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A..BSTR,ACT 

The conservation equations governing buoyant plume rise are solved for 

the case of non-uniform wind conditions. A simple power law is selected 

to represent the actual wind profile. Analytical solutions are presented 

both for uniformly stable and neutral atmospheric conditions. These 

solutions are shown to be of the same form as those obtained in the 

simpler uniform case but with the plume rise now depending explicitly on 

the wind speed shear, i.e., z ~ tZ/(J+o). 

A sensitivity analysis of the effects on plume rise of typical variation 

in wind shear and entrainment reveals that the two quantities have an 

almost equal effect therefore justifying the use of the present model. 

To simplify computations a "uniform wind" is introduced such that when 

used in conjunction with Briggs' equations the results become consistent 

with those of the present theory. 



BUOYANT PLUME RISE IN NON-UNIJORM WIND CONDITIONS 

Introduction 

A common characteristic of recent plume rise models is their reliance 

on simple fluid mechanical principles. Thus the conservation equations 

of plume mass, plume potential temperature and plume vertical momentum 

are assumed to describe the essential features of buoyant chimney 

plume behavior. Closure is obtained by introducing an entrainment 

l. 

assumption in the mass flux equation which relates turbulent entrain­

ment to local mean-flow conditions in the plume. For a bent-over plume 

only entrainment normal to the plume axis is of significance, i.e., 

entrainment is everywhere proportional to the vertical velocity of the 

plume. This implies that plume growth is essentially linear with height 

(Scorer 1958, Slawson and Csanady 1967, Bringfelt 1969, Briggs 1970 and 

Shwartz and Tulin 1971). Plume lapse photography and aerial plume 

sampling have provided evidence for this simple relationship at least 

during the initial plume phase where the vertical plume velocity is still 

sufficiently large (Bringfelt 1969, Briggs 1970). The conservation 

equations are generally solved for uniform wind conditions resulting in 

the now well-known "2/3 -laws." It is the authors' understanding that 

only one previous study has dealt analytically with the problem of 

non-uniform wind conditions, and then only for an unstratified atmosphere 

(Murthy 1970). 



Theoretical Considerations for a Plume Rise Model in Non-Uniform 
Wind Conditions 

2. 

In this paper the conservation equations are solved for the non-uniform 

wind case and solutions are presented for both stable and neutral 

atmospheres. It can probably be argued that in the case of tall stacks 

the already familiar solutions are quite adequate since wind speed 

shears are supposedly negligible at these heights(> 150m). However, 

in our experience significant wind speed shears occur occasionally, 

primarily during very stable atmospheric conditions. Rather than 

complicating the problem by introducing a realistic but complex physical 

wind model, an attractive alternative to this model would be a simple 

power law which is known to well represent the wind profile at moderate 

heights. Thus, if Us is the wind speed at the top of a chimney whose 

height above ground is hs and z is the vertical distance coordinate 

originating at h , then the wind profile may be written as: s 

u 
u s 

(1 +;-) 
s 

y 
(1) 

Statistical values of y may be generated for a particular location as a 

function of time of day or if wind profiles are obtained routinely 

better estimates of y may be derived from the individual profiles. At 

the heights of interest it is reasonable to expect that 0 .::_ y .::_ 1. 0; 

the value y = 0 repre~ents uniform flow, and y = 1/7 is often reported 

as characteristic of a nearly neutral atmosphe~e. 



3. 

The complete deriyation of t~e conseryation equations can be found in many 

recent publications on plume rise and may be considered as well known. 

Therefore the governing differential equations can simply be stated here in 

their conventional notation without further justification. 

I 

d 2 e 
dt(UR g S) = 

dz 
dt = w 

a 

(2) 

(3) 

(4) 

(5) 

Eq. (5) is a kinematic relationship governing the bodily motion of the plume. 

The absolute sign on w in Eq. (2) is necessary because the plume entrains 

air whether it ascends or descends. It may be wise to review briefly the 

applicability of Eq.'s (2) to (4) inclusive. These conservation equations 

apply to buoyant bent-over plumes, requiring that the horizontal plume 

velocity essentially equals that of t~e ambient wind. Furthermore, they 

imply a cylindrical plume element having "top hat" potential temperature 

and vertical velocity profiles. The Boussinesq approxiUJation is assumed 

valid and the physical properties of the plume are assumed to be those of 

the ambient air. 



4. 

To solve the governing equations when the wind speed is given by the 

relationship (1), they are first conveniently transformed into z ~ coordinates 

and expanded. Thus: 

dR + ~ dU = a (2a) 
dz 2U dz 

I 

..£_(..§.__) + 2a ..§.__ = 
dz 8 R 8 

a a 

dw2 4a 2 --+-w dz R 
8 2g-
8 

a 

0 
b 

(3a) 

(4a) 

Eq. 's (1) and (2a) may be combined and the resulting differential equation 

integrated to yield the expression for plume growth. Then for the initial 

conditions R = R at z = 0 the solution is: 
s 

The quantity h is defined as the sum of the physical chimney height h and 
s 

the height above the chimney z, the latter of which corresponds to the 

buoyant plume rise. Eq. (6) is rather too complicated to use directly in 

the subsequent development of the plume rise model. However as can be seen 

from Figure 1 Eq. (6) is very nearly linear in z and can in fact be adequately 

approximated by the relationship: 

ah 
R=R +--s­

s 1+lr 
9 

h (h- 1) 
s 

(7) 



a 
"'-- is a rescaled entrainment constant. 

1+ 2y 
9 

5. 

In Table 1 is shown 

the ratio of Eq. (7) and Eq. (6) for a range of values of h/h andy. It is 
s 

obvious that for the most part Eq. (7) is an excellent approximation to Eq. 

(6). Varying a and R /h over a broad range changes the ratios by only a 
s s 

few percent. 

h/h s y=O. y=.1 

1.0 1.00 1.00 

1.5 1.00 0.99 

2.0 1.00 0.99 

2.5 1.00 1.00 

3.0 1.00 1.00 

3.5 1. 00 1.00 

4.0 1.00 1.01 

4.5 1.00 1.01 

5.0 1.00 1.01 

TABLE 1. R /R 

y=.2 

1.00 

0.98 

0.99 

1.00 

1.00 

1.01 

1.01 

1.01 

1.02 

approx. exact 

y=.3 y=.4 

1.00 1.00 

0.97 0.96 

0.99 0.98 

1.00 1.00 

1.00 1.01 

1.01 1.02 

1.02 1.02 

1.02 1.03 

1.03 1.03 

Legend 

a = .6 

R 

y=.51 

1.00 

0.95 

0.98 

1.00 

1. 01 

1.02 

1.03 

1.04 

1.04 

s h = 0.022 
s 

y=.6 

1.00 

0.95 

0.97 

1.00 

1.01 

1.02 

1.03 

1.04 

1.05 

y=.7 y=.8 y=.9 y=l. 

1.00 1.00 1.00 1.00 
_,/// v / / v/....-// / 

/0.9_> _})J ~0_)} vo., 
// V/ 

0.97 0.97 0.97 0.96 

1.00 1.00 1.00 1.00 

1.01 1.02 1.02 1.02 

1.03 1.03 1.04 1.04 

1.04 1.05 
/.// 

1.05 vl.O~ 
// v / rl :ol' v // 

1.05 / 1.06 vl.OJ 
/// /// // v / / v.// v. / / V, / 

1.06 vl:J7 ~~0~ vl.~ // / / V/ 

~ = represents error in excess of 5% 

By displacing the point of origin a distance z
0 

beneath the chimney exit, 

Eq. (7) can be written in the form: 
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R"' a*z for z _.:::.. z
0

(= Rs/a*). (8) 

In view of Eq. (8) , Eq. (3a) and there:!; ore also Eq. (4a) can now be 

completely integrated. 
2 In the general case N # 0 the excess plume temperature 

and the vertical motion of the plume are given by: 

- (2+6) 
JL_ = S(~) + (G - S) (~) 
8 z z a o o 

(9) 

w2 g zo{S z 2 - 2(2+6)] I -
2 = 3+6 z [ (-;-) - (-!--) + (G - S) ( zz) . 

0 0 0 

(1+6) - 2(2+6) 

- ( zzo) ] 1 (1 0) 

z N
2 

I 0 
where G is the initial value of 8 /8a' S = - -g-(~3~+~6~) is a nondimensional 

atmospheric stability parameter and 6 = 4y/9. Furthermore a buoyancy 

dominated plume was assumed, i.e., one where w = 0 initially. The plume 

trajectory for any given atmospheric stratification can now be obtained 

from Eq. 's (5) and (10). In a uniformly stable atmosphere (N > 0) the 

solution is: 

r . Nt]2/ (3+6) 
lsl.n 2 (11) 

where F = U z 
2 

a*
2 g G . The relationship between travel-time and downwind 

0 s 0 

distance is given by x=Judt + constant. Eq. (11) reduces to the famous 

"2/3-law" when 6 = 0, i.e., when the wind speed is constant with height. 

Eq. (11) possesses a global maximum when t = rr/N, the magnitude of which is: 

(12) 

A final asymptotic rise is approached when t + oo, Thus: 
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z 0 u 
1 m s 

1 -2(3+0)(;-) u 
o m 

(13) 

where U is determined from Eq. (1) at z = Zm· In deriving Eq. (13) Briggs' 
m 

(1975) concept of the unaltered volume flux was used. 

Finally, as Nt ~ 0, Eq. (11) may be Taylor-expanded about the value zero to 

yield the result: 

2/(3+6) 
t . (14) 

Some typical plume trajectories are presented in Figure 2, in which the 

effect of wind exponent y is seen to be significant. 

Sensitivity To Shear and Entrainment 

The question now arises as to the sensitivity of the predicted plume rise 

to changes in the observed values of y and a. The sensitivities must be of 

the same magnitude in order to justify the use of the present theory, since 

it is more complex than the widely accepted Briggs' equations which require 

observations only of the entrainment constant a. The entrainment constant 

a is seldom obtained directly by measuring the plume radius. Usually its 

value is inferred by comparing the plume rise equation to observed trajec-

tories, with the value of a being varied so as to obtain the best fit. 

Obviously this method will lump the e:f;:t;ect of :!;actors such as non-uniform 

winds into the observed variability of the entrainment constant. A physical 

mechanism which might explain the observed variability of a is not obvious, 



8. 

whereas the mechanisms which cause vaJ;iability in wind shears are much better 

understood. It is th.e authors' belief that much of the observed variability 

of entrainment constant a can be ascribed to the hidden effect of variations 

in wind speed shear. 

Sensitivity of a variable v is here defined as 

Sv = 100 dv ~ 100 6.v (15) 
v v 

where 6.v is the variability of v. Observed values of the entrainment 

constant a normally fall in the range 0.4 to 0.9, so that the variability 

is at most a factor of 2. Observed values of wind exponent y usually fall 

in the range of .1 to . 5, , so that the variability can be as much as a 

factor of 5. The assumption is here made that in general, 

.0._! 
I::!. a 

observed 

= 2.5 (16) 

implying that a 25% change in y is observed as frequently as a 10% change in 

a. 

Now, 

az az 
dz = ~ da + ay dy , (17) 

and from equation (11) we obtain: 

az 
- =-a a 

and 

2+8 (~) 
3+8 a 

az 4 z [ z ] ay = 9 3+8 1 - fuC-;-) 
0 

which are valid for both stable and neutral conditions. 

equations (15) through (19) yields 

(18) 

(19) 

Combination of 



s = z 
o [ z J 2to -. 1 - fn(-) S ~ ~-~. · S • 

3+8 z . y 3+8 Q 
Q 

9. 

(20) 

The first term on the right is the sensitivity of z to changes in y, while 

the second term is the sensitivity to changes in a. The sensitivities can 

be approximated for small values of y by 

and 

s 
2-1 ~ 
s y 

a 

2 
3 

These relations are plotted and compared in Figure 3 (the effect of 

(21) 

(22) 

assumption (16) has been included). It is apparent that S always depends 
z 

linearly on S , with a 10% increase in a producing a 6.7% decrease in z no 
a 

matter what the value of a or z might be. The dependence of S on S is 
z y 

more complex since their ratio is a logarithmic function of z/z and depends 
0 

linearly on the value of y. Thus when z/z = 10 and y = 0.5, a 25% increase 
0 

in y produces only a 2:\z%_ decrease in z. However, when z/z = 100 and 
0 

y = 0.5, a 25% increase in y produces a 6.7% decrease in z. Therefore a 

change in y has a cumulative effect which becomes most important when 

predictions indicate large values of plume rise. 

It follows from the above that neither a nor y is the predominant input 

variable. They have equally strong effects on the magnitude of plume rise 

and one should if possible, include both in the predictive equations. 

The "Uniform Wind" Approximation 

One disadvantage in applying the theory presented here is the necessity for 

an integral transformation betiveen x and t. The equations are explicit in 
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z and t, whereas the sta,ck designer who might use these equations will 

normally want to work in z and x. This is somewha,t difficult to do with 

the equations as given here, so a simpler approach is desirable. Such 

an approach could take the form of a "uniform wind" approximation. 

For a uniform wind the velocity U at stack height should be used in the 
s 

Briggs formulation. However, to account for vertical wind shear effects 

the present practice is to use a velocity UB different from U . Usually s 

the value of UB chosen is the average velocity over the plume layer. Then 

for neutral conditions 

z = 
3 1/3 F 

(-) 0 

2a
2 

U 
B 

1/3 

2/3 
X (23) 

and for stable conditions 

z = (24) 

where, for a power law wind profile, 

h l+y 

[ 

(h) - 1 ] 
u = s u 

av (.11_ _ 1) (l+y) s 
h 

(25) 

s 

Recent comparisons (Slawson, 1977) of equation (23) with observed plume rise 

show an overestimation of z which can be corrected by using a velocity UB 

somewhat greater than U . The disadvantages of this approach are that it av 

requires an a posteriori adjustment of the plume rise equation in order to 

fit the observations, and the adjustment factor is usually different for 

each set of observations. A more straightforward method of adjusting 

equations (23) and (24) is to compare their predictions with those of the 
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more exact theory presented here. 

According to Briggs (1975) the final rise phase for neutral conditions occurs 

near 

{

49 F 
518 

0 ' 

xf= 119F2/5 
0 ' 

(26) 

or at time tf = xf/Us. Equating the final rise forms of (23) and (14) and 

solving for UB, we obtain 

Similarly, for stable atmospheric conditions we have 

(2+0) J 
3!o 

Comparison of equations (27) and (28) produces the single relationship 

U ~ Aa. F B o 
u = u R 3 o+.9..) 37& Cl+.u.) (3/o) 

s s s 3 . 2 

where for a stable atmosphere 

A = 6/N2 

and for a neutral or slightly stable atmosphere 

2 
3 2 3 xf 

A = -2 tf = - (-) 2 u . 
s 

(27) 

(28) 

(29) 

(30) 

(31) 

J!.:quations (29) through (31) thus specify the uniform velocity UB to be used 

I 

in the Briggs plume rise equations in order for that more simple formulation 
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to predict final or maximum :rises which axe consistent with those from the 

more exact present theory. The error introduced by th_e "uniform wind" 

approximation is presented in Table 2. This conservative approximation to the 

actual plume rise is probably adequate for most applications. 

TABLE 2. z("uniform wind")/z(shear) 

t NEUTRAL STABLE 

(sec) y=.25 y=.50 y=.25 y=.50 

20 .93 .87 • 96 .93 

40 .94 .89 .98 .96 

60 . 95 • 91 .99 .97 

80 .96 .93 .99 .98 

100 .96 .93 1.00 .99 

120 .97 .94 1.00 1.00 

140 .97 .95 1.00 1.00 

160 .98 .95 1.00 1.00 

180 .98 .96 1.00 1.00 

200 .98 .96 1.00 1.00 

Comparison With Field Measurements 

Stack parameters 
same as Figure 2 • 

The verification of any plume rise theory eventually rests on comparison 

with data obtained from full-scale field measurements. The present 

theory has been applied to 21 time-mean stable plume trajectories observed 

at Ontario Hydro's 4000 MW Nanticoke Power Station (Djurfors, 1975). The 

results were inconclusive in that the observed scatter around the predicted 

plume trajectories was not reduced significantly below that found from 
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comparison of observations with the CQl1lmonly used uni.torm wind model. The 

difficulty lay in the fact tha.t the Nanticoke study was not intended to 

provide data for comparison with a theory which requires the wind exponent 

y as an input. Thus the values of y which were available were subject to 

errors which were large enough to mask any improved predictive ability held by 

the present theory. It is therefore recommended that future full scale plume 

rise studies incorporate more accurate measurements of the vertical wind 

profile than are provided by single theodolite-pibal techniques. Double 

theodolite or tethersonde readings would be appropriate. 
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