
Cohomological Invariants of Simple Linear Algebraic Groups Arising via the

Killing Form

by

Andrew E. Bishop

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

Department of Mathematics and Statistics

University of Alberta

c©Andrew E. Bishop, 2019



Abstract

Let G be a linear algebraic group defined over a ground field k, and let µ be a Gal(ksep/k)-

module. A cohomological invariant is a morphism a : H1(−, G) → Hn(−, µ) of two

functors from the category of field extensions over k to the category of sets where H1(−, G)

is the functor of isomorphism classes of G-torsors and Hn(−, µ) is the functor of abelian

Galois cohomology groups with coefficients in µ.

The objective of this thesis is to investigate the existence of nontrivial cohomological

invariants arising via the Killing form in several settings, with the primary target being split

groups of type E8. We note that for such groups not much is known. The only known invariant

is due to M. Rost and it lives in dimension 3. To deal with the type E8 we first study its

subgroup of type D8. In Chapter VI we give results regarding the existence of cohomological

invariants for groups of type Dn, not necessary simply connected or adjoint. After that we

pass to type E8. Our main result establishes the existence of a nontrivial cohomological

invariant in degree 6 for the subfunctor of H1(−, E8) consisting of torsors spitting over a

quadratic extension of the base field. It is worth mentioning that all torsors in the kernel of

the Rost invariant have this property, so that our result will complement the recent result of

N. Semenov who constructed a cohomological invariant for the kernel of the Rost invariant

for E8 in degree 5.
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1 Introduction

The primary goal of this thesis is to construct a new cohomological invariant for algebraic

groups of type E8. Cohomological invariants for algebraic groups are an algebraic analogue

of characteristic classes in topology, so let us begin by discussing some relevant concepts in

topology.

In almost all applications, a topological space X under consideration is equipped with a

continuous action of a group G on that space, that is to say the action map

G×X → X

is continuous. In this setting we may consider the quotient of X by the action of G - the

set X/G. This set comes equipped with a natural (smallest) topology such that the quotient

map

X → B = X/G

x 7→ xG

is continuous. That is to say, a subset of B is open if and only if its pre-image is open. The

fibres of this map are of course precisely the G-orbits in X.

If the action of G on X is free, that is if the only element of G with fixed points under

its action is 1 ∈ G, then one can identify each fibre of the map with the group G, and so

abusing terminology we can say that the group G is the fibre of the continuous map X → B.

(In particular, one may choose a “base point” x in each fibre of G and views the points (g, x)

as in correspondence with gx.)

We may often wish to consider the case that G is a topological group. We do not exclude

the case where G is a group with the discrete topology.

Example 1.1. Let Y be a simply connected covering of a topological space X. Consider

the fundamental group π1(X). Then Y may be given an action of π1(X) on Y such that

X = Y/π1(X).

Another interesting type of examples is continuous maps X → B whose fibres are all

isomorphic to some Lie group G. Such examples arise in the theory of topological G-bundles.

It should be noted that this class of maps is very restrictive, and so the broader class of maps

which have the homotopy lifting property is often studied instead.
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Definition 1.2. A (weak) fibration is a map of topological spaces p : X → B which satisfies

the homotopy lifting property with respect to any CW-complex Z.

Recall that a map p : X → B is said to satisfy the homotopy lifting property with respect

to some topological space Z if for any homotopy

f : Z × [0, 1]→ B

and for any map

f̃0 : Z → X

lifting f0 := f |Z×{0}, there exists a homotopy

f̃ : Z × [0, 1]→ X

lifting f , with f̃ |Z×{0}= f̃0.

The following diagram illustrates the situation:

Z X

Z × [0, 1] B

f̃0

p

f

f̃

Fibrations can be seen as a precise way to describe the space X as being “parameterized”

by the space B.

The existence of a fibration X → X/G allows us to compute the homotopy groups of the

space X by consideration of the homotopy groups of the base X/G and the fibre G. In this

case the homotopy groups of X and G are related by the exact sequence

...→ πn+1(X/G)→ πn(G)→ πn(X)→ πn(X/G)→ πn−1(G)→ ...

Definition 1.3. A fibre bundle is a surjective fibration p : X → B which satisfies the fol-

lowing local triviality condition: fix a base point b0 ∈ B and let the “fibre” F = p−1(b0).

Then for all b ∈ B there exists an open neighborhood Ub with a local homeomorphism
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p−1(Ub)
∼−→ Ub × F whose projection onto Ub agrees with p. The situation is illustrated below.

p−1(Ub) Ub × F

Ub

∼

p

Definition 1.4. A principal G-bundle p over a topological space B is a fibre bundle

p : P → B together with a continuous (right) action of G on P which preserves fibres of p

and the action of which is freely transitive on the fibres. In such a bundle, each fibre of p is

homeomorphic to G and P/G is homeomorphic to B.

The final example above is key to our purposes due to the following constructions.

Definition 1.5. A universal G-bundle is a principal G-bundle p : EG → BG such that

EG is contractible. Such a space BG is called a classifying space for G.

The reasoning behind the name “classifying space” is revealed by the following result.

Theorem 1.6. (Classification Theorem) There is a natural bijective correspondence between

equivalence classes of principal G-bundles and homotopy classes of maps X → BG. [5]

This correspondence can be roughly described as follows: upon fixing a continuous map

f : X → BG we can consider the pullback E∗G defined as

f ∗(EG) := {(x, e) | f(x) = p(e)} ⊆ X × EG.

Consider the restriction to f ∗(EG) of the projection X × EG � X. We identify the fibre at

a specific point x0 with a subset of EG in the obvious way. That fibre then has the form

p−1(f(x0)) is by definition isomorphic to G, since it is a fibre of p. As such the map described

from E∗G to X is itself a principal G-bundle.

It can be further shown that homotopic maps produce isomorphic G-bundles via this

procedure, and one can check that this correspondence is indeed a bijection.

The following definition has been the main objective of our topological discussion, as its

algebraic analogue is central to our research. The idea was first introduced in 1935 by Stiefel

and Whitney.

Definition 1.7. Let G be a topological group. A characteristic class c for G-bundles

associates to each G-bundle ζ over X a cohomology class c(ζ) ∈ H∗(X) naturally with respect
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to G-bundle maps, i.e. for any map of G-bundles

(f̃ , f) : ζ → ζ ′

one has f ∗c(ζ ′) = c(ζ).

The study of characteristic classes was one motivating factor in the broader development

of cohomology theory, as it was an early example of a contravariant construction. We end

our discussion of topology with the following result about characteristic classes.

Theorem 1.8. Characteristic classes for G-bundles are in bijective correspondence with

H∗(BG).

Proof. See [5].

We now move to the algebraic settting. The algebraic analogue of a characteristic class is

called a cohomological invariant. The study of such objects was initiated by J.-P. Serre

in the mid 1990s.

Recall that in algebra instead of topological G-bundles one studies G-torsors. Loosely

speaking, if G is an algebraic group over a base X then a G-torsor is a variety Y over X

together with a simply transitive action of G which is locally (with respect to the étale

topology) isomorphic to G as a variety. The set of all isomorphism classes of G-torsors is

denoted by H1(X,G).

The main focus of this thesis will be the case where the base X = Spec k consists of a

unique point and G is an affine algebraic group defined over k. Recall that in this particular

case, G-torsors can be defined in terms of non-abelian Galois cohomology (see III.4.11).

Furthermore, it looks natural to replace topological cohomology groups H∗(X) with an

algebraic analogue H∗(k, µ) where µ is a Gal(ksep/k)-module. Thus we arrive to the main

definition in our thesis:

Definition 1.9. Let G be an algebraic group defined over a field k. Consider two functors

from the category Fields/k of field extensions of k to the category Set of sets: namely the

functor H1(−, G) of isomorphism classes of G-torsors and the functor Hn(−, µ) of abelian

Galois cohomology groups with coefficients in µ.

A cohomological µ-invariant (alternatively a cohomological invariant with coefficients

in µ) in degree n is a morphism

a : H1(−, G)→ Hn(−, µ)
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of these functors.

Thus, for any field extension F/k we have a map

aF : H1(F,G)→ Hn(F, µ)

compatible with field extensions L/F .

A natural question appears immediately - how to describe all cohomological invariants

for a given group G. This is a widely open and challenging problem, not much is known in

general.

If G is simple it is known that there are no cohomological invariants in degree 1. In degree

2, all cohomological invariants essentially come from Tits algebras, i.e. they can be described

with the use of the cohomology map

H1(k,G)→ H2(k, Z)

where Z is the kernel of the simply connected covering Ĝ→ G.

In degree 3, M. Rost (see [9]) described all cohomological invariants with coefficients in

µ = Q/Z(d) (this is the Tate twist - see III.3.5) for simply connected groups and later on A.

Merkurjev extended his result for all semisimple groups. [14]

Finally, we note that for orthogonal algebraic groups and groups of types G2 and F4 (see

examples in section III.7) J.-P. Serre classified all possible invariants with coefficients in µ2.

Besides these types, nothing is known in general.

A few years ago, V. Chernousov put forward a new idea of construction of cohomological

invariants with the use of orthogonal representations. Namely, assume we are given an

orthogonal representation λ : G→ O(f). It induces a natural mapping

λ∗ : H1(F,G)→ H1(F,O(f))

where F/k is any field extension of the base field k.

Recall that the elements of H1(F,O(f)) are in one-to-one correspondence with isomor-

phism classes of nondegenerate quadratic forms over F having the same dimension as f (see

§III.6.6). Thus to every class [ζ] ∈ H1(F,G) we may associate in a functorial way a non-

degenerate quadratic form fζ . Now if n is a maximal positive integer such that for all field

extensions F/k and all classes of cocycles [ζ] ∈ H1(F,G) the classes of fζ−f are contained in

the n-th power of the fundamental ideal (see Definition I.2.2) In(F ), but not all in In+1(F ),
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then we have a well-defined non-trivial cohomological invariant

aλ : H1(−, G)→ In/In+1 ' Hn(−, µ2)

in degree n with coefficients in µ2. The last isomorphism above is due to the famous Voevod-

sky’s Theorem.

Of course, the main difficulty here is to understand when the class of fζ − f is nonzero

in the Witt ring and how to compute n.

In the present work, we examine the case of the adjoint representation for a group G of

type E8. Our results show that this construction produces a new invariant in degree n = 6.

Before stating it, we first recall a natural idea coming from topology. For a given G-bundle

Y over X, to check if it is trivial or not one can start from any characteristic class c. If

c(Y ) 6= 0 then Y is not trivial. Otherwise one can consider the subfunctor Ker(c) of c and

try to construct a new characteristic class c1 : Ker(c)→ H∗(X). If c1(Y ) 6= 0 we are done. If

it is not, we can continue in a similar way. Of course, the main difficulty here is to construct

c1, c2 and so on.

Here is an illuminating example in algebraic setting. Assume we are given a class [f ] ∈
W (F ) of a nondegenerate n-dimensional quadratic form f over a field F of characteristic 6= 2

and we want to check if it is trivial or not. We may then consider “a characteristic class”

c0 : W (F ) → H0(F,Z/2) given by dimension. If c0([f ]) 6= 0 we are done. Otherwise we

consider the kernel Ker(c0) = I ⊂ W (F ) and pass to the map c1 : I → H1(F,Z/2) given by

discriminant. If c1([f ]) 6= 1 we are done. Otherwise we take Ker(c1) = I2 ⊂ I ⊂ W (F ) and

consider the Arason invariant I2 → H2(F,Z/2) whose kernel is I3 and so on. It is worth

mentioning that we use the following fundamental result in the algebraic theory of quadratic

forms: for an arbitrary positive integer n there is a well-defined map cn : In → Hn(F,Z/2)

whose kernel is In+1. This process terminates since if l = [log2 n] then by Hauptsatz the

dimension of any anisotropic quadratic form in I l+1F is

≥ 2l+1 > 2log2 n+1 = 2n.

In the theory of algebraic groups over non-closed fields for any simple simply connected

algebraic group G the only known cohomological invariant is due to M. Rost. It lives in

degree 3:

R : H1(F,G)→ H3(F,Q/Z(2)).

Its kernel Ker(R) is highly nontrivial in the general case and following the above philosophy

one would like to construct a cohomological invariant c : Ker(R) → Hn(F,Q/Z(2)) in some
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degree n. However nothing is known in this direction. For our purposes we replace the

coefficient module Q/Z(2) by µ2 and we will consider a split group G = E8 of type E8.

It is then known that any E8-torsor in the Ker(R) is split by a quadratic extension of the

ground field. Therefore it makes sense to consider the subfunctor H1
quad(−, E8) ⊂ H1(−, E8)

consisting of E8-torsors splitting over a quadratic extension of the base field. In this notation

our main result is the following.

Theorem. There exists a nontrivial cohomological invariant H1
quad(−, E8)→ H6(−, µ2).

Finally we note that cohomological invariants cannot exist in high degrees; the upper

bound of such degrees is the essential dimension ed(E8) of type E8. Therefore, it is natural

to turn to the problem of classification of all such cohomological invariants (recall that the

Rost invariant lives in degree 3; furthermore N. Semenov constructed an invariant in degree

5. We expect one more invariant in degree 9 and no more).

In this thesis, we begin by reviewing several topics relevant to this construction. We will

begin with a discussion of quadratic forms and the Witt ring, including the powers of the

fundamental ideal, their elements, and their quotients. Next, we briefly discuss root systems

of simple linear algebraic groups and their classification by Dynkin diagrams, which will play

a central role in later computations. The third chapter is focused on Galois cohomology,

and includes more in depth discussion of topics such as torsors and cohomological invariants,

and the relationship between torsors and cohomology. We then move to general reviews of

topics from the study of linear algebraic groups and of Lie algebras which are relevant to our

setting, as well as the correspondence between the two. The discussion on Lie algebras is

largely focused on a quadratic form called the Killing form.

The final chapter contains the original research of this thesis, therein we show some

results about cohomological invariants arising via the Killing form in increasingly complicated

settings. The primary target of this thesis was to investigate the existence of a non-trivial

cohomological invariant arising via the Killing form for simple groups of type E8. In §VI.5

we show that such a non-trivial invariant does exist.

Throughout the duration of this thesis we will assume that the base field has characteristic

not equal to 2.
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CHAPTER I

Quadratic Forms and Witt Rings

1 Quadratic Forms

In this chapter we collect some basic facts on quadratic forms and Witt rings which we will

need later on. For their proofs we refer to [12] and [8].

Definition 1.1. An n-dimensional quadratic form over k is a homogeneous polynomial

of degree 2 in n variables. That is to say, a quadratic form is a polynomial of the form

f(X) =
n∑

i,j=1

aijXiXj,

where X = (X1, ..., Xn) is an indeterminate over kn and the coefficients aij are elements of

k.

Notice that if we set a′ij := 1
2
(aij + aji) for all i, j = 1, ..., n then we have

f(X) =
n∑

i,j=1

aijXiXj =
n∑

i,j=1

a′ijXiXj,

so that a′ij = a′ji for all i, j = 1, ..., 2. In this way we may rewrite any quadratic form in such

a way that the coefficients are rendered symmetric.

Written in this manner, our quadratic form f(X) gives rise to a symmetric matrix

Mf := (a′ij). There is a natural notion of equivalence of quadratic forms, which amounts

to congruency of these matrices.

Recall that two n × n matrices A and B over k are congruent if there exists an n × n
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invertible matrix S ∈ GL(n, k) such that

A = SBST .

This is equivalent to saying A and B define the same map kn → kn up to a linear replacement

of variables.

Definition 1.2. Let f, g be n-dimensional quadratic forms over k. We consider f and g to

be equivalent quadratic forms if there is an invertible linear replacement of variables

Yi =
n∑
j=1

bijXj

such that f(X1, ..., Xn) = g(Y1, ..., Yn).

Lemma 1.3. Two quadratic forms f and g over k are equivalent if and only if the associated

matrices Mf and Mg are congruent.

Proof. See [12, Chapter I, Section 1].

Theorem 1.4. The above definition defines an equivalence relation on the set of all quadratic

forms over k.

Proof. This follows directly from Lemma 1.3 along with the well known fact that congruency

is an equivalence relation on a matrix algebra.

Another perspective is to view f as a quadratic map Qf : kn → k. This is done in the

obvious way, i.e.

Qf (X) = f(X)

or alternatively

Qf (X) = X tMfX,

where X ∈ kn is a column vector.

Notice that not only does a quadratic form determine uniquely a quadratic map, but

the converse is also true. This more geometric outlook can be translated to the study of

symmetric bilinear forms.

Definition 1.5. Let V be an n-dimensional k-vector space. A symmetric bilinear form

on V is a map

B : V × V→ k such that for all u, v, w ∈ V, c ∈ k,

9



1. B(u, v) = B(v, u)

2. B(u, v + w) = B(u, v) +B(u,w)

3. B(cu, v) = cB(u, v).

Given a quadratic map Q : kn → k we may obtain a symmetric bilinear form B : kn×kn →
k by setting

B(X, Y ) :=
1

2
(Q(X + Y )−Q(X)−Q(Y )).

Similarly, if B is a symmetric bilinear pairing B : kn× kn → k we may define Q : kn → k

by setting

Q(X) := B(X,X).

This correspondence enables us to work over k-vector spaces other than kn as well. Sup-

pose V is a finite dimensional k-vector space, and B a symmetric bilinear pairing B : V×V→
k. Let Q be the quadratic map Q : V → k, X 7→ B(X,X). The pair (V, B) is called a

quadratic space. Since B and Q uniquely determine one another it is equally as correct to

express our quadratic space as (V, Q). A quadratic space (V, B) is said to be n-dimensional

if V is n-dimensional as a k-vector space.

Upon fixing a basis {e1, ..., en} for V, the quadratic space (V, B) determines uniquely a

quadratic form fB given by

fB(X) := B(X,X) =
n∑

i,j=1

B(ei, ej)XiXj.

Theorem 1.6. Given a quadratic space (V, B) and two bases {e1, ..., en} and {e′1, ..., e′n} for

V, the quadratic forms
n∑

i,j=1

B(ei, ej)XiXj and
n∑

i,j=1

B(e′i, e
′
j)XiXj are equivalent. Moreover a

quadratic space (V, B) determines uniquely an equivalence class of quadratic forms.

Proof. See [12, Chapter I, Section 1].

To render the above correspondence bijective, we require also a notion of equivalence of

quadratic spaces.

Definition 1.7. Two quadratic spaces (V, Bq) and (W, Br) are called isometric if there is

a vector space isomorphism φ : V→W such that for all X, Y ∈ V,

Bq(X, Y ) = Br(φ(X), φ(Y )).

We denote isometry by (V, Bq) ∼= (W, Br).
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Theorem 1.8. Isometry defines an equivalence relation on the set of all quadratic spaces

over k.

Proof. See [12, Chapter I, Section 1].

In fact, isometric quadratic spaces give rise to the same equivalence classes of quadratic

forms.

Theorem 1.9. There is a one-to-one correspondence between equivalence classes of quadratic

forms and isometry classes of quadratic spaces, given by Theorem 1.6. We view this corre-

spondence as an identification.

Proof. See [12, Chapter I, Section 1].

Now that we have covered the basic definitions of quadratic forms and the equivalent

notions of symmetric bilinear forms and quadratic spaces, we may begin to discuss some of

the properties they may have.

Theorem 1.10. Let (V, B) be a quadratic space. The following conditions are equivalent:

1. Let f be a quadratic form belonging to the equivalence class associated to (V, B). The

corresponding symmetric matrix Mf is invertible,

2. The map X 7→ B(−, X) is a vector space isomorphism between V and its dual space

V?.

3. B(X, Y ) = 0 for all Y ∈ V if and only if X = 0.

Proof. See [12, Proposition I.1.2].

Definition 1.11. A quadratic space (V, B) is called regular or non-singular if any (and

therefore all) of the conditions of Theorem 1.10 hold.

Observe that being a regular quadratic space is a class property under isometry, that is

it holds for either all elements of an isometry class or none.

Let V be a k-vector space with W a subspace of V, and B : V × V → k a symmetric

bilinear form. Then the restriction B |W×W together with W forms a quadratic space as well.

We define the orthogonal complement of W in V (with respect to B) in the usual way:

W⊥ := {X ∈ V | B(X, Y ) = 0, ∀Y ∈W}.
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Note that W⊥ is also a vector subspace of V, and so (W⊥, B |W⊥×W⊥) is also a quadratic

space. Similarly,

V⊥ := {X ∈ V | B(X, Y ) = 0, ∀Y ∈ V}.

By Definition 1.11, (V, B) is regular if and only if V⊥ = {0}.

Proposition 1.12. Let (V, B) be a quadratic space and W a subspace of V. Then

dim W + dim W⊥ = dim V

and

(W⊥)⊥ = W.

Proof. See [12, Proposition I.1.3].

One very important property of quadratic forms is that they can all be diagonalized, in

the sense that every equivalence class of quadratic forms contains an element of the type

f(X) =
n∑
i=1

aiX
2
i .

This allows us to express every quadratic form in a concise and easy to manipulate fashion,

which we now work towards describing.

Definition 1.13. Let d ∈ k×. We say that a quadratic form f represents d if there exists

some X ∈ kn such that f(X) = d.

Quadratic forms have the distinctive property that for all a ∈ k and for any quadratic

form f over k, f(aX) = a2f(X). Therefore if a quadratic form f represents some element d

of k×, f also represents a2d for all a ∈ k×. To make use of this property we define the group

of square classes of k.

Definition 1.14. The square classes of k are the multiplicative cosets of k× modulo (k×)2.

The quotient group k×/(k×)2 is called the group of square classes.

We denote by D(f) the set of all d ∈ k× represented by f . In view of the above remarks,

D(f) is a union of square classes. Under the identification of square classes with elements

of the quotient group, it is a subset of the group of square classes. In general, it is not a

subgroup.

D(f) is dependent only on the equivalence class of f , and so we may also discuss meaning-

fully the elements of k× represented by a quadratic space, or an isometry class of quadratic

spaces.
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Definition 1.15. If D(f) is a subgroup of k×/(k×)2, the quadratic form f is called a group

form.

There are important examples of group forms, including the Pfister forms with which we

will later concern ourselves.

The next step in being able to manipulate quadratic forms and spaces is to develop some

operations we can use to build up more complex quadratic spaces from simpler building

blocks. These operations - orthogonal sums and tensor products - obey some familiar and

desirable properties.

Definition 1.16. Let (V1, B1) and (V2, B2) be quadratic spaces, and let V := V1⊕V2. Define

B : V × V→ k by

B((x1, x2), (y1, y2)) = B1(x1, y1) +B2(x2, y2).

Then (V, B) is a quadratic space called the orthogonal sum of (V1, B1) and (V2, B2) and

denoted by

(V1, B1) ⊥ (V2, B2).

If f1(X1, ..., Xn) and f2(Y1, ..., Ym) are quadratic forms over k associated to quadratic

spaces (V1, B1) and (V2, B2) respectively, then the orthogonal sum (V1, B1) ⊥ (V2, B2) has

an associated quadratic form

f(X1, ..., Xn, Y1, ..., Ym) = f1(X1, ..., Xn) + f2(Y1, ..., Ym).

As one might hope, this operation respects our notions of equivalence for quadratic spaces.

That is to say, the operation ⊥ is well defined on isometry classes of quadratic spaces.

Moreover, orthogonal summation is both symmetric and associative when viewed as an

operation on isometry classes of quadratic spaces. In other words, given three quadratic

spaces, (V1, B1), (V2, B2), and (V3, B3) we have

1. (V1, B1) ⊥ (V2, B2) ∼= (V2, B2) ⊥ (V1, B1).

2. ((V1, B1) ⊥ (V2, B2)) ⊥ (V3, B3) ∼= (V1, B1) ⊥ ((V2, B2) ⊥ (V3, B3)).

By convention we write 〈d〉 for the isometry class of the one-dimensional quadratic space

corresponding to the 1-fold quadratic form f(X1) = dX2
1 , where d ∈ k. By the previous

remarks concerning square classes, 〈d〉 ∼= 〈d′〉 for any d′ in the square class of d.

Theorem 1.17. (Representation Criterion) Let (V, B) be a quadratic space and let f be an

associated quadratic form. Then for any element d ∈ k×, f represents d if and only if there
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exists a quadratic space (V′, B′) such that

(V, B) ∼= 〈d〉 ⊥ (V′, B′).

Proof. See [12, Theorem I.2.3].

The following important corollary follows by induction.

Corollary 1.18. Let (V, B) be an n-dimensional quadratic space over k, with an associated

quadratic form f . Then there exist some di ∈ D(f) ∪ {0} such that

(V, B) ∼= 〈d1〉 ⊥ ... ⊥ 〈dn〉.

For brevity, we denote 〈d1, ..., dn〉 := 〈d1〉 ⊥ ... ⊥ 〈dn〉. This corollary can also be rewritten

in the language of quadratic forms.

Corollary 1.19. Every finite dimensional quadratic form can be diagonalized, that is to say

if f is an n-fold quadratic form over k it is equivalent to some quadratic form of the type

f ′(x) =
n∑
i=1

dix
2
i

with each di ∈ D(f) ∪ {0}.

Proof. See [12, Corollary I.2.4].

Using diagonalized forms renders many computations and properties more straightfor-

ward. For example, the discriminant of a quadratic form f (written d(f)) is the square

class of the determinant of the corresponding matrix Mf . The discriminant is a class prop-

erty, i.e. if f and g are equivalent quadratic forms then d(f) = d(g). Given a diagonalization

f ∼= 〈f1, ..., fn〉 it is then clear to see that

d(f) = [f1 . . . fn].

Now that we have some idea of how to decompose quadratic spaces into smaller parts, let

us begin to classify these parts. One property that helps with this classification is the idea

of isotropy.

Definition 1.20. Let (V, B) be a quadratic space, and let X ∈ V. The vector X is called

isotropic if X is nonzero and B(X,X) = 0.
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A quadratic space containing isotropic vectors is called an isotropic space. Moreover, a

quadratic space in which every vector is isotropic, i.e. a quadratic space of the form

〈0〉 ⊥ ... ⊥ 〈0〉,

is called totally isotropic. A quadratic space which is not isotropic, that is which contains

no isotropic vectors, is called an anisotropic quadratic space.

Suppose (V, B) is a regular n-dimensional quadratic space. We know that there are

elements d1, ..., dn of k such that

(V, B) ∼= 〈d1〉 ⊥ ... ⊥ 〈dn〉.

The space (V, B) has an associated quadratic form f(X) = d1X
2
1 + ... + dnX

2
n, with a

corresponding matrix Mf that is diagonal with entries di. Since (V, B) being regular implies

Mf is invertible, it is clear that each di must be nonzero. In other words, (V, B) contains no

vector v such that v is orthogonal to every vector in V (including itself.)

Already here we can see a starting point for decomposing spaces - it is clear that any

quadratic space may be broken into a regular subspace and a totally isotropic subspace. As

it turns out the types of regular spaces which can be isotropic are even more limited.

Theorem 1.21. Every (regular) isotropic 2-dimensional form is isometric to 〈1,−1〉. Such

a form is called hyperbolic plane and denoted H.

Proof. See [12, Theorem I.3.2].

Definition 1.22. An orthogonal sum of hyperbolic planes, that is to say a quadratic space

of the form H ⊥ ... ⊥ H is called a hyperbolic space. The corresponding quadratic form is

called a hyperbolic quadratic form or a split quadratic form.

So the two dimensional space H and the one dimensional space 〈0〉 are the two simplest

examples of isotropic spaces. In fact, every more complex isotropic space contains copies of

one or both of these spaces.

Theorem 1.23. (Witt’s Decomposition Theorem) Every quadratic space is an orthogonal

sum of an anisotropic space, a hyperbolic space, and a totally isotropic space. Moreover, the

summands are unique up to isometry.

Proof. See [12, Theorem I.4.1] (the proof follows on p.14 after several other results).
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Expressed symbolically, for any quadratic space (V, q) there exists an anisotropic space

(Va, qa), a hyperbolic space (Vh, qh), and a totally isotropic space (Vt, qt), which are unique

up to isometry such that

(V, q) ∼= (Va, qa) ⊥ (Vh, qh) ⊥ (Vt, qt).

The spaces (Va, qa), (Vh, qh), and (Vt, qt) are called respectively the anisotropic, hyper-

bolic, and totally isotropic parts of (V, q).

The hyperbolic part of a quadratic space V is necessarily of the form m ·H (meaning the

orthogonal sum of m copies of H) for some integer m. This integer m is called the Witt

index of V.

One important tool used in the proof of this theorem, which is also essential to manipu-

lating and determining isometry of quadratic spaces, is Witt’s Cancellation Theorem.

Theorem 1.24. (Witt’s Cancellation Theorem) Let f, g, h be quadratic forms such that

f ⊥ h ∼= g ⊥ h. Then f ∼= g.

Proof. See [12, Theorem I.4.2].

Another important operation on quadratic spaces is the so-called tensor product or

Kronecker product which is defined as follows.

Theorem 1.25. Consider two quadratic spaces (V1, B1) and (V2, B2), with x1, y1 ∈ V1 and

x2, y2 ∈ V2. Let V be the tensor product of vector spaces V = V1⊗V2. The tensor product of

quadratic spaces (V, B) = (V1, B1)⊗ (V2, B2) defined by

B(x1 ⊗ y1, x2 ⊗ y2) = B1(x1, y1)B2(x2, y2)

is a quadratic space.

Proof. See [12, Chapter I, Section 6].

Like orthogonal sums, tensor products are well-defined when viewed as operations on

isometry classes of quadratic spaces, and they are symmetric and associative in the same

sense. In addition they obey a distributive law over orthogonal sums.

Theorem 1.26. Tensor products are associative, symmetric, and well-defined on isometry

classes of quadratic forms. Tensor products also distribute over orthogonal sums, i.e. for all

quadratic spaces (Vi, Bi) with i = 1, 2, 3,

(V1, B1)⊗ ((V2, B2) ⊥ (V3, B3)) = ((V1, B1)⊗ (V3, B3)) ⊥ ((V1, B1)⊗ (V2, B2)).
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In particular for diagonal forms

〈a1, ..., as〉 ⊗ 〈b1, ..., br〉 = 〈a1b1, ..., a1br, a2b1, ..., asbr〉,

where a1, ..., as, b1, ..., br ∈ k.

Proof. See [12, Chapter I Section 6].

The distributive property of tensor products over orthogonal sums has the following im-

portant consequence:

Example 1.27. Let f be an n-dimensional quadratic form. Then the tensor product f ⊗H
is a hyperbolic space, in particular

f ⊗H ∼= n ·H.

Proof. Let f ∼= 〈f1, ..., fn〉 be a diagonalization of f. Then one has

f ⊗H = 〈f1, ..., fn〉 ⊗ 〈1,−1〉

= 〈f1,−f1, ..., fn,−fn〉

= 〈f1,−f1〉 ⊥ ... ⊥ 〈fn,−fn〉

= n ·H.

(Note that for all a ∈ k the form 〈a,−a〉 is a regular two-dimensional form representing zero,

and therefore a hyperbolic plane by Theorem 1.21.)

2 Witt Rings

With the properties of orthogonal sums and tensor products given above we begin to see

some semblance to a ring structure. Off hand, the isometry classes of quadratic spaces over

k do not form a ring due to the absence of additive inverses. An algebraic structure which

does not necessarily have additive inverses, but which otherwise possesses a ring structure,

is called a semiring.

Theorem 2.1. Isometry classes of regular quadratic spaces over k form a semiring with

respect to the operations ⊥ and ⊗.

Proof. See [12, Chapter II Section 1].
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Given such a structure, we construct a ring using a process known as the Grothendieck

construction. Starting with a semiring M , we define an equivalence relation ∼ on M ×M
given by

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c.

We then consider the equivalence classes of M ×M modulo this relation. It is easy to check

that these equivalence classes still form a semiring with the operations

(a, b)⊕ (c, d) := (a+ c, b+ d) and (a, b)⊗ (c, d) := (ac+ bd, ad+ bc).

Furthermore, each element (a, b) now has an additive inverse (b, a) since

(a, b) + (b, a) = (a+ b, b+ a) ∼ (0, 0).

So the equivalence classes of M ×M/ ∼ form a ring, called the Grothendieck ring of M

and denoted Groth(M).

Let M(k) denote the semiring formed by all regular isometry classes of quadratic spaces

over k, together with the operations ⊥ and ⊗. Then the Grothendieck ring Groth(M(k)) of

M(k) is a ring called the Witt-Grothendieck ring which we will denote by Ŵ (k).

Elements of the Witt-Grothendieck ring will be expressed as q1−q2 (as opposed to (q1, q2))

where q1 and q2 are forms over k. By writing q1 ∈ Ŵ (k) we mean q1 − 0. There is a well-

defined notion of dimension in Ŵ (k), namely

dim(q1 − q2) = dim(q1)− dim(q2).

The Witt-Grothendieck ring possesses two very important ideals.

Theorem 2.2. The natural map dim : Ŵ (k) � Z is a ring homomorphism. Its kernel is

called the fundamental ideal of Ŵ (k), denoted Î(k).

Proof. See [12, Chapter II Section 1].

The second important ideal is the ideal Z ·H generated by all hyperbolic spaces and their

additive inverses. By Example 1.27, this ideal in fact contains only hyperbolic spaces and

inverses of hyperbolic spaces.

Definition 2.3. The Witt ring is the quotient ring W (k) := Ŵ (k)/Z ·H.

Since the operations in the Witt ring and Witt-Grothendieck ring arise directly from

orthogonal sums and tensor products of quadratic spaces, we will also call these operations
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orthogonal sums and tensors products (or simply sums and products.) In these structures

they will be denoted by ⊕ and ⊗, respectively.

The symbols q1 − q2 behave in a natural way in that

(q1 − q2)⊕ (q3 − q4) = (q1 ⊕ q3)− (q2 ⊕ q4),

(q1 − q2)⊗ (q3 − q4) = (q1 ⊗ q3 ⊕ q2 ⊗ q4)− (q1 ⊗ q4 ⊕ q2 ⊗ q3).

Additive inverses in the Witt ring appear in a more natural way compared to the Witt-

Grothendieck ring. Let q be an n-dimensional quadratic form and let (−q)(X) := −q(X).

Then in W (k) one has

q ⊕ (−q) = n ·H = 0.

The image of the fundamental ideal Î(k) of Ŵ (k) under the quotient map Ŵ (k)� W (k)

is called the fundamental ideal of W (k), and is denoted by I(k). The quadratic forms

corresponding to elements of I(k) are precisely those of even dimension.

Working in the Witt ring rather than the set of all isometry classes or in the Witt-

Grothendieck ring is helpful because it gives us an algebraic structure which is simpler than

that of the Witt-Grothendieck ring, while retaining all information regarding the anisotropic

part of quadratic spaces. Since the isometry class of the hyperbolic and totally isotropic

parts are dependent only on dimension, it is the anisotropic part which is by far the most

interesting.

Theorem 2.4. There is a one-to-one correspondence between anisotropic forms over k and

elements of W (k). In particular, every element of the Witt ring has a unique representative

which is anisotropic.

Proof. See [12, Proposition II.1.4].

3 Pfister Forms

For a ∈ k we denote by 〈〈a〉〉 the two dimensional quadratic form 〈1,−a〉. This is called a

1-fold Pfister form.

Definition 3.1. A (n-fold) Pfister form is any quadratic form of the type 〈〈a1, ..., an〉〉 :=⊗n
i=1 〈〈ai〉〉, where the ai are in k.

Example 3.2. A hyperbolic plane H = 〈1,−1〉 = 〈〈1〉〉 is a Pfister form.

In fact, hyperbolic planes have a very special place among Pfister forms.
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Theorem 3.3. A Pfister form is isotropic if and only if it is a hyperbolic space.

Proof. Clearly, if a Pfister form is hyperbolic then it is also isotropic. For a proof of the

converse see [12, Theorem X.1.7].

This theorem can be reformulated as the following:

Corollary 3.4. The Pfister form 〈〈x1, ..., xn, y〉〉 is hyperbolic if and only if 〈〈x1, ..., xn〉〉
represents y.

A major cause for interest in Pfister forms is that they give us a path to studying the

quotient rings In/In+1 for each natural number n. This is because the fundamental ideal I

of the Witt ring W (k) is generated additively by quadratic forms of the type 〈1, a〉, where a

varies over k [12, Proposition II.1.2]. That is to say, I is additively generated by the 1-fold

Pfister forms over k. The following theorem is a result of this fact.

Theorem 3.5. For all n ∈ N, In is additively generated by the n-fold Pfister forms over k.

Proof. See [12, Proposition X.1.2].

The following result due to Arason and Pfister describes another important property of

the powers of the fundamental ideal:

Theorem 3.6. (Hauptsatz) Let q be a quadratic form over k. If q ∈ In and dim q < 2n then

q is hyperbolic.

Proof. See [2].

Recall that the elements of k× represented by some particular form f is a union of square

classes of k, denoted by D(f). We defined a group form to be a quadratic form for which the

elements of the quotient group k×/(k×)2 representing these square classes form a subgroup.

Theorem 3.7. Let φ be a Pfister form over k. Then φ is a group form.

Proof. See [12, Theorem X.1.8].

Any quadratic form f over k can also be considered as a quadratic form over any field

extension ` of k. We denote f viewed as a form over ` by

f` := `⊗k f.

20



Suppose φ is an n-fold Pfister form (therefore a 2n-dimensional quadratic form). Let

X := (X1, ..., X2n), Y := (Y1, ..., Y2n)

where the Xi and Yj are indeterminates over k. Now let ` be the pure transcendental

extension k(X, Y ) of k.

Certainly φ` is still a Pfister form, and thus also a group form. This implies there exist

some rational functions Z1, ..., Z2n ∈ k(X, Y ) such that

φ`(X)φ`(Y ) = φ`(Z1, ..., Z2n),

or in other words φ` represents φ`(X)φ`(Y ).

This observation motivates the definition of a multiplicative form over k.

Definition 3.8. Let q be an n-dimensional quadratic form over k, and let X := (X1, ..., Xn)

and Y := (Y1, ..., Yn) be n-tuples of indeterminates over k. The form q is called a multi-

plicative form if qk(X,Y ) represents q(X)q(Y ).

As noted above, any Pfister form is multiplicative. In fact, among anisotropic forms the

two notions are equivalent.

Theorem 3.9. An anisotropic quadratic form f over k is multiplicative if and only if it is a

Pfister form.

Proof. See [12, Theorem X.2.8].

We conclude our preliminary discussion of quadratic forms with a lemma useful for com-

putations in the Witt ring.

Lemma 3.10. Let a, b ∈ k. Then in the Witt ring W (k) we have

〈〈a〉〉 ⊕ 〈〈b〉〉 = 〈〈ab〉〉 ⊕ 〈〈a, b〉〉.

Proof.

〈〈ab〉〉 ⊕ 〈〈a, b〉〉 = 〈1,−ab, 1,−a,−b, ab〉

= 〈1,−a〉 ⊕ 〈1,−b〉 ⊕ 〈−ab, ab〉

= 〈〈a〉〉 ⊕ 〈〈b〉〉 ⊕H

= 〈〈a〉〉 ⊕ 〈〈b〉〉
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Corollary 3.11. Let x1, ..., xn, y, z ∈ k. Then in the Witt ring W (k) we have

〈〈x1, ..., xn, y〉〉 ⊕ 〈〈x1, ..., xn, z〉〉 = 〈〈x1, ..., xn, yz〉〉 ⊕ 〈〈x1, ..., xn, y, z〉〉.
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CHAPTER II

Root Systems

1 Root Systems

Let V be a finite dimensional vector space over R, and let α ∈ V. A reflection with respect

to α is an invertible linear transformation sα such that

1. sα(α) = −α

2. The set V sα ⊂ V of vectors fixed by sα is a hyperplane, that is to say a subspace of

codimension 1.

Lemma 1.1. Let R be a finite set spanning V and let α ∈ R. Then there exists at most one

reflection sα with respect to α such that sα(R) = R.

Proof. See [16, Chapter V, Section 1].

Definition 1.2. A finite set Σ of vectors Σ ⊂ V is called a (reduced) root system if it

satisfies the following geometric properties:

1. Σ spans V.

2. Σ does not contain the zero vector.

3. For all α ∈ Σ, there exists a reflection sα with respect to α such that sα(Σ) = Σ. By

Lemma 1.1 it is unique.

4. For all α, β ∈ Σ, the vector β − sα(β) is an integral multiple of α.

5. For all α ∈ Σ, the only scalar multiples of α contained in Σ are ±α.

If Σ is a root system for a vector space V, then dim V is called the rank of Σ.
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Definition 1.3. The Weyl group of a root system Σ, denoted W (Σ) is the subgroup of

GL(V) generated by the set of reflections {sα | α ∈ Σ}.

Let V be a k-vector space with B : V × V → k a bilinear form. Let X ∈ GL(V). One

says that X preserves B if, for all u, v ∈ V, one has B(X(v), X(u)) = B(u, v).

For any such bilinear form B, the set of all linear transformations preserving B is a

subgroup of GL(V) called the orthogonal group of B and denoted O(B) or O(B,V) if the

space V is not clear from context.

Given a subgroup G of GL(V) and a bilinear form B on V, we say that B is invariant

under G if G ⊆ O(B,V).

Proposition 1.4. Let Σ be a root system for a vector space V. Then there exists a positive

definite symmetric bilinear form (−,−) : V × V→ R which is invariant under W (Σ).

Proof. See [16, Proposition V.1].

Let V∗ denote the vector space dual of V. For x ∈ V∗, y ∈ V, we adopt the notation

〈x, y〉 := x(y). Then for each α ∈ Σ there is a unique element α∗ of V∗ such that 〈α∗, α〉 = 2

and for all v in the hyperplane Vsα of V fixed by sα, one has 〈α∗, v〉 = 0. This element α∗ is

called the dual root of α.

Proposition 1.5. Let Σ be a root system for a vector space V and let

Σ∗ := {α∗ | α ∈ Σ}.

Then Σ∗ is a root system for V ∗, called the dual root system of Σ.

Proof. See [16, Proposition V.2].

It can be shown [16, Section 6] that for all α ∈ Σ, (α∗)∗ = α and so (Σ∗)∗ = Σ. For any

root system Σ, we have

W (Σ) ' W (Σ∗).

Proposition 1.6. For any choice of invariant (under W (Σ)) symmetric bilinear form

(−,−) : V × V→ R

and for all α, β ∈ R, one has

〈α∗, β〉 = 2
(α, β)

(α, α)
.

Proof. See [16, Section V.5].
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Let Σ be a root system for V and let (−,−) be a fixed symmetric positive definite bilinear

form on V, which is invariant under W (Σ). The bilinear form (−,−) defines a Euclidean

structure on V whereby the length of a vector V is given by

|v| =
√

(v, v).

Let θα,β denote the angle between two roots α and β with respect to this structure. A

list of cases and possible values of θα,β is given in [16, Chapter V Section 7]. In particular,

the angle θα,β is an integer multiple of either π/6 or π/4.

Proposition 1.7. If α, β ∈ Σ are not colinear, and if 〈α∗, β〉 > 0, then α− β ∈ Σ.

Proof. See [16, Proposition V.3].

Let R,R′ be root systems for vector spaces V,V′. The root systems R and R′ are iso-

morphic if there is a vector space isomorphism ϕ : V→ V′ such that ϕ(R) = R′ and for all

α, β ∈ R,
〈α∗, β〉 = 〈ϕ(α)∗, ϕ(β)〉.

Definition 1.8. Let Σ be a root system for a k-vector space V. A subset S ⊂ Σ is called a

base or system of simple roots for Σ if

1. S is a basis of V .

2. Every root α ∈ Σ can be written in the form

α =
∑
si∈S

aisi,

where the ai are scalars in R each with the same sign.

An element of S is called a simple root.

Every root system has a base (see [16, Theorem V.1]). Let Σ be a root system and fix a

base S. Then a root α in Σ is called a positive root if the scalars ai in the above definition

are positive. The set of positive roots in Σ (with respect to S) is denoted Σ+ or Σ+
S if S is

not clear from context. Roots which are not positive are called negative roots and the set

of all negative roots in Σ with respect to S is denoted Σ− or Σ−S .

Proposition 1.9. If Σ is a root system with a base S then

S∗ := {α∗ | α ∈ S}
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is a base for the dual root system Σ∗.

Proof. See [16, Proposition V.4].

Let Σ be a root system for a vector space V and S a base of Σ with elements αi indexed

by natural numbers i = 1, .., n where n = dim V.

The Cartan matrix for Σ associated to S is the matrix with i, jth entry equal to 〈α∗i , αj〉.
The Cartan matrix determines the root system up to isomorphism (see [16, Proposition V.8]).

2 Dynkin Diagrams

Let Σ be a root system with a base S. The Coxeter graph of Σ with respect to S is a

multigraph with vertices for each element in S, such that the number of edges joining the

vertices corresponding to α, β ∈ S is equal to 〈α∗, β〉〈β∗, α〉.

Proposition 2.1. The isomorphism class of the Coxeter graph is independent of the choice

of S.

Proof. This is a direct result of [12, Theorem V.2].

Let Σ1 and Σ2 be root systems of vector spaces V1 and V2, respectively. Then Σ1 ∪Σ2 is

a root system for V1 ⊕ V2. This new root system is called the direct sum of R1 and R2.

Definition 2.2. A root system is called reducible if it is isomorphic to the direct sum of

two other nonzero root systems. Otherwise, it is called irreducible.

Proposition 2.3. A root system Σ is irreducible if and only if its Coxeter graph is nonempty

and connected.

Proof. See [16, Proposition V.12].

Unfortunately, Coxeter graphs do not determine uniquely the isomorphism class of their

root system. This is remedied with the introduction of Dynkin diagrams.

Definition 2.4. The Dynkin diagram of a root system Σ with base S is a directed Coxeter

graph of Σ with respect to S, so that every edge between two non-orthogonal vertices is directed

toward the shorter of the two.

Proposition 2.5. The Dynkin diagram of a root system determines that root system up to

isomorphism.
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Proof. See [16, Proposition V.13].

By the above facts, a classification of root systems amounts to a classification of connected

Dynkin diagrams. There are 4 infinite families of connected Dynkin diagrams with n vertices.

An : d d d d d d
Bn : d d d d d dH�

Cn : d d d d d d�
H

Dn : d d d d d d
d

#
##

c
cc

In addition there are 5 exceptional cases.

F4 : d d d dH�

G2 : d dH
�

E6 : d d d d dd

E7 : d d d d d dd

E8 : d d d d d d dd

(See [16, Chapter V, Section 14].)
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CHAPTER III

Galois Cohomology

1 Cohomology Groups

Let G be an (abstract) group. By a G-module we mean a Z[G]-module. Let A be a G-module.

We denote by AG the submodule of A consisting of all elements a ∈ A which are invariant

under G. One has

HomG(Z, A) = Hom(Z, A)G ∼= AG,

where we view Z as a trivial G-module and HomG(Z, A) denotes the group of G-module

homomorphisms Z → A and Hom(Z, A) the group of abstract group homomorphisms, with

the action of G on Hom(Z, A) induced by that on A.

Since the Hom(Z,−) is a covariant, left-exact functor, the above equation implies that

AG is also a covariant left-exact functor from G-modules to abelian groups.

That is to say, for every short exact sequence of G-modules

0→ A→ B → C → 0

there is an induced sequence of abelian groups

0→ AG → BG → CG

which is also exact.

Definition 1.1. A G-module is called co-induced if it is isomorphic to some G-module of

the form Hom(Z[G], X) where X is any abelian group (here the action of G on Z[G] is by

left multiplication).
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Definition 1.2. A cohomological extension of the functor AG is a sequence of functors

Hq(G,A) : G-modules→ Abelian groups

for all non-negative integers q which satisfy the following conditions:

1. For all G-modules A, one has H0(G,A) = AG.

2. For short exact sequences of G-modules

0→ A→ B → C → 0

there exist boundary morphisms δ : Hq(G,C)→ Hq+1(G,A) such that the sequence

...→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)
δ−→ Hq+1(G,A)→ ...

is exact.

3. If A is a co-induced module, then for all q ≥ 1 one has Hq(G,A) = 0.

Theorem 1.3. There exists one and only one cohomological extension of the functor AG, up

to canonical equivalence.

Proof. See [6, Theorem IV.1].

Definition 1.4. The groups Hq(G,−) whose existence and uniqueness guaranteed by Theo-

rem 1.3 are called the (q-th) cohomology groups of A.

Definition 1.5. A free resolution of a G-module A is an exact sequence

...
d2−→ P1

d1−→ P0
d0−→ A→ 0

such that Pi is a free module for all non-negative integers i.

The existence portion of the proof of Theorem 1.3 given in [6] involves choosing a free

resolution

...
d2−→ P1

d1−→ P0
d0−→ Z =: P−1

of the G-module Z. The existence of such a resolution is guaranteed by a well-known result

in ring theory.
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The standard complex is a particular choice of this resolution, namely Pi := Z[Gi+1]

for all non-negative integers i. Note that Pi has a basis of the form

G× ...×G (i+ 1 factors)

with elements (g0, ..., gi). For ease of notation, throughout this section we will define actions

and homomorphisms on this basis, with the understanding that they may be extended linearly

to all of Pi.

The action of G on Pi is defined for all s, g0, ..., gi ∈ G by

s.(g0, ..., gi) = (sg0, ..., sgi).

The homomorphisms di : Pi → Pi−1 are given by

di : (g0, ..., gi) 7→
i∑

j=0

(−1)j(g0, ..., gj−1, gj+1, ..., gi).

Note that for i = 0 this definition results in the constant map

d0 : g 7→ 1.

The proof of Theorem 1.3 also defines the complex K to be

0 −→ HomG(P0, A)
δ0−→ HomG(P1, A)

δ1−→ ...

and the i-th cohomology group H i(G,A) of A is taken to be the i-th cohomology group of

the complex K, i.e. the group

ker(δi)/im(δi−1).

Definition 1.6. An i-cocycle is an element of ker(δi), and i-coboundary is an element of

im(δi−1). So an element of the i-th cohomology group is an equivalence class of i-cocycles,

modulo i-coboundaries. We will very often use cocycles in their capacity as a representative

of an element of a cohomology group.

Now consider some f ∈ HomG(Pi, A). A priori, f is a map Gi+1 → A such that for all

s, g0, ..., gi ∈ G
f(sg0, ..., sgi) = s.f(g0, ..., gi).
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Let ϕ : Gi → A be a function defined by

ϕ(g1, ..., gi) = f(1, g1, g1g2, ..., g1...gi).

One can check that ϕ determines f - we will view this as an identification, whereby we can

view an i-cocycle as a map Gi → A rather than Gi+1 → A.

Proposition 1.7. A map ϕ : G→ A is a 1-cocycle if and only if for all g, h ∈ G one has

ϕ(gh) = ϕ(g) + g.ϕ(h).

Such a map is called a crossed homomorphism.

Proof. See [6, Chapter IV, Section 2].

Proposition 1.8. A 1-cocycle ϕ is a 1-coboundary if and only if there exists some a ∈ A

such that for all g ∈ G
ϕ(g) = g.a− a.

Proof. See [6, Chapter IV, Section 2].

Proposition 1.9. A function ϕ : G × G → A is a 2-cocycle if and only if it satisfies the

following condition for all g1, g2, g3 ∈ G :

g1.ϕ(g2, g3)− ϕ(g1g2, g3) + ϕ(g1, g2g3)− ϕ(g1, g2) = 0.

Proof. See [6, Chapter IV, Section 2].

Let G be a group with G′ < G, and let A′ be a G′-module. We can define the G-

module A := HomG′(Z[G], A′) (where Z[G] has a natural G′-module structure induced by

the inclusion map G′ ↪→ G and left-multiplication) with the action of G on A given by

(g.ϕ)(z) = ϕ(zg−1)

for all g ∈ G, ϕ ∈ A, z ∈ Z[G].

Proposition 1.10. (Shapiro’s Lemma) In the above setting,

Hq(G,A) = Hq(G′, A′) for all q ≥ 0.

Proof. See [6, Proposition IV.2].

31



If H and G are groups and f : H → G a group homomorphism, then f induces a

homomorphism of the standard complexes discussed previously in this section. Resultantly,

f also induces homomorphisms

f ∗ : Hq(G,A)→ Hq(H,A)

defined for any G-module A and for all non-negative integers q.

Example 1.11. Let G be a group with H < G, and let ι : H ↪→ G be the inclusion map.

Then the induced homomorphisms

ι∗ : Hq(G,A)→ Hq(H,A)

are called the restriction homomorphisms, and are denoted by Res.

Example 1.12. Let G be a group, H / G a normal subgroup, and A a G-module. Let

π : G � G/H be the quotient map. Endow AH with the natural G/H module structure

arising from the G-module structure of A. Then π induces homomorphisms

π∗ : Hq(G/H,AH)→ Hq(G,AH).

Composing π∗ with the homomorphisms Hq(G,AH) → Hq(G,A) induced by the inclusion

AH ↪→ A yields new homomorphisms

Inf : Hq(G/H,AH)→ Hq(G,A)

called the inflation homomorphisms.

Proposition 1.13. (Group Extension) Let G be a group, H / G a normal subgroup, and A

a G-module. Then the sequence

0→ H1(G/H,AH)
Inf−→ H1(G,A)

Res−−→ H1(H,A)

is exact.

Proof. See [6, Proposition IV.4].

Proposition 1.14. Let G be a group, H / G a normal subgroup, and A a G-module. Let

q ≥ 1 and suppose that for all i = 1, ..., q − 1 one has H i(H,A) = 0. Then

0→ Hq(G/H,AH)
Inf−→ Hq(G,A)

Res−−→ Hq(H,A)
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is an exact sequence.

Proof. See [6, Proposition IV.5].

Let A be a G-module and H a subgroup of G with finite index n. There are maps called

the corestriction maps

Cor : Hq(H,A)→ Hq(G,A)

defined for all nonnegative integers q. In reality these maps arise more naturally on the

homology groups, which we will not discuss here. However, they may also be defined

on cohomology groups using an explicit construction for q = 0 and then by applying the

technique of dimension shifting to extend to q ≥ 1.

Recall that there are natural identifications H0(H,A) = AH and H0(G,A) = AG, and

so we may define Cor for q = 0 as a map AH → AG. Let {g1, ..., gn} be a set of left coset

representatives for H in G, and define

Cor : AH → AG

a 7→
n∑
i=0

gi.a.

One must check that the map Cor does not depend on our choice of gi, and that elements

of the image are invariant under G. Indeed, if gi and g′i are representatives of the same coset

of H, then there exists some h ∈ H such that g′i = gih and so for all a ∈ AH

g′i.a = (gih).a = gi.(h.a) = gi.a,

meaning Cor is independent of our choices gi. Furthermore, for all g ∈ G the set {gg1, ..., ggn}
is still a set of coset representatives. Thus for all a ∈ AH

g.

n∑
i=1

gi.a =
n∑
i=1

(ggi).a =
n∑
i=1

gi.a,

i.e. Cor(a) is invariant under the action of G. We now extend Cor to q ≥ 1 via dimension

shifting.

Consider a G-module A, and let A∗ be the G-module Hom(G,A). Consider the map
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ϕ : A→ A∗ given by

ϕ(a) : G→ A

g 7→ ga

and let A′ be the quotient module A∗/ϕ(A). Then the sequence

0→ A→ A∗ → A′ → 0

is exact. Moreover, since A∗ is co-induced, the resultant long exact sequence of cohomology

groups includes boundary maps which are isomorphisms

Hq(G,A′)
∼−→ Hq+1(G,A)

for all q ≥ 1.

In particular, this isomorphism allows us to inductively define the corestriction map (and

indeed many other maps) on the groups Hq(G,A).

Proposition 1.15.

If H < G with finite index n, then the map

Cor ◦ Res : Hq(G,A)→ Hq(G,A)

sends

ϕ 7→ n× ϕ := ϕ+ ...+ ϕ, (n summands.)

Proof. See [6, Proposition IV.8].

Theorem 1.16. Let G be a group. There exists a unique family of homomorphisms called

the cup product

∪ : Hp(G,A)⊗Hq(G,B)→ Hp+q(G,A⊗B)

α⊗ β 7→ α ∪ β

defined functorially for all G-modules A,B (where G acts componentwise on A⊗B) and for

all nonnegative integers p, q which satisfy the following properties:
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1. The diagram
AG ⊗BG −−−→ H0(G,A)⊗H0(G,B)y⊗ y∪
(A⊗B)G −−−→ H0(G,A⊗B)

is commutative.

2. Let A,A′, A′′, B be G modules. Given a short exact sequence

0→ A→ A′ → A′′ → 0,

if the induced sequence

0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

is also exact, then for all nonnegative integers p, q and for all α′′ ∈ Hp(G,A′′), β ∈
Hq(G,B), one has

(δ(α′′)) ∪ β = δ(α′′ ∪ β) ∈ Hp+q+1(G,A⊗B)

where δ represents the boundary homomorphisms of Definition 1.2.

3. Let A,B,B′, B′′ be G modules. Given a short exact sequence

0→ B → B′ → B′′ → 0,

if the induced sequence

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

is also exact, then for all nonnegative integers p, q and for all α ∈ Hp(G,A), β′′ ∈
Hq(G,B′′), one has

α ∪ δ(β′′) = (−1)pδ(α ∪ β′′) ∈ Hp+q+1(G,A⊗B).

Proof. See [6, Theorem IV.4].

Suppose we let A = B = Z/2Z with trivial G-module structure. Then A ⊗ B ∼= Z/2Z
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and so we have maps defined for all nonnegative integers p, q

∪ : Hq(G,Z/2Z)⊗Hp(G,Z/2Z)→ Hp+q(G,Z/2Z).

These maps allow us to give a ring structure on the abelian group

H∗(G,Z/2Z) :=
⊕
p≥0

Hp(G,Z/2Z),

with the operations ⊕ and ∪ ◦ ⊗.
We conclude the section by listing some more convenient properties of the cup product.

Proposition 1.17. The cup product has the following properties for all G-modules A,B,C

and for all α ∈ H i(G,A), β ∈ Hj(G,B), γ ∈ H`(G,C) where i, j, ` are nonnegative integers:

1. (α ∪ β) ∪ γ = α ∪ (β ∪ γ).

2. Res(α ∪ β) = Res(α) ∪ Res(β)

3. Cor(α ∪ Res(β)) = Cor(α) ∪ β.

Proof. See [6, Proposition IV.9].

2 Abelian Galois Cohomology

Galois cohomology is a special case of the cohomology groups of the previous section.

Let ` be a Galois extension of k. Recall that the Galois group of `/k is defined as

Gal(`/k) = {σ : `
∼−→ ` | σ(x) = x ∀x ∈ k}.

Definition 2.1. Let {Hi} be a family of groups indexed by a set I which is equipped with a

partial order < such that for all i < j there exists a homomorphism

ϕji : Hj → Hi.

The inverse limit (or projective limit) of the family {Hi} is the set

lim←−{Hi} := {(..., hi, hj, ...) ∈
∏
i∈I

Hi | ϕji(hj) = hi ∀i < j}.

36



Proposition 2.2. The Galois group Gal(ksep/k) is naturally isomorphic to the inverse limit

lim←−Gal(`/k)

where ` varies over finite Galois extensions of k. Here the partial ordering is given by ` > `′

if `′ is a subfield of ` and the homomorphisms

ϕ : Gal(`/k)→ Gal(`′/k)

are given by σ 7→ σ|`′ .

Proof. To give an element of the inverse limit is to give for each finite Galois extension `/k

an element of the Galois group Gal(`/k), that is an automorphism

σ` : `→ `

which is the identity map on k, such that for any larger finite Galois extension ` ⊂ `′ ⊂ ksep

one has σ′` |`= σ`.

We wish to see that given such a family of automorphisms there exists a unique ϕ ∈
Gal(ksep/k) such that σ` = ϕ|` for all finite Galois extensions `/k. To define such an au-

tomorphism, let x be in ksep, then x also lies in some finite Galois extension `/k. It is

well-defined to set ϕ(x) = σ`(x), since if x lies in another finite Galois extension `′ then there

is a third finite Galois extension `, `′ ⊂ `′′ ⊂ ksep and one has

σ`(x) = σ`′(x) = σ`′′(x).

This map is obviously injective.

To see that it is surjective, suppose we are given an element σ of Gal(ksep/k). It suffices

to see that for every finite Galois extension `/k, the restriction σ` := σ|` of σ to ` is an

automorphism of `, in particular that σ(x) ∈ ` for all x ∈ `.
Indeed, let x ∈ `. Then x is the solution of an irreducible monic polynomial f with

coefficients in k, i.e. there exist elements a0, ..., an−1 ∈ k such that

xn + an−1x
n−1 + ...+ a0 = 0.

Then one also has

σ(xn + an−1x
n−1 + ...+ a0) = σ(x)n + an−1σ(x)n−1 + ...+ a0 = 0.
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Moreover f splits in `, so that there exist elements b0, ..., bn ∈ ` such that

σ(x)n + an−1σ(x)n−1 + ...+ a0 = (σ(x)− b0) · ... · (σ(x)− bn) = 0.

Thus σ(x) = bi for some i = 1, ..., n, and so σ(x) ∈ `.

Let Γ be the group Gal(ksep/k) equipped with the profinite topology, that is the topology

for which normal subgroups N / Γ with finite index form a basis of open sets.

Let A be a discrete Γ-module on which Γ acts continuously. Notice that since A has the

discrete topology this means that the fibers of the action map

Γ× A→ A

are open sets.

Proposition 2.3. The action of Γ on A is continuous if and only if StabΓ(a) is open for all

a ∈ A.

Proof. As noted above, it is clear that the action is continuous if and only if the fibers of the

action map are open sets. For all b ∈ OrbΓ(a) choose a particular σb ∈ Γ with σb(b) = a,

then the fiber of a is the set

{(ϕ ◦ σb, b) | b ∈ OrbΓ(a), ϕ ∈ StabΓ(a)}.

Recall that in a topological group, translation maps are homeomorphisms. Therefore the sets

{ϕ ◦ σb | b ∈ OrbΓ(a), ϕ ∈ StabΓ(a)}

are open if and only if StabΓ(a) is open, and since A is given the discrete topology the fiber

of a is open if and only if each of those sets are.

Choose a discrete Γ-module A with a continuous action as described above. We will

commonly work with the mod 2 Galois cohomology, that is the case whereA = µ := Z/2Z.
There are two equivalent ways in which to define the Galois cohomology groups. First,

we may apply the construction of Section 1, with the additional mandate that all Γ-modules

be given the discrete topology and all actions and maps are continuous.

The Galois cohomology groups are the resultant groups

Hq(k,A) := Hq(Γ, A).
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An equivalent definition arises from the direct limit.

Definition 2.4. Let {Hi} be a family of groups indexed by a set I equipped with a partial

order < such that for all i < j ∈ I there exists a homomorphism

ϕij : Hi → Hj.

We define an equivalence relation ∼ on
⊔
i∈I
Hi such that for all i, j ∈ I and for all hi ∈

Hi, hj ∈ Hj, we have hi ∼ hj if there exists some k ∈ I such that ϕik(hi) = ϕjk(hj). The

direct limit (or inductive limit) of the family {Hi} is the quotient set

lim−→Hi =
⊔
i∈I

Hi/ ∼ .

Let {Fi} be the family of finite Galois field extensions over k, and let < be a partial

ordering of I given by i < j if and only if Fi ⊆ Fj. Let the maps ϕij be the inclusion maps.

Let A be a discrete Γ-module with a continuous action. For all i ∈ I, let Ai be the

submodule of A invariant under each element of Gal(ksep/Fi) < Γ. This module has a natural

structure as a Gal(Fi/k)-module arising from the Γ-module structure of A, and so we may

consider the cohomology groups Hq(Gal(Fi/k), Ai).

Now, suppose Fi and Fj are finite Galois extensions of k with Fi ⊆ Fj. We have restriction

and inclusion maps

r : Gal(Fj/k)� Gal(Fi/k)

i : Ai ↪→ Aj

by which we may define a homomorphism

ϕij : Hq(Gal(Fi/k), Ai)→ Hq(Gal(Fj/k), Aj)

σ : 7→ i ◦ σ ◦ r

(see the construction of the inflation map in Example 1.12).

Proposition 2.5. Let q be a nonnegative integer, and let {Hi} be the family

Hi := Hq(Gal(Fi/k), Ai)
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with the partial ordering < and homomorphisms ϕij described above. Then

lim−→Hi
∼= Hq(k,A).

Proof. See [17, Section II.1.1].

We conclude this section with the following fundamental result due to Emmy Noether:

Theorem 2.6. (Hilbert’s Theorem 90) Let `/k be a Galois extension. Then

H1(`/k,Gm(`)) = H1(`/k, `∗) = 1.

3 Residue Maps

Theorem 3.1. Let G be a profinite group with let N / G a closed normal subgroup, and let

C be a discrete G/N module. Suppose that the short exact sequence

1→ N → G→ G/N → 1

is split and that for all i > 1 one has H i(N,C) = 0. Let πi be the natural map H i(G/N,C)→
H i(G,C) induced by the quotient G � G/N ,using the natural interpretation of C as a G-

module arising from its structure as a G/N-module. Then there exists a map

r : H i(G,C)→ H i−1(G/N,Hom(N,C))

called the residue map such that the sequence

0→ H i(G/N,C)
πi−→ H i(G,C)

r−→ H i−1(G/N,Hom(N,C))→ 0

is exact.

Proof. See [9, Theorem II.6.1].

The residue map behaves well with respect to cup product. In particular, suppose C1, C2

are G/N -modules as in Theorem 3.1. Let i and j be positive integers and let α ∈ H i(G,C1)

and β ∈ Hj(G/N,C2).

Proposition 3.2. In the above situation, one has

r(α ∪ β) = r(α) ∪ β ∈ H i+j−1(G/N,Hom(N,C1 ⊗ C2)).
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Proof. See [9, Proposition II.6.6].

Now, let k be a field together with a discrete valuation v : k → Z, and let k be the residue

field of k (with respect to v.) We further assume for the sake of simplicity that k is complete.

As usual, let ksep be a separable closure of k.

Recall that a field extension ` of k with discrete valuation v is called unramified if the

ramification index ew/v for a unique extension of discrete valuation v to ` is equal to 1. In

other words, the extension is unramified if a uniformizer π ∈ k for v is still a uniformizer for

w. It is well known that there is a unique maximal unramified extension inside ksep of any

such field.

Let kun be the maximal unramified extension of k. It follows from Hensel’s Lemma that

Gal(kun/k) ' Gal(k
sep
/k).

Definition 3.3. The inertia group of k, which we denote by Ik, is the kernel of the natural

map

Galk → Galk.

That is to say, Galk/I = Gal(kun/k).

Let C be a finite Γk-module whose order is not divisible by the characteristic of the residue

field. We may view C as a Γk-module on which the inertia group acts trivially.

Lemma 3.4. The sequence 1→ Ik → Γk → Γk → 1 satisfies the hypotheses of Theorem 3.1,

that is to say

1. the sequence above is exact and split,

2. for all i > 1, one has H i(I, C) = 0.

Proof. See [9, Lemmas II.7.5 & II.7.6].

Definition 3.5. Let C be as above and let n be a natural number not divisible by the char-

acteristic of k and such that nC = 0. We define the d-th Tate twist of C (denoted C(d))

for integers d as follows:

C(d) =

µ⊗dn ⊗ C if d ≥ 0,

Hom(µ⊗−dn , C) if d < 0.

Note that the above definition is independent of one’s choice of n. We have the following

key example.
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Example 3.6. In the definition above, let C = µ2 and d = −1. One has

µ2(−1) = µ2.

The following proposition is essential to our application of residue maps to show the

nontriviality of cohomological invariants.

Proposition 3.7. Let π ∈ k be a uniformizer, and let α ∈ H i(k, C). Then there exist unique

elements α0 ∈ H i(k, C) and α1 ∈ H i−1(k, C(−1)) such that

α = α0 + (π)n ∪ α1.

Furthermore one has r(α) = α1. [9]

We will later consider the case where C = µ2 and the field k is a pure transcendental

extension of some ground field `, i.e. k = `(t1, ..., tm) and the valuation v : k → Z is related

to the variable tm. One has k = `(t1, ..., tm−1).

Notice that this extension is not complete. We define the residue in this case by first

passing via the restriction to the cohomology groups for the completion, H i(kv, µ2), and then

taking the usual residue. In other words, the residue is defined by the following commutative

diagram:

H i(k, µ2) H i(kv, µ2)

H i−1(k, µ2)

Res

r

In this situation, the residue map can be explicitly computed as follows.

Example 3.8. Let α ∈ H i(k, µ2), we wish to compute the residue of α. Due to a result of

Voevodsky, α may be written in the form

α =
i∑

j=1

(aj1) ∪ ... ∪ (aji)

and so it suffices to compute the residue of symbols (aj1) ∪ ... ∪ (aji). Note that any element

a ∈ k can be written in the form

a = πiu

for the uniformizer π and some unit u in k. Combine this with the following relations:

• for all a, b ∈ k, one has (ab) = (a) + (b),
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• since we are taking values in µ2, we have (a) ∪ (b) = (b) ∪ (a),

• for π a unit, (π) ∪ (−π) = 0 and (π) ∪ (π) = (π) ∪ (−1),

and it can be infered that computation of the residue reduces to the following two cases, where

π is a uniformizer and uj are units:

1. (u1) ∪ ... ∪ (ui),

2. (π) ∪ (u2) ∪ ... ∪ (ui).

In the first case, it is known that the residue is zero. In the second case, it can be shown that

the residue of the cup product is equal to the cup product of the residues of just the units, i.e.

r : (π) ∪ (u2) ∪ ... ∪ (ui) 7→ (u2) ∪ ... ∪ (ui).

This last example will be our primary tool in checking that the cohomological invariant

established later is nontrivial.

4 Non-Abelian Cohomology

Throughout this section G is assumed to be a profinite group, that is G is a topological

group which is Hausdorff, compact, and totally disconnected. The most important case for

our purposes is where G = Gal(ksep/k).

Definition 4.1. A G-set is a discrete topological space E together with a continuous action

of G on E.

Definition 4.2. A morphism of G-sets is a map f : E → E ′ such that for all x ∈ E and

for all s ∈ G,
s.f(x) = f(s.x).

A morphism of G-sets is an isomorphism if it is bijective.

Definition 4.3. Let E be a G-set. We define

H0(G,E) := EG,

where EG is the subset of E consisting of all elements invariant under G (in keeping with

the notation of the previous section.)
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Definition 4.4. A G-group A is a G-set endowed with a group structure such that for all

a, b ∈ A, s ∈ G,

s.(ab) = (s.a)(s.b).

Note: an abelian G-group is a G-module.

Definition 4.5. Let A be a G-group. A 1-cocycle of G in A is a continuous map

ϕ : G→ A

s 7→ ϕ(s)

satisfying

ϕ(st) = ϕ(s) · (s.ϕ(t))

for all s, t ∈ G.

The set of all 1-cocycles of G in A is denoted by Z1(G,A). Two cocycles ϕ, σ ∈ Z1(G,A)

are said to be cohomologous (denoted ϕ ∼ σ) if for some a ∈ A and for all s ∈ G one has

ϕ(s) = aσ(s)a−s,

where a−s := s(a−1) as is the standard convention. It is easy to see that ∼ is an equivalence

relation on Z1(G,A).

Definition 4.6. The quotient set Z1(G,A)/ ∼ is called the first cohomology set of G in

A and is denoted by H1(G,A).

As one might hope for, the cohomology sets H0(G,A) and H1(G,A) are functorial in A,

and if A is an abelian group they coincide with the cohomology groups of Definition 1.2.

However, H0(G,A) and H1(G,A) are viewed instead in the category of pointed sets.

The distinguished element in H0(G,A) is the identity element of A, while the distinguished

element in H1(G,A) is the equivalence class of the constant map s 7→ 1, called the neutral

element.

Non-abelian Galois cohomology behaves well with respect to group extensions.

Suppose H is a closed normal subgroup of G. There is a natural action of G/H on AH ,

so we may define the cohomology set H1(G/H,AH).

We can also define an action of G/H on the cohomology set H1(H,A). First, consider

the action of G on Z1(H,A) given by

s · (ah) := (s(as−1hs))
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for all h ∈ H, s ∈ G and for all 1-cocycles a = (ah) in Z1(H,A). We wish to consider this

as an action on the cohomology set H1(H,A). To this end, let us check that the action of G

respects cohomology classes.

Indeed, suppose a, b ∈ Z1(H,A) are cohomologous, i.e. there exists some x ∈ A such that

ah = xbhx
−h for all h ∈ H. Let s ∈ G and let (ãh) = s · (ah) and (b̃h) = s · (bh) so that

ãh = sas−1hs, b̃h = sbs−1hs. (III.1)

Then for all h ∈ H one has

ãh = sas−1hs

= s(xbs−1hsx
−s−1hs)

= s(x)s(bs−1hs)s(x
−s−1hs)

= (sx)b̃hs(s
−1hs(x−1)

= (sx)b̃hh(sx−1)

= (sx)b̃hh(sx)−1

so (ãh) and (b̃h) are also cohomologous.

Furthermore, the action of H on Z1(H,A) is trivial when one passes to H1(H,A). Indeed,

for all a ∈ Z1(H,A) and for all h, k ∈ H, the k-component of h · a is of the form

h(ah−1(kh)) = h(ah−1(h−1(akh)))

= h(ah−1)(akh)

= h(a−1
h )(ak)k(ah)

and in fact

h(a−1
h )−k = k(h(ah−1)−1) = k(ah).

Thus, h(a) ∼ a.

As such, we may view the action on Z1(H,A) (and thus on H1(H,A) as well) as an action

of the quotient group G/H.

Proposition 4.7. The natural maps form an exact sequence

1→ H1(G/H,AH)→ H1(G,A)→ H1(H,A)G/H .

Proof. We will prove only the injectiveness of the map i : H1(G/H,AH)→ H1(G,A).
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Let α ∈ ker(i), i.e. given a representative a of the cohomology class α there exists some

x ∈ A such that for all s ∈ G one has

i(a) : s 7→ xx−s.

We wish to show then that a is cohomologous to the trivial cocycle in Z1(G/H,AH), that

is to say there exists some y ∈ AH such that for every coset gH ∈ G/H

a : gH 7→ yy−gH .

It suffices to show that x is invariant under the action of H, and thus y = x. Indeed, for

all h ∈ H one has

a(h) = a(1G)

i(a)(h) = i(a)(1G)

xx−h = xx−1

xh(x−1) = 1

showing h(x−1) = x−1 and therefore x−1 ∈ AH . Since AH is a group, the result follows.

We conclude this section by discussing the notion of torsors over a G-group and the deep

relation between torsors and cohomology.

Let A be a G-group and let E be a G-set. We say that A acts on the left on E if there

is a left group action of A on E such that for all s ∈ G, a ∈ A, x ∈ E, one has

s.(a.x) = (s.a).(s.x).

We say that A acts on the right (compatibly with G) on E if the obvious analagous

definition holds.

Definition 4.8. A (right) torsor P over A is a nonempty G-set on which A acts on the

right, such that for all x, y ∈ P there exists a unique element a ∈ A such that y = x.a. In

other words, the action of A on P is simply transitive.

There is an obvious analagous definition of a left torsor. Throughout this paper however,

the term torsor will refer by default to a right torsor.

An isomorphism of torsors P, P ′ over A is a bijective map f : P → P ′ such that for all
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x ∈ P and for all a ∈ A one has

f(x.a) = f(x).a.

Example 4.9. Let P = A, with A acting on itself by right translation. This action is of

course simply transitive - for any elements a1, a2 ∈ A the unique element a ∈ A such that

a1a = a2 is a−1
1 a2. The action is also clearly compatible with that of G, and so A is indeed a

torsor over itself. A torsor over A which is isomorphic to A itself is called a trivial torsor.

Lemma 4.10. Let P be a torsor over A. The torsor P is trivial if and only if there is an

element of P which is fixed under the action of G.

Proof. Suppose P is a trivial torsor. Then P has an element corresponding to the identity

element 1 ∈ A, which is invariant under the action of G.

Conversely, suppose there is some element p0 ∈ P which is invariant under G. Then for all

p ∈ P there exists a unique element ap ∈ A such that p0.ap = p. Consider now the bijection

ϕ : P → A

p 7→ ap.

It remains to see that ϕ respects the action of G. Indeed, for arbitrary p ∈ P, a ∈ A, one

has by definition that ϕ(g.p) is the unique element of A such that

p0.ϕ(g.p) = g.p.

On the other hand,

p0.(g.ϕ(p)) = (g.p0).(g.ϕ(p)) = g.(p0.ϕ(p)) = g.(p0.ap) = g.p.

By uniqueness, g.ϕ(p) = ϕ(g.p).

Proposition 4.11. Let A be a G-group. Then the set of isomorphism classes of torsors over

A is in bijective correspondence with H1(G,A).

Proof. See [17, Proposition 33].

The proof of Proposition 4.11 given in [17] constructs a bijection from the set of all

equivalence classes of torsors over A to H1(G,A) as follows: if P is a torsor over A, first

choose a point x ∈ P . For all s ∈ G there exists a unique element as ∈ A such that

s.x = x.as. The map ϕ : s 7→ as is then a 1-cocycle, and a different choice of x will result in

a cohomologous 1-cocycle (see remarks following Definition 4.2.)
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5 Twisting Actions

Let A be a G-group and let P be a torsor over A. Let Q be a G-set on which A acts on the

left. We define the relation ∼ on the direct product P ×Q as follows: we say (p, q) ∼ (p′, q′)

if and only if there exists some element a ∈ A such that (p.a, a−1.q) = (p′, q′).

Proposition 5.1. The relation ∼ is an eqivalence relation on P ×Q.

Proof. To see that ∼ is reflexive, simply choose a = 1. To see that it is symmetric, note that

if (p.a, a−1.q) = (p′, q′) then (p, q) = (p′.a−1, a.q′). Now, suppose

(p, q) ∼ (p′, q′) ∼ (p′′, q′′),

say there exist a, b ∈ A such that

(p.a, a−1.q) = (p′, q′)

(p′.b, b−1.q′) = (p′′, q′′).

Then one has

(p.(ab), (ab)−1.q) = (p′′, q′′).

The quotient (P ×Q)/ ∼ given the componentwise action of G is called the twisting of

Q by P and is denoted by PQ. The action of G is well-defined on equivalence classes. As a

shorthand we will denote the equivalence class of (p, q) by p · q.
Under view of the bijection in Proposition 4.11, we can also consider a twisting of Q by

a cocycle of A in G.

Definition 5.2. Let ϕ : G → A be a cocycle s 7→ as. Then the twisting of Q by ϕ is the

set Q with a new action of G on Q given by

s.ϕq := ϕ(s).(s.q)

for all s ∈ G, q ∈ Q, and is denoted by ϕQ. It is defined functorially for Q.

Let us show that these two constructions are essentially the same. Namely, let P be an

A-torsor and fix a point p0 ∈ P . For all s ∈ G there exists a unique as ∈ A such that

s.p0 = p0as. As noted in §4 the map

ϕ : s 7→ as
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is a 1-cocycle.

Indeed, let s, t ∈ G and consider ϕ(st) = ast. We wish to show that ast = as(s.at), which

is by definition the unique element of A such that p0.ast = (st).p0. Indeed

p0.(as(s.at)) = (p0.as).(s.at)

= (s.p0).(s.at)

= s.(p0.at)

= s.(t.p0)

= (st).p0.

Now, observe that every equivalence class [(p, q)] in PQ has a unique representative of the

form [(p0, q
′)], since there exists a unique element a ∈ A such that p = p0.a, and so

(p, q) = (p0.a, q) ∼ (p0, a.q).

Then consider the map

λ : PQ→ ϕQ

[(p0, q)] 7→ q.

By the preceeding remarks, λ is bijective. Let us show that it is an isomorphism of G-sets,

i.e. that for all s ∈ G and for all (p0, q) ∈ PQ one has

λ(s.P (p0, q)) = s.ϕq.

Indeed,

λ(s.P (p0, q)) = λ(s.p0, s.q)

= λ(p0.as, s.q)

= λ(p0, as.(s.q))

= as.(s.q)

= s.ϕq.

Proposition 5.3. If ϕ and σ are cohomologous 1-cocycles, then ϕQ and σQ are isomorphic

as G-sets.
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Proof. Let σ, ϕ be 1-cocycles of G in A and suppose they are cohomologous, i.e.

ϕ : s 7→ as, σ : s 7→ bs

and there exists some c ∈ A such that as = cbsc
−s for all s ∈ G. Let

λ : ϕQ→ σQ

x 7→ c−1.x.

We wish to show that λ is an isomorphism of torsors, that is to say that for all s ∈ G and

for all q ∈ ϕQ one has

λ(s.ϕq) = s.σλ(q).

Indeed, a straightforward computation shows this is the case:

λ(s.ϕq) = λ(as.(s.q))

= c−1.(cbs(s.c
−1).(s.q))

= bs(s.c
−1).(s.q)

= bs.(s.(c
−1.q))

= bs.(s.λ(q))

= s.σλ(q).

A significant consequence of Proposition 5.3 is that it makes sense to consider (up to

isomorphism) the twisting of Q by an equivalence class of cocycles, i.e. by an element of

H1(G,A).

Twistings by cocycles distribute across direct products, i.e. given a 1-cocycle ϕ of G in

A and two G-sets Q and R on which A acts on the left, one has

ϕ(Q×R) = ϕQ× ϕR.

The elements of these two G-sets are by definition the same, and direct computation will

immediately show that G acts on each in the same way.

Twistings also preserve G-group structures, in the sense that if Q is in fact a G-group,

the same group structure makes ϕQ into a G-group.

Indeed, if Q is a G-group with x, y ∈ Q, s ∈ G, and A is a G-group acting on the left on
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Q with ϕ ∈ Z1(G,A), then

s.ϕ(xy) = ϕ(s).(s.(xy)) = ϕ(s).((s.x)(s.y))

= (ϕ(s).(s.x))(ϕ(s).(s.y)) = (s.ϕx)(s.ϕy).

Example 5.4. Let A be a G-group and let ϕ be a 1-cocycle of G in A. Consider the left

group action of A on itself by inner automorphisms, i.e. the group action given by the map

A× A→ A

(a, b) 7→ aba−1.

Under this action A acts on the left on itself, and so we may consider the twisting of A by

ϕ. This is a G-group denoted by ϕA. It has the same elements as A, and the action of G is

given by

s.ϕa = ϕ(s).(s.a) = ϕ(s)(s.a)ϕ(s)−1.

Proposition 5.5. Let A be a G-group, Q a G-set on which A acts on the left. Then for any

1-cocycle ϕ of G in A, the G-group ϕA described above acts on the left on ϕQ.

Proof. This is a matter of verifying that the map

.ϕ : ϕA× ϕQ→ ϕQ

(a, x) 7→ a.ϕx

is a G-morphism. Indeed, for all s ∈ G, a ∈ A, x ∈ Q, one has

s.ϕ(a.x) = ϕ(s).(s.(a.x)) = ϕ(s).((s.a).(s.x))

= (ϕ(s)(s.a)).(s.x) = (ϕ(s)(s.a)ϕ(s)−1ϕ(s)).(s.x)

= (ϕ(s)(s.a)ϕ(s)−1).(ϕ(s).(s.x)) = (ϕ(s).(s.a)).(ϕ(s).(s.x))

= (s.ϕa).(s.ϕx).

Proposition 5.6. Let A be a G-group and ϕ a 1-cocycle of G in A. Then there exists a

natural bijection

τϕ : H1(G, ϕA)→ H1(G,A)

given by

τϕ(σ) : s 7→ σ(s)ϕ(s)
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for all σ ∈ H1(G, ϕA).

Proof. Let ϕ(s) = as be a cocycle of G in A, and let σ(s) = bs be a cocycle of G in ϕA. We

wish to show first that the new family (cs) := (bs)(as) satisfies the cocycle condition, that is

that for all s, t ∈ G
cst = css.ct.

Indeed, one may check that

cst = bstast

= bss.ϕbtass.at

= bsass.bta
−1
s ass.at

= bsass.bts.at

= css.ct.

Now consider the inverse map

H1(G,A)→ H1(G, ϕA)

(ds) 7→ (ds)(as)
−1 =: (es).

It remains to show that this map is well-defined, however the computations are exactly

analagous.

We should emphasize here that in the nonabelian context H1(G, ϕA) and H1(G,A) are

not in general groups and so τϕ is merely a bijection. However, if A happens to be abelian,

then τϕ coincides with the translation by the equivalence class of ϕ.

Now we consider the case where A,B are G-groups with A < B. The group action of G

is well-defined on left cosets of A, and so B/A is a G-set (in general not a G-group, since A

may not be normal in B.) Then we may define as before

H0(G,B/A) := (B/A)G = {[b] | b ∈ B, s.b ∈ bA ∀s ∈ G},

where [b] denotes the left coset of b in B/A.

Let [b] ∈ (B/A)G and consider its preimage bA ⊆ B. The set bA is also a G-set (with the

action inherited from B) and A acts on bA on the right via right multiplication. Moreover,
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for all a, a′ ∈ A there exists a unique element of A, namely a−1a′, such that

ba.(a−1a′) = ba′.

That is to say, bA is a torsor over A. Recall that there is a natural bijective correspondence

between the set of all torsors over A and the set H1(G,A). This allows us to define a map

δ : H0(G,B/A)→ H1(G,A) by letting δ([b]) be the element in H1(G,A) which corresponds

to the torsor bA.

Definition 5.7. Let A and B be pointed sets with distinguished elements 1A and 1B, respec-

tively. Recall that a homomorphism of pointed sets f : A → B is a set theoretical map such

that f(1A) = 1B.

The kernel of the map f is the set

{a ∈ A | f(a) = 1B}

and is denoted ker(f)

A sequence of pointed sets

· · · → A−1 → A0 → A1 → . . .

is called exact if

im(An−1 → An) = ker(An → An+1)

for all integers n for which these sets are defined.

Proposition 5.8. The sequence

1→ H0(G,A)→ H0(G,B)→ H0(G,B/A)
δ−→ H1(G,A)→ H1(G,B)

is exact.

Proof. See [17, Proposition 36].

Proposition 5.9. Let ϕ ∈ Z1(G,B). Then one has

[ϕ] ∈ im(H1(G,A)→ H1(G,B))

if and only if (ϕ(B/A))G is nonempty.

Proof. See [17, Proposition 37].
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6 Forms of Algebraic Objects

Let V and V′ be algebraic varieties over k endowed with some additional algebraic structure.

Example 6.1. A k-algebra V is a vector space (thus also an algebraic variety) with the

additional structure of a multiplication map

× : V × V→ V

satisfying standard axioms.

Example 6.2. An algebraic group G over k is an algebraic variety together with a group

multiplication G×G→ G and inverse map G→ G which are regular functions and respect

standard axioms for group multiplication.

Example 6.3. A quadratic space (V, f) is a vector space together with a quadratic form

f : V→ k

satisfying the axioms of Chapter 1.

We can consider any such algebraic objects V and V′ over a field extension `/k in the

usual way, employing the standard notation V` := V ⊗ `.

Definition 6.4. The objects V and V′ are k-forms of one another if there exists an iso-

morphism (in whatever category V and V′ fall in)

ϕ : Vksep → V′ksep .

Let Γ := Gal(ksep/k) as previously. Let Isoksep(V,V′) be the set of all isomorphisms

preserving the additional structure Vksep → V′ksep and let

Autksep(V) = Isoksep(V,V).

There is a natural action of Γ on Isoksep(V,V′) (and thus also on Autksep(V)) given for

f ∈ Isoksep(V,V′) by

σf : Vksep → V′ksep

v 7→ σ ◦ f ◦ σ−1(v).
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One can check that if f is given as a polynomial, this amounts to applying σ to the coefficients

of f .

Proposition 6.5. The family (aσ) = f−1 ◦ σf is a cocycle of Γ with values in Autksep(V).

Proof. We wish to check that for all σ, ϕ ∈ Γ one has a(ϕσ) = aϕ ◦ ϕ.aσ. Direct computation

shows

aϕ ◦ ϕ.aσ = (f−1 ◦ ϕf) ◦ ϕ.(f−1 ◦ σf)

= (f−1 ◦ ϕ ◦ f ◦ ϕ−1) ◦ (ϕ ◦ f−1 ◦ σ ◦ f ◦ σ−1ϕ−1)

= f−1 ◦ ϕσ ◦ f ◦ σ−1ϕ−1

= f−1 ◦ (ϕσ)f

= a(ϕσ).

The result above gives a process by which, given a k-form of V, we may obtain a cocycle

in Z1(Γ,Aut(V)). Notice that if f and g are isomorphisms

f, g : Vksep
∼−→ V′ksep

then h := g−1 ◦ f is an automorphism of Vksep and one has

h ◦ f−1 ◦ σf ◦ h−σ = g−1 ◦ σg,

thus f and g give rise to cohomologous cocycles. In particular, an isomorphism class of

k-forms of V determines uniquely an element of H1(Γ,Autksep(V)).

Furthermore, suppose V′ and V′′ are two k-forms of V with

f : Vksep
∼−→ V′ksep

g : Vksep
∼−→ V′′ksep

If V′ and V′′ of V give rise to cohomologous cocycles (aσ) and (bσ), this means there is an

automorphism h of V such that

h ◦ f−1 ◦ σf ◦ h−σ ∼=k g
−1 ◦ σg.
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It is readily seen that g ◦ h ◦ f−1 is then an isomorphism (over k) V′ → V′′, and so there is

an injective map from the set of isomorphism classes of k-forms into H1(Γ,Autksep(V)).

Theorem 6.6. Let (V, f) be a quadratic space over k. Then there exists a natural bijection

λ from the set of isomorphism classes of k-forms of (V, f) to H1(Γ,Autksep(V, f)).

Proof. We have already established the existence of a well-defined and injective map in the

general setting. We shall now give a sketch of the construction of an inverse map in the case

of quadratic spaces.

Note that Autksep(V) is nothing more than orthogonal group Oksep(f). Let

ϕ ∈ Z1(Γ,Oksep(f))

and consider the twisting ϕ(V ⊗k ksep).

Consider the k-vector subspace W of V ⊗ ksep of elements invariant under the twisted

action of Γ

W := (ϕ(V ⊗ ksep))Γ.

It is known that dim W = dim V and so

(W ⊗ ksep, f) ∼= (V ⊗ ksep, f).

Moreover, it is known that the restriction g := f |W of f : V⊗ ksep → ksep takes values in

k, and so by construction the quadratic space (W, g) is a k-form of (V, f).

7 Cohomological Invariants

Let k0 be a field and consider the category of all field extensions over k0, denoted by Fields/k0.

We fix two (contravariant) functors A and H with

A : Fields/k0 → Sets

H : Fields/k0 → AbelianGroups.

Definition 7.1. The set of all morphisms of functors α : A → H form a group under

pointwise addition. This group is denoted Inv(A,H) (or Invk0(A,H) if the ground field is not

clear from context) and its elements are called H-invariants.
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Recall that a morphism of functors α : A→ H is a family of maps

{αk} : A(k)→ H(k)

defined for all field extensions k over k0 such that for any morphism i : k → k′ of field

extensions over k one has a commutative diagram

A(k)
αk−−−→ H(k)yAi yHi

A(k′)
αk′−−−→ H(k′)

There are many possible choices for the functors A and H. We list a few examples below.

Example 7.2. A : k 7→ Etn(k) where Etn(k) denotes the set of all étale k-algebras of rank

n.

Example 7.3. A : k 7→ Quadn(k) where Quadn(k) denotes the set of all isomorphism classes

of n-dimensional regular quadratic forms over k.

Example 7.4. A : k 7→ Pfn(k) where Pfn(k) denotes the set of all isomorphism classes of

n-fold Pfister forms over k.

Example 7.5. A : k 7→ TorsorsG(k) where G is a smooth linear algebraic group over k0 and

TorsorsG(k) denotes the set of all G-torsors over k. In this case we will denote the group of

invariants by Inv(G,H) in place of Inv(A,H).

Example 7.6. For all field extensions k/k0, let Γk := Gal(ksep/k). Let C be a discrete Γk0

module (in particular we will often choose C = µ2). For all k/k0 there exists a unique (up

to conjugation) map Γk → Γk0 which we allows us to view C as a module over Γk, hence we

may define cohomology groups

H i(k, C) := H i(Γk, C).

We further define H(k, C) :=
⊕

H i(k, C). In this case we write Inv(A,C) or Invi(A,C) for

Inv(A,H) (or in the case that A = TorsorsG we write Inv(G,C), resp. Invi(G,C)).

Definition 7.7. The elements of Inv(A,C) in the case above are called cohomological

invariants.

Example 7.8. H : k 7→ W (k) where W (k) is the Witt Ring (see Definition 2.3 in Chapter

1).
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Many choices of the functor A are in fact equivalent to the functor TorsorsG for an

appropriate group G.

Example 7.9. The functor k 7→ Quadn(k) is isomorphic to TorsorsOn.

Example 7.10. The functor k 7→ Etn(k) is isomorphic to TorsorsSn (where Sn is the group

of permutations on n objects).

For details of these constructions, the reader may refer to [9] examples 3.1 and 3.2.

Definition 7.11. Let us fix a base point 1 ∈ A, i.e. compatible points in A(k) for each field

extension k/k0, so that A becomes a functor

A : Fields/k0 → PointedSets

For example, one may choose

A : k 7→ TorsorsG(k) = H1(k,G)

where G is some (not necessarily abelian) algebraic group over k0. An H-invariant a : A→ H

is called normalized if for all k/k0 one has a(k) : 1A(k) 7→ 1H(k).

Definition 7.12. For all k/k0 the inclusion k0 ↪→ k induces a map ι∗k : H(k0) → H(k).

Then for all h ∈ H(k0) we may define an invariant ah : A→ H given by

ah(k) : A(k)→ H(k)

x 7→ ι∗k(h).

An invariant of this form is called constant.

Proposition 7.13. Let a be an H-invariant. Then there exist unique H-invariants ac and

an such that ac is constant, an is normalized, and a = ac + an.

Now let us work towards giving some examples of cohomological invariants. We consider

the setting Inv(G, µ2) i.e. the set of cohomological invariants

a : H1(−, G)→ H∗(−, µ2).

First we note that Inv(G, µ2) has a natural structure of an abelian group. Specifically, given

two invariants

a, b : H1(−, G)→ H∗(−, µ2)
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we define the invariant

(a+ b) : H1(−, G)→ H∗(−, µ2)

as follows. For all field extensions k/k0 and for all classes of cocycles [ζ] ∈ H1(k,G), define

(a+ b)k : H1(k,G)→ H∗(k, µ2)

[ζ] 7→ ak([ζ]) + bk([ζ]).

Next, we give this abelian group a module structure - an idea put forth by J.-P. Serre.

Let R be the ring

R := H(k0, µ2) =
⊕

i=0,1,...

H i(k0, µ2)

where multiplication is by the cup product (the existence of such a ring structure is also

mentioned in §1). It should be noted that the choice of µ2 is necessary for this ring structure

to make sense; for arbitrary modules the cup products do not have coefficients in the original

module.

Note that if k0 is separably closed, then Gal(ksep
0 /k0) = 1 and so H0(k0, µ2) = µ2, while

for all i > 0, the i-th cohomology group H i(k0, µ2) is zero. As such, in this special case

R = Z/2.
We wish to consider Inv(G, µ2) as an R-module. Let r ∈ R, and let a ∈ Inv(G, µ2). For

all k/k0 we define the invariant r · a as follows. Consider the map

⊕Res : R→
⊕

i=0,1,...

H i(k, µ2)

given by restrictions. Let rk ∈ H i(k, µ2) be the image of r under said map. Then the

invariant (r · a) is defined for all k/k0 and for all classes [ζ] ∈ H1(k,G) by

(r · a)k : H1(k,G)→ H∗(k, µ2)

[ζ] 7→ rak([ζ]).

We are now ready to give some explicit examples of cohomological invariants.

Example 7.14. Let f be an n-dimensional split quadratic form over a ground field k0. It

was shown by J.-P. Serre (see [9]) that in this case Inv(G, µ2) is a free module with a basis

consisting of the Stiefel-Whitney classes (for a discussion of Stiefel-Whitney classes, the

reader may refer to §VI.17 in [9]). We give the basic idea of their construction here.

Let k/k0 be a field extension. We can produce a map H1(k,G)→ H i(k, µ2) for all integers
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0 ≤ i ≤ n by use of the fact that H1(k,G) in this case is in one-to-one correspondence with

the set of all isomorphism classes of regular quadratic forms of dimension n (see 6.6).

Consider an isomorphism class of quadratic forms with a diagonalized representative g =

〈a1, ..., an〉. For all integers 0 ≤ i ≤ n one may define a map

g 7→
∑

j1<...<ji

(aj1) ∪ ... ∪ (aji).

It remains to check that these maps are well defined, one may again refer to [9] for a proof.

These maps are denoted by wi and are called the Stiefel-Whitney classes.

It is interesting to consider some of the low dimensional cases. For instance when i = 0

the summation is empty and so w0 is the constant map [g] 7→ 0. This map is called the

trivial invariant.

Also of interest is the case i = 1; here we have

w1 : [g] 7→
n∑
j=1

(aj) =

(
n∏
j=1

aj

)
.

In other words, w1 is precisely the discriminant.

Example 7.15. Let G0 be a split group of type G2 over k0. We wish to describe Inv(G0, µ2).

Since an element here is a morphism H1(−, G0) → H∗(−, µ2), the first question we must

answer is this: how does H1(k,G0) look for extensions k/k0? To answer this question we

introduce the notion of an octonion algebra over k, which is a generalization of a quaternion

algebra.

Let a, b, c be arbitrary elements of k×. We define an 8-dimensional vector space V(a,b,c)

(or simply V if it is not necessary to distinguish these elements) which has a basis {e0 :=

1, e1, ..., e7} which satisfies the following rules for multiplication:

e2
1 = a, e2

2 = b, e2
3 = c,

e1e2 = −e2e1 = e4, e2e3 = −e3e2 = e5,

e3e4 = −e4e3 = e6, e4e5 = −e5e4 = e7.

Octonion algebras are associated with a quadratic form called the norm which is given in

the following way. First, one must define the conjugate map : V→ V which sends e0 7→ e0
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and for i > 0 sends ei 7→ −ei. The norm is then the quadratic form

N : V × V→ k

v 7→ (v)(v).

Of course, one must check that the product above actually lives in k = Spane0, since a priori

it is simply an element of the vector space V. However, this is well known to be the case.

Moreover, it can be shown that the norm on V(a,b,c) is in fact the 3-fold Pfister form 〈〈a, b, c〉〉.
We now consider the special case of octonion algebra where a = b = c = 1, which we will

call a split octonion algebra. This terminology is justified in that such an algebra produces

a norm 〈〈1, 1, 1〉〉 which is a split quadratic form, and furthermore it can be shown that the

group Aut(V(1, 1, 1), ·) of multiplication preserving vector space endomorphisms V→ V is a

split group of type G2. We take this group to be G0.

Now by 6.6 we have that G0 corresponds to the set of isomorphism classes of V(1, 1, 1) over

ksep, which is the same as saying the isomorphism classes of V(a, b, c) over ksep for arbitrary

a, b, c ∈ k×. Due to the fact that two octonion algebras are isomorphic if and only if their

norms are isomorphic as quadratic forms, this is then equivalent to the set of isomorphism

classes of 3-fold Pfister forms over k.

Now let us return to the original question. We can define an invariant w in dimension 3

by use of the equivalence above. Starting from H1(k,G0) we pass to the set of isomorphism

classes of 3-fold Pfister forms over k, and wk is then the map

[〈〈a, b, c〉〉] 7→ (a) ∪ (b) ∪ (c).

J.-P. Serre showed in [9] that Inv(G0, µ2) (we may also write Inv(G2, µ2) to signify an

arbitrary split group of type G2) is a free module with the basis {1, w}.
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CHAPTER IV

Algebraic Groups

1 Algebraic Groups

During this section, we will deal with some of the basic properties of algebraic groups, and the

important connection between algebraic groups and Lie algebras. We will assume some basic

knowledge of algebraic geometry, specifically the definition and properties of affine algebraic

varieties.

Definition 1.1. An algebraic k-group is an algebraic variety G over a field k equipped

with a group structure, such that the product and inverse maps are morphisms of algebraic

varieties. That is to say, G has a distinguished element e, a product map µ : G × G → G ,

and an inverse map i : G→ G which satisfy the following properties for all g, h, k ∈ G.

1. µ(g, e) = µ(e, g) = g

2. µ(g, i(g)) = µ(i(g), g) = e

3. µ(g, µ(h, k)) = µ(µ(g, h), k)

4. µ : G×G→ G and i : G→ G are morphisms of algebraic varieties.

Throughout this paper we will only consider ground fields k of characteristic not equal to 2.

Note: in the above definition G×G is the direct product (as a variety) of G with itself.

Example 1.2. Let Gm ⊆ A1
k be an open subset of 1-dimensional affine space consisting of

invertible elements. Clearly it is stable with respect to multiplication and inversion, hence

Gm is an algebraic group defined over k. For any field extension `/k one has Gm(`) = `×.
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Example 1.3. Let F be a field with a, b ∈ F×. A quaternion algebra Q = (a,b
F

) over F is

an F -algebra on two generators, say i and j which the defining relations

1. i2 = a

2. j2 = b

3. ij = −ji

Given such Q one can associate a map Q→ k,

x01 + x1i+ x2j + x3ij 7→ x2
0 − ax2

1 − bx2
2 + abx2

3

called the reduced norm and denoted by NrdQ.

Let GL1(Q) ⊂ Q be the subset consisting of all elements x ∈ Q whose reduced norm

NrdQ(x) ∈ k is invertible. Note that GL1(Q) is defined by polynomial inequalities and there-

fore open in Q.

Note that the reduced norm is in fact a 2-fold Pfister form, in particular Nrd = 〈〈a, b〉〉.
One can easily check

NrdQ(xy) = NrdQ(x)NrdQ(y)

for all x, y ∈ Q. Thus, GL1(Q) is an algebraic group over k.

Example 1.4. Let V be a finite dimensional k-vector space. Then GL(V) is an affine

variety over k, and the product and inverse maps arising from the regular group structure are

morphisms. That is to say, GL(V) is a linear algebraic group over k.

The right and left translation maps G → G by an element y ∈ G are defined,

respectively as

Ry : x 7→ xy

Ly : x 7→ yx.

The fact that these maps are invertible morphisms of varieties directly implies one re-

markable fact about algebraic groups: any local property holding at a given point holds at

every point of G. (Since if S is an open neighborhood of some point x, the image of S under

Lyx−1 is an open neighborhood of y.)

The group G is called a linear algebraic group or affine algebraic group if G is affine

as a variety. This is the type of algebraic group central to our research, and from this point

forward an algebraic group should be taken to be linear, unless otherwise specified.
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Recall that an algebraic variety (and thus also an algebraic group) is a topological space

with the Zariski topology. Just as algebraic geometry is often concerned with closed (in the

Zariski topology) subvarieties and group theory is often concerned with subgroups, closed

subgroups are central to the theory of algebraic groups.

Definition 1.5. Let G be an algebraic group. A closed subgroup H of G is a subset which

is both a subgroup and a closed subvariety. We denote this by H ≤ G.

A closed subgroup H ≤ G is called normal if it is a normal subgroup in the standard

group theoretic sense, that is to say the left and right cosets of H are equal. We denote a

closed normal subgroup of G by H E G.

Example 1.6. Recall the quaternion algebra Q = (a,b
F

) from a previous example. Consider

the set

SL(1, D) = {x ∈ Q | Nrd(x) = 1}.

This is a 3-dimensional closed subgroup of GL(1, Q), and in fact it is normal.

Homomorphisms of algebraic groups are also defined in a predictable manner.

Definition 1.7. A homomorphism of algebraic groups is a map f : G→ H where G and

H are algebraic groups, such that f is a homomorphism with respect to the group structures

of H and G as well as a morphism with respect to the variery structures of H and G.

An isomorphism f : H → G of algebraic groups is a homomorphism which is an

isomorphism both of algebraic groups and of algebraic varieties, and two algebraic groups

are called isomorphic if there exists an isomorphism between them. An automorphism of

algebraic groups is an isomorphism f : G→ G.

It may occur that two algebraic groups H and G are not isomorphic as k-groups, but

become isomorphic when viewed as algebraic groups over some field extension.

Definition 1.8. Let H and G be k-groups. As discussed in the previous chapter, H is called

a k-form of G if H and G are isomorphic over the separable closure of k, that is if

H ⊗ ksep ∼= G⊗ ksep.

Example 1.9. The quaternion algebra Q = (a,b
k

) from previous examples is a k-form of the

2× 2 matix algebra over k, M2,k.

The reduced norm over ksep corresponds to the determinant, hence GL1(Q) is a k-form of

GL2,k.
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To see that this is the case, let c, d ∈ ksep such that c2 = a and d2 = b, with c and d

invertible. Let Qsep := Q ⊗k ksep =
(
a,b
ksep

)
. We wish to show that Qsep is isomorphic to the

quaternion algebra
(

1,1
ksep

)
.

In Qsep one has generators i, j with the properties

i2 = c2, j2 = d2, ij = −ji.

Let i′ = ic−1 and j′ = jd−1. Then one has

i′2 = i2(c−1)2 = c2(c−1)2 = 1

j′2 = j2(d−1)2 = d2(d−1)2 = 1

i′j′ = ijc−1d−1 = −jic−1d−1 = −j′i′,

that is to say i′ and j′ satisfy the necessary conditions for generators of
(

1,1
ksep

)
and thus(

1, 1

ksep

)
∼= ksep[i′, j′] ⊆ Qsep.

Moreover, since i′ and j′ obviously generate Qsep over ksep the above inclusion is in fact

an equality and we have (
1, 1

ksep

)
∼= Qsep.

Since
(

1,1
ksep

)
=
(

1,1
k

)
⊗k ksep, it remains only to be seen that

(
1,1
k

)
is isomorphic to M2,k

over k.

Indeed, let us consider the homomorphism ϕ :
(

1,1
k

)
→M2,k defined on generators by

i′ 7→

[
−1 0

0 1

]
, j′ 7→

[
0 −1

−1 0

]

and extended linearly to
(

1,1
k

)
. We claim that ϕ is an isomorphism.

By linearity one has

ϕ(1) =

[
1 0

0 1

]
, ϕ(i′j′) =

[
0 −1

1 0

]
.
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Clearly {ϕ(1), ϕ(i′), ϕ(j′), ϕ(i′j′)} is linearly independent, and so

dim(im(ϕ)) = dim(M2,k) = dim

(
1, 1

k

)
= 4.

Therefore, φ is bijective. It now suffices to see that

ϕ(i′)2 = ϕ(j′)2 = 1,

which is obvious, and that

ϕ(j′)ϕ(i′) =

[
0 −1

−1 0

]
×

[
1 0

0 −1

]
=

[
0 1

−1 0

]
= −ϕ(i′)ϕ(j′).

This demonstrates ϕ is indeed an isomorphism, and so Q is a k-form of M2,k.

Example 1.10. The group SL(1, D) defined in Example 1.3 is a k-form of SL2,k.

To see this, let us consider SL(1, D) as a subset of Q :=
(
a,b
k

)
and pass to Qsep := Q⊗ksep

and consider its image under the map ϕ from Example 1.9. For all x ∈ Qsep one has

x := x1 + x2i+ x3j + x4ij 7→

[
x1 + x2 −x3 − x4

−x3 + x4 x1 − x2

]

(where the xi are uniquely determined coefficients in ksep.) Computing the determinant yields

det(ϕ(x)) = (x1 + x2)(x1 − x2)− (−x3 − x4)(−x3 + x4)

= x2
1 − x2

2 − x3
2 + x2

4

= Nrd(x),

therefore ϕ(x) ∈ SL2,k ⊗ ksep if and only if x ∈ SL(1, D)⊗ ksep. Since ϕ is an isomorphism it

follows that SL(1, D) is a k-form of SL2,k.

One important class of algebraic groups is the simple algebraic groups. These groups

can be seen as in some sense the ‘building blocks’ for all algebraic groups, and they are fun-

damental in seeing the connections between algebraic groups, Lie algebras, and root systems.

Recall that a set in a topological space is called connected if it cannot be written as the

proper union of two or more disjoint, relative open subsets.

Definition 1.11. An algebraic group is called simple if it contains no reduced, normal,

closed, connected, nontrivial subgroup.
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As it turns out, there is a deep correspondence between simple algebraic groups over an

algebraically closed field k and root systems. A major goal of this section and the next is to

describe this correspondence.

A (linear) representation of a group G is a morphism of algebraic groups φ : G →
GL(V), where V is a finite dimensional k-vector space.

Such a representation of G amounts to a linear group action of G on V; indeed given a

representation ϕ a group action is defined by (g, v) 7→ ϕ(g)(v), which is linear in the second

argument. Conversely, given a linear group action ψ : G× V→ V the map

ϕ : G→ GL(V), ϕ(g) : v 7→ ψ(g, v)

is a representation of G.

Theorem 1.12. (Chevalley) Every affine algebraic group has a represenation which is in fact

an isomorphism between G and its image. In particular, for every linear algebraic group G

there exists a finite dimensional vector space V such that G is isomorphic to a closed subgroup

of GL(V).

Proof. See [11, Theorem 8.6].

2 Jordan-Chevalley Decomposition

Let V be a finite dimensional vector space over a ground field k.

Definition 2.1. An operator n ∈ End(V) is nilpotent if ns = 0 for some s ∈ N.

Definition 2.2. An operator s ∈ End(V ) is semisimple if its minimal polynomial has no

multiple roots. (Equivalently for k algebraically closed, s is diagonalizable.)

Definition 2.3. An operator u ∈ End(V) is unipotent if 1− u is nilpotent.

If k is a perfect field then the following results hold:

Lemma 2.4. For all x ∈ End(V) there exist unique xs, xn ∈ End(V) such that:

1. xs is semisimple, xn is nilpotent, x = xs + xn, and xsxn = xnxs,

2. there exist polynomials p, q with coefficients in k such that p(x) = xs and q(x) = xn,

3. if A,B are subspaces of V with A ⊆ B ⊆ V such that x(B) ⊆ A, then xs(B) ⊆ A and

xn(B) ⊆ A,
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4. if x, y ∈ End(V) such that xy = yx, then (x+ y)s = xs + ys and (x+ y)n = xn + yn.

Proof. See [11, Theorem 15.3].

Lemma 2.5. For all x ∈ GL(V), there exist xs, xu ∈ GL(V) such that:

1. xs is semisimple, xu is unipotent, and xsxu = xuxs = x.

2. there exist polynomials p, q with coefficients in k such that p(x) = xs and q(x) = xu,

3. if A,B are subspaces of V with A ⊆ B ⊆ V such that x(B) ⊆ A, then xs(B) ⊆ A and

xu(B) ⊆ A,

4. if x, y ∈ GL(V) such that xy = yx, then (xy)s = xsys and (xy)u = xuyu.

Proof. See [11, Theorem 15.3].

Definition 2.6. If the conditions for existence are met, xs is called the semisimple part

of x. Similarly, xn is called the nilpotent part of x and xu is called the unipotent part.

We wish to be able to apply these results to algebraic groups in a more general setting.

This can be achieved via a representation

G ↪→ GL(V).

There are two main difficulties involved here. Firstly, we wish to see that xs and xu are

in G when chosen in this manner. Secondly, we would hope that xs and xu are independent

of our choice of representation.

We begin by considering the map

ρ : G ↪→ GL(k[G]), ρ : x 7→ ρx

ρx : k[G]→ k[G], ρx : f(g) 7→ f(gx).

Of course, k[G] is an infinite dimensional vector space if dimG > 0, so to move forward

we need a way to talk about semisimple and nilpotent elements in an infinite dimensional

context.

Fact 2.7. For all x ∈ G(k), there exists a family of finite dimensional subspaces Wi ⊂ k[G]

with W0 ⊂ W1 ⊂ W2 ⊂ ... such that k[G] =
⋃
i Wi and ρx(Wi) = Wi for all i.

Definition 2.8. ρx is semisimple if ρx |Wi
is semisimple for all i.
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Definition 2.9. ρx is nilpotent if ρx |Wi
is nilpotent for all i.

Definition 2.10. ρx is unipotent if ρx − 1 is nilpotent.

As an embedding of G into GL(k[G]), the differential (see Proposition 1.6 in Chapter V)

of ρ also gives rise to an embedding

∗ : Lie(G) ↪→ End(k[G])

called the right convolution.

Theorem 2.11. (Jordan-Chevalley)

Let G be an algebraic group over a perfect field k. Then:

1. For all g ∈ G(k) there exist unique gs, gu ∈ G(k) such that g = gsgu = gugs, ρgs is

semisimple, and ρgu is unipotent. The element gs is called the semisimple part of g

and gu the unipotent part.

2. For all x ∈ Lie(G) there exist unique xs, xn ∈ Lie(G) such that x = xs + xn, xsxn =

xnxs, ∗xs is semisimple, and ∗xn is nilpotent.

3. If ϕ : G → G′ is a morphism of algebraic groups with g ∈ G(k), then ϕ(gs) = ϕ(g)s

and ϕ(gu) = ϕ(g)u.

Furthermore, for all x ∈ Lie(G) one has dϕ(xs) = dϕ(x)s and dϕ(xn) = dϕ(x)n.

Proof. See [11, Theorem 15.3] and remarks in section 34.2 relating to section 15.3.

3 Tori and Split Groups

The next portion of our discussion on algebraic groups will focus on tori, and the notion of

split groups and split tori. We begin by considering the case of GL(V), for some k-vector

space V.

A subset S of End(V) is called diagonalizable if there exists a basis of V in which every

element of S is diagonal, or equivalently given a fixed basis of V if there exists A ∈ GL(V)

such that AXA−1 is diagonal for all X ∈ S.
A subset S of End(V) is called triangularizable if there exists a basis of V such that

every element of S is triangular.

Proposition 3.1. Suppose k = ksep and M ∈ GL(V) is a set of commuting matrices, i.e.

XY = Y X for all X, Y ∈ S. Then M is triangularizable. Moreover, there exists a basis of V

such that every element of M is triangular and every semisimple element of M is diagonal.
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Proof. See §15.4 in [11].

Of course, the above proposition also implies that any set of commuting semisimple

elements is diagonalizable.

By D(V) we denote the set of all diagonal matrices in GL(V). An algebraic group is called

diagonalizable if it is isomorphic to a closed subgroup of D(V) for some vector space V.

Proposition 3.2. An algebraic group over G over ksep is diagonalizable if and only if it is

abelian and consists of semisimple elements.

Proof. See [11].

The abelian group Hom(G,Gm) is called the character group of G and is denoted by

X(G). Diagonalizable groups have important properties related to X(G). Observe that X(G)

has a natural interpretation as a subset of the set k[G] of all regular functions on G. Moreover,

X(G) is linearly independent over ksep as a subset of ksep[G] (see [11] Section 16.1.)

Definition 3.3. An algebraic group G is called a d-group if X(G) is a basis of ksep[G].

Of course since X(G) is a priori linearly independent, it suffices for G to be a d-group

that X(G) should form a system of generators for ksep[G].

Proposition 3.4. An algebraic group G is a d-group if and only if G is diagonalizable over

ksep.

Definition 3.5. A torus is a connected d-group. Equivalently, a torus is a group which is

isomorphic to a closed connected subgroup of Dn over ksep.

A torus T ⊆ G is called a maximal torus if there exists no torus S which is ‘larger’ in

the sense that T ( S ⊆ G.

Definition 3.6. Let G be a group and T ⊆ G a maximal torus. The rank of G is dimT .

The usefullness of studying maximal tori is due in large part to the following theorem.

Theorem 3.7. All maximal tori of a group G are conjugate when viewed over the separable

closure of the base field.

Proof. See [11].

In particular, all maximal tori have the same dimension, and so the rank of G is well-

defined.
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Proposition 3.8. If G is a d-group, then X(G) is a finitely generated group. Moreover, if

G is a torus then X(G) has no torsion, that is X(G) ' Zn for some natural number n.

Proof. See [11].

A torus T over k is called k-split if X(T ) spans k[T ]. In particular, this means the

characters are defined over k. As it turns out, a torus T is k-split if and only if it is isomorphic

over k to Gm × ...×Gm (see [11], Section 34.3.)

Definition 3.9. A reductive group G is called k-split if there exists a maximal torus T ⊂ G

which is k-split. (Reductive groups will be defined in the following section.)

Example 3.10. Consider the special linear group SLn,k ⊂ GLn,k consisting of n×n matrices

with entries in k and determinant 1. SLn,k is a reductive group.

Let T be the subgroup of SL(n, k) consisting of all n×n diagonal matrices with entries in

k and determinant 1.

Consider the map ϕ : T → Gm × ...×Gm (n− 1 factors) given by

D :=


d1

. . .

dn

 7→ (d1, ..., dn−1).

Since detD = 1 and thus dn = 1
d1...dn−1

, it is clear that ϕ is bijective and also that ϕ and its

inverse are given by regular functions. It is also easy to see that ϕ preserves multiplication,

and so ϕ is an isomorphism of algebraic groups.

This establishes that T is a split torus. We claim that T ⊂ SLn,k is a maximal torus, and

so SLn,k is a split algebraic group.

Indeed, suppose there exists some torus T ′ which lies between T and SLn,k, that is to say

T ⊆ T ′ ⊆ SLn,k. We wish to see that T and T ′ coincide.

Since T ′ is a torus it is diagonalizable, that is to say there exists some a ∈ SLn,k(k
sep) such

that T ′′ := aT ′a−1 is a closed subgroup of Dn. However T is by definition the intersection of

Dn with SLn,k, and so one has

T ′ ∼= T ′′ ⊆ T.

It then follows that

dimT ′ = dimT ′′ ≤ dimT

and so T ′ = T.

Since T is a split torus and now shown to be a maximal, SLn,k is by definition a split

group.
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Definition 3.11. Let f be an n-dimensional quadratic form over k. The orthogonal group

O(f) of f is the group of all linear transformations X ∈ GLn,k which preserve f . That is to

say,

O(f) = {X ∈ GLn,k | f(v) = f(Xv) for all v ∈ kn}.

Definition 3.12. The special orthogonal group SO(f) of f is the subgroup of O(f)

consisting of transformations with determinant equal to 1.

Proposition 3.13. Let f be a quadratic form over an infinite field k. The special orthogonal

group SO(f) of a quadratic form f is a split group if and only if f is a split (i.e. hyperbolic)

quadratic form.

Proof. Let dim f = 2n. Suppose f is a split quadratic form over k. Without loss of generality,

say

f(u1, v1, ..., un, vn) = u1v1 + ...+ unvn

where i = 1, ..., n. Let

T =





x1

x−1
1

. . .

xn

x−1
n



∣∣∣∣∣∣∣∣∣∣∣∣∣
x1, ..., xn ∈ k


.

It is clear that T is a split torus, in particular T ∼= Gm× ...×Gm (n factors.) We claim that

T ⊂ SO(f) is also a maximal torus.

First, let us check that T lies in SO(f). It is obvious that T consist of matrices with

determinant 1. Let w := (u1, v1, ..., un, vn). Then

f(T (w)) = f(u1x1, v1x
−1
1 , ..., unxn, vnx

−1
n )

= u1v1x1x
−1
1 + ...+ unvnxnx

−1
n

= u1v1 + ...+ unvn

= f(w),

so indeed T lies in SO(f).

Now, suppose T ′ is another torus in SO(f) such that

T ⊂ T ′ ⊂ SO(f).
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Since T ′ is abelian and T ⊂ T ′, one has that T ′ ⊂ CGL2n(T ). We claim that CGL2n(T ) = D2n.

One inclusion is obvious, since T ⊂ D2n and D2n is abelian. On the other hand suppose

y ∈ CGL2n(T ), that is to say for all

x :=



x1

x−1
1

. . .

xn

x−1
n


∈ T

one has yxy−1 = x. Equivalently, x−1yx = y.

Let y ∈ GL2n and suppose by way of contradiction that there exist some indices i, j such

that yij 6= 0, i.e. y /∈ D2n. Then there exists some t ∈ T such that tii 6= tij. Computation will

show that (x−1yx)ij = x−1
ii yijxjj 6= yij, thus we have T ′ ⊂ CGL2n(T ) = D2n.

We now claim that T = D2n ∩ SO(f). Indeed, suppose

A :=


a1

. . .

a2n

 ∈ D2n ∩ SO(f)

with a1, ..., an ∈ k and consider f as a quadratic form over a pure transcendental extension

k(z) := k(z1, ..., z2n).

One has

f(A(z1, ..., z2n)) = f(z1, ..., z2n) = z1z2 + ...+ z2n−1z2n.

On the other hand,

f(A(z1, ..., z2n)) = f(a1z1, ..., a2nz2n)

= a1a2z1z2 + ...+ a2n−1a2nz2n−1z2n

and so for all i = 1, ..., n we have a2na2n−1 = 1, that is to say A ∈ T.
This shows that Dn,k(z) ∩ SO(fk(z)) ⊆ Tk(z) and so T is a maximal torus, thus SO(f) is

split.

Conversely, suppose SO(f) is a split group with split maximal torus T . We proceed by

induction on n.
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Suppose n = 1, then f is split (hyperbolic) if and only if f is isotropic. Since T ∼= Gm

we may choose t ∈ T (k) to be of infinite order. Then there exists an eigenvalue a of t with

infinite order. Let v be a corresponding eigenvector, i.e. t(v) = av. Then since t ∈ SO(f)

f(v) = f(t(v)) = f(av) = a2f(v).

Since a is of infinite order a2 6= 1 and so v must be an isotropic vector, thus f is hyperbolic.

Now let n be arbitrary. By induction, f has a 2n − 2-dimensional subform f ′ which is

hyperbolic, say

f = g ⊕ f ′.

Then g has dimension 2 and so by the argument above is hyperbolic.

4 Reductive, Semisimple and Simple Algebraic Groups

Recall that a topological space T is called irreducible if T cannot be written as the union

of two closed subsets ∅ 6= U, V ( T.

Theorem 4.1. An algebraic variety X has finitely many maximal, irreducible subspaces.

They are called the irreducible components of X.

Proof. See [11].

Of course, the above result also applies to algebraic groups.

Corollary 4.2. Let G be an algebraic group with identity element e. Then there is a unique

irreducible component G◦ of G which contains e. It is called the identity component of G.

Recall that for any (abstract) group G the commutator of two elements x, y ∈ G is

defined as (x, y) := xyx−1y−1. If A,B < G are closed subgroups we define

(A,B) := 〈{(x, y) | x ∈ A, y ∈ B}〉 < G.

In general this is a subgroup, but need not be closed, as demonstrated by the following

example, taken from [11], Exercise 7.10.

Example 4.3. Let G = GL2,C with a =

[
1 0

0 −1

]
and b =

[
1 1

0 −1

]
Let A = 〈a〉, B = 〈b〉.
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Both a and b have order 2, thus A and B are closed. However, computation will show that

〈A,B〉 =

{[
1 n

0 1

]
| n ∈ N

}
,

which is not a closed subgroup.

However, certain conditions on the groups A and B guarantee that a commutator sub-

group is closed.

Proposition 4.4. Let G be an algebraic group with closed subgroups A,B < G.

1. If A is connected then (A,B) is closed and connected.

2. If A and B are normal subgroups of G, then (A,B) is a closed normal subgroup of G.

Proof. See [11, Proposition 17.2].

Note that the above result immediately implies that for any algebraic group G, the com-

mutator subgroup (G,G) of G is a closed normal subgroup.

Definition 4.5. Let G be an algebraic group. The derived series of G is a sequence of

closed normal subgroups defined in the following manner:

D0G = G,

Di+1G = (DiG,DiG).

Definition 4.6. An algebraic group G is solvable if there exists some natural number n ∈ N
such that DnG = {e}. (Therefore also DmG = {e} for all m ≥ n.)

Definition 4.7. The radical of an algebraic group G is the unique maximal, normal, solv-

able, connected subgroup of G, denoted R(G).

Definition 4.8. The subgroup of R(G) comprising its unipotent elements is called the unipo-

tent radical of G and is denoted Ru(G).

Definition 4.9. A group G is called semisimple if G is connected and nontrivial, with

R(G) = {e}.

Definition 4.10. A group G is called reductive if G is connected and nontrivial, with

Ru(G) = {e}.
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Definition 4.11. A semisimple group G is called simple if G contains no nontrivial proper,

closed, connected, normal subgroup e 6= H / G.

Clearly, all simple groups are semisimple, and all semisimple groups are reductive. The

converse statements are not true.

Proposition 4.12. The special linear group SLn,k is simple.

Proof. Without loss of generality we assume that k is separably closed. Suppose by way of

contradiction there exists some proper normal subgroup Nk / SLn,k satisfying the conditions

of Definition 4.11. That is to say Nk is nontrivial, connected, closed, and normal in SLn,k.

Taking k points of N , we still have a proper normal subgroup N(k)/G := SL(n, k). Abusing

notation, we will denote N(k) by N .

Let us first ascertain that N contains at least one nontrivial semisimple element. Suppose

by way of contradiction that there are no nonidentity semisimple elements in N . Then by

Theorem 2.11, N consists of unipotent elements.

It is known that any group consisting of unipotent matrices is upper triangularizable, i.e.

there exists some a ∈ G such that

aNa−1 ⊆ U :=

X :=


1 ∗

. . .

0 1


∣∣∣∣∣∣∣∣X ∈ G

 .

Moreover, N is by assumption normal, thus one has

N = aNa−1 ⊆ U.

On the other hand there exists a matrix b ∈ G, namely

b = α


0 0 1

0 . .
.

0

1 0 0


where α is a scalar such that αn = (−1)n+1, such that for any upper triangular matrix u, the

conjugation bub−1 of u by b is lower triangular. (To see this, one may first note that b−1 = b

and then compute (bub−1)ij = bn−i,n−j.)

Since N is nontrivial we may choose a nonidentity element u ∈ N . By the above remarks,

bub−1 is a nonidentity lower triangular matrix, in particular bub−1 /∈ N . However N is

76



assumed to be normal in G, which gives a contradiction. Thus N contains at least one

semisimple element other than 1.

We claim next that N necessarily contains a semisimple element g ∈ N which is of infinite

order.

Consider first the case where N ∩Dn is infinite. Note that this is a closed subgroup of G.

Then its connected component (N ∩Dn)◦ is nontrivial, since the connected component of a

group has finite index. In particular, (N ∩Dn)◦ is a torus of dimension at least one, i.e.

(N ∩Dn)◦ ∼= Gm × ...×Gm.

As such it is clear that (N ∩Dn)◦ contains many elements of infinite order, and by extension

so does N ∩Dn. Since every element of Dn is semisimple, we may say that N has semisimple

elements of infinite order.

In fact, it turns out that this is the only case. Suppose by way of contradiction that

N ∩Dn is finite, say

N ∩Dn = {d1, ..., ds}, s ∈ N.

Let Ni be the conjugacy class in N of di for all i = 1, ..., s,

Ni := {xdix−1 | x ∈ N}.

It is known that the conjugacy class of any semisimple element in a group is closed, so each

Ni is closed in N . Furthermore, each Ni is a proper subset of N . To see this, one notes that

if di 6= 1 then 1 /∈ Ni so Ni is a proper subset of N , while if di = 1 then Ni = {1} which is a

proper subset since N is by assumption nontrivial.

Since N is irreducible as a variety it cannot be written as a finite union of closed subva-

rieties, in particular

N ′ :=
s⋃
i=1

Ni 6= N.

Now observe that by construction N ′ consists of all semisimple elements in N , since for a

matrix to be semisimple means exactly for it to be contained in the conjugacy class of a

diagonal matrix. To restate, one has

N ′ = Nss := {s ∈ N | s is semisimple}.

It is known that since Nss is nontrivial, it contains an open (in N) subset U which is

dense in N , i.e. N = U ⊆ Nss. On the other hand, one has Nss = N ′ ( N, which provides
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our contradiction.

Now that we know (N ∩ Dn)◦ is a torus of positive dimension, that is (N ∩ Dn)◦ ∼=
Gm × ...×Gm, let us choose an injection

ϕ : Gm × 1× ...× 1 ↪→ N.

For ease of notation will write Gm instead Gm × 1...× 1 using the obvious identification. It

is known that any homomorphism Gm → Dn takes the form

x 7→


xm1

. . .

xmn


for some integers mi. Let us choose t ∈ Gm of infinite order, and consider

g := ϕ(t) =


tm1

. . .

tmn

 .
Since ϕ is an injection, g again has infinite order. In particular g 6= 1. Since t has infinite

order and tm1+...+mn = det(g) = 1, we may conclude that g is not a scalar matrix. Without

loss of generality, say m1 6= m2.

Let

A :=


1 1

0 1
. . .

1

 .
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One may compute

tq =


tq×m1

. . .

tq×mn



A−1 =


1 −1

0 1
. . .

1



A′q := tqAt−qA−1 =


1 tq×(m1−m2) − 1

0 1
. . .

1

 .

Since N is normal it contains A′q for all natural numbers q.

Notice that for all integers q 6= r one has A′q 6= A′r, since given A′q = A′r we would have

(seeing as t has infinite order)

tq×(m1−m2)−1 = tr×(m1−m2)−1q × (m1 −m2)− 1 = r × (m1 −m2)− 1q = r.

In particular, there are infinitely many distinct matrices A′q ∈ N .

Since N is closed, it thus also contains

{A′i | i ∈ N} =




1 x

0 1
. . .

1


∣∣∣∣∣∣∣∣∣∣

x ∈ k

 =: E1,2(k).

To see that the closure of the set containing each A′i is indeed E1,2(k), note that E1,2(k)

is isomorphic as a variety to the affine line over k. Consequentially, any infinite subset of

E1,2(k) is dense.

By choosing instead
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A :=


1 0

1 1
. . .

1

 .
and using the analagous arguments one has E2,1(k) ⊂ N.

For all integers i 6= j, i, j = 1, ..., n and for all λ ∈ k, let Ei,j(λ) denote the matrix with

ones on the main diagonal, λ at the i, j-th entry, and zeros elsewhere. Then one has

E1,i(λ) = E1,2(λ)E2,i(1)E1,2(λ)−1E2,i(1)−1.

Since E1,2(λ) ∈ N , E2,i(1) ∈ SL(n, k), and N / SL(n, k), we have E1,i(λ) ∈ N for all integers

i and for all λ ∈ k. Analagously we have Ei,1(λ) ∈ N for all integers i and for all λ ∈ k.

We now claim that matrices of such a form generate SL(n, k) multiplicatively. It is

well known that SL(n, k) is generated by the set of all elementary matrices Ei,j(λ), where

i, j = 1, ..., n and λ ∈ k such that i 6= j. One may compute

Ei,j(λ) = Ei,1(λ)E1,j(1)Ei,1(−λ)E1,j(−1),

and so indeed these matrices generate SL(n, k). Therefore, N = SL(n, k), and the proof is

complete.

Example 4.13. The special orthogonal group SO(f) of a quadratic form f is a simple group.

Proof. See [11].
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CHAPTER V

Lie Algebras

1 Lie Algebra of an Algebraic Group

Given any algebraic group G we may attach in a canonical way a Lie algebra, Lie(G).

The study of these Lie algebras can reveal much about the corresponding groups. Our next

objective moving forward is to describe this process.

Recall first the definition of a Lie algebra.

Definition 1.1. A Lie algbera is a vector space L over some ground field k, together with

a binary operation [−,−] : L × L → L called the Lie bracket, which satisfies the following

conditions for all X, Y, Z ∈ L.

1. The map [−,−] is bilinear.

2. [X, Y ] = −[Y,X].

3. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

A subalgebra S of a Lie algebra L is a subspace of L which is closed under the Lie

bracket, that is for all X, Y ∈ S, one has [X, Y ] ∈ S.
We want Lie(G) to be the tangent space of G at e. The ring k[G] has a maximal ideal

M := {f ∈ k[G] | f(e) = 0}.

The tangent space of G at e is given by Tane(G) := (M/M2)∗, where (M/M2)∗ denotes the

vector space dual ofM/M2, that is the space consisting of all linear maps φ :M/M2 → k.

Note that k[G] is equal as a vector space to M⊕ k.
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Now that we know how our Lie algebra ought to look, we need to give Tane(G) the

structure of a Lie algebra. To do so we introduce another vector space, Dere(G) - the set of

all differentials of G at e.

Definition 1.2. A differential is a linear map δ : k[G] → k such that for all f, g ∈ k[G],

δ(fg) = δ(f)g(e) + f(e)δ(g).

Dere(G) is a subspace of k[G]∗, the vector space dual of the regular functions over k.

Moreover, we claim that for all δ ∈ Dere(G), the following are true:

1. For any constant function f ∈ k[G], δ(f) = 0.

2. For all g ∈M2, δ(g) = 0.

The first part follows from the observation that

δ(1) = δ(1 · 1) = δ(1) · 1 + δ(1) · 1 = δ(1) + δ(1).

The second is true because for all g, h ∈M,

δ(gh) = δ(g)h(e) + g(e)δ(h) = δ(g) · 0 + 0 · δ(h) = 0.

Now, since k[G] ∼=M⊕k, the differential δ is well-defined as a mapM→ k. Furthermore

since δ vanishes on M2 it is also has a natural definition as a linear map M/M2 → k, or

in other words as an element of Tane(G). The following proposition is a fundamental fact in

the study of algebraic groups.

Proposition 1.3. The above correspondence between Dere(G) and Tane(G) is a vector space

isomorphism.

It remains to give this vector space a Lie algebra structure. We define the Lie bracket on

Dere(G) by setting

[δ1, δ2] = δ1δ2 − δ2δ1

for all δ1, δ2 ∈ Dere(G). One checks first that [δ1, δ2] is a differential under this definition.

Indeed, for all f, g ∈ k[G] one has

[δ1, δ2](fg) = δ1δ2(fg)− δ2δ1(fg)

= δ1(δ2(f)g(e) + f(e)δ2(g))− δ2(δ1(f)g(e) + f(e)δ1(g))

= δ1δ2(f)g(e) + f(e)δ1δ2(g)− δ2δ1(f)g(e)− f(e)δ2δ1(g)

= [δ1, δ2](f)g(e) + f(e)[δ1, δ2](g).
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Now, observe that for all δ1, δ2 ∈ Dere(G) one has

[δ1, δ2] + [δ2, δ1] = δ1δ2 − δ2δ1 + δ2δ1 − δ1δ2 = 0,

and so that condition 2 of Definition 1.1 holds. For all δ1, δ2, δ3 ∈ Dere(G) one checks

condition 3 as follows:

[δ1, [δ2, δ3]] + [δ3, [δ1, δ2]] + [δ2, [δ3, δ1]] = [δ1, δ2δ3 − δ3δ2] + [δ3, δ1δ2 − δ2δ1] + [δ2, δ3δ1 − δ1δ3]

= δ1(δ2δ3−δ3δ2)−(δ2δ3−δ3δ2)δ1+δ3(δ1δ2−δ2δ1)−(δ1δ2−δ2δ1)δ3+δ2(δ3δ1−δ1δ3)−(δ3δ1−δ1δ3)δ2

= δ1δ2δ3−δ1δ3δ2−δ2δ3δ1+δ3δ2δ1+δ3δ1δ2−δ3δ2δ1−δ1δ2δ3+δ2δ1δ3+δ2δ3δ1−δ2δ1δ3−δ3δ1δ2+δ1δ3δ2

= 0.

Furthermore, it is straightforward to see that this map is bilinear (condition 1,) so this

operation does indeed satisfy the properties of a Lie bracket. The vector space Dere(G)

together with this definition of a Lie bracket is called the Lie algebra of G, and is denoted

by Lie(G).

There is a special representation ofG called the adjoint representation, which is defined

using this Lie algebra. Let G be an algebraic group with L := Lie(G) it’s Lie algebra. Let

W be a vector space over some ground field k such that there is an embedding G ↪→ GL(W)

(recall that the existence of such a vector space W is guaranteed by Theorem 1.12.) We will

view this as an identification. The Lie algebra L is then a subset of End(W), and so we have

a well defined notion of multiplication between elements of G and L in End(W).

Definition 1.4. The adjoint representation of G is the map Ad : G → GL(L) given by

Ad(g) : X 7→ gXg−1. The Lie algebra L is stable under conjugation by G, and so Ad(g)(X) ∈
L for all g ∈ G, X ∈ L (see [11], Section 10.3 Definition 1.4.)

The adjoint representation will prove useful in attaching to each simple algebraic group

a root system.

Proposition 1.5. Let G be a semisimple group. The kernel of the adjoint representation

Ad : G → GL(L) is the center Z(G) of G. In other words, an element g ∈ G is central if

and only if it acts trivially on L by conjugation.

Proof. See [4], Section 3.15.
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Proposition 1.6. Given a morphism of algebraic groups

ϕ : G→ G′,

the map ϕ induces a morphism of the corresponding Lie algebras called differential of ϕ

and denoted

dϕ : Lie(G)→ Lie(G′).

Proof. See [11, Section 5.4].

2 Killing Forms and the Chevalley Basis

Let L be a finite dimensional Lie algebra over k. There is an endomorphism of L associated

to each element x ∈ L called the adjoint endomorphism of x, and denoted ad(x). The

endomorphism is given by

ad(x) : y 7→ [x, y].

Proposition 2.1. Let L be a finite dimensional Lie algebra over k. Then the map

K : L × L → k

K : (x, y) 7→ tr(ad(x)ad(y))

is a symmetric bilinear form called the Killing form of L.

Recall that a subalgebra H of L is a Cartan subalgebra if H is nilpotent and equal to

its own normalizer, that is

H = {x ∈ L | [x,H] ⊆ H}.

Definition 2.2. A semisimple (simple) Lie algebra L over k is split if L contains a Cartan

subalgebra H such that for all x ∈ H, the adjoint representation ad(x) of x is k-diagonalizable.

Such a subalgebra is called a split Cartan subalgebra of L.

If H is split then there exists a basis of L consisting of eigenvectors u1, ..., um of ad(H) ⊆
End(L), where m = dim(L). Then for all i = 1, ...,m there exists a linear function αi in

H∗ = Hom(H, k) such that

ad(h)(ui) = αi(h)ui

for all h ∈ H.
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Definition 2.3. The functions αi above are called weights of H and the one-dimensional

subspaces 〈ui〉 are called the weight subspaces of H.

It is known that the nonzero weights αi form a root system R := {α1, ..., α`} called the

root system R of L relative to H.
Due to a famous result by Chevalley (see Theorem 2.4 below) the root system R is

independent of the choice of a split Cartan subalgebra H. Therefore if we say L is of a

certain type (e.g. L is of type D4) we mean that R is of that type, and this notion is

well-defined.

Theorem 2.4. (Chevalley) Over a separably closed field, all split Cartan subalgebras are

conjugate.

An important result due to Steinberg [20] shows that if L is a Lie algebra with H a split

Cartan subalgebra, then L has a basis B of the form

B = {Hα1 , ..., Hαn} ∪ {Xα | α ∈ R}

where {α1, ..., αn} is a base of R, which satisfies the following relations for all α, β ∈ R and

for all i, j = 1, ..., n:

1. [Hαi , Hαj ] = 0.

2. [Hαi , Xα] = 〈α∗, αi〉Xα.

3. If α = −β then [Xα, Xβ] = Hα where Hα is an integral combination of the roots Hαi ,

and furthermore if all roots have the same length then

Hα :=
∑

i=1,...,n

aiHαi

with a1, ..., an being the unique integers such that∑
i=1,...,n

aiαi = α.

4. If α + β ∈ R then

[Xα, Xβ] = ±(r + 1)Xα+β

where r is the unique positive integer such that

α + rβ ∈ R, α + (r + 1)β /∈ R.
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5. If α 6= −β and α + β /∈ R then

[Xα, Xβ] = 0.

Definition 2.5. The basis of L described above is called a Chevalley basis.

Now, suppose L is a split simple Lie algebra of type D4, D8, or E8 and H is a split Cartan

subalgebra of L with basis B as given above. The Killing form K is a symmetric bilinear

form, which by remarks in Chapter 1 we may also view as a quadratic form

K(x) := K(x, x).

We wish to compute the quadratic space (L,K).

Proposition 2.6. Let H := Spank{Hα1 , ..., Hαn}. Then

(L,K) ∼= (H,K |H)⊕
⊕
α∈R+

(4ȟxy)

where ȟ is the dual Coxeter number, which is an integer dependent on the type of the root

system R.

If R is of type Dn then ȟ = 2n−2. If R is of type E8 then ȟ = 30. These are the examples

with which we will be concerned.

Proposition 2.6 is a direct consequence of the four lemmas which follow.

Lemma 2.7. For all i = 1, ..., n and for all α ∈ R, one has

K(Xα, Hαi) = 0.

Proof. Observe that for all X, Y ∈ L, to show that K(X, Y ) = 0 it suffices to show that the

diagonal entries of the operator ad(X) ◦ ad(Y ) are all zero. That is to say, for all i = 1, ..., n

and for all α ∈ R:

1. One may write ad(X) ◦ ad(Y )(Hαi) as a linear combination of elements of B excluding

Hαi .

2. One may write ad(X) ◦ ad(Y )(Xα) as a linear combination of elements of B excluding

Xα.

This fact will henceforth be used without mention.
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Now let us make the relevant computations. Let j = 1, ..., n and let β ∈ R.

ad(Xα) ◦ ad(Hαi)(Hαj) = [Xα, [Hαi , Hαj ]]

= [Xα, 0]

= 0.

If α = −β then

ad(Xα) ◦ ad(Hαi)(Xβ) = [Xα, [Hαi , Xβ]]

= [Xα, 〈β∗, αi〉Xβ]

= 〈β∗, αi〉[Xα, Xβ]

= 〈β∗, αi〉Hα.

If α + β ∈ R then

ad(Xα) ◦ ad(Hαi)(Xβ) = [Xα, [Hαi , Xβ]]

= [Xα, 〈β∗, αi〉Xβ]

= 〈β∗, αi〉[Xα, Xβ]

= ±〈β∗, αi〉(r + 1)Xα+β.

where r is as given in the properties of the Chevalley basis.

Finally, if α 6= −β and α + β /∈ R, then

ad(Xα) ◦ ad(Hαi)(Xβ) = [Xα, [Hαi , Xβ]]

= [Xα, 〈β∗, αi〉Xβ]

= 〈β∗, αi〉[Xα, Xβ]

= 0.

Lemma 2.8. For all α, β ∈ R such that α 6= ±β one has

K(Xα, Xβ) = 0.

87



Proof. Let γ ∈ R. If γ 6= −β and β + γ /∈ R then

ad(Xα) ◦ ad(Xβ)(Xγ) = [Xα, [Xβ, Xγ]]

= [Xα, 0]

= 0.

If γ = −β then

ad(Xα) ◦ ad(Xβ)(Xγ) = [Xα, [Xβ, Xγ]]

= [Xα, Hβ]

=
∑

i=1,...,n

bi[Xα, Hα1 ]

where b1, ..., bn are the unique integers such that∑
i=1,...,n

biαi = β.

Lastly, if β + γ ∈ R then

ad(Xα) ◦ ad(Xβ)(Xγ) = [Xα, [Xβ, Xγ]]

= [Xα,±(r + 1)Xβ+γ]

= ±(r + 1)[Xα, Xβ+γ].

where r is as given in the properties of the Chevalley basis.

Now, if α + β + γ ∈ R one has

±(r + 1)[Xα, Xβ+γ] = ±(r + 1)(s+ 1)Xα+β+γ

where s is the unique positive integer such that α + s(β + γ) is in R but α + (s+ 1)(β + γ)

is not. Since β 6= −γ it holds that α 6= α + β + γ and so the corresponding entry of the

diagonal is zero.

If −α = β + γ then

±(r + 1)[Xα, Xβ+γ] = ±(r + 1)Hα
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where Hα is defined analagously to Hβ.

If −α 6= β + γ and α + β + γ /∈ R then

±(r + 1)[Xα, Xβ+γ] = 0.

Now, we let i = 1, ..., n and compute

ad(Xα) ◦ ad(Xβ)(Hαi) = [Xα, [Xβ, Hαi ]]

= [Xα,−〈β∗, αi〉Xβ]

= −〈β, αi〉∗[Xα, Xβ].

Recall that we are working under assumption α 6= −β. If α + β ∈ R then

−〈β∗, αi〉[Xα, Xβ] = ±〈β∗, αi〉(r + 1)Xα+β.

On the other hand, if α + β /∈ R then

−〈β∗, αi〉[Xα, Xβ] = 0.

Lemma 2.9. For all α ∈ R, one has

K(Xα) := K(Xα, Xα) = 0.

Proof. Let β ∈ R. Suppose first that β 6= −α and α + β /∈ R. Then

ad(Xα) ◦ ad(Xα)(Xβ) = [Xα, [Xα, Xβ]]

= [Xα, 0]

= 0.
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Now, suppose α = −β. Then

ad(Xα) ◦ ad(Xα)(Xβ) = [Xα, [Xα, Xβ]]

= [Xα, Hα]

=
∑

i=1,...,n

ai[Xα, Hαi ]

= −
∑

i=1,...,n

ai〈α, αi〉Xα.

Finally, suppose α + β ∈ R. Then

ad(Xα) ◦ ad(Xα)(Xβ) = [Xα, [Xα, Xβ]]

= [Xα, Xα+β]

= ±(r + 1)[Xα, Xα+β].

If −α = α + β (equivalently 2α = −β) then

±(r + 1)[Xα, Xα+β] = ±(r + 1)Hα.

If 2α + β ∈ R then

±(r + 1)[Xα, Xα+β] = ±(r + 1)(s+ 1)X2α+β,

and of course X2α+β 6= Xβ. If 2α 6= −β and 2α + β /∈ R then

±(r + 1)[Xα, Xα+β] = 0.

Now, let i = 1, ..., n. Then

ad(Xα) ◦ ad(Xα)(Hαi) = [Xα, [Xα, Hαi ]]

= −〈α∗, αi〉[Xα, Xα]

If 2α ∈ R then

−〈α∗, αi〉[Xα, Xα] = −〈α∗, αi〉(r + 1)X2α,
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otherwise

−〈α∗, αi〉[Xα, Xα] = 0.

Remark: Note that some of the cases above cannot in fact occur if L is of type D4, D8,

or E8. However, the preceding lemmas hold for every type of root system, and as such have

been proven without use of that assumption. The following lemma, on the other hand, holds

only for root systems in which every root has equal length.

Lemma 2.10. For all α ∈ R,
K(Xα, X−α) = 2ȟ.

Proof. It was shown by Springer and Steinberg in [19] that for any long root α ∈ R

K(Hα, Hα) = 4ȟ,

and also that for any long root α

K(Xα, X−α) =
1

2
K(Hα, Hα).

With these lemmas established, Proposition 2.6 follows immediately. To render the com-

putations more straightforward, we choose to consider the normalized Killing form

K′(x) :=
1

4ȟ
K(x).

From Proposition 2.6 it is immediately clear that

(L,K′) ∼= (H,K′ |H)⊕
⊕
α∈R+

H.

Of course, in the Witt ring this means that the unique anisotropic space representing the

class of (L,K′) is (H,K′ |H).

Now, let us proceed to compute the form (H,K′ |H). It is known that for all i, j = 1, ..., n

K(Hαi , Hαj) = 2ȟ(α′i, α
′
j)
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where α′i = 2αi
(αi,αj)

so that (−′,−′) is the unique Weyl-invariant inner product such that for

all long roots α (which includes every root in D4, D8, and E8) one has (α′, α′) = 2.

Normalizing, one has K′(Hαi , Hαj) = 1
2
(α̌i, α̌j). So if αi and αj are non-adjacent with

i 6= j, then K′(Hαi , Hαj) = 0 and if i = j then K′(Hαi , Hαj) = 1.

Furthermore, for root systems D4, D8, and E8 one has for adjacent roots

K′(Hαi , Hαj) =
1

2
(α̌i, α̌j)

=
1

2

(
2αi

(αi, αi)
,

2αj
(αj, αj)

)
=

1

2

(
2αi
2
,
2αj
2

)
=

1

2
(αi, αj)

= −1

2

(see [16, Section V.7].)

Proposition 2.11. Suppose L is split of type D4. Then

(H,K′ |H) ∼= 〈1, 1, 1, 1〉.

In particular if −1 is a square, then (L, K ′) is a hyperbolic space.

Proof. One has R = {α1, α2, α3, α4} with α2 adjacent to all other roots, and α1, α3, α4 all

pairwise non-adjacent. Furthermore,

(α1, α2) = (α2, α3) = (α2, α4) = −1.

Let x = Hα1x1 +Hα2x2 +Hα3x3 +Hα4x4 and consider

K′(x) = K′(x, x)

= x2
1 + x2

2 + x2
3 + x2

4 − x1x2 − x2x3 − x2x4.

Now consider the invertible linear replacement of variables

w1 = x1 −
x2

2
w2 =

x2

2

w3 = x3 −
x2

2
w4 = x4 −

x2

2
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so that

K′(x) = w2
1 + w2

2 + w2
3 + w2

4.

The result can be generalized as follows:

Proposition 2.12. Suppose L is split of type Dn with n ≥ 4. Then

(H,K′ |H) ∼= 〈1, 1〉 ⊕ 〈
1

2
, ...,

1

2
〉.

Proof. As before, let x =
∑n

i=1 = xiHαi . Direct substitution leads to the normalized Killing

form

K′(x) = x2
1 + · · ·+ x2

n − x1x2 − · · · − xn−2xn−1 − xn−2xn.

Now let

wn−1 = xn−1 −
1

2
xn−2 wn = xn −

1

2
xn−2

so that

K′(x) = x2
1 + . . . x2

n−3 +
1

2
x2
n−2 − x1x2 − · · · − xn−3xn−2 + w2

n−1 + w2
n

=
1

2
(2x2

1 + . . . 2x2
n−3 + x2

n−2 − 2x1x2 − . . . 2xn−3xn−2) + w2
n−1 + w2

n

=
1

2
(x2

1 + (x1 − x2)2 + · · ·+ (xn−3 − xn−2)2) + w2
n−1 + w2

n.

Now we make the replacement of variables

w1 = x1 wi = wi−1 − wi, i = 2, . . . , n− 2

and one has

K′(x) =
1

2
(w2

1 + · · ·+ w2
n−2) + w2

n−1 + w2
n.

Notice that the above two propositions imply that the quadratic forms 〈1, 1, 1, 1〉 and

〈1, 1, 1
2
, 1

2
〉 are equivalent. This motivates the following lemma:

Lemma 2.13. For all a ∈ k, one has

〈a, a〉 ∼= 〈2a, 2a〉.
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Proof. Let f(x) = 2ax2
1 + 2ax2

2 and let

w1 = x1 + x2 w2 = x1 − x2.

Then

aw1 + aw2 = a((x1 + x2)2 + (x1 − x2)2)

= a(2x2
1 + 2x2

2)

= f(x).

One may also prove this lemma directly from the observation that

〈1, 1, 1, 1〉 = 〈1, 1, 1

2
,
1

2
〉

using Witt’s Cancellation Theorem (see Theorem 1.24.)

Corollary 2.14. Suppose L is split of type Dn with n ≥ 4. If n is even then

(H,K′ |H) ∼= 〈1, . . . , 1〉.

In particular, if n is even and −1 is a square then L is hyperbolic.

If n is odd, then

(H,K′ |H) ∼= 〈
1

2
〉 ⊕ 〈1, . . . , 1〉.

Proposition 2.15. Suppose L is a split Lie algebra of type E8. Then

(H,K′ |H) ∼= 〈1, 1, 1, 3, 3, 6, 10, 15〉.

Proof. Let x = x1Hα1 + · · ·+ x8Hα8 . Direct substitution leads to the Killing form

K′(x) =x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8

x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x5x7 + x5x8.
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We then make the substitution of variables

w1 = x1 −
1

2
x2 w2 =

1

2
x2 −

1

3
x3

w3 =
1

3
x3 −

1

4
x4 w4 =

1

4
x4 −

1

5
x5

w5 =
1

30
x5 w6 = x6 −

1

2
x5

w7 =
1

3
x5 −

1

2
x7 w8 = x8 −

1

2
x7

and one may check that

K′(x) = w1 + 3w2 + 6w3 + 10w4 + 15w5 + w6 + 3w7 + w8.

Corollary 2.16. If L is a split Lie algebra of type E8 over a field k, and −1 is a square in

k, then (H,K′ |H) is a hyperbolic space.

Proof. If −1 is a square, then {3, 3} is hyperbolic, so

(H,K′ |H) ∼= H⊕H⊕ 〈1, 6, 10, 15〉.

Note that the 3-dimensional form 〈6, 10, 15〉 represents 1, so by 1.17 there exist a, b ∈ k such

that 〈6, 10, 15〉 ∼= 〈1, a, b〉. Moreover,

d(〈6, 10, 15〉) = d(〈1, a, b〉) ∈ (k/k2),

and since d(〈6, 10, 15〉) is square, one has ab ∈ k2. In particular, 〈a, b〉 ∼= 〈a, a〉 and so

〈1, 6, 10, 15〉 ∼= H⊕H.

3 Killing Forms of Twisted Lie Algebras

Let G be a split simply connected simple group. Then G has a split maximal torus T ∼=
Gm× ...×Gm. Let N be the normalizer of T in G (one has T ⊆ N ⊆ G.) Then H := Lie(T )

is a split Cartan subalgebra of L := Lie(G). Let Σ be a root system for L relative to H.
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Then the Weyl group W of Σ is isomorphic to the quotient N/T . It is shown in [7] that if

the element −1 ∈ Aut(Σ) lies in W (as is the case for groups of type D4, D8, and E8,) then

there exists a lifting w0 of the element −1 ∈ W to N , such that w0 has order 2 and for all

t ∈ T one has w0tw
−1
0 = t−1 (see [11], Section 27.1.)

Recall that L has the form

L = H ⊕
⊕
α∈Σ

〈Xα, X−α〉.

The action of w0 on L by conjugation can be described on these parts - for h ∈ H one has

w0(h)w−1
0 = −h.

Proposition 3.1. For all α ∈ Σ one has w0(Xα)w−1
0 = cαX−α for some cα ∈ k.

Proof. Suppose t is an element of T (ksep) and consider the conjugation of w0Xαw
−1
0 by t.

One finds

t(w0Xαw
−1
0 )t−1 = w0w

−1
0 tw0Xαw

−1
0 t−1w0w

−1
0

= w0t
−1Xαw0t

−1w−1
0 w−1

0

= w0t
−1Xαtw

−1
0

= w0α(t−1)Xαw
−1
0

= −α(t)w0Xαw
−1
0 .

In other words, for all t ∈ T , the element w0Xαw
−1
0 is an eigenvector of Ad(t) with weight

−α(t) and therefore lies in the one dimensional eigenspace X−α.

Now consider a ground field k and an element d ∈ k which is not a square. Let `/k be

the quadratic extension ` := k(
√
d), and let

Γ := Gal(`/k) = {1, σ}

where σ is the unique nontrivial element of Γ which maps
√
d 7→ −

√
d. Consider the cocycle

ζ = (aτ ) ∈ Z1(k/`,G(`)) given by

a1 = 1, aσ = w0(t)

where t is any element in T (k).To see that ζ is in fact a cocycle, one checks that

aτ1τ2 = aτ1τ1(aτ2)
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for all τ1, τ2 ∈ Γ. If τ1 or τ2 are 1, this is trivial. In the remaining case we have

aσσ(aσ) = (w0t)σ(w0t)

= (w0t)(w0t)

= (w0tw
−1
0 )t

= t−1t

= 1 = a1 = aσσ.

Consider the Lie algebra L together with the twisted action of Γ by ζ on L. As per

Theorem 6.6, the subalgebra ζL of elements invariant under the twisting action, together

with the restriction of the Killing form to that subalgebra, is a k-form of (L,K).

Let us proceed to compute this invariant subspace, which we denote by L∗Γ` .

Proposition 3.2. The subalgebra H is stable with respect to the twisted action, as are the

two-dimensional subspaces 〈Xα, X−α〉 for all α.

Proof. Each of these pieces is known to be stable under the standard action, and so it suffices

to show that they are stable with respect to conjugation by aσ = w0t.

Note that for all α ∈ Σ one has

w0tXαt
−1w−1

0 = w0α(t)Xαw
−1
0

= α(t)cαX−α.

As previously discussed, H is stable under conjugation by elements of T , and also stable

under conjugation by w0. Thus, it is stable under conjugation by aσ.

In view of the above proposition, we can see that

L∗Γ` = H∗Γ` ⊕
⊕
α∈Σ+

(〈Xα, X−α〉∗Γ),

where for any subspace V of L, we let V∗Γ denote the subspace of V invariant under the

twisted action of Γ by ζ.

Proposition 3.3. The following vectors are invariant under the twisted action, and form a

basis of L∗Γ` .

1. For i = 1, ..., n, the vector
√
dHαi .
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2. For α ∈ Σ+, the vectors Xα + σ.ζ(Xα) and
√
d(Xα − σ.ζ(Xα)).

Proof. For i = 1, ..., n, one has

σ.ζ(
√
dHαi) = σ(w0t(

√
dHαi)t

−1w−1
0 )

= −
√
dσ(w0tHαit

−1w−1
0 )

= −
√
dσ(−Hαi)

= −
√
d(−Hαi)

=
√
dHαi .

It is then clear that the vectors of this form constitute a basis for H.
For α ∈ Σ+, one has

σ.ζ(Xα + σ.ζ(Xα)) = σ(w0t(Xα + σ(w0tXαt
−1w−1

0 )t−1)w−1
0 )

= σ(w0tXαt
−1w−1

0 ) + σ(w0tσ(w0tXαt
−1w−1

0 )t−1w−1
0 )

= σ.ζ(Xα) +Xα

and

σ.ζ(
√
d(Xα − σ.ζ(Xα))) = −

√
dσ.ζ(Xα − σ.ζ(Xα))

= −
√
d(σ.ζ(Xα)−Xα)

=
√
d(Xα − σ.ζ(Xα)).

Moreover, these two vectors are linearly independent. One has

Xα + σ.ζ(Xα) = Xα + α(t)cαX−α
√
d(Xα − σ.ζ(Xα)) =

√
d(Xα − α(t)cαX−α).

Using this basis, we may now compute the restriction of the reduced Killing form K′ to

the invariant subspace L∗Γ` . Let us first note that

(K′,L∗Γ` ) = (K′, 〈
√
dHα1 , ...

√
dHα2〉)⊕

⊕
α∈Σ+

(K′, 〈Xα + σ.ζ(Xα),
√
d(Xα − σ.ζ(Xα)〉)

since the summands are stable under the twisted action and therefore orthogonal to one
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another.

Proposition 3.4.

(K′, 〈
√
dHα1 , ...

√
dHα2〉) ∼= d(K′,H).

Proof. This follows immediately from the observation that for all i, j = 1, ..., n one has

K′(
√
dHαi ,

√
dHαj) = dK′(Hαi , Hαj).

Proposition 3.5. For all α ∈ Σ+, one has

(K′, 〈Xα + σ.ζ(Xα),
√
d(Xα − σ.ζ(Xα)〉) ∼= α(t)cα〈1,−d〉 = α(t)cα〈〈d〉〉.

Proof. We compute the reduced Killing form on the basis elements:

K′(Xα + σ.ζXα,
√
d(Xα − σ.ζXα))

=
√
d(K′(Xα, Xα)−K′(Xα, σ.ζXα) +K′(Xα, σ.ζXα)−K′(σ.ζXα, σ.ζXα))

=
√
d(K′(Xα, Xα)−K′(σ.ζXα, σ.ζXα))

=
√
d(0−K′(σ.ζXα, σ.ζXα))

= −
√
dK′(w0tXαt

−1w−1
0 , w0tXαt

−1w−1
0 )

= −
√
dK′(α(t)cαX−α, α(t)cαX−α)

= −
√
dα(t)2c2

αK′(X−α, X−α)

= −
√
dα(t)2c2

α(0)

= 0.

K′(Xα + σ.ζXα, Xα + σ.ζXα)

= K′(Xα, Xα) + 2K′(Xα, σ.ζXα) +K′(σ.ζXα, σ.ζXα)

= 2K′(Xα, σ.ζXα)

= 2K′(Xα, α(t)cαX−α)

= 2α(t)cαK′(Xα, X−α)

= α(t)cα.
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K′(
√
d(Xα − σ.ζXα),

√
d(Xα − σ.ζXα))

= dK′((Xα − σ.ζXα), (Xα − σ.ζXα))

= dK′(Xα, Xα)− 2K′(Xα, σ.ζXα) +K′(σ.ζXα, σ.ζXα)

= −2dK′(Xα, σ.ζXα)

= −dα(t)cα.

Now that we have a general formula, we will compute some specific cases. Let us assume

henceforth that −1 is a square in k, so that cα is also a square for all α ∈ Σ+ in each case

(because all cα are ±1).

We adopt the notation K′d,t for the restriction of K to the invariant subspace of L under

the twisted action of Γ by ζ, where ζ is the cocycle constructed above with parameters

` = k(
√
d) and t ∈ T (k). Then for Lie algebras of type D4, D8, and E8, the restriction of

K′d,t to our Cartan subalgebra H becomes hyperbolic. From here forward we will work only

in the Witt ring, and so for each of the aforementioned cases we have

K′d,t =
⊕
α∈Σ+

α(t)cα〈〈d〉〉

=
⊕
α∈Σ+

α(t)〈〈d〉〉

= 〈〈d〉〉 ⊗
⊕
α∈Σ+

〈α(t)〉.

We will simplify our computations by working first with the form

K̃t =
⊕
α∈Σ+

〈α(t)〉.
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CHAPTER VI

Cohomological Invariants Arising via

the Killing Form

1 Simply Connected Groups of Types Dn

Let G be a simple simply connected algebraic group of type Dn over a ground field k with

Lie algebra Lie(G) = L. As before, let ` = k(
√
d), let 1 6= σ ∈ Gal(`/k), and let ϕ = (aσ,t)

be a cocycle given by

aσ,t = α̌1(t1) . . . α̌n(tn)w0.

Consider the restriction of K to the k-vector subspace of L ⊗ ` invariant under the twisted

action of Gal(`/k), denoted by K′d,t.

Proposition 1.1. Suppose −1 is a square in k. If n is even then the quadratic form K′d,t is

hyperbolic.

Proof. We consider the following realization of the root system of type Dn (see [16, Section

V.16]). Let ε1, ..., εn be the standard basis of Rn and let

Σ := {±εi ± εj | 1 ≤ i < j ≤ n}.

For a base S we may take the simple roots

αi := εi − εi+1, i < n, αn := εn−1 + εn.

It is easy to see that all roots of the form −εi ± εj where i < j are negative. Since exactly

101



half of all roots in Σ have this form, it follows

Σ+
S = {εi ± εj | 1 ≤ i < j ≤ n}.

We introduce the following notation for the positive roots in Σ with respect to S for all

1 ≤ i < j ≤ n :

αi−j := εi − εj, αi+j := εi + εj.

To show that K′d,t is hyperbolic, it suffices to show that all two dimensional quadratic

forms

〈αi−j(t), αi+j(t)〉

are hyperbolic, which since -1 is a square is equivalent to showing that (αi+j − αi+j)(t) is a

square. Indeed, one has

(αi+j − αi−j)(t) = (εi + εj − εi + εj)(t)

= (2εj)(t)

= εj(t)
2.

2 The Centres of Simply Connected Groups of Type

D2n

Let f be a hyperbolic quadratic form of dimension 4n over a field K of characteristic not 2,

and let G = Spin(f), so that G is a simply connected split algebraic group of type D2n. It is

known that

Z(G) ∼= µ2 × µ2,

although this decomposition is not unique.

Let A be a subgroup of Z(G), and consider the quotient group G/A (we may consider

the quotient of G by any closed normal subgroup, see [11, Section 12]). The quotient map

ϕ : G� G/A
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induces the differential map

dϕ : Lie(G)→ Lie(G/A)

(see 1.6).

Since the characteristic of K is good (i.e. not equal to 2) one has Lie(ker(ϕ)) = ker(dϕ).

Since ker(ϕ) = A is finite the identity component ker(ϕ)◦ of the kernel is 1, and thus

Lie(ker(ϕ)) = Tane(ker(ϕ)) = Lie(ker(ϕ)◦) = 0,

and so dϕ is injective.

Moreover, one has dim(Lie(G)) = dim(Lie(G/A)) since dim(G) = dim(G/A), and so since

dϕ has trivial kernel it is automatically surjective. As such, the map

dϕ : Lie(G)→ Lie(G/A)

is an isomorphism, so G/A is also of type D2n.

If A = 1, then G/A = G = Spin(f). If A = Z(G) = µ2 × µ2, the group G/A is called

adjoint.

It is known that there exists a decomposition Z(G) = µ2 × µ2 such that

G/〈−1,−1〉 = SO(f).

Under this decomposition, one has G/〈1,−1〉 ∼= G/〈−1, 1〉. This group is called half-spin.

Let A = 〈−1, 1〉 (or equivalently A = 〈1,−1〉) so thatG/A is the half-spin group. Consider

the adjoint representation

AdG : G→ Lie(G) = Lie(G/A).

Since A ⊂ ker(AdG) the map AdG factors through G/A, in particular

AdG = AdG/A ◦ ϕ,

where AdG/A is the adjoint representation G/A→ Lie(G/A) = Lie(G) and as before ϕ : G�

G/A is the quotient map.

Let T ⊂ G be a split maximal torus, and let T ′ = ϕ(T ). Then T ′ is a split maximal torus

in G/A. Let w0 ∈ N := NG(T ) be as before, and let w′0 = ϕ(w0). Then w′0 ∈ NG/A(T ′) is of
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order 2 and for all t′ ∈ T ′ one has

w′0t
′(w′0)−1 = (t′)−1.

Let us consider the set of 1-cohomology classes over K taking values in the subgroup

〈T ′, w′0〉 ⊂ G/A, that is the set

H1(K, 〈T ′, w′0〉).

Recall that the inclusion 〈T ′, w′0〉 ↪→ G/A induces a map

ϕ : H1(K, 〈T ′, w′0〉)→ H1(K,G/A)

and so we may also view these as cohomology classes with coefficients in G/A.

Remark: The map ϕ is not necessarily injective. However, suppose we have two cocycles

(aσ,t′) and (aσ,s′) such that

ϕ([aσ,t′ ]) = ϕ([aσ,s′ ]).

Since the cocycles in H1(K,G/A) are cohomologous, the twisted Lie algebras are isomorphic,

hence their Killing forms are isomorphic over the ground field. Thus, our construction of

cohomological invariants below does not depend on the choice of representative of cohomology

classes.

We now introduce the character and cocharacter groups for an arbitrary algebraic torus

T . Recall that the character group of T is the group

X(T ) := Hom(T,Gm).

Definition 2.1. The cocharacter group of T is the group

X(T )∗ := Hom(Gm, T ).

There exists a natural perfect pairing

〈−,−〉 : X(T )∗ ×X(T )→ Z

given as follows. For any λ ∈ X(T )∗ and µ ∈ X(T ) the composition

µ ◦ λ : Gm → Gm
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is a morphism. It is well known that all such morphisms are of the form

µ ◦ λ : Gm → Gm

g 7→ gn

for some n ∈ Z. Then we let 〈λ, µ〉 := n.

We now come back to a split maximal torus T ⊂ G = Spin(f). Since the above pairing

is perfect for every α ∈ Σ ⊂ X(T ) there exists a unique cocharacter, which we denote by

α̌ ∈ X(T )∗ such that for all β ∈ Σ and for all t ∈ T one has

Ad(α̌(t))(Xβ) = t〈β,α〉Xβ.

For simply connected groups, it is known that if

α1, ..., α2n

is a base of Σ then every element t ∈ T may be written uniquely as

t =
2n∏
i=1

α̌i(ti)

for some elements ti ∈ Gm (see [20, Corollary to Lemma 3.28]).

In other words, the natural morphism

Gm × . . .×Gm → T

(t1, . . . , t2n) 7→
2n∏
i=1

α̌i(ti)

is an isomorphism.

Proposition 2.2. Let

z1 = α̌1(−1)α̌3(−1) . . . α̌2n−3(−1)α̌2n−1(−1)

z2 = α̌1(−1)α̌3(−1) . . . α̌2n−3(−1)α̌2n(−1).

Then one has

Z(G) = 〈z1, z2〉.

Proof. It is clear that z1 and z2 are of order 2 and that z1 6= z±1
2 . Since Z(G) = µ2 ×
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µ2, it therefore suffices to show that z1, z2 ∈ Z(G). Recall that the kernel of the adjoint

representation

Ad : G→ GL(Lie(G))

coincides with Z(G). Since T acts trivially on H = Lie(T ) by conjugation, it further suffices

to show that, for all α ∈ Σ+
S , one has

z1Xαz
−1
1 = z2Xαz

−1
2 = Xα,

z1X−αz
−1
1 = z2X−αz

−1
2 = X−α.

Using the relation

α̌i(t)Xααi(t
−1) = t〈α,α̌i〉Xα

one has

z1Xαz
−1
1 = (−1)〈m,α〉Xα

where

〈m,α〉 =
2n∑
i=1

〈α2i−1, α〉

It suffices to show that the sum above is even. Furthermore it suffices to show this under

the assumption that α is a simple root, i.e. α = αj for some j = 1, ..., 2n. Considering

the Dynkin diagram of the root system of type Dn (see Section 2) it is clear to see that we

have three cases: either j is odd in which case the term 〈αj, αj〉 = 2 appears and all other

terms are zero, j is even and not equal to 2n in which case the terms 〈αj−1, αj〉 = −1 and

〈αj+1, αj〉 = −1 appear and all other terms are zero, or j = 2n in which case all terms are

zero.

The proof for z2 is exactly the same except that the exceptional case is j = 2n− 1 rather

than j = 2n.

3 Non-Simply Connected Groups of D4

Let us describe now the Killing form of some of these quotient groups. We begin with the

case where G is of type D4 and A = 〈z2〉, so that G′ = G/A is of type D4 half-spin.
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We wish first to parametrize k-points of the maximal split torus T ′ ⊂ G′. Recall that

every element t ∈ T (k) has a unique decomposition t = α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t4). Consider

the following two morphisms

σ : T → T, t 7→ α̌1(t1t4)α̌2(t2)α̌3(t3)α̌4(t4)

τ : T → T, t 7→ α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t24).

One easily checks that σ is an automorphism of T and ker(τ◦σ) = 〈z2〉 and so the composition

τ ◦ σ can be identified with the quotient map T → T ′.

Under this identification, one checks that a preimage of t′ := α̌1(t′1)α̌2(t′2)α̌3(t′3)α̌4(t′4) is

t := α̌1(
t′1√
t′4

)α̌2(t′2)α̌3(t′3)α̌4(
√
t′4).

Recall that Σ ⊂ X(T ′) ⊂ X(T ). Therefore, for any root α ∈ Σ one has α(t) = α(t′) where

t ∈ T is a preimage of t′ under the quotient map T → T ′. Then we have

α(t′) = α(t)

=

(
t′1√
t′4

)〈α1,α〉

t
′〈α2,α〉
2 t

′〈α3,α〉
3

√
t′4
〈α4,α〉

= t
′〈α1,α〉
1 t

′〈α2,α〉
2 t

′〈α3,α〉
3 t

′ 1
2
〈α4−α1,α〉

4 .

Lemma 3.1. Let t′ := α̌1(t′1)α̌2(t′2)α̌3(t′3)α̌4(t′4) ∈ T ′(k). For all i < j one has modulo squares

αi−j(t
′) = t′4αi+j(t

′).

Proof. Since αi−j and αi+j are characters of T ′, there exist unique integers m1,m2,m3,m4

such that

αi−j(t
′) = (t′1)m1(t′2)m2(t′3)m3(t′4)m4

and unique integers n1, n2, n3, n4 such that

αi+j(t
′) = t′n1

1 t′n2
2 t′n3

3 t′n4
4 .

By the same logic laid out in Proposition 1.1 the differences m1 − n1,m2 − n2, and m3 − n3
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are even. On the other hand

m4 − n4 =
1

2
〈α4 − α1, αi+j〉 −

1

2
〈α4 − α1, αi−j〉

=
1

2
〈α4 − α1, 2εj〉

= 〈α4 − α1, εj〉

= 〈−ε1 + ε2 + ε3 + ε4, εj〉

= 1.

Lemma 3.2. Let ε = ε1 + ε2 + ε3 + ε4. For all i < j, let α′i+j = ε− αi+j. Then for all t′ ∈ T ′

one has

αi+j(t
′)α′i+j(t

′) = t′4

modulo squares.

Proof. Let k = 1, 2, 3, 4. One has

〈αk, αi+j〉+ 〈αk, α′i+j〉 = 〈αk, ε〉.

One checks that 〈αk, ε〉 is equal to 2 if k = 4 and 0 otherwise. Then

αi+j(t
′)α′i+j(t

′) = ε(t)

= t
′〈α1,ε〉
1 t

′〈α2,ε〉
2 t

′〈α3,ε〉
3 t

′ 1
2
〈α4−α1,ε〉

4

= t′01 t
′0
2 t
′0
3 t
′1
4

Note that for all i < j one has α′i+j is equal to αi′+j′ for some i′ < j′. Furthermore,

(α′i+j)
′ = αi+j and α′i+j 6= αi+j. As such, the roots αi+j are partitioned into pairs (αi+j, α

′
i+j).

Proposition 3.3. Let t′ = α̌1(t′1)α̌2(t′2)α̌3(t′3)α̌4(t′4). The reduced Killing form K′d,t′ for half-

spin groups of type D4 is hyperbolic.

Proof. By Lemma 3.1 one has

K ′d,t′ = 〈〈d, t′4〉〉 ⊗
⊕
i<j

〈αi+j(t′)〉,
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and by then Lemma 3.2 and the following remarks⊕
i<j

〈αi+j(t′)〉 = 〈〈t′4〉〉 ⊗ f

for some 3-dimensional quadratic form f . Then

K ′d,t′ = 〈〈d, t′4, t′4〉〉 ⊗ f

which is hyperbolic (because −1 is a square).

Next we consider the adjoint group of type D4, that is the quotient of a simply connected

group of type D4 by its center. We construct the quotient map again in a similar fashion,

this time choosing

σ : t 7→ α̌1(t1t3t4)α̌2(t2)α̌3(t3)α̌4(t4)

τ : t 7→ α̌1(t1)α̌2(t2)α̌3(t23)α̌4(t24).

Thus, we may identify the quotient map T → T ′ = T/Z(G) with the map

Gm ×Gm ×Gm ×Gm → Gm ×Gm ×Gm ×Gm

(t1, t2, t3, t4) 7→ (t1t3t4, t2, t
2
3, t

2
4).

Under this identification, if t′ = (t′1, t
′
2, t
′
3, t
′
4) and t is a preimage of t′, say

t = (
t′1√
t′3t
′
4

, t′2,
√
t′3,
√
t′4)

then

α(t′) = α(t)

=

(
t′1√
t′3t
′
4

)〈α1,α〉

t
′〈α2,α〉
2

√
t′3
〈α3,α〉√

t′4
〈α4,α〉

= t
′〈α1,α〉
1 t

′〈α2,α〉
2 t

′ 1
2
〈α3−α1,α〉

3 t
′ 1
2
〈α4−α1,α〉

4 .

Lemma 3.4. For all i < j and for all t′ ∈ T ′ the following 1-dimensional quadratic forms

are isomorphic:

〈αi+j(t′)〉 = 〈t′3t′4αi−j(t′)〉.
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Proof. One computes

1

2
〈α3 − α1, αi+j〉 −

1

2
〈α3 − α1, αi−j〉 =

1

2
〈α3 − α1, 2εj〉

= 〈−ε1 + ε2 + ε3 − ε4, εj〉

= ±1,

1

2
〈α4 − α1, αi+j〉 −

1

2
〈α4 − α1, αi−j〉 =

1

2
〈α4 − α1, 2εj〉

= 〈−ε1 + ε2 + ε3 + ε4, εj〉

= 1.

Lemma 3.5. For all i < j and for all t′ ∈ T ′ one has

〈αi+j(t′)〉 = 〈t4α′i+j(t′)〉.

Proof. We check

1

2
〈α3 − α1, αi+j〉+

1

2
〈α3 − α1, α

′
i+j〉 =

1

2
〈α3 − α1, ε〉

=
1

2
〈−ε1 + ε2 + ε3 − ε4, ε1 + ε2 + ε3 + ε4〉

= 0,

1

2
〈α4 − α1, αi+j〉+

1

2
〈α4 − α1, α

′
i+j〉 =

1

2
〈α4 − α1, ε〉

=
1

2
〈−ε1 + ε2 + ε3 + ε4, ε1 + ε2 + ε3 + ε4〉

= 1.

Proposition 3.6. For adjoint groups of type D4 we have

K′d,t′ = 〈〈d, t′1, t′2, t′3, t′4〉〉+ 〈〈d, t′3, t′4〉〉.

Proof. The above two lemmas show

K′d,t′ = 〈〈d, t′3t′4, t′4〉〉 ⊗ 〈α1−2(t′), α1−3(t′), α1−4(t′)〉

= 〈〈d, t′3, t′4〉〉 ⊗ 〈α1−2(t′), α1−3(t′), α1−4(t′)〉.
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One then computes the remaining roots to arrive at the result. We have

〈α1−2(t′), α1−3(t′), α1−4(t′)〉 = 〈t′2t′4, t′1t′2t′3t′4, t′1t′4〉

and so

K′d,t′ = 〈〈d, t′3, t′4〉〉 ⊗ 〈t′2t′4, t′1t′2t′3t′4, t′1t′4〉

= 〈〈d, t′3, t′4〉〉 ⊗ 〈t′1, t′2, t′1t′2〉

= 〈〈d, t′3, t′4〉〉 ⊗ [〈〈t′1, t′2〉〉+ 〈1〉].

4 Non-Simply Connected Groups of Type D8

Now let us pass to the half-spin group G′ of type D8. Let T ′ ⊂ G′ be a maximal k-split

torus. Let T be its preimage under simply connected covering G→ G′. We can parametrize

k-points of T ′ in a similar fashion, letting

t := α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t4)α̌5(t5)α̌6(t6)α̌7(t7)α̌8(t8) ∈ T

and choosing instead the maps σ, τ : T → T given by

σ : t 7→ α̌1(t1t8)α̌2(t2)α̌3(t3t8)α̌4(t4)α̌5(t5t8)α̌6(t6)α̌7(t7)α̌8(t8)

τ : t 7→ α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t4)α̌5(t5)α̌6(t6)α̌7(t7)α̌8(t28).

One finds that for a k-point t′ ∈ T ′(k) its preimage t in T is of the form

t = α̌1

(
t′1√
t′8

)
α̌2(t′2) α̌3

(
t′3√
t′8

)
α̌4(t′4) α̌5

(
t′5√
t′8

)
α̌6(t6) α̌7(t7)α̌8

(√
t′8

)
(VI.1)

and for a root α

α(t′) =

(
t′1√
t′8

)〈α1,α〉

(t′2)〈α2,α〉

(
t′3√
t′8

)〈α3,α〉

(t′4)〈α4,α〉

(
t′5√
t′8

)〈α5,α〉

(t′6)〈α6,α〉(t′7)〈α7,α〉
√
t′8
〈α8,α〉

= (t′1)〈α1,α〉(t′2)〈α2,α〉(t′3)〈α3,α〉(t′4)〈α4,α〉(t′5)〈α5,α〉(t′6)〈α6,α〉(t′7)〈α7,α〉(t′8)
1
2
〈α8−α1−α3−α5,α〉.

111



To ease notation we will write below ti instead of parameters t′i.

Lemma 4.1. For all i < j, the following 1-dimensional quadratic forms are isomorphic:

〈αi+j(t)〉 = 〈t8αi−j(t)〉.

Proof. By the methods of Proposition 1.1 the factors of t1 through t7 on the left and on the

right are the same modulo squares. One checks

1

2
〈α8 − α1 − α3 − α5, αi+j〉 −

1

2
〈α8 − α1 − α3 − α5, αi−j〉

=
1

2
〈α8 − α1 − α3 − α5, 2εj〉

= 〈−ε1 + ε2 − ε3 + ε4 − ε5 + ε6 + ε7 + ε8, εj〉

= ±1.

Corollary 4.2. For half-spin groups of type D8 one has

K′d,t = 〈〈d, t8〉〉 ⊗
⊕
i<j

〈αi−j(t)〉.

Let us break the part
⊕
i<j

〈αi−j(t)〉 into subforms. Note that the factor of t8 on the left

means that we can choose to ignore any factors of t8 appearing in αi−j(t) without changing

the end result. As such we will consider t8 = 1 in these computations. Similarly we may

freely replace any root αi+j with the corresponding root αi−j. Let

Kl =
⊕
i<j≤4

〈αi+j(t)〉, Kr =
⊕

5≤i<j

〈αi+j(t)〉, Km =
⊕

i≤4,5≤j

〈αi−j(t)〉

so that ⊕
i<j

〈αi−j〉 = Kl ⊕Kr ⊕Km.

Lemma 4.3. The quadratic form Kl defined above is of the form

Kl = 〈〈t2, t1t3, t4〉〉 − 〈〈t4〉〉.
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Proof. Let ε := ε1 + ε2 + ε3 + ε4 and α′i+j = ε− αi+j as before. For all i < j ≤ 4 one has

〈α′i+j(t)〉 = 〈t4αi+j(t)〉.

Indeed, one checks as in previous examples that the factors of t1, t2, and t3 on the left and on

the right are the same modulo squares. We may ignore factors of t8 as stated, and no factors

t5, t6 or t7 appear. For t4 one has

〈α4, αi+j〉+ 〈α4, α
′
i+j〉 = 〈α4, ε〉

= 〈ε4 − ε5, ε1 + ε2 + ε3 + ε4〉

= 1.

Therefore

Kl = 〈〈t4〉〉 ⊗ 〈α1+2(t), α1+3(t), α1+4(t)〉.

We compute α(t) directly for each remaining root:

α1+2(t) = t2, α1+3(t) = t1t2t3, α1+4(t) = t1t3t4.

Replacing, we have

Kl = 〈〈t4〉〉 ⊗ 〈t2, t1t2t3, t1t3t4〉

= 〈〈t4〉〉 ⊗ 〈t2, t1t2t3, t1t3〉

= 〈〈t4〉〉 ⊗ (〈〈t2, t1t3〉〉 − 〈1〉)

= 〈〈t2, t1t3, t4〉〉 − 〈〈t4〉〉.

Lemma 4.4. The quadratic form Kr defined above is of the form

Kr = 〈〈t6, t5t7, t4〉〉 − 〈〈t4〉〉.

Proof. After choosing ε := ε5 + ε6 + ε7 + ε8 and dropping all factors of t8 which appear, the

proof follows in exactly the same fashion as the previous lemma.

Lemma 4.5. The quadratic form Km defined above is of the form

Km = 〈t3t5〉 ⊗ [〈〈t2, t6, t1t3, t5t7〉〉 ⊕ 〈〈t2, t4, t1t3〉〉 ⊕ 〈〈t4, t6, t5t7〉〉].
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Proof. We begin by noting that Km consists of precisely roots of the form αi−j where i ≤ 4

and j ≥ 5, which may be rewritten

αi−j = αi + · · ·+ αj−1

= (αi + · · ·+ α3) + (α4 + · · ·+ αj−1)

= αi−4 + α4−j

(note that i may equal 4 in which case we consider α4−4 = 0). We then have

αi−j(t) = αi−4(t)α4−j(t)

and this implies

Km = 〈α1−4(t), α2−4(t), α3−4(t), α4−4(t)〉 ⊗ 〈α4−5(t), α4−6(t), α4−7(t), α4−8(t)〉.

We compute (modulo squares)

α1−4(t) = t1t3t4 α2−4(t) = t1t2t3t4 α3−4(t) = t2t4 α4−4(t) = 1

α4−5(t) = t3t5 α4−6(t) = t3t4t5t6 α4−7(t) = t3t4t6t7 α4−8(t) = t3t4t7

and then we may rewrite

Km = 〈α1−4(t), α2−4(t), α3−4(t), α4−4(t)〉 ⊗ 〈α4−5(t), α4−6(t), α4−7(t), α4−8(t)〉

= 〈t1t3t4, t1t2t3t4, t2t4, 1〉 ⊗ 〈t3t5, t3t4t5t6, t3t4t6t7, t3t4t7〉.

One checks

〈t1t3t4, t1t2t3t4, t2t4, 1〉 = 〈〈t2, t4, t1t3〉〉 ⊕ 〈〈t2, t1t3〉〉 ⊕ 〈〈t4〉〉

〈t3t5, t3t4t5t6, t3t4t6t7, t3t4t7〉 = 〈t3t5〉 ⊗ [〈〈t4, t6, t5t7〉〉 ⊕ 〈〈t6, t5t7〉〉 ⊕ 〈〈t4〉〉]

and

〈t3t5〉 ⊗ [〈〈t2, t4, t1t3〉〉 ⊕ 〈〈t2, t1t3〉〉 ⊕ 〈〈t4〉〉]⊗ [〈〈t4, t6, t5t7〉〉 ⊕ 〈〈t6, t5t7〉〉 ⊕ 〈〈t4〉〉]

= 〈t3t5〉 ⊗ [〈〈t2, t6, t1t3, t5t7〉〉 ⊕ 〈〈t2, t4, t1t3〉〉 ⊕ 〈〈t4, t6, t5t7〉〉].
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Proposition 4.6. For the half-spin group of type D8, one has

K′d,t = 〈〈d, t8〉〉 ⊗ [〈〈t2, t6, t1t3, t3t5, t5t7〉〉 ⊕ 〈〈t2, t6, t1t3, t5t7〉〉 ⊕ 〈〈t2, t4, t1t3, t3t5〉〉

⊕ 〈〈t4, t6, t3t5, t5t7〉〉].

Proof. Now that we have computed each of the summands we have

Kl ⊕Kr ⊕Km = 〈〈t2, t6, t1t3, t3t5, t5t7〉〉 ⊕ 〈〈t2, t6, t1t3, t5t7〉〉 ⊕ 〈〈t2, t4, t1t3, t3t5〉〉

⊕ 〈〈t4, t6, t3t5, t5t7〉〉.

We then replace the values in Corollary 4.2.

5 Groups of Type E8

In this section we consider a simply connected group G of type E8 over a ground field k,

twisted by a cocycle ϕ which is split over some quadratic extension `/k = k(
√
d).

We use the realization of a root system of type E8 given by Bourbaki in [3] as follows: let

ε1, ..., ε8 be the standard basis for R8 and let

Σ := {±εi ± εj | i < j} ∪ {1

2

8∑
i=1

(−1)viεi}

where v is an element of (Z/2Z)8 and vi denotes the ith component of v, such that
8∑
i=1

vi = 0.

Let S be the system of simple roots consisting of

α1 :=
1

2

(
ε1 −

6∑
i=2

εi + ε8

)
, α2 := ε2 + ε1, αi := εi−1 − εi−2, i = 3, ..., 8.

Then Σ+
S is comprised of the roots of the following forms:

εi ± εj, i > j,
1

2

(
ε8 +

7∑
i=1

(−1)uiεi

)
(VI.2)

where u is an element of (Z/2Z)7 such that
7∑
i=1

ui = 0.
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The root α̃ = ε7 + ε8 is the longest root. One has

α̃ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

Proposition 5.1. The subset of roots of the form

εi ± εj, i > j

in Σ form a subsystem of type D8 with base

β1 := −α̃, β2 := α8, β3 := α7, β4 := α6,

β5 := α5, β6 := α4, β7 := α3, β8 := α2.

Proof. This follows immediately from the extended Dynkin diagram of type E8.

Consider the normalized Killing form of G

K′d,t = 〈〈d〉〉 ⊗
⊕
α∈Σ+

S

〈α(t)〉

where, as usual,

t := α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t4)α̌5(t5)α̌6(t6)α̌7(t7)α̌8(t8) ∈ T.

Let f be the subform of
⊕
α∈Σ+

S

〈α(t)〉 corresponding to the roots in the subsystem of Proposition

5.1. Let Σ′ be the set of remaining positive roots

Σ′ =
1

2

(
ε8 +

7∑
i=1

(−1)uiεi

)
,

7∑
i=1

ui = 0

and let g be the subform of
⊕
α∈Σ+

S

corresponding to roots in Σ′. Then

K′d,t = 〈〈d〉〉 ⊗ (f ⊕ g).
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Corollary 5.2.

f = 〈〈t1〉〉 ⊗ [〈〈t4, t7, t8, t5t7, t2t3t5〉〉+ 〈〈t4, t7, t8, t2t3t5〉〉+ 〈〈t6, t7, t8, t5t7〉〉

+ 〈〈t4, t6, t5t7, t2t3t5〉〉].

Proof. Our computation of the quadratic form f will be based on the formula in Proposi-

tion 4.6. To apply this formula we have first to write the element

t := α̌1(t1)α̌2(t2)α̌3(t3)α̌4(t4)α̌5(t5)α̌6(t6)α̌7(t7)α̌8(t8) ∈ T, (VI.3)

which arises in the cocycle φ, in the form (modulo squares)

t = β̌1

(
u1√
u8

)
β̌2(u2)β̌3

(
u3√
u8

)
β̌4(u4)β̌5

(
u5√
u8

)
β̌6(u6)β̌7(u7)β̌8(

√
u8)

(see formula (VI.1)) where u1, . . . , u8 are rational functions in t1, . . . , t8 and then substitute

u1, . . . , u8 instead of t1, . . . , t8 in the formula of Proposition 4.6.

Note that check operation α̌ is linear with respect to α because all roots in E8 have the

same length. Then since

α1 =
1

2
(α̃− 3α2 − 4α3 − 6α4 − 5α5 − 4α6 − 3α7 − 2α8)

=
1

2
(−β1 − 3β8 − 4β7 − 6β6 − 5β5 − 4β4 − 3β3 − 2β2).

we conclude that modulo squares one has

α̌1(t1) = β̌1

(
1√
t1

)
β̌2

(
1

t1

)
β̌3

(
1

t1
√
t1

)
β̌5

(
1√
t1

)
β̌6

(
1

t1

)
β̌8

(
1

t1
√
t1

)
and therefore substituting this expression in (VI.3) one gets

t = β̌1

(
1√
t1

)
β̌2

(
t8
t1

)
β̌3

(
t7

t1
√
t1

)
β̌4(t6)β̌5

(
t5√
t1

)
β̌6

(
t4
t1

)
β̌7(t3)β̌8

(
t2

t1
√
t1

)
.

Thus, modulo squares we have

u1 = t2, u2 = t1t8, u3 = t1t2t7, u4 = t6, u5 = t2t5, u6 = t1t4, u7 = t3, u8 = t1.

Lastly,

〈〈u2, u6, u1u3, u3u5, u5u7〉〉 = 〈〈t1t8, t1t4, t1t7, t1t5t7, t2t3t5〉〉,
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〈〈u2, u6, u1u3, u5u7〉〉 = 〈〈t1t8, t1t4, t1t7, t2t3t5〉〉,

〈〈u2, u4, u1u3, u3u5〉〉 = 〈〈t1t8, t6, t1t7, t1t5t7〉〉,

〈〈u4, u6, u3u5, u5u7〉〉 = 〈〈t6, t1t4, t1t5t7, t2t3t5〉〉.

Since u8 = t1 the result follows.

Now let us compute the form g. A table showing the roots in Σ′ in various forms and

giving a diagonalization of g may be found in the Appendix.

A straightforward, albeit lengthy foiling process shows that the form g may be rewritten

as

〈t3, t1t3t8, t1t3t7, t1t3t7t8, t3t6, t1t3t6t8, t1t3t6t7, t1t3t6t7t8〉

⊗ 〈1, t1t4, t1t2t3, t1t2t3t4, t5, t1t4t5, t1t2t3t5, t1t2t3t4t5〉.

One then checks

〈t3, t1t3t8, t1t3t7, t1t3t7t8, t3t6, t1t3t6t8, t1t3t6t7, t1t3t6t7t8〉

= 〈t3〉 ⊗ 〈〈t6〉〉 ⊗ 〈1, t1t8, t1t7, t1t7t8〉

= 〈t3〉 ⊗ 〈〈t6〉〉 ⊗ (〈〈t1, t7, t8〉〉 ⊕ 〈〈t7, t8〉〉 ⊕ 〈〈t1〉〉),

and

〈1, t1t4, t1t2t3, t1t2t3t4, t5, t1t4t5, t1t2t3t5, t1t2t3t4t5〉

= 〈〈t5〉〉 ⊗ 〈1, t1t4, t1t2t3, t1t2t3t4〉

= 〈〈t5〉〉 ⊗ (〈〈t1, t2t3, t4〉〉 ⊕ 〈〈t2t3, t4〉〉 ⊕ 〈〈t1〉〉),

and so altogether

g = 〈t3〉 ⊗ 〈〈t5, t6〉〉 ⊗ (〈〈t1, t7, t8〉〉 ⊕ 〈〈t7, t8〉〉 ⊕ 〈〈t1〉〉)⊗ (〈〈t1, t2t3, t4〉〉 ⊕ 〈〈t2t3, t4〉〉

⊕ 〈〈t1〉〉).

After foiling the last product and cancelation of hyperbolic spaces, this becomes

g = 〈t3〉 ⊗ 〈〈t5, t6〉〉 ⊗ (〈〈t1, t2t3, t4〉〉 ⊕ 〈〈t1, t7, t8〉〉 ⊕ 〈〈t2t3, t4, t7, t8〉〉). (VI.4)

We see that g, like f, lies in the ideal I5 and so K′d,t = 〈〈d〉〉 ⊗ (f ⊕ g) lies in I6.
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Proposition 5.3. The quadratic form f ⊕ g is represented in I5/I6 by a Pfister form

〈〈t1, t4, t7, t6t8, t2t3t5〉〉.

Proof. By Corollary 5.2 the image of f in I5/I6 is represented by the sum of three Pfister

forms

f1 = 〈〈t1, t4, t7, t8, t2t3t5〉〉, f2 = 〈〈t1, t6, t7, t8, t5t7〉〉 = 〈〈t1, t5, t6, t7, t8〉〉 and

f3 = 〈〈t1, t4, t6, t5t7, t2t3t5〉〉.

Also, by (VI.4), the image of g in I5/I6 is represented by the sum of f2 and

g2 = 〈〈t1, t4, t5, t6, t2t3〉〉 = 〈〈t1, t4, t5, t6, t2t3t5〉〉.

Lastly, f3 ⊕ g2 modulo I6 is represented by

〈〈t1, t4, t6, t7, t2t3t5〉〉

and therefore f ⊕ g modulo I6 is represented by

〈〈t1, t4, t7, t8, t2t3t5〉〉+ 〈〈t1, t4, t6, t7, t2t3t5〉〉 = 〈〈t1, t4, t7, t6t8, t2t3t5〉〉

as required.

Thus we proved the following.

Theorem 5.4. Let H1
quad(−, E8) be a subfunctor of H1(−, E8) consisting of E8-torsors split-

ting over quadratic extensions. There exists a nontrivial cohomological invariant

H1
quad(−, E8)→ H6(−,Z/2)

given by

(d, t)→ (d) ∪ (t1) ∪ (t4) ∪ (t7) ∪ (t6t8) ∪ (t2t3t3).
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Appendix A

Diagonalization of a Subform of the

Killing Form for Twisted Lie Algebras

of Type E8

In this section, we present a table showing several presentations of each positive root in the

set Σ′ described in the final section above, together with the coefficient of the Killing form

corresponding to each. We will begin with some explanation of the information presented in

said table, as well as how this information may be derived.

A priori, the positive roots in Σ′ are all vectors in R8 of the form

1

2

(
ε8 +

7∑
i=1

(−1)aiεi

)

where the ai are integers modulo 2 such that
∑7

i=1 ai = 0. The clearest way to list ex-

haustively the positive roots in Σ′ is to identify them with the vector a = (a1, a2, ..., a7) in

(Z/Z2)7. This is the information presented in the first column.

The second column gives the regular presentation of each root as a vector in the standard

basis of R8. For example, the vector

a = (1, 1, 0, 0, 0, 0, 0)

in (Z/Z2) would be identified with the root

1

2
(−ε1 − ε2 + ε3 + ε4 + ε5 + ε6 + ε7 + ε8) =

(
−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
.
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Next, we must convert this vector from the standard basis into the basis

B = {α1, α2, ..., α8}

of simple roots defined in Section 5. This is done by simply multiplying each vector by the

appropriate change of basis matrix M , for which we have used RStudio. The matrix itself is

M =



1
2

1 −1 0 0 0 0 0

−1
2

1 1 −1 0 0 0 0

−1
2

0 0 1 −1 0 0 0

−1
2

0 0 0 1 −1 0 0

−1
2

0 0 0 0 1 −1 0

−1
2

0 0 0 0 0 1 −1

−1
2

0 0 0 0 0 0 1



−1

=



0 0 0 0 0 0 0 4

1 1 1 1 1 1 1 5

−1 1 1 1 1 1 1 7

0 0 2 2 2 2 2 10

0 0 0 2 2 2 2 8

0 0 0 0 2 2 2 6

0 0 0 0 0 2 2 4

0 0 0 0 0 0 2 2


.

Finally, each of these roots α correspond to a coefficient in the quadratic form g discussed

in Section 5. This coefficient, which is simply α(t) reduced modulo squares, is obtained from

vector in the third column. The formula for this coefficient is given at the end of Chapter V,

namely one has for a given root β = b1α1 + · · ·+ b8α8

β(t) =
8∏
i=1

αi(t)
bi .

In our case one has (modulo squares)

α1(t) = t3 α2(t) = t4 α3(t) = t1t4 α4(t) = t2t3t5

α5(t) = t4t6 α6(t) = t5t7 α7(t) = t6t8 α8(t) = t7

and so β(t) is given by the simple formula

β(t) = tb31 t
b4
2 t

b1+b4
3 tb2+b3+b5

4 tb4+b6
5 tb5+b7

6 tb6+b8
7 tb78 .

The final column of the table is then simply this monomial, reduced modulo squares.
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Tuple in (Z/2Z)7 Vector in R8, Standard Basis Vector in Basis B Coefficient

(0, 1, 1, 1, 1, 1, 1) (1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 0, 0, 0, 0, 0, 0, 0) t3

(1, 0, 0, 0, 0, 0, 1) (−1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 2, 3, 4, 3, 2, 1, 0) t1t3t8

(0, 1, 1, 1, 1, 0, 0) (1
2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 1, 1, 2, 2, 2, 2, 1) t1t3t7

(1, 0, 0, 0, 0, 1, 0) (−1
2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 2, 3, 4, 3, 2, 1, 1) t1t3t7t8

(1, 0, 0, 0, 1, 1, 1) (−1
2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 1, 0, 0, 0) t3t6

(0, 1, 1, 1, 0, 0, 1) (1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 2, 2, 1, 0) t1t3t6t8

(1, 0, 0, 0, 1, 0, 0) (−1
2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 3, 4, 3, 2, 2, 1) t1t3t6t7

(0, 1, 1, 1, 0, 1, 0) (1
2
,−1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 1, 2, 2, 2, 1, 1) t1t3t6t7t8

(0, 1, 1, 0, 0, 0, 0) (1
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 4, 4, 3, 2, 1) t3t5

(1, 0, 0, 1, 1, 1, 0) (−1
2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 2, 1, 1, 1, 1) t3t5t8

(0, 1, 1, 0, 0, 1, 1) (1
2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 2, 1, 0, 0) t1t3t5t7

(1, 0, 0, 1, 1, 0, 1) (−1
2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 1, 1, 1, 0) t3t5t7t8

(1, 0, 0, 1, 0, 0, 0) (−1
2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 3, 4, 3, 3, 2, 1) t1t3t5t6

(0, 1, 1, 0, 1, 1, 0) (1
2
,−1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 1, 2, 2, 1, 1, 1) t1t3t5t6t8

(1, 0, 0, 1, 0, 1, 1) (−1
2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 1, 1, 0, 0) t3t5t6t7

(0, 1, 1, 0, 1, 0, 1) (1
2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 2, 1, 1, 0) t1t3t5t6t7t8

(1, 0, 1, 1, 1, 1, 1) (−1
2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 0, 1, 0, 0, 0, 0, 0) t1t3t4

(0, 1, 0, 0, 0, 0, 1) (1
2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 2, 2, 4, 3, 2, 1, 0) t3t4t8

(1, 0, 1, 1, 1, 0, 0) (−1
2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 1, 2, 2, 2, 2, 2, 1) t3t4t7

(0, 1, 0, 0, 0, 1, 0) (1
2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 2, 2, 4, 3, 2, 1, 1) t3t4t7t8

(0, 1, 0, 0, 1, 1, 1) (1
2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 1, 0, 0, 0) t1t3t4t6

(1, 0, 1, 1, 0, 0, 1) (−1
2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 2, 2, 1, 0) t3t4t6t8

(0, 1, 0, 0, 1, 0, 0) (1
2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 4, 3, 2, 2, 1) t3t4t6t7

(1, 0, 1, 1, 0, 1, 0) (−1
2
, 1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 2, 2, 2, 1, 1) t3t4t6t7t8

(1, 0, 1, 0, 0, 0, 0) (−1
2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 3, 4, 4, 3, 2, 1) t1t3t4t5

(0, 1, 0, 1, 1, 1, 0) (1
2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 1, 2, 1, 1, 1, 1) t1t3t4t5t8

(1, 0, 1, 0, 0, 1, 1) (−1
2
, 1

2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 2, 1, 0, 0) t3t4t5t7

(0, 1, 0, 1, 1, 0, 1) (1
2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 1, 1, 1, 0) t1t3t4t5t7t8

(0, 1, 0, 1, 0, 0, 0) (1
2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 4, 3, 3, 2, 1) t3t4t5t6
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(1, 0, 1, 0, 1, 1, 0) (−1
2
, 1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 2, 2, 1, 1, 1) t3t4t5t6t8

(0, 1, 0, 1, 0, 1, 1) (1
2
,−1

2
, 1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 2, 1, 1, 0, 0) t1t3t4t5t6t7

(1, 0, 1, 0, 1, 0, 1) (−1
2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 2, 2, 1, 1, 0) t3t4t5t6t7t8

(0, 0, 0, 0, 0, 0, 0) (1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 3, 3, 5, 4, 3, 2, 1) t1t2

(1, 1, 1, 1, 1, 1, 0) (−1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 0, 1, 1, 1, 1, 1, 1) t1t2t8

(0, 0, 0, 0, 0, 1, 1) (1
2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 2, 2, 3, 2, 1, 0, 0) t2t7

(1, 1, 1, 1, 1, 0, 1) (−1
2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 0, 1, 1, 1, 1, 1, 0) t1t2t7t8

(1, 1, 1, 1, 0, 0, 0) (−1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 3, 3, 2, 1) t2t6

(0, 0, 0, 0, 1, 1, 0) (1
2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 2, 1, 1, 1) t2t6t8

(1, 1, 1, 1, 0, 1, 1) (−1
2
,−1

2
,−1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 0, 1, 1, 1, 1, 0, 0) t1t2t6t7

(0, 0, 0, 0, 1, 0, 1) (1
2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 2, 2, 3, 2, 1, 1, 0) t2t6t7t8

(0, 0, 0, 1, 1, 1, 1) (1
2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 1, 0, 0, 0, 0) t1t2t5

(1, 1, 1, 0, 0, 0, 1) (−1
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 3, 3, 2, 1, 0) t2t5t8

(0, 0, 0, 1, 1, 0, 0) (1
2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 2, 2, 2, 1) t2t5t7

(1, 1, 1, 0, 0, 1, 0) (−1
2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 3, 2, 1, 1) t2t5t7t8

(1, 1, 1, 0, 1, 1, 1) (−1
2
,−1

2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 0, 1, 1, 1, 0, 0, 0) t1t2t5t6

(0, 0, 0, 1, 0, 0, 1) (1
2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 2, 2, 3, 2, 2, 1, 0) t2t5t6t8

(1, 1, 1, 0, 1, 0, 0) (−1
2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 3, 2, 2, 1) t2t5t6t7

(0, 0, 0, 1, 0, 1, 0) (1
2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 2, 2, 1, 1) t2t5t6t7t8

(1, 1, 0, 0, 0, 0, 0) (−1
2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 3, 5, 4, 3, 2, 1) t1t2t4

(0, 0, 1, 1, 1, 1, 0) (1
2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 1, 1, 1, 1, 1, 1) t1t2t4t8

(1, 1, 0, 0, 0, 1, 1) (−1
2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 2, 3, 2, 1, 0, 0) t2t4t7

(0, 0, 1, 1, 1, 0, 1) (1
2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 1, 1, 1, 1, 1, 0) t1t2t4t7t8

(0, 0, 1, 1, 0, 0, 0) (1
2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 3, 3, 2, 1) t2t4t6

(1, 1, 0, 0, 1, 1, 0) (−1
2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 2, 1, 1, 1) t2t4t6t8

(0, 0, 1, 1, 0, 1, 1) (1
2
, 1

2
,−1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 1, 1, 1, 0, 0) t1t2t4t6t7

(1, 1, 0, 0, 1, 0, 1) (−1
2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 3, 2, 1, 1, 0) t2t4t6t7t8

(1, 1, 0, 1, 1, 1, 1) (−1
2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 0, 1, 1, 0, 0, 0, 0) t1t2t4t5

(0, 0, 1, 0, 0, 0, 1) (1
2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 2, 2, 3, 3, 2, 1, 0) t2t4t5t8
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(1, 1, 0, 1, 1, 0, 0) (−1
2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 2, 2, 2, 1) t2t4t5t7

(0, 0, 1, 0, 0, 1, 0) (1
2
, 1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 3, 2, 1, 1) t2t4t5t7t8

(0, 0, 1, 0, 1, 1, 1) (1
2
, 1

2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 1

2
) (1, 1, 1, 1, 1, 0, 0, 0) t1t2t4t5t6

(1, 1, 0, 1, 0, 0, 1) (−1
2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
) (1, 1, 2, 3, 2, 2, 1, 0) t2t4t5t6t8

(0, 0, 1, 0, 1, 0, 0) (1
2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
) (1, 2, 2, 3, 3, 2, 2, 1) t2t4t5t6t7

(1, 1, 0, 1, 0, 1, 0) (−1
2
,−1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
) (1, 1, 2, 3, 2, 2, 1, 1) t2t4t5t6t7t8
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