NSERC/COSIA Industrial Research Chair in Oil Sands Tailings Geotechnique

Development of an integrated tailings simulation model using System Dynamics and GoldSim

Tony Zheng

ada's oil sands Ivation alliance

- Introduction: System Dynamics and Causal Loop Diagrams (CLD)
- Case Study: Soil Water Dynamics of Tailings Cap
 - Part I: Modelling Process
 - Part II: Results
- Concluding Remarks

- Developed by Jay Forrester at MIT's Sloan Business School in the 50s:
 To model complex inter-relationships between elements within a system or multiple systems.
- Feedbacks, Feedbacks and Feedbacks
- Applications in Public Health, Management Consulting, Water Resource Management, Public Policy, International Relations, Defense and Securities etc.

System Dynamics Modelling Process

Amount of Time Spent in the Real World

A Simple Example of Causal Loop Diagrams

000

MOUIIIE

A Simple Example of Causal Loop Diagrams

A Simple Example of Causal Loop Diagrams

Soil Water Dynamics of Tailings Cap

Part I: Model Building Process

Part II: Simulation and Analysis

Step 1: Pick the Governing Equations

Vol Water Content

$$\begin{split} \theta(h) &= \begin{cases} \theta_r + \frac{\theta_s - \theta_r}{\left[1 + |\alpha h|^n\right]^m} & h < 0\\ \theta_s & h \ge 0 \end{cases} \\ K(\theta) &= \begin{cases} K_s S_e^{1/2} \left[1 - (1 - S_e^{1/m})^m\right]^2 & S_e < 1\\ K_s & S_e = 1 \end{cases} \\ S_e &= \frac{\theta - \theta_r}{\theta_s - \theta_r} \end{cases} \end{split}$$

 $1 - h_{a}$

Hydraulic Conductivity

Relative Saturation

_vav

Inter-Layer Transmission Rate
$$f_i = -\frac{1}{2} [K_{i-1}(\theta_{i-1}) + K_i(\theta_i)] \left(\frac{h_i - h_{i-1}}{\frac{L_{i-1} + L_i}{2}} - 1\right)$$

Evaporation-Suction Model $h_r = \exp\left(\frac{\Psi g W_v}{RT}\right)$
Actual Evaporation Rate $\frac{AE}{RT} = \left[\frac{\exp\left(\frac{\Psi g W_v}{RT}\right) - h_a}{\frac{1}{RT}}\right]$

PE

Van Ganutchen - Maulem (1980); Wilson et al (1997); Huang et al (2011)

11

Step 2: List relevant variables; identify the stock(s) and flows

....

Step 3: Construct the preliminary CLD; Identify feedbacks; discuss and debate

Step 4: Use the Bull's Eye Diagram to identify the boundary of the model / system

0.00G

Step 5: Build the partial CLD; add polarity signs and identify feedback structures

Negative (Balancing) Loop

- Suction-Driven
- Dominates when evaporation > precipitation

Positive (Reinforcing) Loop

- Infiltration-Saturation Driven
- Dominates when precipitation > evaporation or when wetting front arrives

Step 6: Transform CLDs into GoldSim

Step 7: Validation

Step 7: Run and validate simple models under a variety of conditions and different materials.

Step 8: Visualization and User Interface

Consolidation Input

Step 1: Geometry and Soil Properties

	(cm)	(cm)			(cm-1)		(cm/min)	Constant in Eliteration In out
	Depth	Thickness	Qr	Qs	alph	n	Ks	Constant Innitration 0.944 Chrynnin
1	8.33335	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Constant Evaporation 0.000388E cm/min
2	25.00003333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
3	41.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
4	58.33336667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
5	75.00003333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Bottom Downward 0 cm/min Flux
6	91.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
7	108.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
8	125.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Bottom Upward Flux 1.72E-05 cm/min
9	141.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
10	158.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
11	175.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Value
12	191.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Residual_Suction [kPa] 100000 Initial Water
13	208.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Profile_Time [day] 3650 Content
14	225.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	SubModel_Duration [d] 3650
15	241.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Upper Boundary Inflow Condition Monthly Precipitation
16	258.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
17	275.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
18	291.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Upper Boundary Monthly Evaporative Flux
tep	3: Simula	tion Settin	igs N	Aodel S	Structure	Resul	ts Summary	Lower Boundary Outflow Condition No Downward Flux
Gete	Output	Calibration Mod	le (Layer1	aver5 Laver	9 Layer	13 Layer17	Lower Boundary Inflow Condition Upward Flux
0010	output			Layer3 L Layer4 L	ayer7 Layer1 ayer8 Layer1	1 Layer 2 Layer	15 Layer19	Climate Data Monthly PE Monthly Precipitation Monthly T Monthly Rel Humidity

Step 2: Boundary Conditions

Laver1 nput Pane 4 Output_Panel Input_Container Soil_Layers Results_Summary Calibration Panel GSM Consolidation Laver18 Laver19 **Model Overview**

000

User Input

User sees what the

 f_x Residual_Storage ransmission Rate $\int f_x$ Overflow $\int f_x$ Σ *f*_x fx Outflow $\int x$ Sat_Storage $\int f_x$ f_x

Layer Setup

modeler sees

Real-Time Simulation Results

Step 9:

Go back to the Bull's Eye Diagram if required as part of the iterative and participatory modelling process

Step 10:

Parameter Estimation (Case Study)

Simulation and Sensitivity Analysis (Case Study)

Soil Water Dynamics of Tailings Cap

Part I: Model Building Process

Part II: Simulation and Analysis

Global Dynamics– Total Water Storage

Global Dynamics– Total Water Storage

Vary Initial SC of TT Same CST Ks in all scenarios

Global Dynamics– Cumulative Runoff

0.000

Local Dynamics - Layer 4 (Depth: 52 cm)

....

- Why System Dynamics?
 - Feedback Structures
 - Rigorous Qualitative Process
 - Foster thinking and shared understanding through participatory modelling exercises
 - Ability to model soft variables

Limitations

- Poor Capture of Spatial Variation
- Over-Simplification
- Over-Complexity
- Complacency?

Acknowledgements

- Dr Nicholas Beier

Software Support: GoldSim Vensim.

FSCA (Dr Silawat Jeeravipoolvarn)