
A Transactional Activity Model for Organizing

Open�ended Cooperative Work�ow Activities

Ling Liu�

Dept� of Computing Science

University of Alberta

GSB ���� Edmonton� Alberta

T�G �H� Canada

lingliu�cs�ualberta�ca

Calton Puy

Dept� of Computer Science

Oregon Graduate Institute

P�O�Box ����� Portland

Oregon �	���
���� USA

calton�cse�ogi�edu

Robert Meersman

Dept� of Computer Science

Vrije University of Brussel

StarLab� Pleinlaan �

���� Brussels� Beligum

meersman�vub�ac�be

April ��� ����

Abstract

A number of extended transaction models have been proposed to support information
intensive appli

cations� such as CAD�CAM� distributed operating systems� and software development� Irrespective
to how successful these extensions are in supporting the systems they intended for� these model
can only capture a subset of the interactions required in any complex and distributed information
systems� Moreover� extended transaction models that o�er adequate correctness in one application
may not ensure correctness in other applications� because cooperation restrictions desired by one
application domain may not be required or may even be unacceptable by another�

We propose a transactional activity model TAM for speci
cation and management of open
ended
cooperative activity by promoting the separation of activity speci
cations from their implementation�
to allow reasoning about transactional properties of open
ended activities independently from their
transaction implementation techniques� and by developing mechanisms to facilitate the speci
cation
and reasoning of application
speci
c activity dependencies� TAM users may form new activity pat

terns by combining components of di�erent existing patterns using activity pattern re
nement and
activity pattern composition mechanisms� A number of activity restructuring operations are intro

duced and incorporated into the TAM activity model� To guarantee the correctness of new activities
generated by activity
split or activity
join operations� we identify the cases where the correctness is
ensured and the cases where activity
split or activity
join are illegal due to the inconsistency incurred�
We also formally de
ne the concept of complete activity history� a valid pre
x of activity history�
and a merged activity history� Our algorithm for integrating two meragable activities ensures that
a merged history from two correct histories is also correct with respect to the two input histories�
The correctness reasoning capability is tested by studying the new properties of activity
split and
the concurrent execution of activities by multi
users in the context of TAM�

Keywords� Distributed and heterogeneous systems� open�ended activities� cooperative activities� ex�
tended transaction models�

�Supported partially by NSERC grant OGP�������� and NSERC grant STR��������
ySupported partially by ARPA grant N���������������	 NSF grant IRI��������	 and grants from the Hewlett�Packard

Company and Tektronix


�



Contents

� Introduction �

� The Transactional Activity Model TAM �

��� Hierarchical and Dynamic Organization of Activities � � � � � � � � � � � � � � � � � � � � �

����� A Running Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Dynamic Split and Join of Activities � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Activity Patterns� Formal De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Concurrent Execution of Activities� Correctness Speci�cation � � � � � � � � � � � � � � � �

����� Activity State Transition Dependencies � � � � � � � � � � � � � � � � � � � � � � � 	

����� Speci�cation of Activity Dependencies � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Activity Execution Dependencies � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Object Replication in Activity Hierarchy � � � � � � � � � � � � � � � � � � � � � � � ��

��� Activity Speci�cation� An Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Ensuring Correctness Criteria ��

��� Activity History � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Correctness criteria of Merged Activity Histories � � � � � � � � � � � � � � � � � � � � � � �	

� Dynamic Restructuring of Activities ��

��� Split�Activity Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Join Activities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Concurrent Executions of Activities� Example Continues ��

� Conclusion ��

�



� Introduction

Open�ended activities are characterized by long duration
 �exible cooperation and dynamic develop�
ment ��

 �	�� The need to support open�ended activities emerges from the increasing demands of new
and complex applications
 such as CAD�CAM
 automated o�ce work�ows information systems
 soft�
ware development environments
 and distributed operating systems� These applications are typically
distributed and object�based� Cooperation is promoted� Activities in the advanced applications tend to
access many objects
 involve lengthy computations
 and often require application�speci�c cooperation
among multiple subactivities in accomplishing a task� The subactivities may be executed by di�erent
servers on di�erent nodes of a heterogeneous service network� Furthermore
 construction of subactivities
may evolve as the work progresses to improve the quality of cooperation and obtain a higher degree of
concurrency� Traditional transactions provided in conventional database systems ����
 although power�
ful
 were assumed to be short�lived and were targeted for competitive environments where interactions
are curtailed� Therefore
 the need to capture open�ended and collaborative activities found in the new
applications suggests the need for more cooperative models�

A number of extended transaction models �ETMs� ���
 ��
 �
 ��
 ��
 ��
 �

 ��� have been proposed
to support diversi�ed new application requirements� For example
 Nested Transactions ���� were pro�
posed in the context of distributed systems to handle the problems of partial failure� Sagas ���� extend
the traditional transaction model by including an automatic compensation capability within transac�
tions to relax failure automicity� Cooperative Transactions ���
 Split Transactions ��
�
 and Transaction
Groups ���� were proposed for capturing the interactions required in advanced applications� Most of
these ETMs were targeted at a particular domain of applications
 and can only capture a subset of the
spectrum of interactions found in any complex information systems ��
 ���� Furthermore
 ETMs that
o�er adequate correctness in one application may not ensure correctness in other applications� Some
cooperation restrictions desired by one application domain may not be required or even unacceptable by
another� For example
 nested transactions do not allow sharing of uncommitted data� This requirement
is often critical in CAD�CAM applications and interactive programming environment� Sagas cannot
guarantee database correctness crucial to many banking applications� Unlike nested transactions
 co�
operative transactions ��
 �

 ��� allow cooperation among siblings� However
 the interactions among
siblings are either restricted to leaf node transactions in order to support serializable split�transactions
or limited to static and one�shot design of transaction groups
 making it di�cult to introduce added
concurrency and improve the cooperation through releasing some early committed resources or trans�
ferring ownership of uncommitted resources
 once the transaction groups are de�ned� For these reasons

a distributed and interoperable object management system should provide an adaptive facility that
supports the de�nition and construction of speci�c ETMs corresponding to various application require�
ments
 rather than a single built�in ETM� It should also be possible to enforce these speci�cations
e�ciently for concurrency control� Put di�erently
 a transactional activity speci�cation language must
provide modeling primitives
 similar to those in the ACTA framework ��
 �
 	�
 to allow the �explicit�
speci�cation of application�speci�c activity dependencies
 while satisfying the basic requirement that it
must not require complete histories to reason about the correctness of concurrent execution of activities�

We develop a transactional activity model TAM for speci�cation and management of open�ended coop�
erative activities� TAM provides modeling primitives that allows transaction model designers to create
implementation�independent speci�cation of complex transactional activities� We provide a number of
facilities to allow explicit speci�cation of activity dependencies between subactivities
 between subactiv�
ities of siblings
 and with respect to single or multiple threads of object �ows� Communication among
subactivities of an activity is carried out via parameter passing� Semantics of interactions between

�



activities are expressed in terms of their e�ects on each other and on objects they access� The e�ects
of one activity on other activities include not only those on the abort of other activities and those on
the commit of other activities
 but also those on the execution precedence and interleaving with respect
to other activities� The e�ects of an activity on the objects that it accesses are captured by means
of access sets of activities and the concept of delegation ��
 ���� TAM also supports the behavioral
re�nement and behavioral composition of activity patterns to increase the �exibility and reusability of
activity patterns� The separation of activity speci�cation from implementation is a key concept which
allows reasoning about concurrency and recovery properties of TAM activities independently from their
transaction implementation mechanisms ��
 ���� The reasoning capability has also been tested by using
the TAM to study the new properties of activity split in the context of TAM�

The development of TAM can be seen as a continuation of the activity model proposed in ���� by adding
transactional properties and by incorporating dynamic restructuring operations ��

 �	� into the activity
execution� For example
 In our early proposal ���� there was no consideration of new criteria for fault
tolerance
 failure recovery
 and correct cooperation among concurrent users� In TAM
 we precisely de�ne
the semantics of compensation and exception handling of activities� Instead of concurrency atomicity
and failure atomicity
 we guarantee that open�ended activities are executed in accordance with the
application�speci�c activity dependencies de�ned by the activity�transaction designer and terminate
only in the legal termination states� Upon failure
 we allow activities to be aborted or compensated or
to handle the failure exception by executing an alternative subactivity� Another feature supported by
TAM is that activity patterns can be de�ned statically and modi�ed dynamically through the invocation
of system�supplied activity restructuring operations in the progress of activities�

Our transactional activity model is especially useful for distributed systems because it supports intra�
activity parallelism by allowing an activity to split into nested activities that can execute concurrently�
TAM can be layered on more than one transaction models that support atomic transactions� This is
particularly useful in heterogeneous environment where di�erent servers may support di�erent transac�
tion models� The support for speci�c ETMs in TAM involves translating speci�cations to instructions
carried out by the local programmable transaction management systems� Thus speci�cation of popular
ETMs �such as nested model
 sagas� can be provided in TAM as templates� Activity designers may
combine components of di�erent ETMs
 by means of activity pattern re�nement and activity pattern
composition
 to form new ETMs�

In addition to our early proposal ����
 a few activity models have been proposed ���
 �

 ��� to support
declarative speci�cation of control �ows within activities� Features of long running activities ���
 �
�
include an automatic compensation capability that o�ers some level of failure atomicity for the activity
and the use of ECA�rules for monitoring activities� The cooperative model ���� achieves cooperation
by controlled exchange and synchronization of the content of workspaces among users� However
 these
models provide no support of high�level activity abstraction mechanisms for behavioral re�nement and
behavioral composition of activity patterns� The correctness criteria for concurrent execution of activ�
ities have not been de�ned and explored formally� Dynamic restructuring of activities has not been
addressed and studied in the context of activities of arbitrary nested hierarchical structure� We argue
that in an open environment such as distributed information systems
 activity abstraction mechanisms
and activity restructuring facilities are useful not only for de�ning new patterns �templates� of trans�
actional activities in terms of existing ones and for adding concurrency and improving cooperation

but also for making the TAM model scalable to the dynamic evolution of activity development in the
presence of transactional requirement changes
 and to the increasing number of information servers in
high�speed networks�

In Section � we introduce the TAM activity model
 including the formal de�nition of simple and com�

�



posite activity patterns
 and the modeling primitives for speci�cation of user�de�ned activity execution
dependencies
 interleaving dependencies
 and state transition dependencies� Section � discusses issues
related to ensuring correctness criteria� Section � introduces a number of activity restructuring opera�
tions for dynamic split and join of activities� An application scenario in telecommunication domain is
used in Section � to illustrate the concepts discussed in this paper�

� The Transactional Activity Model TAM

��� Hierarchical and Dynamic Organization of Activities

In TAM open�ended activities are speci�ed by activity templates or so called parameterized activity
patterns� An activity pattern describes concrete activities occurring in a particular organization� Each
concrete activity is described by a single activity pattern and can be seen as an instantiation of the
activity pattern�

An activity �say P � may consist of several child activities �or so called subactivities�� A child activity
may in turn have subactivities as its own children and so on� All the direct and indirect subactivities
of P are also called constituent activities of P � The TAM model allows arbitrary nesting of activities
since it is generally not possible to determine a priori the maximum nesting an application task may
need� We refer to the hierarchical organization of activities of as activity hierarchy�

To facilitate the abstract speci�cation of the hierarchical organization of open�ended activities
 TAM
distinguishes two types of activity patterns� simple activity patterns �SACT� and composite activity
patterns �CACT�� A simple activity of patterns �SACT� is a program that issues a stream of messages to
access the underlying database� They are leaves of the activity hierarchy� A composite activity pattern
�CACT� represents activities that consist of a number of subactivities cooperating to accomplish a
speci�c task� Composite activity patterns are the internal nodes and the root of the activity hierarchy�

����� A Running Example

Consider a complex activity TeleConnect that performs installing and billing of telephone connection
for a telecommunication company �� Suppose the activity A�TeleConnect consists of four subactivities
A��ClientRegister
 A��CreditCheck
 B�AllocateCircuit
 and A��InstallNewCircuit� A is
executed when a telephone company customer requests telephone service installation� Activity A�

registers the client information in the client database for billing purpose� Activity A� evaluates the
credit history of the client and pass a service order to the activity B�AllocateCircuit� Activity
B attempts to provide a connection by allocating existing resources such as selecting nearest central
o�ces
 and using existing lines and slots in switches� If B succeeds
 the cost of connection is minimal�
Thus
 activity A� is designed to performs an alternative task that involves physical installation of new
facilities in the event of failure of activity B� Figure ��a� presents a possible initial task breakdown of the
example activity TeleConnect� Ai �i � �� ���� �
� are simple activity patterns
 and A�TeleConnect

B�AllocateCircuit and C�SelectConnections are composite activities�

�A simpler version of designing telephone circuit between two points is described in ��	 ��



�



Figure �� Alternative designs of the telephone connection application

����� Dynamic Split and Join of Activities

Often the structure of most design tasks may evolve as the work progresses
 a dynamic hierarchy is
essential for such open�ended activities� In TAM
 we allow subactivities to be added or removed from
an activity hierarchy as the need arises
 because we can not always foresee the most e�ective clustering
structure of activities at the stage of initial activity speci�cation� For instance
 the designer of the
activity AllocateCircuit may decide later to unnest the AllocateLines activity
 through �split�
by�unnest� operation
 as shown in Figure ��b�
 in order to add concurrency and to improve cooperation
among subactivities A�� A�
 ���
 A�� This is because
 in the initial design
 activity A� has nothing related
to the allocation of Switch� between Line� and the Span between Line� and the central o�ce to Start
point� However
 according to the design in Figure ��a�
 even if A� and A� are committed
 A� cannot
start until A� terminates� Whereas the design in Figure ��b� encourages to release the committed
resources as soon as one of the subactivities commits� Hence
 A�� A� may access the objects whenever
A� and A� commit
 rather than waiting for the entire activity C to commit�

It is also possible if the designer decides to group the subactivities A�� A�� A�� A� and A� by creating
a new composite activity D�AllocateFacilities as their parent activity
 through the combination of
�split�by�unnest� operation over C
 and �join�by�nest� operation over A�� A�� A�� A� and A�
 as shown
in Figure ��c�� Comparing with the initial design
 this alternative design improves the cooperation
among subactivities A�� A�� A�� A� and A� and adds higher concurrency
 because if activities A�� A�

commit earlier than A�
 then A� may access the objects delegated to D by A�� A�
 without waiting
for the termination of A�� Similar situation holds between A�� A�� A� and A�� Generally speaking

split�activity divides an on�going activity into two or more activities that cooperate with respect to one
another
 and each of the new activities is later committed or aborted independently of the others� Join�

�



activity either merges or groups two or more activities that cooperate in terms of application�dependent
contracts into a single activity as if they had always been part of the same activity
 and all their work
is now committed or aborted together�

Organizing open�end activities hierarchically and dynamically has many advantages� First of all
 such a
nesting hierarchy re�ects a natural task breakdown common in most cooperative working environments�
A complex tasks can be designed by top�down or bottom�up or mixed strategies through activity abstrac�
tions� Details of subtasks can be isolated from its parent and siblings
 facilitating activity abstraction
and overall task management� Secondly
 the hierarchical structure of activities allows subactivities of
the same parent activity to run concurrently
 shortening the perceived execution time of the activity�
Thirdly
 comparing with a �at organization where failure of a subactivity would impact all work
 re�
lated or unrelated
 the multi�layered nesting structure of activities enables to keep failure recovery�under
control� When a subactivity fails
 we only have to undo its e�ects� This e�ectively shields its siblings�
Last but not least
 dynamic split and join are important facilities for organizing open�ended activi�
ties hierarchically� Split�activity is useful for committing some work early or dividing on�going work
among co�workers� Join�activities allow to hand over results to co�workers to integrate into his�her own
on�going work ��

 �	��

��� Activity Patterns� Formal De�nition

Given a universe of discourse �UoD�
 the activity model of this UoD consists of a non�empty set of activ�
ity patterns
 describing Application�speci�c tasks and their communication interfaces and cooperation
contracts�

An activity pattern describes the communication protocol of a group of user activities that hold the
similar hierarchical structure and obey the similar cooperation contracts� As we mentioned earlier
 TAM
distinguishes two types of activity patterns� simple activity patterns �SACT� and composite activity
patterns �CACT�� A simple activity of patterns �SACT� is a program that issues a stream of messages
to access the underlying database� A composite activity pattern �CACT� consists of a number of
subactivities cooperating to accomplish a task� We identify the following information necessary for
speci�cation of a simple activity pattern�

� The type name of each participating object in an activity �so called an agent of the activity��

� The list of input and output parameters�

� A set of messages used by each agent object in participation of an activity�

� The logic of message exchanges among agent objects
 including the local constraints on the set
of permissible messages of each agent and the global constraints that describe the kind of mutual
obligations the participating objects should follow�

� The pre� and post�conditions as well as the initiation condition of an activity execution� For
example
 the precondition may describe what sorts of relationships must hold between agent
objects� The initiation condition describes when an activity can be invoked� The postcondition
speci�es the post�e�ect that an activity might have and the consistency that should be maintained�

� The activity dependencies that identify the correctness constraints of synchronization of executions
of activities�

�



De	nition � �simple activity pattern�
A simple activity pattern � is described by an octuple �N� AGT�PARA� GIC� PRE� INIT� POST� EXCE�

N� is the name of activity pattern ��
AGT is a nonempty set of agent objects� each agent is described by a triple �T�Msg���T��LIC���T��

T is the type name of an agent involved in the activity pattern a and called agent type�
Msg���T� is a nonempty set of messages supporting the role of type T being an agent of ��

type T being an agent in the activity pattern ��
LIC���T� denote the conjunction of all the local constraints associated with the agent of type

T in activity pattern �� which de�nes the exchange ordering of the messages in
Msg���T��

PARA is a set of input�output parameters used in an activity of pattern �� which can be names of
attributive properties of the participating agents�

GIC denote the conjunction of all the global constraints speci�ed in activity pattern �� which
express the interleaving rules of the messages between di�erent agent objects�

PRE is a set of preconditions that hold at the start of an activity of pattern � �the su	cient
conditions��

INIT be a conjunction of all initiation �triggering� conditions which must hold in order to initiate
an activity of pattern �

POST is a set of initiation or triggering conditions that must hold in order to initiate an activity of
pattern � �the necessary conditions�� �

When all the messages involved in an activity are executed in a sequential order
 the activity corresponds
to the transaction in the traditional database management system� Since the concept and speci�cation
of simple activities have been discussed in our early publication ����
 we omit the further illustration
and examples here�

A composite activity pattern presents a structured set of subactivities
 whose interactions are structured
to re�ect the underlying hierarchical decomposition of the task to be accomplished� In addition to the
information speci�ed in the de�nition of a simple activity pattern
 a composite activity pattern
 say �

should also specify�

� the activity execution dependencies and the activity state transition dependencies among its con�
stituent activities�

� the behavioral composition constraints that the activity pattern � and its constituent activity
patterns ��� ���� �n should satisfy�

These additional properties are critical for distinguishing the behavioral composition relationship be�
tween activities and the invocation control relationship between activities�

De	nition � �composite activity pattern�
Let Agents��� be the set of agents in activity pattern �� and Msg�T���� PARA���� LIC�T���� GIC����
PRE���� INIT���� POST��� be de�ned as in De�nition 
� Let EXERULES��� be a set of activity
execution and interleaving dependencies rules of the activity pattern �� Let STRULES��� be a set of
user�de�ned activity state transition rules that augment the system�de�ned default conditions for activity
state transition� An activity pattern � is a composite activity pattern� if and only if �i�� there exist
activity patterns ��� ���� �n �n � �� such that activity pattern � is a behavioral aggregation �composition�
of ��� ���� �n satisfying the following conditions�

�




� �S � Agents��i� �� � i � n�� �T � Agents��� such that
�S � T� ComponentOf�S� T �� � Msg�T� ���Msg�S� �i� � LIC�T� ���LIC�S� �i��

�� PARA��� � PARA��i��

�� GIC��� 	 GIC��i��


� PRE��� � PRE��i��

�� POST��� � POST��i��

�� EXERULES��� � EXERULES��i��

�� STRULES��� � STRULES��i��

�� The relationship between the initiation condition of � and the initiation condition of �i satis�es
the following condition�

�a� If activity patterns ��� ���� �n �n � �� are executed in a sequential order� i�e�� �� before �����
before �n� then we have
���������INIT���	�INIT����� �INIT��������� �INIT��n���

�b� If � is composed by a selection of activity patterns ��� ���� �n �n � ��� i�e�� the execution of
��� ���� �n is going to be selectively synchronized� then we have
�INIT���	��INIT���� �INIT����� ��� �INIT��n���

�c� If � is is composed by a concurrent synchronization of activity patterns ��� ���� �n �n � ���
i�e�� the activities ��� ���� �n can be executed concurrently� then we have
�INIT���	��INIT���� �INIT����� ��� �INIT��n���

�d� If � includes a repeated synchronization of an activity pattern �i �� � i � n�� i�e�� the
execution of activity �i can be repeated zero or more times within the execution of an activity
of pattern �� then we have �INIT�a�	�INIT��i��

We refer to �i �i � f�� ���� ng� as constituent activity �or subactivity� pattern of �� �

Condition ��� states that if activity pattern � is a behavioral composition of activity patterns �i �� �
i � n�
 then for any type �say S� in Agents��i�
 there is a corresponding type T in Agents��� such
that either T and S are the same or the predicate ComponentOf�S� T � holds� In the later case
 all
messages in the message set Msg�S� �i� are also messages in the message set Msg�T� ��� Note that it is
also possible for a composite activity pattern to have additional agent types in its agent set� This means
that when a composite activity pattern involves n agents
 some of its constituent activity patterns may
have less than n agents� Semantics of Condition ��� to Condition ��� are straightforward� Condition ���
means that
 from now on
 if the conjunction of all initiation conditions stated in a composite activity
pattern � holds
 then for each constituent activity �i �� � i � n�
 there should be a time point in the
future such that the conjunction of all messages speci�ed in �i will be veri�ed�

The temporal modal operator � refers to �always in the future� and the modal operator � refers
to �sometimes in the future�� As this paper focuses only on the speci�cation of various application�
dependent activity dependencies and the reasoning about correctness of concurrent activity executions

readers who are interested in examples and further details on the usage of temporal modal operators
may refer to �����

�



Proposition � Let the relation predicate BehavioralAgg����� denote that the activity pattern � has a
behavioral aggregation relationship with the activity pattern �� Let �ACT be a set of activity patterns
with respect to an application domain� and L � �BehavioralAgg� �ACT �� L is a partial order with
�ACT as the domain�

Proof

By the de�nition of partial order ���
 all we need to prove is that the relation BehavioralAgg is an
irre�exive
 transitive binary relation on �ACT � Let � �� � denote that the two activity patterns are
identical� we want to prove that
 ��� �� � � �ACT 
 the following assertions are true�

BehavioralAgg��
�� � BehavioralAgg��
��	 BehavioralAgg��
���

BehavioralAgg��
�� � BehavioralAgg��� ��	 � �� ��

By De�nition �
 the laws of set inclusion
 and logical implication
 the proof is straightforward� �

This proposition states that a composite activity pattern can be de�ned by recursive application of the
activity aggregation relation to the existing activity patterns� We call the activity aggregation hierarchy
anchored at � the activity hierarchy of �� We call a constituent activity that is directly related to �

through the BehavioralAgg relation the child activity of ��

In the rest of the paper we discuss activity patterns primarily in terms of the input and output parame�
ters
 the set of constituent activities
 the set of activity execution dependencies de�ned by EXERULES

and the set of activity state transition rules speci�ed by STRULES� This is partly because in this paper
we concentrate mainly on the transactional properties and the new results of the activity model TAM

rather than the complete syntax and semantic development of the activity model
 and partly because
TAM is developed based on our earlier proposal ���� where speci�cation of simple activity patterns was
studied extensively� For concrete syntax and examples of the simple activity speci�cation
 Readers may
refer to ��

 ��� for detail�

��� Concurrent Execution of Activities� Correctness Speci�cation

Temporal precedence and cooperative constraints are two typical correctness speci�cation for open�
ended activities� In contrast to traditional serializability theory ���
 temporal precedence correctness
criteria consider histories correct only if they are equivalent to one speci�c serial history ����� Cooperative
correctness criteria ��
 ��
 ��
 ��
 ��� use less restrictive notions of con�icts that take into account
application�dependent semantics
 and allow compatible transactions or activities to cooperate
 e�g�
 to
repetitively read and write speci�c objects without restrictions�

Two activities are de�ned to be compatible if and only if their execution order does not matter in terms
of the semantic speci�cation of the application� When the execution order of two subactivities within
a composite activity P is important to the correctness of concurrent executions of P 
 we call these
two subactivities incompatible w�r�t� P � Subactivities are compatible if they commute ����� However

non�commuting subactivities may still be compatible
 depending on the application�speci�c semantics�
As subactivities executing concurrently may interact with each other in undesirable ways
 we need a
way for the composite activity to enforce that incompatible subactivities will be isolated from each other
in the concurrent executions to prevent unwanted side e�ects�

In TAM
 the correct interaction among subactivities of a composite activity is derived from a set of user�
de�ned activity state transition rules and activity execution dependency constraints� These application�
speci�c dependency rules can be viewed as integrity constraints on the execution of complex activities�

�



They are utilized to ensure that the subactivities interact only in the ways allowable by its correctness
speci�cation such that execution of the composite activity guarantees to leave the database�s� in a
correct state�

����� Activity State Transition Dependencies

In TAM each activity has a set of observable states S and a set of possible state transitions �� S
�S

where S � factive� commit� abort� done� compensateg� The transitions between the states of an activity
can be represented by a �nite state automaton and its transition graph� When an activity T is activated

it enters the state active� The active state of T is changed to commit if T commits
 and to abort if T
or its parent abort� After T is committed
 if its parent aborts
 then its state is changed to compensate�
If its parent commits
 then its state is transformed to done� These rules only presents the system�
de�ned default state transitions of an activity� The set of state dependencies of a composite activity
includes also the state dependencies between the composite activity P and its constituent activities

say A�� ���� An� In TAM we de�ne that an activity P commits only if all its constituent activities Ai

�i � �� ���� n� legally terminate �i�e�
 commit or abort�� In the other words
 an activity P may commit
even if one of its constituent activities is aborted� Thus
 to be able to support the user�speci�c abort�
dependency requirement
 we allow the programmers to de�ne whether an activity is abort�critical to its
parent or not� The abort of an abort�critical activity will cause its parent to abort� For example
 in
the telecommunication application scenario
 if the design of activity AllocateCircuit speci�es that
the abort of the subactivity SelectCentralOffices causes the abort of AllocateCircuit
 then we
call activity SelectCentralOffices abort�critical to activity AllocateCircuit� Let Children�P �
denote the set of children activities of P � The state dependencies between P and its constituent activities
can be de�ned in terms of enabling condition and the e�ect of state transition as shown in Figure ��

State Enabling Condition Post�E�ect

active�P 	 �Ai �Children�P 	 active�Ai	 none
commit�P 	 �Ai � Children�P 	 �commit�Ai	�abort�Ai		 none
abort�P 	 ��Ai �AbortCritical�P 	 abort�Ai		 �Ai � Children�P 	 �active�Ai	��abort�Ai	

� ��Ai �Children�P 	 abort�Ai		 � commit�Ai	��compensate�Ai 		
Done�P 	 If P is a root activity then commit�P 	��done�P 	
 none

and if P is a non�root activity then
done�P 	 only if P �s parent commits

compensate�P 	 P �s parent aborts after P is committed none

Figure �� State dependencies between an activity and its constituent activities

Using TAM activity speci�cation language
 users may override the default activity state transition
dependencies by explicitly specifying the augmented state transition conditions in the activity pattern
de�nition�

����� Speci	cation of Activity Dependencies

Speci�cation of open�ended activities is based on the observation that complex activities consists of
a set of constituent activities and a set of activity dependencies that de�ne the cooperation con�
tracts �such as access rules to shared objects� between the root activity and its constituent activi�
ties and between constituent activities� Each constituent activity is of either a simple activity pat�
tern �SACT� or a complex activity pattern �CACT�� Activity dependencies represent the application�

	



dependent inter�task dependency constraints that are required to satisfy in the breakdown of a com�
plex task� For example
 consider the telecommunication application scenario given in Section ������
The activity A�TeleConnect consists of four subactivities A��ClientRegister
 A��CreditCheck

B�AllocateCircuit
 and A��InstallNewCircuit� A is executed when the telephone company re�
ceives a customer�s request for telephone service installation� Based on the given application�dependent
requirements
 B and A� perform two alternative line allocation tasks� Either of them will result in a
completed circuit� Thus
 only one should be allowed to complete� We may refer to A� as a contingency
activity ��
 �� with respect to B�

TAM provides four constructs for activity dependency speci�cation� precede
 enable
 disable
 com�

patible� The semantics of each construct is described in Figure �� The construct precede is used to
represent the commit�active state dependency� The construct enable and disable are utilized to specify
the enabling and disabling dependencies between activities� The construct compatible describes the
compatibility of activities A� and A��

Construct Usage Synopsis

precede A� precede A� commit�A�� �� active�A��

enable condition�A� � enable A� condition�A����true� �� active�A��
condition�A� � enable condition�A� � If condition�A����true� then condition�A� � can be �true�

disable condition�A� � disable A� condition�A����true� �� abort�A��
condition�A� � disable condition�A�� If condition�A����true� then condition�A�� cannot be �true�

compatible compatible�A�	A�� if true A� and A� can be executed in parallel	
and if false the order of A� and A� is important

Figure �� Constructs for activity dependency speci�cation in TAM

Consider the telecommunication example� The following describes the application�dependent activity
dependencies between AllocateCircuit and InstallNewCircuit�

��� B�A� cannot begin �be active� before A� commits� I�e�
 A� precede B�A��
��� A� cannot commit before B aborts� I�e�
 abort�B� enable commit�A���
��� A� must abort if B commits� I�e�
 commit�B� disable A��
��� A� cannot begin after B has committed� I�e�
 commit�B� disable active�A���

Note that dependencies ��� and ��� imply �A� cannot commit after B commits�
 i�e�
 �commit�B�
disable commit�A���� However
 this dependency cannot replace dependencies ��� and ���
 because it
allows A� to continue its execution
 holding resources or performing unnecessary computations after B
has committed�

����� Activity Execution Dependencies

Activity execution dependencies refer to both the temporal execution precedence of activities and the
interleaving rules of activities� In TAM
 both forward and backward activity execution dependencies
can be speci�ed by the designers� Forward execution dependencies control the routine execution of an
activity
 govern the execution sequence among subactivities of the same parent activity
 and discipline
the cooperation �synchronization constraints� of concurrent users involved in the same activity history
�see Section ��� for detail�� Backward execution dependencies govern the rollback of the activity
 if it
is not �nished yet and need to be aborted� The rollback of committed activities is performed using
compensation activities in the inverse order�

�




When a composite activity has a deeply�nested structure of subactivities that are related directly or in�
directly with one another
 it is natural to guide the activity designers to specify the application�speci�c
execution dependency constraints by allowing them to concentrate on those activities in the hierarchy

which are directly related with each other
 and let the system to reason about the dependency closure�
Thus
 we explicitly distinguish two types of of execution dependencies among constituent activities of
activity P in the activity speci�cation of P � Subactivity execution rules and Subactivity Inter�

leaving rules� The former allows the designers to focus more on the execution order of subactivities
at the same abstraction layer� The latter encourages the designers to specify the application�speci�c
execution dependencies between children activities of siblings and between any subactivity and children
of its siblings� For any given activity pattern �
 the complete set of execution rules and interleaving
rules of � can be computed easily according to De�nition � and Proposition ��

�� Subactivity Execution Rules

Activity execution rules are application�dependent semantic constraints on the occurrence of a subactiv�
ity execution and the temporal precedence of execution of subactivities with respect to the same thread
of object��ow� In general
 the execution rules can be de�ned in terms of various types of synchronization
constraints
 such as

� Temporal precedence of the execution of constituent activities� That is
 subactivities A�� A�� ���� An

�n � �� are executed in a pre�de�ned sequential order
 denoted by A� precede A�
 ���
 An��

precede An�

� Selective execution of a set of constituent activities in terms of output values of some other sub�
activity�

Example� If the activity JOURNEY
CONTROL�pl� returns a control status �emergency�
 then in�
stead of executing subactivity LANDING�pl� ct��
 the subactivity EMERGENCY
LANDING�pl� ct��
shall be executed� We denote the selective execution semantics by means of the following three
execution rules�

��� JOURNEY
CONTROL�pl� precede � LANDING�pl� ct��� EMERGENCY
LANDING�pl� ct�� ��

��� control�status�pl���emergency� enable EMERGENCY
LANDING�pl� ct��

��� control�status�pl���ok� enable LANDING�pl� ct��

� Conditional execution of constituent activities in terms of external events�

Example� Consider the two execution constraints� ����Subactivity A� repeats three times if
the event E� occurs�
 and ����subactivity A� starts after ��

pm�� Let the predicate Occurs�E�
denote the occurrance of an external event E and the predicate Repeat�A� n� denote the number
n of times that activity A repeats� We express these two execution constraints as follows�

Occurs�E����true� enable Repeat�A�� ���

Occurs���am�� enable A��

Any combination of the above types is possible� We will discuss how the activity execution rules are
used to reason about correctness of the activity execution
 and correctness of the cooperation among
concurrent executions of activities by multiple users in Section � and Section ��

�� Subactivity Interleaving Rules

��



A set of subactivity interleaving rules de�ned in an activity speci�cation �say �� describes ���the ex�
ecution dependencies between subactivities of a child activity and subactivities of its siblings� ���the
execution dependencies between subactivities of sibling activities
 and ���the compatible executions of
the same activity w�r�t� di�erent threads of object��ows or the compatible executions of dependent
sibling activities w�r�t� di�erent threads of object��ows�

Interleaving rules of the �rst two types may be derived by logic deduction from the set of subactivity
execution rules and the nested structure of objects� However
 the third type of interleaving rules �if
any� has to be explicitly speci�ed by the designers or users�

Consider a simple application in authoring environment
 which requires cooperative editing of design
documents based on annotation� Assume that Edit�d�Document� and Annotate�d�Document� are two
constituent activities of activity DesignDocument� Edit�d�Document� consists of md occurrances of
activity ChpEdit�p�Chapter�� md is a number of chapters of the document d� Annotate�d�Document�
consists of md occurrances of ChpAnnotate�p�Chapter�� Two execution dependencies are identi�ed
by the designer of the activity DesignDocument� ���Editing a document is based on the annotation
previously made� ���Two users may edit or annotate a document concurrently as long as they edit
di�erent chapters� We specify these application�dependent activity dependencies as follows�

�� �activity execution rule�
��d �Document��Annotate�d� precede Edit�d���

�� �activity interleaving rule�
��d �Document���chpi� chpj �Chapters�d�� �chpi �� chpj
� compatible�ChpEdit�chpi�
ChpEdit�chpj��

� compatible�ChpEdit�chpi�
ChpAnnotate�chpj��

� compatible�ChpAnnotate�chpi�
ChpAnnotate�chpj���

By means of the execution rule explicitly de�ned in the DesignDocument
 and the knowledge that a
document consists of a number of chapters
 the following interleaving rule can be derived automatically�

��d �Document���chpi �Chapters�d�� ChpAnnotate�chpi� precede ChpEdit�chpi� �� � i � md��

Based on the execution rule and the interleaving rules of DesignDocument given above
 we can obtain
the following compatibility table with respect to subactivities Ei�ChpEdit�chpi�
 Ek�ChpEdit�chpk�

Ai�ChpAnnotate�chpi�
 and Ak�ChpAnnotate�chpk�� The symbol �Y� denotes that the two ac�
tivities are compatible and the symbol �N� denotes that the concurrent execution of two activities
are con�ict and thus should be executed in a serializable order� In the other words
 this compatibil�
ity table speci�es the interleavings that are forbidden in the concurrent execution of subactivities of
DesignDocument�

Ei Ek Ai Ak

Ei N Y N Y

Ek Y N Y N
Ai Y Y N Y
Ak Y Y Y N

Figure �� The compatibility table for cooperating subactivities� an example

��



Assume
 two users start editing the same version of the document but user A starts with ChpEdit�chpi�
and user B starts with ChpEdit�chpk�� According to the compatibility table in Figure �
 these two
subactivities are compatible with each other� Thus when user B delegates her work to user A
 user A
can directly use the result that user B obtained before the delegation without worrying about whether
the data obtained from user A is consistent with her own update�

Alternatively
 assume
 two users start editing the same version of the document
 one starts by executing
ChpEdit�chpi� and one by annotating the same chapter ChpAnnotate�chpi�� According to the
compatibility table above
 these two user activities are incompatible
 i�e�
 the concurrent execution of
ChpEdit�chpi� and ChpAnnotate�chpi� will result in con�ict� Therefore
 if User� delegates her work
to User� then User� has to redo the editing according to User��s annotation�

����� Object Replication in Activity Hierarchy

Another issue related to concurrent execution of activities is the issue of object copies at di�erent
points in the activity hierarchy ����� In TAM the multiple�object�replication approach is used� Each
composite activity has a local set of object versions� Thus
 there may be many versions of an object
scattered throughout the activity hierarchy� For a speci�c object
 the version at the Root activity is
the oldest version
 and the ones further down in the hierarchy are more recent� With multiple object
replications
 a notion of visibility is de�ned naturally according to the hierarchy� That is
 the version of
an object in an activity is accessible to any of its descendant activities in the hierarchy� Put di�erently

an object in an activity�s access set is copied automatically into a child activity�s access set when the
child activity initiates an access to that object� A new version of the object is written back to the parent
activity�s access set when the subactivity that initiates the access to the object comes to a breakpoint or
commits� A breakpoint ��
 ��� of an activity represents a point in its execution at which other activities
can interleave� For example
 say the composite activity DocumentDesign has made a copy of the
Document object d� If the subactivity Annotate�d� has made a copy of it and modi�ed the copy
 then
the new version is the one that the subactivity Edit�d� would read� In TAM each composite activity
determines how resilient its object copies are to the various types of failures� The Root activity at the
top of the activity hierarchy contains the most stable version of each object
 and makes the guarantees
that it can recover its copies of objects in the event of system failure�

An object in an activity�s access set is copied automatically into a child activity�s access set when
the child activity initiates an access to that object� A new version of the object is written back to
the parent activity�s access set when the subactivity that initiates the access to the object comes to a
checkpoint ���
 ��� or commits�

Let AP be a composite activity and AC be a child activity of AP � The relationship between activity
AP and its children
 say AC 
 can be described by the following properties�

� Termination� AP commits only after AC legally terminates�

� Visibility� AC has access to all objects that AP can access
 i�e�
 it can read objects that AP has
modi�ed�

In contrast to the application�dependent activity dependencies
 these two types of dependencies are
de�ned as system defaults� Users may de�ne some mission�critical dependencies for termination and
visibility to override these system defaults� In current development of TAM
 overriding is only supported

��



for termination dependencies� We allow users to de�ne application�speci�c abort�dependencies as the
state transition rules in an activity speci�cation�

Unlike in the conventional nested transaction model ��
 ��
 the commit of a subactivity in TAM is
independent of the commit of its parent activity� Therefore
 if an activity aborts
 then all its active
children are aborted� and committed children
 however
 are compensated for� We call this property
abort�sensitive dependency between an activity AC and its parent activity AP 
 denoted by AP � AC �
This abort�sensitive dependency prohibits a child activity instance from having more than one parent

ensuring the hierarchically nested structure of active activities� Put di�erently
 there exists no such
activities A�B�C in an activity hierarchy that A � B � C � B holds� When the abort of all active
subactivities of the activity is completed
 the compensation for committed subactivities is performed
by executing the corresponding compensations in an order that is the reverse of the orignal order�

��� Activity Speci�cation� An Example

Consider the telephone�connection task in the telecomunication application scenario given in Sec�
tion ������ Assume
 the initial design of the activity hierarchy for activity pattern TeleConnect

as shown in Figure ��a�� It consists of four constituent activity patterns �templates�� Three simple
activity patterns� A��ClientRegister
 A��CreditCheck
 A��InstallNewCircuit
 and one com�
posite activity pattern B�AllocateCircuit�ClientId
 Start
 End
 Circuit�Id�
 where Start and End
are Ids of end points of the circuit and ClientId represents the customer identi�er� Following the activity
dependencies presented in Section �����
 either B or A� will result in a completed circuit� Thus
 only
one should be allowed to complete�

begin Activity TeleConnect�In� ClientId
CLIENT
 Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	

Behavioral Aggregation of Constituent Activities�

A�
 ClientRegister�In� ClientId
CLIENT
 Start
POINT
 End
POINT�	
A�
 CreditCheck�In� ClientId
CLIENT
 Start
POINT
 End
POINT
 Out� creditStatus
Boolean	
A�
 InstallNewCircuit�In� ClientId
CLIENT
 Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	
B
 AllocateCircuit�In� ClientId
CLIENT
 Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	

���
Execution Rules�

ExeR�
 A� precede A�

ExeR�
 A� precede �B�A��

Interleaving Rules�

ILR�
 fA��A�g precede A��

State Transition Rules�

STR�
 abort�B	 enable commitA�

STR�
 commit�B	 disable A�

STR�
 commit�B	 disable active�A�	

end Activity

Figure �� An example speci�cation of composite activity TeleConnect

Note that B and A� are non�commuting subactivities
 but they are still compatible in terms of the
speci�c semantics of this application� To allocate a circuit from existing resources
 the �rst thing �that�
activity B does is to allocate lines between the two end points and the nearest central o�ces �Allo�

��



begin Activity AllocateCircuit�In� ClientId
CLIENT
 Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	

Behavioral Aggregation of Constituent Activities�

C
 Allocatelines�In� Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	
A�
 AllocateSwitch��In� Line�
LINE
 Out� Span	
A�
 AllocateSwitch��In� Line�
LINE
 Out� Span	
A��
 PrepareBill�In� ClientId
CLIENT
 Line�
LINE
 Line�
LINE
 Span
 Out� CircuitId
CIRCUIT	

���
Execution Rules�

ExeR�
 fC�A� � A�g precede A��

Interleaving Rules�

ILR�
 fA�� A�g precede A�

ILR�
 fA�� A�g precede A�

State Transition Rules�

STR�
 abort�C	���Ai �i � �� �	 abort�Ai	 enable abort�self	

end Activity

Figure �� An example speci�cation of composite activity AllocateCircuit

cateLine�� AllocateLine�� and trunk connection between central o�ces �AllocateSpan�� Also
to form a circuit
 the end points of the allocated lines and trunks need to be connected through the
switches in the central o�ces �AllocateSwitch�� AllocateSwitch��� Therefore
 activity Allo�
cateCircuit consists of one composite activity �C�Allocatelines� for allocating lines and trunks
between two end points and three simple activities� A��AllocateSwitch�
 A��AllocateSwitch�
and A���PrepareBill� The composite activity C�Allocatelines in turn consists of four simple ac�
tivities A�� A�� A� and A�� Note that several hops might be required to allocate proper trunk connection
between central o�ces� Therefore
 the activity patternAllocateSpan can become a composite activity
that consists of other activities�

A speci�cation language can be developed based on the language we proposed earlier ����� The example
demonstrated in Figure � presents a sample speci�cation of activity patternTeleConnect� A fragment
of the activity pattern AllocateCircuit is speci�ed in Figure �� Since the composite activity patterns
TeleConnect is de�ned in terms of the activity speci�cation of AllocateCircuit
 the temporal
execution dependencies between constituent activities of AllocateCircuit and its siblings in the
activity hierarchy of TeleConnect are described as the interleaving rules in the activity speci�cation
of TeleConnect� Similarly
 a fragment of the activity pattern Allocatelines is de�ned in Figure ��

In addition to the syntactic parser
 TAM also checks the semantic consistency of the user activity spec�
i�cations
 and rules out the semantic con�icts as earlier as possible� Our semantic consistency checking
is primarily based on the subactivity dependency graph generated in terms of activity speci�cations�
For example
 according to the activity speci�cations given in Figure � to Figure �
 the subactivity de�
pendency graph for the activity pattern TeleConnect is generated as shown in Figure �� Obviously

the activity speci�cation of TeleConnect is semantically consistent only if there is no cycle in the
subactivity dependency graph� In TAM we use the subactivity dependency graphs as one of the main
debugging techniques for developing the language parser�

Based on the application�speci�c execution dependency rules speci�ed in AllocateCircuit and Al�
locateLines
 we can easily obtain the compatibility of concurrent execution of subactivities of Al�

��



begin Activity Allocatelines�In� Start
POINT
 End
POINT
 Out� CircuitId
CIRCUIT	

Behavioral Aggregation of Constituent Activities�

A	
 SelectCentralOffices�In� Start
POINT
 End
POINT
 Out� O��
CentralO�
 O��
CentralO�	
A�
 AllocateLine��In� Start
POINT
 O��
CentralO�
 Out� Line�
LINE	
A�
 AllocateLine��In� End
POINT
 O�� 
CentralO�
 Out� Line�
LINE	
A�
 AllocateSpan�In� O��
CentralO�
 O��
CentralO�
 Out� Span	

���
Execution Rules�

ExeR�
 A	 precede fA�� A��A�g

State Transition Rules�

STR�
 �Ai �i � f�� �����g	 abort�Ai	 enable abort�self	

end Activity

Figure �� An example speci�cation of composite activity Allocatelines

Figure �� The subactivity dependency graph of activity pattern TeleConnect

locateCircuit� By combining the interleaving rules and the subactivity execution rules of Tele�
Connect with the compatibility table of AllocateCircuit
 the compatibility table for concurrent
execution of constituent activities of TeleConnect can be derived
 as shown in Figure 	�

The state transition rules of TeleConnect override the state transition graph of AllocateCircuit
and InstallNewCircuit by adding application�speci�c state transition conditions into the system�
default state transition graph� Figure �
 shows the two state transition graphs updated by the activity
speci�cation of TeleConnect� The constraints within the boxes are the augmented enabling conditions
for the corresponding state transitions�

� Ensuring Correctness Criteria

The correctness criteria of an activity of pattern � describe its valid histories� An activity history is
a sequence of subactivity executions
 if � is a composite activity pattern �CACT�
 or a sequence of
operation invocations through message exchanges
 if � is a simple activity pattern �SACT�� A valid
activity history produces correct results and does not violate the consistency of objects� Since SACT
activities in TAM can be viewed as traditional transactions or nested transactions
 and will be mapped

��



A� A� A� A	 A� A� A� A� A� A��

A� N N N N N N N N N N
A� N Y Y Y Y Y Y Y N
A� N Y Y Y Y Y Y Y
A	 N N N N N N N
A� N Y Y N Y N
A� N Y Y N N
A� N N N N
A� N Y N
A� N N
A�� N

Figure 	� The compatibility among constituent activities of TeleConnect

Figure �
� Augmenting the state transition graphs by means of user�de�ned state transition rules

to the local transactions ���
 �	
 ���
 each running on a remote server
 the correctness criteria developed
in conventional transaction models ��� and nested transaction models ��� can be applied� In the sequel
we concentrate on histories of composite activities�

��� Activity History

When a set of composite activities execute concurrently
 their subactivities may be interleaved� We
model such an execution by a structure called activity history� Since some of these subactivities may
be executed in parallel
 an activity history is de�ned as a partial order�

De	nition � �activity history�
Let P � fA�� ���� Ang be a set of activities� Each Ai �� � i � n� may again be a set of activities� A
complete activity history H over P is a two�element tuple �H�
H�� satisfying�


� H � �ni��Ai�

�� The subactivities in H must not violate their activity pattern speci�cations and the constraints on
the number of occurrences of each subactivity�

�� 
H must satisfy the following properties�

��



�a� 
H must not violate the order �denoted by 
Exe� of subactivities de�ned by the subactivity
execution dependencies of their corresponding activity patterns� I�e��
�Ai� Aj � H�Ai 
Exe Aj 
� Ai 
H Aj��

�b� 
H must not violate the order �denoted by 
IL� of subactivities de�ned by the interleaving
rules of their corresponding activity patterns� I�e��
�Ai� Aj � H �Ai 
IL Aj 
� Ai 
H Aj��

�c� for any two activities Ai� Aj � H� if Ai �� Aj and compatible�Ai�Aj� � false� then either
Ai 
H Aj or Aj 
H Ai holds�

�d� for any Ai� Aj� Ak � H� if Ai 
H Aj and Aj 
H Ak hold� then Ai 
H Ak holds�


� The subactivities in H must satisfy the state transition rules speci�ed in their parent activity
pattern� �

The partial order A 
H B can be interpreted as B depends on A
 either because there exists an
execution precedence rule in their parent activity pattern which requires A precede B �Condition��a�

or because A and B are not compatible and thus the order of A and B is important �Condition ��b�
and ��c��� The transitivity of 
H is explicitly required in the de�nition because neither the execution
rules nor the interleaving rules can guarantee such transitivity�

An activity history �H 

H� is correct only if 
H is a partial order over the set H of activities� It means
that no activity in H indirectly depends on itself� Thus
 to determine whether a history is correct w�r�t�
the correctness speci�cation
 we must also consider transitive �indirect� incompatibility in addition to
the direct incompatibility de�ned by the activity compatibility tables� The subactivity dependency
graph is one of the main techniques that we use to detect the cycles �inconsistent speci�cations� in the
users� activity pattern de�nitions�

A subactivity history is re�ected in its parent�s activity history� We encourage the activity designer
to localize the correctness speci�cations pertaining to the subactivities of an activity� For instance
 we
donot want an activity to decide correctness directly for each of its children or grandchildren� Rather

we want it to decide correctness only for the cooperation of its children
 including the correct execution
precedence of its children activities and the correct interaction among them� With localized speci�cation

we call an activity history correct �or valid� if it satis�es its own correctness criteria and the histories
are respectively correct for each of its children activities�

To enforce a correctness speci�cation online
 we need to inform the subactivity immediately when it is
executed in an invalid order� This requires that the algorithm we use to enforce the correctness criteria
should be able to recognize not only the correct histories but also pre�xes of correct histories�

De	nition � �a pre�x of activity history�
Let �H�
H� be an activity history over the set A of activities A�� ���� An� A partial order L� � �H ��
H ��
is a pre�x of activity history �H�
H� if and only if the following properties are veri�ed�


� H � � H and for all Ai� Aj � H �� Ai 
H � Aj i� Ai 
H Aj�

�� for each Ai � H �� all the predecessors of Ai in �H�
H� are also in L�� That is�
�Ak � H� if Ak 
H Ai holds� then Ak 
H � Ai holds� �

We refer to a pre�x of an activity history �H 

H� as an incomplete history� We call an incomplete
activity history valid only if it is a pre�x of a correct activity history� In fact
 this de�nition also
presents an algorithm for checking whether an incomplete history is a valid pre�x of a correct activity
history�

��



��� Correctness criteria of Merged Activity Histories

When two histories �H�

�� and �H�

�� belong to the same activity pattern � and both activities have
reached a breakpoint
 we say that these two histories are mergable �����

De	nition � �a merged activity history�
Let �H��
�� and �H��
�� be two correct histories �complete or incomplete� of pattern �� We say that
the history �HM �
M � is a merged activity history from �H��
�� and �H��
��� if and only if it satis�es
the following properties�


� HM � H� �H��

�� 
M is a binary relation de�ned over HM � satisfying that for any two subactivities A and B in
H� �H��

�a� if compatible�A�B� � �true� in �� then A�B � HM and A and B are compatible in the
merged history �HM �
M ��

�b� if compatible�A�B� � �false� in �� A and B are two di�erent instance activities of the same
pattern� then either A or B is included in the merged history but not both� I�e��
�A � HM � B �� HM� � �B � HM �A �� HM��

�c� if compatible�A�B� � �false� in �� A and B belong to di�erent subactivity patterns� then
A and B follows an order� say A before B� and three cases need to be considered�

i� If two activities A and B are from the same history� say �H��
��� i�e� A�B � H�� �A ��
H� � B �� H�� and A 
� B holds� then

� B can only be included in the merged history� if A is included in the merged history�
I�e�� A�B � H� �A 
� B � A � HM 
� B � HM �

� If A and B are included in the merged history and A 
� B holds� then A 
M B also
holds� I�e�� A�B � HM � A 
� B 
� A 
M B�

ii� If two activities A and B are from di�erent histories� say A � H� � A �� H� � B �
H� � B �� H�� then A is included in the merged history but not B�

iii� If A or B are included in both histories� say A � H� � H� � B � H� � H�� then only
one A can be included in the merged history� say A � H� is included in HM � thus B is
included in HM only if B � H�� �

By Condition ��� a merged history contains only subactivities that appeared in the two give histories�
By Condition ��a�
 a merged history contains subactivities that are compatible with each other� By
Condition ��b�
 if two activities
 each from one input history
 belong to the same activity pattern
 then
only one can be included in the merged history� By Condition ��c��i�
 a merged history contains only
subactivities that are allowed by the corresponding activity pattern
 and each subactivity in a merged
history is executed based on a state that is equivalent to the state before its execution in the orignal
history� By Condition ��c��ii� a merged history does not violate the order of subactivities determined by
the execution rules and interleaving rules speci�ed in the corresponding activity pattern� By Condition
��c��iii�
 if a subactivity is contained in both histories
 then only e�ect of one can be included in
the merged history and the other has to be canceled� Also a merged history preserves the order of
subactivities determined by the execution rules and interleaving rules speci�ed in the corresponding
activity pattern�

�	



Proposition � Let �H��
�� and �H��
�� be two correct histories �complete or incomplete� of pattern
�� Let �HM �
M� be a merged activity history from �H��
�� and �H��
��� Then �HM�
M � is also a
correct activity history�

Proof

To prove that �HM 

M � is a correct history
 we need to prove that the binary relation 
M is a partial
order over HM � I�e�
 
M is transitive and antisymmetric�

Step �� 
M is transitive�
For any A�B�C � HM 
 A 
M B and B 
M C
 to prove that A 
M C holds
 all we need is simply to
prove is that A�B�C belong to the same original history
 say �H�

��� Because
 by De�nition ���d�
 if
A 
� B �B 
� C holds
 then A 
� C holds� By De�nition ���c��i�
 if A 
� C �A�C � HM holds
 then
A 
M C holds�

Assume A�B�C donot belong to the same original history
 say A�B � H��B�C � H��A �� H��C �� H�

then A � H� is included in HM � By De�nition ���c��iii� only B � H� is contained in HM � Due to
the fact that C �� H�
 by De�nition ���c��ii� C �� HM � This contradicts with the given condition
A�B�C � HM � Therefore A�B�C belong to the same input history �H�

���

Step �� 
M is antisymmetric� I�e�
 We want to prove that if A 
M B
 then B 
M A does not hold�
By A 
M B and De�nition ���c��i�
 A and B belong to the same original history
 say �H�

��
 and
A 
� B holds� If we assume
 B 
M A holds
 similarly we have B 
� A holds� However
 according to
the fact that �H�

�� is a correct history
 
� is a partial order relation
 i�e�
 A 
� B � B �
� A holds�
A contradiction obtained� Hence
 
M is antisymmetric� �

This proposition states that the correctness of a merged history is de�ned and guaranteed by assuming
two input histories are correct� Section � provides a concrete example to illustrate merged activity
histories and the concurrent executions of activities�

� Dynamic Restructuring of Activities

In an open�ended cooperative environment
 activities reveal two characteristics intrinsic to distributed
�and long�running� transactions� First
 initial activities may sometimes modify data early in the transac�
tion and will then remain unchanged until commit� Second
 some or all of the later activities �subtasks�
may become independent of previous activities �subtasks�� In both cases
 it is desirable for the results
of earlier activities to be made available to other concurrent activities before end of the long�running
transaction
 to increase the concurrency and avoid introducing the possibility of cascaded aborts� We in�
troduce two types of activity restructuring operations
 namely split�activity operations and join�activity
operations
 which allow users �or applications� to dynamically modify the set of concurrent activities
while they are in progress� The split�activity and join�activity operations can be seen as an adaptation
of the concept of split� and join�transactions proposed in ��

 �	� into the TAM activity model� Our
operations preserve the correctness speci�cation of original activities� The concurrency atomicity is
violated
 but the application�dependent serializability �equivalence to some serial activity history� is
preserved�

�




��� Split�Activity Operations

The split�activity operations divide an ongoing activity
 say C
 into two or more activities
 say C�� C�

and C�� We can also make C� to be the original activity� C�� C�
 and C� may be independent
 in
which case they can commit or abort independently
 or they may be dependent
 in which case Ci is
abort�sensitive to Ck �i� k � �� �� �
 i �� k�� When Ck aborts
 if Ci is still active then Ci aborts� and
if Ci is committed then Ci is compensated� Whether C�� C�
 and C� are independent or dependent is
primarily an application�speci�c design decision made by users� In case of simple activities �of SCAT
patterns�
 a system�default option can be provided in terms of the objects accessible to each of the
splitted activities
 for example
 a simple activity can be divided into two serializable transactions using
the mechanisms de�ned in ��

 �	�� Thus our discussion herein focuses on composite activities �of CACT
patterns��

We provide three operators for �split�by�nesting� operations
 namely i�Split �independent�split�
 d�
Split �dependent�split�
 and s�Split �serial split�� and one operator for �split�by�unnesting�
 namely
u�Split �unnesting�split�� Given a composite activity
 it is possible to split a leaf node or an internal
node �incl� a root node�� The splitted nodes could be mutually independent activities
 or a set of
activities of which some are dependent of others �partially�dependent�
 or serial� Figure �� captures
the e�ects of splitting a leaf node activity into a set of independent
 partially�dependent
 or serial
activities� Note that d�Split�C
 f�C�� C��
�C�� C��g� is an illegal expression of partially�dependent
activity�split operation
 because in any activity hierarchy there exists no such subactivities C�� C�� C�

that C� � C� � C� � C� holds� Besides
 to preserve the user�de�ned activity dependencies
 the
operation u�Split should only apply to internal node activities that are not root activities� Figure ��

Figure ��� Splitting a leaf node activity

presents the e�ects of splitting an internal node activity into a set of subactivities� In these �gures a
solid arrow between two activities denotes an abort�sensitive dependency �recall Section ������� When
a node C splits into two or more subactivities
 say C�� C�
 and C�
 the abort�sensitive dependencies
between activity C and its parent activity A are assumed to hold between C�� C�� C� and A� So do the
application�dependent execution dependencies and interleaving rules between C and its siblings as well
as between C and children of its siblings� For example
 if the activity execution rule �B precede C�

��



holds before the split operation
 then we may replace �B precede C� using the rule

� �B precede fC�� C�� C�g� after the operation i�split�C
fC�� C�� C�g� is performed�

� �B precede fC�� C�g� after the operation d�split�C
fC�
 �C�� C��g� is performed�

� �B precede C�� after the operation s�split�C
f�C�� C�� C��g� is performed�

Similar treatment are applicable to user�de�ned activity interleaving rules and activity state transition
rules�

A node splitting may result in a subactivity that has abort�sensitive dependencies on two or more
other subactivities �see Figure �� and Figure ���� Such inconsistencies may be reduced �resolved� by
applying the following consistency�preserving rewriting rule �see Figure ���
 because this consistency�
preserving rewriting rule may help to eliminate redundant dependencies and thus simplify the structure
of a complex activity�

A� B �B � C �A� C �	 A� B �B � C


where A� B denote that A is abort�sensitive to B
 i�e�
 if B aborts

then A aborts if A is active
 and A is compensated if A has committed�

Figure ��� Splitting an internal node activity

After applying the rewriting rule
 we examine the remaining dependencies for each type of split�activity
to see if the resulting structure preserves the semantics of the original activity hierarchy� We conclude
that
 the properties of the original activity
 such as abort�sensitive dependencies
 activity execution
and interleaving dependencies
 are preserved in all the cases of leaf node splitting� Unfortunately
 for
internal node splitting
 only serial�split operation preserves the abort�sensitive dependencies� Thanks
to the dynamic nature of the split�activity operations
 an internal node may become a leaf node at any

��



point after all its active subactivities have terminated and before activating any new subactivities� For
example
 the independent�splitting of activity C in Figure ��
 namely i�split�C
 fC�� C�� C�g�
 may
proceed when subactivity D terminates� Thus subactivities C�� C� and C� may commit independently�
When C� commits earlier than C� and C�
 the objects that C� delegated to A are potentially accessible
to B� This e�ectively improves the cooperation between C and its orignal siblings such as B
 since B
can access the objects modi�ed by C� while C� and C� are still executing�

Interesting to note is that the nested�split transaction model discussed in ACTA ��� only considers
independent and serial splitting of transactions� Moreover only independent splitting of leaf node trans�
actions is allowed in terms of consistency� In the TAM activity model
 we consider not only independent
and serial splitting of activities but also partially�dependent splitting of activities which happens mostly
frequently in practice� Furthermore
 all cases of leaf�node splitting preserve the dependencies of the orig�
inal activity� The serial splitting of internal node activities is also permitted in terms of consistency�
We believe that the combination of TAM and the dynamic split�activity operations provides a set of
useful facilities for organizing open�ended cooperative activities in an open distributed environment
where cooperation is emphasized and promoted�

��� Join Activities

The inverse operation of split�activity
 called join�activity
 can combine results together and release
them atomically� In particular
 two or more ongoing activities can be merged into one
 as if they had
always been a single activity� This feature allows to hand over results of a user activity to a co�worker
to integrate into his�her own ongoing task�

Two types of join�activity operations are supported� The operation �join�by�nesting� �g�join� groups
two or more activities by creating a new activity as their parent activity� The operation �join�by�
unnesting� �m�join merges two or more activities into one single activity� Figure �� presents the join�
activity operation for grouping or merging activities at same abstraction level �either leaf or internal
node�� For grouping or merging activities of di�erent abstraction levels
 a combination of split and join
operations can be used� This restriction allows the automated enforcement of correctness speci�cation
in the event of dynamic restructuring� To ensure the correctness criteria of join�activity operations


Figure ��� Join�activity operations

the merged or grouped activities must preserve all application�speci�c activity dependencies
 such as

��



subactivity execution rules
 subactivity interleaving rules and state transition rules� The implementation
algorithm for join�activity operations can easily be developed in terms of De�nition � and Proposition ��

In summary
 split�activity and join�activity can be combined in any formation� By allowing to release
early�committed resources or transfer ownership of uncommitted resources
 these dynamic restructur�
ing operations bring a number of advantages
 such as added concurrency
 enhanced cooperation
 and
adaptive recovery
 to transactional activity model for organizing open�ended cooperative activities in
distributed and multi�user design and computing environment�

� Concurrent Executions of Activities� Example Continues

In this section we illustrate by example how to produce a correct merged history from two concurrently
executed histories
 and how the concepts discussed in this paper
 such as the subactivity execution rules

the subactivity interleaving rules
 and the state transition rules are used as the correctness criteria for
execution of an activity of pattern TeleConnect
 and how to apply various split� and join�activity
operations to obtain added concurrency and cooperation� We assume that instance activities of pattern
� are uniquely identi�ed ��
�� Also each user activity history has a private workspace� A user may
delegates his�her work from the current workspace to the workspace of another user activity history�
Delegation means that the user is passing work that is possibly incomplete to another user�

Consider the following scenario in which three di�erent users participate in the execution of an activity
of pattern TeleConnect described in Figure �� All the three users cooperate
 in accomplishing the
task of telephone installation
 by performing various subactivities related to the task�

�� User� starts activity a of pattern TeleConnect upon receiving a service request� She �rst
executes the subactivity a� of type A��ClientRegister
 and then the subactivity a� of type
A��SelectCentralOffices� After completion of these subactivities
 her user activity history
is�

User�� �a�� a���

Before User� delegates her work to User� and User�
 the operation u�Split�C
 fA�� A�� A�� A�g�
is invoked by User� to split the activity c of pattern Allocatelines through unnesting
 in or�
der to allow releasing of early committed resources to be accessible to other subactivities that
are concurrently executed
 such as A� and A�� By splitting the activity c of pattern C
 when�
ever A� and A� both commit
 A� can be executed without waiting for A� to terminate
 since
the results of A� and A� are accessible to A� as soon as A� and A� commit� The �operation
delegate�User�
fUser�� User�g� enables User� and User� to delegate their work to User�� The
activity history of User� is then merged with the activity history of User� and with the activity
history of User� respectively�

�� User� accepts the work being delegated by User� and merges the work of User� into his history

since both histories belong to the same pattern TeleConnect and thus are mergable� User� then
executes a� of A��AllocateLine�
 a� of A��AllocateSpan
 and a� of A��AllocateSwitch��
User��s history looks like this�

User�� �a�� a�� a�� a�� a���

�� User� starts his work based on the work delegated by User�� Then he executes the subac�
tivity a� of A��AllocateLine�
 and in the meantime
 he executes concurrently the subac�

��



tivity a�	 of A��AllocateLine�
 the subactivity a�	 of A��AllocateSpan
 and then a
 of
A��CreditCheck
 and a� of A��AllocateSwitch�� The history of User� is shown below�

User�� �a�� a�� a�� a�	� a
� a���

Upon completing these subactivities
 User� decides to delegate his work to User��

�� User� accepts the work being delegated and merges the history of User� with his own work� By
De�nition ���b�
 the User� has to choose to accept either a� or a�	 but not both� Suppose User�
chooses to accept a�	
 by De�nition ���c� a� is accepted but a� has to be redone� This is because
�i�a� depends on a� and a�
 �ii�a� depends on a� and a�	� After the delegation
 the history of
User� looks like this�

User�� �a�� a�� a�� a�� a�	� a
� a���

�� After re�execution of subactivity a� of A��AllocateSwitch�
 User� delegates his work to User�
and exits�

User�� �a�� a�� a�� a�� a�	� a
� a�� a�	��

�� User� resumes her work based on the merge of User��s history with her own� By De�ni�
tion ���a���b�
 the merge is straightforward� User� then performs activity a�� of pattern Pre�
pareBill
 and completes the task of TeleConnect� The �nal history of User� will be�

User�� �a�� a�� a�� a�� a�	� a
� a�� a�	� a����

Observe that the �nal result of the concurrent executions of subactivities of the activity a of type
TeleConnect is equivalent to the execution of activity a by a single imaginary user in any order
 that
conforms to the dependency graph of Figure �
 without any interferences or interleavings� No activity
dependency rules speci�ed in TeleConnect of Figure � are violated�

� Conclusion

References

��� M� Ansari� L� Ness� M� Rusinkiewicz� and A� Sheth� Using �exible transactions to support multi
system
telecommunication applications� In Proceedings of the ��th International Conference on Very Large Data
Bases� pages ���	�� �����

��� F� Bancilhon� W� Kim� and H� Korth� A model for cad transactions� In Proceeding of the ��th International

Conference on Very Large Databases� pages ������ Morgan Kau�man� �����

��� R� Barga and C� Pu� A practical and modular implementation technique of extended transaction models� In
Proceedings of the ��st International Conference on Very Large Data Bases� Zurich� September �����

��� P� A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in database ststems�
Addison
Wesley� ���	�

��� P� A� Bernstein� J� Rothnie� N� Goodman� and C� Papadimitriou� The concurrency control mechanism of
sdd
�� A system for distributed databases �the full redundant case�� IEEE Trans� on Software Engineering�
����� May ��	��

��� A� Buchmann� M� Ozsu� M� Hornik� D� Georgakopoulos� and F� Manola� A transaction model for active
distributed object system� In Elmagarmid ���� pages �������� Chapter �� �����

��



�	� P� Chrysanthis and K� Ramamritham� Acta� A framework for specifying and reasoning about transaction
structure and behavior� In Proceedings of the ACM SIGMOD Conference on Management of Data� pages
�������� �����

��� P� Chrysanthis and K� Ramamritham� Acta� The saga continues� In Elmagarmid ���� pages ������	� �����

��� P� Chrysanthis and K� Ramamritham� Synthesis of extended transaction models using acta� ACM Transac�

tions on Database Systems� �������������� �����

���� U� Dayal� M� Hsu� and R� Ladin� Organizing long
running activities with triggers and transactions� In
Proceedings of the ACM SIGMOD� �����

���� U� Dayal� M� Hsu� and R� Ladin� A transactional model for long
running activities� In Proceedings of the

��th Very Large Databases� pages �������� �����

���� A� Deacon� H� Schek� and G� Weikum� Semantic
based multilevel transaction management in federated
systems� In Proceedings of International Conference on Data Engineering� pages �������� �����

���� A� Elmagarmid� Y� Leu� W� Litwin� and M� Rusinkiewicz� A multidatabase transaction model for interbase�
In Proceedings of the �	th International Conference on Very Large Data Bases� �����

���� H� Garcia
Molina� Using semantic knowledge for transaction processing in a distributed database� ACM

Trans� on Database Systems� ����� June �����

���� H� Garcia
Molina and K� Salem� Sagas� In Proceedings of ACM SIGMOD Int� Conference on Management

of Data� pages �����	�� ���	�

���� D� Georgakopoulos� M� Hornick� P� Krychniak� and F� Manola� Speci
cation and management of extended
transactions in a programmable transaction environment� In Proceedings of the �

� IEEE Conference on

Data Engineering� pages �����	�� Feb �����

��	� D� Georgakopoulos� M� Rusinkiewicz� and W� Litwin� Chronological scheduling of transactions with temporal
dependencies� Very Large Database Journal� January �����

���� J� Gray� The transaction concept� Virtues and limitations� In Proceeding of the �th International Conference

on Very Large Databases� pages �������� Morgan Kau�man� �����

���� G� Kaiser and C� Pu� Dynamic restructuring of transactions� In A� Elmagarmid� editor� Transaction Models

for Advanced Applications� Morgan Kaufmann� �����

���� L� Liu� An formal approach to structure� algebra� and communication of complex objects� Technical report�
Ph�D dissertation� Tilburg University� ISBN ��
�������
	� �����

���� L� Liu and R� Meersman� Activity model� a declarative approach for capturing communication behavior
in object
oriented databases� In Proceeding of the ��th International Conference on Very Large Databases�
Vancouver� Canada� ����� Morgan Kau�man�

���� N� Lynch� Multilevel atomicity� A new correctness criterion for database concurrency control� ACM Trans�

on Database Systems� ����� December �����

���� C� Mohan� Advanced Transaction Models � Survey and Critique� Tutorial presented at the ACM SIGMOD
international conference� �����

���� C� Mohan� G� Alonso� R� Gunthor� and M� Kamath� Exotica� A research prespective on work�ow manage

ment systems� In IEEE Bulletin of the Technical Committee on Data Engineering� pages ������ March �����
Vol���� No���

���� E� Moss� Nested Transactions� Cambridge� Mass�� MIT Press� �����

���� M� Nodine� S� Ramaswamy� and S� Zdonik� A cooperative transaction model for design databases� In
Elmagarmid ���� pages ������ Chapter �� �����

��



��	� M� Nodine and S� Zdonik� Cooperative transaction hierarchies� a transaction model to support design
applications� In Proceedings of the �	th International Conference on Very Large Data Bases� pages ������
�����

���� M� Ozsu� U� Dayal� and P� Valduriez� editors� Distributed Object Management� Edmonton� Canada� August
����� Morgan Kaufmann�

���� C� Pu and S� Chen� Implementation of a prototype superdatabase� In Proceedings of the Workshop on

Experimental Distributed Systems� Huntsville� Alabama� October �����

���� C� Pu� G� Kaiser� and N� Hutchinson� Split
transactions for open
ended activities� In Proceedings of the
Fourteenth International Conference on Very Large Data Bases� pages �	���� Los Angeles� August �����

���� M� Rusinkiewicz� W� Klas� T� Tesch� J� Wasch� and P�Muth� Towards a cooperative activity model 
 the
coopertive activity model� In Proceedings of the ��st International Conference on Very Large Data Bases�
pages �������� �����

���� J� Wasch and A� Reuter� The contract model� In Elmagarmid ���� pages �������� Chapter 	� �����

��


