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Abstract

The steady natural convective heat transfer driven by internal heat sources
in a rectangular finite geometry is examined. Bifurcation diagrams have been
constructed in the case of a porous slab and a thin fluid layer using recently
developed algorithms from bifurcation theory. In both cases, there is a uniform
peripheral temperature. Tilt is an important factor in these systems, as it breaks
the reflective symmetry in the system and unfolds the bifurcation diagram. This
unfolding provides additional clues on the evolution of various structures. Hence,

the effect of tilt on the solution structure has also been investigated.

As the porous slab is tilted, there is significant change in the stationary solution
structure. Tilting the slab results in the evolution of the stationary structure from
two isolated symmetric and six asymmetric branches for the untilte¢ slab to seven
isolated bra.nchés for the porous layer tilted one degree. At every ang.: of tilt, a
primary solution branch exists with a unique solution region. As the slab is tilted
to higher angles, the unique solution region increases. At 45° of tilt, this primary
branch is always unique and the flows are globally stable. Several origins of Hopf
bifurcations were also located. As the slab is tilted, these Hopf points move to
higher Rayleigh numbers and will cross the stationary solution branches, causing

these solution branches to become unstable.

A mathematical model for natural convective flow driven by internal heating in



a vertical Hele-Shaw cell was developed. The stationary solution structure for an
untilted fluid layer is qualitatively similar to that for a porous slab, although the
former is derived from the Navier-Stokes equation, and the latter from the Darcy
equation. A quantitative comparison shows that the bifurcation points in the porous
layer structure are a limiting case for the fluid layer bifurcation points as the width

of the gap approaches zero.

A vertical Hele-Shaw cell has ‘et constructed to match the geometry of the
fluid layer studied numerically. Flow patterns within the fluid layer are observed
through the use of flow visualization. The unique solution region for an untilted
layer was found to end at a Grashof number of 138000, which is 16% less than the
numerical prediction of 165591. The range of stable two cell flows did not exist
past a Grashof number of 283000 in the experimental study, while the simulations
predicted stable two cell flows until a Grashof number of 300034. The difference in
these values is 6%. The discrepancies between the numerically predicted limit points
and the bounds on the experimental solution branches for the two and four cell flows

are within the range of errors calculated for the experimental Grashof numbers.
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Chapter 1

Introduction

1.1 Background

There has been a great deal of interest in describing convective behavior within
fluid-saturated porous media. The resulting enhancement in heat transfer is
important in applications such as thermal methods of enhanced oil recovery and
geothermal processes. Limiting this heat transfer is important in the design of
thermal insulation systems. In addition, there is a fundamental curiousity about

the physics of flow and heat transfer through a porous layer.

Major questions need to be resolved in the modelling of the flow and heat
transfer within a porous medium. The flow is too complex to be described fully
on a microscopic scale, but macroscopic equations are limited in applicability. For
example, the computationally simple Darcy equation is applicable for slow flows
in infinite media. Forchheimer and Brinkman suggested terms to account for fluid
inertia and boundary effects, respectively, which are improvements on the Darcy

equation.
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To describe the heat transfer within a porous layer, expressions analogous to
those used in fluid layers have been successful. Fourier’s law of conduction is applied
by implementing an effective thermal conductivity which incorporates the thermal
characteristics of both the fluid and solid phases. The heterogeneous nature of the
solid matrix and the fluid in a porous layer prevents the development of a simple
expression for thermal conductivity. Simple approximations for the value of effective
thermal conductivity yield unreasonable results. Thus, experimental measurement

is the common method for determining the effective thermal conductivity of a porous

layer.

Nevertheless, it is possible to ob*ain a reasonable description of the flow of fluid
and heat within a porous layer. i: the case of flow driven by natural convection,
Darcy’s equation is a good approximation due to the low velocities. If the fluid
and solid phases of the medium have thermal conductivities of the same order of

magnitude, a reasonable value of effective thermal conductivity for the porous layer

may be obtained.

Another approximation for flow in a porous layer is through the use of a thin fluid
gap. This idea comes from the close analogy between the mathematical expressions
of the Darcy equation and the Navier-Stokes equation for isothermal flow between
closely spaced plates. A thin fluid gap, also known as a Hele-Shaw cell, has been
used successfully to learn about ¢cc -~ on and two-phase displacement in porous
layers. There are limits to the applicability of this analogy, and these factors have
been extensively discussed by Koster and Miiller [1, 2].

Previous studies of convection in both fluid and porous layers have usually dealt
with the situation where the bottom of the layer is heated and the top is cooled. The
resulting density inversion drives the convection. This situation has been extensively

studied to find important practical information such as the stability of the discovered
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flows. Fundamental studies of porous layers heated from below have dealt with
several phenomena. In addition to studies of the onset of convection and steady-state
convective solutions, bifurcations of these steady solutions have been located. Some
bifurcations have presented opportunites to study periodic states. Investigation of
the dynamics of such periodic states led to the discovery of other solutions which

are neither steady nor periodic. Such solutions are described as ckaotic.

Fewer investigations have considered the related problem where the convection
is driven by internal heat sources. Real systems which are modelled by internally
heated porous media include flow around nuclear reactor cores, soil contaminated

with nuclear debris, and packed bed reactors.

1.2 Motivation

Many investigations have considered the idealized problem of an infinite porous
layer with bottom heating and top cooling. In the present study, a finite porous
medium of square cross section bounded by an impermeable, isothermal periphery
will be subjected to natural convective flow driven by internal heat sources. A
bifurcation structure of the stationary solutions in such a system has been completed
previously [3]. The initial phase of this dissertation considers the effect of tilting
the medium on these solutions. This study reveals regions of the parameter space

where interesting dynamical behaviour can be expected.

The analogy between flow in fluid and porous layers has been considered for
bottom heated layers. In order to extend the realm of this analogy to internally
heated layers, a bifurcation study comparable to that done for the porous layer
is required. However, no investigations were found where convection in a vertical

Hele-Shaw cell was driven by internal heating. Therefore, a model was developed



CHAPTER 1. INTRODUCTION 4

to simulate the flow of fluid inside a finite geometry Hele-Shaw cell with an
impermeable, isothermal periphery where convection is driven by internal heat
sources. The steady-state bifurcation structure of this domain has been computed.
Thus, a comparison of the two different models is possible to determine the

applicability of the fluid layer as a substitute for a porous layer in terms of bifurcation

structure.

Since no other study has been dome with a vertical Hele-Shaw cell whose
convection is driven by internal heat sources, an experimental study of the this
system and geometry is a nzcessity. Steady-state convective flows inside a Hele-

Shaw cell have been observed through flow visualization with polystyrene beads.

Taken as a whole, this study considers the very important question of model
discrimination. For a porous layer, several models are used to describe the flow
within. These include the Darcy equation, which has been used here. Other models
which are effective in modelling the flow within porous media were put forward
by Forchheimer and Brinkman. To account for the heat flow, an energy equation
is required. This dissertation uses the simple form of heat equation, where one
equation models the heat flow through both phases and interphase heat transfer is
neglected. Another idea is to write separate energy equations for each phase, and
include a term within each equation that considers the heat transfer between the
fluid and solid. These mathematical expressions simulate real flows with varying
degrees of accuracy. The accuracy of the model can only be determined through
comparison with data taken from a real low which matches the conditions outlined
in the model formulation. Flow velocities, heat transfer values, and fiow transitions
from stationary to periodic solutions are a few of the criteria that may be used to

analyze the usefulness of a mathematical model.

In this study, two such comparisons are recorded. One comparison is the
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numerical model for the Hele-Shaw cell with an experimental system designed
to match the mathematical model. Qualitative comparison of the flow patterns
observed in the experimental apparatus are made with simulation results. These
flow patterns will often be referred to as flow cells. A flow celi is defined as the path
in which a packet of fluid travels around the test region. These paths tend to be

ovular in shape.

The other comparison is that of a thin fluid layer with a porous slab. Comparison
is based on the location of bifurcation points within the solutions of numerical
models based on appropriate flow equations. Qualitative examination of the relative
positions of stationary solution branches will add strength to the argument that a

thin fluid layer can be used to learn about the behaviour within a porous layer.

1.3 Outline of Thesis

The remainder of this dissertation contains the results of the studies described
above. In Chapter 2, reviews of the relevant investigations that deal with convection
in fluid and porous layers are presented. Consideration is given to bottom heated
porous layers as well as internally heated omes. Literature works considering
horizontal and vertical fluid layers heated from helow are also outlined. These
fluid layers may be considered to be thin enough to be Hele-Shaw cells, or of larger
dimension. Internally heated fluid layers where the fluid lies in the plane of a table-

top have also been studied, and these findings are included here.

In Chapter 3, the mathematical model for natural convective heat transfer within
a thin porous slab driven by internal beat sources is developed. A two-dimensional
form of the Darcy-Oberbeck-Boussinesq model results, and it is solved for steady

state solutions and the origin of oscillatory solutions. Special emphasis is placed on
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the rearrangement of bifurcation structure as the slab is tilted from horizontal to
one degree. The computer code for this study was developed by Weinitschke et al

[3] and needed only minor modifications to account for variation of the tilt angle.

In Chapter 4, a model for convection in the internally heated Hele-Shaw cell
of finite dimension is developed. The Navier-Stokes equation is the starting point
in the development of the equations. The thin gap approximation has alsoc been
incorporated, as was done by Buhler et al[4]. Computation with the code developed
for this model reveal the steady-state bifurcation structure and origins of oscillatory

solutions. The effect of tilt is also examined for the Hele-Shaw cell.

An analysis of the similarities and differences in the two bifurcation structures

is given in Chapter Five. The basis for comparison is:
¢ relative positions of bifurcation points and solution branches,

® the degree to which the porous layer solution can be seen to be a limiting case

for the fluid layer structure, and
© similarity of flow patterns at comparable positions within the domain.

In Chapter 6, the experimental system and the cobserved flow patterns are
discussed. A copper sulfate fluid layer within a square cross-section of length 3in
and a gap width of 1/8in was contained by constant temperature copper walls
on four sides and by plexiglas walls on the two large sides. Heating was provided
electrolytically. Visualization with polystyrene beads revealed the flow patterns that
existed within the test region. Comparisons with the numerical results center on

the parameter values where a unique solution exists, and where a stable two cell

flow ceases to exist.

In Chapter 7, the conclusions and recommendations from this study will be

outlined. Suggestions for future work in this area will also be given.



Chapter 2

Literature Review

2.1 Fluid Layer

2.1.1 Layers Heated from Below

Modern studies of natural convection in fluid layers began with the work of Lord
Rayleigh [5], who first formed the dimensionless grouping of the ratio of buoyant
forces to viscous forces that now bears his name. It is the imbalance between these

forces in a fluid within a gravitational field that cause convective currents.

Initial experimental work on convection in fluid layers heated from below was
performed by Bénard [6]. When observed from above, the flows appeared to form
hexagonal cells. Bénard believed the convection was driven by the bottom heating,
but the flows were actually driven by surface tension as opposed to buoyancy forces.

Nevertheless, convection in fluid layers heated from below is usually called Bénard

convection.

Pellow and Southwell [7] neglected non-linear effects and determined that a
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particular size is associated with every shape of cell. In an infinite layer no cell
mode was as likely to occur as any .ther. They speculated that the appearance of

hexagonal cells was due to these neglected non-linear effects.

A finite amplitude study by Malkus and Veronis [8] found an infinite number of
steady-state solutions. Relative stability was determined by ranking the solutions
using the criterion of maximum mean-square temperature gradient. The convection
is due to a distortion by the temperature field, and the observed self-distortion of
the disturbance is of secondary importance. They also determined that square
horizontal cells were preferred to hexagons in ordinary fluids with symmetric

boundary conditions.

Palm [9] found that the temperature dependence of viscosity resulted in a second
order term which led to the development of the hexagonal motion. For a fluid
whose viscosity decreases with increasing temperature, the hexagons with flow
upward through the center were stable. Fluids with viscosities that increase with

increasing temperature form stable flows with downward flow through the center of

the hexagon.

Segal and Stuart {10} modified Palm’s result to say that hexagons may be the
stable equilibrium state if the temperature variation of viscosity is large enough. A
two-dimensional roll is also a possible equilibrium state under the same conditions.
The observed mode is determined by the initial conditions, but most physical

systems would lead to the production of hexagons.

Following the work of Malkus and Veronis, Schliiter et al [11] showed that not
every linear solution approximated a non-linear solution, but there were an infinite
number of finite amplitude solutions. Their stability theory claims three-dimensional
convection flows are unstable to infinitesimal disturbances. Some two-dimensional

rolls are stable depending on the wavenumber of the roll. The asymmetry due
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to temperature dependent parameters results in the stability of hexagons between
the critical Rayleigh number and a certain supercritical value, beyond which the

two-dimensional rolls are stable.

Krishnamurti considered the transition to turbulent flow in an infinite horizontal
fluid layer heated from below. Her experiments were performed on a fluid layer which
varied in depth from 2 — 5¢cm. The first transition is the onset of convection, which
occurs at R.. The second transition {12] occurs at 12R, and the flow moves from
steady two-dimensional rolls to a steady periodic three-diinensional cellular pattern.
There is hysteresis in this transition, which indicates it is caused by finite amplitude
instability. Time dependent flows [13] occur in two modes. One mode can be seen
as a tilting of the boundary of a flow cell. This tilting occurs at a time scale similar
to the thermal diffusion time. The second mode of oscillatory flows showed the
advection of a hot spot within the cellular motion. Measurement of temperature at
a fixed point showed the oscillations of the hot spot. Increasing the frequency and

number of these oscillations led to turbulence.

The study of Rayleigh-Bénard convection and the onset of turbulence in an

infinite layer continues to be of interest to this day [14].

An excellent treatment of other topics concerning fluid layers heated from below,
is given in the book by Chandrasekhar [15]. Fluid layers concarrently subjected to

rotation and magnetic fields are also dealt with.

2.1.2 Layers with Internal Heat Sources

A phenomenon related to Bénard convection is natural convection within a fluid
layer which is driven by internal heat sources. In these investigations, the depth of

the fluid layer was significant compared with the lengths in the other two dimensions.
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Qualitative experiments by Tritton and Zarraga [16] on a system heated internally
and cooled from above showed similarity ta Bénard convection. The main difference
was that the fluid descended in the centre of the cells and ascended on the edges
in the internally heated layer. At low Rayleigh numbers, the horizontal extent of
the convection pattern was comparable to the fluid depth. For convection at higher
Rayleigh numbers, the flow pattern had a horizontal extent of up to five times the
fluid depth. This flow pattern appeared to change toward rolls as the Rayleigh

number increased.

A theoretical paper by Roberts [17] studied the same system as Tritton and
Zarraga [16]. A Fourier analysis of dominant terms showed that that three different
flow structures were possible. These were rolls, hexagons with upward flow through
the centres, and hexagons with downward flow through the centres. Only the
downward flow hexagons were found to be stable, and this was only true as long
as the Rayleigh number exceeded a critical value dependent on Prandtl number.
For water, this critical Rayleigh number is approximately 8750. In between this
value and a Rayleigh number of 2772, which is the critical value for the onset of
convection, only the rolls were possible. However, these rolls were marginally stable.
Also, the neutrally stable wavelength of the rolls decreased slightly with increasing
Rayleigh number. All of these facts put the study of Roberts inte conflict with the
finding of Tritton and Zarraga.

Thirlby [18] numerically solved the full partial differential equations governing
the stability of the convective motion in the internally heated layer. He suggested
that the experiments of Tritton and Zarraga [16] found only hexagons due to large
viscosity variations. Thirlby also confirmed most of the ideas presented by Roberts
[17]. Schwiderski and Schwab [19] modified the apparatus of Tritton and Zarraga in

an attempt to explain this discrepancy. They found that the non-uniform internal
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heating and poor electrical insulation of the cooling plate caused errois in the
earlier experimental results. Their results were in agreement wiih the results of

both Roberts and Tritton and Zarraga.

Kulacki and Goldstein [20] considered a fluid layer cooled above and below by
isothermal plates at the same temperature. They considered the heat transfer at
Rayleigh numbers up to 675 times the critical value from linear stability theory.
The amount of energy transport at the upper boundary was more than twice that
at the lower boundary.

Kulacki and Nagle [21] used a fluid layer cooled only from above to determine
a correlation between Nusselt number and Rayleigh number over the range 114 <

Ra/Ra. < 1.8 * 10%, where Ra. = 1386.

A numerical study of Tveiteried and Palm [22] showed that hexagons are stable
up to 15R,, and that hexagons are formed even if the initial motion is different. For
higher values of Prandtl number the hexagons have downflow through their centres,

but if Pr < 0.25, hexagons with upward motion through their centre are stable.

Turbulent flow in a volumetrically heated fluid layer is also an area of active

research [23], as are layers heated internally and below simultaneously [24, 25, 26].

2.1.3 Hele-Shaw Cells

A variation of the theme of convection in fluid layers involves studying very thin
fluid layers. In 1898, Hele Shaw [27] showed the similarity between the isothermal
flows between closely spaced parallel plates and in porous media. It wasn’t until
1960 that Wooding [28] looked at the stebility of a fluid at rest between two long
vertical parallel plates under a vertical density gradient, and suggested that this

may be an easier manner to study convection in porous layers.
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Several authors have attempted to determine the limits on the use of Hele-
Shaw cells for porous layer modeling. Hartline and Lister [29] suggested that the
permeability of a Hele-Shaw cell be d®/12Y instead of the accepted d2/12, where d
is the spacing between the plates and Y is the width of the gap plus the containing
walls. The maximum wall thickness allowed was 0.65cm. The inclusion of the side

walls into the permeability was to account for the heat loss through the side walls

in non-isothermal flows.

Kvernvold [30] looked at the difference in the stability regions for non-linear
convection, and found that Hele-Shaw convection is stable for a wider range of wave
numbers and Rayleigh numbers. This was due to the existence of disturbances of
arbitrary orientation in a porous layer, while the Hele-Shaw cell geometry limits

disturbances to two dimensions with the axis parallel to the axis of the stationary

roll.

Frick and Clever {31] considered the effect of side walls on the convection in
fluid layers of arbitrary width. The presence of side walls led to three-dimensior....
flow patterns. The resulting change in wave number and three-dimensional effects
of porous media convection cause strong deviation from Hele-Shaw flow for infinite
aspect ratio. For finite aspect ratio, the Hele-Shaw approximation becomes less
accurate as the convection amplitude increases. This leads to large differences
for Rayleigh numbers greater than a few times the critical Rayleigh number, even

though the analogy is almost perfect at the onset of convection.

The experimental investigation of Koster and Miiller [1] used holographic
interferometry to determine the effect of aspect ratio and thermal properties of
the cell and fluid on the critical Rayleigh number. They also calculated bounds
for stability of two-dimensional rolls. Oscillatory convection for high supercritical

Rayleigh numbers was also seen, and it was determined that it was caused by



CHAPTER 2. LITERATURE REVIEW 13

instability of the thermal boundary layers at the horizontal walls. The period
of these oscillations decreased with increasing Rayleigh number. Continuation of
the study of these oscillatory solutions [2] resulted in the discovery of periodic,
quasiperiodic and non-periodic structures. There were regions of non-periodic flows
followed by quasiperiodic or periodic oscillations. Further study [32] showed that at
certain Rayleigh numbers there were three regions: the centre with steady flow and
the two end regions exhibiting different nonperiodic flows. However, no chaos was

discovered, as higher transitions resulted in steady flows.

Recent works with Hele-Shaw cells hae continued to loock at thin gaps as a
tool to aid in the study of behavior in porous media. These studies have considered
topics such as two phase displacement [33], movement of bubbles [34, 35] and viscous
fingering [36, 37, 38], which have direct application in enhanced oil recovery. Others
have looked at the flow iu these cells for its own sake, considering free boundaries

{39] and non-Boussinesq effects [40].

2.2 Porous Layer

2.2.1 Heated from Below

The original - ~~arch in convection within porous layers considered the criteria
for the onset of convection in a porous layer saturated with a motionless fluid. A
two-dimensional linear stability analysis showcd that marginal stability was first
reached when the filtration Rayleigh number attained a value of 472. Horton and
Rogers [41] showed that this result applied to an infinitely long porous medium
with free surfaces above and below and perfectly conducting media adjacent to the

boundaries. Lapwood [42] found this criterion also applied to porous media bounded
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by infinitely long isothermal plates at different temperatures. This study led to so
much further research that convection in porous layers heated from below is referred

to as Lapwood convection.

Original studies of porous media convection used the thermal conductivity of
the saturating fluid in evaluating the Rayleigh number. However, errors between
experimental and theoretical values of the critical Rayleigh number were found.
This discrepancy was resolved by Katto and Masuoka [43], who determined that the

effective thermal conductivity for the porous layer must be used to obtain correct

results.

In studies of Lapwood convection, authors have considered many possible
variations. Some studies have looked at the effects of aspect ratio and other
geometric effects in finite rectangular media [44, 45]. In order to remove the
problems of the corners in a rectangular medium, cylindrical [46] or annular
[47, 48, 49] geometries have been chosen. Different boundary conditions have also
been considered, including constant flux boundaries [50, 51, 52] and systems heated

from above and cooled from below [53].

The majority of work has considered flow in the Darcy regime, which neglects
the effects of the boundaries and fluid inertia. Some effort has been directed at
determining these effects by using the Forchheimer model {54, 55] or the Brinkman

model [56, 57, 58] as a momentum equation.

Another set of investigations have considered non-uniform media [59] or media
with embedded obstructions [60, 61, 62]. The evolution of stable convection into
oscillatory convection [63] and chaos [64], as well as the mechanisms that begin this

destabilization [65, 66], have been studied.

The study of convective structures in Lapwood convection within horizontal

layers has received much attention. In 1972, Bories, Combarnous and Jaffrennou
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[67] reported the transitions between the different types of convective motions in
porous media. These states were adjacent polyhedral cells, unicellular flow, a system
of stable coils and a fluctuating convective state characterized by the continuous
creation and disappearance of convective cells. This fluctuating state was observed
by Caltagirone, Cloupeau and Combarnous [68] in 1971, while the other states were
experimentally observed by Bories and Combarnous [69] in 1973. An extensive
review of developments in convective behaviors in bottom heated porous layers up

to 1975 is given by Combarnous and Bories [70].

Vertical porous layers have been considered to a lesser extent. Some research has
looked at layers at various tilt angles from horizontal to vertical [69], while other
work has considered only vertical media [71, 72]. Only a unicellular flow has been

found to exist in vertical porous layers.

There has also been some study of natural convection in inclined porous media.
An initial investigation by Combarnous [73] found that a porous layer with a small
slope bounded by isothermal plates exhibited a stable laminar convection state when
40 < Racos¢ < 240 — 280.

A mathematical treatment performed by Holst and Aziz [74] found that the
maximum rate of heat transfer occurred at an angle of 40° from the vertical.
Large velocity gradients were found near the system boundaries at low angles,
and large effects were seen near the boundaries at increased angles. A concurrent
experimental study indicated that multiplicity was possible in tilted porous layers
and that the observed mode of convection depended on how the boundary conditions
were established. Another study of Holst and Aziz [75] showed that three
dimensional natural convection provides significantly more heat transfer than does

two-dimensional motion.

In 1985, Caltagirone and Bories [45] published an extensive study that attempted
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to theoretically predict experimentally observed structures. The presence of finite
dimensions was found to have a stabilizing effect when the layer was tilted. This
meant the accepted stability criterion for an infinite layer, Racos¢ = 472, was
not valid in the case of a finite layer. An earlier paper by Walch and Dulieu [76]
discussed the existence of a reverse unicellular flow for angles less than 7°. This idea
was extended to find three solutions. One of these was a positive unicellular flow,
while the other two corresponded to reverse flows. A positive flow was defined to be
an upward current along the hot boundary with a downward current along the cold
boundary. Increasing the tilt angle shifted the point of transition for appearance
of these reverse flows to higher Rayleigh numbers. For tilt angles greater than 6°,

these reverse flows could no longer exist.

‘The experimental study of Kaneko et al [77] used the apparatus of Holst and Aziz
and showed that the value of critical Rayleigh number for the onset of convection
varied for different solids and fluids. This work confirmed an earlier statement of
Combarnous [73]. The assumption of infinite heat transfer between solid and fluid
is invalid, but is implicit when a model with only one energy equation is used. One
energy equation models are commonly used for simplicity, but are only accurate
when the thermal conductivity of both phases is of the same order of magnitude,

and both phases are at the same temperature.

Other authors considered models which account for different thermal properties
in the two phases and the possibility of heat transfer between fluid and solid.
Combarnous and Bories [78] assumed that a porous layer is two continua, and wrote
separate energy equations for each phase. These two energy equations are linked
through a term which accounts for heat transfer between phases. The effect of
different heat transfer coefficients and thermal conductivity ratios of the two phases

on the overall heat transfer was shown. Chan and Banerjee [79] used a mode! with



CHAPTER 2. LITERATURE REVIEW 17

two energy equations as well, but solved for conduction in the solid phase as well
as interphase heat transfer. Computations with this model were in close agreement

with experimental data.

2.2.2 Internally Heated Porous Layers

Another set of researchers have focused on porous media systems with natural
convective flow due to the presence of internal heat generation. Gasser and Kazimi
[80] performed a linear stability analysis on such a system with a free upper surface
and rigid lower surface to determine the value of the dynamic parameter at the onset

of convection.

Analytical and experimental work by Buretta and Berman [81] considered a
system with a rigid isothermal upper surface and a rigid adiabatic lower surface.
They showed that the critical Rayleigh number for systems with internal heat sources
was 31.8, as compared to 472 for natural convection due to heating from below. A
discontinuity in the heat transfer curve was discovered. They postulated that this
discontinuity was due to the existence of a bifurcation point at the critical Rayleigh

number.

Tveitereid [82] performed a stability analysis and determined that two
dimensional rolls and polyhedral cells were possible steady-state solutions. Only the
rolls and polyhedral cells which flowed downward through the center were stable.

Other authors have considered a system with a fluid layer above a saturated

porous layer, either heated from below [83] or internally [84, 85].

A three-dimensional case of internal heating was looked at by Beukema, Bruin
and Schenk [86]. They attempted to simulate the cooling of agricultural products

in cold storage and determine how convection aids in this cooling.
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2.2.3 Other Studies of Porous Convection

Combined natural and forced convection has been studied by very few authors.
Most of these works considered the effect of throush flows on natural convection as
opposed to the results of the interactions between the two phenomena. An analytical
and numerical study by Haajizadeh and Tien [87] showed that the Nusselt number
depends on the aspect ratio, Rayleigh number and Peclet number. Even a very small

forced flow affects the temperature profile, while large flows suppress the effects of

natural convection.

It has also been shown that the mathematical models of mixed convection and
natural convection with internal heat generation are similar under certain conditions.
Islam and Nandakumar [88] showed this to be true if - vial conduction is negligible,
a thermally developed state exists in the axial direction, and the Darcy equation is
obeyed. This model exhibits dual solutions over a limited range of flow parameter. A
subsequent study of this model [89] considered the transient evolution to stationary

solutions as well as the development of sustained oscillatory solutions.

2.3 Bifurcation Studies

Bifurcation studies are often used to characterize the changes in steady-state
behavior as parameters are varied. There have been recent bifurcation studies on
systems such as mixed convection in horizontal rectangular ducts [90], laminar flow

in rectangular curved tubes [91] and flow between concentric rotating cylinders [92].

Cliffe and Winters [93] looked at the cusp catastrophe for Bénard convection in
a tilted rectangular cavity of unit aspect ratio. The state diagram for a slightly

tilted cavity contained a limit point. Tracking this limit point as the tilt increased
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showed that it ceased to exist if the layer was incline more than 22° above or below

the horizontal.

Many of the bifurcation studies considering porous medium convection have
been undertaken by Riley and Winters. They used bifurcation theory to study two-
dimensional Lapwood convection. Their purpose was to determine the effects of
aspect ratio and tilt, and the existence of multiple solutions [94, 95]. A complete
bifurcation structure for the stationary solutions has been generated. The preferred
modes of convection were determined along with the exchanges in mode as these

parameters were varied.

In order to perform any bifurcation study on a mathematical model, it is essential
to determine the symmetries within the system geometry. For a rectangular,
horizontal porous layer heated from below, there are two types of symmetries
present. One is reflective symmetry about the mid-line axes of the layer, while the
other is symmetry about the center point of the domain, known as centro-symmetry.
The reflective symmetry about the horizontal axis and the centro-symmetry are
due to the linear temperature gradient that exists in a stagnant layer which is
bottom-heated and cooled at the top. This situation maintains itself as long as the
thermal driving force remains below the critical value to initiate convection. When
the mathematical model is made non-dimensional, the dimensionless temperature
is scaled so that the difference between the temperature at the given point and
the temperature at the mid-line is important. The result is symmetry about the
horizontal and vertical centerlines, as well as the center point of the domain. In
combination, this symmetry is referred to as Z2XZ, symmetry. Tilting of the layer
provides an asymmetric perturbation which breaks both reflective symmetries, but
not the centro-symmetry. For a complete discussion of the symmetries in Lapwood

convection, refer to Riley and Winters [95).
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A bifurcation study of the model in [88] was performed by Weinitschke et al [3]
to determine the structure of the heat transfer phenomena in an untilted, vertical
porous slab. This model can describe both mixed convection heat transfer and

natural convection with internal heat sources if certain conditions are met.

The symmetries present in the layer with internal heat sources are not as
abundant. For an untilted layer, there is only reflective symmetry along the vertical
centreline of the domain. With internal heating driving the convection, the fluid
can only be stagnant if there is no heating. Due to the cooling on all sides, a
stagnant layer in this situation is at the same temperature as the side walls. When
internal heating begins, convective flow initiates within this system. There is no
state within the system, other than its trivial state, where there is a symmetry
about the horizontal centreline of the domain. Similarly, there cannot be symmetry

about the center point. Upon tilting the layer, the reflective symmetry about the

vertical centreline also disappears.

In this dissertation, only the porous layer with internal heat sources is considered.
The model from [3] has been modified to include the effects of tilting the porous
slab. The changes in the sclution structure due to the effects of the asymmetric

perturbation of tilt will be the main consideration.



Chapter 3

Porous Layer Simulations

3.1 System Description

The system under study is a rectangular, two-dimensional porous slab of length
2b and height 2a. The cell is filled with a homogeneous, isotropic porous material
with permeability K, and is saturated with a single phase fluid of density py,
heat capacity C, and viscosity u. Interphase heat transfer resistance is neglected,
requiring the two phases to be in thermal equilibrium. Bounding the porous slab
are impermeable surfaces held at a uniform constant temperature T,,. The entire
geometry can be tilted at an angle ¢ above the horizontal. Within the porous layer
there is a uniform internal heat generation per unit volume Q,. This internal heating
provides the horizontal temperature gradient in the gravity field that can generate
a natural convective flow within the slab. A sketch of the geometry in this model

porous system is shown in Figure 3.1.



CHAPTER 3. POROUS LAYER SIMULATIONS

Figure 3.1: Geometry of the Porous Layer System
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3.2 Mathematical Description

The following model was originally derived by Weinitschke et al [3]. All equations
%:’sve been volume averaged so that macroscopic quantities are utilized. The two-
dimensional form of the continuity equation is:

D P ' '

— v . = 3.1
B+ AV V=0 (3.1)
For the flow equation, the Darcy equation is used due to its simplicity. It also sets

an upper limit on the lows which may be studied. Its form is:

s

K ’ 7
v = —F[VP + pg] (3.2)

Since there is no resistance to interphase heat transfer, only one energy equation is

needed. It is of the form:

or el . @
a[gt—,—-i-(v -V)T] =aAT + (pCZ)f (3.3)

where, for the porous medium:

a = kef.f/(PCp)f

The Boussinesq approximation is incorporated into the energy equation. It assumes
all material properties are invariant over the temperature range of interest except
for the buoyancy term which causes the convection. Within the buoyancy term, the

density of the fluid is assumed to vary linearly with temperature according to:
p=poll — B(T" —T,)]
The model equations are considered in a rectangular two-dimensional region

R :={(z,¥)|-b<z <b—-a<y <al.
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Cross-differentiating the two components of the Darcy equation eliminates the

pressure term, and introducing the stream function

. .Y
u = '3—37' v = oz (3.4)

satisfies the continuity equation by definition. In order to make the equations

dimensionless, the following scale factor are utilized.

I _Y
b Y a
_ ul v _ vl
) = /v)
P’ T, T
= — = —
v=< (QgA [kesy)
A = 4ab ¢

ey

Only steady state solutiors are considered here, sc all time dependent terms are

neglected. The resulting mathematical model is:

A0 —[0,¥]+v/4=0 (3.5)
ALY — Ravy(0: cos¢ — v8,sing) = 0 (3.6)
where:
_ Q. KBAb _
Ra —2 e v=b/a
o 92
A‘y = 53,3 -+ 72_6?2- [0, lb] = 0:'¢’y - ¢zay

The boundaries are impermeable and ave maintained at a uniform peripheral

temperature, and thus the boundary conditions are written as
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A rectangular duct with a horizontal orientation has reflective symmetry. This
allows consideration of only half the domain, known as R*, when determining
the symmetric solutions of the bifurcation structure. In computational terms, this
corresponds to

R*:={(z,9)|0<z<1,-1<y<1}.
All asymmetric solutions must be located using a full domain, even in an untilted
geometry. However, when the duct is tilted, the reflective symmetry is broken, which

necessitates solution within the full domain:

R:={(z,y) | -1<z<1,-1<y<1}.

Solutions of slabs with negative tilt, which are those tilted below horizontal,
can be constructed from solutions with positive tilt using the following symmetry

properties:

u(z,y; ¢) = u(—z,y; —¢) v(—z,¥;0) = v(z,y; @)
0(—z,y; —~9) = 0(z,y;9) Y(—z,y;9) = —¢¥(z,y; )

In the idealized case of infinite horizontal extent, the basic state is motionless,
and only above a critical Rayleigh number does a convective motion begin through a
supercritical bifurcation. In the case studied here, there is always a state of motion
within the fiuid for a non-zero Rayleigh number. The value of 8, near the vertical
boundary is always non-zero, so there is always a forcing term in Equation 3.6.
Combining this with the symmetries in the domain and the geometry results in a
basic state which has two counter rotating vortices. The bifurcations that occur in
the solution correspond to the formation of additional vortices within the slab, and

are due to instabilites of the solution branch.

Nusselt number is the parameter used to illustrate the behavior of this system

for the majority of results presented here. The expression used to determine the
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Nusselt number is unique to this specific geometry. The details for the derivation
of this expression are shown in the paper by Ryland and Nandakumar [96]. Once a
temperature field is computed for any instant of time, a spatially averaged Nusselt
number is computed using the following expression:

107 1
14+v2<6, >

< Nu >= (3.8)

where the bulk mean temperature is

<Oy >= /Rf)dxdy [ A.

3.3 Numerical Methods

The system of two coupled non-linear partial differential equations was solved
using a Newton method at regular points along the path. The system may be written

as one operator of the form

f(u,Ra,v,¢) =0 u = [0(x,y), ¥(x,y)] (3.9)
The linearized problem that is solved is
Su (un, Ra, 24 ¢)Un =Tn U, = [Dn (X, Y)a Pn (X, y)] (310)

The corrections D and P are obtained from the linearized form of Equations 3.5 and

3.6. These linearized Newton equations are

A,D+ [y, D] —+[6,P] =7 r=31—A0, —[¢,6]
AL P + Ray(D;cos¢ — vDysing) =, To = —A,1) — yRa(0, cos¢ — 8, sing)

The system was discretized in the interior of R by central difference approximations

with a uniform grid. Brundary conditions are of the Dirichlet type, so are easily
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imposed. The resulting sparse system of linear algebraic equations was solved using

SPARSPAK [97], an efficient linear solver routine.

Initial guesses are required for the temperature and stream function values at
the next value of Rayleigh number to be considered. These are determined using
Euler-Newton continuation. A tangent vector to the solution path, = a—aﬁ’—a, is
calculated from the expression

. of
fu(u, R'a's')’, ¢)u - —a_ﬁ

where

5"% = (0, —[6. cos¢ — v8, sind])

Only one back substitution of the right hand side is required following the last
Newton step to produce the tangent.

Failure of the regular continuation scheme to converge is an indication that there
is a singular point nearby. At a limit point, the operator f, is singular. Accurate
values of the parameter at bifurcation points are determined through the use of
extended systems. In the case of a simple limit point, the extended system of

equations shown by Moore and Spence [98] is utilized:
f(u,Ra,v,¢) =0 fu(u,Ra,y,¢)v =0 m(v) =1 (3.11)

where v is the right null eigenvector. The unknowns to be solved for are [u, v, Ra)].

Within the extended system, the bordered scheme of Weinitschke [99] was
implemented to minimize the number of situations where nearly singular matrices
were required to be inverted. The extended system can be combined with regular
continuation to track the locus of limit point positions with respect to parameters

other than Rayleigh number.
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Another observed behavior is a branch of asymmetric solutions emanating from
a branch of symmetric solutions. The origin of the asymmetric branch is known as
a symmetry-breaking point. Werner and Spence [100] showed that a symmetry-
breaking bifurcation point of the pitchfork type is an isolated solution of the
extended system of Equation 3.11, except that null vector v must be anti-symmetric

with respect to the vector u. In this problem, the symmetry is expressed as:

0(z,y) = 6(~z,y) Y¥(z,y) = —Y(~z,y) (3.12)

Therefore, the anti-symmetry condition that v must satisfy is:

6(—z,y) = —0(z,y) Y(—z,9) = P(z,y) (3.13)

In addition, the calculation of symmetry-breaking points requires that the symmetry

condition on z = 0 be replaced with:
0:(0,y) = ¢¥(0,y) =0 9(0.y) = h.(0,y) =0 (3.14)

A Hopf bifurcation is one where a branch of time-periodic solutions emanates
from a steady solution branch. The point where the origin of periodic solutions
occurs on the stationary branch is called a B-point. These points are characterized
by the fact that the extended system for a limit point has an eigenvalue zero
of multiplicity two while the null space of the extended system remains one-
dimensional. This necessitates that the right and left null eigenvectors of the
extended system (W', %) are orthogonal. The null eigenvectors (¥4, ®%) must
be scaled so that they are nearly in the same direction as the eigenvectors of the

previous point calculated. This is to say
Phi-1gt > Q $ti-145 > 0

This will allow the null vectors to rotate continuously as the fold curve is followed.

Roose and de Dier [101] suggest that a monitor on the cosine of the angle between
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these null eigenvectors be implemented. If these vectors become orthogonal, the
cosine of the angle between them is zero. Thus, the cosine of the angle between the

two null eigenvectors will change sign as a B-point is passed.

Regular continuation fails when a simple limit point has been reached. To find
solutions on the path beyond the limit point, the pseudo-arc length continuation
scheme of Keller [102] is used. The equations are reparameterized with s, an arc-
length parameter. An arc length constraint equation is also required. The equations

are of the form:
f(u(s),Ra(s);v,¢) =0 N(u(s), Ra(s);7,¢) =0 (3.15)

At positions close to the limit point, it takes several iterations for the solution to
converge. This is due to the sharp curvature of the solution path at the limit point,
which results in poor initial guesses from extrapolation of the tangent vector. When
the solution did not converge in a specified number of iterations, the step length
was halved. This method was sufficient to turn around all limit points encountered

here.

Grid sensitivity tests were performed to determine the minimum acceptable grid
for the computations. The results of these tests are shown in Tables 3.1 and 3.2.
The positions of the limit points changed little on refinement of the grid, while
the solution structure was unchanged. The smallest changes were evident when
the number of interior points in the grid was refined from 39 x 39 to 47 x 47 in
each case. Therefore, all the remaining results presented are for a grid spacing of
h = 0.05, which corresponds to a 39 x 39 grid of interior points for a porous slab of

unit aspect ratio.
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Table 3.1:

Grid Size =500 Ra=4;000 low | Ra=4000 high
19x19 8.45682 13?472 ] 13.8712
29x29 8.47321 13.2517 14.1339
39x39 8.47890 13.3353 14.2216
47x47 8.48196 13.3788 14.2606

Grid Sensitivity of Nusselt Number at Selected Rayleigh Numbers

on Branch PM, ¢ =1.0°,y = 1.0

Grid Size L1 L3 L6
29x29 2606.20 | 4573.70 | 6526.93
39x39 2587.16 | 4506.78 | 6560.16
47x47 2578.47 | 4470.04 | 6492.32

30

Table 3.2: Grid Sensitivity of Rayleigh Numbers at Limit Points for the Porous
Slab Simulations, ¢ = 0°,v = 1.0

3.4 Solutions Structure

3.4.1 Horizontal Orientation

As mentioned, the starting point for this study is the work presented in [3].
Figure 3.2 shows the overall bifurcation structure for a porous slab of unit aspect
ratio and horizontal orientation. This solution was discussed thoroughly in [3]. A
magnified view of the high Rayleigh number region is shown in Figure 3.3. The
details of these figures are the same as in [3] except for the discovery of three new
branches of asymmetric solutions. One branch is labelled AS4 and has a limit point
AL13. There was no symmetric branch found that meets with this asymmetric
branch at a symmetry breaking point. Winters {21] suggested that asymmetric

branches may contain limit points. Such a situation has been located here. These



CHAPTER 3. POROUS LAYER SIMULATIONS 31

b
2}
1

)
H
T

ooy
N
T

[
=]
]

Nusselt Number

0
\
i

e
.
1
{

3 L —

0 20 40 60 80 100
Rayleigh Number/100

Figure 3.2: Bifurcation Diagram for a Horizontal Porous Slab, v = 1.0.
Solid lines represent symmetric solutions. Dashed lines represent
asymmetric solutions.
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Figure 3.3: Bifurcation Diagram for a Horizontal Porous Slab: Detail of High
Rayleigh Number Region, v = 1.0
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Point ] Rayleigh Number
AL13 8117.86
SBé6 7733.16
SB7 8693.76

Table 3.3: New Bifurcation Points Found, ¢ = 0°,+7= 1.0

asymmetric branches usually occur in pairs, with the second branch having the same
limit point and containing contours which are mirror images of the first branch.
Extension of the ends of AS4 up to Rayleigh number values of 40000 showed no

connection to any known symmetric solution branch.

Two other branches were discovered for the untilted solution structure. These
were branches AS6 and AS7 that emanate from IS1 through symmetry-breaking
points SB6 and SB7. As was the case with AS4, extension of these branches beyond
the domain of interest did not lead to any new symmetric solutions. Branches
ASG6 and AS7 turn out to be very important when considering the transition of the
solution structure as the slab is tilted from 0° to 1°. The positions of the bifurcation

poir’s on these newly discovered branches are given in Table 3.3.

3.4.2 Unfolding of the Solution upon Tilt

When the porous slab is tilted 1°, a very different soluticn structure emerges.
It is illustrated in Figure 3.4, and the detail of the multiple solution branches in
the high Rayleigh number region is shown in Figure 3.5. For the horizontal slab,
the solution structure contains three symmetric branches with twelve limit points
and six asymmetric branches for the range 0 < Ra < 10000. A slab tilted only
one degree above or below the horizontal has a structure which contains nine limit

points on seven branches isolated formn the origin, and an eighth branch from the
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Figure 3.4: Bifurcation Diagram for a Tilted Porous Slab, ¢ = 1.0°,yv = 1.0
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Figure 3.5: Bifurcation Diagram for a Tilted Porous Slab: Branches with Limit
Points in the High Rayleigh Number Region. ¢ = 1.0°,y = 1.0
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_Limit Point | Rayleigh Number || Limit Point Rayleigh Number
[ 2586.03 f L7 7622.09

L2 4166.41 L8 7728.30

L3 4507.78 L9 9611.48

14 5369.95 L10 8651.91

L5 5542.28 Li1 9917.02

L6 6594.95 l L13 8117.86

Table 3.4: Location of Limit Points in Horizontal Slab, vy =1.0

origin which has no limit points. These limit points are labelled to correspond with

those in the horizontal slab structure.

All isolated branches in the structure for the tilted slab open toward the right
except for ABi1, which has a section which opens to the left. Five of the six limit
points that disappear upon tilt are located near symmetry-breaking points in the
untilted structure. Only L11 does not follow this description, as no symmetry-
breaking point has been detected near it in the horizontal solution structure. The

isolated branch AB11 contains three limit points.

The exact positions of the limit points in the horizontal structure, as determined
with an extended system, are given in Table 3.4. Limit points in the slab tilted one

degree are shown in Table 3.5. In all cases, the Rayleigh number only changes a few

percent.

3.5 Branch Rearrangement with Tilt

The rearrangement of connectivity of solution branches with tilting of the slab is

interesting due to the resulting change in bifurcation structure. The graphs shown up
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Limit Point | Rayleigh Number || Limit Point | Rayleigh Number
L1 2587.16 E;lO 8372.09
L3 4506.78 L11 9925.06
L6 6560.16 L13 8191.60
L8 7889.20 L14 7807.87
L15 9124.72

Table 3.5: Location of Limit Points in Tilted Slab, ¢ = 1.0°,v = 1.0

to now are incapable of revealing the detailed structure. The asymmetric solution
branches shown in previous figures appear as only one line. In fact, they are a
pair of superposed branches, but this character is hidden by the use of averaged
temperature in the determination of Nusselt number. When a state variable other
than Nusselt number is chosen at a grid point away from the line of symmetry, the

distinct character of these two branches becomes evident.

Stream function and dimensionless temperature are two quantities which have
been selected to show the evolution of the solution structure as the slab is tilted.
The value of these quantities are determined at a point with co-ordinates (0.1b,
-0.92) within the domain. In the previous investigation [3], this is a point where
a secondary flow cell is located within the domain. Large differences in stream
function and temperature occur there, depending on the presence or absence of a

secondary flow cell.

The stream function representation of the bifurcation structure for an untilted
slab is given in Figure 3.6. Note that asymmetric branches, such as AS1, which
are straight lines when Nusselt number is the state variable, consist of two separate
branches that connect SB1 and SB2. There are many branches in the high Rayleigh

number region of the domain. The high Rayleigh number region is shown in
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Figure 3.6: Solution Structure for an Untilted Porous Slab using Stream
Function as the State Variable, v = 1.0
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Figure 3.7.

Another view of the solution is given by using dimensionless temperature as the
state variable. The plots generated with this variable better illustrate the branch
rearrangement with tilt. For an untilted slab, the solution is shown in Figure 3.8,

while a layer tilted one degree above the horizontal is given in Figure 3.9.

Rearrangement of the solution structure is due to the following factors. As the
layer is tilted, all symmetry is broken. Thus, symmetric solutions cannct exist.
Symmetry breaking (SB) points are unstable to tilt, and they tend to coalesce with
nearby limit points. Pitchfork bifurcations, of which a symmetry breaking point is
one, unfold to eventually form a continuous branch and an isolated branch. Due
to the multitude of SB points present in the untilted structure, a number of SB
unfoldings occur. The ultimate result is a significantly different structure for a

porous slab, even if tilted only one degree.

3.5.1 Tracing the Origins of Solution Branches

Each solution branch in the structure for the tilted slab consists of several sections
of branches found in the untiited solution. The nature of the rearrangement can be
understood by looking at the changes in solution structure in one region as the slab
is tilted.

Consider the unfolding of SB1 into the limit point L2. An illustration of this
unfolding is given in Figure 3.10. Since the SB point is structurally unstable to an
asymmetric perturbation, it unfolds into a structurally stable singularity, which is a
second limit point L2'. Upon further tilting, the two limit points L2 and L2’ move
closer together, and eventually coalesce as a double limit point. The double limit

point dissappears as a hysteresis point.
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Figure 3.7: Solution Structure for an Untilted Porous Slab using Stream
Function as the State Variable, v = 1.0. Branches PM1, AS2 and
AS3 have been removed for clarity.
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Figure 3.10: Unfolding of SB1 with Nusselt number as Illustrative Variable
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In this case, unfolding of SB1 results in the lower section of primary branch PM1
Jjoining with the upper branch of AS1, while the upper section of PM1 joins with the
lower section of AS1. This particular rearrangement occurs duc to the flow patterns
which naturally occur in these branches. As shown in Figure 3.11, at positive tilt
angles, the separation line is to the left of the slab centreline at the bottom of the
slab for section a of the primary branch. A smooth rearrangement results if this
branch joins with the asymmetric branch section where the separation line also is to
the left of the slab centreline. In this case, that is the upper branch of AS1, labelled
d. Similarly, the upper section of PM1, labelled b, may smoothly join with the lower
branch of AS1, iabelled ¢, as they have similar flow patterns.

If the slab is tilted below horizontal, which is the negative direction, the opposite
rearrangement would occur. The section of PM1 coming from the origin would join
with the Jower branch of AS1, and the upper branch of AS1 would join with the

section of PM1 coming from limit point L1.

This behaviour occurs in several places in the solution structure, as the large
number of SB points present unfold. Ultimately, a very different solution structure

is present for a tilted slab as compared to a horizontal slab.

As examples, the origin of branches PM and ABI in the structure at ¢ = 1°
will be traced. The unique solution branch PM in Figure 3.9 has no limit point.
Looking at Figure 3.8 and starting at the basic state (Ra = 0), the branch PM1 is
followed to the point where limit point L2 and symmetry breaking point SB1 exist.
The upper branch of AS1 is taken to the other end, where L4 and SB2 are. The
upper branch is selected since PM and ABI1 cross in the tilted structure. Following

branch IS1 until the merger of L7 and SB4, the path follows the upper part of AS3
until the edge of the domain is reached.

To trace AB1, begin at the end of PM1 that exits the domain at Ra = 10000 in
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Figure 3.11: Unfolding of SB1 with Dimensicnless Temperature as the
Illustrative Variable. Flow Patierns for each Solution Branch
appear beside the branch.
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Figure 3.8. Follow PM1 back to the limit point L1 and down toward L2 and SBI1.
Follow the lower branch of AS1 to L4 and SB2. The section of IS1 from that leads
to L7 and SB4 has been accounted for, so follow IS1 in the other direction to L5
and SB3. Gince ABI leaves the domain above AB3 in Figure 3.9, follow the upper
branch of AS2 to Ra = 10000.

The remainder of the branches in Figure 3.9 can be traced in a similar manner
from the structure of the untilted slab in Figure 3.8. Limit point L9 moved out of
the domain of interest when tilting occurred. The section of IS2 which contained
L9 was found to sensitive to the grid spacing. Thus, it was not accounted for in any

of the results shown.

3.5.2 Merging of Limit and Symmetry-Breaking Points

The merging of limit and symmetry-breaking points is essential in the solution
structure rearrangement described previously. This phenomenon also indicates the
regions of parameter space where oscillatory solutions might be possible. Again,
consider the unfolding of SB1 into L2. The fold curves in tilt for L2 and L2 are
shown in Figure 3.12. The limit points L2 and L2’ occupy the same position in the
structure at a tilt angle of 0.0034.25¢.

The fold curve of L2' was found to contain an origin of a Hopf bifurcation, which
is also known as a B-point. This point was determined at a tilt angle of 0.0028°, and
is labelled on Figure 3.12. This type of behavior is referred to as a Takens-Bogdanov
singularity [101]. A path of homoclinic bifurcations emanate from such a singularity.
This behavior is important in the study of the dynamics of this system. However, the
present work has been limited to the discovery of such points. Dynamic evolution of
this system is outside of the scope of this thesis. However, such evolution has been

considered in & companion paper by Ryland and Nandakumar [96].
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either end of AS1, v =1.0
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At the other end of the asymmetric solution AS]1, the synimetry-breaking point
SB2 unfolds into limit point L4’ and merges with limit point L4. The plot of this
merging is also shown in Figure 3.12, and a B-point is also present of the fold
curve of L4’. It has been speculated by Ryland and Nandakumar [96] that the path
of oscillatory solutions originated on L2’ actually ends on L4', but this cannot be
confirmed. This postulate is based on results from stability analysis. At a tilt angle
of 1°, there is a change of stability along PM at a Rayleigh number of between 4400
and 4600. There is no apparent bifurcation point in the region that could cause such
a change in stability. However, a path of oscillatory solutions passing the stationary
soluticn branch couid give this result. Another fact which supports this postulate
is that the section of IS1 beyond L4 is stable in the untitled slab.

Other SB points unfold into limit points over equally small tilt angles. In a
practical sense, it is impossible to observe these phenomena. The tilt angles involved

are much smaller than the error in levelling any experimental apparatus.

There is another possibility for unfolding of a SB point with a limit point. The
point SB6 has a limit point nearby, namely L8. The difference is that L8 opens away
from the origin. No other limit point that opens to the right has a SB point in its
vicinity, and still exists at a tilt angle of 1°. Figure 3.13 diagrams the structure before
and after this interaction. At first, branches e and fare the symmetric solution with
a limit point at Lz. Nearby are asymmetric branch sections g and h with emanate
from symmetric breaking point SBy. At a small angle of tilt, the resulting structure
is a pair of limit points in the same vicinity that are not connected. After this
occurs, branch e is joined with branch % at a limit point Lw, while branches fand
g form another branch with a limit point at Lv. In the case of L8 and SB6, the two
resulting limit points are labelled L8 and L14. This transition occurs at a tilt angle

of less than 0.1°, due to the close proximity of L8 and SB6 in the untilted structure.
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Classical unfolding of a pitchfork bifurcation occurs when SB7 unfolds. It is
structurally unstable to asymmetric perturbation. The result is a continuous branch
and an isolated branch, but with the view used here, the branches do cross. However,
these branches do not intersect. A sketch of what takes place is also shown in
Figure 3.13. Symmetric branch sections e and b form a continuous path, with
asymmetric branches ¢ and d meeting at symmetry-breaking point SBp. When
tilting occurs, the unfolding of SBp results in the joining of branches a and ¢ as
the continuous branch, and branches & and d forming an isolated branch with limit

point SBq. For the case of SB7 unfolding, the limit point is labelled L15.

3.6 Stability of Solution Branches

In order to monitor the stability on the various solution branches discovered,
the following routine was used. For stable solutions, all eigenvalues of the Jacobian
ma‘_ L. .., which is the discretized form of fy(u,Ra,~, ¢) calculated at each Newton
sten. "uust have a negative real part. The complex function

w — (1+2)
T (1-2)

maps the left half plane, which is the area of stability, onto the interior of a unit
circle. Jf all eigenvalues of A have negative real parts, then the eigenvalues of the

matrix

B=~(A—-I)"! (A+1I)

will all fall inside the unit circle. This requires only the value of the largest eigenvalue

as a test quantity, and it may be found through the use of a power iteration scheme.

Analysis of the stability of the solution branches for a porous slab of unit aspect

ratio tilted one degree is summarized in Table 3.6. At a Rayleigh number of 500,
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Rayleigh Number = 1000

Branch | Nusselt Number | Eigenvalue | Stability
PM 9.6619 0.9118 stable
Rayleigh Number = 3000

PM 12.4052 0‘946d:i0.0135 stable
AB1 12.4654 1.027 unstable
AB1 12.9772 1.029 unstable

Branch PM1 A

Rayleigh Number | ¥igenvalue | Stability
4000 0.9564+i10.0171 } stable
4200 0.9825+i0.0276 | stable
4400 0.9973+10.0426 | stable

4600 1.0053+10.0542 | unstable

Table 3.6: Onset of Instability within Tilted Porous Slab, vy=10,¢6=1°
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the unique solution branch PM was found to be stable. Branch PM continues to be
stable at Ra = 3000, but is not the only solution. The upper and lower branches
of AB1 are also present, but are both unstable. A Rayleigh number of 4000 is very
near the point where the limit point L2 and symmetry-breaking point SB1 merge
in a slightly tilted slab. At this point, branch PM was stable, while both branches
of AB1 were again unstable. At a Rayleigh number between 4400 and 4600, branch
PM became unstable. It is believed that this change in stability is due to the passing
of the Hopf bifurcation originating with the unfolding of SB1 inte L2. Confirmation
of this conjecture is not possible at this time, as a scheme that could follow the path
of oscillatory solutions has not been developed. Even if such a scheme did exist, the
solution for a large dimensional discrete system such as this one would require more

computing power than we have availal.le.

The Hopf bifurcation continues to travel through the domain, generating
oscillatory solutions and changing the stability of stationary branches. Figure 3.14
shows the points where this bifurcation point affects the stability of the unique
solution branch PM at various tilt angles. Over a small range of Rayleigh number,
up to 3000, there is a oscillation in the value of the largest eigenvalue, but it does
not affect the stability of the branch. This oscillation disappears at higher Rayleigh
number for the most part, and again does not affect the stability of the solution.
These oscillations do not appear to be an artifact of the algorithm, as they are still
apparent with the use of smaller tolerances in the power method. The peint at which
the unique solution branch became unstable moves to higher Rayleigh number as the
tilt angle increased. For a slab tilted 20°, there was considerable waviness, but the
branch remained stable. It appears that instability suddenly occurs at Ra = 19500,
but this was not pursued as it may be only an artifact of the sclution. At such a

high Rayleigh number more sensitive grids would be required. Further study of such
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a phenomenon was deemed to be outside the objectives of this study, but is also

beyond our computational power at present.

For a slab tilted 45°, there was no sign of the primary solution branch becoming
unstable. In fact, its largest eigenvalue was still decreasing at a Rayleigh number of
2721900. This indicates that this branch is not only unique but is also globally stable.

+ i* s only evident for a slab with a unit aspect ratio. For nonsquare layers, there
we. - aiways multiple solutions present at 45° of tilt. Only a slab with an aspect

ratio of unity has a degree of reflective symmetry return at a tilt angle of 45°.

For a slab tilted one degree, all seventeen solutions were found to be unstable at
the highest flows considered. This corresponds to no physically realizable solutions.
The eigenvalues for these branches at Ra = 16900 are given in Table 3.7. All of the

branches have their largest eigenvalues considerably greater than unity.

3.7 Flow Patterns and Isctherms

All seventeen solutions found at a Rayleigh number of 10000 for a unit aspect
slab tilted one degree are shown in Figures 3.15 and 3.16. These figures includes
streamline and isotherm plots. The odd number of solutions throughout the
structure is due to the presence of a unique solution at low values of Rayleigh
number. This solution branch is labelled PM in Figures 3.4 and 3.9. It corresponds
to a two-cell pattern that is only slightly asymmetric, even at Rayleigh number of
10000. The asymmetry is shown in the slightly off-centered line in the middle of the
streamline plot and the slightly greater spacing of isotherms in the lower right hand

corner of the slab as compared to the lower left hand corner.

The streamlines and isotherms for AB1 and AB3 appear to be evolving into a new

state. Branch AB1 is more advanced in this transition. The lower branches contain
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Table 3.7:

jrmch Flow Pattern | Eigenvalue | Stability
B A 2 cell 1.390+i0.2703 | unstable
ABi low 2 cell 1.178+10.3550 | unstable
AB1 high 4 cell 1.043 unstable
AB3 low 2 cell 1.0921i0.4215 | unstable
AB3 high 4 cell 1.266 unstable
AB6 low 2 cell 1.363+10.2928 | unstable
ABS6 high weak 4 cell 1.327+10.0558 | unstable
ABS8 low | developing 4 cell 1.227 unstable
ABS high 4 cell 1.128 unstable
AB10 low 2 cell 1.530+10.0614 | unstable
AB10 high | developing 4 cell 1.487 unstable
AB13 low | developing 4 cell 1.205 unstable
AB13 high 4 cell 1.1124i0.0077 | unstable
AB11 low weak 4 cell 1.317+10.0533 | unstable
AB11 high weak 4 cell 1.215 unstable

Eigenvalues of Solution Branches, Ra = 10000,v = 1.0,¢ = 1.0°.
Maximum of 30 iterations for convergence, Tolerance = 1.0E — 5

W

ot
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strong two-cell flow, while the upper branches contain strengthening four-cell flow.
The secondary flow cells in the center near the bottom wall are not as large in the
streamlines of AB3 as in AB1. Isotherms at the center near the bottom wall in AB3
are wavy, but are not penetrating up the middie of the cell like their counterparts in
ABIL. At aspect ratios greater than unity, the solution branch corresponding to this
part of AB3 in the untilted slab is expected to bifurcate into a flow pattern with
six flow cells. When these transitions are complete, and other flow structures like a

six-cell low begin, another limit point is expected.

The limit point is the transition point between a two-cell and four-cell flow in
AB1 and AB3. In the case of AB6 and ABI0, the four-cell flows are also present
in the upper branch. One of these cells dissipates as the Rayleigh number increases
when following the upper branch. The waviness at the bottom of the isotherm
plots of the upper branches of AB6 and AB10 are a sign that the four cell flow is
diminishing.

The streamline and isotherm patterns for both branches of AB8 and AB13 are
strikingly similar to each other. Both upper branches contain strong four-cell flow
patterns and the beginnings of the creation of two cells in the isotherms. The lower

branches both contain three strong flow cells and the beginnings of a fourth flow

cell.

The most complicated flows are seen at either end of AB11. Both solutions may
be characterized as three cell flows, but there appears to be the beginnings of a
fourth cell. The isotherms in both cases are beginning to rise in the center. This is

an indication that the fourth cell is gaining in strength.

All of these solution branches have been calculated to be unstable. However,
transient studies on this system have shown that these flow patterns do exist. The

transient path hops between these unstable solutions. Discussion of such phenomena
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can be found in the paper by Ryland and Nandakumar [96].

3.8 Effect of Larger Tilt Angles

3.8.1 Unique Solution Region

The effect of tilting the slab very slightly has been investigated. Consideration
of the change in solution structure when the slab is tilted larger amounts is now
considered. Fold curves for the limit points robust to tilt when the tilt angle
changes are shown in Figure 3.17 for a slab with unit aspect ratio. In gener:i
terms, the Rayleigh number of the limit point increases with increasing tilt angle.
The fold curves of most limit points in this system eventually become vertical and
are asymptotic to a certain tilt angle. In the case of bottom heated porous layers,
at high tilt angles, some limit points eventually merge together at a second turning
point and form an isola which shrinks and disappears upon further tilting [95].

Behaviour of this type was not discovered in this system.

In the case of L1, the fold curve is asymptotic to an angle of 42.9155°. Beyond
this angle, there is no multiplicity in the solution. Only the unique solution branch
exists, and it is stable for all values of Rayleigh number, as was mentioned when

stability was discussed.

3.8.2 Discontinuities in Fold Curves with Tilt

The fold curves of limit points L3, L6 and L10 do not follow the trend of
increasing Rayleigh number with increasing tilt angle over various values of tilt

angle, as is apparent in Figure 3.17. In the case of L3, the Rayleigh numbers at
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the limit point decrease slightly with increasing tilt angle until ¢ = 2.5°, where the
curve bottor. ..t and follows the trend of the other fold curves. This transition is

very smooth, indicating the absence of a higher order singularity.

In the case of the fold curve of L6 with tilt, at first the Rayleigh number increases
with tilt, and then gradually begins to decrease after the slab has been tilted 0.3°.
However, in order for the Rayleigh number to again increase with increasing tilt,
a transition in the form of a discontinuity occurs at ¢ = 2.7°. Just before this
discontinuity occurs, a B-point was discovered in the structure. The presence of a

B-point here indicates that this discontinuity is also of the Takens-Bogdanov form.

Consideration of the value of stream function near the discontinuity gives an
indicator of where to search for the physical reason behind these discontinuities. As
shown in Figure 3.18 the values of stream function at the position (0.9b, 0.1a) jump
significantly when the break in the fold curve is encountered. Thus, a study of the
contour plots on either side of the discontinuity should shed some light on what is

happening there.

A »hysical explanation of the reasons behind this discontinuity can be deduced
from inspection of the streamline plots of the solutions near the discontinuity.
Figare 3.19 shows the contour plots for the limit point solutions at 2.7° and 2.8°. The
symmetric soluticn of a horizontal slab contains a strong four-cell solution. Upon
tilting, the cell on the lower right begins tv lose strength. This accounts for the
reduction of heat transfer upon tilt and the drop in Rayleigh number for the limit
point position. Inspection of the streamline plots on either side of the discontinuity
shows tuat the discontinuity is due to the change from a four-cell pattern into a
three-cell pattern. The lower right hand secondary flow cell has been incorporated
into the large primary cell on the lefi. This strenghtens the two primary flow cells
a:.d thus leads to increased heat transfer and higher Rayleigh numbers of the limit
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Figure 3.19: Streamline and Isotherm Plots near the Discontinuity in the Fold
Curve of L6 with Tilt, v = 1.0. a)¢ = 2.7°, b)¢ = 2.8°.
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point as tii: iarther increases.

A similar discontinuity to that found on the fold curve with tilt for L6 is also
found on the tilt fold curve for L10. In this case it is found at ¢ = 1.1°. Again,
there is a B-point present just before the occurrence of the discontinuity. Contour
plots near this discontinuity, shown in Figure 3.20, indicate that there are physical
phenomena here similar to those which caused the discontipuity in L6. A four-
cell low pattern becomes a three-cell pattern after the discontinuity. resulting in

increased heat transfer due to the growth of the primary cells.

There is also a discontinuity present in the fold curve of L8, which again is closely
preceeded by a B-point. This is a different situation, as the change in slope of the
fold curve is not from negative to positive. Again, inspection of contour plots near
the abrupt change, shown in Figure 3.21, lead to a physical explanation. It is a
reverse situation of the previous discontinuities. A new flow cell is formed along the

lower right-hand surface of the slab, emerging from a primary ccil.

At the discontinuity, the fold curve ceased to exist, yet was not vertical. The
thought was that a higher order bifurcation similar to those seen in the fold curves
of aspect ratio was present. In an attempt to continue travelling along this branch,
computations were performed to circumvent this point. The following path was
calculated. From a tilt angle of one degree and a unit aspect ratio, the aspect ratio
was increased to two. From here, the slab was tilted to a value of 10°. The aspect
ratio was then reduced to unity. Lastly, the slab was returned to a tilt of one degree.
It was expected that this path would fail at some point, this giving an extension
of the fold curve of L8. However, the complete path was traced and resulted in a
different value of Rayleigh number for the same values of tilt angle and aspect ratio.
This branch is labelled AS4 in the horizontal structure and contains the limit point

AL13. In the tilted structure the limit point is again L13, but the resulting branch
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Figure 3.20: Streamline and Isotherm Plots near the Discontinuity in the Fold
Curve of L10 with Tilt, v = 1.0. a)¢ = 1.0°, b)¢ = 1.1°.
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Figure 3.21: Streamline and Isotherm Plots near the Discontinuity in the Fold

Curve of L8 with Tilt, v = 1.0. a)¢ = 6.8°, b)¢ = 7.0°.
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is labelled AB13.

It is obvious that the branches AB8 and AB13 are connected in some way. Their
fold curves in aspect ratio are very close together for an aspect ratio of 2.0. The
fold curve in tilt of L8 ends very close tc the position of L13 at the same angle. The
contour plots at 1° are strikingly similar. These facts suggest that branches AB8
and AB13 are connected in some way ne possibility is a connection by a cusp

catastrophe or some other type of higher order behavior.

4.9 Vari . .m of Aspect Ratio

Limit points wnich were robust to tilt were tracked throughout the parameter
range of aspect ratio using Euler-Newton ceantinuation on the extended system. The
fold curve for extrapolation in aspect ratio in shcwn in Figure 3.22. The relative
length to height of the slab was varied. In general, the value of Rayleigh number
at the limit point decreased with ircreasing aspect ratio. The fold curves of L6, L8
and L10 did no exist all the way to the lower edge of the domain at v = 0.5. The
curve of L10 ends at v = 0.992, while the fold curves of L6 and L8 end at v = 0.65
and v = 0.63, respectively. Higher order bifurcations, such as limit points on fold
curves, cculd not be handled by the routine used in these simulations. Efforts to
extend these branches any further failed. No B-points were discovered on any of

these fold curves.
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Chapter 4

Hele-Shaw Cell Simulations

4.1 Physical Description

A Hele-Shaw cell is defined as thin fluid-filled gap. It was first considered for
study by Hele-Shaw [27] in 1898. At that time it was suggested that an analogy
between the flows in these cells and the flow in porous media did exist. This idea
was based on the similarity between the Darcy equation and the Navier-Stokes
equations for flow in a thin gap. In order to use this analogy, a permeability for
the fluid layer has to be defined. The value used most often is d?/12, where d is
the width of the thin gap. Others have attempted to account for the heat loss
through the large side walls in non-isothermal flows within the permeability [29)].
The similarity between flow within fluid and porous layers is often exploited by using
Hele-Shaw cells as a substitute for a porous layer in an experimental program. The
results from these studies are then adapted for use in practical situations, such as

two-phase displacements in oil reservoirs [36, 38].

In the case investigated in this dissertation, the Hele-Shaw cell is of vertical

69
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orientation and rectangular cross-section, as shown in Figure 4.1.

The cell may be tilted at any angle above or below the horizontal. It is filled
with a fluid which may be heated internally. The peripheral walls are impermeable
and are at a uniform, constart temperature. The geometry of this test cell system

is meant to correspond with ikz porous cell described earlier.

4.2 Govérning Equations

The cell is a closed system, which means there is no flow in or out. The continuity

equation is of the form:

Dp P
W+p(v-u)—0 (4.1)

The Navier-Stokes equation is applied to describe the momentum transfer within the
fluid. Other mathematical models for Hele-Shaw cells have simplified the Navier-
Stokes equation through the use of the boundary layer approxiniation [103]. The
boundary laver approach has merit due to the defined small dimension in the
direction of the gap. It is possible that the hydrodynamic boundary layers of both
side walls do meet within the center of the fluid gap. However, they may not, and
thus will not account for flow within the center of the region. It is also not necessary
to simplify the model with introduction of boundary layers, as solution without them

is possible. The Navier-Stokes equation is written in the following form:
plu'y + (0 - V)] = —V'p + pAu’ - pg (4.2)

In the direction across the thin gap, the momentum equation need not be solved.
The so-called “small-gap approximation” can be used, as was done in [4]. For
Poiseuille fiow between closely spaced flat plates which are infinite in two directions,

the Navier-Stokes equation will give a parabolic velocity profile as a solutiorn. The
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parabolic profile will be the exact solution for this limiting case. A system where the
flat plates are finite and closely spaced is present here. However, if the dimensions
of the flat plates are much larger than the width of the gap between them, the use of
a parabolic velocity profile is a gnod approximation of the flow. In the experimental
portion of this study, the length of the flat plate is 3in while the width of the fluid
gap is 1/8in. This corresponds to a length to gap width aspect ratio of 24/1, which
is sufficient to justify the use of a parabolic velocity profile. In mathematical terms,

the parabolic profile is of the form:

w

1

f&) = — (2% )2] (4.3)

t\?

and the velocity components may be written as:
ul(x',y’,zl,t'):—_U,(x"y"tl)f(z’) (4'4)

The expression for the parabolic velocity profile is correct for the case where the
boundaries of the domain in the z’ direction are labelled as z' = :!:-‘21. The resulting
fluid velocity terms are neither superficial nor interstitial velocities. The averaging
that has taken place is different than that found in volume averaging due to the use

of the parabolic velocity profile in the direction of the gap.

Substitute these functions wad the linear temperature dependence of the fluid
density within the buoyancy term into the Navier-Stokes equation. The following

form for the momentum equation is the result:
FEUy +[f()(U - V)U = —Vp /p+vA'[U () + BT - To)g  (4.5)

The only new term that emerges in this equation is A[U'f(z')]. The second
derivative of f(z') has a value of —12/d2 This term will now be referred to as

—1/K, since it is the inverse of the permeablility defined for the fluid gap. If the
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momentum equation is now integrated across the gap, it takes the form:

’ ' ’ ’ ' s 1 1 ! !
Uz""g(U'V)U =—Vp/p+u[AU—-R—:U]+ﬂ[T_To]g (4-6)

The factor 6/5 is due to the fact that:
1 pd/2 /
: /_ o B4z =6/5

The energy equation must contain a term to account for the internal heat sources.
It is of the form

Ty + (0 - V)T = aA'T + Qg/(psCh,) (4.7)

where:
a=ks/(pCp)s

It is assumed that the large sidewalls are adiabatic, and that the fluid temperature
does not vary across the gap. Invariant fluid temperature in the z-dircction is
reasonable as long as the internal heating rate remains low. Integration of thke
energy equation across the gap leads to averaged quantities for the temperature,

but the form of the equation is the same.

Ty + (U - V)T = aAT + Qq/psCs, (4-8)

Cross-differentiation of the two momentum equations eliminates the pressure
term. The stream function-vorticity formulation is introduced here as well. The

resulting three equations are of the form:

’ 6 ’ ’ ’ ’ 1 . 3 T— T' « 6 -T-'—T
% = =201+ - 1)+ Baleoss 2T —sing WLy (4

Ay +Q =0 (4.10)
T‘I = z/jeryf — ‘(/)ythl -4 aA’T + Qg/prPf (4.11)
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These equations are made dimensionless using the following scale factors

z=z /b Y=y
y=y/a Q=0Q/(v/a?

' T-T,
T=t/(a®/v) 8§ = —-2°_
@) 6= G
The final form of the equations describing the flow and heat transfer in a Hele-Shaw
cell are
H 6 1 1 .
Q2 =A7Q— B;['(p, Q] — EQ + Gr(:y—ﬁ?z cosp — 6, sing) (4.12)
1 .y 1 1
Afly+Q=0 (4.14)
where:
QBga®
Gr = gku2 Pr=v/a

fy:b/a £= d2/12(12

Only steady-state solutions are comsidered, so all time dependent terms are

neglected.

This problem has five independent params:... These are the Grashof number
or flow parameter, the aspect ratio of the sl+ . - iilt angle, the Prandtl number,
and an inertia parameter. For this study, \.e are ~onsidering an analogy to a porous
layer saturated with a dilute aqueous fluid, ~:- the Prandtl number will be set at a
value of 7.0. The inertia parameter £ is fixed by the size of the gap that is chosen.
In the experimental program, the test 1=-"on has a unit aspect ratio, with a height

of 3in. The width of the fluid gap is 1/8in. This results in a £ value of 0.000579.
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Grid Size || Gr=100000 | Gr=300000 high

19x19 10.3787 14.0949
29x29 10.3568 14.1057
39x39 10.3262 14.0285

Table 4.1: Grid Sensitivty of Nusselt Number at Points along Branch PM1,
¢ =0°,v=1.0,€ = 0.000579, Pr = 7.0

4.3 Numerical Methods

The resulting numerical model for the Hele-Shaw cell is similar to that posed
for the porous medium with the following execeptions. There are three non-linear
coupled partial differential equations present instead of only two. These equations
also include the contribution of vorticity terms. The form of these equations is very
similar to the model of forced flow within an empty heated duct put forward by
Nandakumar and Weinitschke [90]. The difference in these models is that the forced
flow model requires an extra equation to account for the forced flow in the direction
perpendicular to the cross-section. Such an equation is extraneous in the Hele-Shaw
cell. There is also no term to correspond with the inertia parameter within the

model for an empty heated duct.

The domains, symmetry properties and numerical methods presented for the

solution of the porous slab problem are also applicable to solve the flow within the
Hele-Shaw cell.

A grid sensitivity analysis was also performed on the Hele-Shaw cell solution
structure. The results of these tests are shown in Tables 4.1 and 4.2. A grid spacing
of 39 x 39 interior points was chosen for this system to facilitate the comparison
of the solution obtained here with the solutions for the porous slab of comparable

geometry. The change in grid spacing did have a significant effect on the Grashof
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Grid Size || Rayleigh Number | Nusselt Number

— e

19x19 " 169542.7 11.7948

29x29 167577.0 11.7616
39x39 165991.1 11.€941

Table 4.2: Grid Sensitivity of Position and Nusselt Number at Limit Point L1,
¢ =0°,~v=1.0,§ = 0.000579, Pr = 7.0

number of limit point L1, but this effect was decreasing at the selected grid.

4.4 Solution Structure for Hele-Shaw Cell

4.4.1 State Diagram with Nusselt Number

The solution structure for convection in the vertical Hele-Shaw cell with internal
heat sources is shown in Figure 4.2. The structure is very complicated, with one
unique symmetric solution branch, two isolated symmetric solution branches, and
seven asymmetric solution branches. To clearly show the large number of solution
branches for Gr > 500000, and enlarged view of this region in shown in Figure 4.3.
There are a total of fifteen solutions at a Grashof number of 700000, which is the
edge of the domain studied. Several simple limit points and symmetry-breaking
points exist within the structure. A summary of the locations of these points are
given in Tables 4.3 and 4.4. The labelling of bifurcation points and solution branches
has been conducted so that a bifurcation point within the Hele-Shaw structure has a

matching label with a corresponding point within the porous slab solution structure.

As was the case with the porous slab, symmetry breaking points were detected
near several limit points. The primary branch PM1 coantains two limit points L1 and
L2 and a symmetry breaking point SB1. The symmetric branch IS1 contains three
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Figure 4.2: Solution Stucture for a Hele-Shaw cell, ¢ = 0°,7 = 1.0,§ =
0.000579, Pr=17.0
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Figure 4.3: Solution Structure for a Hele-Shaw cell, ¢ = 0°,v = 1.0,¢
0.000579,Pr=7.0
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Label | Branch Grash_oi Number | Nusselt Number
L1 PM1 165991.1 B 11.6941
L2 PM1 300034.0 13.0968
L3 IS1 291616.6 13.2121
L4 IS3 435923.1 14.2502
L5 IS3 438081.4 14.2909
L3 IS1 530662.4 15.8248
L11 IS1 664659.4 16.6222
L13 AS4 569434.8 16.2456
L16 1S3 438079.1 14.2946
L17 IS3 631818.6 15.5122
L18 1S3 632003.6 15.5093

Table 4.3: Limit Points in the Hele-Shaw Cell Structure, ¢ = 0°,7 = 1.0,£ =
0.000579, Pr="7.0

Label | Branches Gra;silof Number | Nusselt Number
SB1 | PM1+AS1 ,;99925.4 13.0964
SB2 IS3+AS1 436088.6 14.2502
SB3 IS3+-AS2 437806.6 14.2773
SB4 IS1+AS3 631984.8 15.5095
SB6 IS1+AS6 531209.9 15.8333
SB7 IS1+4+-AS7 600427.1 16.1174
SB8 IS14+AS5 410275.4 14.2442
SB9 IS3+AS5 443367.7 14.3776

Table 4.4: Symmetry-Breaking Points in the Hele-Shaw Cell Structure, ¢ =

0°,v=1.0,§ = 0.000579, Pr = 7.0
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limit points and two symmetry-breaking points. It is an isolated branch that sits
just above branch AS1. Symmetric solution branch 1S3 is much more complicated
than IS1. The differences in the Nusselt number on the upper and lower sections of
this branch are not large. However, there are five limit points and four symmetry-

breaking points on this branch alone.

The most complicated region of branch IS3 is at the end with lowest Grashof
number, where there are three limit points and three symmetry-breaking points in
close vicinity. This region, with a Grashof number of about 430000, is shown in more
detail in Figure 4.4. All of these limit points are in close vicinity with symmetry
breaking points. The merging of these limit points with symmetry-breaking points
upon tilt results in significant changes in the solution structure. The fact that so
many simple limit points are in the same vicinity of symmetry-breaking points leads

to complex interactions as parameters are varied.

At Grashof number values of about 630000, another pair of limit points are
found along the lower branch of IS3. This region of the parameter space is isolated
in Figure 4.5. The limit point L18 and the symmetry-breaking point SB4 will merge
upon tilt, leaving the limit point L17 to continue. The symmetry-breaking point

SB4 is the genesis of the asymmetric branch AS3, which continues out .« f*“e domain.

There are five other asymmetric solutions within the structure. Branch AS1 is
the link between the primary solution branch and the isolated symmetric solution
branch IS3. Branch AS4 seems to float within the domain attached to no symmetric
branch through a symmetry breaking point. Extersion of the ends of this branch
to Grashof numbers of 2400000 gave no indication of a limit point or symmetry-
breaking point. This branch was discovered in a similar manner to branch AS4 in
the porous slab solution structure. Asymmetric solution branches AS6 and AS7 are

similar to the corresponding branches found in the porous slab solution. Connecting
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the two isolated symmetric solution branches is asymmetric solution AS5.

4.4.2 State Diagrams with Dimensionless Temperature

and Stream Function

A differ at look at the heat transfer solution structure for the Hele-Shaw cell with
internal heating is given by using the dimensionless temperature or stream function
at a point within the structure as the illustrative quantity instead of Nusselt number.
These plots are shown in Figures 4.6 and 4.7, for dimensionless temperature and
Figures 4.8 and 4.9 for stream function. The point chosen for the measurement
of these quantities is a distance 0.1a from the top wall of the cell and 0.1 to the
right of the centerline of the cell. This position was chosen as it is an area where a
secondary flow cell emerges as a bifurcation point is passed. This is especially true
when the slab is tilted above the horizontal, as the convection cell to the right of

the centreline changes size and character.

The plot of the dimensionless temperature gives a clearer view of the separate
character in each solution branch. The separate character of the asymmetric
branches AS2 and AS3 are quite evident in Figure 4.6, even though their Nusselt
numbers are quite .simila.r. The branch ASS5 is not very large, but it has very sharp
changes near the symmetry-breaking points at its ends. It is also possible to observe
the three closely spaced limit points on IS3 and their proximity with symmetry-

breaking points.
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Figure 4.7: Solution Structure using Dimensioless Temperature as Parameter:
High Grashof Number Region, ¢ = 0°,v = 1.0,£ = 0.000579, Pr =
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4.5 Flow and Temperature Patterns

The streamlines and isotherms of all fifteen distinct solutions at a Grashof
number of 700000 for an untilted layer of fluid with a unit aspect ratio are shown in
Figures 4.10 and 4.11. There are an odd number of solutions due to the presence
of the primary solution branch PM1. The region of PM1 from Gr = 0 to limit point
L2 corresponds to a stable two-cell flow pattern. The upper section of PM1 has four
strong flow cells. There are two hot spots in the upper corners of the system, and a

cool plume is descending from the upper wall.

The lower branch of IS1 is shown to have a weaker four cell structure than does
PM1, while there is a waviness in the isotherm plot, which may be indicative of a
change of structure nearby. The upper branch shows the formation of two small flow
cells 2t the upper boundary of the system. The isotherms exhibit a behavior similar
to the isotherms of PM1. It should be noted that although there is a significant
difference in the streamlines and isotherms at each end of branch IS1, the Nusselt

numbers are almost identizal.

In the case of IS3, the lower branch shows only two flow cells and no unusual
behavior in the isotherm plot. The upper branch show the beginnings of secondary
cell formation along the upper boundary. The waviness of the isotherms near the

upper wall also indicate that some change ir flow pattern is taking place.

The reflective symmetry of a pair of asymmetric solutions is evident by
obsevation of the streamlines and isotherms of AS2 and AS3. The asymmetry in the
isotherm plots is very subtle, but can be observed by inspection of the spacing of
isotherms in the upper corners of the system. The asymmetry is more pronounced
in AS2 than AS3, but is not large in either case. It is evident why these solution

branches are in such close proximity at Gr = 700000. Observation of a point near
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Figure 4.10: Streamlines and Isotherms for Solutions, ¢ = 0°,7 = 1.0,§ =
'0.000579, Pr = 7.0, Gr = 700000
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the centreline of the system just below the upper wall in each pair of solutions shows
the rationale behind choosing streamlines and isotherms at this point to illustrate

the differences in solution branches.

Asymmetric solution branches AS6 and AS7 exhibit much more complex flow
patterns than the other asymmetric solutions. Botw have large primary flow cells,

one well defined secondary cell and another second:wry flow cell on the verge of

development.

The pair of asymmetric solutions of branch AS4 do not exhibit the reflective
symmetry that the other asymmetric solution pairs do. This branch should have
a related branch with the same limit point and the two solution branches which
are mirror images of the contour plots shown in Figure 4.11. However, this other
asymmetric branch could not be located. One section of AS4 has a four cell flow
established and a fifth cell starting to form in the upper left. At the other end of
branch AS4, it is the fourth flow cell that is under developmest.

4.6 Stability of Solution Branches

The importance of a stability analysis in a bifurcation study and the method
used to determine stability were outlined when the wolution stability for the porous
slab was discussed. A summary of the stability characteristics of various solution

branches at several Grashof numbers within the domain are given in Tables 4.5 and
4.6.

Passing a bifurcation point along a solution path corresponds to an eigenvalue of
the solution passing from the realm of stability to the realm of instability. Consider
the behaviour of branch PM1. The lowest section of PM1 is stable, as it begins

as a unique solution. When the limit point L2 is passed, an eigenvalue which
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Table 4.5:

Grashof Number = 100000

Branch | Flow Pattern | Eigenvalue | Stability
PM1 2 cell 0.97857 stable
Grashof Number = 200000
PM1 low 2 cell 0.986866 stable
PM1 mid 2 cell 1.00829 unstable

PM1 high 4 cell 0.981628 stable
Grashof Number = 400000
AS1 2 cell 1.021 unstable
IS1 low weak 4 cell 1.363410.2928 | unstable
IS1 high weak 4 cell 1.327+10.0558 | unstable
PM1 4 cell 0.967:!:i0.(LIQZ stable
Grashof Number = 500000
IS3 low 2 cell 1.017+£i0.0624 | unstable

Stability of Hele-Shaw Cell at Various Grashof Numbers, ¢ =

0°,v = 1.0, = 0.000579, Pr = 7.0. Maximum of 30 Iterations,

Tolerance=1.0F — 5
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Grashof Number = 700000

Branch | Flow Pattern | Eigenvalue | Stability

PM1 4 cell 0.9835 stable
IS1 low 4 cell 1.100 unstable
IS1 high weak 6 cell 1.024+£i0.0053 | unstable
IS3 low 2 cell 1.1336 unstable
IS3 high weak 4 cell 1.0829 unstable
AS2 2 cell 1.0904:10.0958 | umnstable
AS3 2 cell 1.127+10.0571 | unstable
 AS6 4 cell 1.0584 unstable
AS7 weak 4 cell 1.1116 unstable
AS4 low 4 cell 1.0660 unstable
AS4 high 4 cell 1.0270 unstable

Table 4.6: Stability of the Hele-Shaw Cell ai a Grashof Number of 700000,

¢ = 0°,7v = 1.0,£ = 0.000579, Pr = 7.0. Maximum of 30 Iterations,
Tolerance=1.0F — 5
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represents the a symmetric mode of the solution becomes positive. Thus, the
solution is now unstable. Passing the symmetry-breaking point SB1 requires that
another eigenvalue become positive. This second eigenvalue which becomes pesitive
corresponds to an anti-symmetric mode of the solution. Finally, the limit point L1 is
passed. The eigenvalue for the symmetric mode once again becomes negative. This
still leaves one positive eigenvalue in the solution. However, the power iteration
scheme used to determine stability calculated that the upper section of PM1 was
stable. This implies that the upper section of branch PM1 is conditionally stable. It
is stable with respect to a symmetric perturbation, but unstable if subjected to an
asymmetric disturbance. Bara [104] found a similar behaviour for isothermal flow

within a curved duct.

If the upper branch of PM1 can be isolated from asymmetric perturbations, it
can remain stable. The result is a large region 165991.1 < Gr < 300034.0 where

two stable solutions exist.

All other branches within the solution domain are unstable with the exception

of the region of 1S3 between L4 and SB2, which was found to be stable.

4.7 Effect of Tilt Angle

4.7.1 Unfolding of Symmetry-Breaking Points

In order to characterize the effect changing the system parameters has on the
solution structure, only the fold curves of the limit points and symmetry-breaking
points will be considered. In the case of tilt, two ranges of tilt angle must be
considered. The first range involves tilting the layer less than one degree above the

horizontal. Over this range, several symmetry-breaking points unfold into nearby
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limit points. As an illustration, consider the limit points and symmetry-breaking
points on either end of branch AS1. These pairs are L2-SB1 and 14-SB2, and the
fold curves of the limit points wre shown in Figure 4.12. As the layer is tilted, the
symmetry within the solution is broken. The SB point is structurally unstable to
tilt, so it unfolds into a limit point. As tilt increases, these limit points move closer
together and eventually occupy the same position in parameter space. They then
coalesce as a double limit point and unfold as a hysteresis point. This results in a

branch rearrangement within the solution structure, as was seen in the porous slab

solution structure.

The importance of this phenomenon is in its creation of oscillatory solutions. The
points L2 and L2’ coalesce at a tilt angle of 0.0055°. Such a small angle is impossible
to mea.suré experimentally with any accuracy. However, along the fold curve of L2,
a B-point is located at a tilt angle of 0.0035°, as is labelled in Figure 4.12. This
type of phenomenon is known as a Takens-Bogdanov singularity [101]. Following
the path of these oscillatory solutions may lead to significant findings about the
dynamics of this system. However, this would involve a routine which requires
the solution of matrices twice the size of those needed to determine the solution
structure. Therefore, the study of the dynamics of this fluid layer system will be left

for future investigations. It should be noted that there is no corresponding B-point

on the fold curve of L4'.

However, other pairs of limit and symmetry-breaking points can coalesce and
have different results. Figure 4.13 shows the merging of L16 and L16’, which causes
a change in IS1 and AS5. Here the merging of the two points occurs over a much
larger range of tilt angles compared to the previous illustration. At a tilt angle of
0.36°, the two curves occupy the same position in parameter space, as compared to

0.0035° for L2 and SB1. This is due to the relatively large spacing between L16 and
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SB9 in the horizontal solution structure. Here, there are two B-points present. One
is on th fold curve of L16, at a tilt angle of 0.036°, while the other is on L16’ at
0.35°, just before the coalescence of the two points. Also shown in Figure 4.13 is
the merging of L5 and L5’, and the B-point located at 0.002°. The coalescence of
these points is similar to that found in the unfolding of SB1 into L2.

The more interesting question deals with what happens at the other end of AS5
while L16 and L16’ are merging. Symmetry-breaking point SB8 is unstable to the
asymmetric perturbation, and unfolds into a limit point. This causes a branch
rearrangement with IS1 and AS5. The result is a continuous branch and a new
isolated branch. This type of unfolding is the classical behavoiur of a pitchfork
bifurcation. The limit point that exists on the new isolated solution is labelled L6
for future reference, and can be tracked as is any other limit point. The smallest
value of tilt angle where L6 was found is 0.50°, while the limit point from SBS8 could
not be tracked beyond a tilt angle of 0.35°. A similar phenomenon occurs with SB7

on another section of IS1. The results is the formation of limit point L15.

In the case of SB6, there is a limit point nearby, but their interaction is unlike
that of other combinations of limit points and SB points. It is the same type of
behaviour seen with L8 and SB6 in the porous slab solution. When SE6 unfolds,
there is branch switching, but the result is two limit points close to each other but
unconnected. Limit point L8 continues to exist, and SB6 becomes limit point L14.
This transition occurs at a tiit angle of less than 0.1°, due to the closeness of L8
and SB6.

4.7.2 Larger Tilt Angles

Several limit poinuds are removed from the solution structure due to the unfolding

of SB peints aud the subsequent formation of double limit points. Other SB points
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unfold to form limit points that remain at larger tilt angles. The fold curves of limit
points that are robust with tilt are shown in Figure 4.14. The general trend of these
curves is that the values of the Grashof number at the limit points increase with
increasing tilt. However, there is no tilt angle where the primary solution branch
is unique. In Figure 4.14, the fold curve of L1 is not asymptotic to 45° for a fluid
layer with unit aspect ratino. A degree of reflective symmetry has been restored to

the system, but it does not give rise to a unique solution throughout the domain.

The fact that the fold curves of L3, L8, L11, L13, L14 and L15 end suddenly is
not due to any new phenomena. As the fold curves are tracked, the Grashof number
increases to large values that would .aecessitate use of a more refined grid. Also, the
fold curves tend to become almo:t vertical. This requires very small changes in tilt
angie to continue following the curves. Following the curves beyond a certain tilt

angle without decreasing the grid spacing will not give accurate results.

Several B-points were found on these fold curves, and they are labelied on

Figure 4.14. These points give additional locations where interesting dynamic

behaviour may be found.

4.8 Aspect Ratio

Variation of the aspect ratio ol the fluid layer results in the stretching or
compressing of the flow phenomena within the layer, as the relative length to height
is varied. However, there are no symmetries broken. The fold curves in aspect ratio
are shown in Figure 4.15. In general, the Grashof number at the limit point decreases
with increasing aspect ratio. This trend is quite useful in compressing the solution

structure, which moves limit points back into the parameter range considered.

The relative positioning of the limit points did not change within the solution
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structure. However, at aspect ratios below unity, it became difficult to track the
fold curve of L8. It had a slope approaching infinity at v = 0.9. It was postulated
that there was a higher order bifurcation present, and attempts were made to track

this fold curve further. These attempts were not successful.

At an aspect ratio of 2.0, the value of the Grashof number at the limit point
appeared to level off near Gr = 80000. This appears to be a lower limit for the

Grashof number of a limit point.

4.9 Prandtl Number

A change in Prandtl number corresponds to changing the fluid within the
system. There are many possibilities for study in this area, and some work has
been completed. For example, oscillatory solutions have been found in systems
containing liquid metals [105]. However, it was decided to limit this study to the
use of dilute aqueous solutions as a test fluid. Therefore, the Prandtl number was

set 7.0.

4.10 Inertia Parameter

Variation of the inertia parameter results in determining the effects of the width
of the gap relative to the vertical dimension of the fluid layer. This parameter turns
out to be very important in linking the results of the Hele-Shaw cell solution with
the solution structure of a porous slab with similar geometry. This link, and the

reasoning behind it, are the next topic for discussion.



Chapter 5

Compare Porous and Fluid Layer

Solutions

Now that the stationary solution structure of the heat transfer phenomena in
both the porous layer and the Hele-Shaw cell have been fully described, a comparison
of the two is in order. If the two solution structures are placed side by side, as is done
in Figures 5.1 and 5.2, there are definite similarities between the two complicated
structures. The relative positions of the limit points appear to be similar, with a
few minor exceptions. The biggest difference appears to be the fact that in the
porous layer there is only one isolated symmetric branch of soiutions in the middle
of the range studied, while the Hele-Shaw cell has two isolated symmetric solution

branches in this range connected by an asymmetric solution branch.

5.1 Development of Equivalence

In order to compare the two solutions, a comparison of the two mathematical

models and their parameters is needed. The model equations for the porous layer

103
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Figure 5.1: Stationary Solutions of a Thin Porous Slab, ¢ =0°,v = 1.0
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Figure 5.2: Stationary Solutions of a Hele-Shaw Cell, ¢ = 0°,v = 1.0,{( =
0.000579, Pr = 7.0
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are:
A0 — A[,6] +7/4 =0 (5.1)
A, — Ravy(8, cosp — 79, sing) = 0 (5.2)
Ra = (KgBQ,Ab)/(kav) (5.3)

It should be noted here that the Rayleigh number defined here has a Prandtl number

pu/a incorporated into it. For the Hele-Shaw cell, the equations used for modelling

are:
—P?A,, 0 — ;[1% 6] + Br 0 (5.4)
6 1 . 1 .
AfQ — 5[zp, Q] + Gr(;ﬂ, cos¢ — @, sing) — EQ =0 (5.5)
Ay +0=0 (5.6)
Gr = (98Qga°)/ (kv?) (5.7)

In the scaling of this model, the Prandtl number was left separate.

There is no parameter within the model for the porous slab that corresponds
with the inertia parameter £, as this parameter incorporates the width in the thin
fluid layer. Consider the limiting case where { — 0. Assume that the product Gr§
is a constant. Then if { — 0, then Gr — co. If Equation 5.5 is multiplied by £ and
then the lim¢_,¢ is taken, the result is:

1
Q=Gré (:)—/0, cos¢ — 8, sing)
Substitute into Equation 5.6 and obtain:

Afy 4 G’rf(%&f cos¢ — 0Y sing) = 0 (5.8)

The superscripts H and P are used to designate quantities for the Hele-Shaw cell and

porous solutions respectively while this comparison is being derived. This equation
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is similar to Equation 5.2 from the porous model. There are differences in the scaling

of temperature within the two models that must be accounted for.

o7 = T-Ts oF — T, —T

T Qgatfk T Q.Alk
eH — —(Tw - T) 4ab — _9P_4_c£2
T Qg4ab/k aZ — a?

Now consider an untilted layer of unit aspect ratio for both cases. For Equation

5.8, the result is:
Ay + Greof =0

Using the temperature scaling in the porous model, the equation becomes:
AFypP — 4Greef =0
The porous expression for the equivalent porous slab was:
APyP — Rabf =0

It must be remembered that the scaling of the two dynamic parameters was different.
For the porous model, the Prandtl number has been incorporated into the Rayleigh
number, while the Hele-Shaw cell had left these parameters separate. Therefore,
we must multiply the expression from the Hele-Shaw cell by Pr = v/a. If the two
expressions of dynamic parameter are broken down and compared:

Ra = &® 490Q.0° _ 498Q4a° d® v
T 12 kar @ k? 12a%a

= 4Gr€Pr

The expressions contain the same components. Thus, the correct equation for the

equivalence is:

Ra=4xGr*§€* Pr

Therefore, as £ — 0 in the Hele-Shaw cell, the value of the expression 4 * Gr * £ x Pr

should approach the value of Ra in the corresponding bifurcation point in the
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porous solution. Confirmation of this type would provide quantitative cquivalence
between the two solution structures. The selection of the parameter range of Grashof
pumber to be studied for the Hele-Shaw simulations was determined with Equation
5.1. For the porous layer, the highest value of dynamic parameter considered was
Ra = 10000. The corresponding value for the Grashof number in the Hele-Shaw cell

was
Ra 10000

= 4Pr _ 4+7.0+0.000579

Thus, the maximum Grashof number of 700000 was a reasonable choice.

Gr = 616827

5.2 Similarities in the Solutions

5.2.1 Overall Solution Structure

Consideration of the graphs using dimensionless temperature as state variable
are very useful in determining the strength of the analogy at points other than
limit points. The porous layer graph is shown as Figure 5.3, with its fluid layer
counterpart in Figure 5.4. In each case, the selected point where dimensionless
temperature was obtained is in the region where secondary flow cells would develop.
The difference in scaling of temperature explains the difference in the point selected

for each model.

The similarity in shape between PM1 in both structures is striking. The relative
shapes of AS1, AS2 and AS3 are the same, but are compressed in the porous layer
as compared to the Hele-Shaw cell. Similar attachments between L8 and SB6 are
present. The solution branches of AS7 are very similar as well. Thus, it can be
stated that there is a great deal of qualitative correspondence in the details of the

solution structures of the porous slab and thin fluid layer.
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Figure 5.3: State Diagram for a Porous Layer using Dimensionless Temperature
as State Variable, ¢ = 0°,7 = 1.0
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5.2.2 Limit Points and Symmetry-Breaking Points

It is impossible to deal with a system that has £ = 0, as this corresponds to
a fluid layer with no thickness. Therefore, a small, non-zero value of £ must be
chosen as a target. Following the solution paths at various values of £ would be very
time consuming. However, in the same way that the fold curves of limit points and
SB points could be followed in tilt angle and aspect ratio, the fold curve of limit
points in inertia parameter can be traced. These are characteristic points within the

solution structure, so their correspondence would be most important in any case.

The fold curves in £ are shown in Figure 5.5. The end points on the right of the
fold curves correspond to the value of inertia parameter in the experimental system.
The £ value of 2.9E — 5 was deemed to be sufficiently close to zero. The fold curve
in £ would thus be traced over an order of magnitude. Note that fold curves of all
limit points discovered in the Hele-Shaw cell solution approach limit points within
the porous slab. The limit points within the porous slab solution are indicated with
open circles in Figure 5.5 at £ = 0. Symmetry-breaking points were more difficult to
follow while ¢ was varied, as solutions for SB points tended to converge very slowly.

For this reason, only a few SB points were followed.

It is interesting to note that there was correspondence between the limit points
L2 and L3 in both structures. This occurred despite the fact that the fold curves of
these two limit points in £ crossed. This implies that L2 occurs at a higher value of

dynamic parameter in the Hele-Shaw cell than in the porous slab.
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5.3 Differences in Solution Structures

5.3.1 Limit Points L6 and L7

There are still great differences in the two solutions. An interesting situation is
observed for the limit points L3 through L7. In the porous layer structure, these
points all lie on the isolated branch IS1. However, in the fluid layer, there were two
isolated branches IS1 and IS3, connected by the asymmetric branch AS5. Branch
I€1 contained L3, but L4 and L5 were on IS3, with L6 and L7 not readily apparent
in the fluid layer structure. Even though L3, L4 and L5 were on different branches
in the structure of the fluid layer, they still approached values of limit points in the
porous layer structure, where they all lay on one branch. This indicates that there is
a significant rearrangement of branches as the inertia parameter is decreased toward

zero, through higher order singularities.

The difference in structure between porous and fluid layers can be partially
resolved by considering the region around AS5 in the fluid layer solution. The
symmetry breaking point SB8 has been shown to unfold and become the missing
limit point L6 as the cell is tilted. In order to determine if the point L6 in the Hele-
Shaw sclution did in fact correspond te the L6 in the porous slab, the positions at a
tilt of one degree were used. Extrapolation to £ = 3.49F - 4 was possible, and the
values for Ra in both cases were comparable. The results of this test are given in
Table 5.1. This shows that the L6 in the fluid layer solution is in fact analogous to
L6 in the porous slab. However, it exists as a SB point in a horizontal fluid layer.
It is possible that the fold curve in £ could not be extended further toward zero due

to some higher order phenomenon that results in the change from SB8 to L6.

The presence of L7 in the fluid layer structure is less clear. The asymmetric

branches AS3 in each structure have a similar appearance when the stream function
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Hele-Shaw Cell

Grashof Number | Inertia Parameter | Ra=4* Gr «§ x Pr
439994.1 0.000579 7133.18
6517_15.9 0.000349 661_1_.3_’_61

- Porous Slab o
(0.00000) 6594.95

Table 5.1: Fold Curve in £ for L6 in Hele-Shaw Cell, ¢ = 1°,7 = 1.0, Pr = 7.0

and temperature graphs are considered, but there is a severe discrepancy in the
values of the dynamic parameter. Also, there is no limit point on IS3 to match with
L7, except for the limit point L18 near the edge of the domain. However, there was

no numerical evidence found to support this speculated analogy.

5.3.2 Branch IS2 and Limit Points L9 and L10

There is no analogous limit point to match with L9 in the porous structure.
The presence of L17 on IS3 appeared to be a match for L9. However, when the
fold curve for £ was computed, it was found to merge with the fold curve of L18 at
§ = 0.000479. These two limit points then collapse into each other and disappear.
This leaves only the symmetry breaking point SB10, which is left by itself when L17
and L18 collapse. Since no analogue for IS2 could be found in the Hele-Shaw cell, it
was impossible to follow the curve to find limit point L10. Extension of AS3, which
originates at SB4, showed no sign of turning around as well, and thus gave no clues

about this region.



CHAPTER 5. COMPARE POROUS AND FLUID LAYER SOLUTIONS 115

5.4 Presence of AL13

In both cases, a mysterious branch of solutions appeared, and both were labelled
AL13. Each solution is asymmetric, yet does not emanate from any symmetric
solution branch located. Since an asymmetric branch must originate from a
symmetric branch, there must be a symmetric branch outside the studied domain
that was not located. These branches must occur as a pair of mirror-imaged
asymmetric solutions, but the other branch in the pair was not located. More
intriguing is the fact that in both cases the limit point L13 is in some way related
to L8. They appear to be on different levels of a fold in the solution plane. In
both cases, they were discovered by starting at L8, then varying the tilt angle and
aspect ratio in a circular path and returning to the parameter set of origin. In the
porous layer, this technique was required to circumvent a discontinuity in the fold
curve. However, no such discontinuity exists in the fluid layer solution. Thus, the

discontinuity appears to have nothing to do with the presence of this branch.

The most curious aspect of the presence of AL13 is that it is an asymmetric
branch which appears to be connected to L8 through some type of bifurcation within
the solution plane. No other work has presented an asymmetric solution connected
to a symmetric solution through a higher order bifurcation. This asymmetric branch
does not appear to be connected to another discovered solution branch in any
manner. It is a most interesting phenomenon, and should be considered further

in any future work with either a porous slab or a Hele-Shaw cell.
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5.5 Comparison of the Behavior with Tilt

5.5.1 Unfolding of Symmetry-Breaking Points into Limit

Points

In both cases, SB points unfolded into limit points at very small tilt angles. In
the Hele-Shaw cells, the merging of these points took place at larger tilt angles,
although for practical purposes the differences are insignificant. For the case of the
merging of L2 and SB1, the porous layer coalescing occurred at 0.0038°, while in the
fluid layer it occurred at an angle of 0.0054°. The larger magnitudes of the dynamic
parameter in the fluid layer causes a greater distance between the two points in the
solution space. Since the value of the dynamic parameter at the limit point varies
slightly with tilt at small angles, the symmetry-breaking point must move a longer

way to coalesce in the fluid layer structure.

There was rno B-point found on the fold curve of SB2 in the Hele-Shaw cell,
while there was a B-point on the corresponding curve in the porous slab. However,
there was a B-point found on the fold curve of L16, as well as on SB9, with which
it coalesces. These two symmetry-breaking points are in close vicinity, but are
separated by the pair L.5 and SB3. The close proximity of several bifurcation points
leads to compiex interactions as the layer is tilted. As the inertia parameter is
varied, other such interactions are possible. This is the region that should lead
to the merging of IS1 and IS3 of the fluid layer structure into one symmetric
branch similar to IS1 in the porous layer. However, such a change in structure
appears to involve a higher order bifurcation, as the fold curve in £ for L6 ended
at £ = 0.000349. Higher order phenomena cannot be explored using the methods
of this study. Therefore, a separate study is required to investigate the details of

the transition of the two symmetric solution branches IS1 and IS3 in the fluid layer
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structure into one symmetric solution branch.

5.5.2 Fold Curves at Larger Tilt Angles

There are also some similarities in the structures as the tilt angle is increased.
Fold curves for both systems contain B-points at larger tilt angles. The positions
of these B-points are in the same vicinity in both systems, but do not correspond
exactly. Except for the fold curve of L1, the B-points exist at smaller tilt angles
in the Hele-Shaw cell. The B-points exist near discontinuities in the fold curves of
L6, L8 and L10 in the porous layer. There could net be discontinuities on the fold
curve of L10 in the Fele-Shaw solution, as a limit point corresponding to L10 was
not located. However, no such discontinuities exist in the Hele-Shaw cell, yet the
B-points occur. These points give locations to begin a study of dynamic behavior
within the fluid layer, but will not give any insight into the presence of the fold

curve discontinuities found in the porous layer.

The discontinuities of the fold curves in the porous structure were due to changes
in the flow cells near the edge of the cell, which could lead to the development of
more flow cells. Since the formation of more flow cells within the system was the
manner in which bifurcations affect the system, it is not surprising that B-poisit:s
were present near these discontinuities. Lack of discontinuity in the fluid layer
indicates that these discontinuities a1 due to phenomena which affect a porous slab

that do not occur in a thin fluid layer.

5.6 Stability

In both cases, the majority of the solution branches were found to be unstable

at the highest value of dynamic parameter considered. The variation in stability
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of the Hele-Shaw cell with tilt was not considered, so only solutions at 0° may be

compared.

Only one major difference exists in the stability characteristics of the two
solutions. That is the fact that the upper part of PM1, which exterds from limit
point L1 to the end of the domain of interest, is unstable in the porous layer but
is conditionally stable in the fluid layer. For both cases, the lower part of PM1,
from the zero value of dynamic parameter to limit point L2, is stable. This creates
a large region within the Hele-Shaw cell where there may exist two stable solutions
for a given parameter set. This behaviour is considered in the experimental portion

of this dissertation, which is discussed extensively in the next chapter.

5.7 What Does It All Mean?

The correspondence that has been found Letween the bifurcation diagrams for
the thin porous slab and the Hele-Shaw cell is sufficient to state that there is a
strong relationship in the bifurcation behavior of the two systems. This relationship
has both a qualitative and quantitative basis. Any structure found in experiments
with a thin fluid gap will have a corresponding structure in a thin porous layer. The
connections of this structure to other parts of the solution may be different, but
these connections may be predicted by analogy. This justifies the use of a fluid layer

as a substitute for a porous slab when looking for bifurcations at steady state.



Chapter 6

Experimental Procedure and

Results

The experimental portion of this study considers natural convective flow within
a vertical Hele-Shaw cell, where the flow is driven by internal heat sources. One
objective of the experimental study is to determine if the secticn of solution branch
PM1, which contains a four-cell low pattern, is stable. Numerical simulation has
determined that this branch is conditionally stable. Any asyvmmetric perturbation
will cause instability in this solution branch. If all asymmetric perturbations can
be suppressed, then a set of parameters where two stable solutions exist can be
investigated. Flow visualization is used to observe the flow patterns that do exist
within the Hele-Shaw cell.

6.1 Previous Experimental Studies

Early experimental investigations considered fluid layers where the thin gap was

parallel with a table top. The small dimension in the direction of gravity yielded

119
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a very small Sow parameter, as the usual scaling of equations resulted in the dow
parameter containing the cube of the vertical dimension. Initial studies dealt with
ficil layers heated from below. A thin layer enabled the critical value of flow
parameter to be surpassed with a relatively small heat input, and thus a small
temperature gradient. The primary focus of these early studies was determination

of this critical value for the onset of convection.

A typical apparatus consisted of transparent plexiglas containing walls on the
sides of the cell. These side walls were considered to be adiabatic surfaces. The lower
surface was a copper plate with the heating provided in one of two manners. Either
an electric heater was implanted into the plate to act as a constant flux source, or a
constant temperature was maintained by passing fluid through channels within the
plate. Above the test layer would sit another copper plate equipped with cooling
water channels. The test fluid within the cell was a fluid with well known physical
and thermal properties. Common test fluids were water and mineral oils. The
transparent walls enabled flow visualization to be performed with the aid of dyes or
coloured particles. Interferometry was often used to obtain temperature data from

within the cell.

Other investigators were interested in the behavior of a fluid layer where the
convection was driven by internal heat sources. These systems usually had the upper
boundary held at a constant temperature with cooling water, while the remaining
boundaries were adiabatic. Again, the vertical dimension was kept small to prevent
the dynamic parameter from attaining large values. For example, in the study
of Tritton and Zarraga [16], the lateral walls formed a square of 29¢m in length,
and the vertical dimension chosen was 0.44cm. The Rayleigh number used in this
study contained the depth of the fluid layer to the fifth power. A thin layer was

thus required in order to obtain reasonable Rayleigh numbers with moderate heat
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inputs.

6.2 Design Criteria

In the present study, the geometry of the system is slightly different. One
difference is that a vertical Hele-Sk=vr cell is subjected to heating by internal heat
sources, as opposed to heating from below. Another is that the layer is intended
to be finite in dimension, with a length to height aspect ratio of unity. The entire
periphery of the cell is held at a constant. temperature. This combination of thermal

boundary conditions and internal heating in a fluid layer has not been reported in

the literature.

The basis of the apparatus is a 3/4in copper block. A schematic of the block is
given in Figure 6.1. Copper was the most suitable material for the block due to its
high thermal conductivity and successful use in previous studies. A thick block was

selected to facilitate construction.

A rectangular piece was cut out of the centre of the copper block. This new
inner chamber forms the test region. Eight holes were drilled to within 1/8in
of the interior surfaces in order to house thermocouples. The holes were placed
asymmetrically with respect to the centreline of the test region in order to detect
the presence of parabolic or periodic temperature profiles along the test cell walls.
Each thermocouple housing was capped with a Swagelock fitting and rubber ferule

in order to hold the thermocouple in place.

Six other holes were drilled through to the interior surfaces of the block. Two
of these penetrated the top wail of the test cell to serve as fill holes and to allow

for fluid expansion upon heating. The four remaining holes, two in each interior
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Figure 6.1:
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side wall, serve as holes for the wires that leads to the electrodes. These electrodes

supply the alternating current to the fluid layer which is the source for the heating.

A cooling water path was also cut into the block. Holes were drilled into the
block at each end to serve as entrance and exit for the cooling water. These holes
were each equipped with a fitting to allow a hose to be attached to each end of the
cooling water path. Rectangular grooves were cut above and below the test region
on either side of the block to carry the cooling water past the upper and lower
surfaces. Several holes were also drilled into the face of the copper block in order to

bolt the three pieces of the apparatus together.

The block was polished with fine sandpaper in order to remove imperfections in

the inner surfaces, and to clean all susfzces that could come in contact with the test
fluid.

In order to create a thin gap within the thick block, special plexiglas containing
walls were constructed. A sheet of plexiglas was machined to the dimensions shown
in Figure 6.2. The lip is sized to fit snugly inside the hole within the copper block.
Garlock paper gaskets were used to seal the intertace between the copper block and
the plexiglas sheet. Dow Corning silicon stopcock sealant was used to prevent leaks
of the test fluid through the wire holes in the copper block and around the edges of
the plexiglas lip that protrudes into the copper block. Several holes were also drilled
in these plexiglas walls to allow them to be fastened to the copper block.

The assembly of the copper block and two plexiglas sheets required 60 bolts for
each plexiglas wall. The large number of bolts was necessary in order to prevent
leaks of the test fluid and cooling water. With the two plexiglas sheets attached to

the copper block, a thin gap remains in the centre region of the copper block. This

is the test region.

Specific dimensions for the cell were arrived at in the following way. A gap width
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Figure 6.2: Plexiglas Walls Enclosing Test Region
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of 1/8in was used in the work of Koster and Miiller [1]. A gap of this width has
commonly been used in experimental studies with fluid layers heated from below.
Thus, it was selected for this cell. Koster and Miiller also suggested that an aspect
ratio of at least 20/1 be used for the height of the cell to the width. The selected
height of the cell was 3in, which results in a height to depth aspect ratio of 24/1.
The parameter set chosen from the simulations for comparison had a unit aspect

ratio of length to height. This set the length of the cell at 3in.

The use of this type of plexiglas wall assembly facilitates the variation of gap

width. A new set of walls with different lip size would give any desired gap width.

The internal heat sources were supplied through electrolytic heating. Instead
of using water as the test fluid, a dilute aqueous solution of copper sulfate is the
preferred choice. Most studies considering internally heated fluid layers use copper
sulfate as the test fluid, as it is inexpensive and easy to obtain. A solution of
five weight percent anhydrous copper sulfate in water does not significantly alter
the physical properties of water, with the exception of electrical conductivity. The
result is that physical properties of pure water can be substituted for those of a

dilute aqueous solution without introducing significant errors.

The internal heating occurs when an alternating electric current is passed
through the copper sulfate solution within the test cell. The electrodes are made of
16 gauge copper plate, and 14 gauge wire is used to provide the electric current. In
addition to a high thermal conductivity, copper has a high electrical conductivity. A
problem existed in that both the electrodes and the walls of the test region are both

made of copper. No heating would occur within the fluid if current was allowed to

leak out of the walls of the test cell.

It was decided to inhibit the electrical conductivity of the copper block. A thin
layer of polyurethane lacquer [16] or Teflon [19] has been found to be effective for this
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purpose. A Teflon layer could easily be scratched off the block, as it is very soft. The
polyurethane layer was found to be more durable, and no less effective in blocking the
passage of electrical current through the block. Therefore, a polyurethane lacquer
was considered more appropriate. The disadvantage of a polyurethane lacquer layer
is in the difficulty of uniform application. The variation in the thickness of the

lacquer layer were not significant compared to the height of the test region.

However, the electodes could not be coated, and they would be in direct contact
with the walls. For this reason it was decided to mount the electrodes on thin pieces
of Teflon. The 1/4in piece of Teflon used for this purpose did not have a significant

impact on the heat removal at the side walls.

The assembled apparatus is mounted on a steel bracket with a hole cut into it
to allow the test region to be seen from either side. This opening also allows light

to pass through by for aid in flow visualization.

Undyed polystyrene beads 250um in diameter were added to the fluid to make
the flow visible. The particle concentration was very small, and thus did not
significantly affect the properties of the fluid. An aqueous copper sulfate solution
of proper density results in beads which are neutrally buoyant. Adjustment of the
solution density was critical in the experiment. In the experimental runs, the fluid
density would change as the solution heated up. This required that the particle
density be matched with the density of the solution when warmed to the steady
state temperature. Apy density difference between the density of copper sulfate and
the beads would lead to settling velocities of the particles which would be of the
same order of magnitude as the velocity of the flow. In many cases, the particles
did settle out of the solution, which necessitated a change in side wall temperature
to negate the mismatch in fluid and particle density. If required, the particles are
resuspended by stirring the solution with a piece of thin tubing inseited through a
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fill hole. A flashlight was shone behind the test region to illuminate the flow cells.
Photographs were taken with a Nikon 35mm camera. The low light provided by the
flashlight allowed an exposure time of ten seconds to be used for the photographs.
Such a long exposure time allowed the particles to move a significant distance while
the aperture was open. Paths that the particles travel appear as streaks on the
photograph. A black velvet background was used to increase the contrast *:etween

the particles and the solution. The layout used for flow visualization is depicted in

Figure 6.3.

The bracket and test cell are then mounted on a steel stand with three adjustable
legs to allow for levelling. The bracket attaches to the stand with a pivot to allow

the test cell to be tilted to any desired angle between 0° and 90°.

Measurements of the data associated with the cell were performed with the
following instruments. A J-12 thermocouple was placed within each of the eight
wells drilled into the copper block. These thermocouples were grounded at their tips.
The temperatures were read using an OPTO22 data acquisition system with software
produced within the Department of Chemical Engineering. Each thermocouple has
an optically isolated module that sends the signal through a serial port to a Zenith
XT personal computer. The thermocouples are calibrated to be accurate to within
0.1°C, but the resolution of the data acquisition system is 0.5°C. One additional
thermocouple was also present. It was used to determine the temperature at one

point within the fluid when the convection reached steady state.

A Fluke 77 multimeter and a Beckman Tech 310 multimeter were used to measure
the current and voltage inputs, respectively, to the fluid. Two Variac regulators were
used to supply the power from a wall outlet of 120 Hz, 60 cycle. The use of two
regulators in series allowed fine control of the power input to the fluid within the

cell. Due to the small fluid volume, a small change in the power input had a large
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Figure 6.3: Top View of Layout for Flow Visualization
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change in the value of the Grashof number. Power factors for the system were very

close to unity.

The cooling water was supplied from a domestic source. The experiments were
performed at night in order to limit the disturbances to the cooling water and allow

the water temperature to stay fairly constant.

A sketch of the complete apparatus is given in Figure 6.4.

6.3 Experimental Procedure

The first step of the experiments was to make a new batch of copper sulfate
solution. The volume of fluid within the Hele-Shaw cell was 17ml, so only 50ml!
of solution was made at a time. A mass of 4.8 grams copper sulfate was added
to 57.8 grams of distilled water. Each mass was determined using a Mettler PC
8000 balance. Tap water tended to foul the electrodes more quickly than did
distilled water. The solution was stirred vigourously until all crystals had dissolved.
Polystyrene beads of diameter 250um were added in sufficient concentration to allow
the fluid structures to be easily seen. The solution was injected into the cell with a
syringe fitted with a 16 ga.uge needle. Such a large needle was required to enable the
particles to enter the cell with the copper sulfate solution. All air bubbles within
the fluid were removed by stirring the fluid with a piece of tubing inserted into one
of the fill holes.

The test region was set to the desired value of inclination. If horizontal, a
carpenter’s level was used as a check. For inclined layers, the graduations on the
stand were used. The cooling water was turned on and allowed to run until the
eight thermocouples within the copper block all read the same temperature. The

power source was then turned on, and the variacs adjusted to the desired value.
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Figure 6.4: The Complete Experimental Apparatus
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The initial value of the current and voltage were recorded. Electical conductivity
is a strong function of temperature [19], so the current and voltage readings vary
significantly as the fluid heats up. Temperature readings were taken every fifteen
seconds until steady state was reached. Steady state is considered to occur when
the beads within the cell were moving in a steady pattern, and that the voltage and
current readings had not changed for ten minutes. At steady state, a thermocouple
was placed within the fluid through the left fill hole. The temperature was read by
the data acquisition system. Any observations of the convective state present were
noted, as were any strange flow patterns seen during the transient evolution. The

power input was then changed to the next desired level, and the process repeated.

The following steps are taken to shut down the apparatus. Both variacs were
turned off and disconnected. The current and voltage meters were turned off.
Cooling water was allowed to run through the system until the apparatus was cool,
and was then turned off. The fluid within the cell was removed using the syringe

and a tubing extension.

6.4 Uncertainties and Errors in Experiments

6.4.1 Quantified Errors

With every experimental measurement there is uncertainty. Computed
quantities based on these measurements also have errors associated with them. In
order to determine the error in computed values, the method cutlined in Appendix
A is used. This method determines a relative error based on the formula for the

computed quantity. For example, Grashof number is determined using the formula:

Gr = Q,8ga®/(kV?)
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and the relative error is determined using the relation:

AGr
Gr

N \J<A(fg)2+(‘”)2+( 2204 (0 + 2y

The Grashof numbers calculated were found to have an error of approximately
15% associated with them. Dimensionless temperature was plotted as the other
variable in order to find the region of dual solutions. The error in 8 was in the range
of 30 — 40%, depending on tue value of the temperature of the copper walls. This

error was largely due to the uncertainty in the measured temperatures.

6.4.2 Other Errors

Some errors in the system are not as easily quantified. There is some heat loss
from the fluid layer through the plexiglas containing walls. Since the thermal mass
of the copper block is very large compared to the thermal mass of the plexiglas
pieces, the heat loss through the side walls should not be large. Most experimental
runs had the apparatus at a temperature close to room temperature. Other tests
used copper block tern.; eratures which were well below room temperature. In both
cases, the data collected was of good quality. Therefore, the temperature of the
copper Llock had little effect on the quality of the data, which indicates that the

heat loss from the plexiglas walls was insignificant.

The driving force supplied by electrolytic heating may not be uniform. Triton
and Zarraga [16] reported up to a 10% variation in the internal heating within
various regions of the fluid. This factor is very significant, as such a variation could
lead to an asymmetric perturbation that would make the upper section of PM1

unstable.

The addition of the polystyrene beads to make the flow visible could have an
effect on the physical properties of the copper sulfate solution. Only a very small
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mass of particles was added to the solution. Their easy dispersal through the fluid
made the flow visible, but the amount of material added is insignificant compared

to the amount of fluid.

However, the possible mismatch in the densities of the fluid and the polystyrene
beads may be very significant. The presence of any density difference between fluid
and solid would lead to the particles having terminal velocities of the same order

of magnitude as the flows being visualized. This would have a significant effect on

what was seen.

It is also difficult to quantify the amount of error in the tilt angle when the layer
is untilted. A carpenter’s level was used to determine if the test cell was untilted.
The error associated with the air bubble and the marked lines on the level is a
function of the care in the manufacturing of the level. In the simulation results,
there were B-points found at tilt angles of the order of thousandths of a degree. 1t is

impossible to determine a tilt angle to that degree of accuracy with the equipment

available.

6.5 Experimental Results

6.5.1 Transient Phenomena

This study considers only steady solutions and flow patterns. However, some
interesting effects were observed in the evolution toward steady flow patterns.
Initially, the fluid is at rest. As the alternating current begins to pass through
the fluid, downward flow begins near both electrodes. The first flow pattern which
is evident contains four vertical flow cells. Continued heating causes the flow cells

near the edges to grow toward the centre of the test region. The central pair of
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flow cells shrink toward the top center part of the fluid layer. Eventually, the
large primary cells overcome the small secondary flow cells, and a two cell pattern
becomes prevalent. This evolution is diagrammed in Figure 6.5. The time frame for

the completion of this evolution is approximately 40 minutes.

In a few other experimental runs, a state was observed that could not come to
a steady state. The fluid was heated by the copper walls as well as the electrolytic
heating. The flows observed were similar to those found for bottom heated fluid
layers. Primary flow cells moved upward along the edges, and secondary flow cells
formed in the bottom part of the test region. As the fluid continued to heat up,
it became warmer than the containing walls. At this point the flow pattern would

begin to again follow the transient patterns described previously.

6.5.2 Region of Parameters Between L1 and L2

Several multiple solution regions were predicted in the simulations for the Hele-
Shaw cell. However, only two had more than one stable solution branch. One
was the range 435923 < Gr < 436088, where branch IS3 is stable, and PM1 is
conditionally stable. However, this range is very small, and it would be difficult
to reach IS3 experimentally. The other range of multiple stable solutions is
165991 < Gr < 300034, where the lower section of PM1 is stable, and the upper
section of PM1 is conditionally stable. This region is sufficiently large to pursue
experimentally. It is simple to reach one solution branch, as the lower section of
PM1 is one of the stable branches encountered, and it contains the unique solution
region. The upper section of PM1 was found to contain solutions with a four-cell flow
pattern. There is some question as to whether this solution branch would be stable
in the experimental runs, as numerical simulation predicted that it is conditionally

stable. All asymmetric pertubations be removed from the experiment in order to



CHAPTER 6. EXPERIMENTAL PROCEDURE AND RESULTS 135

~ UL
dbid
- 00

Figure 6.5: Transient Behaviour Observed in the Evolution of a Two-Cell
Steady Flow from Rest




CHAPTER 6. EXPERIMENTAL PROCEDURE AND RESULTS 136

obtain a stable flow which corresponds to this branch.

The raw experimental data and information on the data reduction procedure is
given in Appendix B. A plot of the numerical and experimental data for the region
Gr < 400000 is shown in Figure 6.6.

The experimental temperatures within the fluid do not match very well with
those in the numerical results. A possible expl ination for this involves the manner
in which the temperature within the fluid was measured. All measurements involve
the disturbance of that which is to be measured. The difference is in the degree of
the disturbacne caused by the measurement. Some techniques, such as holography
and other optical methods, have a minimal effect on the system. In the case
of the method used to determine the temperature at one point within the test
fluid, the disturbance turned out to be quite large. It was necessary to place a
thermocouple into the fluid. Since the gap is very thin, the fluid cannot flow around
the thermocouple. The thermocouples used in this study were grounded at their tip.
Fluid passing by the thermocouple would be a mixture of cooler fluid packets from
near the wall of the cell, and other packets that were originally near the measurement

point. The result is a measured temperature which is mu:ch cooler than expected.

This method of determining temperatures has an important effect. When the
thermocouple used to measure the temperature inside the fluid is removed from the
test region, secondary flow cells may be induced within the fluid. The inclusion of
the thermocouple within one fill hole forces a small amount of test fluid up into the
other fill hole. As the thermocouple is removed, the fluid within the fill hole returns
to the test cell. The result is a vertical flow in a region where only horizontal fiow
lines exist in a two-cell flow pattern. This disturbance results in the creation of

smaller flow cells near the fill holes.

For several of the experimental runs, the insertion and removal of the
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Figure 6.6: Experimental Two Cell Flows within the Hele-Shaw cell. ¢ =
0°,v=1.0
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thermocouple did not cause any change in the observed dow pattern. The
disturbance quickly dissipated after the thermocouple was removed. These points
are indicated by filled circles in Figure 6.6. This region corresponds to the unique
solution region of the domain, where the only solution is this stable two cell flow
pattern. Such a flow pattern is shown in Figure 6.7. The end of the unique solution
region occurs at limit point L1. Beyond L1, there are three possible solutions.
The numerical solution predicts the Grashof number at L1 to be 165591. In the
experimental work, no unique solution was obtained for Gr > 138000. There is a
16% difference in these two values, which is within the experimental error of the
Grashof number. This result verifies that the transition from the unique solution
region to a multiple solution region is near the parameter set predicted by the

mathematical model.

In other cases, observation of the test cell for several hours after the removal
of the thermocouple showed that no flow pattern became stable. Several four cell
flow flow patterns were apparent within the cell. A photo of one of these states
also appears in Figure 6.7. This region, where a two cell flow pattern was stable
and a perturbation caused an unstable four-cell flow pattern, corresponds with
the parameter set between limit points L1 and L2. In this region of parameter
space, the mathematical model predicts three possible solutions. One solution is
a stable two-cell flow, the second is an unstable two-cell flow, while the thir~ .s
a conditionally stable four-cell How. The range of Grashof numbers in this region
found experimentally is 139000 < Gr < 284000, while the region between L1 and
L2 predicted by numerical simulation is 165991 < Gr < 300034.

In the region beyond G'r = 283000, no experimental data is shown in Figure 6.6,
as no stable two-cell flow pattern was found. Only four-cell flow patterns could

be fourd, and no stable flow pattern was obtained. The discrepancy between the
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b)

Figure 6.7: Flow Visualizations within the Hele-Shaw Cell, a) stable two-cell
flow, b) one unstable four cell-flow pattern. ¢ = 0°,v = 1.0,Gr =
158000
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numerical prediction of L2 and the observed transition between the presence and
absence of a stable two-cell flow is approximately 6%. Such a difference is well

within the error calculated for the Grashof number.

The failure to obtain a stable four-cell flow pattern within the experimental
apparatus is due to the inability to produce uniform internal heating. The
temperature variations within the fluid, even at steady state, causes a significant
variation in the amount of heating that occurs at various points within the fluid. In
addition, inhomogeneity of the solution may cause nonuniform heating. Improper
mixing during the preparation of the solution may have introduced a significant
amount of air into the solution. The presence of the polystyrene beads is another
factor contributing to imhomogeneity. Such substances would cause a variation in
thermal conductivity within the soluticn that would generate a nonuniform internal

heating.

6.5.3 Tilted Layers

Flow visualizations were also performed for Hele-Shaw cells which were tilted.
A visualization at a tilt angle of 29° was performed, and its results are shown in
Figure 6.8. A strong, asymmetric two cell low was present. Attempts to perturb
this flow and find another flow pattern were unsuccessful. This is not surprising,
since the limit point L1 does not exist until Gr = 409600. Producing a state with
such a Grashof number was not attempted, as the heat input necessary would require
voltage and current values which would be beyond the capacity that the apparatus
was designed to handle.
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Figure 6.8: Flow Visualization for a Tilted Hele-Shaw Cell, Gr = 163000, ¢ =
29°,v=1.0



Chapter 7

Conclusions and

Recommendations

There were three objectives in the study outlined in this dissertation. The first
was to consider the effect of tilt on the bifurcation diagram for steady state natural
convection within a porous slab saturated with a single phase fluid. Another goal
was to develop the bifurcation diagram for steady natural convective heat transfer
within a thin fluid layer. In both cases, the convection was driven by the presence of
internal heat sources. Previous authors have determined situations wherz flow within
a thin fluid layer is an acceptable substitute for low within a porous layer. Here,
bifurcation diagrams for the two layers were gene:~ied. Qualitative and quantitative
comparison of the two diagrams indicated the strength of the analogy between these
two similar systems. Finally, an experimental of the Hele-Shaw cell was performed.
Through flow visualization, a set of parameters where two stable solutions exist
in the flow within the thin Auid layer was found. This discovery comfirmed the

prediction from the computer simulations.

142
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7.1 Porous Layer

There is a significant change in the bifurcation diagram for a thin porous slab
when the sysiem is subjected to tilt. A diagram of the heat transfer for an untilted
slab contains one primary symmetric branch, two isolated symmetric branches and
six asymmetric solution branches. When the slab is tilted to an angle of only
one degree, significant change in the bifurcation diagram is evident. A primary
solution branch remains, but t:-ere are seven isolated solution branches. All solution
branches in the tilted domain are asymmetric, as all symmetry within the system has
been broken. With increasing tilt, these isolated branches move to higher Rayleigh
numbers. In the case of a slab with unit aspect ratio and tilt of 45°, the primary

branch is unique and globally stable.

Numerical simulation of the porous slab also resulted in the discovery of three
new asymmetric solution branches in the untilted bifurcation structure. These

branches were discovered in the course of study of the effects of tilt on the domain.

As the porous slab was tilted, several regions were discovered where dynamic
studies could be focussed. With tilt, symmetry-breaking points unfolded into limit
points. This phenomenon led to origins of Hopf bifurcations. These tended to occur
at tilt angles which are too small to be measured accurately. Their presence can be
confirmed through comparison with dynamic simulations and stability calculations.
Within the tilted structure there are branches that become unstable without a
detectable bifurcation point in the vicinity. This change in stability may be due
to the movement of the path of oscillatory solutions past the stationary branch. A
routine to follow a path of oscillatory solutions through the domain is not available

at this time, so confirmation of this conjecture is impossible.

Additional B-points were found by following the locus of limit point positions
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with varying tilt. In the case of three limit points, L6, L8 and L10, these B-points
were in close proximity to a discontinuity in the fold curve. Consideration of the flow
patterns near these discontinuities indicated that a change in the number of flow
cells was occurring. The region around these discontinuites and B-points should be

investigated further, as some interesting dynamic behavoiur could be found here.

7.2 Fluid Layer

A mathematical model for the convective heat transfer driven by internal heating
within a thin fluid layer was developed. Simulations with this model gave a
bifurcation diagram similar to that found with a fluid saturated porous slab, but
with several key differences. The structure for an untitled layer contains a primary
symmetric branch, two isolated sy.nmetric branches and five asymmetric branches.
Many of these branches corresponded to those found within the porous bifurcation
diagram, but some did not. The major difference was a small asymmetric branch

which links the two symmetric solution branches.

Within the fluid layer model was an inertia parameter which represents a
difference between the behaviours in the porous layer and the fluid layer. Limit
points in the fluid layer structure were tracked with varying inertia parameter. It was
determined that the bifurcation diagram of the porous structure could be viewed as
a special case of fluid layer behaviour when the inertia parameter tends toward zero.
In terms of bifurcation points, the porous layer structure provides limiting values for
the fluid layer as the gap width approaches zero. This may be seen as a quantitative
measure of the similarities of the two bifurcation diagrams. Inspection of plots using
dimensiorless temperature as a state parameter shows strong qualitative evidence

that a fluid layer behaves in a similar manner to a porous slab. Therefore, in terms
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of bifurcation structure, a thin fluid layer is a reasonable substitute for a porous

layer.

As was the case for the porous layer, several B-points were disccvered. These
are places to begin any future stucy of the dynamics of convective flow within
an internally heated Hele-Shaw cell. Origins of Hopf bifurcations were discovered
due to the unfloding of symmetry-breaking points into limit points. At larger tilt
angles, B-points were agairn found on the fold curves of the limit points with tilt.

The positions of the:¢ B-points corresponded closely with the positions of B-points

found in the porous layer.

One major difference between the bifurcation diagrams in the two systems is due
to stability factors. For an untilted system, the primary branch from the conduction
state to L2 is stable in both cases. The section of the primary branch from L1 to
the edge of the domain is unstable for the porous slab, but was found to be stable

for the thin fluid layer. The result is that for the fluid layer there exists a region of

two stable solutions.

The dynamics of flow in Hele-Shaw cells with internal heating should be
considered. Several B-points have been located, which provide excellent places
to begin such a study. When a numerical study of the dynamics is complete, a
comparison with existing dynamic simulations of porous layers with internal heating
would be in order. Such a comparison would be another significant contribution to
the study of situations where thin fluid layers can be substituted for porous layers.

In addition, experimental study of the dynamics within a Hele-Shaw cell where

internal heating drives the convection is possible.
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7.3 Experimental Program

An experimental apparatus was constructed to correspond with the fluid layer
simulated. The main objective was to determine if the conditionally stable section
of branch PM1 could be observed experimentally. If so, then a region of two stahle
solutions with one set of parameters could be verified. Flow visualization was used
to determine the flow patterns found within the test region. However, the four-
cell flow pattern was not stable in the experimental apparatus. This implies an
asymmetric perturbation exists within the apparatus. The most probable cause of
this asymmetry is variation in the internal heating within various sections of the

fluid layer.

The positions of limit points L1 and L2 were verified for an untilted layer. The
presence of L1 indicates the end of the unique solution region. For all experimental
measurements where Gr < 138000, perturbation of the two-cell flow pattern present
did not result in any significant change. In a very short time, the perturbation died
out, and the two-cell low was restored. The nu.:uerical solution indicated that L1 was
present at a Grashof number of 165991 for an untilted layer. For the experimnetal
runs where 138000 < Gr < 283000, perturbation of the two-cell flow gave rise to a
four-cell flow pattern. However, this four-cell flow was unstable. Several different
flow patterns were observed, but none remained within the cell for more than 10
minutes. For all experimental points with a Grashof number above 283000, no stable
flow pattern v~ - zvident. Beyond the limit point L2, there is no stable two-cell flow.
In the cax: & ,th L1 and L2, the numerical predictions for the limit points were
within the c.perimental error of the Grashof numbers where the transitions were

observed to occur.

Flow patterns at other tilt angles were found through flow visualization as well.
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The two cell flow patterns expected at the parameter set investigated were observed.
It must be noted that the velocity of the fluid was very slow. Any difference in
density between the fluid and the polystyrene beads resulted in the beads having a

terminal velocity of the same order of magnitude as the flows being visualized.

Some improvements could be made to the experimental setup. Instead of
determining temperatures within the fluid by inserting 2 thermocouple into the
flow, interferometry or another form of non-intrusive temperature sensation should
be used. If higher heat inputs were required for future study, another cooling water
channel should Le cut into the copper block. Another improvement in the apparatus
would be to drill two additional fill holes in the top of the copper block. This would

facilitate the removal of air bubbles from the fluid layer.

An experimental study of the dynamics would be difficult with the experimental
setup used here. The flows are very slow within the cell, especially at low heat
inpr::. - order to induce swifter flows without significant increase in the heating,
a siig”. ly wider gap is a reasonable alternative. A small change of the gap width
would also cause a large decrease in the value of Grashof number for all bifurcation
points. Increasing the gap width must be done with care, as a fluid layer which is

too thick jeopardizes the use of the small gap approximation in the mathematical

model.
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Appendix A

Method of Uncertainty Analysis

To estimate the uncertainty of the variables in the experimental study, a method
based ou the equation used to determine the value of the variable is employed. For
any calculated variable Y = f(A, B, C, D), the uncertainty in Y can be determined
using the uncertainties in the quantities A, B, C and D, which are known from

measurements. If the total derivative of Y is determined, the result is:

_of of of af
dY = aAdA+ aBdB+ aCdC+ 6Dd.o (A.1)

If the errors in the quantities are small, the term dY may be replaced with AY to
give:
of of of

of
AY = aAA + EEAB + %AC + EBAD (A.2)

Equation A.2 cannot be used to determine AX, as the signs of the errors may be
different and lead to an erroneous magnitude of error. To remove this difficulty,
each term may be squared. This leads to the use of the mean squared error.
If the measured quantities A, B, C and D are all statistically independent and

symmetrically distributed random variables [106], the cross product terms vanish.
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The resulting error relation is:

of

(AY)2_( AA)2+( AB)2+( AC)2 5D

—=AD)? (A.3)

As an example, consider a function for Y of the form:

AB™
Y = oD (A.4)
Tzking the partial derivatives and substituting into equation A.3 results in:
mAB™™
(AY)? = ( AA) + (-—E-’ZD—-AB)Q (A.5)
nAB 2 2
+(C~+1DAC) + (CnD2AD)

Dividing by equation A.4 gives the following relation for the fractional uncertainty

in the calculated variable Y':

D,

mARB ., nAC)2+(A 2 (A6)

)2“( )2“"(—'5. 4+

For any variable determined from a functional relation of the form of equation A.4,
the fractional uncertainty of the variable can be expressed as an equation of the form
of equation A.6. Any exponent of the measured vuriables ends up as a weighting

factor in the fractionzl uncertainty.



Appendix B

Raw Experimental Data and
Data Reduction

The raw data taken from the experimental apparatus is outlined in Tables B.1
and B.2. Reduction of the data was accomplished in the following maaner.
The model equations are scaled so that all temperature dependent quantities are
evaluated at the temperature of the constant temperature walls. Values for the
required physical properties of pure water are available from the CRC Handbook of
Ciiemistry and Physics [107]. These properties are thermal conducti+ .ty, viscosity,
density and coefficient of thermal expansion. All physical properties for the dilute
copper sulfate solution are assumed to have similar temperature variations as does
pure water. Values for the density and viscosity of copper sulfate solutions of
various concentrations are also available, and these factors are also implemented.
The amount of internal heating was determined by finding the product of current
and voltage, and dividing by the volume of fluid in the cell. These are all the

quantities needed to calculate the Grashof number and dimensionless temperature.
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Untilted Fluid Layers
Run || Voltage | Current { Wall Temp | Fluid Temp Gr theta
(Volts) | (Amps) o (C)
6-1 0.66 0.009 17.6 19.6 166600 | 6.42
9-1 0.79 0.004 15.5 17.6 60110 | 13.71
9-2 LIRS 0.006 149 17.4 1392100 | 6.43
10-2 b 2.004 19.5 21.2 112000 | 5.04
11-1 J C.005 7.9 12.6 35070 | 13.34
11-2 1.58 6.008 7.5 11.8 57040 | 6.28
11-3 1.70 0.009 6.5 6.8 48120 | 6.07
11-4 || 1.94 0.010 6.2 11.3 || 71900 | 4.01
12-1 1.490 0.009 140 16.5 214600 | 3.65
12-2 1.57 0.010 14.2 15.8 284400 | 1.76
12-3 1.14 0.007 145 16.5 151500 | 4.49
13-1 0.54 0.004 13.4 16.3 31600 | 26.51
13-2 0.82 0.005 14.0 15.8 78500 | 6.99
13-3; 1.03 0.007 14.6 15.8 if 139000 ; 2.74
14-1 1.44 0.007 13.0 154 158100 | 4.24
Layer Tilted 29 Degrees
14-2 1.45 0.007 13.0 — 163300 | —

Table B.1: Raw Experimental Data and Calculated Results for Two-Cell Flow
Patterns



APPENDIX 8. RAW EXPERIMENTAL DATA AND DATA REDUCTION

Current & « -

Run || Voltage
(Volts) | (Amps;

-1 || 168 | 0065 |
2-1 0.97 0.011
2-2 1.26 0.014
3-1 0.65 0.007
3-1 i.01 0.013
95-2 1.29 0.016
6-2 0.66 0.009
10-1 1.01 0.005

T

Gr

3y

22.8 314700
20.0 379400
19.6 599800
21.9 194100
21.4 547700
21.3 f 839400
174 167800
19.8 172300

Table B.2: Raw Experimental Data and Calculated Results for Four-Cell Flow

Patterns in an Untitled Hele-Shuw Cell
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