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Abstract

Let G be a linear algebraic group defined over a ground field k, and let pu be a Gal(k*P /k)-
module. A cohomological invariant is a morphism a : H'(—,G) — H"(—,u) of two
functors from the category of field extensions over k to the category of sets where H'(—, G)
is the functor of isomorphism classes of G-torsors and H™(—, ) is the functor of abelian
Galois cohomology groups with coefficients in p.

The objective of this thesis is to investigate the existence of nontrivial cohomological
invariants arising via the Killing form in several settings, with the primary target being split
groups of type Eg. We note that for such groups not much is known. The only known invariant
is due to M. Rost and it lives in dimension 3. To deal with the type Fg we first study its
subgroup of type Dg. In Chapter VI we give results regarding the existence of cohomological
invariants for groups of type D,,, not necessary simply connected or adjoint. After that we
pass to type Eg. Our main result establishes the existence of a nontrivial cohomological
invariant in degree 6 for the subfunctor of H'(—, Eg) consisting of torsors spitting over a
quadratic extension of the base field. It is worth mentioning that all torsors in the kernel of
the Rost invariant have this property, so that our result will complement the recent result of
N. Semenov who constructed a cohomological invariant for the kernel of the Rost invariant

for Eg in degree 5.
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1 Introduction

The primary goal of this thesis is to construct a new cohomological invariant for algebraic
groups of type Es. Cohomological invariants for algebraic groups are an algebraic analogue
of characteristic classes in topology, so let us begin by discussing some relevant concepts in
topology.

In almost all applications, a topological space X under consideration is equipped with a

continuous action of a group G on that space, that is to say the action map
GxX—>X

is continuous. In this setting we may consider the quotient of X by the action of G - the
set X/G. This set comes equipped with a natural (smallest) topology such that the quotient

map

X = B=X/G

z+— G

is continuous. That is to say, a subset of B is open if and only if its pre-image is open. The
fibres of this map are of course precisely the G-orbits in X.

If the action of G on X is free, that is if the only element of G with fixed points under
its action is 1 € G, then one can identify each fibre of the map with the group G, and so
abusing terminology we can say that the group G is the fibre of the continuous map X — B.
(In particular, one may choose a “base point” z in each fibre of G and views the points (g, x)
as in correspondence with gz.)

We may often wish to consider the case that GG is a topological group. We do not exclude

the case where G is a group with the discrete topology.

Example 1.1. Let Y be a simply connected covering of a topological space X. Consider
the fundamental group m(X). Then Y may be given an action of m(X) on Y such that
X =Y/m(X).

Another interesting type of examples is continuous maps X — B whose fibres are all
isomorphic to some Lie group G. Such examples arise in the theory of topological G-bundles.
It should be noted that this class of maps is very restrictive, and so the broader class of maps

which have the homotopy lifting property is often studied instead.



Definition 1.2. A (weak) fibration is a map of topological spaces p : X — B which satisfies
the homotopy lifting property with respect to any CW-complex Z.

Recall that a map p : X — B is said to satisfy the homotopy lifting property with respect

to some topological space Z if for any homotopy
f:Zx]0,1]— B

and for any map

fng-)X

lifting fo := f |zxq0y, there exists a homotopy
f:Z2x[0,1] =X
lifting f, with f | zx(0y= fo-
The following diagram illustrates the situation:

fo
f

|

W >

f

Z
l
Z x [0,1]

Fibrations can be seen as a precise way to describe the space X as being “parameterized”
by the space B.

The existence of a fibration X — X/G allows us to compute the homotopy groups of the
space X by consideration of the homotopy groups of the base X/G and the fibre G. In this

case the homotopy groups of X and G are related by the exact sequence
oo = T 1 (X/G) = o (G) = 1 (X) = T (X/G) = 11 (G) — .

Definition 1.3. A fibre bundle is a surjective fibration p : X — B which satisfies the fol-
lowing local triviality condition: fiz a base point by € B and let the “fibre” F = p~'(by).

Then for all b € B there exists an open neighborhood U, with a local homeomorphism



“YU,) = Uy x F whose projection onto Uy, agrees with p. The situation is illustrated below.

Upy) —— Uy x F
l/

Definition 1.4. A principal G-bundle p over a topological space B is a fibre bundle
p: P — B together with a continuous (right) action of G on P which preserves fibres of p
and the action of which is freely transitive on the fibres. In such a bundle, each fibre of p is

homeomorphic to G and P/G is homeomorphic to B.
The final example above is key to our purposes due to the following constructions.

Definition 1.5. A universal G-bundle is a principal G-bundle p : Eq — Bg such that

Eq is contractible. Such a space Bg is called a classifying space for G.
The reasoning behind the name “classifying space” is revealed by the following result.

Theorem 1.6. (Classification Theorem) There is a natural bijective correspondence between

equivalence classes of principal G-bundles and homotopy classes of maps X — Bg. [5]

This correspondence can be roughly described as follows: upon fixing a continuous map
f X — Bg we can consider the pullback Ef. defined as

f"(Eg) = {(z,e) | f(z) =ple)} € X x Eq.

Consider the restriction to f*(Eqg) of the projection X x Eg — X. We identify the fibre at
a specific point xy with a subset of Egs in the obvious way. That fibre then has the form
p Y(f(xo)) is by definition isomorphic to G, since it is a fibre of p. As such the map described
from EF to X is itself a principal G-bundle.

It can be further shown that homotopic maps produce isomorphic G-bundles via this
procedure, and one can check that this correspondence is indeed a bijection.

The following definition has been the main objective of our topological discussion, as its
algebraic analogue is central to our research. The idea was first introduced in 1935 by Stiefel
and Whitney.

Definition 1.7. Let G be a topological group. A characteristic class c for G-bundles
associates to each G-bundle ( over X a cohomology class ¢(¢) € H*(X) naturally with respect



to G-bundle maps, i.e. for any map of G-bundles

(f,f):¢=¢

one has f*c(¢') = ¢({).

The study of characteristic classes was one motivating factor in the broader development
of cohomology theory, as it was an early example of a contravariant construction. We end

our discussion of topology with the following result about characteristic classes.

Theorem 1.8. Characteristic classes for G-bundles are in bijective correspondence with

H*(Be).
Proof. See [5]. O

We now move to the algebraic settting. The algebraic analogue of a characteristic class is
called a cohomological invariant. The study of such objects was initiated by J.-P. Serre
in the mid 1990s.

Recall that in algebra instead of topological G-bundles one studies G-torsors. Loosely
speaking, if G is an algebraic group over a base X then a G-torsor is a variety Y over X
together with a simply transitive action of G which is locally (with respect to the étale
topology) isomorphic to G as a variety. The set of all isomorphism classes of G-torsors is
denoted by H'(X, G).

The main focus of this thesis will be the case where the base X = Speck consists of a
unique point and G is an affine algebraic group defined over k. Recall that in this particular
case, G-torsors can be defined in terms of non-abelian Galois cohomology (see I11.4.11).

Furthermore, it looks natural to replace topological cohomology groups H*(X) with an
algebraic analogue H*(k,u) where p is a Gal(k*P/k)-module. Thus we arrive to the main

definition in our thesis:

Definition 1.9. Let G be an algebraic group defined over a field k. Consider two functors
from the category Fields, of field extensions of k to the category Set of sets: namely the
functor H*(—,G) of isomorphism classes of G-torsors and the functor H"(—,u) of abelian
Galois cohomology groups with coefficients in pu.

A cohomological p-invariant (alternatively a cohomological invariant with coefficients

in p) in degree n is a morphism

a: HY(—, G) = H"(—, )



of these functors.

Thus, for any field extension F'/k we have a map
ar : HY(F,G) — H"(F, u)

compatible with field extensions L/F'.

A natural question appears immediately - how to describe all cohomological invariants
for a given group . This is a widely open and challenging problem, not much is known in
general.

If G is simple it is known that there are no cohomological invariants in degree 1. In degree
2, all cohomological invariants essentially come from Tits algebras, i.e. they can be described

with the use of the cohomology map
H'(k,G) — H*(k,Z)

where Z is the kernel of the simply connected covering G — G.

In degree 3, M. Rost (see [9]) described all cohomological invariants with coefficients in
= Q/Z(d) (this is the Tate twist - see I11.3.5) for simply connected groups and later on A.
Merkurjev extended his result for all semisimple groups. [14]

Finally, we note that for orthogonal algebraic groups and groups of types Go and Fy (see
examples in section I11.7) J.-P. Serre classified all possible invariants with coefficients in .
Besides these types, nothing is known in general.

A few years ago, V. Chernousov put forward a new idea of construction of cohomological
invariants with the use of orthogonal representations. Namely, assume we are given an

orthogonal representation A : G — O(f). It induces a natural mapping
N HYF,G) — HY(F,0(f))

where F'/k is any field extension of the base field k.

Recall that the elements of H'(F,O(f)) are in one-to-one correspondence with isomor-
phism classes of nondegenerate quadratic forms over F' having the same dimension as f (see
§I11.6.6). Thus to every class [(] € H'(F,G) we may associate in a functorial way a non-
degenerate quadratic form f¢. Now if n is a maximal positive integer such that for all field
extensions F'/k and all classes of cocycles [(] € H(F,G) the classes of f;— f are contained in
the n-th power of the fundamental ideal (see Definition 1.2.2) I"(F'), but not all in I""!(F),



then we have a well-defined non-trivial cohomological invariant
ax: HY(—,G) = I"/I"™ ~ H"(—, i)

in degree n with coefficients in ps. The last isomorphism above is due to the famous Voevod-
sky’s Theorem.

Of course, the main difficulty here is to understand when the class of f; — f is nonzero
in the Witt ring and how to compute n.

In the present work, we examine the case of the adjoint representation for a group G of
type Eg. Our results show that this construction produces a new invariant in degree n = 6.
Before stating it, we first recall a natural idea coming from topology. For a given G-bundle
Y over X, to check if it is trivial or not one can start from any characteristic class c. If
c(Y) # 0 then Y is not trivial. Otherwise one can consider the subfunctor Ker(c) of ¢ and
try to construct a new characteristic class ¢; : Ker(c) — H*(X). If ¢1(Y) # 0 we are done. If
it is not, we can continue in a similar way. Of course, the main difficulty here is to construct
c1, ¢o and so on.

Here is an illuminating example in algebraic setting. Assume we are given a class [f] €
W (F') of a nondegenerate n-dimensional quadratic form f over a field F of characteristic # 2
and we want to check if it is trivial or not. We may then consider “a characteristic class”
co : W(F) — H°(F,Z/2) given by dimension. If co([f]) # 0 we are done. Otherwise we
consider the kernel Ker(cy) = I C W(F) and pass to the map ¢, : [ — H'(F,Z/2) given by
discriminant. If ¢;([f]) # 1 we are done. Otherwise we take Ker(c;) = I C I C W(F') and
consider the Arason invariant > — H?(F,Z/2) whose kernel is I? and so on. It is worth
mentioning that we use the following fundamental result in the algebraic theory of quadratic
forms: for an arbitrary positive integer n there is a well-defined map ¢, : I" — H"(F,7Z/2)
whose kernel is I""!. This process terminates since if [ = [log, n] then by Hauptsatz the

dimension of any anisotropic quadratic form in I'*!F is
> il 5 glogantl — op

In the theory of algebraic groups over non-closed fields for any simple simply connected
algebraic group G the only known cohomological invariant is due to M. Rost. It lives in
degree 3:

R:HYF,G)— H*(F,Q/Z(2)).

Its kernel Ker(R) is highly nontrivial in the general case and following the above philosophy

one would like to construct a cohomological invariant ¢ : Ker(R) — H"(F,Q/Z(2)) in some

6



degree n. However nothing is known in this direction. For our purposes we replace the
coefficient module Q/Z(2) by us and we will consider a split group G = FEjg of type Es.
It is then known that any Es-torsor in the Ker(R) is split by a quadratic extension of the
(= Es) C H'(—, Es)

consisting of Fg-torsors splitting over a quadratic extension of the base field. In this notation

ground field. Therefore it makes sense to consider the subfunctor H,,,

our main result is the following.

Theorem. There exists a nontrivial cohomological invariant Hy,,.(—, Bs) — H®(—, j2).

Finally we note that cohomological invariants cannot exist in high degrees; the upper
bound of such degrees is the essential dimension ed(FEg) of type Es. Therefore, it is natural
to turn to the problem of classification of all such cohomological invariants (recall that the
Rost invariant lives in degree 3; furthermore N. Semenov constructed an invariant in degree
5. We expect one more invariant in degree 9 and no more).

In this thesis, we begin by reviewing several topics relevant to this construction. We will
begin with a discussion of quadratic forms and the Witt ring, including the powers of the
fundamental ideal, their elements, and their quotients. Next, we briefly discuss root systems
of simple linear algebraic groups and their classification by Dynkin diagrams, which will play
a central role in later computations. The third chapter is focused on Galois cohomology,
and includes more in depth discussion of topics such as torsors and cohomological invariants,
and the relationship between torsors and cohomology. We then move to general reviews of
topics from the study of linear algebraic groups and of Lie algebras which are relevant to our
setting, as well as the correspondence between the two. The discussion on Lie algebras is
largely focused on a quadratic form called the Killing form.

The final chapter contains the original research of this thesis, therein we show some
results about cohomological invariants arising via the Killing form in increasingly complicated
settings. The primary target of this thesis was to investigate the existence of a non-trivial
cohomological invariant arising via the Killing form for simple groups of type Eg. In §VI.5
we show that such a non-trivial invariant does exist.

Throughout the duration of this thesis we will assume that the base field has characteristic

not equal to 2.



CHAPTER I

Quadratic Forms and Witt Rings

1 Quadratic Forms

In this chapter we collect some basic facts on quadratic forms and Witt rings which we will

need later on. For their proofs we refer to [12] and [8].

Definition 1.1. An n-dimensional quadratic form over k is a homogeneous polynomial

of degree 2 in n variables. That is to say, a quadratic form is a polynomial of the form

f(X) = Z aij XiXj,
ij=1
where X = (X3, ..., X,,) is an indeterminate over k™ and the coefficients a;; are elements of

k.

Notice that if we set aj; := %(aij +aj;) for all ¢, j = 1,...,n then we have

n n
FX) =D ayXiX; =Y al; XX,
ij=1 ij=1

so that aj; = a); for all 4,7 = 1,...,2. In this way we may rewrite any quadratic form in such
a way that the coefficients are rendered symmetric.

Written in this manner, our quadratic form f(X) gives rise to a symmetric matrix
My = (aj;). There is a natural notion of equivalence of quadratic forms, which amounts
to congruency of these matrices.

Recall that two n x n matrices A and B over k are congruent if there exists an n x n



invertible matrix S € GL(n, k) such that
A=SBS".

This is equivalent to saying A and B define the same map k™ — k™ up to a linear replacement

of variables.

Definition 1.2. Let f, g be n-dimensional quadratic forms over k. We consider f and g to

be equivalent quadratic forms if there is an invertible linear replacement of variables

}/i = zn: bz‘ij
j=1

such that f(Xq,...,X,) =g(Y1,...,Yy).

Lemma 1.3. Two quadratic forms f and g over k are equivalent if and only if the associated

matrices My and M, are congruent.
Proof. See [12, Chapter I, Section 1]. O

Theorem 1.4. The above definition defines an equivalence relation on the set of all quadratic

forms over k.

Proof. This follows directly from Lemma 1.3 along with the well known fact that congruency

is an equivalence relation on a matrix algebra. O

Another perspective is to view f as a quadratic map @)y : k" — k. This is done in the

obvious way, i.e.

or alternatively

Q(X) = X'M; X,

where X € k™ is a column vector.
Notice that not only does a quadratic form determine uniquely a quadratic map, but
the converse is also true. This more geometric outlook can be translated to the study of

symmetric bilinear forms.

Definition 1.5. Let V be an n-dimensional k-vector space. A symmetric bilinear form

on V is a map

B :V xV = k such that for all u,v,w € V, c € k,

9



1. B(u,v) = B(v,u)
2. B(u,v +w) = B(u,v) + B(u,w)
3. B(cu,v) = c¢B(u,v).

Given a quadratic map @ : k™ — k we may obtain a symmetric bilinear form B : k" xk™ —

k by setting

SQX +Y) —Q(X) Q).

Similarly, if B is a symmetric bilinear pairing B : k" x k" — k we may define Q) : k" — k

B(X,)Y) =

by setting
Q(X) = B(X, X).

This correspondence enables us to work over k-vector spaces other than k™ as well. Sup-
pose V is a finite dimensional k-vector space, and B a symmetric bilinear pairing B : VxV —
k. Let @ be the quadratic map @ : V — k, X — B(X,X). The pair (V, B) is called a
quadratic space. Since B and () uniquely determine one another it is equally as correct to
express our quadratic space as (V, Q). A quadratic space (V, B) is said to be n-dimensional
if V is n-dimensional as a k-vector space.

Upon fixing a basis {ej,...,e,} for V, the quadratic space (V, B) determines uniquely a

quadratic form fp given by
f(X) = B(X,X) =) Ble, ;) X; X
ij=1

Theorem 1.6. Given a quadmtzc space (V, B) and two bases {ey, ...,e,} and {e,...,e.} for
V, the quadratic forms Z B(e;, e;) X;X; and Z Ble}, e;)X; X are equivalent. Moreover a

3,j=1 i,j=1
quadratic space (V, B) determines uniquely an equivalence class of quadratic forms.

Proof. See [12, Chapter I, Section 1]. ]

To render the above correspondence bijective, we require also a notion of equivalence of

quadratic spaces.

Definition 1.7. Two quadratic spaces (V, B,) and (W, B,.) are called isometric if there is
a vector space isomorphism ¢ : V. — W such that for all XY €V,

By(X,Y) = Bi(o(X), 6(Y)).

We denote isometry by (V, B,) = (W, B,).

10



Theorem 1.8. Isometry defines an equivalence relation on the set of all quadratic spaces

over k.

Proof. See [12, Chapter I, Section 1]. O

In fact, isometric quadratic spaces give rise to the same equivalence classes of quadratic

forms.

Theorem 1.9. There is a one-to-one correspondence between equivalence classes of quadratic
forms and isometry classes of quadratic spaces, given by Theorem 1.6. We view this corre-

spondence as an identification.
Proof. See [12, Chapter I, Section 1]. ]

Now that we have covered the basic definitions of quadratic forms and the equivalent
notions of symmetric bilinear forms and quadratic spaces, we may begin to discuss some of

the properties they may have.
Theorem 1.10. Let (V, B) be a quadratic space. The following conditions are equivalent:

1. Let f be a quadratic form belonging to the equivalence class associated to (V,B). The

corresponding symmetric matrix My is invertible,

2. The map X — B(—, X) is a vector space isomorphism between V and its dual space
V™.

3. B(X,Y)=0 forallY € V if and only if X = 0.
Proof. See [12, Proposition 1.1.2]. ]

Definition 1.11. A quadratic space (V, B) is called regular or non-singular if any (and
therefore all) of the conditions of Theorem 1.10 hold.

Observe that being a regular quadratic space is a class property under isometry, that is
it holds for either all elements of an isometry class or none.

Let V be a k-vector space with W a subspace of V, and B : V x V — k a symmetric
bilinear form. Then the restriction B |wxw together with W forms a quadratic space as well.

We define the orthogonal complement of W in V (with respect to B) in the usual way:

WH:={X eV |BX,Y)=0, VY € W}.

11



Note that W+ is also a vector subspace of V, and so (W, B |yw.yw) is also a quadratic

space. Similarly,

Vi ={XeV|B(X,Y)=0, VY € V}.
By Definition 1.11, (V, B) is regular if and only if V+ = {0}.

Proposition 1.12. Let (V, B) be a quadratic space and W a subspace of V. Then
dim W + dim W+ = dimV

and
(WHE =wW.

Proof. See [12, Proposition I.1.3]. O

One very important property of quadratic forms is that they can all be diagonalized, in

the sense that every equivalence class of quadratic forms contains an element of the type

n

F(X) =) aiX].
i=1
This allows us to express every quadratic form in a concise and easy to manipulate fashion,

which we now work towards describing.

Definition 1.13. Let d € k*. We say that a quadratic form f represents d if there exists
some X € k™ such that f(X) = d.

Quadratic forms have the distinctive property that for all a € k and for any quadratic
form f over k, f(aX) = a®f(X). Therefore if a quadratic form f represents some element d
of k*, f also represents a?d for all a € k*. To make use of this property we define the group

of square classes of k.

Definition 1.14. The square classes of k are the multiplicative cosets of k* modulo (k).

The quotient group k> /(k*)? is called the group of square classes.

We denote by D(f) the set of all d € k* represented by f. In view of the above remarks,
D(f) is a union of square classes. Under the identification of square classes with elements
of the quotient group, it is a subset of the group of square classes. In general, it is not a
subgroup.

D(f) is dependent only on the equivalence class of f, and so we may also discuss meaning-
fully the elements of £* represented by a quadratic space, or an isometry class of quadratic

spaces.

12



Definition 1.15. If D(f) is a subgroup of k* /(k*)?, the quadratic form f is called a group

form.

There are important examples of group forms, including the Pfister forms with which we
will later concern ourselves.

The next step in being able to manipulate quadratic forms and spaces is to develop some
operations we can use to build up more complex quadratic spaces from simpler building
blocks. These operations - orthogonal sums and tensor products - obey some familiar and

desirable properties.

Definition 1.16. Let (Vy, By) and (Vq, Bs) be quadratic spaces, and let V := V1@ Vy. Define
B:VxV—kby

B((z1,22), (y1,92)) = Bi(z1,y1) + Ba(w2,42).

Then (V, B) is a quadratic space called the orthogonal sum of (Vi, By) and (Va, Bs) and
denoted by

If f1(X1,...,X,) and fo(Y3,...,Y,,) are quadratic forms over k associated to quadratic
spaces (Vq, By) and (Vg, By) respectively, then the orthogonal sum (Vy, By) L (Vg, Bs) has

an associated quadratic form
f(Xh ceey Xn; }/1, 7Ym) — fl(Xb 7Xn) + f2(§/’1’ ceey Ym)

As one might hope, this operation respects our notions of equivalence for quadratic spaces.
That is to say, the operation L is well defined on isometry classes of quadratic spaces.
Moreover, orthogonal summation is both symmetric and associative when viewed as an

operation on isometry classes of quadratic spaces. In other words, given three quadratic
spaces, (Vi, By), (Va, By), and (V3, B3) we have

1. (Vl,Bl) 1 (VQ,BQ) = (VQ,BQ) 1 (Vl,Bl>.
2. ((V1,B1) L (Vg,Bs)) L (V3,Bs) = (Vy,B1) L ((Vg, By) L (Vs, Bs)).

By convention we write (d) for the isometry class of the one-dimensional quadratic space
corresponding to the 1-fold quadratic form f(X;) = dX?, where d € k. By the previous

remarks concerning square classes, (d) = (d’) for any d' in the square class of d.

Theorem 1.17. (Representation Criterion) Let (V, B) be a quadratic space and let f be an

associated quadratic form. Then for any element d € k™, [ represents d if and only if there

13



exists a quadratic space (V', B') such that
(V,B) = (d) L (V',B).

Proof. See [12, Theorem 1.2.3]. H
The following important corollary follows by induction.

Corollary 1.18. Let (V, B) be an n-dimensional quadratic space over k, with an associated
quadratic form f. Then there exist some d; € D(f) U {0} such that

(V,B) 2 (d}) L ... L{d,).

For brevity, we denote (dy, ..., d,) := (dy) L ... L (d,). This corollary can also be rewritten

in the language of quadratic forms.

Corollary 1.19. Every finite dimensional quadratic form can be diagonalized, that is to say

if fis an n-fold quadratic form over k it is equivalent to some quadratic form of the type
n
fllw) =) dia?
i=1

with each d; € D(f) U {0}.
Proof. See [12, Corollary 1.2.4]. H

Using diagonalized forms renders many computations and properties more straightfor-
ward. For example, the discriminant of a quadratic form f (written d(f)) is the square
class of the determinant of the corresponding matrix My. The discriminant is a class prop-
erty, i.e. if f and g are equivalent quadratic forms then d(f) = d(g). Given a diagonalization
f = (f1,..., fn) it is then clear to see that

d(f) = [fr-- - fa]-

Now that we have some idea of how to decompose quadratic spaces into smaller parts, let
us begin to classify these parts. One property that helps with this classification is the idea
of isotropy.

Definition 1.20. Let (V, B) be a quadratic space, and let X € V. The vector X is called
isotropic if X is nonzero and B(X,X) = 0.

14



A quadratic space containing isotropic vectors is called an isotropic space. Moreover, a

quadratic space in which every vector is isotropic, i.e. a quadratic space of the form
0y L ... 1L(0),

is called totally isotropic. A quadratic space which is not isotropic, that is which contains
no isotropic vectors, is called an anisotropic quadratic space.

Suppose (V, B) is a regular n-dimensional quadratic space. We know that there are
elements d, ...,d, of k such that

(V,B) = (dy) L ... L{d,).

The space (V,B) has an associated quadratic form f(X) = d,X? + ... + d,X?, with a
corresponding matrix M that is diagonal with entries d;. Since (V, B) being regular implies
My is invertible, it is clear that each d; must be nonzero. In other words, (V, B) contains no
vector v such that v is orthogonal to every vector in V (including itself.)

Already here we can see a starting point for decomposing spaces - it is clear that any
quadratic space may be broken into a regular subspace and a totally isotropic subspace. As

it turns out the types of regular spaces which can be isotropic are even more limited.

Theorem 1.21. FEvery (regular) isotropic 2-dimensional form is isometric to (1, —1). Such

a form is called hyperbolic plane and denoted H.
Proof. See [12, Theorem 1.3.2]. H

Definition 1.22. An orthogonal sum of hyperbolic planes, that is to say a quadratic space
of the form H L ... L H s called a hyperbolic space. The corresponding quadratic form is

called a hyperbolic quadratic form or a split quadratic form.

So the two dimensional space H and the one dimensional space (0) are the two simplest
examples of isotropic spaces. In fact, every more complex isotropic space contains copies of

one or both of these spaces.

Theorem 1.23. (Witt’s Decomposition Theorem) Fvery quadratic space is an orthogonal
sum of an anisotropic space, a hyperbolic space, and a totally isotropic space. Moreover, the

summands are unique up to isometry.

Proof. See [12, Theorem 1.4.1] (the proof follows on p.14 after several other results). O
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Expressed symbolically, for any quadratic space (V,q) there exists an anisotropic space
(Va,qa), a hyperbolic space (Vp,, qr), and a totally isotropic space (Vy, q;), which are unique

up to isometry such that

(VaQ) = (VaaQQ) 1 (Vhaqh) 1 (Vt7Qt)'

The spaces (Va,4a), (Vi,qn), and (Vy, ;) are called respectively the anisotropic, hyper-
bolic, and totally isotropic parts of (V,q).

The hyperbolic part of a quadratic space V is necessarily of the form m - H (meaning the
orthogonal sum of m copies of H) for some integer m. This integer m is called the Witt
index of V.

One important tool used in the proof of this theorem, which is also essential to manipu-

lating and determining isometry of quadratic spaces, is Witt’s Cancellation Theorem.

Theorem 1.24. (Witt’s Cancellation Theorem) Let f,g,h be quadratic forms such that
fLh=glh Then f=g.

Proof. See [12, Theorem 1.4.2]. O

Another important operation on quadratic spaces is the so-called tensor product or

Kronecker product which is defined as follows.

Theorem 1.25. Consider two quadratic spaces (V1, B1) and (Vq, Bs), with x1,y; € V1 and
X2,y € Va. Let V be the tensor product of vector spaces V.=V ® Vy. The tensor product of
quadratic spaces (V, B) = (V1, B1) ® (Vg, B2) defined by

B(z1 @ y1, 22 ® y2) = Bi(x1, y1)Ba(22, y2)

18 a quadratic space.
Proof. See [12, Chapter I, Section 6. ]

Like orthogonal sums, tensor products are well-defined when viewed as operations on
isometry classes of quadratic spaces, and they are symmetric and associative in the same

sense. In addition they obey a distributive law over orthogonal sums.

Theorem 1.26. Tensor products are associative, symmetric, and well-defined on isometry
classes of quadratic forms. Tensor products also distribute over orthogonal sums, i.e. for all

quadratic spaces (V;, B;) with i = 1,2, 3,

(Vi, B1) @ ((V2, Ba) L (V3, B3)) = ((V1, B1) ® (V3, B3)) L ((V1, B1) ® (Va, By)).
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In particular for diagonal forms
<CL1, . CLS> X <b1, P bT> = <a1b1, . ale, a2b1, . Clsbr>,

where ay, ..., as,b1,...,0, € k.
Proof. See [12, Chapter I Section 6. ]

The distributive property of tensor products over orthogonal sums has the following im-

portant consequence:

Example 1.27. Let f be an n-dimensional quadratic form. Then the tensor product f & H

1s a hyperbolic space, in particular
fOHXn-H.
Proof. Let f = (f1,..., fn) be a diagonalization of f. Then one has

FOH = (fi,... fa) ®(1,-1)

= (/1 f ) Lo L {fn=1n)
=n-H.

(Note that for all @ € k the form (a, —a) is a regular two-dimensional form representing zero,

and therefore a hyperbolic plane by Theorem 1.21.) O]

2 Witt Rings

With the properties of orthogonal sums and tensor products given above we begin to see
some semblance to a ring structure. Off hand, the isometry classes of quadratic spaces over
k do not form a ring due to the absence of additive inverses. An algebraic structure which
does not necessarily have additive inverses, but which otherwise possesses a ring structure,

is called a semiring.

Theorem 2.1. Isometry classes of reqular quadratic spaces over k form a semiring with

respect to the operations L and ®.

Proof. See [12, Chapter II Section 1]. O
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Given such a structure, we construct a ring using a process known as the Grothendieck
construction. Starting with a semiring M, we define an equivalence relation ~ on M x M
given by

(a,b) ~ (¢,d) <= a+d=0b+c.
We then consider the equivalence classes of M x M modulo this relation. It is easy to check

that these equivalence classes still form a semiring with the operations
(a,b) ® (¢,d) :=(a+c¢,b+d) and (a,b) ® (¢,d) := (ac+ bd, ad + bc).
Furthermore, each element (a,b) now has an additive inverse (b, a) since
(a,b) + (b,a) = (a+b,b+a) ~ (0,0).

So the equivalence classes of M x M/ ~ form a ring, called the Grothendieck ring of M
and denoted Groth(M).

Let M (k) denote the semiring formed by all regular isometry classes of quadratic spaces
over k, together with the operations 1 and ®. Then the Grothendieck ring Groth(M (k)) of
M (k) is a ring called the Witt-Grothendieck ring which we will denote by W(kz)

Elements of the Witt-Grothendieck ring will be expressed as ¢; — ¢z (as opposed to (¢1, ¢2))
where ¢; and ¢, are forms over k. By writing ¢; € /W(k) we mean ¢; — 0. There is a well-

defined notion of dimension in /W(k), namely
dim(q; — ¢2) = dim(qy) — dim(gz).

The Witt-Grothendieck ring possesses two very important ideals.

Theorem 2.2. The natural map dim : /W(k:) — Z 15 a ring homomorphism. Its kernel is
called the fundamental ideal of /W(k‘), denoted I(k).

Proof. See [12, Chapter II Section 1]. O]

The second important ideal is the ideal Z - H generated by all hyperbolic spaces and their
additive inverses. By Example 1.27, this ideal in fact contains only hyperbolic spaces and

inverses of hyperbolic spaces.
Definition 2.3. The Witt ring is the quotient ring W (k) := /W(k)/Z - HL

Since the operations in the Witt ring and Witt-Grothendieck ring arise directly from

orthogonal sums and tensor products of quadratic spaces, we will also call these operations
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orthogonal sums and tensors products (or simply sums and products.) In these structures
they will be denoted by @ and ®, respectively.

The symbols ¢; — g2 behave in a natural way in that

(1 — @) @ (3 — @) = (1 D q3) — (2D qu),
(1 —2) (@B —w=((9EPEOq)— (1 q® g qs).

Additive inverses in the Witt ring appear in a more natural way compared to the Witt-
Grothendieck ring. Let ¢ be an n-dimensional quadratic form and let (—¢)(X) = —q(X).
Then in W (k) one has

¢®(—q)=n-H=0.

The image of the fundamental ideal I(k) of W(k‘) under the quotient map W(k) — W (k)
is called the fundamental ideal of W (k), and is denoted by I(k). The quadratic forms
corresponding to elements of I(k) are precisely those of even dimension.

Working in the Witt ring rather than the set of all isometry classes or in the Witt-
Grothendieck ring is helpful because it gives us an algebraic structure which is simpler than
that of the Witt-Grothendieck ring, while retaining all information regarding the anisotropic
part of quadratic spaces. Since the isometry class of the hyperbolic and totally isotropic
parts are dependent only on dimension, it is the anisotropic part which is by far the most

interesting.

Theorem 2.4. There is a one-to-one correspondence between anisotropic forms over k and
elements of W (k). In particular, every element of the Witt ring has a unique representative

which is anisotropic.

Proof. See [12, Proposition 11.1.4]. H

3 Pfister Forms

For a € k we denote by ((a)) the two dimensional quadratic form (1, —a). This is called a
1-fold Pfister form.

Definition 3.1. A (n-fold) Pfister form is any quadratic form of the type ((ay,...,a,)) :=
X, ((a;)), where the a; are in k.

Example 3.2. A hyperbolic plane H = (1, —1) = ((1)) is a Pfister form.

In fact, hyperbolic planes have a very special place among Pfister forms.
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Theorem 3.3. A Pfister form is isotropic if and only if it is a hyperbolic space.

Proof. Clearly, if a Pfister form is hyperbolic then it is also isotropic. For a proof of the

converse see [12, Theorem X.1.7]. O
This theorem can be reformulated as the following:

Corollary 3.4. The Pfister form ({x1,...,xn,y)) is hyperbolic if and only if ((x1,...,Tn))

represents .

A major cause for interest in Pfister forms is that they give us a path to studying the
quotient rings I™/I™*! for each natural number n. This is because the fundamental ideal [
of the Witt ring W (k) is generated additively by quadratic forms of the type (1, a), where a
varies over k [12, Proposition I1.1.2]. That is to say, I is additively generated by the 1-fold

Pfister forms over k. The following theorem is a result of this fact.
Theorem 3.5. For all n € N, I™ s additively generated by the n-fold Pfister forms over k.
Proof. See [12, Proposition X.1.2]. ]

The following result due to Arason and Pfister describes another important property of

the powers of the fundamental ideal:

Theorem 3.6. (Hauptsatz) Let ¢ be a quadratic form over k. If ¢ € I"™ and dim g < 2" then
q s hyperbolic.

Proof. See [2]. O

Recall that the elements of k™ represented by some particular form f is a union of square
classes of k, denoted by D(f). We defined a group form to be a quadratic form for which the

elements of the quotient group k*/(k*)? representing these square classes form a subgroup.
Theorem 3.7. Let ¢ be a Pfister form over k. Then ¢ is a group form.
Proof. See [12, Theorem X.1.8]. H

Any quadratic form f over k can also be considered as a quadratic form over any field

extension ¢ of k. We denote f viewed as a form over ¢ by

for=0®y f.
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Suppose ¢ is an n-fold Pfister form (therefore a 2"-dimensional quadratic form). Let
X = (X1, ..., Xon), Y = (Y, ..., Yon)

where the X; and Y are indeterminates over k. Now let ¢ be the pure transcendental
extension k(X,Y) of k.

Certainly ¢y is still a Pfister form, and thus also a group form. This implies there exist
some rational functions 71, ..., Zon € k(X,Y) such that

oe(X)pe(Y) = de(Z1, ..., Zan),

or in other words ¢, represents ¢y(X)pe(Y).

This observation motivates the definition of a multiplicative form over k.

Definition 3.8. Let q be an n-dimensional quadratic form over k, and let X = (Xq, ..., X,,)
and Y = (Y1, ..., Y,) be n-tuples of indeterminates over k. The form q is called a multi-

plicative form if qy(x vy represents ¢(X)q(Y).

As noted above, any Pfister form is multiplicative. In fact, among anisotropic forms the

two notions are equivalent.

Theorem 3.9. An anisotropic quadratic form f over k is multiplicative if and only if it is a
Pfister form.

Proof. See [12, Theorem X.2.8]. O

We conclude our preliminary discussion of quadratic forms with a lemma useful for com-

putations in the Witt ring.

Lemma 3.10. Let a,b € k. Then in the Witt ring W (k) we have

({a)) @ (b)) = ((ab)) ® {{a,])).

Proof.

((ab)) ® ((a,b)) = (1, —ab, 1, —a, —b, ab)

1,—a) & (1, —b) & (—ab, ab)
(a)) ® (b)) O H
{

a)) © ((b))

{
{
{
{
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Corollary 3.11. Let xq,...,x,,y, 2 € k. Then in the Witt ring W (k) we have

({21, ey Ty ) B (X1, ooy Ty 2)) = (T4, 0oy T, y2)) B ({21, 0, Ty Y, 2)).
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CHAPTER I1

Root Systems

1 Root Systems

Let V be a finite dimensional vector space over R, and let a € V. A reflection with respect

to «v is an invertible linear transformation s, such that
1. sola) = —«

2. The set V* C V of vectors fixed by s, is a hyperplane, that is to say a subspace of

codimension 1.

Lemma 1.1. Let R be a finite set spanning V and let « € R. Then there exists at most one

reflection s, with respect to a such that so(R) = R.
Proof. See [16, Chapter V, Section 1]. ]

Definition 1.2. A finite set X of vectors ¥ C V is called a (reduced) root system if it

satisfies the following geometric properties:
1. ¥ spans V.
2. Y does not contain the zero vector.

3. For all « € X, there exists a reflection s, with respect to o such that s,(3) = 3. By

Lemma 1.1 it 18 unique.
4. For all o, 8 € X, the vector B — s,(B) is an integral multiple of a.
5. For all a € X, the only scalar multiples of a contained in % are L.

If ¥ is a root system for a vector space V, then dimV is called the rank of ¥.

23



Definition 1.3. The Weyl group of a root system %, denoted W (%) is the subgroup of
GL(V) generated by the set of reflections {s, | a € X}.

Let V be a k-vector space with B : V x V — k a bilinear form. Let X € GL(V). One
says that X preserves B if, for all u,v € V, one has B(X(v), X(u)) = B(u,v).

For any such bilinear form B, the set of all linear transformations preserving B is a
subgroup of GL(V) called the orthogonal group of B and denoted O(B) or O(B, V) if the
space V is not clear from context.

Given a subgroup G of GL(V) and a bilinear form B on V, we say that B is invariant
under G if G C O(B, V).

Proposition 1.4. Let 3 be a root system for a vector space V. Then there exists a positive

definite symmetric bilinear form (—,—) : V x V — R which is invariant under W ().
Proof. See [16, Proposition V.1]. O

Let V* denote the vector space dual of V. For x € V* y € V, we adopt the notation
(x,y) := x(y). Then for each o € 3 there is a unique element a* of V* such that (o*, o) = 2
and for all v in the hyperplane V® of V fixed by s,, one has (a*,v) = 0. This element o* is

called the dual root of «.

Proposition 1.5. Let ¥ be a root system for a vector space V and let
Yo={a"|aeX}.

Then ¥* is a root system for V*, called the dual root system of X..
Proof. See [16, Proposition V.2]. O

It can be shown [16, Section 6] that for all a € 3, (a*)* = a and so (¥*)* = X. For any
root system X, we have

W(E) =~ W(Z¥).

Proposition 1.6. For any choice of invariant (under W (X)) symmetric bilinear form
(—,—):VxV >R

and for all o, 3 € R, one has

Proof. See [16, Section V.5]. O
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Let X be a root system for V and let (—, —) be a fixed symmetric positive definite bilinear
form on V, which is invariant under W (X). The bilinear form (—,—) defines a Euclidean

structure on V whereby the length of a vector V is given by
o] = (v, 0).

Let 6, 5 denote the angle between two roots o and 3 with respect to this structure. A
list of cases and possible values of 0, s is given in [16, Chapter V Section 7]. In particular,

the angle 6, 3 is an integer multiple of either w/6 or 7 /4.
Proposition 1.7. If a, 5 € ¥ are not colinear, and if (o*,5) > 0, then o — € .
Proof. See [16, Proposition V.3]. O

Let R, R’ be root systems for vector spaces V,V’. The root systems R and R’ are iso-
morphic if there is a vector space isomorphism ¢ : V. — V' such that ¢(R) = R’ and for all
a, B eR,

(o, B) = (p(a)", p(B))-

Definition 1.8. Let X be a root system for a k-vector space V. A subset S C ¥ is called a

base or system of simple roots for % if

1. S is a basis of V.

2. Every root a € X2 can be written in the form

o= E a;si,

;€S
where the a; are scalars in R each with the same sign.
An element of S is called a stmple root.

Every root system has a base (see [16, Theorem V.1]). Let ¥ be a root system and fix a
base S. Then a root « in X is called a positive root if the scalars a; in the above definition
are positive. The set of positive roots in 3 (with respect to S) is denoted X* or I§ if S is
not clear from context. Roots which are not positive are called negative roots and the set

of all negative roots in X with respect to S is denoted ¥~ or .
Proposition 1.9. If ¥ is a root system with a base S then
S*:={a"|a e S}
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18 a base for the dual root system >*.
Proof. See [16, Proposition V.4]. ]

Let X be a root system for a vector space V and S a base of ¥ with elements «; indexed
by natural numbers ¢ = 1,..,n where n = dim V.
The Cartan matrix for ¥ associated to S is the matrix with ¢, jth entry equal to (o], a;).

The Cartan matrix determines the root system up to isomorphism (see [16, Proposition V.8]).

2 Dynkin Diagrams

Let ¥ be a root system with a base S. The Coxeter graph of ¥ with respect to S is a
multigraph with vertices for each element in S, such that the number of edges joining the

vertices corresponding to «, 5 € S is equal to (a*, B){(*, a).

Proposition 2.1. The isomorphism class of the Coxeter graph is independent of the choice

of S.
Proof. This is a direct result of [12, Theorem V.2]. O

Let 31 and Y5 be root systems of vector spaces Vi and V, respectively. Then ¥; U ¥, is

a root system for Vi & V,. This new root system is called the direct sum of R; and Rs.

Definition 2.2. A root system is called reducible if it is isomorphic to the direct sum of

two other nonzero root systems. Otherwise, it is called irreducible.

Proposition 2.3. A root system X is irreducible if and only if its Cozeter graph is nonempty

and connected.
Proof. See [16, Proposition V.12]. ]

Unfortunately, Coxeter graphs do not determine uniquely the isomorphism class of their

root system. This is remedied with the introduction of Dynkin diagrams.

Definition 2.4. The Dynkin diagram of a root system ¥ with base S is a directed Coxeter
graph of 3 with respect to S, so that every edge between two non-orthogonal vertices is directed

toward the shorter of the two.

Proposition 2.5. The Dynkin diagram of a root system determines that root system up to

isomorphism.
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Proof. See [16, Proposition V.13]. O]

By the above facts, a classification of root systems amounts to a classification of connected

Dynkin diagrams. There are 4 infinite families of connected Dynkin diagrams with n vertices.

D, : o—o—&©—<

In addition there are 5 exceptional cases.

F4:O—Oib—o

Gy : =D

Fg: © T o

E;: © I o—O0
Eg: © I O—0—>0

(See [16, Chapter V, Section 14].)
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CHAPTER III

Galois Cohomology

1 Cohomology Groups

Let G be an (abstract) group. By a G-module we mean a Z[G]-module. Let A be a G-module.
We denote by A“ the submodule of A consisting of all elements a € A which are invariant
under G. One has

Homg(Z, A) = Hom(Z, A)¢ = A,

where we view Z as a trivial G-module and Homg(Z, A) denotes the group of G-module
homomorphisms Z — A and Hom(Z, A) the group of abstract group homomorphisms, with
the action of G on Hom(Z, A) induced by that on A.

Since the Hom(Z, —) is a covariant, left-exact functor, the above equation implies that
A% is also a covariant left-exact functor from G-modules to abelian groups.

That is to say, for every short exact sequence of G-modules
0-A—-B—-C—=0
there is an induced sequence of abelian groups
0— A% » BY — C¢
which is also exact.

Definition 1.1. A G-module is called co-induced if it is isomorphic to some G-module of
the form Hom(Z[G], X) where X is any abelian group (here the action of G on Z[G] is by
left multiplication).
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Definition 1.2. A cohomological extension of the functor A% is a sequence of functors
HY(G, A) : G-modules — Abelian groups

for all non-negative integers q which satisfy the following conditions:
1. For all G-modules A, one has H*(G,A) = AY.

2. For short exact sequences of G-modules
0—+A—=-B—-C—=0
there exist boundary morphisms 6 : HY(G,C) — H7™ (G, A) such that the sequence
.. = HY(G,A) — HYG,B) —» H(G,C) % H™ (G, A) — ...

18 exact.
3. If A is a co-induced module, then for all ¢ > 1 one has HI(G, A) = 0.

Theorem 1.3. There exists one and only one cohomological extension of the functor A%, up

to canonical equivalence.
Proof. See [6, Theorem IV.1]. O

Definition 1.4. The groups HY(G, —) whose existence and uniqueness guaranteed by Theo-

rem 1.3 are called the (q-th) cohomology groups of A.

Definition 1.5. A free resolution of a G-module A is an exact sequence

d d d
—2>P1—1>P0—0>A—>0

such that P; is a free module for all non-negative integers 1.

The existence portion of the proof of Theorem 1.3 given in [6] involves choosing a free
resolution
do dy do
...——>P1——>P0——>Z:2P_1

of the G-module Z. The existence of such a resolution is guaranteed by a well-known result

in ring theory.

29



The standard complex is a particular choice of this resolution, namely P; := Z[G"!]

for all non-negative integers 7. Note that P; has a basis of the form
G x..xG (i+1 factors)

with elements (go, ..., g;). For ease of notation, throughout this section we will define actions

and homomorphisms on this basis, with the understanding that they may be extended linearly
to all of P,.

The action of G on P; is defined for all s, go, ..., g; € G by
$.(goy -, gi) = (590, -+, SGi)-

The homomorphisms d; : P; — P;,_; are given by

d;i : (90, -5 Gi) Z(—l)j(goa coes Gj—15 Gt 15 -5 Gi)-
=0

Note that for ¢ = 0 this definition results in the constant map
do:g— 1.

The proof of Theorem 1.3 also defines the complex K to be

0 — Homg(Py, A) 2 Homeg(Py, A) 2 ...

and the i-th cohomology group H'(G, A) of A is taken to be the i-th cohomology group of
the complex K, i.e. the group

ker(d;)/im(d;_1).

Definition 1.6. An i-cocycle is an element of ker(d;), and i-coboundary is an element of
im(d;_1). So an element of the i-th cohomology group is an equivalence class of i-cocycles,
modulo i-coboundaries. We will very often use cocycles in their capacity as a representative

of an element of a cohomology group.

Now consider some f € Homg(P;, A). A priori, f is a map G**' — A such that for all
5,90y, gi € G

f(s90,---,59i) = 5.f (g0, -, 9i)-
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Let ¢ : G' — A be a function defined by

So(gb 791) = f(1791791927 nggl)

One can check that ¢ determines f - we will view this as an identification, whereby we can

view an i-cocycle as a map G* — A rather than G — A.

Proposition 1.7. A map ¢ : G — A is a 1-cocycle if and only if for all g,h € G one has

e(gh) = ©(g) + g.0(h).
Such a map is called a crossed homomorphism.

Proof. See [6, Chapter IV, Section 2]. ]

Proposition 1.8. A I-cocycle ¢ is a 1-coboundary if and only if there exists some a € A
such that for all g € G

v(9) =g.a—a.
Proof. See [6, Chapter IV, Section 2]. ]

Proposition 1.9. A function ¢ : G x G — A is a 2-cocycle if and only if it satisfies the
following condition for all g1, 92,93 € G :

91-0(92, 93) — ©(9192, 93) + ©(91, 9293) — ©(g1, 92) = 0.

Proof. See [6, Chapter IV, Section 2]. ]

Let G be a group with G’ < G, and let A’ be a G'-module. We can define the G-
module A := Home (Z[G], A’) (where Z[G] has a natural G’-module structure induced by
the inclusion map G’ < G and left-multiplication) with the action of G on A given by

(9-0)(2) = ¢(zg7")
forall g € G, p € A, z € Z|G].
Proposition 1.10. (Shapiro’s Lemma) In the above setting,
HY(G,A) = HY(G',A") forall ¢ >0.

Proof. See [6, Proposition IV.2]. O
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If H and G are groups and f : H — G a group homomorphism, then f induces a
homomorphism of the standard complexes discussed previously in this section. Resultantly,

f also induces homomorphisms
ffHYG,A) — HY(H,A)

defined for any G-module A and for all non-negative integers q.

Example 1.11. Let G be a group with H < G, and let « : H — G be the inclusion map.
Then the induced homomorphisms

v HY(GLA) — HY(H, A)

are called the restriction homomorphisms, and are denoted by Res.

Example 1.12. Let G be a group, H < G a normal subgroup, and A a G-module. Let
m: G — G/H be the quotient map. Endow AT with the natural G/H module structure

arising from the G-module structure of A. Then m induces homomorphisms
™ HI(G/H, A") — HY(G, A").

Composing 7 with the homomorphisms HY(G, A") — H(G, A) induced by the inclusion

A — A yields new homomorphisms
Inf : HY(G/H, A™) — HY(G, A)

called the inflation homomorphisms.

Proposition 1.13. (Group Extension) Let G be a group, H <G a normal subgroup, and A

a G-module. Then the sequence

Inf Res

0— HYG/H,A") 5 HY(G, A) = H'(H, A)

15 exact.
Proof. See [6, Proposition 1V.4]. ]

Proposition 1.14. Let G be a group, H <G a normal subgroup, and A a G-module. Let
q > 1 and suppose that for alli=1,....q — 1 one has H(H, A) = 0. Then

Inf Res

0— HYG/H, A" % HYG, A) == HY(H, A)
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is an exact sequence.
Proof. See [6, Proposition IV.5]. ]

Let A be a G-module and H a subgroup of G with finite index n. There are maps called
the corestriction maps
Cor: HY(H,A) — HY(G, A)

defined for all nonnegative integers ¢. In reality these maps arise more naturally on the
homology groups, which we will not discuss here. However, they may also be defined
on cohomology groups using an explicit construction for ¢ = 0 and then by applying the
technique of dimension shifting to extend to ¢ > 1.

Recall that there are natural identifications H°(H, A) = A® and H°(G,A) = A%, and
so we may define Cor for ¢ = 0 as a map A¥ — AY. Let {g1,..., 9.} be a set of left coset

representatives for H in G, and define

One must check that the map Cor does not depend on our choice of g;, and that elements
of the image are invariant under G. Indeed, if g; and g} are representatives of the same coset
of H, then there exists some h € H such that g, = g;h and so for all a € A"

gi-a = (gih).a = gi.(h.a) = g;.q,

meaning Cor is independent of our choices g;. Furthermore, for all g € G the set {gg, ..., 990}

is still a set of coset representatives. Thus for all a € A?
9g- Zgiﬂ = Z(ggi)-@ = Zgi-a,
i=1 i=1 i=1

i.e. Cor(a) is invariant under the action of G. We now extend Cor to ¢ > 1 via dimension
shifting.
Consider a G-module A, and let A* be the G-module Hom(G, A). Consider the map
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v : A— A* given by

pla) :G— A

g ga
and let A’ be the quotient module A*/¢(A). Then the sequence
0A—A" A =0

is exact. Moreover, since A* is co-induced, the resultant long exact sequence of cohomology

groups includes boundary maps which are isomorphisms
HYG, A = HIMYG, A)

for all ¢ > 1.
In particular, this isomorphism allows us to inductively define the corestriction map (and

indeed many other maps) on the groups H%(G, A).
Proposition 1.15.
If H < G with finite index n, then the map

CoroRes: HY(G,A) - HY(G, A)

sends

pr=nXe:=p+..+¢, (nsummands.)
Proof. See [6, Proposition IV.8]. O]

Theorem 1.16. Let G be a group. There exists a unique family of homomorphisms called

the cup product

U: H?(G,A)® HY(G, B) — H""(G,A® B)
a®fBr—=alUp

defined functorially for all G-modules A, B (where G acts componentwise on A® B) and for

all nonnegative integers p, q which satisfy the following properties:
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1. The diagram
A% ® BY —— H%G,A) ® H(G, B)

e -
(A® BYS ——  HYG,A® B)

15 commutative.

2. Let A, A", A” B be G modules. Given a short exact sequence
0—+A—-A A" =0,
if the induced sequence
0>A®B—->A®B—+A"®B—0

is also exact, then for all nonnegative integers p,q and for all o' € HP(G,A”), B €
HY(G, B), one has

(6(a"))Up =8’ up)e HT G, A® B)

where § represents the boundary homomorphisms of Definition 1.2.

3. Let A, B, B’, B” be G modules. Given a short exact sequence
0—+B— B —B"—0,
if the induced sequence
0>A®B—-A®B - A®B" =0

is also exact, then for all nonnegative integers p,q and for all « € HP(G,A), 5" €
HYG,B"), one has

aUs(B") = (~1)P8(a U B") € H* (G, A® B).

Proof. See [6, Theorem IV .4]. O

Suppose we let A = B = Z /27 with trivial G-module structure. Then A ® B = Z /27
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and so we have maps defined for all nonnegative integers p, q
U: HY(G,Z/27Z) ® H?(G,Z/27) — H" (G, Z/27).
These maps allow us to give a ring structure on the abelian group

H*(G,Z/2Z) = @ H"(G. Z/21),

p=>0

with the operations @ and U o ®.

We conclude the section by listing some more convenient properties of the cup product.

Proposition 1.17. The cup product has the following properties for all G-modules A, B, C
and for all o« € H'(G, A), B € HI (G, B), v € HYG,C) where i, j,{ are nonnegative integers:

1. (aUp)Uy=aU(BUn).
2. Res(aU ) = Res(a) U Res(B)
3. Cor(aURes(f)) = Cor(a) U S.

Proof. See [6, Proposition IV.9]. O

2 Abelian Galois Cohomology

Galois cohomology is a special case of the cohomology groups of the previous section.
Let ¢ be a Galois extension of k. Recall that the Galois group of ¢/k is defined as

Gal(l/k) ={oc:l > (| o(x) =2 Vz €k}

Definition 2.1. Let {H;} be a family of groups indexed by a set I which is equipped with a

partial order < such that for all i < j there exists a homomorphism
The inverse limit (or projective limit) of the family {H;} is the set

m{H} = {(os his by,) € [ Hi | @si(hy) = hs Vi < 5}

el
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Proposition 2.2. The Galois group Gal(k*P/k) is naturally isomorphic to the inverse limit

lim Gal(¢/k)

where £ varies over finite Galois extensions of k. Here the partial ordering is given by £ > ('

if ' is a subfield of £ and the homomorphisms
¢ : Gal(l/k) — Gal(¢'/k)

are given by o +— o|p.

Proof. To give an element of the inverse limit is to give for each finite Galois extension ¢/k

an element of the Galois group Gal(¢/k), that is an automorphism
op: 0=/

which is the identity map on k, such that for any larger finite Galois extension ¢ C ¢/ C k5P
one has o} ;= oy.

We wish to see that given such a family of automorphisms there exists a unique ¢ €
Gal(k*? /k) such that o, = ¢|, for all finite Galois extensions ¢/k. To define such an au-
tomorphism, let = be in £*P then x also lies in some finite Galois extension ¢/k. It is
well-defined to set p(z) = o4(x), since if z lies in another finite Galois extension ¢’ then there

is a third finite Galois extension ¢, ¢ C ¢ C kP and one has
O'g(;U) = O'g/(l’) = O'g//(&?).

This map is obviously injective.

To see that it is surjective, suppose we are given an element o of Gal(k*P/k). It suffices
to see that for every finite Galois extension ¢/k, the restriction o, := o, of o to £ is an
automorphism of ¢, in particular that o(z) € ¢ for all x € ¢.

Indeed, let x € ¢. Then x is the solution of an irreducible monic polynomial f with

coefficients in k, i.e. there exist elements aq, ..., a,_1 € k such that
"+ ap "+ . 4 ay = 0.
Then one also has
o(a" 4 ap 12"+ ag) = o(2)" + ap_10(2)" 4+ ...+ ag = 0.
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Moreover f splits in £, so that there exist elements by, ..., b, € ¢ such that
(@) + ap_10(x)"  + ..+ ag = (0(x) —by) - ... - (6(x) —b,) = 0.

Thus o(z) = b; for some ¢ = 1,...,n, and so o(z) € /. O

Let I" be the group Gal(k*P/k) equipped with the profinite topology, that is the topology
for which normal subgroups N <I" with finite index form a basis of open sets.
Let A be a discrete I'-module on which I' acts continuously. Notice that since A has the

discrete topology this means that the fibers of the action map
'xA— A

are open sets.

Proposition 2.3. The action of T on A is continuous if and only if Stabr(a) is open for all
a€A.

Proof. As noted above, it is clear that the action is continuous if and only if the fibers of the
action map are open sets. For all b € Orbr(a) choose a particular o, € T" with o,(b) = a,
then the fiber of a is the set

{(¢ 0o0p,b) | b € Orbr(a),p € Stabr(a)}.
Recall that in a topological group, translation maps are homeomorphisms. Therefore the sets
{@ oo, | be Orbr(a),y € Stabr(a)}

are open if and only if Stabr(a) is open, and since A is given the discrete topology the fiber

of a is open if and only if each of those sets are. m

Choose a discrete I'-module A with a continuous action as described above. We will
commonly work with the mod 2 Galois cohomology, that is the case where A = u := Z/27.

There are two equivalent ways in which to define the Galois cohomology groups. First,
we may apply the construction of Section 1, with the additional mandate that all I'-modules
be given the discrete topology and all actions and maps are continuous.

The Galois cohomology groups are the resultant groups
Hi(k,A):= HY(T, A).
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An equivalent definition arises from the direct limit.

Definition 2.4. Let {H;} be a family of groups indexed by a set I equipped with a partial

order < such that for all i < j € I there exists a homomorphism
Pij - Hz — Hj.

We define an equivalence relation ~ on | | H; such that for all i,5 € I and for all h; €
i€l

H;, h; € Hj, we have h; ~ h; if there exists some k € I such that pip(h;) = @jp(h;). The
direct limit (or inductive limit) of the family {H;} is the quotient set

lim H; = | | Hi/ ~.
i€l

Let {F;} be the family of finite Galois field extensions over k, and let < be a partial
ordering of I given by ¢ < j if and only if F; C F}. Let the maps ¢;; be the inclusion maps.

Let A be a discrete I'-module with a continuous action. For all i € I, let A® be the
submodule of A invariant under each element of Gal(k*?/F;) < I'. This module has a natural
structure as a Gal(F;/k)-module arising from the I'-module structure of A, and so we may
consider the cohomology groups H%(Gal(F;/k), A®).

Now, suppose F; and Fj are finite Galois extensions of k£ with F; C F;. We have restriction

and inclusion maps

r: Gal(F;/k) — Gal(F;/k)
i At A

by which we may define a homomorphism

wij  HY(Gal(F;/k), A") — HY(Gal(F;/k), A7)

g:+—t000T

(see the construction of the inflation map in Example 1.12).

Proposition 2.5. Let ¢ be a nonnegative integer, and let {H;} be the family

H; = HY(Gal(F;/k), A"
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with the partial ordering < and homomorphisms @;; described above. Then
ligHi =~ HY(k,A).

Proof. See [17, Section II.1.1]. ]
We conclude this section with the following fundamental result due to Emmy Noether:

Theorem 2.6. (Hilbert’s Theorem 90) Let £/k be a Galois extension. Then

H' 0/, G (0)) = H' £/, %) = 1.

3 Residue Maps

Theorem 3.1. Let G be a profinite group with let N <G a closed normal subgroup, and let
C' be a discrete G/N module. Suppose that the short exact sequence

l1-N—-G—G/N—1

is split and that for alli > 1 one has H'(N,C) = 0. Let 7; be the natural map H'(G/N,C) —
HY(G,C) induced by the quotient G — G /N ,using the natural interpretation of C as a G-

module arising from its structure as a G/N-module. Then there exists a map
r: H(G,C) — H ' (G/N,Hom(N, C))
called the restdue map such that the sequence
0— H(G/N,C) ™ HY(G,C) & H™YG/N,Hom(N,C)) — 0

18 exact.
Proof. See [9, Theorem I1.6.1]. O

The residue map behaves well with respect to cup product. In particular, suppose C7, Cy
are G/N-modules as in Theorem 3.1. Let i and j be positive integers and let o € H (G, C))
and 3 € H/(G/N,(Cs).

Proposition 3.2. In the above situation, one has
r(aUp) =r(a)up e HY(G/N,Hom(N, C, @ Cy)).
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Proof. See [9, Proposition 11.6.6]. O

Now, let k be a field together with a discrete valuation v : k — Z, and let k be the residue
field of k (with respect to v.) We further assume for the sake of simplicity that k is complete.
As usual, let £5P be a separable closure of k.

Recall that a field extension ¢ of k£ with discrete valuation v is called unramified if the
ramification index e, for a unique extension of discrete valuation v to £ is equal to 1. In
other words, the extension is unramified if a uniformizer = € k for v is still a uniformizer for
w. It is well known that there is a unique maximal unramified extension inside k%P of any
such field.

Let k" be the maximal unramified extension of k. It follows from Hensel’s Lemma that
Gal(k™ /k) ~ Gal(k™" /k).

Definition 3.3. The inertia group of k, which we denote by I, is the kernel of the natural
map
Gal, — Galg.

That is to say, Gal,/I = Gal(k"™ /k).

Let C' be a finite I';-module whose order is not divisible by the characteristic of the residue

field. We may view C as a ['y-module on which the inertia group acts trivially.

Lemma 3.4. The sequence 1 — I, = I'y, = I'y — 1 satisfies the hypotheses of Theorem 5.1,
that is to say

1. the sequence above is exact and split,
2. for alli > 1, one has H'(I,C) = 0.
Proof. See [9, Lemmas I1.7.5 & 11.7.6]. O

Definition 3.5. Let C' be as above and let n be a natural number not divisible by the char-
acteristic of k and such that nC = 0. We define the d-th Tate twist of C (denoted C(d))

for integers d as follows:

'@ C if d >0,

C(d) =
Hom(pu®=4,C) ifd < 0.

Note that the above definition is independent of one’s choice of n. We have the following

key example.
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Example 3.6. In the definition above, let C' = pus and d = —1. One has

p2(=1) = pio.

The following proposition is essential to our application of residue maps to show the

nontriviality of cohomological invariants.

Proposition 3.7. Let m € k be a uniformizer, and let « € H'(k,C). Then there exist unique
elements ag € H'(k,C) and a; € H=Y(k,C(-1)) such that

a=ay+ (1), Uay.

Furthermore one has r(a) = . [9]

We will later consider the case where C' = py and the field k is a pure transcendental
extension of some ground field ¢, i.e. k = {(t1,...,t,,) and the valuation v : kK — Z is related
to the variable ¢,,. One has k = £(t, ..., tp_1).

Notice that this extension is not complete. We define the residue in this case by first
passing via the restriction to the cohomology groups for the completion, H*(k,, 12), and then
taking the usual residue. In other words, the residue is defined by the following commutative
diagram:

Hl(ku /'LQ) ﬁ Hi(kva /’LQ)

\ lr

Hiil (E7 #2)
In this situation, the residue map can be explicitly computed as follows.

Example 3.8. Let o € H(k, i), we wish to compute the residue of . Due to a result of
Voevodsky, o may be written in the form
o = Z(aﬂ) u..u (aji)

J=1

and so it suffices to compute the residue of symbols (aj1) U ... U (aj;). Note that any element
a € k can be written in the form

a=mu
for the uniformizer ™ and some unit u in k. Combine this with the following relations:
e for all a,b € k, one has (ab) = (a) + (b),
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e since we are taking values in pz, we have (a) U (b) = (b) U (a),
e form a unit, (r)U (—7m) =0 and (m) U (7) = (7m) U (-1),

and it can be infered that computation of the residue reduces to the following two cases, where

7 1s a uniformizer and u; are units:
2. (m) U (u2) U...U (u;).

In the first case, it is known that the residue is zero. In the second case, it can be shown that

the residue of the cup product is equal to the cup product of the residues of just the units, i.e.
o (m) U (ug) U U () = (u2) U... U ().

This last example will be our primary tool in checking that the cohomological invariant

established later is nontrivial.

4 Non-Abelian Cohomology

Throughout this section G is assumed to be a profinite group, that is GG is a topological
group which is Hausdorff, compact, and totally disconnected. The most important case for

our purposes is where G = Gal(k*P /k).

Definition 4.1. A G-set is a discrete topological space E together with a continuous action
of G on E.

Definition 4.2. A morphism of G-sets is a map [ : E — E' such that for all x € E and
for all s € G,

s.f(x) = f(s.x).

A morphism of G-sets is an tsomorphism if it is bijective.

Definition 4.3. Let E be a G-set. We define
H°(G,E) := E“,

where EC is the subset of E consisting of all elements invariant under G (in keeping with

the notation of the previous section.)

43



Definition 4.4. A G-group A is a G-set endowed with a group structure such that for all
a,be A, s e,
s.(ab) = (s.a)(s.b).

Note: an abelian G-group is a G-module.

Definition 4.5. Let A be a G-group. A 1-cocycle of G in A is a continuous map

p:G— A
s = (s)

satisfying
p(st) = p(s) - (s.0(t))
for all s,t € G.

The set of all 1-cocycles of G in A is denoted by Z'(G, A). Two cocycles p,0 € Z1(G, A)

are said to be cohomologous (denoted ¢ ~ o) if for some a € A and for all s € G one has

p(s) = ao(s)a™,

where a™* := s(a™!) as is the standard convention. It is easy to see that ~ is an equivalence

relation on Z1(G, A).

Definition 4.6. The quotient set Z*(G, A)/ ~ is called the first cohomology set of G in
A and is denoted by H' (G, A).

As one might hope for, the cohomology sets H(G, A) and H'(G, A) are functorial in A,
and if A is an abelian group they coincide with the cohomology groups of Definition 1.2.

However, H°(G, A) and H'(G, A) are viewed instead in the category of pointed sets.
The distinguished element in H(G, A) is the identity element of A, while the distinguished
element in H'(G, A) is the equivalence class of the constant map s +— 1, called the neutral
element.

Non-abelian Galois cohomology behaves well with respect to group extensions.

Suppose H is a closed normal subgroup of G. There is a natural action of G/H on A,
so we may define the cohomology set H'(G/H, A™).

We can also define an action of G/H on the cohomology set H'(H, A). First, consider
the action of G on Z'(H, A) given by

s (an) = (s(as-1ns))
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for all h € H,s € G and for all 1-cocycles a = (a;) in Z'(H, A). We wish to consider this
as an action on the cohomology set H'(H, A). To this end, let us check that the action of G
respects cohomology classes.

Indeed, suppose a,b € Z'(H, A) are cohomologous, i.e. there exists some z € A such that
ap = bz for all h € H. Let s € G and let (@) = s - (an) and (by) = s - (by) so that

ap = Sg-1ps, by, = sby—1ps. (IIL.1)
Then for all h € H one has

gLh = SQs-1ps

= s(mbsflhsx_s_lhs)

so (az) and (by,) are also cohomologous.
Furthermore, the action of H on Z'(H, A) is trivial when one passes to H!(H, A). Indeed,
for all @ € Z*(H, A) and for all h,k € H, the k-component of & - a is of the form

h(an-1(eny) = h(an-1(h™ (arn)))

and in fact

Thus, h(a) ~ a.
As such, we may view the action on Z'(H, A) (and thus on H'(H, A) as well) as an action

of the quotient group G/H.

Proposition 4.7. The natural maps form an exact sequence
1 — HY(G/H,A") — HY (G, A) — H'(H, A)°/H.
Proof. We will prove only the injectiveness of the map i : H'(G/H, A") — HY(G, A).
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Let v € ker(7), i.e. given a representative a of the cohomology class « there exists some
x € A such that for all s € G one has

i(a): s xx™°.

We wish to show then that a is cohomologous to the trivial cocycle in Z1(G/H, A7), that
is to say there exists some y € A such that for every coset gH € G/H

a:gH — yy 99,

It suffices to show that x is invariant under the action of H, and thus y = x. Indeed, for
all h € H one has

a(h) = a(lg)
i(a)(h) = i(a)(1c)
zx " =zz?

zh(z™) =1

1

showing h(z~!) = 27! and therefore 27 € A#. Since A¥ is a group, the result follows. [J

We conclude this section by discussing the notion of torsors over a G-group and the deep
relation between torsors and cohomology.

Let A be a G-group and let E be a G-set. We say that A acts on the left on F if there
is a left group action of A on F such that for all s € G, a € A, x € E, one has

s.(a.x) = (s.a).(s.x).

We say that A acts on the right (compatibly with G) on E if the obvious analagous
definition holds.

Definition 4.8. A (right) torsor P over A is a nonempty G-set on which A acts on the
right, such that for all x,y € P there exists a unique element a € A such that y = x.a. In

other words, the action of A on P is simply transitive.

There is an obvious analagous definition of a left torsor. Throughout this paper however,
the term torsor will refer by default to a right torsor.

An isomorphism of torsors P, P’ over A is a bijective map f : P — P’ such that for all
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x € P and for all ¢ € A one has

f(z.a) = f(x).a.

Example 4.9. Let P = A, with A acting on itself by right translation. This action is of
course simply transitive - for any elements ai,as € A the unique element a € A such that
aya = ay is ay'ay. The action is also clearly compatible with that of G, and so A is indeed a

torsor over itself. A torsor over A which is isomorphic to A itself is called a trivial torsor.

Lemma 4.10. Let P be a torsor over A. The torsor P is trivial if and only if there is an
element of P which is fixed under the action of G.

Proof. Suppose P is a trivial torsor. Then P has an element corresponding to the identity
element 1 € A, which is invariant under the action of G.
Conversely, suppose there is some element py € P which is invariant under G. Then for all

p € P there exists a unique element a, € A such that py.a, = p. Consider now the bijection

p:P— A

P ay.

It remains to see that ¢ respects the action of G. Indeed, for arbitrary p € P, a € A, one
has by definition that ¢(g.p) is the unique element of A such that

po-¢(9.p) = g.p.

On the other hand,
po-(9-2(p)) = (9-p0)-(9-0(p)) = g.(po-#(p)) = 9-(Po-a,) = g-p-

By uniqueness, g.¢(p) = ¢(g.p). O

Proposition 4.11. Let A be a G-group. Then the set of isomorphism classes of torsors over

A is in bijective correspondence with H'(G, A).
Proof. See [17, Proposition 33]. O

The proof of Proposition 4.11 given in [17] constructs a bijection from the set of all
equivalence classes of torsors over A to H'(G, A) as follows: if P is a torsor over A, first
choose a point x € P. For all s € G there exists a unique element a;, € A such that
s.x = x.as. The map ¢ : s — ay is then a 1-cocycle, and a different choice of z will result in

a cohomologous 1-cocycle (see remarks following Definition 4.2.)

47



5 Twisting Actions

Let A be a G-group and let P be a torsor over A. Let () be a G-set on which A acts on the
left. We define the relation ~ on the direct product P x @) as follows: we say (p,q) ~ (p',¢’)

if and only if there exists some element a € A such that (p.a,a™'.q) = (¢/,¢).
Proposition 5.1. The relation ~ is an eqivalence relation on P X Q).

Proof. To see that ~ is reflexive, simply choose a = 1. To see that it is symmetric, note that

if (p.a,a™t.q) = (p',¢) then (p,q) = (p.a™*, a.q’). Now, suppose

(p.q) ~@,q)~ ©@".q"),

say there exist a,b € A such that

Then one has

]

The quotient (P x @)/ ~ given the componentwise action of G is called the twisting of
@Q by P and is denoted by £@Q. The action of G is well-defined on equivalence classes. As a
shorthand we will denote the equivalence class of (p,q) by p - q.

Under view of the bijection in Proposition 4.11, we can also consider a twisting of () by

a cocycle of A in G.
Definition 5.2. Let ¢ : G — A be a cocycle s — ag. Then the twisting of Q) by ¢ is the
set Q) with a new action of G on Q) given by
S.pq = ¢(5).(5.q)
forall s € G, q € Q, and is denoted by ¥Q). It is defined functorially for Q).

Let us show that these two constructions are essentially the same. Namely, let P be an
A-torsor and fix a point py € P. For all s € G there exists a unique a; € A such that
S.po = poas. As noted in §4 the map

Y S ag
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is a 1-cocycle.
Indeed, let s,t € G and consider p(st) = ay. We wish to show that agy = as(s.a;), which
is by definition the unique element of A such that pg.as = (st).pe. Indeed

Po-as)-(s.az)
s.po)-(s.az)
= s.(po-a;)

= s.(t.po)
= (st).po.

po-(as(s.az))

= (
=

Now, observe that every equivalence class [(p, ¢)] in '@ has a unique representative of the

form [(po, ¢')], since there exists a unique element a € A such that p = pg.a, and so

(p,q) = (po-a,q) ~ (po, a.q).

Then consider the map
A:PQ = °Q
[(Po; )] = q.

By the preceeding remarks, A is bijective. Let us show that it is an isomorphism of G-sets,
i.e. that for all s € G and for all (py,q) € ©Q one has

A(s.p(po,q)) = 5.4q.

Indeed,

A(s.p(po,q)) = A(s.po, 5.q)
A(po-as, 5.q)
A(po, as.(s-q))
= as.(5.q)

= 5.,

Proposition 5.3. If ¢ and o are cohomologous 1-cocycles, then ¥Q and °Q) are isomorphic

as G-sets.
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Proof. Let o, be 1-cocycles of G in A and suppose they are cohomologous, i.e.
p:sras, o8+ b
and there exists some ¢ € A such that a; = cb,e™® for all s € G. Let

AiPQ = Q

x ol

We wish to show that A is an isomorphism of torsors, that is to say that for all s € G and
for all ¢ € Q) one has

A(5.5q) = s.0A(q)-

Indeed, a straightforward computation shows this is the case:

A(s.0q) = Mas.(5.q))
=c ' (cbs(s5.c71).(5.9))
= by(s.c71).(5.q)
= b,.(5.(c1.q))
= b;.(5.A(q))
= 5.5 (q).

]

A significant consequence of Proposition 5.3 is that it makes sense to consider (up to
isomorphism) the twisting of @) by an equivalence class of cocycles, i.e. by an element of
HY(G, A).

Twistings by cocycles distribute across direct products, i.e. given a l-cocycle ¢ of G in
A and two G-sets Q and R on which A acts on the left, one has

?(Q x R) =“Q x *R.

The elements of these two G-sets are by definition the same, and direct computation will
immediately show that G acts on each in the same way.

Twistings also preserve G-group structures, in the sense that if @) is in fact a G-group,
the same group structure makes () into a G-group.

Indeed, if @ is a G-group with =,y € @), s € GG, and A is a G-group acting on the left on
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Q with p € Z'(G, A), then

Example 5.4. Let A be a G-group and let ¢ be a 1-cocycle of G in A. Consider the left

group action of A on itself by inner automorphisms, i.e. the group action given by the map

AxA—A

(a,b) — aba™".

Under this action A acts on the left on itself, and so we may consider the twisting of A by
. This is a G-group denoted by *A. It has the same elements as A, and the action of G 1is

given by
s.p0 = ¢(s).(s.0) = p(s)(s.a)p(s) .
Proposition 5.5. Let A be a G-group, Q@ a G-set on which A acts on the left. Then for any

1-cocycle ¢ of G in A, the G-group ¥ A described above acts on the left on ¥Q).

Proof. This is a matter of verifying that the map

w1 PAXPQ = PQ

(a,2) = a.,x

is a G-morphism. Indeed, for all s € G, a € A, x € ), one has

s.pa.x) = ¢(s).(s.(a.x)) = ¢(s).((s.a).(s.2))
= (o(5)(s.a))-(s.2) = (¢(s)(s.a)o(5) " (s)).-(s.2)
= (e(s)(s.a)p(s)7)-((s)-(s.2)) = (¢(s)-(5.0)).(2(s).(5.7))
= (8.40).(5.,7)

Proposition 5.6. Let A be a G-group and ¢ a 1-cocycle of G in A. Then there exists a

natural bijection
7, HY(G,?A) — HY(G, A)

given by

T,(0) 1 s = o(s)p(s)
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for allc € HY(G,?A).

Proof. Let ¢(s) = as be a cocycle of G in A, and let o(s) = bs be a cocycle of G in YA. We
wish to show first that the new family (c,) := (bs)(as) satisfies the cocycle condition, that is
that for all s,t € G

Cst = C5S.Cy.

Indeed, one may check that

Cst = bstast
= bgs.,bass.a,
= bsass.btaglass.at
= bsa.8.bi5.a;

= C48.¢4.

Now consider the inverse map

HY(G,A) — HY(G,?A)
(ds) = (dS)(CLS)_l =: (es).

It remains to show that this map is well-defined, however the computations are exactly

analagous. O

We should emphasize here that in the nonabelian context H'(G,%?A) and H'(G, A) are
not in general groups and so 7, is merely a bijection. However, if A happens to be abelian,
then 7, coincides with the translation by the equivalence class of ¢.

Now we consider the case where A, B are G-groups with A < B. The group action of G
is well-defined on left cosets of A, and so B/A is a G-set (in general not a G-group, since A

may not be normal in B.) Then we may define as before
H°(G,B/A) .= (B/A)C ={b]|be B, sbecbA Vsc G},

where [b] denotes the left coset of b in B/A.
Let [b] € (B/A)% and consider its preimage bA C B. The set bA is also a G-set (with the

action inherited from B) and A acts on bA on the right via right multiplication. Moreover,
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for all a,a’ € A there exists a unique element of A, namely a~'a’, such that
ba.(a"td') = bd'.

That is to say, bA is a torsor over A. Recall that there is a natural bijective correspondence
between the set of all torsors over A and the set H'(G, A). This allows us to define a map
§: H(G,B/A) — H' (G, A) by letting 6([b]) be the element in H'(G, A) which corresponds
to the torsor bA.

Definition 5.7. Let A and B be pointed sets with distinguished elements 14 and 1g, respec-
tively. Recall that a homomorphism of pointed sets f : A — B is a set theoretical map such

that f(lA) = 13.
The kernel of the map f is the set

{ac Al f(a) =15}

and is denoted ker(f)

A sequence of pointed sets
"'—>A,1—>A0—>A1%...

15 called exact if
im(An_l — An> = ker(An — An+1)

for all integers n for which these sets are defined.
Proposition 5.8. The sequence

1 - H%G, A) - H°(G, B) — H°(G, B/A) & H'(G, A) — H'(G, B)
15 ezact.
Proof. See [17, Proposition 36]. O
Proposition 5.9. Let p € Z'(G, B). Then one has
[¢] € im(H'(G, A) — H'(G, B))
if and only if (¥(B/A))Y is nonempty.
Proof. See [17, Proposition 37]. O
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6 Forms of Algebraic Objects

Let V and V' be algebraic varieties over k endowed with some additional algebraic structure.

Example 6.1. A k-algebra V is a vector space (thus also an algebraic variety) with the

additional structure of a multiplication map
Xx:VxV—=>V

satisfying standard axioms.

Example 6.2. An algebraic group G over k is an algebraic variety together with a group
multiplication G X G — G and inverse map G — G which are reqular functions and respect

standard azxioms for group multiplication.

Example 6.3. A quadratic space (V, f) is a vector space together with a quadratic form
f:V—=k

satisfying the arioms of Chapter 1.

We can consider any such algebraic objects V and V' over a field extension ¢/k in the

usual way, employing the standard notation V, :=V ® /.

Definition 6.4. The objects V and V' are k-forms of one another if there exists an iso-

morphism (in whatever category V and V' fall in)
(p : Vkser) — V;fsep.

Let T' := Gal(k*P/k) as previously. Let Isogser(V,V’) be the set of all isomorphisms

preserving the additional structure Viseo — Vi, and let
Autkscp (V) - ISOkscp (V, V)

There is a natural action of T' on Isogser(V, V') (and thus also on Autgse(V)) given for
[ € Isopser (V, V') by

gf . Vksep — V;csep

vis oo foot(v).
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One can check that if f is given as a polynomial, this amounts to applying o to the coefficients

of f.
Proposition 6.5. The family (a,) = f~' 07 f is a cocycle of T' with values in Autyse (V).

Proof. We wish to check that for all o, € I' one has a(,o) = a, © p.a,. Direct computation

shows

a,0p.a, = (fT1o?f)op.(fTorf)
=(flopofop o(pofltooofooTlyT)
:f_logpaofoa_lgo_l
:f—lo(w)f

= Q(po)-
]

The result above gives a process by which, given a k-form of V, we may obtain a cocycle
in ZY(T, Aut(V)). Notice that if f and g are isomorphisms

f, g . Vksep :> v;{:sep
then h := g~' o f is an automorphism of Visr and one has
hof—loafoh—a :g—loog’

thus f and g give rise to cohomologous cocycles. In particular, an isomorphism class of
k-forms of V determines uniquely an element of H'(T', Autyser (V)).

Furthermore, suppose V' and V" are two k-forms of V with

f : Vksep % V;fsep

~ 1
g . Vksep — ksep

If V/ and V" of V give rise to cohomologous cocycles (a,) and (b,), this means there is an

automorphism h of V such that

hoflo%foh @2 g lo.
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It is readily seen that g o ho f~! is then an isomorphism (over k) V' — V", and so there is

an injective map from the set of isomorphism classes of k-forms into H'(T', Autyser (V)).

Theorem 6.6. Let (V, f) be a quadratic space over k. Then there exists a natural bijection
A from the set of isomorphism classes of k-forms of (V, f) to H' (T, Autgsen (V, f)).

Proof. We have already established the existence of a well-defined and injective map in the
general setting. We shall now give a sketch of the construction of an inverse map in the case
of quadratic spaces.

Note that Autgser (V) is nothing more than orthogonal group Opses (f). Let
pE Z1<F7 Oksep(f))

and consider the twisting ¥(V ®j k°P).
Consider the k-vector subspace W of V ® k*P of elements invariant under the twisted

action of T’
W:=(*(V® k:sep))F.

It is known that dim W = dim V and so
(W@ kP, f) = (V@ KE*P, f).
Moreover, it is known that the restriction g := f |w of f: V ® kP — kP takes values in
k, and so by construction the quadratic space (W, g) is a k-form of (V, f). O]
7 Cohomological Invariants

Let ko be a field and consider the category of all field extensions over kg, denoted by Fields/ky.

We fix two (contravariant) functors A and H with

A : Fields/ky — Sets
H : Fields/ky — AbelianGroups.

Definition 7.1. The set of all morphisms of functors a : A — H form a group under
pointwise addition. This group is denoted Inv(A, H) (or Invy, (A, H) if the ground field is not

clear from contezt) and its elements are called H-invariants.
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Recall that a morphism of functors o : A — H is a family of maps
{ap}: A(k) — H(k)

defined for all field extensions k over ky such that for any morphism 7 : & — £’ of field

extensions over k one has a commutative diagram

A(k) -2 H(k)

Ak 2 H(K)
There are many possible choices for the functors A and H. We list a few examples below.

Example 7.2. A : k — Et,(k) where Et,,(k) denotes the set of all étale k-algebras of rank

n.

Example 7.3. A : k — Quad, (k) where Quad,, (k) denotes the set of all isomorphism classes

of n-dimensional reqular quadratic forms over k.

Example 7.4. A : k — Pf,(k) where Pf, (k) denotes the set of all isomorphism classes of
n-fold Pfister forms over k.

Example 7.5. A : k — Torsorsg(k) where G is a smooth linear algebraic group over kg and
Torsorsg(k) denotes the set of all G-torsors over k. In this case we will denote the group of
invariants by Inv(G, H) in place of Inv(A, H).

Example 7.6. For all field extensions k/ko, let I'y := Gal(k*P/k). Let C be a discrete Ty,
module (in particular we will often choose C' = ps). For all k/kqy there exists a unique (up
to conjugation) map T'y — Ty, which we allows us to view C' as a module over I'y, hence we

may define cohomology groups

H'(k,C) := H' (T}, O).
We further define H(k,C) := @ H'(k,C). In this case we write Inv(A, C) or Inv'(A, C) for
Inv(A, H) (or in the case that A = Torsorsg we write Inv(G, C), resp. Inv'(G, C)).

Definition 7.7. The elements of Inv(A,C) in the case above are called cohomological

invariants.

Example 7.8. H : k — W(k) where W (k) is the Witt Ring (see Definition 2.3 in Chapter
1).
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Many choices of the functor A are in fact equivalent to the functor Torsorsg for an

appropriate group G.
Example 7.9. The functor k — Quad,, (k) is isomorphic to Torsorsp, .

Example 7.10. The functor k — Et, (k) is isomorphic to Torsorsg, (where S, is the group

of permutations on n objects).

For details of these constructions, the reader may refer to [9] examples 3.1 and 3.2.
Definition 7.11. Let us fix a base point 1 € A, i.e. compatible points in A(k) for each field
extension k/kg, so that A becomes a functor

A : Fields/ky — PointedSets
For example, one may choose
Atk Torsorsg(k) = H' (k, G)
where G is some (not necessarily abelian) algebraic group over ky. An H-invarianta : A — H
is called normalized if for all k/ky one has a(k) : Lagy — La)-
Definition 7.12. For all k/ky the inclusion ko — k induces a map ¢}, : H(ko) — H(k).

Then for all h € H(ko) we may define an invariant ay, : A — H given by

ap(k) : A(k) — H(k)
x— 1 (h).
An invariant of this form is called constant.

Proposition 7.13. Let a be an H-invariant. Then there exist unique H-invariants a. and

a, such that a. is constant, a, is normalized, and a = a. + a,,.

Now let us work towards giving some examples of cohomological invariants. We consider

the setting Inv(G, po) i.e. the set of cohomological invariants
a. Hl(_a G) - H*(_7ﬂ2)

First we note that Inv(G, ps2) has a natural structure of an abelian group. Specifically, given

two invariants

(I,b : Hl(_aG) - H*<_’M2>
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we define the invariant
(a+b): HY(=,G) = H* (=, o)

as follows. For all field extensions k/kqy and for all classes of cocycles [(] € H'(k, @), define

(a+b): H'(k,G) — H*(k, po)
[€] = ax([<]) + b ([CD)-

Next, we give this abelian group a module structure - an idea put forth by J.-P. Serre.
Let R be the ring

R = H(ko, p2) = @ H' (Ko, p2)

i=0,1,...
where multiplication is by the cup product (the existence of such a ring structure is also
mentioned in §1). It should be noted that the choice of 1 is necessary for this ring structure
to make sense; for arbitrary modules the cup products do not have coefficients in the original
module.

Note that if kg is separably closed, then Gal(ky™/ko) = 1 and so H®(kg, u2) = pi2, while
for all i > 0, the i-th cohomology group H'(ko, i2) is zero. As such, in this special case
R=17)2.

We wish to consider Inv(G, p2) as an R-module. Let r € R, and let a € Inv(G, p2). For

all k/ky we define the invariant r - a as follows. Consider the map

@Res: R— P H'(k, o)

i=0,1,...

given by restrictions. Let r, € H'(k, uz) be the image of r under said map. Then the
invariant (7 - a) is defined for all k/kq and for all classes [(] € H'(k,G) by

(7’ . CL)k : Hl(k’,G) — H*(k,uz)
[¢] = rax([C])-

We are now ready to give some explicit examples of cohomological invariants.

Example 7.14. Let f be an n-dimensional split quadratic form over a ground field kqo. It
was shown by J.-P. Serre (see [9]) that in this case Inv(G, p2) is a free module with a basis
consisting of the Stiefel-Whitney classes (for a discussion of Stiefel-Whitney classes, the
reader may refer to §VI.17 in [9]). We give the basic idea of their construction here.

Let k/ko be a field extension. We can produce a map H'(k,G) — H'(k, p2) for all integers
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0 < i < n by use of the fact that H*(k,G) in this case is in one-to-one correspondence with
the set of all isomorphism classes of reqular quadratic forms of dimension n (see 6.6).
Consider an isomorphism class of quadratic forms with a diagonalized representative g =

(a1, ...,a,). For all integers 0 < i < n one may define a map

g Z (a;,)U...U(aj,).

J1<.<Jgi

It remains to check that these maps are well defined, one may again refer to [9] for a proof.
These maps are denoted by w; and are called the Stiefel-Whitney classes.

It is interesting to consider some of the low dimensional cases. For instance when i = 0
the summation is empty and so wy is the constant map [g] — 0. This map is called the
trivial invariant.

Also of interest is the case i = 1; here we have

In other words, wy is precisely the discriminant.

Example 7.15. Let Gy be a split group of type Go over ko. We wish to describe Inv(Gl, 2).
Since an element here is a morphism H'(—,Gy) — H*(—, u2), the first question we must
answer is this: how does H'(k,Gy) look for extensions k/ky? To answer this question we
introduce the notion of an octonion algebra over k, which is a generalization of a quaternion
algebra.

Let a,b,c be arbitrary elements of k*. We define an 8-dimensional vector space V(qp.c)
(or simply V if it is not necessary to distinguish these elements) which has a basis {eq :=

1,e1,...,er} which satisfies the following rules for multiplication:

€162 = —€2€1 = €4, €2€3 = —€3€3 = Cp,

€364 = —€4€3 = €¢, €465 = —E€5€4 = €7.

Octonion algebras are associated with a quadratic form called the norm which is given in

the following way. First, one must define the conjugate map : V — V which sends ey — ¢
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and for i > 0 sends e; — —e;. The norm is then the quadratic form

N:VxV =k

v = (v)(T).

Of course, one must check that the product above actually lives in k = Spaneg, since a priori
it is simply an element of the vector space V. Howewver, this is well known to be the case.
Moreover, it can be shown that the norm on V(4. is in fact the 3-fold Pfister form ((a,b,c)).

We now consider the special case of octonion algebra where a = b= c =1, which we will
call a split octonion algebra. This terminology is justified in that such an algebra produces
a norm ((1,1,1)) which is a split quadratic form, and furthermore it can be shown that the
group Aut(V(1,1,1),-) of multiplication preserving vector space endomorphisms V.— V is a
split group of type Go. We take this group to be Gj.

Now by 6.6 we have that Gy corresponds to the set of isomorphism classes of V(1,1, 1) over
kP which is the same as saying the isomorphism classes of V(a,b,c) over k*P for arbitrary
a,b,c € k*. Due to the fact that two octonion algebras are isomorphic if and only if their
norms are isomorphic as quadratic forms, this is then equivalent to the set of isomorphism
classes of 3-fold Pfister forms over k.

Now let us return to the original question. We can define an invariant w in dimension 3
by use of the equivalence above. Starting from H'(k,Gy) we pass to the set of isomorphism

classes of 3-fold Pfister forms over k, and wy is then the map

[{{a; b, )] = (a) U (b) U (c).

J.-P. Serre showed in [9] that Inv(Gy, u2) (we may also write Inv(Ga, pa) to signify an
arbitrary split group of type Gs) is a free module with the basis {1,w}.
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CHAPTER IV

Algebraic Groups

1 Algebraic Groups

During this section, we will deal with some of the basic properties of algebraic groups, and the
important connection between algebraic groups and Lie algebras. We will assume some basic
knowledge of algebraic geometry, specifically the definition and properties of affine algebraic

varieties.

Definition 1.1. An algebraic k-group is an algebraic variety G over a field k equipped
with a group structure, such that the product and inverse maps are morphisms of algebraic
varieties. That is to say, G has a distinguished element e, a product map p: G x G — G
and an inverse map i : G — G which satisfy the following properties for all g, h,k € G.

1. p(g,e) = ple,g9) =g
2. u(g,i(g)) = uli(g),9) = e

8. pu(g, p(h, k) = p(u(g, h), k)

4. :GXxXG—= G andi: G— G are morphisms of algebraic varieties.
Throughout this paper we will only consider ground fields k of characteristic not equal to 2.
Note: in the above definition G x G is the direct product (as a variety) of G with itself.

Example 1.2. Let G,, C Al be an open subset of 1-dimensional affine space consisting of
mvertible elements. Clearly it is stable with respect to multiplication and inversion, hence

G 1s an algebraic group defined over k. For any field extension (/k one has G,,(£) = (*.
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Example 1.3. Let F be a field with a,b € F*. A quaternion algebra (Q = (%b) over F' is

an F'-algebra on two generators, say i and j which the defining relations

1. i?=a
2. 52=10
3. 1) = —J1

Given such ) one can associate a map (Q — k,
ol + 210 4 297 + 315 — x5 — ar] — brs + abxy

called the reduced norm and denoted by Nrdg.

Let GL1(Q) C Q be the subset consisting of all elements x € @Q whose reduced norm
Nrdg(z) € k is invertible. Note that GL1(Q) is defined by polynomial inequalities and there-
fore open in Q.

Note that the reduced norm is in fact a 2-fold Pfister form, in particular Nrd = ({a, b)).
One can easily check

Nidg(zy) = Nrdg(z)Nrdg(y)

for all z,y € Q. Thus, GL1(Q) is an algebraic group over k.

Example 1.4. Let V be a finite dimensional k-vector space. Then GL(V) is an affine
variety over k, and the product and inverse maps arising from the reqular group structure are

morphisms. That is to say, GL(V) is a linear algebraic group over k.

The right and left translation maps G — G by an element y € G are defined,

respectively as
R, :x—xy

Ly:xw— yx.

The fact that these maps are invertible morphisms of varieties directly implies one re-
markable fact about algebraic groups: any local property holding at a given point holds at
every point of G. (Since if S is an open neighborhood of some point x, the image of S under
L,,-1 is an open neighborhood of y.)

The group G is called a linear algebraic group or affine algebraic group if G is affine
as a variety. This is the type of algebraic group central to our research, and from this point

forward an algebraic group should be taken to be linear, unless otherwise specified.
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Recall that an algebraic variety (and thus also an algebraic group) is a topological space
with the Zariski topology. Just as algebraic geometry is often concerned with closed (in the
Zariski topology) subvarieties and group theory is often concerned with subgroups, closed

subgroups are central to the theory of algebraic groups.

Definition 1.5. Let G be an algebraic group. A closed subgroup H of G is a subset which
18 both a subgroup and a closed subvariety. We denote this by H < G.

A closed subgroup H < @ is called normal if it is a normal subgroup in the standard
group theoretic sense, that is to say the left and right cosets of H are equal. We denote a

closed normal subgroup of G by H < G.

Example 1.6. Recall the quaternion algebra Q) = (“?b) from a previous example. Consider
the set

SL(1,D) ={z € Q | Nrd(z) = 1}.
This is a 3-dimensional closed subgroup of GL(1,Q), and in fact it is normal.
Homomorphisms of algebraic groups are also defined in a predictable manner.

Definition 1.7. A homomorphism of algebraic groups is a map f: G — H where G and
H are algebraic groups, such that f is a homomorphism with respect to the group structures

of H and G as well as a morphism with respect to the variery structures of H and G.

An isomorphism f : H — G of algebraic groups is a homomorphism which is an
isomorphism both of algebraic groups and of algebraic varieties, and two algebraic groups
are called isomorphic if there exists an isomorphism between them. An automorphism of
algebraic groups is an isomorphism f : G — G.

It may occur that two algebraic groups H and G are not isomorphic as k-groups, but

become isomorphic when viewed as algebraic groups over some field extension.

Definition 1.8. Let H and G be k-groups. As discussed in the previous chapter, H is called
a k-form of G if H and G are isomorphic over the separable closure of k, that is if

H QK =G o k.

Example 1.9. The quaternion algebra () = (—b) from previous examples is a k-form of the

2
2 X 2 matiz algebra over k, My .

The reduced norm over k*P corresponds to the determinant, hence GL1(Q) is a k-form of
GLg .
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To see that this is the case, let c,d € kP such that ¢ = a and d*> = b, with ¢ and d

wvertible. Let Q%P := () ®y, k5P = (k“bel;) . We wish to show that QP s isomorphic to the
1,1

)
In (Q°P one has generators i,j with the properties

quaternion algebra (

Let i’ =ic™' and 7' = jd~'. Then one has
Z-/2 — i2(0_1)2 — 62(0_1)2 =1

j/2 — j2(d71)2 — dQ(dfl)Q =1
-] -/

i'5' = ijetd T = —jicTtd = =577,

that is to say ' and j' satisfy the necessary conditions for generators of (ljs—elp) and thus

1,1
) ~ 1.sepl;! ./ sep
(ksep> _k [7’7]]QQ .

Moreover, since i’ and j' obviously generate Q5P over k5P the above inclusion is in fact

171 ~ sep
()
1,1

Since (kllp) = (%) R k5P, it remains only to be seen that (7) is 1somorphic to May,

an equality and we have

over k.

Indeed, let us consider the homomorphism ¢ : (%) — My, defined on generators by

) -1 0 ., 0 -1
1 = , ] =
0 1 -1 0
and extended linearly to (1—;) . We claim that ¢ is an isomorphism.

By linearity one has
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Clearly {p(1), (i), (4", p(i'5")} is linearly independent, and so

dim(im(p)) = dim(Ma) = dim (%) _4

Therefore, ¢ is bijective. It now suffices to see that

P7)eli) = [0 ‘1] x [; _01] - [_01 ;] = (i)l

This demonstrates ¢ is indeed an isomorphism, and so Q) is a k-form of Myy,.

Example 1.10. The group SL(1, D) defined in Example 1.3 is a k-form of SLa .
To see this, let us consider SL(1, D) as a subset of @ := (%b) and pass to Q%P = Q ® kP

and consider its image under the map ¢ from Ezample 1.9. For all x € (Q°® one has

T =21+ 220 + 23] + 1415 —

T+ 29 —x3— $4]

—T3+Ty4 T1— X9

(where the x; are uniquely determined coefficients in k*P.) Computing the determinant yields

det(p(z)) = (x1 + x2) (21 — 22) — (—x3 — x4)(—23 + T4)

) 2 3 2
=] — Ty — Ty + @
= Nrd(x),

therefore p(x) € SLay ® k*P if and only if x € SL(1, D) ® k*P. Since ¢ is an isomorphism it
follows that SL(1, D) is a k-form of SLq .

One important class of algebraic groups is the simple algebraic groups. These groups
can be seen as in some sense the ‘building blocks’ for all algebraic groups, and they are fun-
damental in seeing the connections between algebraic groups, Lie algebras, and root systems.

Recall that a set in a topological space is called connected if it cannot be written as the

proper union of two or more disjoint, relative open subsets.

Definition 1.11. An algebraic group is called simple if it contains no reduced, normal,

closed, connected, nontrivial subgroup.
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As it turns out, there is a deep correspondence between simple algebraic groups over an
algebraically closed field k and root systems. A major goal of this section and the next is to
describe this correspondence.

A (linear) representation of a group G is a morphism of algebraic groups ¢ : G —
GL(V), where V is a finite dimensional k-vector space.

Such a representation of G amounts to a linear group action of G on V; indeed given a
representation ¢ a group action is defined by (g,v) — ¢(g)(v), which is linear in the second

argument. Conversely, given a linear group action ¢ : G X V. — V the map

0 :G = GL(V), »(g):v—1(g,v)

is a representation of G.

Theorem 1.12. (Chevalley) Every affine algebraic group has a represenation which is in fact
an isomorphism between G and its image. In particular, for every linear algebraic group G

there exists a finite dimensional vector space V such that G is isomorphic to a closed subgroup

of GL(V).

Proof. See [11, Theorem 8.6]. O

2 Jordan-Chevalley Decomposition

Let V be a finite dimensional vector space over a ground field k.
Definition 2.1. An operator n € End(V) is nilpotent if n® = 0 for some s € N.

Definition 2.2. An operator s € End(V) is semisimple if its minimal polynomial has no

multiple roots. (Equivalently for k algebraically closed, s is diagonalizable.)
Definition 2.3. An operator u € End(V) is unipotent if 1 — u is nilpotent.
If k is a perfect field then the following results hold:
Lemma 2.4. For all x € End(V) there ezist unique xs, x, € End(V) such that:
1. x4 is semuisimple, x, is nilpotent, x = x4 + x,, and rsx, = T, T,
2. there ezist polynomials p,q with coefficients in k such that p(z) = xs and q(x) = zp,

3. if A, B are subspaces of V with A C B C 'V such that x(B) C A, then xz4(B) C A and
zn(B) € 4,
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4. if v,y € End(V) such that xy = yx, then (x +y)s = xs + ys and (x + y)n = Tp + Yn.
Proof. See [11, Theorem 15.3]. O
Lemma 2.5. For all x € GL(V), there exist xs, x, € GL(V) such that:

1. x4 18 semisimple, x, is unipotent, and rsx, = T,Ts = .

2. there ezist polynomials p,q with coefficients in k such that p(z) = x5 and q(x) = x,

3. if A, B are subspaces of V with A C B C V such that x(B) C A, then xs(B) C A and
z,(B) C A,

4. if v,y € GL(V) such that xy = yx, then (zy)s = xsys and (xY)y = TyYu.
Proof. See [11, Theorem 15.3]. O]

Definition 2.6. If the conditions for existence are met, x, is called the semisimple part

of x. Similarly, x, is called the nilpotent part of x and x, is called the unipotent part.

We wish to be able to apply these results to algebraic groups in a more general setting.

This can be achieved via a representation
G — GL(V).

There are two main difficulties involved here. Firstly, we wish to see that x, and x, are
in G when chosen in this manner. Secondly, we would hope that z and x, are independent
of our choice of representation.

We begin by considering the map

p: G — GL(k[G)), pIT > Py
pz - k[G] — K[G], pz = f(g) = flg).
Of course, k[G] is an infinite dimensional vector space if dim G > 0, so to move forward

we need a way to talk about semisimple and nilpotent elements in an infinite dimensional

context.

Fact 2.7. For all x € G(k), there exists a family of finite dimensional subspaces W; C k|G|
with Wo C Wy C Wa C ... such that k[G] = U, W, and p,(W;) =W, for all i.

Definition 2.8. p, is semisimple if p, |w, is semisimple for all i.
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Definition 2.9. p, is nilpotent if p, |w, is nilpotent for all i.
Definition 2.10. p, is unipotent if p, — 1 is nilpotent.
As an embedding of G into GL(k[G]), the differential (see Proposition 1.6 in Chapter V)

of p also gives rise to an embedding
x : Lie(G) — End(k[G])

called the right convolution.

Theorem 2.11. (Jordan-Chevalley)
Let G be an algebraic group over a perfect field k. Then:

1. For all g € G(k) there exist unique gs, g, € G(k) such that ¢ = gsgu = Gugs, Pg, 1S
semisimple, and pg, is unipotent. The element g, is called the semisimple part of g

and g, the unipotent part.

2. For all x € Lie(GQ) there exist unique x4, x, € Lie(G) such that v = x4+ x,, TsT, =

Tnls, *Ts 1S sSemisimple, and xx, 15 nilpotent.

3. If p : G — G’ is a morphism of algebraic groups with g € G(k), then ¢(gs) = v(9)s
and p(gu) = £(9)u-
Furthermore, for all x € Lie(G) one has dp(zs) = dp(x)s and dp(x,) = dp(z),.

Proof. See [11, Theorem 15.3] and remarks in section 34.2 relating to section 15.3. O

3 Tori and Split Groups

The next portion of our discussion on algebraic groups will focus on tori, and the notion of
split groups and split tori. We begin by considering the case of GL(V), for some k-vector
space V.

A subset S of End(V) is called diagonalizable if there exists a basis of V in which every
element of S is diagonal, or equivalently given a fixed basis of V if there exists A € GL(V)
such that AXA™! is diagonal for all X € S.

A subset S of End(V) is called triangularizable if there exists a basis of V such that

every element of S is triangular.

Proposition 3.1. Suppose k = k%P and M € GL(V) is a set of commuting matrices, i.e.
XY =YX forall X,Y € S. Then M is triangularizable. Moreover, there exists a basis of V

such that every element of M is triangular and every semisimple element of M is diagonal.
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Proof. See §15.4 in [11]. O

Of course, the above proposition also implies that any set of commuting semisimple
elements is diagonalizable.
By D(V) we denote the set of all diagonal matrices in GL(V). An algebraic group is called

diagonalizable if it is isomorphic to a closed subgroup of D(V) for some vector space V.

Proposition 3.2. An algebraic group over G over k*%P is diagonalizable if and only if it is

abelian and consists of semisimple elements.
Proof. See [11]. O

The abelian group Hom(G, G,,,) is called the character group of G and is denoted by
X (G). Diagonalizable groups have important properties related to X (G). Observe that X (G)
has a natural interpretation as a subset of the set k[G] of all regular functions on G. Moreover,
X(G) is linearly independent over kP as a subset of k*P[G] (see [11] Section 16.1.)

Definition 3.3. An algebraic group G is called a d-group if X(G) is a basis of k*P[G].

Of course since X (G) is a priori linearly independent, it suffices for G to be a d-group
that X (G) should form a system of generators for k*P[G].

Proposition 3.4. An algebraic group G is a d-group if and only if G is diagonalizable over

Jesep

Definition 3.5. A torus is a connected d-group. Equivalently, a torus is a group which is

isomorphic to a closed connected subgroup of D,, over kP.

A torus T' C G is called a maximal torus if there exists no torus S which is ‘larger’ in
the sense that T'C S C G.

Definition 3.6. Let G be a group and T C G a maximal torus. The rank of G is dimT'.
The usefullness of studying maximal tori is due in large part to the following theorem.

Theorem 3.7. All maximal tori of a group G are conjugate when viewed over the separable
closure of the base field.

Proof. See [11]. O

In particular, all maximal tori have the same dimension, and so the rank of G is well-

defined.
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Proposition 3.8. If G is a d-group, then X(G) is a finitely generated group. Moreover, if

G is a torus then X (G) has no torsion, that is X (G) ~ Z" for some natural number n.

Proof. See [11]. O

A torus T over k is called k-split if X (7)) spans k[T]. In particular, this means the
characters are defined over k. As it turns out, a torus 7' is k-split if and only if it is isomorphic
over k to G, X ... X Gy, (see [11], Section 34.3.)

Definition 3.9. A reductive group G is called k-split if there exists a mazximal torus T C G
which is k-split. (Reductive groups will be defined in the following section.)

Example 3.10. Consider the special linear group SL,, , C GL,, i consisting of n x n matrices
with entries in k and determinant 1. SL, j is a reductive group.

Let T be the subgroup of SL(n, k) consisting of all n X n diagonal matrices with entries in
k and determinant 1.

Consider the map ¢ : T — G, X ... X Gy, (n — 1 factors) given by

dq
D = = (dyy ey dpq).
dp

Since det D = 1 and thus d,, = m, it 15 clear that ¢ is bijective and also that ¢ and its
mverse are given by reqular functions. It is also easy to see that ¢ preserves multiplication,
and so @ is an isomorphism of algebraic groups.

This establishes that T' is a split torus. We claim that T' C SL,,j, is a mazimal torus, and
5o SLy, i, is a split algebraic group.

Indeed, suppose there exists some torus T' which lies between T and SL,, j, that is to say
T CT" CSL, . We wish to see that T and T" coincide.

Since T" is a torus it is diagonalizable, that is to say there exists some a € SL,, x(k*P) such
that T" := aT'a™' is a closed subgroup of D,,. However T is by definition the intersection of

D,, with SL,, ;, and so one has
T =T7"CT.

It then follows that
dim7’ =dim7T” < dimT

and soT' =T.

Since T is a split torus and now shown to be a maximal, SL,  is by definition a split

group.
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Definition 3.11. Let f be an n-dimensional quadratic form over k. The orthogonal group
O(f) of f is the group of all linear transformations X € GL,, ;. which preserve f. That is to

say,
O(f) ={X € GL,x | f(v) = f(Xw) for all v € k"}.

Definition 3.12. The special orthogonal group SO(f) of f is the subgroup of O(f)

consisting of transformations with determinant equal to 1.

Proposition 3.13. Let f be a quadratic form over an infinite field k. The special orthogonal
group SO(f) of a quadratic form f is a split group if and only if f is a split (i.e. hyperbolic)

quadratic form.

Proof. Let dim f = 2n. Suppose f is a split quadratic form over k. Without loss of generality,
say

fur,v1, ey Up, V) = U1 + .o + UpV,

where ¢t = 1,...,n. Let

15

T = 5(71,...,$n€k3

Tn

-1
\ L no J

It is clear that T' is a split torus, in particular 7' = G, X ... X G, (n factors.) We claim that
T C SO(f) is also a maximal torus.
First, let us check that T lies in SO(f). It is obvious that 7" consist of matrices with

determinant 1. Let w := (uy, vy, ..., Up, v,). Then

f(T(w)) = fluzy, vz oy Up T, vz, )
= ullelmfl + ...+ unvnxnxgl
= U1 + ... +UpUy

= [(w),

so indeed T lies in SO(f).
Now, suppose 1" is another torus in SO(f) such that

T T < SO(f).
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Since T" is abelian and T C 1", one has that 7" C Cqr,, (T'). We claim that Cqr,, (T) = Da,.
One inclusion is obvious, since T' C Dy, and Dy, is abelian. On the other hand suppose

y € Car,, (T), that is to say for all

T

Tn

one has yry~! = x. Equivalently, 2 lyz = y.

Let y € GLs, and suppose by way of contradiction that there exist some indices ¢, j such
that y;; # 0, i.e. y & Dy,. Then there exists some ¢ € T such that ¢;; # t;;. Computation will
show that (z7lyz),; = 23, yi;z4; # vij, thus we have T C Cay,, (T) = Day,.

We now claim that 7' = D,,, N SO(f). Indeed, suppose

aj
A= € Do, N SO(f)

Q2n

with aq, ...,a, € k and consider f as a quadratic form over a pure transcendental extension
k(z):=k(z1, ..., 2on).

One has
flA(z1, oy 20n)) = f(21, .0, 22n) = 2122 + .. + 221290

On the other hand,

f(A(Zl, cees Zgn)) = f(alzl, ceey a2n22n)

= 1022122 + ... + A2p—102p2Z27—1%2n

and so for all ¢ = 1,...,n we have as,as, 1 = 1, that is to say A € T.

This shows that D, k(») N SO(fi(z)) € Tk(») and so T is a maximal torus, thus SO(f) is
split.

Conversely, suppose SO(f) is a split group with split maximal torus 7. We proceed by

induction on n.
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Suppose n = 1, then f is split (hyperbolic) if and only if f is isotropic. Since T' = G,,
we may choose t € T'(k) to be of infinite order. Then there exists an eigenvalue a of ¢ with

infinite order. Let v be a corresponding eigenvector, i.e. t(v) = av. Then since t € SO(f)

fv) = f(t(v)) = f(av) = @’ f(v).

Since a is of infinite order a? # 1 and so v must be an isotropic vector, thus f is hyperbolic.
Now let n be arbitrary. By induction, f has a 2n — 2-dimensional subform f’ which is
hyperbolic, say
f=g®f

Then ¢ has dimension 2 and so by the argument above is hyperbolic.

4 Reductive, Semisimple and Simple Algebraic Groups

Recall that a topological space T is called irreducible if 7' cannot be written as the union
of two closed subsets ) £ U,V C T.

Theorem 4.1. An algebraic variety X has finitely many maximal, irreducible subspaces.

They are called the irreducible components of X.
Proof. See [11]. O
Of course, the above result also applies to algebraic groups.

Corollary 4.2. Let G be an algebraic group with identity element e. Then there is a unique

irreducible component G° of G which contains e. It is called the identity component of G.

Recall that for any (abstract) group G the commutator of two elements z,y € G is

defined as (z,y) := zyx 'y~ 1. If A, B < G are closed subgroups we define
(A, B) = ({(z,y) |z € A,y € B}) <G.

In general this is a subgroup, but need not be closed, as demonstrated by the following

example, taken from [11], Exercise 7.10.

1 0 1
Example 4.3. Let G = GLy ¢ with a = [0 1] and b = [0
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Both a and b have order 2, thus A and B are closed. However, computation will show that
1
(A, B) = "l'1nenN},
01

However, certain conditions on the groups A and B guarantee that a commutator sub-

which 1s not a closed subgroup.

group is closed.
Proposition 4.4. Let G be an algebraic group with closed subgroups A, B < G.

1. If A is connected then (A, B) is closed and connected.

2. If A and B are normal subgroups of G, then (A, B) is a closed normal subgroup of G.
Proof. See [11, Proposition 17.2]. O

Note that the above result immediately implies that for any algebraic group G, the com-

mutator subgroup (G, G) of G is a closed normal subgroup.

Definition 4.5. Let G be an algebraic group. The derived series of G is a sequence of

closed normal subgroups defined in the following manner:
DG =G,
DG = (D'G,D'G).

Definition 4.6. An algebraic group G is solvable if there exists some natural number n € N
such that D"G = {e}. (Therefore also D™G = {e} for allm >n.)

Definition 4.7. The radical of an algebraic group G is the unique maximal, normal, solv-
able, connected subgroup of G, denoted R(G).

Definition 4.8. The subgroup of R(G) comprising its unipotent elements is called the unipo-
tent radical of G and is denoted R, (G).

Definition 4.9. A group G is called semisimple if G is connected and nontrivial, with

R(G) = {e}.

Definition 4.10. A group G is called reductive if G is connected and nontrivial, with

Ry(G) = {e}.
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Definition 4.11. A semisimple group G is called stmple if G contains no nontrivial proper,

closed, connected, normal subgroup e # H < G.

Clearly, all simple groups are semisimple, and all semisimple groups are reductive. The

converse statements are not true.
Proposition 4.12. The special linear group SL,  is simple.

Proof. Without loss of generality we assume that £ is separably closed. Suppose by way of
contradiction there exists some proper normal subgroup N < SL,, ;, satisfying the conditions
of Definition 4.11. That is to say NN is nontrivial, connected, closed, and normal in SL,, k.
Taking k points of N, we still have a proper normal subgroup N (k) <G := SL(n, k). Abusing
notation, we will denote N (k) by N.

Let us first ascertain that N contains at least one nontrivial semisimple element. Suppose
by way of contradiction that there are no nonidentity semisimple elements in N. Then by
Theorem 2.11, N consists of unipotent elements.

It is known that any group consisting of unipotent matrices is upper triangularizable, i.e.

there exists some a € G such that

aNa ' CU :={ X := Xed
0 1

Moreover, N is by assumption normal, thus one has
N =aNa ' CU.

On the other hand there exists a matrix b € G, namely

0 0 1
b=algp .. 0
1 0 0

where « is a scalar such that o™ = (—1)""!, such that for any upper triangular matrix u, the
conjugation bub~! of u by b is lower triangular. (To see this, one may first note that b=! = b
and then compute (bub™);; = by—in—;.)

Since N is nontrivial we may choose a nonidentity element u € N. By the above remarks,

bub™! is a nonidentity lower triangular matrix, in particular bub™' ¢ N. However N is
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assumed to be normal in G, which gives a contradiction. Thus N contains at least one
semisimple element other than 1.

We claim next that N necessarily contains a semisimple element g € N which is of infinite
order.

Consider first the case where N N D,, is infinite. Note that this is a closed subgroup of G.
Then its connected component (N N D,,)° is nontrivial, since the connected component of a

group has finite index. In particular, (N N D,)° is a torus of dimension at least one, i.e.
(NN D,)° =Gy X oo X Gy

As such it is clear that (N N D,,)° contains many elements of infinite order, and by extension
so does NN D,,. Since every element of D, is semisimple, we may say that N has semisimple
elements of infinite order.
In fact, it turns out that this is the only case. Suppose by way of contradiction that
N N D, is finite, say
NnD,={d,....d;}, seN.

Let N; be the conjugacy class in N of d; for all e =1,..., s,
Ni = {xdixfl | x € N}

It is known that the conjugacy class of any semisimple element in a group is closed, so each
N; is closed in N. Furthermore, each N; is a proper subset of N. To see this, one notes that
if d; # 1 then 1 ¢ N; so N; is a proper subset of N, while if d; = 1 then N; = {1} which is a
proper subset since NN is by assumption nontrivial.

Since N is irreducible as a variety it cannot be written as a finite union of closed subva-

rieties, in particular
S
N =N #N.
i=1

Now observe that by construction N’ consists of all semisimple elements in NV, since for a
matrix to be semisimple means exactly for it to be contained in the conjugacy class of a

diagonal matrix. To restate, one has
N’ = Ny :={s € N | s is semisimple}.

It is known that since Ny, is nontrivial, it contains an open (in NN) subset U which is
dense in N, i.e. N = U C N,,. On the other hand, one has N,, = N’ C N, which provides
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our contradiction.
Now that we know (N N D,)° is a torus of positive dimension, that is (N N D,)°

G X ... X G, let us choose an injection

I

0 :Gpx1x..x1<= N.

For ease of notation will write GG, instead G,, x 1... x 1 using the obvious identification. It

is known that any homomorphism G,, — D,, takes the form

mi

T —r

m
x n

for some integers m;. Let us choose t € GG,,, of infinite order, and consider

tm

g:=¢(t) =

g

Since ¢ is an injection, g again has infinite order. In particular g # 1. Since t has infinite
order and ¢"™**t"mn = det(g) = 1, we may conclude that g is not a scalar matrix. Without
loss of generality, say my # ma.

Let
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One may compute

_thml
1 =
thmn
1 -1
= 0 1
i 1
[1 poxmi—m2) _q
Al =t1AT AT = ’ :
i 1

Since N is normal it contains Aj for all natural numbers ¢.

/

Notice that for all integers ¢ # r one has A} # A, since given A

= A] we would have

(seeing as t has infinite order)
e tmimma) =1 _ yrx(mi=ma)=Lo s (1, —my) — 1 =r X (my—mgy)—lg=r.

In particular, there are infinitely many distinct matrices A, € N.

Since N is closed, it thus also contains

- 0 1
{Ali | 1€ N} = ) r ek = E1 Q(k)

)

To see that the closure of the set containing each A” is indeed F;»(k), note that Ej (k)
is isomorphic as a variety to the affine line over k. Consequentially, any infinite subset of
Ei 5(k) is dense.

By choosing instead
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and using the analagous arguments one has Fs (k) C N.
For all integers ¢ # 7, 4,5 = 1,...,n and for all A € k, let E; ;(\) denote the matrix with

ones on the main diagonal, A at the ¢, j-th entry, and zeros elsewhere. Then one has
E1i(\) = E12( M) Eai(1)Era(N) 7 Eyi(1) 71

Since Ej2(\) € N, Ey;(1) € SL(n, k), and N <SL(n, k), we have E; ;(\) € N for all integers
i and for all A € k. Analagously we have E;;(\) € N for all integers ¢ and for all A € k.

We now claim that matrices of such a form generate SL(n, k) multiplicatively. It is
well known that SL(n,k) is generated by the set of all elementary matrices E; ;(\), where
1,7 =1,...,n and A € k such that ¢ # j. One may compute

Eij(A) = Ein(AN)Ey (1) Ei i (=2 By j(—1),

and so indeed these matrices generate SL(n, k). Therefore, N = SL(n, k), and the proof is
complete. O

Example 4.13. The special orthogonal group SO(f) of a quadratic form f is a simple group.

Proof. See [11]. O
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CHAPTER V

Lie Algebras

1 Lie Algebra of an Algebraic Group

Given any algebraic group G we may attach in a canonical way a Lie algebra, Lie(G).
The study of these Lie algebras can reveal much about the corresponding groups. Our next
objective moving forward is to describe this process.

Recall first the definition of a Lie algebra.

Definition 1.1. A Lie algbera is a vector space L over some ground field k, together with
a binary operation [—, —] : L x L — L called the Lie bracket, which satisfies the following
conditions for all X,Y,7Z € L.

1. The map [—,—]| is bilinear.
2. [X,)Y]=-[Y, X].
3. [ X, Y, Z))+ [Z, [ X, Y]]+ [Y,[Z,X]] = 0.

A subalgebra S of a Lie algebra L is a subspace of £ which is closed under the Lie
bracket, that is for all X,Y € 5, one has [X,Y] € S.
We want Lie(G) to be the tangent space of G at e. The ring k[G] has a maximal ideal

M= {f € klG]| f(e) = O}.

The tangent space of G at e is given by Tan,(G) := (M /M?)*, where (M /M?)* denotes the
vector space dual of M /M?, that is the space consisting of all linear maps ¢ : M/ M? — k.
Note that k[G] is equal as a vector space to M & k.
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Now that we know how our Lie algebra ought to look, we need to give Tan.(G) the
structure of a Lie algebra. To do so we introduce another vector space, Der.(G) - the set of
all differentials of G at e.

Definition 1.2. A differential is a linear map ¢ : k|G| — k such that for all f,g € k|G|,
6(fg) =6(f)g(e) + f(e)d(g).

Der,.(G) is a subspace of k[G]*, the vector space dual of the regular functions over k.

Moreover, we claim that for all 6 € Der.(G), the following are true:

1. For any constant function f € k[G], §(f) = 0.

2. For all g € M2, §(g) = 0.

The first part follows from the observation that
d(1)=0(1-1)=06(1)-1+6(1)-1=0(1)+0(1).
The second is true because for all g,h € M,
d(gh) = d(g)h(e) + g(e)d(h) = d(g) -0+ 0-6(h) =

Now, since k[G] =2 M@k, the differential ¢ is well-defined as a map M — k. Furthermore
since ¢ vanishes on M? it is also has a natural definition as a linear map M/M?* — k, or
in other words as an element of Tan.(G). The following proposition is a fundamental fact in

the study of algebraic groups.

Proposition 1.3. The above correspondence between Der.(G) and Tan.(G) is a vector space

1somorphism.

It remains to give this vector space a Lie algebra structure. We define the Lie bracket on
Der.(G) by setting
01, 02] = 0102 — d26,

for all 41,95 € Der.(G). One checks first that [0, ds] is a differential under this definition.
Indeed, for all f, g € k[G] one has

[01,02](fg) = 0102(fg) — 0201(fg)
= 01(02(f)g(e) + f(e)d2(g)) — 02(61(f)g(e) + f(e)d1(g))
= 0102(f)g(e) + f(€)0162(g) — 6201(f)g(e) — f(€)d201(g)
= [01,02](f)g(e) + f(e)[d1, 02](g)-
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Now, observe that for all §;,ds € Der.(G) one has
[01, 2] + [02, 01] = 0102 — 6201 + 0201 — 8102 = 0,

and so that condition 2 of Definition 1.1 holds. For all dy,09,03 € Der.(G) one checks

condition 3 as follows:

01, [02, 63]] + [03, [01, 02]] + [02, [03, 01]] = [01, 0203 — d302] + [3, 6102 — d201] + [d2, 6301 — 01035]
= 01(0203—0302) — (0203 —0302)01+03(01 02— 0281 ) — (0102 — 0201 ) O3+02 (0301 —013) — (0301 —103) d2
= 010203 —010302— 020301 4030201 +030102—030201 —10203+020103+020301 —020103—030102+01 0309

=0.

Furthermore, it is straightforward to see that this map is bilinear (condition 1,) so this
operation does indeed satisfy the properties of a Lie bracket. The vector space Der.(G)
together with this definition of a Lie bracket is called the Lie algebra of (G, and is denoted
by Lie(G).

There is a special representation of GG called the adjoint representation, which is defined
using this Lie algebra. Let G be an algebraic group with £ := Lie(G) it’s Lie algebra. Let
W be a vector space over some ground field & such that there is an embedding G' — GL(W)
(recall that the existence of such a vector space W is guaranteed by Theorem 1.12.) We will
view this as an identification. The Lie algebra L is then a subset of End(W), and so we have

a well defined notion of multiplication between elements of G and £ in End(W).

Definition 1.4. The adjoint representation of G is the map Ad : G — GL(L) given by
Ad(g) : X — gXg~'. The Lie algebra L is stable under conjugation by G, and so Ad(g)(X) €
L forallg e G, X € L (see [11], Section 10.3 Definition 1.4.)

The adjoint representation will prove useful in attaching to each simple algebraic group

a root system.

Proposition 1.5. Let G be a semisimple group. The kernel of the adjoint representation
Ad : G — GL(L) is the center Z(G) of G. In other words, an element g € G is central if

and only if it acts trivially on L by conjugation.

Proof. See [4], Section 3.15. O
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Proposition 1.6. Given a morphism of algebraic groups
0:G—= G,

the map ¢ induces a morphism of the corresponding Lie algebras called differential of ¢

and denoted
dy : Lie(G) — Lie(G").

Proof. See [11, Section 5.4]. O

2 Killing Forms and the Chevalley Basis

Let £ be a finite dimensional Lie algebra over k. There is an endomorphism of £ associated
to each element z € L called the adjoint endomorphism of z, and denoted ad(z). The
endomorphism is given by

ad(x) : y — [z,v].

Proposition 2.1. Let L be a finite dimensional Lie algebra over k. Then the map
K:LxL—k

K (z,y) — tr(ad(z)ad(y))
is a symmetric bilinear form called the Killing form of L.

Recall that a subalgebra H of £ is a Cartan subalgebra if H is nilpotent and equal to

its own normalizer, that is

H={xeL]x,H] CH}.

Definition 2.2. A semisimple (simple) Lie algebra L over k is split if L contains a Cartan
subalgebra H such that for all x € H, the adjoint representation ad(x) of x is k-diagonalizable.
Such a subalgebra is called a split Cartan subalgebra of L.

If H is split then there exists a basis of £ consisting of eigenvectors uy, ..., u,, of ad(H) C
End(L), where m = dim(L). Then for all ¢ = 1,...,m there exists a linear function «; in
H* = Hom(#H, k) such that

ad(h)(u;) = ai(h)uy;

for all h € H.
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Definition 2.3. The functions «; above are called weights of H and the one-dimensional

subspaces (u;) are called the weight subspaces of H.

It is known that the nonzero weights «; form a root system R := {aq,...,a,} called the
root system R of L relative to H.

Due to a famous result by Chevalley (see Theorem 2.4 below) the root system R is
independent of the choice of a split Cartan subalgebra H. Therefore if we say L is of a
certain type (e.g. L is of type D,) we mean that R is of that type, and this notion is
well-defined.

Theorem 2.4. (Chevalley) Over a separably closed field, all split Cartan subalgebras are

conjugate.

An important result due to Steinberg [20] shows that if £ is a Lie algebra with # a split
Cartan subalgebra, then £ has a basis B of the form

B={Ha, . Ho}U{X.|acR)

where {aj, ..., a,, } is a base of R, which satisfies the following relations for all «, 5 € R and

foralli,j=1,....n:
1. [Ha,, Hoyl = 0.
2. [Ha,, Xo] = (o, ;) X,

3. If « = —f then [X,, X3] = H, where H, is an integral combination of the roots H,,,

and furthermore if all roots have the same length then

4. If o+ f € R then
[Xa, Xp] = £(r + 1) Xayp

where r is the unique positive integer such that
a+rfeR, a+(r+1)5¢R.
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5. f o # —f and a+ § ¢ R then
[ X, X5] = 0.

Definition 2.5. The basis of L described above is called a Chevalley basis.

Now, suppose L is a split simple Lie algebra of type Dy, Dg, or Eg and H is a split Cartan
subalgebra of £ with basis B as given above. The Killing form K is a symmetric bilinear

form, which by remarks in Chapter 1 we may also view as a quadratic form
K(z):=K(z,x).

We wish to compute the quadratic space (£, K).

Proposition 2.6. Let H := Span,{H,,, ..., Ha, }. Then

(L£,K) = (HK |n)® €D (4hay)

aceRt

where h is the dual Coxeter number, which is an integer dependent on the type of the root

system R.

If R is of type D,, then h = 2n—2. If R is of type Fg then h = 30. These are the examples
with which we will be concerned.

Proposition 2.6 is a direct consequence of the four lemmas which follow.

Lemma 2.7. For alli=1,...,n and for all « € R, one has
K(Xa, Ha,) = 0.

Proof. Observe that for all X, Y € L, to show that K(X,Y) = 0 it suffices to show that the

diagonal entries of the operator ad(X) o ad(Y") are all zero. That is to say, for alli =1,....,n
and for all a € R:

1. One may write ad(X) oad(Y')(H,,) as a linear combination of elements of B excluding

7
H,,.

2. One may write ad(X) o ad(Y)(X,) as a linear combination of elements of B excluding
X

This fact will henceforth be used without mention.
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Now let us make the relevant computations. Let j = 1,...,n and let 8 € R.

ad(Xq) 0 ad(Ho, ) (Ha,) = [Xa, [Ha,; Ha,]]

If « = —f then

If o+ € R then

ad(X,) 0 2d(Ho,)(X) = (X [Hopy X
= [Xa, (8", i) X5]
= (8", a;)[Xa, Xg]
= (", ;) (r + 1) Xoip-

where r is as given in the properties of the Chevalley basis.
Finally, if « # —3 and a + 8 ¢ R, then

ad(Xa) 0 ad(Ho,)(Xp) = [Xa, [Ha,, Xp]]

= |
= [Xa, (87, ) Xj]
= <B*7a/i>[XOc>XB]
=0.

Lemma 2.8. For all a,, 8 € R such that o # £ one has

K(Xa, X5) = 0.
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Proof. Let v € R. If v # —f and f+ v ¢ R then

ad(Xa) 0 ad(Xy)(X,) = [Xa, [X3, X, ]

If v = —f then

Il
]
5
=

Lastly, if 5+ v € R then

ad(Xq) 0 ad(Xp)(X,) = [Xa, [ X3, X,]]
= [Xa, :|:(T‘ + 1)X5+7]
=(r+ 1)[XOMX5+’Y]'

where r is as given in the properties of the Chevalley basis.
Now, if @ + 8 + v € R one has

£(r + 1)[Xay Xpir] = Z(r + 1)(5 + D)Xt

where s is the unique positive integer such that o + s(5 + ) is in R but a + (s + 1)(5 +7)

is not. Since § # —~ it holds that a # a + 4+ v and so the corresponding entry of the

diagonal is zero.
If —a= [+ then

+(r 4 1)[Xa, Xpp] = £(r + 1)H,
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where H, is defined analagously to Hp.
If —a#pB+vyand a+ 5+~ ¢ R then

£+ DXy Xpio] = 0.
Now, we let ¢ = 1,...,n and compute

ad(Xa) 0 ad(Xp)(Ha,) = [Xa, [Xp, Ha,]]
= [Xa, =(67, i) Xg]
= —(B, )" [Xa, Xj].

Recall that we are working under assumption o« # —f. If a + 8 € R then
_<ﬁ*, O[Z'>[Xo” Xﬁ] = :i:<6*, O{Z‘>(T + 1)Xa+ﬁ
On the other hand, if « + 5 ¢ R then

—(B", a;)[Xa, Xp] = 0.

Lemma 2.9. For all « € R, one has
K(Xa,) = K(Xa, Xo) =0.
Proof. Let B € R. Suppose first that f # —a and a + 5 ¢ R. Then

ad(Xq) 0 ad(Xa)(Xp) » [ Xa, X]]

[Xa
[Xa; 0]
0.
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Now, suppose a = —[3. Then

ad(Xa) 0 ad(Xo)(Xp) = [Xa, [Xa, Xg]]
= [ch Ha]

= > wilXa, He,)

Finally, suppose a + 8 € R. Then

ad(Xa) 0 ad(Xa)(Xp) = [Xa, [Xa, Xg]]
= [Xaa XaJrB]
= :|:(7” -+ 1)[Xa, Xa+ﬁ].

If —a = a+ B (equivalently 2ae = —[3) then
+(r +1)[Xa, Xoip] = £(r + 1)H,.
If 2a + 8 € R then
+(r + 1)[Xa, Xotgl = £(r + 1) (s + 1) Xon1 4,
and of course Xonip # Xp. If 2a # —f and 2o+ 5 ¢ R then
+(r 4+ 1)[Xa, Xasps] = 0.
Now, let 7 =1, ...,n. Then

ad(Xa) 0 ad(Xo)(Ha,) = [Xa, [Xa, Ha,]
= — (", ;) [Xa, X4]

If 2o € R then

_<a*7 ai>[X0¢7 Xoc] = —(a*, ai)(T + 1)X20u
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otherwise
— (", a;)[Xa, Xo] = 0.

]

Remark: Note that some of the cases above cannot in fact occur if £ is of type Dy, Dg,
or Eg. However, the preceding lemmas hold for every type of root system, and as such have
been proven without use of that assumption. The following lemma, on the other hand, holds

only for root systems in which every root has equal length.

Lemma 2.10. For all o € R,
K(Xo, X_o) = 2h.

Proof. 1t was shown by Springer and Steinberg in [19] that for any long root « € R

K(H,, H,) = 4h,
and also that for any long root «
1
K(Xa, X o) = §K(Ha,Ha).

]

With these lemmas established, Proposition 2.6 follows immediately. To render the com-

putations more straightforward, we choose to consider the normalized Killing form

1
K'(z) = —<=K(x).
(@) == =K(x)
From Proposition 2.6 it is immediately clear that

(£,K) = (HK |n)o @ H

aeR*

Of course, in the Witt ring this means that the unique anisotropic space representing the
class of (£,K') is (H,K' |g).
Now, let us proceed to compute the form (H, K’ |g). It is known that for all 4, = 1,...,n

K(Hq,, Ha,) = 2h(os, 04;-)
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where o) = (Ci—‘;]) so that (—', —’) is the unique Weyl-invariant inner product such that for
all long roots o (which includes every root in Dy, Dg, and Eg) one has (o/, ') = 2.

Normalizing, one has K'(H,,, Ha,) = 3(c;, ¢;). So if o; and a; are non-adjacent with
i # j, then K'(H,,, Hy;) = 0 and if i = j then K'(H,,, Ho,) = 1.

Furthermore, for root systems Dy, Dg, and Eg one has for adjacent roots

’C/(HawHaj) = (

§<
[oX
[

)
2

((ai,&i)’ (Oj?‘;j))
(5%

(aiv aj)

N~ N~ N~ DN~

|
N | —

(see [16, Section V.7].)

Proposition 2.11. Suppose L is split of type Dy. Then
(H,K' |g) = (1,1,1,1).

In particular if —1 is a square, then (L, K') is a hyperbolic space.

Proof. One has R = {ay,as, a3, as} with as adjacent to all other roots, and g, as, ay all

pairwise non-adjacent. Furthermore,
(Oél,OéQ) - (OéQ,Oég) - (O[Q,Oé4) — _1
Let x = H,, 21 + Hoyxo + Hyyvs + Hyy g and consider

K'(x) =K'(x,x)

2 2 2 2
=x] + 25+ 23+ x; —X1T9 — Tak3 — ToXy.

Now consider the invertible linear replacement of variables

T2 T2
wl—xl—E U}QZE

T2 X2
W3 = T3 — = Wy = Tyg —

2 2
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so that

K'(z) = wi + w3 + w3 + wj.

The result can be generalized as follows:
Proposition 2.12. Suppose L is split of type D,, with n > 4. Then

(HK )~ (1,1) & (%, %).

Proof. As before, let x = 3" | = x;H,,. Direct substitution leads to the normalized Killing

form

Kl(x)=af4+ - +2° —2109 — + — Tpp_oTp_1 — Tp_oTn.
Now let
1 1
Wn-1 = Tp-1 = 5¥n-2 Wn = T = 5n3
so that
K'(z)=at+.. .22 5+ %xi_2 — T Ty — = Ty 3Tp_g + WA + W
= %(Qxf + 222 gl — 2wy — .. 20, 3Ty o) F W W
- %(ﬁ + (21— 22)* - (Tpg — Tna)®) F Wiy W

Now we make the replacement of variables
wi = T Wy =W —w;, 1=2,...,n—2

and one has

]

Notice that the above two propositions imply that the quadratic forms (1,1,1,1) and

(1,1, %, %> are equivalent. This motivates the following lemma:

Lemma 2.13. For all a € k, one has
(a,a) = (2a,2a).
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Proof. Let f(x) = 2ax? + 2ax3 and let
W1 = T1 + To Wy = T1 — T2.
Then

aw; + awy = a((v1 + 22)* + (21 — 2)°)
= a(22% + 273)
= f(z).

One may also prove this lemma directly from the observation that

11
1,1,1,1) = (1,1, -, =
<77’> <’7272>

using Witt’s Cancellation Theorem (see Theorem 1.24.)
Corollary 2.14. Suppose L is split of type D,, with n > 4. If n is even then

(H,K' [z) = (1,...,1).

In particular, if n is even and —1 is a square then L is hyperbolic.
If n is odd, then

(H,K' |u) = <%> ®(1,...,1).

Proposition 2.15. Suppose L is a split Lie algebra of type Eg. Then
(H,K' |g) = (1,1,1,3,3,6,10, 15).
Proof. Let x = x1H,, + - -+ + xgH,,. Direct substitution leads to the Killing form

K'(z) =23 + a3 + x5 + 2] + 22 + x§ + 27 + 23

T1T2 + Tox3 + X3%4 + T4T5 + T5Te + T5X7 + Ts52g.

94



We then make the substitution of variables

1 1 1
Wy =T — =T Wy = =Ty — =X
1 17 52 2= 512 33
1 1 1 1
w3:§x3—4—1$4 w4=Z$4—g$5
1 1
Wy = —T We = Tg — =T
5 305 6 6~ 5Ts
1 1 1
W7 = —T5 — =& Wg = ITg — =T
7 35 27 8 8~ 517

and one may check that
K'(z) = wy + 3wy + 6ws + 10w, + 15ws + we + 3wy + ws.

O

Corollary 2.16. If L is a split Lie algebra of type Eg over a field k, and —1 is a square in
k, then (H,K' |g) is a hyperbolic space.

Proof. If —1 is a square, then {3,3} is hyperbolic, so
(H,K' |g) 2 HeH (1,6,10, 15).

Note that the 3-dimensional form (6, 10, 15) represents 1, so by 1.17 there exist a,b € k such
that (6,10,15) = (1, a,b). Moreover,

d({6,10,15)) = d((1,a,b)) € (k/k?),
and since d((6, 10, 15)) is square, one has ab € k?. In particular, (a,b) = (a,a) and so

(1,6,10,15) = H & H.

3 Killing Forms of Twisted Lie Algebras

Let G be a split simply connected simple group. Then G has a split maximal torus T =
G X ... X Gy, Let N be the normalizer of 7" in G (one has 7" C N C G.) Then H := Lie(T)
is a split Cartan subalgebra of £ := Lie(G). Let X be a root system for £ relative to H.
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Then the Weyl group W of ¥ is isomorphic to the quotient N/7T'. It is shown in [7] that if
the element —1 € Aut(X) lies in W (as is the case for groups of type Dy, Ds, and Es,) then
there exists a lifting wy of the element —1 € W to N, such that wy has order 2 and for all
t € T one has wotwy ' =t (see [11], Section 27.1.)

Recall that £ has the form

L=HoEP (Xa, X_a).

aEX

The action of wy on £ by conjugation can be described on these parts - for h € H one has
wo(h)wy ' = —h.

Proposition 3.1. For all a € & one has wo(Xa)wy ' = caX_o for some cq € k.

Proof. Suppose t is an element of T'(k*P) and consider the conjugation of woX,wy" by t.

One finds

1yl 1 1,1 ~1
t(weXawy )t = wow, tweXaw, t wow,

= wot’lXawot’lwale’l
= wot F Xatwy "
= woa(t 1) Xowy!

= —a(t)wo X wy .

In other words, for all t+ € T, the element wyX,wy ' is an eigenvector of Ad(t) with weight

—a(t) and therefore lies in the one dimensional eigenspace X_,. O

Now consider a ground field k£ and an element d € k which is not a square. Let ¢/k be
the quadratic extension ¢ := k(v/d), and let

[':=Gal(l/k) ={1,0}

where o is the unique nontrivial element of ' which maps v/d — —+v/d. Consider the cocycle
¢ = (ar) € Z1(k/£, G(0)) given by

a, =1, a, = wo(t)
where ¢ is any element in 7'(k).To see that ¢ is in fact a cocycle, one checks that

Ay = A T1 (a7—2 )
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for all 7, € I'. If 74 or 7, are 1, this is trivial. In the remaining case we have

o0 (ag) = (wot)o(wot)
= (wot)(wot)
(wotwo )t

~

t
1:a1 = Ugg-

Consider the Lie algebra £ together with the twisted action of I' by ¢ on £. As per
Theorem 6.6, the subalgebra ¢£ of elements invariant under the twisting action, together
with the restriction of the Killing form to that subalgebra, is a k-form of (£, K).

Let us proceed to compute this invariant subspace, which we denote by £;'.

Proposition 3.2. The subalgebra H s stable with respect to the twisted action, as are the

two-dimensional subspaces (X, X_o) for all a.

Proof. Each of these pieces is known to be stable under the standard action, and so it suffices
to show that they are stable with respect to conjugation by a, = wyt.
Note that for all a € 3 one has

wot Xottwy ! = woa(t) Xqwy *

= a(t)ca X _q.

As previously discussed, H is stable under conjugation by elements of 7', and also stable

under conjugation by wg. Thus, it is stable under conjugation by a,. O

In view of the above proposition, we can see that

['ZF = HZF S @ ((Xou X—a>*r)7

aeXt

where for any subspace V of £, we let V*I' denote the subspace of V invariant under the
twisted action of I" by (.

Proposition 3.3. The following vectors are invariant under the twisted action, and form a

basis of L}*.

1. Fori=1,...,n, the vector \/EHC”.
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2. For a € ¥, the vectors Xo + 0.¢(Xa) and Vd(Xo — 0.¢(Xa)).

Proof. For i =1,...,n, one has

0.c(VdH,,) = o(wet(VdHg, )t wyt)
= —Vdo(wot Hy, t 1wyt
= —Vdo(—H,,)
= —Vd(—H,,)
= VdH,,.

It is then clear that the vectors of this form constitute a basis for H.

For o € ¥, one has

0.c(Xo + 0.0(X,)) = o(wot( X, + o (wet Xotwy Nt Hwyt)
= o(wot Xt wy ) + o (woto (wot Xt wy M)t twy )

:30<<)£1)4—}(a
and

0. c(Vd(Xo — 0.¢(X0))) = —Vdo.((Xo — 0.¢(X.))
= —Vd(0.(Xs) — Xa)
= Vd(X, — 0.:(X.)).

Moreover, these two vectors are linearly independent. One has

Xo+0.c(Xa) =Xo+a(t)caX_o
Vid(Xo — 0.0(X0)) = Vd(Xe — a(t)caX_a).

]

Using this basis, we may now compute the restriction of the reduced Killing form K’ to

the invariant subspace £;'. Let us first note that

(K, L£i") = (K',(VdHa,, ..VdHe,)) & @D (K, (Xo + 0.¢(Xa), Vd(Xe — 0.c(Xa)))

aeXt

since the summands are stable under the twisted action and therefore orthogonal to one
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another.

Proposition 3.4.

(K',(VdH,,,..NdH,,)) = d(K', H).

Proof. This follows immediately from the observation that for all ¢, j = 1,...,n one has

K'(VdHg,, VdH,,) = dK'(He,, Ha,).

Proposition 3.5. For all « € T, one has
(K' (Xa + 0:¢(Xa), VA(Xa = 0.¢(Xa))) 2 alt)call, —d) = a(t)ca((d)).
Proof. We compute the reduced Killing form on the basis elements:

K'(Xo+0.cXo, Vd(Xo — 0.cX,))

= Vd(K'(Xa, Xo) = K' (X, 0.0 X0) + K' (X0, 0.0 X0) — K'(0.¢ X0, 0.¢X4))
= VAK' (X, Xo) — K'(0.cXa,0.Xa))

= Vd(0 — K'(0.cXa,0.cXa))

= — VK (wot Xot " wy ', wot X ot~ wy )

= —\/8/c’(a< )CaX 0, (t)caX_a)

do(t)? 2K (X oy X_a)

)e
do(t)*c;(0)

K'(Xo+ 0.cXa, Xo+ 0.cXa)

= K (X Xa) + 2K (Xa, 0. Xa) + K/ (0.0 X, 0.0 Xa)
=2K"(X4, 0.0 X4a)

= 2K (Xa, a(t)ca X _4)

= 2a(t)coK' (X, X_0)

= a(t)cq.
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K'(Vd(Xo — 0.cX0), Vd(Xa — 0.¢Xa))

K'(Xa = 0.cXa), (Xa — 0.cXa))

K'(Xa, Xa) = 2K (X, 0.0 X0) + K'(0.¢ X0, 0.6 X0)
= —2dK/(Xa, 0.cX4)

= —da(t)cq.

d
d

]

Now that we have a general formula, we will compute some specific cases. Let us assume
henceforth that —1 is a square in k, so that ¢, is also a square for all o € X7 in each case
(because all ¢, are £1).

We adopt the notation K, for the restriction of K to the invariant subspace of £ under
the twisted action of I' by (, where ( is the cocycle constructed above with parameters
¢ = k(v/d) and t € T(k). Then for Lie algebras of type D4, Ds, and Es, the restriction of
K4 to our Cartan subalgebra H becomes hyperbolic. From here forward we will work only

in the Witt ring, and so for each of the aforementioned cases we have

1= P alt)eal(d))

aext

= D at)((a))

aext

= () & P (a)).

aext

We will simplify our computations by working first with the form
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CHAPTER VI

Cohomological Invariants Arising via
the Killing Form

1 Simply Connected Groups of Types D,

Let G be a simple simply connected algebraic group of type D,, over a ground field £ with
Lie algebra Lie(G) = L. As before, let £ = k(v/d), let 1 # o € Gal({/k), and let ¢ = (a,,)
be a cocycle given by

Qg = dl(t1> c. dn<tn)wo

Consider the restriction of K to the k-vector subspace of £ ® ¢ invariant under the twisted
action of Gal(¢/k), denoted by K.

Proposition 1.1. Suppose —1 is a square in k. If n is even then the quadratic form K, is

hyperbolic.

Proof. We consider the following realization of the root system of type D,, (see [16, Section
V.16]). Let €, ..., €, be the standard basis of R™ and let

Yi={teLe|1<i<j<n}
For a base S we may take the simple roots
Q=€ — €11, 1<MN, Qpi=€y_1+ €.

It is easy to see that all roots of the form —¢; & ¢; where @ < j are negative. Since exactly
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half of all roots in ¥ have this form, it follows
Yi={eate|1<i<j<n}

We introduce the following notation for the positive roots in ¥ with respect to S for all

1<i<yi<n:
Q5 1= € — €5, Qjtj 1= €i+€j.

To show that K7, is hyperbolic, it suffices to show that all two dimensional quadratic

forms
(ij(t), aigs(t))

are hyperbolic, which since -1 is a square is equivalent to showing that (c;;; — a;4;)(t) is a

square. Indeed, one has

(i — i) (t) = (6 + €5 — € + €)(t)
= (2¢;)(t)

= ¢;(t)*.

2 The Centres of Simply Connected Groups of Type
DQn

Let f be a hyperbolic quadratic form of dimension 4n over a field K of characteristic not 2,
and let G = Spin(f), so that G is a simply connected split algebraic group of type Ds,. It is
known that

Z(G) = pz X pa,

although this decomposition is not unique.
Let A be a subgroup of Z(G), and consider the quotient group G/A (we may consider
the quotient of G by any closed normal subgroup, see [11, Section 12]). The quotient map

p:G—»GJ/A
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induces the differential map
dy : Lie(G) — Lie(G/A)

(see 1.6).
Since the characteristic of K is good (i.e. not equal to 2) one has Lie(ker(p)) = ker(dyp).
Since ker(¢) = A is finite the identity component ker(¢)° of the kernel is 1, and thus

Lie(ker(¢)) = Tan.(ker(y)) = Lie(ker(¢)?) = 0,

and so dy is injective.
Moreover, one has dim(Lie(G)) = dim(Lie(G/A)) since dim(G) = dim(G/A), and so since

dy has trivial kernel it is automatically surjective. As such, the map
dy : Lie(G) — Lie(G/A)

is an isomorphism, so G/A is also of type Day,.
If A=1, then G/A = G = Spin(f). If A = Z(G) = pa X pa, the group G/A is called
adjoint.

It is known that there exists a decomposition Z(G) = ug X e such that
G/(=1,—1) = 50(f).

Under this decomposition, one has G/(1,—1) = G/(—1,1). This group is called half-spin.
Let A = (—1,1) (or equivalently A = (1, —1)) so that G/A is the half-spin group. Consider

the adjoint representation
Adg : G — Lie(G) = Lie(G/A).
Since A C ker(Adg) the map Adg factors through G/A, in particular
Adg = Adgja o,

where Adg/4 is the adjoint representation G/A — Lie(G//A) = Lie(G) and as before ¢ : G —
G /A is the quotient map.

Let T'C G be a split maximal torus, and let 77 = ¢(7"). Then 7" is a split maximal torus
in G/A. Let wy € N := Ng(T') be as before, and let wj = ¢(wp). Then wj € Ng/a(T") is of
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order 2 and for all ¥ € T one has
wht (wh) L = (#).

Let us consider the set of 1-cohomology classes over K taking values in the subgroup
(T",wj) C G/A, that is the set
HY(K, (T, w)).

Recall that the inclusion (7", w() < G/A induces a map
o HH (K (T, wy)) — H'(K,G/A)

and so we may also view these as cohomology classes with coefficients in G/A.
Remark: The map ¢ is not necessarily injective. However, suppose we have two cocycles
(asp) and (aq ) such that

o([aow]) = e(lass])-

Since the cocycles in H' (K, G/A) are cohomologous, the twisted Lie algebras are isomorphic,
hence their Killing forms are isomorphic over the ground field. Thus, our construction of
cohomological invariants below does not depend on the choice of representative of cohomology
classes.

We now introduce the character and cocharacter groups for an arbitrary algebraic torus

T'. Recall that the character group of 7' is the group
X(T) := Hom(T, G,).
Definition 2.1. The cocharacter group of T is the group
X(T), := Hom(G,,,T).
There exists a natural perfect pairing
(— =) X1 xX(T)— Z

given as follows. For any A € X(T), and pu € X(T') the composition

poX: G, — Gy
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is a morphism. It is well known that all such morphisms are of the form

pol:G, — Gy,

g g"

for some n € Z. Then we let (\, u) :=n.

We now come back to a split maximal torus 7" C G = Spin(f). Since the above pairing
is perfect for every o € ¥ C X(T') there exists a unique cocharacter, which we denote by
& € X(T), such that for all § € ¥ and for all t € T one has

Ad(a(t))(X5) = 17 X
For simply connected groups, it is known that if
A1,y ...y Oop

is a base of X then every element ¢ € T" may be written uniquely as

2n
t=]]a)
i=1

for some elements t; € G, (see [20, Corollary to Lemma 3.28]).

In other words, the natural morphism
G X...xGp—T

2n
(th . ,tgn) — Hdz(tz)
=1

is an isomorphism.

Proposition 2.2. Let

O«

1(=1as(=1) ... dz3(—1)d2,-1(—1)
H(=1)ds(=1) ... cion_s(—1)dan(—1).

I
O«

21

I
O«

Z9

Then one has
Z(G) = <Zl,232>.

Proof. 1t is clear that z; and 2z, are of order 2 and that z; # zgﬂ. Since Z(G) = puy X
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fi2, it therefore suffices to show that z1,2, € Z(G). Recall that the kernel of the adjoint

representation
Ad: G — GL(Lie(G))

coincides with Z(G). Since T acts trivially on H = Lie(7") by conjugation, it further suffices

to show that, for all a € ¥&, one has

-1 -1
201 Xo21 = 20Xa2y = Xa

le,azfl = ng,azg_l =X_,.

Using the relation
& (1) X oy (t71) = tledid X

one has
0 Xoz = (=1)m X,
where
2n
(m, o) = Z (i1, )
i=1

It suffices to show that the sum above is even. Furthermore it suffices to show this under
the assumption that « is a simple root, i.e. a = «a; for some j = 1,...,2n. Considering
the Dynkin diagram of the root system of type D,, (see Section 2) it is clear to see that we

have three cases: either j is odd in which case the term (a;, ;) = 2 appears and all other

terms are zero, j is even and not equal to 2n in which case the terms (a;_1, ;) = —1 and
(aj41,05) = —1 appear and all other terms are zero, or j = 2n in which case all terms are
Z€ero.

The proof for 25 is exactly the same except that the exceptional case is 7 = 2n — 1 rather
than j = 2n. O]

3 Non-Simply Connected Groups of D,

Let us describe now the Killing form of some of these quotient groups. We begin with the
case where G is of type Dy and A = (z3), so that G’ = G/A is of type D, half-spin.
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We wish first to parametrize k-points of the maximal split torus 77 C G’. Recall that
every element ¢ € T'(k) has a unique decomposition ¢t = d&;(t1)dz(te)ds(ts)ds(ts). Consider

the following two morphisms

c:T — T, t— 0y (t1t4)d2(t2)d3(t3)d4(t4)
7T =T, t ay(t))ds(ty)ds(ts)d(ts).

One easily checks that o is an automorphism of 7" and ker(7o0) = (z2) and so the composition
7 o 0 can be identified with the quotient map T — T".

Under this identification, one checks that a preimage of t' := &1 (¢])dn(th)ds(ts)du(t])) is
th
Vi

Recall that ¥ C X(T") C X(T'). Therefore, for any root o € 3 one has «(t) = «(t') where
t € T is a preimage of ¢ under the quotient map 7" — T’. Then we have

)cia () s (£ ) ia (/1))

t:= dl(

a(t’) = a(t)
o (as.0)

ag,x ag,o g,

1

= t/<a1’a>tl2<a2’a>tg<a3’a> f (va—a1,@) .

t
)

Lemma 3.1. Let t' := dy(t))aa(th)das(th)au(ty) € T'(k). For alli < j one has modulo squares
a;—j(t') = thai;(t).

Proof. Since a;_; and «;;; are characters of 7", there exist unique integers my, mq, ms, my
such that

ai— (t7) = (7)™ (t5)™ ()™ (t3)™

and unique integers ni, ns, ng, ny such that
I\ _ 4/nig/ngg/ng g /ng
iy (1) = 87" 2 15"

By the same logic laid out in Proposition 1.1 the differences m; — ny, ms — ny, and mg — ng
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are even. On the other hand

1
my — Ny = <Oé4 — Oy, Oéz'+j> - §<Oé4 — O, ai—j>

N — DN~

<Oé4 — O, 2€j>

gy — a1,6j>

—€1 -+ €9 —+ €3 -+ €4, €j>

I
—_ o~ ~

[]

Lemma 3.2. Let€ =€, + €3+ €3+ €4. Foralli < j, let agﬂ» =€— a,y;. Then for allt' € T'
one has

aiﬂ-(t’)a;ﬂ(t’) =t
modulo squares.

Proof. Let k=1,2,3,4. One has

(g, i) + <Oék704§+j> = (ay, ).

One checks that (ay,€) is equal to 2 if £ = 4 and 0 otherwise. Then

i (1) (1) = €(t)

Han,e€) H{ag,e) Has,e 15 (aa—an,e)
:t1<1>t2<2>t3<3>42 4 1

_ 470470470471
_tl t2 t3t4

[]

Note that for all i < j one has «;,; is equal to ay s for some i’ < j'. Furthermore,

A , A o . : : oy
(afy ;)" = aipj and o, ; # @iy As such, the roots ay; are partitioned into pairs (aiyj, o, ;).

Proposition 3.3. Let t' = da(t))da(ty)as(ts)aa(t)). The reduced Killing form Ky, for half-
spin groups of type Dy is hyperbolic.

Proof. By Lemma 3.1 one has
Kél,t’ = <<d7 tﬁ4>> ® @ <ai+j (t/)>>
i<j
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and by then Lemma 3.2 and the following remarks

D (s (1) = () ® f

i<j

for some 3-dimensional quadratic form f. Then

Kz,i,t’ = <<d7 tihtzl» ® f

which is hyperbolic (because —1 is a square). ]

Next we consider the adjoint group of type Dy, that is the quotient of a simply connected
group of type Dy by its center. We construct the quotient map again in a similar fashion,

this time choosing

0 it Gy (titsty) i (ts) s (ts)dy(ty)
Tt e Gy (t)da(ts)ds(t3)dy

O«
—~
~
NN
S—

Thus, we may identify the quotient map 7" — 7" = T'/Z(G) with the map

G X Gy x Gy x Gy — Gy X Gy X Gy, X Gy,
(t17t27t37t4) — (t1t3t47t27t§7t421)'

Under this identification, if ¢’ = (|, ), t4,t}) and ¢ is a preimage of ¢, say

t: \/W7 27\/E7\/t_/

then

CY

(a1,0)
ag,a (asz,a) (ag,0)
( N> RN AN

_ /1a1, /(ag,a)t2<a3 ar,o >t4 5 (aa— m,a)'

Lemma 3.4. For all i < j and for all t' € T" the following 1-dimensional quadratic forms

are isomorphic:
(g (1) = (tathoij (1))
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Proof. One computes

1 1
5(0&3 — O, ai+j> — 5(0(3 — O, Oéi_j> = §<Oé3 — Oq, 26]')

—~

—€1 + €3 + €3 — €4, €j>

L,

o= H

1

§<Oé4 — Oy, ai+j> - §<Oé4 — i, ai—j> = <Oé4 — aq, 2€j>

—€1 + €9 + €3 -+ €4, €j>

Il
—_ ~

Lemma 3.5. For all i < j and for allt’' € T one has
(aiy; (1) = (tac (1))

Proof. We check

1 1 _
§<Oé3 — ay, Qi) + §<043 — i, ahy ;) = 5(063 —ay, €)
1
= §<—€1+62+€3—64,€1+€2+63+€4>
1 1 , .
§<044 — ay, Qi) + §<044 - CY17047;+J-> = §<CY4 —ag,€)

1

:5(—61+€2+€3+€4,€1+62+€3+64>

Proposition 3.6. For adjoint groups of type Dy we have
ICél,t’ = <<d’ t/17 tl2> té, t£1>> + <<dv tg’ t£1>>
Proof. The above two lemmas show

Kop = ({d, t3t5, 1)) @ {a1-a(t'), a1 -3(t'), cr—a(t'))
= ((d, t3, 1)) ® (1 2(t"), ar-3(t"), a1 _4(t)).
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One then computes the remaining roots to arrive at the result. We have
(a1-a(t), a1—s(t), an_a(t)) = (tat], titatsty, t1ty)
and so

ar = ((dyt3, 1)) ® (tot}, titststy, 112))
((d, 3, 83)) ® (t1, 5, t115)
((d, 3, £3)) @ [({#1, 1)) + (1)),

4 Non-Simply Connected Groups of Type Dy

Now let us pass to the half-spin group G’ of type Dg. Let 7" C G’ be a maximal k-split
torus. Let T" be its preimage under simply connected covering G — G’. We can parametrize

k-points of T in a similar fashion, letting
t:= qu(tl)dg(tg)é&g(t3)d4(t4)(§45(t5)6\46(t6)é{7(t7)é{8(t8) eT
and choosing instead the maps o, 7: T — T given by

o:t— dl(tltg)dg(tg)é&g(t3t8)d4<t4)d5<t5t8)d6(t6)d7(t7)d8(t8)
T:t+— dl(tl)dg(tg)dg(tg)d4(t4)d5(t5)d6(t6)d7(t7)dg(t%)

One finds that for a k-point ¢ € T"(k) its preimage t in T is of the form

I O T B T W A B N A
t=c ( \/g> o (t) i (ﬁ) au(t)) s (ﬁ) e (ts) Gir(t) i (@) (VL1)

and for a root «

" (a1,a) o (as,a) y (as,a0) < >
a t/ — 2L t/ (a2,a) 3 t/ (aq,a) 5 t/ (o ) Zf/ (ar,q) v ag,q
() ﬁ) DR WA L A N

1 ag—o] —a3—Qa5,&
= 0411 85)(0 ) 85) ) (85) 1) (1) 05 1) o5 1) 07 1 bo-n o)
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To ease notation we will write below ¢; instead of parameters .

Lemma 4.1. For all i < j, the following 1-dimensional quadratic forms are isomorphic:

(igj(t)) = (tsaij(1))-

Proof. By the methods of Proposition 1.1 the factors of ¢; through 7 on the left and on the

right are the same modulo squares. One checks

1
§<Oé8 — 01 — a3 — Qs, ai+j> - §<048 — Q1 — Q3 — Os, Oéifj>

1
= §(a8 — 1 — Q3 —O./5,2€j>
= (—€1+ € — €3+ €1 — €5+ €6+ €7 + €3, €5)
= +41.

Corollary 4.2. For half-spin groups of type Dg one has

b= ((d,ts)) @ @D (eij (1))

1<j

Let us break the part @ (a;_;()) into subforms. Note that the factor of g on the left
i<j

means that we can choose to ignore any factors of ¢g appearing in «;_;(t) without changing

the end result. As such we will consider tg = 1 in these computations. Similarly we may

freely replace any root a;i; with the corresponding root a;_;. Let

so that
P ) =Kok, &Ky

1<j

Lemma 4.3. The quadratic form IC; defined above is of the form

K= ({2, tats, ta)) — ({ta)).
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Proof. Let € :=€; + €3+ €3 + ¢4 and a;+j =€ — a;4; as before. For all « < j <4 one has

(i (1)) = (taciy; (1)),

Indeed, one checks as in previous examples that the factors of ¢, t5, and t3 on the left and on
the right are the same modulo squares. We may ignore factors of tg as stated, and no factors

ts,tg or t; appear. For t, one has

(o, vigj) + (o, Ay )

<a4>E>
<€4 — €5, €1 + €9 + €3 + €4>
1.

Therefore
Ki= <<t4>> ® <Oé1+2<t>a 041+3(t)7 041+4(t)>'

We compute «(t) directly for each remaining root:

ay42(t) = to, a43(t) = titats, a144(t) = titsty.

t4>> X <t2, titots, t1t3t4>
t1)) ® (ta, titats, tits)
ta)) ® (({t2, tata)) — (1))

Lemma 4.4. The quadratic form IC, defined above is of the form

K, = ((ts, tstz, ta)) — ((ta)).

Proof. After choosing € := €5 + €5 + €7 + €g and dropping all factors of tg which appear, the

proof follows in exactly the same fashion as the previous lemma. n

Lemma 4.5. The quadratic form K,, defined above is of the form
Km = (tsts) @ [({t2, t6, t1l3, tst7)) © ((t2, s, tits)) © ((ta, L6, tst))].
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Proof. We begin by noting that K, consists of precisely roots of the form «a;_; where ¢ < 4

and j > 5, which may be rewritten

Oéi*j:ai_'—"'—i_ajfl
=(i+-+az)+(+-+aj)

=Q; 4+ 0y
(note that ¢ may equal 4 in which case we consider ay_4 = 0). We then have
aizs() = as-a(t)au ()
and this implies
Kin = (a1-4(t), a2-a(t), a3-4(t), a—s(t)) ® (ua—5(1), as—s(t), a—7(t), a-s(t))-
We compute (modulo squares)

()[1_4(t) = t1t3t4 042_4(75) = t1t2t3t4 063_4(t> = t2t4 064_4(t) =1
a4_5(t) = t3t5 014_6(t) = t3t4t5t6 OZ4_7(t) = t3t4t6t7 O[4_8(t) = t3t4t7

and then we may rewrite

K = {a1-a(t), ax_a(t), az_4(t), as_a(t)) @ (u_5(t), a—g(t), aa_7(t), a_s(t))
= (titsts, titatsty, tats, 1) @ (tsts, tatylsts, tatatety, tataty).

One checks

(titsty, titatsty, tata, 1) = ((ta, ta, trts)) B ((t2, tits)) & ((ta))
(tsts, tstatste, tatatety, tatatr) = (tsts) @ [((ta, te, tstr)) & ((te, tst7)) B ((t4))]

and

(tsts) @ [((t2, ta, tats)) © ((ta, tit3)) @ ((t4))] ® [{(ta, s, tst7)) D ((T6, tstr)) © ((ta))]

= <t3t5> X [<<t2,t6, t1t37t5t7>> D <<t2,t4, t1t3>> D <<t4, t6,t5t7>>].
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Proposition 4.6. For the half-spin group of type Dg, one has

Kl = ((d:ts)) @ [{(ta, s, trts, tats, tste)) @ (b, te, it str)) @ ((ta, ta, tats, tats))
s> <<t47 le, tsts, t5t7>>]

Proof. Now that we have computed each of the summands we have

K@ Ky ® Ko = ({ta, T, tats, tats, tstr)) @ ((ta, T, tats, tst)) & ({ta, ta, tits, tats))
® ((ta,te, tsts, tstr)).

We then replace the values in Corollary 4.2. O

5 Groups of Type Ejs

In this section we consider a simply connected group G of type Eg over a ground field k,
twisted by a cocycle ¢ which is split over some quadratic extension ¢/k = k(\/d).
We use the realization of a root system of type Eg given by Bourbaki in [3] as follows: let

€1, ..., €g be the standard basis for R® and let
=
Yi={te*e|i<j}U {5 E_l (—1)Ve}

8
where v is an element of (Z/27)® and v; denotes the i'® component of v, such that >~ v; = 0.
i=1
Let S be the system of simple roots consisting of

1 6
a1 = 5 €1 — E €; 1+ €3 s Qg = €2+€1, Q,; 1= €1 — €;_9, 223,,8
=2

Then X is comprised of the roots of the following forms:
1 7
€; + €5, 1> j, 5 (68 + zzl(—].)uzﬁz> (VI2)

7
where u is an element of (Z/2Z)7 such that >~ u; = 0.
=1

7
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The root & = €7 + €5 is the longest root. One has
& = 2a7 + 3ag + dag + 6ay + Sas + dag + 3oy + 2a.
Proposition 5.1. The subset of roots of the form
€& tej, 1>

m X form a subsystem of type Dg with base

pr = —a, B2 := as, B3 = az, B1 = ag,
Bs := as, Be := au, Br = as, Bs = an.
Proof. This follows immediately from the extended Dynkin diagram of type Fj. m

Consider the normalized Killing form of G

where, as usual,
t =y (ty)dn(ty)ds(ts)ay(ts)ds(ts)as(ts)dr(tr)as(ts) € T.

Let f be the subform of € («a(t)) corresponding to the roots in the subsystem of Proposition
aEEg
5.1. Let ¥ be the set of remaining positive roots

7 7
Y = % <68+Z(—1)"ie,»>, > ui=0
i=1 =1

and let g be the subform of @ corresponding to roots in 3'. Then

+
aeXy

ar =)@ (fog).
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Corollary 5.2.

f={{t1)) @ [({ta, tr, ts, tste, Latsts)) + ({ta, tr, Ls, tatats)) + ({Le, 7, ts, tsl7))
+ ((ta, Lo, tsl7, tatsls))]-

Proof. Our computation of the quadratic form f will be based on the formula in Proposi-

tion 4.6. To apply this formula we have first to write the element
t =y (ty)an(ty)ds(ts)ay(ts)ds(ts)as(ts)dr(tr)as(ts) € T, (VL3)

which arises in the cocycle ¢, in the form (modulo squares)

- (7) (o) B (7) NORY:E (7) o (15) B () s/ 53)

(see formula (VI.1)) where uq, ..., us are rational functions in ¢y, ..., ts and then substitute
uq, ..., us instead of £, ..., tg in the formula of Proposition 4.6.
Note that check operation & is linear with respect to a because all roots in Eg have the

same length. Then since

1
ap = —(d/ - 3@2 - 4@3 - 6@4 - 5@5 - 40(6 - 3047 - 2048)
1
= 5(—51 — 3085 — 4B7r — 68 — 505 — 4P4 — 303 — 202).
we conclude that modulo squares one has

0= () (7) () # () # (2) 5 ()

and therefore substituting this expression in (VI.3) one gets

o= () e () o (7 ) At () o () drtearie (22 )

Thus, modulo squares we have

up = ta, up = tily, uzg = titaly, us =1tg, us = tlats, ug = t1ty, uy =13, ug=1ty.

Lastly,

((ug, ug, urug, ugus, usuz)) = ((tits, t1ts, tity, titsty, tatsts)),
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((ua, ue, urus, usur)) = ((tits, tita, titr, tatsts)),
((ug, ug, urus, ugus)) = ((tits, te, tit, titsts)),
((uy, ug, ugus, usuz)) = ({ts, t1ty, t1tsty, tatsts)).
Since ug = t; the result follows. O

Now let us compute the form g. A table showing the roots in ¥ in various forms and
giving a diagonalization of g may be found in the Appendix.
A straightforward, albeit lengthy foiling process shows that the form g may be rewritten

as

(ts, titsts, t1tsty, titstrts, tste, titstets, titstetr, titstetrts)
® (1, t1tq, titats, tatatsty, ts, titats, tatatsts, titatstats).

One then checks

(ts, titsts, titstr, titstrts, tste, titstets, titstetr, titstetrts)
= (t3) ® ((t6)) ® (1, t1tg, t1t7, Lilqts)
= (t3) ® ({ts)) ® (({t1, 17, 1)) © ({t7,s)) @ ({t1))),

and

(1, t1ty, titots, titatsty, ts, titats, titatsts, titatstats)
= ({t5)) @ (1, t1ts, trtats, titatsts)
= ((ts)) ® (((t1,tat3,t4)) © ({tat3,t4)) © ({t1))),

and so altogether

g = (t3) @ ({ts,t6)) @ ({{t1, t7,ts)) © ((tr,1s)) D ((t1))) @ ({{t1,tats, ts)) © ((tats, ta))
D ((t1)))-

After foiling the last product and cancelation of hyperbolic spaces, this becomes
9= (ts) @ ({ts. t6)) ® ({{t1, tats, ta)) ® ((t1, 17, ts)) © ((tats, ta, 17, 15))). (V1.4)

We see that g, like f, lies in the ideal I° and so K}, = ((d)) @ (f @ g) lies in I°.
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Proposition 5.3. The quadratic form f & g is represented in I°/I® by a Pfister form
((t1,ta, tr, tets, totsts)).

Proof. By Corollary 5.2 the image of f in I°/I° is represented by the sum of three Pfister

forms
f1 = ((t1, ta, t7, ts, tatsts)), fo = ((t1,t6, t7,ts, tst7)) = ((t1, 15, t6, t7,ts)) and
f3= <<t1, t4,tg, t5t7, t2t3t5>>.
Also, by (VI.4), the image of g in I°/I° is represented by the sum of f, and
g2 = ((t1,t4,t5, 16, tats)) = ((t1, 14, 5, t6, tatsts)).

Lastly, f3 @ ¢g» modulo I° is represented by

((t1,t4, te, t7, tatsts))

and therefore f @ ¢g modulo I° is represented by

((t1,ta, t7,ts, tatsts)) + ((t1, ta, te, t7, tatsts)) = ((t1, s, t7, tets, tatsts))

as required. O
Thus we proved the following.

Theorem 5.4. Let H!

quad

(—, Eg) be a subfunctor of H'(—, Eg) consisting of Eg-torsors split-

ting over quadratic extensions. There exists a nontrivial cohomological invariant

Hluad<_7 E8> - HG(_7 Z/2>

q

given by
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Appendix A

Diagonalization of a Subform of the
Killing Form for Twisted Lie Algebras
of Type Ejg

In this section, we present a table showing several presentations of each positive root in the
set ¥ described in the final section above, together with the coefficient of the Killing form
corresponding to each. We will begin with some explanation of the information presented in
said table, as well as how this information may be derived.

A priori, the positive roots in ¥’ are all vectors in R® of the form

% (68 + Z(—l)‘”el)

where the a; are integers modulo 2 such that ZZ:1 a; = 0. The clearest way to list ex-
haustively the positive roots in ¥’ is to identify them with the vector a = (ay,as, ...,a7) in
(Z)Z5)". This is the information presented in the first column.

The second column gives the regular presentation of each root as a vector in the standard

basis of R®. For example, the vector
a = (1,1,0,0,0,0,0)

in (Z/Zs) would be identified with the root

1( + €3+ €4+ €5+ €6+ €7+ €3) L 1111111
—(—€ —€ € € € € € G)=|—=—= 55T S .
2 1 2 3 4 5 6 7 8 27 2727272727272
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Next, we must convert this vector from the standard basis into the basis

B = {041,062, ...,Oég}

of simple roots defined in Section 5. This is done by simply multiplying each vector by the

appropriate change of basis matrix M, for which we have used RStudio. The matrix itself is

- 1 -1 0
i1 -1 0 0 0 0 0 )
-1 1 -1 0 0 0 O 1
-2 0 0 1 -1 0 0 0
M=|-10 0 0 1 -1 0 0] = 0
-0 0 0 0 1 -1 0 0
-5 0 0 0 0 1 -1 0
-2 0 0 0 0 0 1] 0

o O O O O = = O

S O O O N = o= O

S O O NN = = O

000 4
1 11 5
111 7
2 2 2 10
2 2 2 8
22 2 6
0 2 2 4
00 2 2

Finally, each of these roots a correspond to a coefficient in the quadratic form ¢ discussed

in Section 5. This coefficient, which is simply «(t¢) reduced modulo squares, is obtained from

vector in the third column. The formula for this coefficient is given at the end of Chapter V,

namely one has for a given root 8 = byay + - - - + bgag

8

B(t) = [ Jeu(®)™.

i=1
In our case one has (modulo squares)

Oél(t) = t3 OéQ(t) = t4 Oég(t) = t1t4

Oé5(t) = t4t6 O{G(t) = t5t7 O[7(t) = t6t8

and so B(t) is given by the simple formula

_ 4b3 1b4 1 b14-bg 1o +b3 45 by +-be 1 b5 +b7 1be+bs b7
/B(t) - tl t2 t3 Z(’-4 t5 t6 t7 tS .

Oé4(t> = t2t3t5

(07 (t) = t7

The final column of the table is then simply this monomial, reduced modulo squares.
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Tuple in (Z/2Z)" | Vector in R®, Standard Basis | Vector in Basis B | Coefficient
(0,1,1,1,1,1,1) | (3,—3,—3,—3.—5.—3.—3.3) | (1,0,0,0,0,0,0,0) | ¢3
(1,0,0,0,0,0,1) | (—3,3.3.3.3.5.—3.3) (1,2,3,4,3,2,1,0) | t1tsts
(0,1,1,1,1,0,0) | (3,—3,—3, -3, -2.4.2. 1) (1,1,1,2,2,2,2,1) | titsty
(1,0,0,0,0,1,0) | (=3,3.3,3.3.—5:3:3) (1,2,3,4,3,2,1,1) | titstqts
(1,0,0,0,1,1,1) | (—=3,3.3.3 5. —3.—3.3) (1,1,2,2,1,0,0,0) | tstg
(0,1,1,1,0,0,1) | (3,—3,—3, -3, 11 -1 1) (1,1,1,2,2,2,1,0) | titstets
(1,0,0,0,1,0,0) | (=3,3.3.3>—3:5.3,3) (1,2,3,4,3,2,2,1) | tytstety
(0,1,1,1,0,1,0) | (3,—3.—3,— 3.2, —3.3.3) (1,1,1,2,2,2,1,1) | tytststqts
(0,1,1,0,0,0,0) | (3, —4,—-3,3, 3,21 ]) (1,2,2,4,4,3,2,1) | tsts
(1,0,0,1,1,1,0) | (=3,3.3—3.—5.—3:3.3) (1,1,2,2,1,1,1,1) | tststs
(0,1,1,0,0,1,1) | (3,—3.—3.3.5.—3.—3.3) (1,1,1,2,2,1,0,0) | titststy
(1,0,0,1,1,0,1) | (-3,3.5. -3, 3.3, —3.3) (1,1,2,2,1,1,1,0) | tststrts
(1,0,0,1,0,0,0) | (—3,%.3,—3,3:5.5,3) (1,2,3,4,3,3,2,1) | t1tstste
(0,1,1,0,1,1,0) | (3,—3.—3.3.—2.—3.3.3) (1,1,1,2,2,1,1,1) | titststets
(1,0,0,1,0,1,1) | (=3,3,3—3:3.—3:—3>3) (1,1,2,2,1,1,0,0) | tststety
(0,1,1,0,1,0,1) | (3,—3,— 3.3, — 2.3, —3,3) (1,1,1,2,2,1,1,0) | tytststetsts
(1,0,1,1,1,1,1) | (—3,4,—3,—3, -2, -2, —3,1)1(1,0,1,0,0,0,0,0) | t1¢5ts
(0,1,0,0,0,0,1) | (3,—3.3.3.3.3.—3.3) (1,2,2,4,3,2,1,0) | tstyts
(1,0,1,1,1,0,0) | (—3,3,—3,—3.—2.3.3.3) (1,1,2,2,2,2,2,1) | tstats
(0,1,0,0,0,1,0) | (3, —3.5,3,3, -1 1)) (1,2,2,4,3,2,1,1) | tststrts
(0,1,0,0,1,1,1) | (3,—3.3.3,— 3. —3:—3.3) (1,1,1,2,1,0,0,0) | titstyts
(1,0,1,1,0,0,1) | (-3,3,—3,—3.2.2,—3.3) (1,1,2,2,2,2,1,0) | tstststs
(0,1,0,0,1,0,0) | (3, —4.5,3, -1, 11 ]) (1,2,2,4,3,2,2,1) | tstatets
(1,0,1,1,0,1,0) | (=3,3,—3>—3:5.—3:3.3) (1,1,2,2,2,2,1,1) | tstatetsts
(1,0,1,0,0,0,0) | (—3,3,—3.3,3.5,5,3) (1,2,3,4,4,3,2,1) | tytstats
(0,1,0,1,1,1,0) | (3,—3.5. =3, —3.—3.3,3) (1,1,1,2,1,1,1,1) | tytstatsts
(1,0,1,0,0,1,1) | (=3,3,—3.3.5.—3,—3,3) (1,1,2,2,2,1,0,0) | tstatsts
(0,1,0,1,1,0,1) | (3,—3.3,— 3. —2.3.—3.3) (1,1,1,2,1,1,1,0) | tytstatstots
(0,1,0,1,0,0,0) | (3,—3.35,—3,3.5.3.3) (1,2,2,4,3,3,2,1) | tstatsts
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Tuple in (Z/2Z)" | Vector in R®, Standard Basis | Vector in Basis B | Coefficient
(1,0,1,0,1,1,0) | (3,3, - 3.3, —3.—3.3.3) (1,1,2,2,2,1,1,1) | tstatstets
(0,1,0,1,0,1,1) | (3,—3.3— 3.5 —3,—3.3) (1,1,1,2,1,1,0,0) | t1tstatstets
(1,0,1,0,1,0,1) | (—3,3.—3.3. -2, -3, 1) (1,1,2,2,2,1,1,0) | tatatstetrts
(0,0,0,0,0,0,0) | (5:3:3-3-3:3:5:3) (1,3,3,5,4,3,2,1) | t1ts
(1,1,1,1,1,1,0) | (=3, —3,—3,—3,—2.—3.,3,3) | (1,0,1,1,1,1,1,1) | t1tats
(0,0,0,0,0,1,1) | (3,4, 3,3, -1 -1 ]) (1,2,2,3,2,1,0,0) | taot;
(1,1,1,1,1,0,1) | (=3, -4 -3, -1 -1 1 -1 1)1 (1,0,1,1,1,1,1,0) | tstatrts
(1,1,1,1,0,0,0) | (—3,—3,—3,—2.2.3.3.3) (1,1,2,3,3,3,2,1) | tats
(0,0,0,0,1,1,0) | (3,4,4,4, -2, -2, 2. 1) (1,2,2,3,2,1,1,1) | totets
(1,1,1,1,0,1,1) | (-3,—3,—3,—3.5.—3,—3.3) | (1,0,1,1,1,1,0,0) | t1tstets
(0,0,0,0,1,0,1) | (3,4,3,3,—3.2.-2.9) (1,2,2,3,2,1,1,0) | tatgtsts
(0,0,0,1,1,1,1) | (3,3.3—3,—3.—3:—3>3) (1,1,1,1,0,0,0,0) | titats
(1,1,1,0,0,0,1) | (-3,—3,—3.3. 5.3, —3,3) (1,1,2,3,3,2,1,0) | totsts
(0,0,0,1,1,0,0) | (3,4,3,—-3,—-3.2.4.9) (1,2,2,3,2,2,2,1) | tatsty
(1,1,1,0,0,1,0) | (=3,—3,—3.3:5.—3:3-3) (1,1,2,3,3,2,1,1) | totststs
(1,1,1,0,1,1,1) | (=3, -3, —3,3,—3.—2,—3,3) | (1,0,1,1,1,0,0,0) | t1totsts
(0,0,0,1,0,0,1) | (3,4,3,—-3.3.2. -1 ]) (1,2,2,3,2,2,1,0) | tatstets
(1,1,1,0,1,0,0) | (=3,—3,—3.3.—5:3:3-3) (1,1,2,3,3,2,2,1) | totstets
(0,0,0,1,0,1,0) | (3,3,3,— 3.3 —5.3,3) (1,2,2,3,2,2,1,1) | tatstetqts
(1,1,0,0,0,0,0) |(—3,—3.3,3. 3,22 ]) (1,2,3,5,4,3,2,1) | titaty
(0,0,1,1,1,1,0) | (3,3, —3—3.—5.—3:3.3) (1,1,1,1,1,1,1,1) | t1totyts
(1,1,0,0,0,1,1) | (=3,—3,3.3.5.—3,—3.3) (1,1,2,3,2,1,0,0) | totsts
(0,0,1,1,1,0,1) | (3,4, -2, -2, -1, 1 -1 1) (1,1,1,1,1,1,1,0) | tytatatsts
(0,0,1,1,0,0,0) | (3,3,—3>—3,3:5.3,3) (1,2,2,3,3,3,2,1) | tatats
(1,1,0,0,1,1,0) | (—3,—3.3.3.—2.—3.3.3) (1,1,2,3,2,1,1,1) | totststs
(0,0,1,1,0,1,1) | (3,3, —3>—3:5.—3:—3>3) (1,1,1,1,1,1,0,0) | tytotatets
(1,1,0,0,1,0,1) | (=3,—3,3,3,— 5.3, —3,3) (1,1,2,3,2,1,1,0) | taotatststs
(1,1,0,1,1,1,1) | (=3, —3.3,—3, -2, —2,—2.3) | (1,0,1,1,0,0,0,0) | t1tatsts
(0,0,1,0,0,0,1) | (3,3, —3.%.3.3.—3.3) (1,2,2,3,3,2,1,0) | tatatsts
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Tuple in (Z/2Z)" | Vector in R®, Standard Basis | Vector in Basis B | Coefficient
(1,1,0,1,1,0,0) | (-3,—4,3 -4 -1 111 (1,1,2,3,2,2,2,1) | totytsts
(0,0,1,0,0,1,0) | (3,3,—3,3.3, —5.5,3) (1,2,2,3,3,2,1,1) | tatatstqts
(0,0,1,0,1,1,1) | (3,3, -3.3, -3, -2, -1 D) (1,1,1,1,1,0,0,0) | titotststs
(1,1,0,1,0,0,1) | (=3.—3.3,—3.3:5.—3:3) (1,1,2,3,2,2,1,0) | totytstets
(0,0,1,0,1,0,0) | (3,3,—3,3,—3.5.2,3) (1,2,2,3,3,2,2,1) | totatstets
(1,1,0,1,0,1,0) | (-3,—3,3, -3, 1, -1 1 1) (1,1,2,3,2,2,1,1) | totatstetsts
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