-
formance measures were calculated from the data displayed in Figure 5.18.
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canopy they are outside of the acceptable range, again due to large under-

predictions of the near-source standard deviation. The same arguments apply

to the NAE, but the discrepancy is not as great since the NAE does not square

the error like the NMSE. The SPMMM-HH results do show better FAC2 values

than the corresponding SPMMM-LI results. This is due to more accurate far

field predictions, particular within the canopy.

Figures 5.19 – 5.21 show the spanwise transects of the standard devia-

tion of the dimensionless concentration at the same locations as for the mean

dimensionless concentration above. As for the streamwise transects shown

above, we see more accurate predictions from SPMMM-LI close to the source

(Figure 5.19), and more accurate predictions from SPMMM-HH farther from the

source (Figures 5.20 & 5.21), in terms of both the magnitude of the standard

deviation and the spanwise spread.

The streamwise transects of the skewness of the dimensionless concentra-

tion at six heights on the plume centreline can be seen in Figure 5.22. The

SPMMM-HH and SPMMM-LI results are comparable close to the source but quickly

diverge. At and below the canopy height, the SPMMM-HH results are in fair agree-

ment with the experimental results until x/hc ∼ 3.0, after which the model

under-predicts the skewness and at x/hc ∼ 8.0 begins to predict the skew-

ness to be approximately zero. Above the canopy the fit is fair. In contrast,

the SPMMM-LI results over-predicts the skewness at all downstream locations

x/hc & 1.0.

The more accurate performance with regards to the skewness of the SPMMM

run with horizontally-homogeneous velocity statistics compared to the SPMMM

run with locally inhomogeneous statistics is evident in Table 5.4, which shows
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Figure 5.19: Spanwise transects of the standard deviation of the dimensionless
concentration at three heights, one row (x/hc = 0.67; left column) and two
rows (x/hc = 1.40; right column) downstream from the source from SPMMM sim-
ulations of an elevated point source (zs/hc = 0.2) in the Tombstone canopy
flow.
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Figure 5.20: Spanwise transects of the standard deviation of the dimensionless
concentration at three heights, four rows (x/hc = 2.87; left column) and eight
rows (x/hc = 5.80; right column) downstream from the source from SPMMM sim-
ulations of an elevated point source (zs/hc = 0.2) in the Tombstone canopy
flow.
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Figure 5.21: Spanwise transects of the standard deviation of the dimensionless
concentration at three heights, twelve rows (x/hc = 8.73; left column) and
sixteen rows (x/hc = 11.7; right column) downstream from the source from
SPMMM simulations of an elevated point source (zs/hc = 0.2) in the Tombstone
canopy flow.
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Figure 5.22: Streamwise transects of the skewness of the dimensionless con-
centration at selected heights on the plume centreline from SPMMM simulations
of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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the performance measures corresponding to Figure 5.22. The SPMMM-HH results

generally outperform the SPMMM-LI results. We do note that for z/hc ≤ 1.0

the FB is outside of its acceptable range for both simulations, as is the FAC2

at various heights.

z/hc flow FB NMSE FAC2 NAE

0.1
HH 0.579 0.634 0.571 0.702
LI -0.938 1.468 0.286 0.951

0.2
HH 0.625 0.655 0.429 0.672
LI -0.968 1.737 0.286 0.988

0.6
HH 0.461 0.414 0.429 0.492
LI -0.999 1.624 0.286 0.999

1.0
HH 0.452 0.331 0.714 0.452
LI -0.666 0.755 0.429 0.718

1.5
HH 0.217 0.618 0.800 0.501
LI -0.270 0.790 0.200 0.805

2.0
HH -0.014 0.718 0.250 0.706
LI -0.329 0.700 0.500 0.794

Table 5.4: Performance measures for the skewness of the dimensionless con-
centration on the plume centreline from SPMMM simulations of an elevated point
source (z/hc = 0.2) in the Tombstone canopy flow. The performance measures
were calculated from the data displayed in Figure 5.22.

Figures 5.23 – 5.25 show the spanwise transects of the skewness of the

dimensionless concentration at the same locations as for the mean dimension-

less concentration. From Figure 5.23 we see there is comparable performance

between the two simulations close to the source. Within the canopy, the agree-

ment with the experimental data is good, except on the plume edges, where

the skewness is under-predicted. These edge effects are likely not a result of

flaw in the model, but an issue of statistical convergence—not enough particles

were released to enable the higher-order concentration moments to be com-



177

puted with good accuracy. The same behavior is observed in measured profiles

of skewness and kurtosis due to insufficient sampling. To reliably estimate the

skewness or kurtosis on the edge of the plume a very large number of particles

would have to be released. Above the canopy, the predictions vary from being

fair throughout the central region of the plume, and poor on the edges, again

due to edge effects. In Figures 5.24 & 5.25 the SPMMM-HH results are seen to

produce more accurate predictions than the SPMMM-LI results. Edge effects

are once again seen in the results from both simulations.

Statements similar to those made above regarding the skewness can be

applied to the kurtosis of the dimensionless concentration on the plume cen-

treline. Streamwise transects at six heights are shown in Figure 5.26, with

corresponding performance measures shown in Table 5.5. Again, after pre-

dicting similar values of kurtosis close to the source the SPMMM-HH results and

the SPMMM-LI results rapidly diverge with the SPMMM-LI results over-predicting

the kurtosis. The performance measure of SPMMM-HH are generally within, or

slightly outside of, their acceptable range, and better than the SPMMM-LI per-

formance measures.

The spanwise transects of the kurtosis of the dimensionless concentration,

as seen in Figures 5.27 – 5.29 (note the logarithmic y-axis), show similar fea-

tures to the spanwise profiles of skewness shown above: the close to source

model predictions (Figure 5.27) are good through the central region of the

plume but poor at the edges; farther from the source (Figures 5.28 & 5.29),

the SPMMM-HH results show a much better conformance to the experimental

data than the SPMMM-LI results through the central region of the plume. Edge

effects are again seen in some of the simulation results. The accuracy of the
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Figure 5.23: Spanwise transects of the skewness of the dimensionless concen-
tration at three heights, one row (x/hc = 0.67; left column) and two rows
(x/hc = 1.40; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.24: Spanwise transects of the skewness of the dimensionless concen-
tration at three heights, four rows (x/hc = 2.87; left column) and eight rows
(x/hc = 5.80; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.25: Spanwise transects of the skewness of the dimensionless concen-
tration at three heights, twelve rows (x/hc = 8.73; left column) and sixteen
rows (x/hc = 11.7; right column) downstream from the source from SPMMM sim-
ulations of an elevated point source (zs/hc = 0.2) in the Tombstone canopy
flow.
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Figure 5.26: Streamwise transects of the kurtosis of the dimensionless concen-
tration at selected heights on the plume centreline from SPMMM simulations of
an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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z/hc flow FB NMSE FAC2 NAE

0.1
HH 0.329 0.776 0.429 0.745
LI -1.539 7.767 0.143 1.539

0.2
HH 0.330 0.504 0.429 0.651
LI -1.589 10.53 0.143 1.608

0.6
HH 0.169 0.247 0.429 0.479
LI -1.547 7.949 0.143 1.547

1.0
HH 0.562 1.058 0.429 0.580
LI -1.063 2.488 0.286 1.168

1.5
HH 0.826 4.875 0.600 1.062
LI -0.164 2.521 0.200 1.337

2.0
HH 0.316 3.259 0.250 1.310
LI -0.187 1.937 0.250 1.257

Table 5.5: Performance measures for the kurtosis of the dimensionless concen-
tration on the plume centreline from SPMMM simulations of an elevated point
source (z/hc = 0.2) in the Tombstone canopy flow. The performance measures
were calculated from the data displayed in Figure 5.26.
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SPMMM-HH predictions for the kurtosis is quite good. The magnitude of the

statistical noise seen around −3 . y/hc . 3 in the SPMMM-LI simulation re-

sults in the top four panels of Figure 5.29 is amplified due to the logarithmic

y-axis.

For both the simulation utilising horizontally-homogeneous velocity statis-

tics and the simulation utilising locally inhomogeneous velocity statistics it

appears that not enough material is escaping the canopy, leading to over-

predicted in-canopy mean concentrations and under-predicted above canopy

concentrations. The large, positive mean vertical velocity in front of the ob-

stacles, resulting from the flow being deflected up and over the obstacles, helps

the SPMMM-LI simulations produce more accurate predictions of the mean and

standard deviation of the dimensionless concentration for x/hc . 2.0, close

to the source, but for the most part led to decreased accuracy farther down-

stream. For the skewness and the kurtosis of the dimensionless concentration,

the SPMMM-HH results are more accurate than the SPMMM-LI simulations.

Overall, for point source dispersion in a Tombstone canopy flow, spatial

averaging of the velocity statistics resulted in improved performance and ac-

curacy of the SPMMM model predictions. This finding is also noted in earlier

work by Wilson and Yee (2000), and may be due in part to the extremely

turbulent nature of the Tombstone canopy flow, the tab shaped obstacles are

efficient turbulence generators, and the flow field may not be well represented

as locally inhomogeneous. Furthermore, the locally inhomogeneous velocity

statistics were obtained by interpolating measurements made at a small num-

ber of points—there is no guarantee that resulting interpolations are physi-

cally valid (and moreover, the gradients of Reynolds stresses are sensitive to
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Figure 5.27: Spanwise transects of the kurtosis of the dimensionless concen-
tration at three heights, one row (x/hc = 0.67; left column) and two rows
(x/hc = 1.40; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.28: Spanwise transects of the kurtosis of the dimensionless concen-
tration at three heights, four rows (x/hc = 2.87; left column) and eight rows
(x/hc = 5.80; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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Figure 5.29: Spanwise transects of the kurtosis of the dimensionless concentra-
tion at three heights, twelve rows (x/hc = 8.73; left column) and sixteen rows
(x/hc = 11.7; right column) downstream from the source from SPMMM simula-
tions of an elevated point source (zs/hc = 0.2) in the Tombstone canopy flow.
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the interpolation, and may strongly influence the predictions of the concen-

tration distribution). These predictions will improve only if these gradients

happen to be correct. If not, it could result in drastically poorer predictions

in comparison with the simple assumption of horizontal homogeneity, where

these gradients in Reynolds stresses disappear—except of course for the ver-

tical gradients. Therefore, it may be better (in terms of model accuracy) to

oversimplify a flow field by spatially averaging it than to partially, imperfectly,

or poorly represent the inhomogeneities in the field.

The poorer first-order consistency between MEANS and SPMMM was partially

responsible for the poorer fit of the SPMMM-LI simulation results to the exper-

imental data. The poorer first-order consistency is related to the presence of

rogue velocities and is considered in greater detail in Chapter 6. The fault

may also lie in the fact that SPMMM does not resolve the obstacles. If the obsta-

cles were represented then the particles would reflect off of them, and perhaps

escape the canopy more readily. This mechanism was not investigated in this

thesis.

5.4 Chapter Summary

In this chapter SPMMM was used to simulate dispersion from continuous, ele-

vated, in-canopy line and point sources in the Tombstone canopy flow. The free

parameters of the model were assigned the calibrated values from Chapter 4:

C0 = 6.0, µ = 0.75, and Cr = 0.45 (the sole exception being one simulation in

which C0 = 2.0 and Cr = 0.18, for comparison with the Cassiani et al. (2007)

simulations).

For the line source dispersion simulations, the necessary velocity statis-
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tics to drive the model were extracted from figures in Legg et al. (1986)

and interpolated onto the SPMMM grid. The velocity statistics were treated

as horizontally-homogeneous. Measurements of the TKE dissipation rate and

the Lagrangian integral timescale had been provided by Raupach et al. (1986)

and Legg et al. (1986) respectively. With the equation ε = 2σ2
w/C0TLw

, and

by assigning C0 = 2.0, an inferred TKE dissipation rate that matched the ex-

perimental profile of the TKE dissipation rate reasonably well was computed.

Cassiani et al. (2007) followed this approach, and consequently set the value

of the Richardson constant to Cr ≈ C0/11, as suggested in Franzese and Cas-

siani (2007). Given that C0 = 2.0 is on the low end of the recently reported

values for the Kolmogorov constant, and that in Chapter 4 the Kolmogorov

constant was calibrated to C0 = 6.0, we preferred to not re-tune C0 and there-

fore determined the TKE dissipation rate as the sum of the turbulent shear

production and the turbulent wake production (the turbulent transport term

was neglected as it is not in closed form and would therefore have added an-

other tunable parameter to the model). This approach led to a good match

between the TKE dissipation rate used by SPMMM and those reported in Legg

et al. (1986), without the need to fix the Kolmogorov constant at a certain

value.

The cross-wind line source of the wind-tunnel Tombstone canopy exper-

iments was at a height of zs/hc = 0.85, with a diameter of ds = 0.9 mm.

For the SPMMM simulations the spatial distribution of the source particles was

assumed to be Gaussian. It was found that an initial source distribution of

σ0 = 2.0 produced good agreement with the experimental standard deviation

of concentration measurements at x/hc = 0.38. The SPMMM model predictions
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of the mean concentration were satisfactory to good above the canopy. Within

the canopy, the mean concentration was under-predicted close to the source

(x/hc = 0.38 and x/hc = 2.78) and over-predicted farther from the source

(x/hc = 11.7). The results for the standard deviation of the concentration

were qualitatively good. At x/hc = 0.38 the standard deviation of concen-

tration was under-predicted, as it was above the canopy farther downstream

(x/hc = 2.78 and x/hc = 11.6). The standard deviation of the concentration

was slightly over-predicted within the canopy at x/hc = 2.78 and x/hc = 11.6.

The discrepancies may be related to the velocity statistics, the modelled TKE

dissipation rate, or to the fact that SPMMM does not resolve the obstacles that

make up the canopy.

To compare SPMMM to the model of Cassiani et al. (2007), a simulation using

a TKE dissipation rate inferred from the experimentally measured Lagrangian

integral timescale (Legg et al., 1986) was carried out. The agreement was good

between the SPMMM results and the Cassiani et al. (2007) results, with differ-

ences likely attributable to the implementation of the models: SPMMM utilised

single-particle trajectories and a pre-calculated conditional mean concentra-

tion field whereas the model of Cassiani et al. (2007) utilised parallel par-

ticle trajectories and calculated the conditional mean concentration at each

timestep. The vertical profiles of the dimensionless mean concentration from

this simulation were more similar to the profiles as simulated by Flesch and

Wilson (1992) (whose model was formulated in terms of the Lagrangian inte-

gral timescale, as evaluated and communicated directly by Legg et al. (1986))

than the SPMMM simulations that used a TKE dissipation rate determined as

the sum of shear production and wake production.
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For the point source dispersion simulations in the Tombstone canopy flow,

the necessary velocity statistics were interpolated from the experimental water-

channel measurements of Hilderman and Chong (2007). Two SPMMM simula-

tions were performed and compared for the point source configuration: one

utilising spatially-averaged, horizontally-homogeneous velocity statistics, and

the other utilising locally inhomogeneous velocity statistics. The TKE dissipa-

tion rate for both simulations was calculated as the sum of the turbulent shear

production and the turbulent wake production, as already discussed above.

The 15 mm point source was placed behind an obstacle at a height of

zs/hc = 0.2. It was designed to have a uniform concentration across its di-

ameter and was therefore simulated as a tophat source. Close to the source

(x/hc . 2.0), the use of locally inhomogeneous velocity statistics led to more

accurate predictions of the mean and standard deviation of the dimensionless

concentration, but also resulted in decreased accuracy farther downstream.

For the skewness and the kurtosis of the dimensionless concentration, the

SPMMM results with horizontally-homogeneous velocity statistics are more ac-

curate than the SPMMM simulations with locally inhomogeneous velocity statis-

tics. In both simulations it appeared that not enough particles were escaping

the canopy, resulting in over-predicted concentrations within the canopy and

under-predicted concentrations above the canopy.

From a pragmatic perspective the incorporation of locally inhomogeneous

velocity statistics is counterproductive in terms of accuracy, at least in ref-

erence to these experiments in a Tombstone canopy flow, as that effort not

only complicates the trajectory modelling, but more importantly leads to less

accurate results when considering the full downstream fetch and the first four
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moments of the concentration field (however, obviously the approach of repre-

senting the inhomogeneity of the flow represents “higher fidelity” science, and

indeed has been shown to be crucially advantageous in other flows, e.g. Wil-

son et al. (2009)). If predictions of the concentration statistics are needed only

very close to the source then there appears to be some benefit to incorporating

the local velocity inhomogeneities.

Causes for this deterioration in performance when utilising locally inho-

mogeneous velocity statistics may include: exclusion of the large scale inho-

mogeneities (over-simplification of the extremely turbulent Tombstone canopy

flow may in fact be more accurate than a partial representation of the tur-

bulence though the introduction of local inhomogeneity); the local inhomo-

geneities were interpolated from a small number of measurements and there

is no guarantee that resulting interpolations are physically valid—which may

result in inaccurate gradients in the Reynolds stresses which could strongly af-

fect the predictions of the concentration field; poorer first-order consistency in

the SPMMM-LI simulation, perhaps due to the presence of rogue velocities; the

fact that SPMMM does not resolve obstacles which may prevent particles from

reflecting their way out of the canopy. While obstacle resolution is not inves-

tigated in this thesis the use of a flow field with large scale inhomogeneities

is covered in the next chapter, as is an examination of the effects of rogue

particle velocities on model consistency.
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Chapter 6

MUST Canopy Simulations

This chapter represents the culmination of my thesis work on the mod-

elling of concentration fluctuations, in that it identifies a severe problem with

the whole approach—namely, an instability of the underlying algorithm for

computing particle paths that manifests when the trajectory model is driven

by flow statistics that (whether correctly or incorrectly) entail highly irregular

variability from node to node. The problem is revealed here in the context

of simulations of the Mock Urban Setting Trials (MUST) experiments, which

document concentration fluctuations in a point source plume meandering its

way through a regular array of volume-occupying obstacles.

The MUST Canopy has been the subject of three experiments: full-scale,

atmospheric experiments (Yee and Biltoft, 2004); 1:50 scale wind-tunnel ex-

periments (Gailis and Hill, 2006); and 1:205 scale water-channel experiments

(Hilderman and Chong, 2007). The three experimental data sets are thor-

oughly compared by Yee et al. (2006), who concluded that the water-channel

experiments more accurately than the wind-tunnel experiments reproduced

quantitatively the detailed plume structure of the full-scale atmospheric ex-

periments (when appropriately scaled). In this thesis we used the experi-
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mental data from the water-channel experiments and therefore discuss these

experiments more fully. The full-scale and wind-tunnel experiments are briefly

described for completeness.

6.1 Experimental and Computational Setup

The full-scale, atmospheric experiments of the Mock Urban Setting Tri-

als were conducted at the US Army Dugway Proving Grounds in the Great

Basin Desert of Utah. The canopy consisted of one hundred and twenty ship-

ping containers with dimensions 2.42 m× 12.2 m× 2.52 m (length, width, and

height respectively) that were regularly placed in twelve rows, each containing

ten containers. The obstacles were oriented such that the 12.2 m side faced

the streamwise component of the mean wind. The average obstacle face to

face spacings (i.e., the gap between the obstacles) in the streamwise and span-

wise directions were 12.9 m and 7.9 m, respectively. This arrangement of the

obstacles resulted in a frontal area index of λf = 0.10 (more than a factor of

two lower than the Tombstone Canopy) and a plan area index of λp = 0.096.

A plan view of the MUST array can be seen in Figure 6.1. Note that the

dimensions shown in this figure correspond to the water-channel experiments

(discussed below). Velocity statistics upstream, within, and downstream of the

array were collected with 2-D and 3-D sonic anemometers. The majority of

the dispersion experiments were undertaken in slightly stable to stable noctur-

nal conditions, although a small number of the experiments had near-neutral

stability.

Pure propylene gas was released from a 0.05 m diameter pipe at five differ-

ent heights (on different occasions): zs/hc = 0.059, 0.51, 0.71, 1.02,and 2.05.
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The flow rate was sufficiently low such that the propylene could be considered

a passive tracer, regardless of propylene having a density 1.45 times that of

air. Depending on the source height the pipe was either vertically or hori-

zontally oriented. Concentration data were collected using forty-eight digital

photo-ionisation detectors, which have a frequency response of 50 Hz and a

sensitivity of about 0.01 parts per million by volume of propylene. Due to the

high levels of turbulence within the canopy, the resulting concentration mea-

surements do not distinguish between dispersion from a vertically oriented pipe

and dispersion from a horizontally oriented pipe. The position of the source

varied from being upwind of the array to within the array.

The 1:50 scale wind-tunnel MUST experiments were performed in the 1.5

MW Boundary Layer Wind-Tunnel (measuring 55 m × 12 m × 4 m in length,

width, and height respectively) at Monash University in Victoria, Australia.

The working section of the tunnel is approximately 10–12 metres in length,

depending on the type of experiment being conducted. A 1:50 scale version

of the MUST Canopy was placed within the tunnel. The length, width, and

height of the obstacles were 48 mm×244 mm×48 mm, respectively. Note that

the length and width of the wind-tunnel MUST Canopy obstacles are 1:50

scale, whereas the height of the obstacles is marginally inconsistent, at 1:48

scale. Digital anemometers extracted mean wind speeds while crossed hot-wire

anemometers extracted turbulence measurements. Velocity measurements did

not extend above z = 1.00 m. By this height there was little change in the

mean streamwise velocity, and the boundary layer depth was taken to be

δ ≈ 1.00 m. The ratio of the boundary layer depth to the canopy height was

thus δ/hc ≈ 20. The majority of the experiments had neutral stability, but
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a few were stably stratified. To produce a stably stratified boundary layer,

heating elements in the ceiling of the wind-tunnel were turned on. As the

air passed over these elements, it became hotter than the underlying layers,

resulting in an inverted stably stratified boundary layer. For the dispersion

experiments with stable stratification, the 1:50 scale MUST Canopy and the

source were inverted and affixed to the ceiling of the wind-tunnel.

Pure ethylene gas was released from a 10 mm diameter ground-level point

source. As the density of ethylene is 0.965 times that of air, and the temper-

ature of the ethylene was the same as the air, the tracer could be considered

passive. Concentration data were collected by ten flame ionisation detectors.

While qualitatively similar to the full-scale MUST array plume, the wind-

tunnel array plume in neutrally stratified flows had lateral and vertical spreads

that were 2 to 3 larger than the full-scale array plume, and consequently an

under-predicted peak mean concentration. The stably stratified experiments

however produced results much more similar to the full-scale field experiments.

The 1:205 scale water-channel MUST experiments were conducted by Coan-

da Research and Development Corporation in the same facility that had earlier

been used for the Tombstone Canopy experiments, discussed in Section 5.1.

The length, width, and height of the obstacles were 11.8 mm × 59.4 mm ×

12.4 mm, respectively. Figure 6.1 shows the water-channel MUST obstacle ar-

ray in plan view. Lettered points correspond to velocity statistic data extrac-

tion positions. Point F lies in the centre of the array (i.e. (xF , yF ) = (0, 0)).

For the experiments used in this thesis, the ground-level point source was at

point L. As for the Coanda Tombstone Canopy experiments, laser Doppler ve-

locimetry was used to extract velocity statistics. Velocity data for the vertical
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Figure 6.1: The water-channel MUST obstacle array in plan view. The height
of the obstacles was 12.4 mm. Lettered points correspond to velocity statistic
data extraction positions. The ground-level point source was at point L. Dot-
ted lines correspond to concentration statistic data extraction locations 1, 2,
3, 5, 8, and 11 rows down stream of the source.
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direction were not extracted at points A, C, G, I, K, and O. With regards to

notation, the line of points A - H, which does not pass through any obstacles,

shall be referred to as a canyon line, whereas the line of points I - P, which

does pass through obstacles, shall be referred to as an obstacle line.

From the measured velocity statistics, the friction velocity was evaluated as

u∗ = 0.0255 m s−1, the boundary layer depth was determined to be δ = 275 mm

and the free-stream velocity to be 0.375 m s−1, giving a Reynolds number

(based on δ and 〈u〉δ) of Reδ = 1.0×105. The ratio of the boundary layer depth

to the canopy height was δ/hc = 22.2, similar to that of the wind-tunnel MUST

experiments. The mean streamwise velocity at the height of the canopy was

〈u〉c ≈ 0.165 m s−1, when averaged along the inflow region of the MUST array

(i,e., the leading edge points A, B, C, I, J; point K not included because the

velocity measurements at this location do not extend to the ground-level). The

corresponding Reynolds number (based on 〈u〉c and hc) is Rec = 2040. Castro

and Robins (1977) suggested the criterion Re > 4000 for acceptable physical

modelling of flow around surface mounted cubes, and thus Rec = 2040 seems

to be too low. However, as suggested by MacDonald et al. (1998), for flows

around obstacles with a significant non-unity aspect ratio (the aspect ratio of

the MUST array obstacles is 59.4 : 12.4 ≈ 4.79 : 1), a more relevant length

scale for the interaction of the flow with the obstacles is h∗c = A
1/2
f , where Af

is the frontal area of the obstacles (note that for non-normal incidence flow the

projected frontal area must be used). With h∗c and 〈u〉c, the Reynolds number

for the MUST flow at canopy height is Re∗c = 4470 > 4000, which is sufficient

to ensure Reynolds number independence in the water-channel experiments.

We repeat for gravitas that the analysis of Yee et al. (2006) concluded that
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the water-channel experiments more accurately reproduced quantitatively the

full-scale atmospheric experiments than the wind-tunnel experiments, when

appropriately scaled.

Sodium fluorescein dye (which we recall from Chapter 5 is dynamically

passive in water) was released from the 2.8 mm inner diameter, vertically ori-

ented tube at a constant rate of Q = 12 mL min−1. This release rate was low

enough to ensure that the dye did not escape the recirculating wake region be-

hind the obstacles during release from the source. Laser induced fluorescence

techniques were used to extract concentration data 1, 2, 3, 5, 8, and 11 rows

downstream from the source at several heights. The concentration extraction

locations are shown as dotted lines in Figure 6.1. The raw concentration data

were made dimensionless with equation (5.3) before computing statistics.

To drive the MEANS and SPMMM simulations, spanwise periodicity of the

measured Coanda velocity statistics was assumed, and the array shown in

Figure 6.1 was reduced to include only the area visited by the plume, as

shown in Figure 6.2. The dotted lines demarcate the grid used to interpo-

late the measured velocity data. The shaded point L bin corresponds to point

L in Figure 6.1. The interpolation of the velocity statistics was similar to the

interpolation used for the locally inhomogeneous Tombstone Canopy velocity

statistics (i.e., Section 5.1). The lettered point data shown in Figure 6.2 was

interpolated onto a grid consisting of Nvel
x = 12 bins in the streamwise di-

rection, Nvel
y = 25 bins in the spanwise direction and Nvel

z = 40 bins in the

vertical direction. To guide the splines to the ground-level, we assumed the

velocity statistics remained constant at the ∼ 0.5hc value (the lowest measure-

ment height) for z < 0.5hc. While it may have been more realistic to enforce a
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Figure 6.2: The reduced water-channel MUST obstacle array in plan view, as
used for the MEANS and SPMMM simulations. Areas of the array not visited by
the plume in the water-channel experiment have been removed. The dotted
lines demarcate the grid used to interpolate the measured velocity data. The
shaded point L bin corresponds to point L in Figure 6.1.
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generic decay of the velocity statistics to the ground-level, the additional detail

of the velocity statistics would have been lost in the relatively low resolution

of the discretisation grids. There was also no guarantee that the functional

form of the decay would have been correct for the MUST array flow, as the

lowest measurement height of the velocity statistics was still relatively high at

z/hc ≈ 0.5.

For each lettered velocity extraction point in Figure 6.2, vertical profiles

of the statistics have been produced using linear spline interpolation. Cubic

spline interpolation (as used in the Tombstone Canopy simulations) resulted in

undesirably large oscillations between the velocity measurement locations near

ground-level. This was due to fewer in-canopy velocity statistic measurements

to guide the splines in the MUST canopy experiments versus the number of in-

canopy measurements in the Tombstone Canopy experiments (e.g., compare

with Figure 5.3). The resulting vertical splines can be seen for the mean

streamwise velocity at points L and P in Figure 6.3.

The vertical profiles of the velocity statistics from extraction locations D,

E, F, G, H, L, M, O, and P were then interpolated onto the Nvel
x ×Nvel

y grid

for each vertical level using thin plate splines. Streamwise transects along a

line through the source (i.e., along an obstacle line from point L to point P)

at four heights are shown in Figure 6.4. Note that heights in this figure (and

those that follow) refer to the bin that contains that height. For example, the

“ground-level” transect plots those bins on the line from point L to point P

that are in contact with the ground, the “z/hc = 1.0” transect plots those

bins on the line from point L to point P that contain the height z/hc = 1.0,

and so on. The row indices along the x-axis correspond to the row indices
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Figure 6.3: Vertical profiles of the mean streamwise velocity at points L and
P from the water-channel MUST canopy experiments and the resulting inter-
polation used to drive MEANS and SPMMM simulations.
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in Figures 6.1 and 6.2, as do the letters. Corresponding lines of letters in

Figure 6.4: Streamwise transects of the interpolated mean streamwise velocity
along an obstacle line (i.e., from point L to point P) at four heights for the
water-channel MUST canopy experiments. These interpolations were used to
drive the MEANS and SPMMM simulations. The row indices along the x-axis
correspond to the rows in Figures 6.1 and 6.2, as do the letters.

Figure 6.2 have identical interpolations. An interesting feature in the transects

shown in the above figure is that at the source location (ground-level transect

at point L) the mean streamwise velocity is negative (i.e., upstream) with

a value of 〈u〉/u∗ = −0.28, showing a recirculating wake region behind the

obstacle which shields the source location (see Figure 6.1).

Spanwise transects through the source (i.e., between rows 1 and 2) are

shown for four heights in Figure 6.5. The letters along the x-axis correspond

to the lettered velocity statistic extraction points in Figures 6.1 and 6.2. As for
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Figure 6.5: Spanwise transects of the interpolated mean streamwise velocity
at four heights for the water-channel MUST canopy experiments. These in-
terpolations were used to drive the MEANS and SPMMM simulations. The letters
along the x-axis correspond to the letters in Figures 6.1 and 6.2.
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the Tombstone Canopy simulations, the interpolated velocity statistics were

allowed to take non-zero values in regions occupied by the canopy obstacles,

and particles were permitted to enter the interior volumes of the obstacles.

Recall that this was permitted to prevent singularities in the Reynolds stress

tensor and to prevent particles from getting stuck (i.e., not moving downstream

to xmax) within the simulation domain, since this version of the SPMMM model

suite is not obstacle resolving.

The TKE dissipation rate was calculated assuming local equilibrium as

ε = Ps + Pw, as previously discussed at the end of Section 5.1. The mod-

Figure 6.6: Modelled vertical profiles of the TKE dissipation rate at points A
and P for the water-channel MUST canopy experiments. The TKE dissipation
was calculated assuming local equilibrium (ε = Ps + Pw).

elled vertical profiles of the TKE dissipation for points L and P are shown in
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Figure 6.6. The other points in the array have similar profiles.

Examples of the other velocity statistics are shown in Figure 6.7, which

shows the vertical profiles of the mean velocities and standard deviation of

the streamwise velocity, and Figure 6.8, which shows the vertical profiles of

the standard deviation of the spanwise and vertical velocities, and the veloc-

ity covariances. Both figures show the experimental measurements and the

interpolated profiles for two points in the centre of the MUST array: point

F (on a canyon line), and point N (on an obstacle line). Above the canopy,

Figure 6.7: Vertical profiles of the mean velocities and the standard deviation
of the streamwise velocity for point F (on a canyon line) and point N (on
an obstacle line) from the water-channel MUST canopy experiments. The
symbols represent the experimental measurements and the lines represent the
modelled profiles used to drive MEANS and SPMMM.



206

the profiles for all of the velocity statistics at both points are similar in shape

and magnitude. The covariance 〈u′v′〉 is an exception to this observation, but

its magnitude is very small when compared to the other statistics. Notable

Figure 6.8: Vertical profiles of the standard deviation of the spanwise and
vertical velocities and the velocity covariances for point F (canyon line) and
point N (obstacle line) from the water-channel MUST canopy experiments.
The symbols represent the experimental measurements and the line represent
the modelled profiles used to drive MEANS and SPMMM.

features in the vertical profiles below the canopy height include: the mean

streamwise velocity is (not surprisingly) lower for point N, which is behind an

obstacle, than for point F; the mean vertical velocity at point F is positive,

tending to push material out of the canopy, while it is negative at point N,

tending to draw material into the canopy; the magnitude of the standard de-
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viation of the vertical velocity at point F (canyon line) is approximately seven

times larger than at point N (obstacle line), and its above canopy values. With

regards to σw, the obstacle line and canyon line point pair N-D is anomalous in

that the in-canopy standard deviation of the vertical velocity is larger for the

canyon line point than for the obstacle line point (i.e., σF
w > σN

w for z/hc < 1),

opposite to what is expected (larger standard deviations are expected in the

re-circulating wake region behind the obstacles, that is, along the obstacle

lines). All other pairs where w velocity data were extracted show the expected

behaviour for z/hc < 1: σL
w > σD

w , σM
w > σE

w, σP
w > σH

w (obstacle line points on

the left of the inequality, canyon line points on the right). The anomaly for

the point pair N-D serves to highlight the large scale inhomogeneities in the

MUST canopy flow.

Also shown in Figures 6.7 and 6.8 are interpretations for point N (midway

between obstacles on an obstacle line) of the mean streamwise velocity and

the 〈u′w′〉 shear stress in the context of one-dimensional aerodynamics. In the

top left panel of Figure 6.7, the β-profile (equation (2.52)) and the displaced

log-law (equation (2.53)) are shown to fit the measured streamwise velocity

at point N very well. The parameters for these fitted velocity models were:

β = 1.5 and d = 0.88hc (which is slightly larger than the d ≈ 0.7hc rule of

thumb for the displacement height). In the bottom right panel of Figure 6.8,

lines of best fit have been fitted to the above and below canopy shear stress

profiles. As plotted with the independent variable on the y-axis, the slopes

of these lines represent (∂〈u′w′〉/∂z)−1. In Chapter 2, it was shown that for

a horizontally-homogeneous flow the vertical gradient of the shear stress is
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balanced principally by the streamwise pressure gradient and the Coriolis force,

∂〈u′w′〉
∂z

= −1

ρ

∂〈p〉
∂x

+ fc〈v〉. (2.32)

By assuming horizontal-homogeneity∗ above the canopy, ignoring Coriolis ef-

fects (which are exceedingly small at the scale of the water-channel), and cal-

culating the slope of the above canopy line of best fit, the streamwise pressure

gradient above the water-channel MUST Canopy is found to be approximately

∂〈p〉
∂x

≈ −2.58 × 10−3 Pa m−1, (6.1)

which is comparable to a typical mid-latitude mesoscale atmospheric value of

∼ 10−3 Pa m−1 (Parish et al., 2007).

Within the canopy, there is rapid stress attenuation due to drag on the

obstacles, and (as also shown in Chapter 2) the dominant terms in the mo-

mentum equation are

∂〈u′w′〉
∂z

= −1

2
CDa[〈u〉]2. (2.49)

Since the right-hand side of the above equation is equal to the slope of the

below canopy 〈u′w′〉 line of best-fit, the element area density a (calculated

with λf ) is known, as is the spatially-averaged mean streamwise velocity below

the canopy, the effective drag coefficient of the MUST Canopy is CD ≈ 2.0.

Note that in reality the MUST canopy flow is not one-dimensional and strong

pressure gradients across the canopy existed, and so equation (6.1) is severely

wrong, and this interpreted drag coefficient is not suggested to be rigorous. A

rigorous approach to determining the effective drag coefficient of an array of

solid obstacles is discussed in Lien and Yee (2005)

∗The 〈u′w′〉 shear stress was spatially-averaged over the entire MUST Canopy.
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Lastly, we note that a suspected outlier at point E in the Coanda mea-

surements of σw was excluded from the interpolation, as shown in Figure 6.9.

None of the other Coanda velocity statistics measurement locations showed a

similar spike in their σw profile so high above the canopy.

Figure 6.9: A suspected outlier at point E in the Coanda σw measurements. No
other Coanda velocity statistic measurement location showed a similar spike
in the σw profile so high above the canopy. The outlier was excluded from the
interpolation.

6.2 Dispersion from a Continuous Point Source

The MUST canopy simulations of dispersion from a continuous point source

were severely limited by two factors, which are discussed in turn. First,
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within the canopy, the driving velocity statistics had large variations (inho-

mogeneities) over short length scales (e.g., see the σw profile in Figure 6.8),

which required that the u, v, and w velocity spaces each be discretised into

at least 70 bins in order to ensure that the driving velocity PDFs numerically

integrated to unity. This number of velocity bins greatly increased the compu-

tational resources required by the model, reduced the spatial resolution of the

simulations, and resulted in increased statistical error. These problems would

be easily solved by using a more powerful computer, and more particles in

the simulations. The second (and more severe) limitation was that the steep

gradients in the Reynolds stresses near the canopy top (most notably ∂σ2
w/∂z)

resulted in the generation of many rogue velocities. As will be demonstrated

in Section 6.2.1, the re-initialisation of these rogue velocities breaks the the-

oretically required consistency between the MEANS and SPMMM modelled mean

concentration.

To demonstrate the second of the above limitations, simulations were run in

which Nφ = 2× 107 particles were used to pre-calculate the unconditional and

conditional means with MEANS, andN = 2×107 particles (run as 10 simulations

of 2 × 106 particles) were used in the SPMMM micromixing simulations. As

mentioned above, 703 velocity bins (Nu = Nv = Nw = 70) had to be used

to discretise velocity space, and so the discretisation of the driving velocity

statistics in the vertical direction was reduced to 25 bins from 40 in order to

reduce the memory required for the simulations below the amount available

in the computer. The spatial resolution of the simulation was set to match

the discretisation of the driving velocity statistics: Nx = Nvel
x = 12, Ny =

Nvel
y = 25, and Nz = Nvel

z = 25. The timestep scale factor was µt = 0.02. The
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Kolmogorov constant, the micromixing constant, and the Richardson constant

were set to the values optimised for the the FR82 experiments in Chapter 4:

C0 = 6.0, µ = 0.75, and Cr = 0.45, respectively. The initial distribution of

particles at the source was assumed to be Gaussian with an initial spread of

σ0 = ds.

Figure 6.10 shows the spanwise transects of the mean dimensionless concen-

tration (top left panel), the standard deviation of the dimensionless concentra-

tion (top right panel), the skewness of the dimensionless concentration (bottom

left panel), and the kurtosis of the dimensionless concentration (bottom right

panel), for a position 11 rows downstream of the source (row index 12.5) at

z/hc = 0.5. The accuracy of the SPMMM predictions is poor for each statistic as

a result of poor first-order consistency between MEANS and SPMMM, an example

of which can be seen in Figure 6.11. The figure shows the spanwise transects

of the mean concentration 11 rows downstream of the source (row index 12.5),

at the top of the canopy z/hc = 1.0. In total, 9.16 × 106 out of 1.44 × 1010

steps had rogue velocities in the MEANS simulation (which computes the un-

derlying conditional mean concentration field for the SPMMM simulations). As

a percentage, this represents only 0.064%, a seemingly insignificant amount.

However, in the next section it will be shown that it is not the number of

rogue velocities that occur that affects the first-order consistency, but rather

how often these rogue velocities occur in the same spatial location.

Another discrepancy between SPMMM and the Coanda experimental results

shown in Figure 6.10 is the spanwise position of the simulated maximum mean

concentration is offset to the left in relation to the experimental results. The

probable cause of this is allowing the particles to pass through the interior vol-
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Figure 6.10: Spanwise transects of the first four moments of the dimensionless
concentration field from SPMMM simulations of a ground-level point source in
the MUST canopy flow. The transects are at a position 11 rows downstream
of the source (row index 12.5) and z/hc = 0.5. The spanwise source position
is y/hc = −3.95.
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Figure 6.11: An example of the first-order inconsistency between the MEANS and
SPMMM simulations for dispersion from a ground-level point source in the MUST
canopy flow. The spanwise transects of the mean concentration shown here
are for a position 11 rows downstream of the source (row index 12.5) at the
top of the canopy.
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umes of the obstacles. If the particles were prohibited from passing through

the obstacles, they would have to travel around or over them, perhaps reduc-

ing this discrepancy. Future versions of SPMMM will resolve the obstacles and

reflect particles off of their walls. This may not solve the discrepancy however.

Figure 3(d) of Wilson et al. (2009) shows an offset to the right of the span-

wise position of the simulated maximum mean concentration in relation to the

water-channel MUST canopy experimental results (at a different location than

the one used in Figure 6.10). The LS model used by these authors employed

a reflection scheme when particles encountered an obstacle, and a computer

generated velocity field.

6.2.1 Rogue Velocities Prevent Consistency

To demonstrate the effects that rogue velocities have on the models, two

simulations were performed where the particles were restricted to the above

canopy region (by setting the reflection height at the bottom boundary of the

simulation domain to the canopy height: zrflt = hc). This restriction prevented

the particles from encountering the steep in-canopy gradients in the Reynolds

stress tensor, thereby almost eliminating the occurrence of rogue velocities.

To further simplify the flow, the mean vertical and spanwise velocities were

zeroed, along with the 〈u′v′〉 shear stress (〈v〉 = 〈w〉 = 〈u′v′〉 = 0). Since

the velocity statistics varied more slowly above the canopy, twenty velocity

bins in each direction (Nu = Nv = Nw = 20) was sufficient to ensure that

the velocity PDFs numerically integrated to unity. The discretisation of the

driving velocity statistics in the vertical direction was returned to the values

described in Section 6.1, and the spatial resolution of the simulations was set
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to match: Nx = Nvel
x = 12, Ny = Nvel

y = 25, and Nz = Nvel
z = 40. For both

simulations, the source height was elevated above the canopy (zs/hc = 1.8),

while keeping the spanwise position at point L (ys/hc = −3.95) in Figure 6.1

(as in the Coanda experiments). The initial source distribution was set to

σ0 = 7ds. These values of zs and σ0 were chosen as they provided a reasonable

fit to the magnitude of the Coanda measured mean concentration at z = 2hc,

two rows downstream of the source (shown below in Figure 6.16), thus permit-

ting some evaluation of the above-canopy performance of SPMMM. The values

of all other parameters were the same as for the MUST simulations whose

domain encompassed the full flow depth (i.e., down to z/hc = 0) described in

Section 6.1.

The first simulation (denoted R300) utilised the velocity statistics as de-

scribed above and had few rogue trajectories in the MEANS simulations. The

second simulation (denoted R301) utilised velocity statistics which did not cor-

rect the suspected outlier in σw at point E (shown in Figure 6.9), and therefore

had produced many more rogue trajectories in the MEANS simulations, probably

due to the resulting steeper gradients (i.e., ∂σ2
w/∂xi) around the outlier. Note

that due to the periodicity of the velocity statistics in the spanwise direction,

there are multiple outliers in the driving velocity statistics (hereafter called

the outliers). The number of rogue velocities in the SPMMM simulations was

comparable. Table 6.1 summarises the number of particle steps with rogue

trajectories for these two simulations. For both simulations, the number of

rogue steps as a fraction of the total number of steps would appear to be

negligible. In the R300 MEANS simulation, the 41 steps with rogue velocities

occurred throughout the simulation domain. In contrast, the majority of the
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MEANS SPMMM

Rogue Steps Total Steps Rogue Steps Total Steps

R300 41 1.72 × 1010 16649 4.82 × 109

R301 1183 1.70 × 1010 19612 4.80 × 109

Table 6.1: The number of particle steps with rogue velocities in MUST canopy
simulations for two different interpolations of the driving velocity statistics:
one ignoring the suspected outlier at the point E Coanda velocity statistics
measurement location (R300); and one including it (R301). For both simula-
tions, the particles were prohibited from entering the canopy by setting the
reflection height on the bottom boundary to zrflt = hc.

“excess” rogue velocities in the R301 MEANS simulation occurred near the two

velocity statistic bins† (left and right of the source) containing the outliers

(i.e., between row indices 3 and 4; left bin: −8.89 ≤ y/hc < −6.92, right

bin: −0.99 ≤ y/hc < 0.99; z/hc = 7.0), as shown in the y-z scatter plot of

rogue velocity positions in Figure 6.12. The shaded boxes are the velocity

statistic bins left and right of the source which contain the outliers. There

are 911 rogue velocity generation positions plotted in Figure 6.12. Of these,

428 cluster around the left velocity statistic bin, 460 around the right velocity

statistic bin, 20 in the space between the two velocity statistic bins, and 3

elsewhere. The repeated occurrence of rogue velocities at these two locations

resulted in poor first-order consistency between MEANS and SPMMM in the R301

simulations. The majority of the remaining 272 rogue velocities occurred one

row upstream or downstream of the shaded velocity statistic bins shown in

Figure 6.12, and at the same spanwise and vertical positions, again suggesting

that steeper gradients of the Reynolds stresses caused by the large σ2
w value of

†Recall the three grids used in MEANS and SPMMM: the velocity statistic grid, used to
discretise the driving velocity statistics in physical space (Nvel

x , Nvel
y , Nvel

z ); the spatial
grid, used to discretise the physical space (Nx, Ny, Nz); and the velocity grid, used to
discretise the velocity space (Nu, Nv, Nw).
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Figure 6.12: The spanwise and vertical positions of the rogue velocities between
row indices 3 and 4. The shaded boxes demarcate the spanwise and vertical
positions of the velocity statistic bins that contain the outliers. Note how the
majority of the rogue velocities occur close to the outliers, particularly on the
sides closest to the source (ys/hc = −3.95).
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the outliers in this area of the simulation domain are responsible for the rogue

velocity generation.

Figure 6.13 shows the spanwise transects of the mean concentration from

the R300 (top panel) and R301 (lower panel) MEANS and SPMMM simulations.

The transects are from row index 3.5 and height z/hc = 7.0, which corre-

sponds to the (x, z) location of the outliers. The spanwise location of the

source is ys/hc = −3.95. The spatial bins containing the outliers span from

−0.99 ≤ y/hc < 0.99 and −8.89 ≤ y/hc < −6.92 (shown as thin shaded rect-

angles along the y/hc axis). The small differences between the R300 and R301

MEANS transects at this location are due to the the differences between the flow

fields for the two simulations. Below z/hc ≈ 5.3, the flow fields are identical.

Above this height, the values of σ2
w and its gradients differ between the two

flow fields, due to the outliers.

The consistency between MEANS and SPMMM is good for the R300 simulations,

with the small differences in the transects attributable to statistical noise. The

consistency in the R301 simulations is poor, with the SPMMM simulations over-

predicting the mean concentration. Note that the spikes in the SPMMM transect

in Figure 6.13(b) (where the inconsistencies are worst) are coincident with the

edges of the velocity statistics bins that contain the outliers (i.e., the regions of

intense rogue velocity generation shown in Figure 6.12). It is important to note

that away from regions of rogue velocity generation the first-order consistency

between the R301 MEANS and SPMMM simulations is good to excellent, as shown

in the bottom panel of Figure 6.14 at row index 3.5 and height z/hc = 4.0.

The R300 results are shown in the top panel for comparison. The statistical

noise in the R300 SPMMM profiles is less than in Figure 6.13(a) as z/hc = 4.0 is
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(a) Results from R300

(b) Results from R301

Figure 6.13: The spanwise transects of the mean concentration from the R300
and R301 MEANS and SPMMM simulations. The transects are from row index 3.5
and height z/hc = 7.0, which corresponds to the (x, z) location of the outliers.
The spanwise extents of the spatial bins containing the outliers are shown by
the thin shaded rectangles along the y/hc axis. The spanwise location of the
source is ys/hc = −3.95.
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closer to the source than z/hc = 7.0, and thus there are more particles in this

region of the simulation domain.

Recall from Chapter 3 that rogue velocities arise due to dynamical and

numerical instabilities within the Langevin equations. While a rogue velocity

is more probable in regions where there are steep gradients in the Reynolds

stresses (such as near the outlier in Figure 6.9), they are not predictable. Rogue

velocities affect the first-order consistency by altering the calculation of the

conditional mean concentration (equations repeated below for convenience),

〈φ|u〉 = 〈φ|u〉(xI , yJ , zK , uL, vM , wN) =
Qtvr
VN v

φ

, (3.66)

where we recall that Q is the source strength, tvr = tvr(xI , yJ , zK , uL, vM , wN) is

the conditional residence time, V = V(xI , yJ , zK) is the volume of the spatial

bin, and

N v
φ = N v

φ(xI , yJ , zK , uL, vM , wN) = Nφfu∆u∆v∆w, (3.68)

is the conditional residence time normalisation constant. The PDF of the

driving velocity statistics is fu, and ∆u, ∆v, and ∆w are the streamwise,

spanwise, and vertical velocity bin widths, respectively.

When a particle attains a rogue velocity, the three components of its ve-

locity are re-initialised based upon the local velocity statistics. This results in

a jump from one velocity bin to another (from the rogue velocity bin to the

receiving velocity bin), resulting in a particle in a velocity bin that it did not

travel to in a continuous manner, according the driving velocity PDF. Since

the driving velocity statistics are assumed to be Gaussian, there is approxi-

mately a 63% chance that the re-initialised velocity is within plus or minus one

standard deviation from the mean, which causes velocity bins encompassing
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(a) Results from R300

(b) Results from R301

Figure 6.14: The spanwise transects of the mean concentration from the R300
and R301 MEANS and SPMMM simulations. The transects are from row index 3.5
and height z/hc = 4.0. The spanwise extents of the spatial bins containing
the outliers are shown by the thin shaded rectangles along the y/hc axis. The
spanwise location of the source is ys/hc = −3.95.
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velocities one standard deviation from the mean to receive the majority of the

re-initialised particles. The jump from one velocity bin to another leads to

an over-accumulation of conditional residence time tvr in the receiving velocity

bin, as this residence time that would not have been accumulated if there were

no rogue velocities. Complementary to this over-accumulation of residence

time in the receiving velocity bin, there is an under-accumulation of residence

time in the rogue velocity bin, as the re-initialised particle no longer resides

in that bin.

The error in 〈φ|u〉 from the altered values of tvr is amplified by the fact

that the velocity PDF does not account for the rogue or re-initialised parti-

cles. Consequently, the normalisation constants calculated by equation (3.68)

are too high for the rogue velocity bins and too low for the re-initialised ve-

locity bins. Note that the unconditional concentration is unaffected by rogue

velocities since the unconditional residence times are accumulated for spatial

bins only, and are normalised by the number of particles in the simulation

(Nφ, a constant).

The effects of rogue velocity re-initialisation are very clearly shown in

Figure 6.15, which displays the vertical profile of the conditional concentration

from the R300 MEANS simulation (top panel), and the R301 MEANS simulation

(bottom panel) for velocity bin 4210, which received many re-initialised rogue

particles. The spanwise location of these profiles is in the centre of a spatial

bin containing an outlier at y/hc = 0.0, where many rogue velocities were

generated. The conditioning velocities for velocity bin 4210 were the mean

velocities, 〈φ|u, v, w〉 = 〈φ|u = 〈u〉, v = 〈v〉, w = 〈w〉〉 (numerically, condition-

ing was accomplished by selecting the velocity bin that contained the mean
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(a) Results from R300

(b) Results from R301

Figure 6.15: Comparison of the vertical profiles of 〈φ|u, v, w〉 from the R300
and R301 MEANS simulations for a velocity bin that receives re-initialised
rogue particles. The concentration was conditioned on the mean velocities,
〈φ|u, v, w〉 = 〈φ|u = 〈u〉, v = 〈v〉, w = 〈w〉〉. Notice how the location of the
large spike centred on z/hc ≈ 8.0 corresponds to the location of many rogue
velocities in Figure 6.12.
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velocities). The R300 profile shows a smooth progression from its maximum

value near z/hc ≈ 1 to a zero value near z/hc ≈ 10. Below z/hc ≈ 7.0, the

magnitude of the R301 profile is comparable to the R300 profile, but has a

serrated appearance. From z/hc & 7.0 to z/hc ≈ 10.0 there is very large spike

in the profile with a magnitude approximately equal to the absolute maximum

at z/hc = 1.0. This spike corresponds spatially to a region of rogue velocity

generation (compare with Figure 6.12) and is a result of the re-initialisation

of rogue velocities through the mechanism described above: excess residence

time is being accumulated in the receiving velocity bin which results in tvr be-

ing too large for this velocity bin; and the velocity PDF does not account for

the extra particles (as rogue velocities are caused by dynamical and numerical

instabilities and are therefore not predictable), resulting in N v
φ being too low.

Note that this large spike is the result of only a few hundred re-initialised

rogue velocities, out of some 1.70 × 1010 particle steps.

The residence time for each particle was not tracked, but the total resi-

dence time for the entire R301 MEANS simulation is known, as is the number

of particles used. The average residence time that each particle contributed

to the R301 MEANS simulation was ∼ 3.65 (in code units). For comparison,

the residence time accumulated at the location of the large spike centred at

z/hc ≈ 8.0 in Figure 6.15(b) was only 33.9 units. While at this height the av-

erage residence time per particle is likely to be less than 3.65 due to the large

streamwise velocity, the relative size of the 3.65 to 33.9 suggests that rogue

re-initialisation could strongly affect the accumulation of conditional residence

time.

Attempts to mitigate the effects of the rogue velocities and re-initialisation
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were unsuccessful. Altering the number of particles used in the simulations

resulted in small differences in the MEANS and SPMMM transects of mean con-

centration shown in Figure 6.13, but not beyond the level explainable by sta-

tistical noise. Similarly, altering the spatial, velocity or temporal resolution

of the models resulted in no appreciable changes to the transects. Simply ter-

minating the trajectory of any particle that attained a rogue velocity was not

a solution either. Since the rogue velocities frequently occurred around the

same spatial location, the resulting mean concentration field had “holes” in it

where the rogue particles were terminated, resulting in poor accuracy when

compared to the experimental measurements. A more thorough investigation

of the causes of rogue velocities (e.g., Yee and Wilson (2007)) is beyond the

scope of this thesis, but is an area of interest for future projects.

The occurrence of rogue velocities and their re-initialisation had little effect

on the SPMMM simulations if the conditional mean concentration field that a par-

ticle samples while it propagates downstream does not have any spikes caused

by rogue velocities and re-initialisation. The R300 MEANS field in Figure 6.15(a)

is an example of such a field, the R301 MEANS field in Figure 6.15(b) is not.

The underlying conditional mean concentration field is thus responsible for

the R300 MEANS and SPMMM first-order consistency, and the R301 MEANS and

SPMMM first-order inconsistency, even though both SPMMM simulations had a

similar number of rogue velocities (16649 for R300, 19612 for R301).

6.2.2 Above Canopy Concentration Statistics

Unfortunately, due to the generation of many rogue velocities within the

canopy, a simulation of dispersion in the MUST canopy flow that extended to
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ground-level could not be performed. In this section, the results for an above

canopy dispersion simulation are displayed to demonstrate that SPMMM does

have the ability to predict concentration fluctuations in an inhomogeneous

flow, provided that there are few rogue velocities. The model parameters were

assigned the same values as in the R300 and R301 simulations; the flow field

differed slightly in that only the mean vertical velocity was zeroed. With-

out 〈w〉 = 0 it was not possible to match closely to the experimental data

the magnitude of the simulated mean concentration at z/hc = 2.0, two rows

downstream from the source. These simulations are meant to demonstrate

that if SPMMM is driven by velocity statistics that do not produce rogue ve-

locities repeatedly in the same spatial location, then it can, with reasonable

accuracy, predict the magnitude of various concentration statistics. No per-

formance measures were calculated for these simulations as they are intended

to be illustrative. Lastly, since the spatial resolution of the simulations was

relatively low, no smoothing of the data was performed.

Figures 6.16 – 6.19 show the spanwise transects of the first four orders

of the dimensionless concentration field at z/hc = 2.0 for six downstream

positions: 1, 2, 3, 5, 8, and 11 rows downstream of the source (row indices

2.5, 3.5, 4.5, 6.5, 9.5, and 12.5). The SPMMM data is shown as a line, and the

Coanda water-channel data as open circles. An estimation of the characteristic

timescale τa/TL (evaluated at zs/hc = 1.8) is displayed in each panel of the

figure. Note that the scales on the ordinate axes may vary between panels.

To reduce clutter on the plots, every tenth Coanda experimental data point is

plotted in the spanwise transects.

Figure 6.16 shows the spanwise transects of the dimensionless mean con-
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centration for a height of z/hc = 2.0 at six downstream positions for the above

canopy SPMMM simulations. The most notable feature in all six panels is the

spanwise position of the peak mean concentration in the SPMMM simulated tran-

sects is offset to the left of the experimental transects. Furthermore, even if the

spanwise positions of the maxima were aligned, the lateral spread of the sim-

ulated plume is narrower than the water-channel MUST canopy plume. Both

of these observations are probably due to the fact that the in-canopy flow has

been excluded from the simulation, thus depriving the plume of high turbu-

lence intensity region and the rapid initial plume spread as the plume fills the

wake region between the obstacles. However, the obstacle resolving, full flow

depth simulations of Wilson et al. (2009) also produced lateral spreads that

were narrower than the experimental results. The reduced mean lateral disper-

sion of the SPMMM plume is seen in all four orders of the concentration statistics.

At the farthest two downstream measurement locations, the magnitude of the

simulated transects of the mean dimensionless concentration matches the ex-

perimental transects with good accuracy, providing ideal locations to compare

the higher-order concentration statistics.

Figure 6.17 shows the spanwise transects of the standard deviation of

the dimensionless concentration for a height of z/hc = 2.0 at six down-

stream positions for the above canopy SPMMM simulations. All panels show

that SPMMM under-predicts the magnitude of the standard deviation of the di-

mensionless concentration. It is uncertain how much of the error is due to

the altered flow field and how much is intrinsic to the model. However, qual-

itatively the SPMMM transects resemble the water-channel transects. This is

particularly noticeable in the divot in the transect near the transect maximum
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Figure 6.16: Spanwise transects of the dimensionless mean concentration for
a height of z/hc = 2.0, at extraction positions 1, 2, 3, 5, 8, and 11 rows
downstream from the source (row indices 2.5, 3.5, 4.5, 6.5, 9.5, and 12.5 in
Figure 6.1) from SPMMM simulations of an above canopy point source in the
MUST canopy flow. Particles were prohibited from entering the canopy in
these simulations.
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Figure 6.17: Spanwise transects of the standard deviation of the dimensionless
concentration for a height of z/hc = 2.0, at extraction positions 1, 2, 3, 5,
8, and 11 rows downstream from the source (row indices 2.5, 3.5, 4.5, 6.5,
9.5, and 12.5 in Figure 6.1) from SPMMM simulations of an above canopy point
source in the MUST canopy flow. Particles were prohibited from entering the
canopy in these simulations.
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at row index 9.5, or eight rows downstream of the source (lower left panel).

At row index 12.5, the magnitude of the simulated transect is approaching the

magnitude of the experimental transect.

The quantitative accuracy of the SPMMM above canopy simulations improves

for the skewness of the dimensionless concentration, as shown by the spanwise

transects in Figure 6.18. As for the Tombstone Canopy simulations, edge

effects are very clearly seen in the simulation results. Factoring out the shift

to the left of the SPMMM transects relative to the experimental ones, and the

reduced lateral spread (both of which are probably due to the exclusion of the

canopy flow), the qualitative accuracy of the simulation results is also good.

Figure 6.19 shows the spanwise transects of the kurtosis of the dimension-

less concentration for a height of z/hc = 2.0 at six downstream positions for

the above canopy SPMMM simulations. As for the skewness of the dimensionless

concentration, the qualitative and quantitative accuracy of the model predic-

tions is good and edge effects are seen.

6.3 Chapter Summary

A severe limitation of SPMMM has been investigated in this chapter—the gen-

eration of rogue velocities by a discrete implementation of Thomson’s LS algo-

rithm and their subsequent re-initialisation breaks the theoretically required

first-order consistency between MEANS and SPMMM. This renders SPMMM effec-

tively useless in regions of frequent rogue velocity generation. For the full depth

MUST canopy flow, rogue velocities were generated frequently at most loca-

tions near the top of the canopy. It has been demonstrated in Section 6.2.1 that

when the rogue velocities are distributed throughout the simulation domain



231

Figure 6.18: Spanwise transects of the skewness of the dimensionless concen-
tration for a height of z/hc = 2.0, at extraction positions 1, 2, 3, 5, 8, and
11 rows downstream from the source (row indices 2.5, 3.5, 4.5, 6.5, 9.5, and
12.5 in Figure 6.1) from SPMMM simulations of an above canopy point source in
the MUST canopy flow. Particles were prohibited from entering the canopy
in these simulations.
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Figure 6.19: Spanwise transects of the kurtosis of the dimensionless concen-
tration for a height of z/hc = 2.0, at extraction positions 1, 2, 3, 5, 8, and
11 rows downstream from the source (row indices 2.5, 3.5, 4.5, 6.5, 9.5, and
12.5 in Figure 6.1) from SPMMM simulations of an above canopy point source in
the MUST canopy flow. Particles were prohibited from entering the canopy
in these simulations.
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the first-order consistency between MEANS and SPMMM remains good. However,

when the rogue velocities are repeatedly generated in a given region, the con-

sistency in that region was found to be poor. Moreover, a very small number of

rogue velocities in the same region suffice to break the first-order consistency.

For example, the R301 MEANS simulation showed poor consistency (a factor

of ∼ 2.3 maximum difference between the SPMMM and MEANS mean concentra-

tions; Figure 6.13) in a region where the vertical gradient of σ2
w was steep and

changed sign, even though only 1183 out of 1.70× 1010 particle steps attained

a rogue velocity.

We believe that rogue velocities break the first-order consistency between

MEANS and SPMMM in two ways: (1) when the rogue velocity is re-initialised it

jumps from the rogue velocity bin to the receiving velocity bin, which leads to

an under-accumulation of conditional residence time (tvr) in the rogue velocity

bin, and an over-accumulation in the receiving velocity bin; (2) the conditional

residence time normalisation constants (N v
φ : equation (3.68)) are inaccurate

for the rogue velocity bin and the receiving velocity bin. Both mechanisms

are the result of the rogue velocities not being accounted for by the driving

velocity PDF, which results in an inaccurate conditional mean concentration

field in the regions of frequent rogue velocity generation and poor consistency

between MEANS and SPMMM. Re-initialising the velocity of a rogue particle based

on the local velocity statistics seems reasonable, however, as was shown in this

chapter, the re-initialisation strongly alters the conditional mean concentration

field, rendering the single-particle LS-IECM approach ineffective for predicting

the higher order moments of the concentration field. It has been demonstrated

by performing above canopy simulations (where few rogue velocities occurred)
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that SPMMM can qualitatively reproduce features of the first four moments of

the concentration field for dispersion in the MUST canopy flow, suggesting

that if rogue velocities can be eliminated then a viable approach to modelling

concentration fluctuations can be found within the single-particle LS-IECM

framework.
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Chapter 7

Summary and Conclusions

7.1 Summary

The dispersion of a non-reactive, passive tracer from a variety of source

configurations in three different flows with neutral stability has been simu-

lated using a single-particle trajectory LS-IECM micromixing model called

SPMMM, which can (in theory) predict all moments of the concentration field

due to a source of rather general specification (point, line, area). In prac-

tice however, the availability of computational resources and time limit the

predictive powers of SPMMM. This is an ambitious type of model for it can

accommodate whatever estimate of the environmental winds one is able to

supply—in fully three dimensions—and is attuned to the turbulence statistics

as embodied in the velocity variances and the TKE dissipation rate. The model

monitors and updates the position, velocity, and concentration of a particle.

The conditional mean concentration field used by SPMMM was pre-calculated by

a program called MEANS. There are (at a minimum) three free parameters in

the model: the Kolmogorov constant C0, the initial source width σ0, and the

micromixing timescale tm. The parametrisation of the micromixing timescale
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used in this thesis was proposed by Cassiani, Franzese and Giostra (2005a)

and contains two dimensionless free parameters: the micromixing constant µ

(a fitting free parameter) and the Richardson constant Cr. In total, there are

four free parameters in SPMMM. Of these, only σ0 and µ are truly free, as C0

has been constrained to an acceptable range of 2–7, and it has been suggested

that Cr ≈ C0/11 (Franzese and Cassiani, 2007).

A similar model using simultaneously computed particle trajectories and

one-dimensional velocity statistics has recently been applied to dispersion

within the neutral boundary layer (Cassiani, Franzese and Giostra, 2005a),

within the convective boundary layer (Cassiani, Franzese and Giostra, 2005b)

and within a canopy layer (Cassiani, Radicchi and Giostra, 2005; Cassiani

et al., 2007). For convenience, we hereafter refer to the Cassiani et al. model

as SLS-IECM (for Simultaneous LS-IECM), which is a name assigned by us,

not the authors of the model. While the use of simultaneous trajectories allows

SLS-IECM to incorporate chemical reaction, it is much more difficult to paral-

lelise since the particles are interactive in that at each time step the conditional

mean concentration must be calculated based on the particles that occupy a

sub-domain of the simulation domain. Moreover, parallelising SLS-IECM will

have a large computational communication overhead as neighbouring particles

may be on different processors. At each time step, the processors will have to

pause, share particle data, then continue, reducing the parallel performance of

SLS-IECM. In contrast, the single-particle trajectory framework of SPMMM al-

lows for trivial parallelisation and a direct increase in performance; the time

required to run SPMMM on Np computer processors is ∼ 1/Np the time required

to run SPMMM on one computer processor. The only time the processors must
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communicate is when sharing the plume extent data, at the beginning of the

simulation. While the single-particle framework of SPMMM precludes the possi-

bly of simulating chemically reactive species, given that there are many non-

reactive species that are interesting to study (including all the ones simulated

by SLS-IECM to date), the computational performance benefits supported the

use of single-particle trajectories in SPMMM.

Comparison of SPMMM and SLS-IECM has been performed for two differ-

ent dispersion experiments: (1) point source dispersion in the (Fackrell and

Robins, 1982) neutral wall shear layer flow; (2) line source dispersion in the

Tombstone canopy flow (Legg et al., 1986). The results of the comparisons are

discussed below.

SPMMM was evaluated by simulating dispersion from ground-level and ele-

vated (zs = 0.19δ) point sources in the Fackrell and Robins (1982) neutral

wall shear flow. The free parameters were calibrated to C0 = 6.0, σ0 = 0.8ds,

µ = 0.75, and Cr = 0.45, using the streamwise transect of the concentration

fluctuations on the plume centreline for a plume resulting from continuous

tracer release from an elevated point source with a diameter of 9 mm. Note

that σ0 was re-calibrated for each flow, whereas the other parameters kept the

values listed above. These values provided a good overall agreement between

the experimental data and the model predictions when considering the first two

moments of the concentration field. The agreement of the modelled first-order

statistics and the experimental ones was excellent (Figures 4.11, 4.12, 4.13).

The SPMMM first-order concentration statistics were also found to be consistent

with the MEANS results (Figures 4.7, 4.11, 4.12, 4.13), as theoretically required

of the IECM model.
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For the streamwise transects of the concentration fluctuation intensity,

SPMMM produced profiles that qualitatively looked the same but showed some

discrepancy with respect to the experimental data (e.g., Figure 4.19). For the

3 mm source, the initial rise (x/δ ∼ 0.5) in the fluctuation intensity was ap-

proximately twenty percent too low. For the 9 mm source the agreement was

good at all locations (probably because this was the data the model parame-

ters were calibrated to). For the 15 mm, 25 mm, and 35 mm sources the initial

rise was well captured, but in the range 0.80 . x/δ . 2.0 the modelled profiles

were ten to fifteen percent too low. The modelled vertical profiles of con-

centration variance (Figure 4.20) matched the experimental profiles well near

to the source, but became poorer farther downstream. Above the height of

the maximum concentration variance, SPMMM over-predicted the concentration

variance, a feature which generally matched the SLS-IECM results. Below,

SPMMM under-predicted the concentration variance, and performed poorer than

SLS-IECM. As both SPMMM and SLS-IECM used the same parametrisation

of the micromixing timescale, the difference in performance between the two

models is believed to be related to their implementation: SPMMM utilised single-

particle trajectories and a pre-calculated conditional mean concentration field

whereas SLS-IECM utilised parallel particle trajectories and calculated the

conditional mean concentration at each timestep.

In terms of concentration variance, SPMMM performed better in the simula-

tions of dispersion from a 15 mm ground-level source, showing excellent agree-

ment with the experimental data for both the mean concentration (Figure 4.21)

and variance of the concentration (Figure 4.22). Recall that for wall shear

layer flow, the TKE production and dissipation rates increase towards the
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ground. There is also increased stretching, twisting, and folding of the mate-

rial lines due to increased velocity shear near ground-level. These effects result

in increased mixing and dissipation of the concentration fluctuations near the

ground. Evidently, the parametrisation of the micromixing timescale used in

this thesis captures reasonably well these effects.

The numerical error in the SPMMM simulation results behaved as expected.

The statistical error in mean concentration and concentration variance went

approximately as RMS(Σ) ∝ N−1/2 (Figure 4.23). The bias error was found to

be approximately zero (Figure 4.24), and the discretisation error on the plume

centreline was found to be inversely proportional to the number of bins on the

z-axis, |S| ∝ N−1
z (Figure 4.25).

Simulations of dispersion from an elevated, in-canopy, cross-wind, continu-

ous line source (zs = 0.85hc) and from an elevated, in-canopy continuous point

source (zs = 0.2hc) have been performed for the Tombstone canopy flow. The

velocity statistics for the line source simulations were polynomial interpola-

tions of the velocity measurements from the Raupach et al. (1986) wind-tunnel

experiments (and the errata: Raupach et al. (1987)). For the point-source sim-

ulations, the velocity statistics were taken from the water-channel experiments

of Hilderman and Chong (2007). Two sets of simulations have been conducted

for the point source configuration: one using horizontally-homogeneous flow

statistics; the other using locally inhomogeneous flow statistics (where some of

the small scale inhomogeneities between the canopy obstacles were represented

while neglecting the larger scale inhomogeneities).

Overall the performance of SPMMM was acceptable. For the line source sim-

ulations with the TKE dissipation rate calculated assuming local equilibrium,
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the fidelity of the modelled vertical profile of mean concentration to the exper-

imental data of Legg et al. (1986) was satisfactory to good above the canopy

(Figure 5.7). Within the canopy, the mean concentration was under-predicted

close to the source and over-predicted farther from the source. The in-canopy

results were poorer than predictions made by previous investigators (Flesch

and Wilson, 1992; Cassiani et al., 2007). However, these discrepancies relative

to the results from previous investigators were largely eliminated by adopting

(as had the earlier authors referred to above) the TKE dissipation rate profile

inferred from the profile of the Lagrangian integral timescale (Figure 5.11).

The results for the standard deviation of the concentration were qualitatively

and quantitatively good, although somewhat under-predicted near the source

(Figures 5.8 and 5.12). This was likely due the greatly simplified horizontally-

homogeneous velocity statistics that drove the models.

At most measurement locations, the point source simulations utilising

horizontally-homogeneous velocity statistics performed better than the point

source simulations that utilised locally inhomogeneous velocity statistics (Fig-

ures 5.14 - 5.29). The exception was when predicting the mean concentration

and standard deviation close to the source (x/hc . 2.0), when the use of locally

inhomogeneous velocity statistics led to more accurate predictions. In both

simulations it appeared that not enough particles were escaping the canopy,

resulting in over-predicted mean concentrations within the canopy and under-

predicted mean concentrations above the canopy. Particles may have escaped

the canopy more readily if they were prohibited from entering the interior

volumes of the obstacles and instead reflected off of them. This will be inves-

tigated in future versions of SPMMM. For the skewness and the kurtosis of the
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concentration, the SPMMM simulations utilising horizontally-homogeneous ve-

locity statistics performed better than the SPMMM simulations utilising locally

inhomogeneous velocity statistics.

The generally poorer performance of SPMMM utilising locally inhomogeneous

velocity statistics in the Tombstone canopy flow simulations may have been

caused by: (1) there being no guarantee that the process of interpolating a

relatively small number of velocity measurements onto a grid to drive the model

resulted in a physically valid and accurate description of the actual flow in the

water-channel experiments; (2) the exclusion of large scale inhomogeneities;

(3) the presence of many rogue velocities; and (4) the fact that SPMMM does

not resolve obstacles.

The MUST canopy simulations revealed two limitations of SPMMM. To nu-

merically integrate the driving velocity PDF such that the integrals were unity

at all spatial locations, the u, v, and w velocity spaces each had to be discre-

tised into at least 70 bins, increasing the memory requirements of the model.

This technical problem is easily overcome by using a more powerful computer.

However, if more computational power is not available, then the spatial reso-

lution of simulations in highly disturbed flows will have to be reduced.

The second and more severe limitation is that recurring generation of rogue

velocities and their subsequent re-initialisation at a spatial location effectively

renders SPMMM useless by breaking the theoretically required first-order consis-

tency between MEANS and SPMMM as seen in Figure 6.11. The steep gradients of

the Reynolds stresses near the top of the MUST Canopy resulted in approxi-

mately 0.064% of all particle steps attaining a rogue velocity. Even though this

is a very small percentage, it strongly affected the accuracy of the SPMMM results
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(Figure 6.10).

To investigate this phenomenon further, simulations have been performed

in which the particles were limited to the above canopy region of the flow

by setting the reflection height to the canopy height (the R300 run; Table

6.1). This reduced the incidence of rogue velocities to just 41 steps out of

1.72 × 1010. These rogue velocities occurred randomly throughout the sim-

ulation domain and the resulting first-order consistency between MEANS and

SPMMM was very good, with the small differences attributable to statistical

noise (Figure 6.13(a)). A second run (R301) was performed in a flow that was

identical to the R300 except for a steep vertical gradient of σ2
w caused by a

suspected outlier in the Coanda measured velocity statistics (Figure 6.9; recall

that this outlier was excluded from the interpolation of the experimental ve-

locity statistics for all other MUST Canopy simulations). An additional 1143

rogue velocities were generated in the R301 run, most of which were near to

the outliers (Figure 6.12; recall that there were multiple outliers in the driving

velocity field due to the periodicity of the velocity statistics in the spanwise

direction).

The spatial locations of the rogue velocities and the largest inconsisten-

cies between MEANS and SPMMM were coincident (Figure 6.13(b)), suggesting

a relationship between the two phenomena. Furthermore, the R300 run and

the R301 run both showed excellent first-order consistency between MEANS and

SPMMM away from regions of rogue velocity generation (Figure 6.14). Rogue ve-

locities arise through dynamical and numerical instabilities within the Langevin

equations, and they are not represented by the velocity PDF, which is used to

calculate the normalisation constant for the conditional residence time in each
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velocity bin (equation (3.68)). Since rogue velocities are not accounted for

by the velocity PDF, the normalisation constants may be incorrect for those

velocity bins that have many occurrences of rogue velocities, and those bins

which receive the re-initialised rogue velocities. The process of re-initialisation

may lead to an over-accumulation of residence time in the velocity bins that

receive the re-initialised rogue particles, and an under-accumulation of resi-

dence time in the velocity bins where the rogue velocities occurred, since in

both cases particles are travelling through velocity bins that they would not

have otherwise reached at that time step if the rogue velocity had not occurred.

The result was vastly different conditional mean concentrations in the R300

and R301 simulations (Figure 6.15). More research into these phenomena is

needed.

By tuning SPMMM such that the simulated spanwise transects of the dimen-

sionless mean concentration roughly matched the Coanda experimental tran-

sects for the MUST canopy flow (Figure 6.16), a qualitative assessment of the

ability of SPMMM to simulate higher-order concentration fluctuations in an inho-

mogeneous flow has been performed. For the standard deviation, the skewness,

and the kurtosis of the dimensionless mean concentration (Figures 6.17 – 6.19),

the SPMMM simulations reproduced the general shape, and for the skewness and

kurtosis, the magnitude of the experimental spanwise transects reasonably

well. For all four moments, the simulated transects were shifted to the left in

relation to the experimental transects, and the lateral spread was too small.

The exclusion of the canopy flow is probably partly the cause of both of these

discrepancies. Without the canopy flow, the plume is deprived of the high

turbulence intensity region and the rapid initial plume spread as the plume
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fills the wake region between the obstacles. Another probable cause is allow-

ing the particles to pass through the interior volumes of the obstacles, instead

of treating the canopy obstacles as solid barriers that force the particles to

reflect off of them, or go around or over them. Future versions of SPMMM will

incorporate solid canopy obstacles.

7.2 Conclusions

The use of the interaction by exchange with the conditional mean mi-

cromixing model under a single-particle Lagrangian stochastic framework shows

promise for simulating concentration fluctuations in plumes dispersing in canopy

flows. For horizontally-homogeneous flows, reasonably accurate predictions of

the higher-order moments of the concentration field can be realised at low

computational cost (e.g., 2 GB of RAM, 3 GHz processor, and a few hours

of simulation time). Given the non-interactive nature of the particles in this

style of modelling, the simulation times of the model scale directly with the

number of processors used when using parallel processors, allowing very quick

predictions to be made if necessary (provided a flow field is available to drive

the model). This direct performance increase is the principal advantage to

the single-particle trajectory implementation of the IECM micromixing model

over the simultaneous particle trajectory implementation. Both approaches

produced comparable results for dispersion in horizontally-homogeneous flows.

More work is needed to allow the use of the single-particle LS-IECM

model with high turbulence intensity, inhomogeneous flows (such as the MUST

canopy flow). In particular, more research into the exact cause and prevention

of rogue velocities is needed. Yee and Wilson (2007) investigated the cause of
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rogue velocities in strongly inhomogeneous flows, and suggested a more sta-

ble method for integrating stochastic differential equations (SDEs). If Step

3 of this integration scheme is omitted, then no rogue velocities will result

in the integration of the SDEs, but at a loss of the well-mixed condition for

the model. Given this, would it be useful to apply this integration scheme

(omitting Step 3) in conjunction with MEANS and SPMMM, which guarantees the

removal of rogue velocities, albeit whilst sacrificing the well-mixed condition?

However, if the well-mixed condition leads to a dynamically unstable model,

should we blindly accept this model even if one can’t use it for useful pre-

dictions in complex flows? While this area of research is related to the LS

model, the IECM model is rendered ineffective when driven by a flow field

that produces rogue velocities repetitively in the same spatial location. As

shown by the above MUST Canopy simulations, SPMMM appears to be able to

qualitatively predict concentration fluctuations for plumes dispersion in low

turbulence intensity flows, such as the one above the MUST canopy.

To move towards higher fidelity science, future versions of SPMMM will re-

solve the obstacles that compose the canopy and reflect particles off of them.

To reduce the number of velocity bins required to ensure that the numerical in-

tegration of the velocity PDF is unity at all spatial locations, a direct counting

approach to determine the conditional residence time normalisations constants

may be employed in future versions of SPMMM. The use of the analytical veloc-

ity PDF to calculate N v
φ does reduce the memory requirements of SPMMM by

50% when simulating dispersion in weakly disturbed flows (e.g. the FR82

flow, the horizontally-homogeneous Tombstone canopy flow, the above canopy

MUST flow) but resulted in very high memory requirements when simulating
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dispersion in highly disturbed flows (e.g., full depth MUST flow). While the

parametrisation of the micromixing timescale used in this thesis was shown

to be robust since the calibrated values of µ = 0.75 and Cr = 0.45 produced

reasonable results in three different flows, it is always possible to improve upon

a model. Alterations to, or an alternative parametrisation of the micromixing

timescale is a natural area for future research. Also, more accurate interpo-

lations of the experimental flow fields used to drive MEANS and SPMMM could

perhaps be obtained by imposing mass consistency and non-divergence on the

interpolated velocity field.

Where this thesis has expanded the boundaries of micromixing modelling

is by using SPMMM to simulate: (1) point source dispersion in the Tomb-

stone Canopy flow using a horizontally-homogeneous description of the flow;

(2) point source dispersion in the Tombstone Canopy flow using a locally-

inhomogeneous (three-dimensional) description of the flow; and (3) point source

dispersion in the MUST canopy flow using a three-dimensional inhomogeneous

description of the flow. More broadly, this thesis is further evidence that pro-

viding an increasingly detailed description of a disturbed flow field as the basis

for computation of trajectories (and the concentration field they imply) need

not necessarily lead to a refined description of dispersion. Even more basically,

it is evident from the work reported here that existing well-mixed first-order

Lagrangian stochastic models do not properly handle highly disturbed flow,

so that further progress is very much needed in this (by now, fairly mature)

subject.

Lastly, while this thesis dealt largely with the theoretical side of modelling

concentration fluctuations, let us consider a potential real-world application
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for SPMMM. Imagine a little town on the prairie. One kilometre to the west

of this town there is a petrochemical plant that produces large quantities of

ethylene, which will eventually be used to produce ethylene vinyl acetate, a

component of virtually all modern footwear. The material safety data sheet for

ethylene notes that it is flammable in air at concentrations of approximately

3%–36% by volume (provided that there is a source of ignition), and that it is

chemically stable (i.e., low reactivity in the absence of catalysts).

Now further imagine that on a winter’s night, the atmosphere is neutrally

stratified and the winds are blowing steadily across the prairie from the west∗,

directly past the petrochemical plant towards the town. Without warning,

safety systems that monitor pressure fail and pipes rupture, ejecting a constant

stream of ethylene† into the atmosphere. Should an evacuation of the town be

ordered? Or will the ethylene disperse below the lower limit of flammability

before it reaches the town? The answer to the former question depends upon

the answer to the latter question, which can be addressed by SPMMM.

Figure 7.1 shows contour plots of the ground-level (z = 0−3 m) percentage

by volume of ethylene for this accident. The top panel displays contours of

the mean concentration of the ethylene plume. From this panel the town

appears to be safe from any explosion hazard from the ethylene plume, as

it has dispersed below the lower flammability limit before reaching the town.

Based on this information, it appears that an evacuation will not be necessary.

However, within the plume are concentration fluctuations, some of which may

elevate the concentration of the plume to within the range of flammability of

∗Given the winds and the terrain, the flow is well approximated by a wall shear layer,
much like the FR82 flow encountered in Chapter 4.

†Recall from Chapter 5 that ethylene is a passive tracer in air.
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ethylene. The bottom panel displays contours of the mean concentration plus

one standard deviation of concentration (〈φ〉 + σφ) for the plume. Note that

when the concentration fluctuations are included, ethylene of sufficiently high

concentration to combust reaches into the town, necessitating an evacuation.

This simple example simulation highlights that an increased knowledge of

the underlying structure of a concentration field can assist emergency plan-

ners and officials in making more informed decisions, thereby reducing risk.

Fortunately, in this example, the town’s people were evacuated (being sure to

extinguish all sources of ignition) while the hazardous materials response team

at the petrochemical plant dealt with the leak, and no one was injured.
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(a) Contours of 〈φ〉

(b) Contours of 〈φ〉 + σφ

Figure 7.1: Contours of the percentage by volume of ethylene for a simulated
accident at a petrochemical plant. The top panel shows the mean concen-
tration of ethylene; the bottom panel shows the mean concentration plus one
standard deviation of concentration, highlighting the risk to the town.
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Appendix A

Mathematical and Statistical Tools

In this appendix various mathematical and statistical tools are discussed.

Further information can be found in Monin and Yaglom (1975); Gardiner

(1983); Stull (1988); Pope (2000), for example.

A.1 Eulerian and Lagrangian Coordinates

There are two systems of coordinates that are frequently used to describe

the motion of a fluid - the Lagrangian and Eulerian systems. The Eulerian co-

ordinate system measures meteorological quantities at a fixed point in space x.

The vast majority of meteorological data is Eulerian with the fixed point in

space being the location of the instrument. In this work Eulerian position and

velocity are denoted by lower case symbols, x and u respectively.

The Lagrangian coordinate system follows a fluid particle as it moves

through a fluid. A fluid particle is a point that, by definition, moves at the lo-

cal fluid velocity. Lagrangian position and velocity are denoted by upper case

symbols, X and U respectively. Lagrangian measurements are made with

respect to a reference position X0 at a fixed time t0. This reference position
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is referred to as the Lagrangian coordinate or the material coordinate. The

position of the fluid particle is defined by the position at the reference time

X(t0,X0) = X0. By definition Lagrangian measurements are made with re-

spect to the reference position and the notation is usually simplified by leaving

it out of the argument. Thus the position of the Lagrangian particle can be

defined by

X(t0) = X0, (A.1)

and

∂

∂t
X(t) = U (t) = u(X(t), t). (A.2)

The rate of change of the Lagrangian velocity can be found by taking the

partial derivative with respect to time of equation (A.2),

∂

∂t
U (t) =

∂

∂t
u(X(t), t)

=

(
∂

∂t
u(x, t)

)

x=X(t)

+
∂

∂t
Xi(t)

(
∂

∂xi
u(x, t)

)

x=X(t)

=

(
∂

∂t
u(x, t) + ui(x, t)

∂

∂xi
u(x, t)

)

x=X(t)

=

(
d

dt
u(x, t)

)

x=X(t)

, (A.3)

where we made use of the chain rule. The Lagrangian or material derivative

is thus defined by

d

dt
≡ ∂

∂t
+ ui

∂

∂xi
=

∂

∂t
+ u · ∇. (A.4)

The material derivative is so named because it tracks the variation for a partic-

ular material particle, that is, the time derivative of a property φ of a material

particle, called a material property. Concentration is an example of a material

property.
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A.2 Tensor Notation

In fluid dynamics it is common to encounter both vector and tensor nota-

tion. Tensor notation is used to compactly represent equations. It is therefore

a worthwhile exercise to review some of features of the notation. There are

many rules to tensor notation but the following three will help the beginner.

Rule 1: There is an implied summation over the values 1, 2, 3 whenever

two identical indices appear in one term. For example, consider the

expression xiyi. Since there are two identical indices in it summation is

implied and the expression expands to x1y1 + x2y2 + x3y3.

Rule 2: Whenever there is a free index in a term then that index appears

unsummed in all terms in that equation. Therefore the equation with

a free index effectively represents three equations, one for each value of

the free index. The equation xi = yi has a free index in it. Thus this

equation actually represents three equations: x1 = y1, x2 = y2, and

x3 = y3.

Rule 3: An index cannot appear more than twice in any term. For example

ǫijkk is a valid expression while ǫijii is not.

Terms such as xij represent nine terms and are second order tensors. A vector,

xi, is a first order tensor and a scalar is a zeroth order tensor. In this thesis

bold terms represent vectors (i.e., x = xi). The Kronecker delta

δij =







1 if i = j

0 if i 6= j

, (A.5)
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and the alternating unit tensor

ǫijk =







1 if ijk = 123, 231, 312

− 1 if ijk = 321, 213, 132

0 if two or more indices are alike

, (A.6)

are useful in the representation of terms with direction dependence.

Mathematical operators have tensor representations as well. The below

definitions are for Cartesian coordinates and assume that the necessary deriva-

tives exist. The gradient of a scalar field f = f(x1, x2, x3) is

∇f =

(
∂f

∂x1

,
∂f

∂x2

,
∂f

∂x3

)

=
∂f

∂xi
. (A.7)

The divergence of a vector field F = (F1, F2, F3) (where F1 = F1(x1, x2, x3),

etc.) is

∇ · f =
∂F1

∂x1

+
∂F2

∂x2

+
∂F2

∂x3

=
∂Fi

∂xi
. (A.8)

The scalar Laplacian of the scalar field f is

∇2f = ∇ · (∇f) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

∂

∂xi

(
∂f

∂xi

)

=
∂2f

∂xi∂xi
. (A.9)

Similarly, the vector Laplacian of the vector field F is

∇2F = ∇(∇ · F ) −∇× (∇× F ) =
∂2Fi

∂xj∂xj
. (A.10)

Example

Let us convert the constant density Navier-Stokes (NS) equation for a di-

vergence free velocity field from vector to tensor notation and expand it. In

Lagrangian vector form the NS equation is

du

dt
= −1

ρ
∇p+ ν∇2u, (A.11)
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where ρ is the fluid density, p is the modified pressure (which includes grav-

itational terms), and ν is the kinematic viscosity of the fluid. The Coriolis

term has been suppressed for simplicity. Making use of tensor notation, the

Lagrangian form of the NS equation is

dui
dt

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (A.12)

Since the index i is unsummed in the term to the left of the equal sign it

represents three equations. It also appears in every other term of the equation

in accordance with Rule 2. Upon expanding we get

du1

dt
= −1

ρ

∂p

∂x1

+ ν
∂2u1

∂xj∂xj
,

du2

dt
= −1

ρ

∂p

∂x2

+ ν
∂2u2

∂xj∂xj
, (A.13)

du3

dt
= −1

ρ

∂p

∂x3

+ ν
∂2u3

∂xj∂xj
.

The index j in the last term on the right-hand side of these equations ap-

pears twice, implying summation in accordance with Rule 1. Applying this

convention leaves

du1

dt
= −1

ρ

∂p

∂x1

+ ν

(
∂2u1

∂x1∂x1

+
∂2u1

∂x2∂x2

+
∂2u1

∂x3∂x3

)

,

du2

dt
= −1

ρ

∂p

∂x2

+ ν

(
∂2u2

∂x1∂x1

+
∂2u2

∂x2∂x2

+
∂2u2

∂x3∂x3

)

, (A.14)

du3

dt
= −1

ρ

∂p

∂x3

+ ν

(
∂2u3

∂x1∂x1

+
∂2u3

∂x2∂x2

+
∂2u3

∂x3∂x3

)

.
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Applying the conventions x = (x1, x2, x3) = (x, y, z) and u = (u1, u2, u3) =

(u, v, w) we are left with

du

dt
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

,

dv

dt
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

, (A.15)

dw

dt
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

.

Thus the tensor equation

dui
dt

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

.

compactly represents the group of equations in (A.15).

A.3 Probability Density Functions

The material in this section is adapted from Pope (2000). Let v = (v1, v2, v3)

be the sample space variable (i.e,. a dummy variable) corresponding to u =

(u1, u2, u3), the Eulerian velocity. A single component of u (say u1) is a ran-

dom variable while taken together (u1, u2, u3) are joint random variables (or

any two of them; i.e., u1 and u3 . . .). Both u and v are functions of space and

time, u(x, t) and v(x, t). Suppose we wish to know the probability that the

velocity is less than some value vBi . Let this set be denoted by B ≡ {ui < vBi }.

The probability of such an event occurring is thus Prob(B) = Prob{ui < vBi }

and is bounded such that 0 ≤ Prob(B) ≤ 1. An impossible event has a

probability of 0 and a certain event has a probability of 1.

The cumulative distribution function (CDF) is defined as

Fu(v) ≡ Prob{ui ≤ vi}

= Prob{u1 ≤ v1, u2 ≤ v2, u3 ≤ v3}, (A.16)
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and can be used to determine the probability of an event occurring. In terms of

the CDF, the probability of event B occurring is Prob(B) = Fu(vBi ). The CDF

is a non-decreasing, non-dimensional function with three properties. Since

ui > −∞ is certain

Fu(−∞) = 0, (A.17)

since ui >∞ is impossible

Fu(∞) = 1, (A.18)

and for vAi > vBi

Fu(vBi ) ≥ F (vAi ) (A.19)

Note, here the short hand Fu(∞) = limFu(vi)
vi→∞

is used. Also, more generally, if

discrete components are allowed in Fu(vi), another required condition would

be

limFu(b)
b→v+

i

= Fu(vi), (A.20)

that is, at any point vi the limit from the right must be equal to Fu(vi).

The probability density function (PDF) is defined as the derivative of the

CDF

fu(v) = fu(v1, v2, v3) ≡
∂3

∂v1 ∂v2 ∂v3

Fu(v1, v2, v3), (A.21)

provided that the CDF is continuous and the derivative exists. The PDF is

the probability per unit length in the sample space. It has units of inverse u.
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The four most important properties of the PDF are

fu(v) ≥ 0, (A.22)
∫

v

fu(v)dv = 1, (A.23)

fu(−∞) = fu(∞) = 0, (A.24)

Prob{va < u ≤ vb} = Fu(vb) − Fu(va) =

∫
vb

va

fu(v) dv. (A.25)

Let ψ be the sample space variable corresponding to the scalar concentra-

tion φ and let u and φ be joint random variables. The joint PDF for u and φ

is

fuφ = fuφ(v, ψ) ≡ ∂4

∂v1 ∂v2 ∂v3 ∂ψ
F (v1, v2, v3, ψ). (A.26)

denoted fuφ or fφu (note that equation (A.21) is also a joint PDF for the

joint random variables u1, u2, u3). The value of the φ may depend on the

value of u in certain circumstances. In this situation the conditional PDF of

φ conditioned on u = v is

fφ|u = fφ|u(φ|v) ≡ fuφ(v, ψ)

fu(v)
. (A.27)

With respect to notation, “|v” is short form for “|u = v” and is read “con-

ditional on u = v”, or “given u = v” or simply “given v”. Dependence on

position and time are included in the CDF and the PDF via u and φ. For

example, we could write

fuφ[v(x, t), ψ(x, t); x, t], (A.28)

to represent the joint PDF of velocity and the scalar but we will generally prefer

the more compact notation fuφ(v, ψ) or fuφ. Equation (A.28) is a function

with respect to items to the right of the semi-colon and a density with respect

to items to the left of the semi-colon.
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The joint random variables u1, u2, u3, and φ are said to be independent

if knowledge of one provides no information in regard to the others. For

independent variables, conditioning has no effect and thus the conditional

PDF is the same as the marginal PDF (fu1 for example). For independent joint

random variables the joint PDF decomposes to the product of the marginal

PDFs

fu(v1, v2, v3) = fu1(v1)fu2(v2)fu3(v3), (A.29)

and

fuφ(v1, v2, v3, ψ) = fu1(v1)fu2(v2)fu3(v3)fφ(ψ). (A.30)

Using this fact and substituting the above two equations into the definition of

the conditional PDF (equation (A.27)) we have

fφ|u(φ|v) ≡ fuφ(v, ψ)

fu(v)

=
fu1(v1)fu2(v2)fu3(v3)fφ(ψ)

fu1(v1)fu2(v2)fu3(v3)

= fφ(ψ), (A.31)

which is the marginal PDF of the scalar, demonstrating that conditioning has

no effect on independent joint random variables.

A.3.1 Example: The Gaussian or Normal Distribution

The Gaussian or normal distribution is used extensively throughout this

thesis. If w is a normally distributed random variable with mean 〈w〉 and

variance σ2
w (described in Section A.4.1 and Section A.4.2 below) then the

CDF of w is

Fw(w) =
1

2

[

1 + erf

(
w − 〈w〉√

2σw

)]

, (A.32)
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and the PDF is

fw(w) =
1√

2πσw
exp

[

−(w − 〈w〉)2

2σ2
w

]

. (A.33)

The error function is defined by

erf(w) ≡ 2√
π

∫ w

0

exp
(
−ŵ2

)
dŵ, (A.34)

where ŵ is a dummy variable used for integration. If w is a standardised

Gaussian random variable then 〈w〉 = 0 and σ2
w = 1. Figure (A.1) shows

the CDF and PDF of the standardised Gaussian distribution in the top and

bottom panels respectively. The extreme negative and positive ends of the

PDF are commonly referred to as the tails of the PDF.

A.4 Statistical Tools

In this section we use the notation of bracketed suffixes to exclude a term

from the summation convention of Rule 1 in Section A.2. For example

u(i)u(i) 6= u1u1 + u2u2 + u3u3. (A.35)

Instead, the bracketed suffixes act as a free index (like Rule 2 in Section A.2)

and

u(i)u(i) = u1u1; u2u2; u3u3. (A.36)

A.4.1 The Unconditional and Conditional Means

With the PDF we can now define some statistical quantities. The defini-

tions are made in terms of variables that will be encountered throughout the

thesis but generalisation is straightforward. The (unconditional) mean, also
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Figure A.1: The CDF and the PDF of the standardised Gaussian or normal
distribution, as given by equations (A.32) and (A.33) respectively, with 〈w〉 =
0 and σ2

w = 1. The top panel shows the CDF and the bottom panel shows
the PDF. The extreme negative and positive ends of the PDF are commonly
referred to as the tails of the PDF.
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known as the expectation value, is defined as

〈ui〉 ≡
∫

v

vifu(v)dv =

∞∫∫∫

−∞

vifu(v1, v2, v3) dv1 dv2 dv3, (A.37)

which, using the definition of the marginal PDF, for example,

fu3(v3) ≡
∞∫∫

−∞

fu(v1, v2, v3) dv1 dv2, (A.38)

simplifies to

〈ui〉 =

∫ ∞

−∞

v(i)fu(i)
(v(i)) dv(i). (A.39)

Note the short hand notation

∫

v

( ) dv ≡
∞∫∫∫

−∞

( ) dv1 dv2 dv3, (A.40)

introduced to express integration over the entire velocity sample space. If

Q(u) = Q(u1, u2, u3) is a function of u, the mean is

〈Q(u)〉 = 〈Q(u1, u2, u3)〉 ≡
∫

v

Q(v)fu(v) dv, (A.41)

which only exists if the integral converges absolutely. The mean behaves as a

linear operator and therefore has some useful properties such as associativity

and commutability. If a and b are scalars and Q(ui) and R(ui) are functions

of a random variable ui we have

〈[aQ(ui) + bR(ui)]〉 = a〈Q(ui)〉 + b〈R(ui)〉. (A.42)

The mean also commutes with differentiation

〈
dQ(ui)

dui

〉

=
d〈Q(ui)〉
dui

, (A.43)

and since 〈ui〉 is not a random variable

〈〈ui〉〉 = 〈ui〉. (A.44)
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These properties will be used in Section (2.3) to derive the mean flow equations.

The mean of the scalar conditioned on the velocity, or the conditional mean,

is defined as

〈φ|v〉 ≡
∫ ∞

−∞

ψfφ|u(ψ|v) dψ. (A.45)

To recover the unconditional mean concentration simply take the mean over

the velocity space,

〈〈φ|v〉〉 =

∞∫∫

−∞

ψfφ|ufu dψ dv

=

∞∫∫

−∞

ψfuφ dψ dv (A.46)

= 〈φ〉,

where we made use of equation (A.27) to go from a conditional PDF to a joint

PDF.

A.4.2 Fluctuations and Moments

With the definition of the mean, the fluctuation of ui can be defined as

u′i ≡ ui − 〈ui〉. (A.47)

It may be interesting to know how the data is spread about its mean value.

The variance, a measure of dispersion or spread about the mean, is defined as

σ2
ui

= var(ui) = 〈u′2i 〉 ≡
∫ ∞

−∞

(v(i) − 〈u(i)〉)2fu(i)
(v(i)) dv(i). (A.48)

Note the relationship between the fluctuations and the variance. The standard

deviation is simply the square root of the variance

σui
= stdev(ui) =

√

var(ui) =
√

σ2
ui

=
√

〈u′2i 〉. (A.49)
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The standard deviation is also known as the root-mean-square (RMS) of fluc-

tuation. A distribution with a standard deviation of zero would contain only

elements whose values are identical to the mean. As the standard deviation

of the distribution gets larger, the values of the elements spread farther and

farther from the mean. For a set of normally distributed random variables

(such as shown in Figure A.1) approximately 68% of the elements of the set

are found within one standard deviation of the mean, approximately 95% are

within two standard deviations from the mean, and over 99% are within three

standard deviations from the mean.

With the mean and the standard deviation a random variable can be stan-

dardised by subtracting the mean and dividing by the standard deviation,

ustandard
i ≡ ui − 〈ui〉

σui

. (A.50)

Standardised random variables have the convenient property of having a mean

of zero and a variance of unity.

Equation (A.48) can be generalised to the nth power (note that n is an

exponent, not an index),

µn ≡ 〈u′ni 〉 =

∫ ∞

−∞

(v(i) − 〈u(i)〉)nfu(i)
(v(i)) dv(i), (A.51)

where µn is the nth moment of ui about the mean (also called the nth central

moment). The variance is thus the second-order moment about the mean.

Moments too can be standardised,

µstandard
n =

〈u′n〉
σnu

=
µn
σnu
. (A.52)

The third-order standardised moment µstandard
3 is called the skewness (de-

noted by Sk), which is a measure of the symmetry of a random distribution
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about its point of maximum probability density (the maximum of a PDF is

called the mode). A distribution with a skewness of zero is symmetric about

its mode. If the skewness is negative then more elements of the distribu-

tion have values lower than would be expected for a distribution with zero

skewness. This results in a longer tail to the left of the mode, as shown in

Figure A.2(a), which shows a negatively skewed PDF and one with zero skew-

ness. Distributions with positive skewness have a longer tail to the right of

the mode, indicating that more elements of the distribution have values higher

than would be expected for a distribution with zero skewness.

(a) Negative skewness (b) Positive skewness

Figure A.2: Examples of skewness in probability density functions. The zero
skewness PDF in this figure is the Gaussian PDF.

The fourth-order standardised moment µstandard
4 is called the kurtosis (de-

noted by Ku), which is a measure of the flatness or peakedness of a random

distribution. The term kurtosis is often exchanged freely with the term excess

kurtosis, which is the amount of kurtosis relative to the Gaussian distribu-

tion (KuGauss = 3), and is simply calculated as µstandard
4 − 3. Figure A.3(a)

displays three PDFs with differing amounts of kurtotic excess (the Gaussian
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distribution is represented by the solid line). Figure A.3(b) displays the same

three PDFs but with a logarithmic y-axis to more clearly display the behaviour

of the tails. If a distribution: has zero excess kurtosis then it is said to be

mesokurtic; has negative excess kurtosis then it is said to be platykurtic and

has a lower, wider peak about its mean and “thinner” tails than the Gaussian

distribution; has positive excess kurtosis then it is said to be leptokurtic and

has a sharper peak about its mean and “fatter” tails than the Gaussian distri-

bution. From the plots in Figure A.3 it is seen that as the kurtosis increases

(a) Linear axes (b) Logarithmic y-axis

Figure A.3: Examples of excess kurtosis in probability density functions. The
Gaussian distribution is represented by the solid line. The domain of each plot
is the same.

the data becomes more clustered about the mean, indicating lower variability

in the data set. At the same time, however, the tails get fatter, which cor-

responds to an increased likelihood of very rare events occurring. Therefore,

as the kurtosis increases, more of the variance in a distribution is due to the

occurrence of these very rare events.

Very rarely are the definitions for the mean, variance, skewness, and kur-

tosis shown above used to calculate these quantities. Consider the set of N
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concentration measurements {φI} where I ∈ [1, N ]. Estimates for the theoret-

ical statistical quantities defined above can be easily computed from the set

{φI}. The sample statistical quantities are denoted by a circumflex (e.g., 〈φ̂〉)

The sample mean is calculated as

〈φ̂〉 =
1

N

N∑

I=1

φI , (A.53)

the sample variance as

σ̂2
φ =

1

N − 1

N∑

I=1

(φI − 〈φ〉)2, (A.54)

the sample skewness as

Ŝkφ =
1

N

N∑

I=1

(
φI − 〈φ〉
σφ

)3

, (A.55)

and the sample excess kurtosis (which is referred to simply as the kurtosis in

the main body of this thesis) as

K̂uφ =
1

N

N∑

I=1

(
φI − 〈φ〉
σφ

)4

− 3. (A.56)

While the above moments focus on only a single random variable the co-

variance is a measure of how one joint random variable changes with respect

to another joint random variable. Take for example the x and z components

of the velocity u. The covariance of u1 and u3 is defined as

cov(u1, u3) = 〈u′1u′3〉 ≡
∫

v

(v1 − 〈u1〉)(v3 − 〈u3〉)fu(v) dv. (A.57)

The correlation coefficient is defined by

ρ13 ≡
〈u′1u′3〉

[〈u′21〉〈u′23〉]
1
2

=
〈u′1u′3〉
σu1σu3

. (A.58)
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If ρ13 = 0 then u1 and u3 are uncorrelated. If ρ13 = 1 then u1 and u3 are

perfectly correlated. If ρ13 = −1 then u1 and u3 are perfectly negatively

correlated. Equation (A.57) can be generalised as

Cij = cov(ui, uj) = 〈u′iu′j〉 ≡
∫

v

(vi − 〈ui〉)(vj − 〈uj〉)fu(v) dv, (A.59)

where Cij is the covariance matrix. As for the variance, note the covariance

is also related to the fluctuations. If u′ = (u′1, u
′
2, u

′
3) is joint-normally dis-

tributed, then its joint PDF by definition is

fu(u′) =
[det(C−1)]1/2

(2π)3/2
exp

(

−1

2
u′iC

−1
ij u

′
j

)

, (A.60)

where C = Cij is the covariance matrix and C−1 is its inverse. This equation

represents a three-dimensional Gaussian distribution.


