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ABSTRACT

Work has been done by Bendixson 37, Dulac 3]0 and others velated to tind
ing conditions which preclude the existence of nen-trivial pertodie solutions to an
tonomous differential equations. These condinions have stability tmplications velated
to limit sets. This is explored in Chapter 1.

In Chapter 2. analogous conditions are given which imply the non existence
of periodic solutions to autoncmous ditference: cquations i one Jdimension.

Some of these results are generalized to higher dunenaional ditference cqua

tions in Chapter 3.
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INTRODUCTION

A dynamical system or a semidynamical system is a system which changes
over time where the change is a function of the state of the svstem. Let 1 denote
either the integers or real numbers or the non-negative integers or real numbers and

let \" be a metric space.

Definition. Suppose the function (f.0) v (). t < [or < XN s continvous and
satisfies

Logo(ry=1x forall r € X

2. 2i(ps(2)) = prgale) forall t,s €] and all re X

The function is a dynamacal system on X of I is the inteqers or real nuwmbers and

is a semidynamical system if [ 1s the non-negatwe inteqers or real numbers.

The set {p¢(z) : t € I} is the orbit of » and {pe(w) : £ ¢ Tt 22 0} s the
positive semiorbit of x. If there exists some w > 0 such that o4 ,(0,) = (0,,) for
all t € I then we say that the orbit is w-periodic with period w. If w is the smallest.
positive number such that an orbit is w-periodic then we say that the orbit is a
proper w-periodic orbit. If v, (z,) = x, for all t € I then r, is called an equalthrinm
and is said to be a trivial periodic orbit.

When I is the set of integers or non-negative integers, then a proper w-periodie
orbit is a finite set containing w points in X. When 7 is the set of real numbers or
non-negative real numbers, then a proper w-periodic orbit is a simple closed curve
in X.

Definition. The alpha and omega limit sets, A(z,), QXux,) are defined as follows:

r € A(z,) [2: € Q(iro)] iof ,.li_r,l,}o"a‘n(z") =z for some sequence t, — =G [t,, —p oo]

If f: X — X is continuous, consider the difference equation

Tt+1 =f($t)



The sol: vion which satisfies 2, = ¢ is £, = f'(z), where f'*! = f(f'(z)) and f7!
v s the inverse of f when it exists. Then ¢(z) = f'(z) defines a semidynamical
systemn on X, It defines a dynamical system on X if f is one-to-one and f(X) =
X. It is clear that every dynamical system on X, when I is the set of integers
corresponds to a difference equation with f = ;.

Counsider the antonomous differential equation

&= f(z)

where f B o B" s o continously differentiable function. Let 2(1.2) donote the
solution such that ¢(0,2) = r. Then ¢¢(2) = ¢(t, r) i1s a semidynamical svoion of,
for cach r € R" exists for each t > 0 and is a dynamical system if (¢, 2)
exists for all ¢

Some exampies «* semidynamical systems where [ 1s the non-negative integers
arc annual census figures, digital clock readouts and some random number gener-
ators for computers. Some examples of dynamical systems where I is taken to be
the real numbers are the stock market, a simple pendulum, and projectile motion.

This thesis is primarily concerned with conditions which guarantee the non-

existence of non-trivial periodic orbits which are contained in a given set.



CHAPTER 1
AUTONOMOUS DIFFERENTIAL EQUATIONS

In autonomous planar ditferential equations. Bendixson and Dualacs eriteria
(1]. [3] give conditions which preclude the existenee of non trivial periodie solutions

to a given differential equation. Consider the cquation

i= flr) (.

where f: R" = R" is continuously differentiable.

The absence of non-trivial periodic solutions to an auwtonomons differential
equation has strong stability implications. For example. the Poineare Bendixson
Theorem for 2-dimensional systems shows that every bounded solution either has
a periodic orbit as its alpha or omega limit set or this set contains an equilibrinm
[1]. Therefore, any condition which precludes the existence of non trivial periodie
orbits implies that every bounded solution has an equilibrivun in its - limit ot
The Bendixson-Dulac criteria have even stronger implications, in that they el
that the limit set consists of a single equilibrium as we will show later in this
chapter. Bendixson’s Criterion may be stated as follows. As nsual, div f denotes

the divergence of f; in particular, div f = I 4 22 when noes 2,

dr, 75

Theorem 1.1 - Bendixson’s Criterion. For n =2, let D be a sumnply connected

subset of R? such that

divf # 0 (1.2)

on D. Then there is no non- trivial periodic solution of (1.1) whose orbit lics entirely

in D.

Proof. Suppose that z(t) = (z1(t), r2(t)) is a periodic solution with least period

w > 0 and orbit C = {z(t) : 0 < ¢t < w} C D. It may be assumed without loss



of generality that € 1s positively oriented by the parameterization t — z(¢). Then

CGireen's Theoremn implies

afl Of_g ]
[f, i+ gt terine = [ rdes = oo w3)

where A is the region bounded by C'.
Since fis continuously differentialle and I is connected, %1{_; + ;‘f—{—i =div f #

0 inplies div f is of one sign on K and hence that the left-hand side of (1.3) is non-

zora. However, the right-hand side s

/ fl (],.172 - f“: (1.17|
JC

/“’ [fl (z(t))22(t) — fz(f(t))il(t)jl dt
-[ [fl (2(6)) o (2(8)) = folel8)) o (r(t))} at

=(
This is a contradiction, so there can be no such periodic orbit. O

Bendixson’s Criterion is stronger than is stated in the above theorem. The
orbit C, used in the proof, can be replaced with any simple closed curve which is
a union of orbits of (1.1). Thus, Theorem 1.1 rules out the existence of any simple
closed curve which is invariant under the flow described by (1.1). This means there
can be no homoclinic orbits since a homoclinic orbit and its associated equilibrium
form an invariant simple closed curve. This also applies to Dulac’s Criterion and

Lloyd's Theorem [5] which follow.

Theorem 1.2 - Dulac’s Criterion. Forn = 2, let D be a simply connected subset

of R®. If there exzists a differentiable real valued function a such that

div(af) # 0 (1.4)

on D. then there is no periodic soluion of (1.1) whose orbit lies entirely in D.



Proof. Let C' be a non-trivial periodic orbit of (1.1) in 12, Without loss of generality .
we may assume that C is positively oriented. Let K be the region hounded by

By Green's Theoren, we have

dafi) O(Of-_») B :
// { 0111 Brs deydes = '/('(n_fl\(/.r_» (o frvdey Y

Since div(a f) # 0, the left hand side of (1.5) is non-zero As was seen in the proof

of Theorem 1.1, the right hand side of (1.5) is zero sinee €1 a periodic orbit of

(1.1). This is a contradiction so there can be no such periodie orbit, L

Lloyd’s Theorem is a gencralization of Dulac’s Criterion in which the assump
tion of simply connectedness is dropped. Because of this relaxation of assumptions,
the existence of periodic orbits can no longer be precluded. Tustead, an upper hound
on the number of possible periodic orbits is found based on the number of holes in

the region D.

Theorem 1.3 - Lloyd’s Theorem. Let n = 2. Suppose that D C R? is open and
connected. Suppose further that there is a differentiable function o . D -3 R such

that

div(af) # 0

on D. If the complement of D has k bounded components then there are at most k

pertodic solutions to (1.1) which lie entirely in D.

Definition. Let C be a pertodic orbit of (1.1}. Let B < R* be a connected set. €
is said to be adjacent to B if B lies in the interior of C but is encircled by no other

such orbit.

Proof of Theorem. Let D; for i = 1,...,k be the bounded components of the ecom
7 ‘emnent of D. Each non-trivial periodic orbit of (1.1) must be adjacent to at least

one of the D;. This is proven by contradiction. Suppose C' is a non-trivial periodic



orbit of (1.1) which encireles Dy, ... D, for some r < k. Suppose Cy,....C, are
periodie orbits lying in the interior of € so that each Dy is encircled by some Cj; for
1 -7 jy ~ sand s 1o Note that the C) can be chosen ¢o that no one encircles

another. Let

R=C"\|J(C;uCy)

j=1
where the superseript (°) denotes the interior of the given curve. Then R is an

open. counected subset of D. By Green's Theorem,

J,

. ]
//(/i:r(nf)(/J:] dr, = / (—afrdry +aofdzy) — Z / (—afydry + af) dra).

S Je =
(1.6)
("This assumes that C and each of the C; are oriented counterclockwise. For any of
the orbits which are oriented clockwise, a minus sign should be introduced.) Since
div(o f) # 0, the left hand side of (1.6) is non-ze'~. Each term on the right hand
side of (1.6) is zero because C and C; (§ = 1,....s) are orbits of (1.1). Contradiction.
Since each periodic orbit of (1.1) must be adjacent to at least one of the D;

and no two periodic orbits can be adjacent to the same D;. there can be at most &

periodic orbits. O

As was mentioned earlier, the Bendixson-Dulac criteria have very strong sta-
bility implications. In order to see this we need the next result about {2-limit sets

in the plane.

Proposition 1.4. For n = 2, if (1.2) holds on an open, simply connected subset
D C R? then every semi-orbit of (1.1) whose topological closure is a compact subset

of D has a limit set which consists entirely of equilibria.

Proof. Suppose C*(y,), the positive semi-trajectory through y,, is bounded. Then
the omega limit set of y, is a non-empty compact subset of D. Suppose the omega

limit set, ©(y,), contains a non-equilibrium point §. Let T C D be a transversal



through 7 and let {y,} be the sequence of successive intersections of € Y(u.) with
T. Then {yn} is monotone on T and nl_i-l‘l}\j Yn = y. Let S, be the segment of T
joining yn and yp4q. Let €y be the segment of CHy,) joining un and y, . Let
D,, be the region bounded by S, and C,,.

The D, are nested. In other words, we have cither D) < Dy o . o

Dy D D; 2 ... Assume. for now that we have the former. See Figure 1.1, Define

the positive constant A by

K = l / divf dr d;r-_)l.
h

Since Dy C D, for all n and divf has constant sign, we have

J

Using Green’s Theorem to convert the right hand side to a line integral gives

/ f;g (]..I'l - f‘ (l.l'-_g
Jo,

As in the proof of Theorem 1.1, the second term on the right-hand side of (1.7) 1s

LK < lim

n-—>

div f dr, (1.1'2‘

n

K < lim

,
< +
n—oo

(1.7)

/ fadr, fidas
SYI

equal to zero. Since f is continuous, we have ||f]| < M < ~c on the segment of T

joining y; and y for some real number M. Therefore, if ds represents integration

/ 2M (ls!

=2M nli_)ngo [[yn = Yn1l]

with respect to arclegth, then

K < lim

n—od

=0

This contradicts the fact that K is positive.
Consider the case where Dy D D; D ... See Figure 1.2. There exists z € R?
and € > 0 such that B(z,€) C D, for all n, where B(z,¢) is the open dise with

centre z and radius e. To see that this is so, consider the following. The transversal



€ (x,)

Figure 1.1



Figure 1l.Z
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T is divided into two components by y. One of these components 77 contains the
sequence {y, b The other component T still has the property that solutions cross
it in the siune direction as solutions cross Ty, For all n, we have T, € D,,. Since
cach Dy, is positively invariant, solutions which intersect T3 lie in each D, for all
positive time. Let T be an open ended subsegment of Ty, Let B = {ply) 1 t €
(0.1). y ¢ I}. Then B is an open set contained in Dy, for all n. Choose = and ¢
such that Blz,e) C B.
Defining K’ by
1
KN = i/ divf dxy dza| >0
B(z,) |
we ean use an argumnent similar to the one used above to get a contradiction.

Thus we see that divf # 0 inplies that the omega limit set of a bounded orbit

consists entirely of equilibria. The treatment of alpha limit sets is similar. O

Theorem 1.5. Forn =2, if (1.2) holds on an open. simply connected subset D of
R®. then every semi-orbit of (1.1) whose topological closure is a compact subset of

D must limat to an equilibrium.

Proof. Proposition 1.4 implies that the limit set of a bounded semi-orbit in D
consists entirely of equilibria.

Let C be a bounded semi-orbit in D with an omega limit set containing more
than a single point. The omega limit set of C must be connected. so it must coutain
a continuum of equilibria. Let P be an omega limit point of C'. There are equilibria
arbitrarily close to P, so P must have a center manifold of dimension at least one.

Let A\; and \; be the eigenvalues of the linearization of (1.1) about P. Note
that

of _ ..
/\1 +A2 —Tl'g; = lef?éO

Since P has a center manifold of dimension at least one, we must have one of the

\i equal to zero, which means the other eigenvalue must be non-zero. Thus, the
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dimension of the center manifold of P is exactly one. Depending on the stgn of
the non-zero eigenvalue, P has either an unstable or a stable manitold of dimension
one. In either case, the equilibria in a neighbourhood of P will have associated with
them a manifold of similar type. Thus we have ecither a neighbourhood of 17 which
no orbit enters or a neighbourhood of 7 which no orbit leaves. In the tirst ease,
it would be impossible for P to be an omega limit point. In the second case, oner
an orbit entered the neighbourhood. it would be on the stable manifold of one of
the equilibria and so would limit to only that equilibrinm. Thus, that equilibrium

wou'd be the only Q-limit point. Either way, we have a contradiction. t

In n dimensions. (1.2) 1s no longer sutficient to preclude the exirtence of non

trivial periodic solutions of (1.1). To see this. consider the following system.

=y + (1= e

g=r+(l—a® =)y

F=dz(2® + y?)

We get divf = 2, but the curve given by (x(t),y(t), =(t)) = (cost.sint, 0) is a
periodic solution.

An alternative proof of Bendivson’s Criterion may be obtained by considering
its implications for the evolution of areas under the tlow of (1.1). [n two dimensions,
divf # 0 means that areas are either increasing or decreasing in time, depending on
the sign of the expression. Because solutions cannot cross, orbits which lie in the
interior of an invariant closed curve at some time must remain there for all time.
Thus, the total area inside an invariant closed curve must be constant. One way
to generalize Bendixson’s Criterion to higher dimensions is to find a condition on f
which implies that two dimensional areas are either all increasing or all deereasing

with time.
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Any closed curve in B™ can be thought of as the boundary of a family of
surfaces, If that family has an element S of minimur area, then we can consider
how S changes in time. If sreas are all decreasing (increasing) then S must flow into
a surface with less area for any positive (negative) time. Therefore the boundary
of S st not he tixed in time. In other words, there can be no invariant closed
eurve with a surface of minimum area if f satisfies a condition which implies areas
arc either all inereasing or all decreasing. This line of reasoning was used by Li and
Muldowney in [4] to formulate a higher dimensional generalization of Bendixson's

Criterion. For example. they obtain a new proof of a theorem of Smith {7].
I N

Theorem 1.6. Let A\ > Ay > -+ > A\, be the eigenvalues of %((af/(');r)* +0f/0x)
where Jf[0x s the Jacobian of f and the asterisk denotes transposition. A simple
closed rectifiable curve which 1s i rariant with respect to (1.1) cannot ezist if one

of the following s satisified on R™ :

() A<
(1)) Apm1 + A >0
More gencrally, by considering measures other than the usual surface area,

Li and Muldowney obtain many :esults which reduce to the Bendixson and Dulac

criteria when n = 2. For example, if instead of (i) or (ii), it is assumed that

afx 6f] af: afr . .
< ] <
dr; ('32:] +r:;] dr; + Bz, <0, 1<i<y<n
or that
afi (')fJ afr afr . ‘
dz; « Bz; <
8$‘+azj Z Oz; + Oz; >0, 1<i1<y<n

T#1,J

then the conclusion of Theorem 1.6 still holds. The conclusion also holds if either

dfi
Jzx,

3fj
61: -

ity

0, 1<i<j<n
Ori Or; < S1<Js




or

af;
ar,

af;

O.r]-

>

25

10r,

rey g

i

1l
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CHAPTER 2

ONE DIMENSIONAL DIFFERENCE EQUATIONS

In obtaining Bendixson’s Criterion, a 2-form evaluated over a region was con-
verted to a 1-formn evaluated on the boundary of the region. A condition was then
found which implied that the boundary could not be the orbit of a solution to
the given differential equation. For difference equations, a similar approach can he
taken.

Consider the difference equation

Lyt :f(;l?,) fort=0,l.2.... (21)

where f 1 R - R is continuously differentiable.

Proposition 2.1. If f'(z) # —1 on an interval I C R then (2.1) has no proper

2-pertodic orbits in 1.

Proof. Let a € I be a non-fixed point of f with f(a) € I. Then

1o
(8]
—

fla) )
/ [F'(2) + 1] de = £(a) — a 2.

The left hand side of (2.2) is non-zero by the assumption made in the proposition.
Therefore f2(a) # a and it can seen that there are no non-trivial 2-periodic solutions

to (2.1) which lie in I. a

In a similar manner, a condition can be found which will preclude the existence

of non-trivial periodic orbits of other periods.

Proposition 2.2, Let I be an interval on the real line. Suppose

U @) + o+ (o) + 2] £ 0 (23)



[

on I. Then (2.1) has no non-trivial w-periodic orbits wnth two succesive points lying

wn 1.

Proof. Let a € I be a non-fixed poimnt of f with f(a) ¢ I. Then

flay 4
/ — [N ) + L+ f) elde o fYa) a (2.0

dr

The left hand side of (2.4) is non-zero by (2.3). Therefore f<(a) ¢ a. and it can
seen that f has no non-trivial w-periodic orbits for which two suceessive poits lie

in 1. {1

Remark. The non-existence of non-trivial w-periodic orbits also rules out & periodie
orbits where £k divides w. kb # 1. Also, when w = 2, this result reduces exactly to

Proposition 2.1.

Consider the quadratic map f : [0,1] — [0,1] given by f(e) = pr(1 2.
This is known to have no 2-periodic orbits for p € (1,3). However, the condition of

Proposition 2.2 is not satisfied. Attempting to apply the proposition gives
d
—[flz)+z]=p+1-2ux
(@) + 2] =4 /

This is zero at ¥ = "‘TJ:} and £ € [0,1] for all © € (1,3). So, this is a case in which
Proposition 2.2 does not apply, and yet there are no 2-periodic orbits. This means
that (2.3) is a sufficient condition for the non-existence of w-periodic orbits, but not
a necessary condition. It is possible to find a more general condition which will be
applicable to more cases.

If we consider Proposition 2.2, we can see what made the proof work. The
essential characteristic was that [f“~!(z) + ... + f(x) + £] took on the same value
at ¢ and f(a) if @ was an w-periodic point. Using this observation and the next
definition, we can replace (2.3) with a more general condition to obtain a breads

result.
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Definition. Any R valued function on R¥, (yi,...,y0) = ®(y1,...,y.) will be called

w-eyclic of

o
[S1}

Byr, o) = P Uty Y1) forally, € R. i=1,..,w. (4
With any w-cyclic function ® and map f : R — R, the function F : R — R given
by F(r) = ®(z, f(z),..., f*" (z)) is associated.

Ezamples. The following arc w-cyclic functions from R to R

®(y1, - y) =y + o+

B(y1. oY) = Y1z + o+ Yomr¥o + Yo
The corresponding functions F : R — R are:

Flz)=z+ f(z)+ ...+ f*7'(x)

Fz) = zf(z) +..+ f7Hx)f(2) + f(2)2

Theoren: 2.3. If there exists an w-cyclic continuously differentiable function & :

R¥ — R with corresponding F such that

d _,

on an interval I C R then (2.1) has no non-trivial w-periodic solutions with two

succesive points lying mn 1.
Proof. Let a € I be a non-fixed point of f with f(a) € I. Then
fa) 4
/a a;F(z) dz
= &(f*(a), f(a), - f*7H(@)) — ®(a, f(a) o f7Na)  (27)

The left hand side of (2.7) is non-zero by (2.6). Therefore f“(a) # a and f has no

non-trivial w-periodic orbits for which two successive points lie in I. O
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It should be noted that (2.6) can be replaced with the condition ,‘i, Fa)y >0
a.r -
with strict inequality when f(x) # x. This ensures that the left haud side of (2.7) is
non-zero since there is a neighbourhood about a in which f(r) # r. This condition

will be used later in Theorem 2.8.

Corollary 2.4. Let I be an interval on the real Line. If there erists a differentiable
function a : R — R such that a“;[a o f Na)+ ..+ aofla)+a(n)] £ 0 onl then

(2.1) has no non-trivial w-periodic solutions with two succesive points Lying i 1.
Proof. Apply Theorem 2.3 with the w-cvelic function ® given by
2 v & A

D(y1y.nyw) =alyy) + ... + alys). [

Corollary 2.5. If there ezists an w-cyclic continuously differentiabie function @ :
R¥ — R and associated function F : R — R such that j’;F(.r) #0 on R then (2.1)

has no non-trivial w-periodic solutions.

The next step is to associate the work so far with known results for ditference
equations on the real line. Towards this end, the contrapositive of Sarkovskii's
Theorem [2] is quite useful.

Sarkovskii’s ordering of the natural numbers is as follows. The usnal order of

the odd integers greater than 1 is reversed:
JodoTo ...
All even multiples of these are added to the order by

9"3 5 2"5 5 2"7 o ... and  2°(2 +1) o 27(2j + 1)

if m > n and 7,7 > 0. Finally, all powers of 2 are added to the order in decreasing

powers so that finally we have:

305670 ...52-362.562-76...5622.3022.502%2. 705 ...

Formally, we have the following definition.
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Definition - Sarkovskii’s Ordering. The relation > is defined on the positive

integers so that av b bo ¢ implies av c. It 1s defined as follows.
1. 2"3e 2" e 2"7Te ... forn=0,1.2,...
20 2204+ 1) 2"(25+1) form>nandi.j >0
3. 2"(2i+1)e 2" fornm>0and i >0

4. 2" 2™ forn>m>0

Theorem 2.6 - Sarkovskii’s Theorem. Suppose f : & — R is ccntinuous.
Further, suppose f has a periodic point of least period k. If kol then f also has a

point of least period 1.

\ proof of this can be found in 2, p 63].

Note that the existence of any non-trivial orbit implies the existence of 2-
periodic orbits. Therefore, if it is shown that no 2-periodic orbits exist then it can
be concluded that there are no non-trivial periodic orbits. Sarkovskii’s Theorem is

now combined with Corollary 2.5 to get the following.

Theorem 2.7. Suppose there ezists an w-cyclic continuously differentiable function
® : R¥ — R with corresponding F such that £ F(z) # 0 on R.

1. If w is even then f has no non-trivial periodic orbits.

2. If w is odd then f has no non-trivial k-periodic orbits where k is odd and 1 <

k<w.

Proof. By Corollary 2.5, f has no non-trivial w-periodic orbits. If w is even then
f has no non-trivial 2-periodic orbits since they would also be w-periodic. By
Sarkovskii’s Theorem, f must not have any non-trivial periodic points since they
would imply the existence of 2-periodic points.

If w is odd then by Sarkovskii’s Theorem, f has no k-periodic orbits with
1 < & £ « where k is odd since such an orbit would imply the existence of w

periodic points. O
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A necessary and sufficient condition is now given for the case in which fis a

diffeomorphism.

Theorem 2.8. Suppose f'(r) # 0 for v & I. an open interval. Then there are
no non-trivial periodic orbits of (2.1) in I if and only if there exists a continuvously

differentiable real-valued function o on I'U f(I) such that

d
o [(r o f(x) 4 n(.r)] >0 (2.8)
with strict mequality if z 1s not a fized point of f.

Proof. Theorem 2.3 and the discussion following the theorem show that (2.8) is
sufficient for the non-existence of non-trivial 2-periodic orbits which by Sarkovskii's
Theorem precludes the existence of all non-trivial periodic orbits.

Next we show that the existence of a satisfying (2.8) is alio a necessary condi
tion. Suppose that (2.1) has no non-trivial periodic orbits. If f'{r) = 0 for all & ¢ [
then a(z) = z satisfies (2.8) with strict inequality for all r. The only case left to dis
cuss is when f'(z) < 0for «. z € I. If there is no equilibrium, then either f(r) = r
or f(z) <z forall z € I. Si - ¢ f is decreasing, this means I N f(I) == &. Thus, for
an arbitrary choice of & on I. o can be chosen on f{I) to get j{;[uo fle)+ale)] =1
for all z € I, and so (2.8) is satisfied.

Suppose ¢ is an equilibrium of f. Since f is deecreasing, ¢ must he the only
equilibrium. If z, < c is sufficiently close to ¢ so that f(x,) and f*(x,) both
exist then either z, < f2(z,) < ¢ < f(z,) or f*(z,) = r, < ¢ < f(r,). The
first of these possibilities will be dealt with first. For any = < ¢ such that f%(r)
exists we must have r < f2(z) < c¢. Otherwise, the Intermnediate Value Theorem
would imply the existence of a non-trivial 2-periodic point. So for = < ¢, the
sequence f2!(z) is increasing and the sequence f2!+1(z) is decreasing. Fori € {0,1},
lim f2**i(z) = d # c implies d is a non-trivial 2-periodic point. So we must have

t—oco

lim f*(z) = c¢. Similarly, for ¢ < z, we also get lim f'(z) = .
t—o0 t—o0
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Choose M € B such that M > 1 and M > sup{—f'(z) : z € [z, f(x0)] }-

Define o (f(e,)) = M~ for t = 0,1,.... For z € (z,, f2(z,)), define o'(z) =

Lo oM % 1) where o =z, + 5(f*(z,) — z,). Let o/(f*(z)) = M~ta'(z) for
I [J',,,f'“'(.l;,,'):}, t=0.1..... Finally, define o’(¢) = 0.

Thus, ' 1s a continuous function on [J:,,, f('co)] and we have

'lfl‘ [O oflz)+ O.(.'E)] =o' (f(z)) f'(x) + o' (x)

axr

=o' (z) (M7 f'(z) + 1)

By our choice of M. this 1s positive for o # ¢. At c. it is zero.
We now extend o' to I. Let 3 : I — R be continuous with 3(z) > 0if z # ¢

and () = o' (f(x)) fi{z)+ o (r)if € [J:,,,f(xo)]. [teration of the formula

extends o continuously to .JJ = {# € I : f(z) € I}. An arbitrary continuous
extension of o to f(I'\ J) finishes the process. Finding an antiderivative of o’ gives
the desired function o to satisfy (2.8).

Finally, the case 2, < f*(z,) < ¢ < f(z,) may be treated as in the preceding

discussion if f is replaced by its inverse f~!. O



CHAPTER 3
DIFFERENCE EQUATIONS IN HIGHER DIMENSIONS

Many of the one dimensional results found in Chapter 2 can be generalized to
higher dimensions. One result that does not hold in higher dimensions is Sarkovskit's
Theorem. To see this, consider f : R* — R? defined by simply rotating the entire
plane 120 degrees about the origin. Obviously, every point, aside from the origin,
has least period three. Sarkovskii’s Theorem would imply the existence of points of
every least period. This is not the case so Sarkovskii’s Theorem cannot be used in
higher dimensions.

A more general definition of w-cyelie functions is needed.

Definition. A function ® : R™ — R™ will be called w-cyclic if

Dy, .. Yo) = P(Yurs Yiseoos Y1) (3.1)

for any y; € R™, 1 =1, ...,w. With any w-cyclic function & and map f: R" - R",
the function F : R™® —» R™ given by F(z) = ®(a, f(x),..., f*"' (1)) is associated.

Ezamples. The following are w-cyclic functions from R™* to R.

w
Ql(ylv"'ayu Z

i=1

Ma

Yi - Yk
1

o~
€l

Qa(y1, oy Yu) = u- Z yi for some fixed u € R"

=1
®3(y1s - ¥0) = llnll + - + Iyl

The corresponding functions F' : R® — R are:

w—1w-1

Fi(z) =) > f(z)
=0 1=0
w1

2)=u-) fia)
=0

Fy(z) = |lzll + [If(@)Il... +1f*7 ()l
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Theorem 2.3 is now generalized to higher dimensions. Consider the difference
cquation

Titt :f(.?:,) f()rt =0.".2.... (32)
where f:R™ — R" is continuously differentiable.

Theorem 3.1. Suppose {f'(a):t =0,1,2,...} is a non-trivial w-periodic orbit of
(3.2). Then for each smooth curve + with endpoints at a and f(a) and each w-cyclic
continnously differentiable function ® with corresponding F, there ezists ¢ € v such

that grad F(¢)-v =0 1f v 1s tangent to ~ at c.

Proof. Parameterize 4 such that ¥{0) = a and +(1) = f(a). Then

0= F(f(a)) — F(a) since « is w-periodic

1

d
= [ S F(~() .t
/odt ((t)

1
:/(; grad F(~(t)) - +'(t)dt

By Rolle’s Theorem, there is some t, € (0,1) such that grad F(5(t,)) - v'(t,) =0

Let ¢ = v(t,). Then v is a scalar multiple of 4'(¢,) and we get grad F(¢)-v =0. O

Corollary 3.2. Suppose that, for every, a € R sts @ smooth curve v with
endpoints at a and f(a) end an w-cyclic conti: :afferentiable function ® with

corresponding F such that

grad F(z) -v(z) #0

for all x € «, where v(z) is tangent to v at z. Then (8.2) has no non-trivial

w-pertodic solutions.

Applying Theorem 3.1 to maps in the plane gives some readily applicable

results.



23
Corollary 3.3. Let f: R? = R? be continuously differentiable. Suppose there er-
ists a real valued w-cyclic continvously differentiable function & with corresponding
F such that grad F(z) € R% (or R2) for all v € R:  Then for any non-trivial
w-periodic point a of f, the straight line joining a and f(a) must have neqative

slope.

Note. R (RZ%) is the set of all ordered pairs with both numbers greater than (less

than) zero.

Proof. Let a be a non-trivial w-periodic point and let v = f(a) --a. Then somewhere
on the line segment joining a and f(a). we must have grad F(¢) -0 0. Sinee
the components of grad F(¢) have the same sign. the components of ¢ must have
opposite signs. This means that the line through a and f(a) must have negative

slope. [)

Corollary 3.4. Let f: R? = R? be continuously differentiable. Suppose there ez
ists a real valued w-cyclic continvously differentiable function ® with corresponding
F such that grad F(z) is in the wnterior of the second or fourth quadrant for ull
z € R%. Then, for any non-trivial w-periodic point a of f, the straight line joining

a and f(a) must have positive slope.

Corollary 3.5. Define f : R2 — R? by f(z,y) = (g(x,y), ke) where g : R? -5 B is
differentiable and k € R. Then any proper 2-periodic orbit consists of points which

lie on a straight line of slope —k.

Proof. Define the 2-cyclic function @ by

‘1’( (zleyl), (xz,yz)) =y +y2.

This gives F(z,y) = y + Az and grad F = (k,1) Let (p,q) = fia) — a where a is a
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proper 2-periodic point. Then we get:

0= (k1) (p,q)

= kp+q
_p=1
»
and so the line through ¢ and f(a) has slope —k. O

Consider the Hénon map f : R? — R? given by
flr,y) = (a—by —z*.r) (3.3)

This is the simplest known map that appears to have a strange attractor. Since
very little is known about strange attractors, the Hénon map is studied intently.
The attractor is only present for certain values of the parameters a and b. The well
known Hénon attractor comes from a map which is topologically equivalent to the

and b= — % The two periodic orbits of the Hénon map can

{ » 8 =TI
Heénon map with a = ¢

be calculated directly but the three periodic orbits are difficult to find in general.
Thus, information about the location of three periodic orbits is potentially useful.
The following will be demonstrated.

1. Each 2-periodic orbit lies on a line of slope —1.

2. For a 2-periodic orbit {p,q}, p and q lie on different sides of the line z = 1;’".
3. A region is found which contains no proper 3-periodic points for a = % and
b= ——%

The first statement follows from Corollary 3.5. To see that the second state-

ment is true, consider the 2-cyclic function, ® : R* -+ R

q’((xl,yl) 3 (1‘2,y2)) =1z + I3.

This defines the corresponding function F : R?2 — R given by F(z,y) = z+a—by —

r%. This gives grad F = (1 — 2z, ~b). Suppose (z,,y,) is a 2-periodic point of the
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Hénon map. Applying Theorem 3.1. where v is the straight line segment Joining
(2o, ¥o) and f(x,,y,) with slope of —1, we see that we must have 12 20 £ b - 0
at some point in 5. Thus, (re,¥,) and f(r,,y,) lic on ditferent sides of the line
ro= b

To fulfill the third statement. define the 3-cvelie functions & W - R o R
®((r1,y1)s (T2, 02), (T3.93)) =1 + 2 + us
(x5 (22,02) (23.93)) = (o0 +47) + (02 b 53) + (0 1 yd)

These define, respectively, the corresponding functions F. G : R* + R given by

Flz.y) = y+ o+ (0~ by — o)

G(r,y) = (r+y*) + (u—by) + (« - br)
and we have grad F(z,y) = (1 — 2r.1 = b) and gradG(e.y) = (1 - b2y b).
Suppose the point (z,,y,) is a 3-peviodic point. Then by Corollary 3.2, there are

points (z1,y1) and (2, y2) on the line segment joining (r,, y,) and f(r,,y,) such

that

0= gradF(Il’yl) : (f(‘l'myn) - (-7"m.'/0))

= (1 ~ 2y, 1 - b) - (a - by, — z,'; — Loy Lo = Yy) (3.-1)
and

0= gradG(z-z,yz) ' (f(‘ro’yo) e (‘7"07;'/0))

= (1 —b,2y; —=b) - (a—by, — z% —x,, 20~ y,) (3.5)

ni

Substituting the values a = { and b = — £ into (3.4) and (3.5) and dropping the

subscripts on z; and y; gives

ot} =

10 ” '
0=(1—2z)< +—3—yo—x;—zo) + = (x5 = Yo) (3.6)
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alnel

13/7 10 ) 10
== — | - —_ — - t 2 —— o — Yo .—
0 3<5+3Jo z, J:,,)T(y—i—?))(z Yo) (3.7)

for some x € [z,, fi(zo,4,)] and y € [z,,y,] where fi(z,,y,) is the first coordinate
of f(z4,Ya)-

So, given a point (7,.y,) € R2, if thereisno z € (2o, f1(20, ¥o)] which satisfies
(3.6) or there is no y € [z,,Yy,) which satifies (3.7) then (z,,y,) cannot be a non-
trivial 3-periodic point of (3.3). Since (3.7) is linear in y, if the right hand side
takes on the same sign when y equals each of z, and y,, then the equation has no

solution on the interval [z,,y,]. Thus, any point lying in the region A described by

T 10 : 10
0< [%’?(% + 5 Yo~ e z,,) + <2zo + —3—)(1:0 - y(,)]
g 13 7+1_q 2z )+ (2 +10($_ )
3 5 3 Yo 0 0 2Yo 3 o Yo
is not non-trivially 3-periodic. Similarly, if evaluating the right hand side of (3.6)
at r equals r, and fi(z,,¥,), and multiplying the results together gives a positive

value then the point (z,,Yy,) is not non-trivially 3-periodic. This defines the region

B given by

7 10 ) 13
0< [(1 — 21:0)(‘ + —Yo— T, — Io) + —(.’Eo - yo)]

5 3 3
9 20 7 10 13
<3 - Do w22 (D Pro— a2 =20 ) + oo -]

No point lying in A U B can be non-trivially 3-periodic.

Ezample. Consider a Hawk-Dove interaction between males of some bird species
competing for mating priveleges. The behavior of a male can be likened to that of
a hawk or a dove. Every time a female is ready to mate, two males compete for the
privelege. If two hawks meet, they fight to the death. If two doves are competing,
one of them retreats. If a hawk meets a dove, then the dove retreats. Assuming that

hawks and doves are identical in all other aspects, the following difference equation
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gives a primitive model of how the population will develop in time. The numbers of

hiwks and doves in the population a. time ¢ are denoted by H, and D; respectively.

p—q H D,
H,o,=H _
1= B 1t H,+D,+”H,+D,]
{3.8)
[ n D
Dur=Difa+ B2 ]

where q is the probability that a male will live to the next mating scason aud p is
the expected number of offspring from a mating. It is assumed that H, and D, are
non-negative and that H; + D; and p + q are postive.

Using the 2-cyclic function
®((Hy,D1), (Ha, D2)) = 2(Hy + ;]—)Dl) +2(Hs + ‘[-1,-1)4.-)
and the corresponding function F : R? — R? given by
F(H,D) = 2(H + %D)

p—q H D q p D
2] = I U A
+“<H[q+ 5 H+D+"H+D]+,,D["*21“»0])

we can investigate the possible existence of 2-periodic solutiens of (3.8). Then

grad F = (2+p+gq, 2+p+3q+ 27:1 + z-gi), a constant. Choosing 4 to be the straight
line segment joining (H, D) to f(H, D) with tangent v = f(H, D) — (H, D), we find
dF-v = ! (p+q+2)p+q-2))H?
gra v_2H+D) PTgq p+q-2)

1
(p+q+ p+2q—2)+2‘q(q—1)(1+I—)+g

)) 2HD
P

1 .
+ ((p+q+2)(p+2q—2)+24(1+5+ %)(p-+2q -~2))D"‘]-

For p + q > 2, the above expression is positive for all H and D. So, by Corollary

3.2, we see that (3.8) has no non-trivial 2-periodic orbits when p 4 ¢ > 2.
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Theorem 3.6. Suppose that D 1s an open convez subset of the domain of f and that
¢ R — R™ is an w-cyclic continuously differentiable function with corresponding

F:R®B" — R" If for each non-zero v € R™ there ezists u € R™ such that

-

OF
(v y:
u” - (z)v >0 (3.9)

for all x € D, then there is no nontrwial w-periodic point x, of (0.1) such thas

r,, flr,) € D.

Proof. This follows from Theorem 3.1, where given a non-equilibrivin z, € D, 7 is
taken to be the straight line joining z, and f(z,). Choose u to correspond with
v = f(r,)— 1,. Using the w-cyclic function ¥ = u*® with corresponding G(r) =

u*F(x). We get the result that z, can not be w-periodic point if r,, j{ua,) £ D. O

A n x n real matrix A = [a;;] Is positive definite if u*Au > 0 for each 1 n-zero

u € R™. A is diagonally dominant by rows if
[aii!—ZI(z,-j]>0, i=1,...,n.
J#
A is diagonally dominant by columns if
|aj,-|—Z|a,~j|>0, j=1,...,n.
i#]

Concrete conditions which ensure (3.9) may be expressed in these terms as follows:

Al %%(z) is positive definite for each z = D.

B. 2E(2)is diagonally dominant by rows for each z € D.

C.

B @
s 8

(z) is diagonally dominant by columns for each z € D.

Q)

x

Corollary 3.7. Let D and F be defined as in Theorem 3.6. If one of conditions
A, B. and C is satisfied, then (8.2) has no non-trivial w-periodic point z, such that
;L'o,f(-ro) E D-
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Proof. If condition A is satisfied, then the choice u = v satisfies (3.9). If condition

B holds and 0 # v € R", choose i such that |vi| > |j] for j = 1.....n. Let wj =0

for j # i and choose u; such that u,QELz' = Iflﬂ-v,l Then
,OF OF; OF; OF, OF;
—— — —; —_—n >
v’ or u'(@xiv+ (71' l) <|81, Jg O.zj>ltl\0

and we see that B implies (3.9). Similarly, if condition C is satisfied. choose w, such

9F;

that u]a ;= la U_7| for j=1,...,n. Then
OF,
y mv—zzu,az " -Z( -5 b;;-‘)|z-,i>()
J=11=1 #j

Again, (3.9) is satisfied. In each of these cases, since (3.9) is satisfied, there are no

non-trivial w-periodic orbits of (3.2) with two consceutive points lying in D. i
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