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... there are known know ns... things we know we know ...
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A b s t r a c t

Geostatistical prediction is applied with a stationary random function (SRF). Stationarity 

is defined in this thesis as a decision involving five key phases of intervention from the 

practitioner: (1) choosing domain types, (2) boundary modeling, (3) determining the 

nature of transitions across boundaries, (4) trend modeling, and (5) predicting with a 

trend. The framework is a support system for making reasonable decisions of stationarity.

Four new modeling techniques are prototyped within each of the last four phases: (1) 

boundary modeling with volume functions, (2 ) near boundary model mixing with a linear 

mixing model, (3) probability combination schemes for building 3D trend models from 

lower dimensional trends, and (4) sequential Gaussian simulation with a locally varying 

transformation to account for the trend.

Making a reasonable decision of stationarity is essential for building numerical models 

with realistic geological heterogeneity. These improved models then lead to improved 

geological and production uncertainty characterization.
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C h a p t e r  1 

I n t r o d u c t i o n

A key aspect of resource management is a clear understanding of the size, orientation, 
and quality of the resource. Numerical modeling is becoming an increasingly important 
tool for quantifying these aspects in natural resource evaluations. This research is aimed 
at improving numerical modeling for natural resource characterization.

Geostatistics has evolved to the method of choice for numerical models o f environmental, 
mineral, and petroleum developments [1]. Geostatistical tools are used to create mulitple 
realizations of geological heterogeneity honoring all available information. The variation 
between geological realizations is a measure of geological uncertainty. The geolgoical 
realizations are processed to calculate production realizations. The variation between 
production realizations is a measure of production uncertainty. Production uncertainty 
provides a basis for risk qualified decision making.

Mineral and hydrocarbon accumulations are created by a series of depositional events 
visible through deterministic spatial trends in petrophysical properties. Geology, 
however, is not just deterministic; it is also probabilistic due to chaotic non-linear 
processes. Uncertainty is the consequence. The central aim of geostatistics for numerical 
modeling is uncertainty characterization; however, large-scale geological features should 
also be reproduced. Conventional geostatistical prediction techniques do not adequately 
handle the deterministic nature of trends and the probabilistic nature of uncertainty 
simultaneously [2, 3].

The theory and practice of geostatistics is extended in this thesis to generate a reasonable 
balance between determinism and probability for more geologically realistic numerical 
models of uncertainty. This is achieved through a novel five-step framework for making a 
reasonable decision of stationarity. The five steps are (1) choosing the number and types 
of domains for numerical petrophysical property modeling, (2 ) modeling these domain 
boundaries, (3) near boundary type detection and model mixing, (4) trend modeling, and 
(5) predicting with a trend model.

1.1 Problem Setting
An important goal of numerical modeling is the accurate depiction of deterministic large- 
scale variability. This dissertation will address the challenges associated with integrating 
determinism into geostatistical models of uncertainty. This is achieved by making a 
reasonable decision of stationarity.

l
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1.1.1 The Decision of Stationarity
Geostatistical inference requires a decision of stationarity entailing geological 
homogeneity within the chosen domains. For this decision to be deemed reasonable, a 
total of five modeling steps or phases are undertaken: the first is choosing the number and 
type of domains to model petrophysical properties within; the second is modeling the 
boundaries of these domains; the third is quantifying the nature of transitions across the 
boundaries; the fourth is quantifying trends within the boundaries; and the fifth is 
ensuring the trend is reproduced in prediction. The collective approach to these five 
geostatistical modeling phases is presented in this work as the decision of stationarity. 
Each of these modeling phases has a context, modeling alternatives, and reasonability 
criteria in its effect on improving a decision of stationarity. A reasonable decision of 
stationarity is achieved by addressing these five aspects.

A stationary random function (SRF) is a probabilistic representation of a petrophysical 
property with constant expected value and covariance moments independent of location. 
The entire resource accumulation is seldom an appropriate domain to apply a SRF model. 
There is a need to identify separate domains with separate SRF models that are deemed 
more consistent with the mathematical assumptions of a SRF.

The boundaries separating different stationary random functions (SRFs) are frequently 
modeled deterministically. Manually digitizing is time consuming, subjective, inflexible, 
and unable to capture inherent structural uncertainty. There is a need for automatic 
boundary modeling techniques capable of accessing uncertainty.

The boundary models that separate different SRF models may result in abrupt and 
geologically unrealistic transitions in the final numerical model. Alternative models for 
transitions will be reviewed and developed for this purpose.

A trend is a gradually varying expectation in a geological variable within some boundary. 
One is always present regardless of how small the domain size and SRF influence. A 
trend should always be constructed and reproduced in any viable numerical model. There 
are several algorithms and associated options to consider for trend modeling. Finding the 
right balance between deterministic variability captured within the trend and probabilistic 
variability captured by subsequent geostatistical uncertainty modeling is a continuing 
challenge. There is a need to find this balance and implement trend modeling techniques 
designed around this balance.

It may not be necessary to integrate the trend into geostatistical prediction when the 
amount of available data is sufficient to implicitly reproduce it. If there are insufficient 
data, however, an explicit method to account for the trend is required. Techniques for 
geostatistical prediction with a trend are reviewed and developed for this purpose.

1.1.2 Dissertation Contribution
The decision of stationarity and its consequences for numerical modeling are introduced 
first. Multiple domain types may need to be identified; boundary models would then be 
needed to separate SRFs throughout the numerical model; the transitional nature of these

2
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boundaries may need to be incorporated; a trend may need to be built; and prediction 
must honor the trend.

Decisions of stationarity are routinely debated by practitioners on the basis of subjective 
geological conditions. The five phase framework for decisions of stationarity presented in 
this dissertation acknowledges this criterion by including realistic geological consistency 
as a minimum standard for reasonable approaches within each phase, but also offers 
additional more objective criteria.

Current approaches are reviewed and new approaches are developed within the proposed 
phases of a decision of stationarity. New approaches should not yet be considered fully 
developed and mainstream. They are prototypes of good ideas that need to be followed 
up with additional research and development.

The results of this research are the generation of more realistic models of heterogeneity in 
the presence of deterministic and probabilistic variability. These models can be used for 
improved prediction of geological and production uncertainty.

1.2 Terminology
Stationarity and this dissertation are of an intrinsically subjective nature. As such, there is 
some contentious terminology used throughout. For clarity, some key terms are defined 
as they are applied in this thesis here in order to avoid any misinterpretation later.

1.2.1 Decision of Stationarity
The decision of stationarity is arguably an assumption. Defining an assumption as a fact 
taken to be true, stationarity is indeed a mathematical first and second order assumption 
required of a random function (RF) to perform geostatistical prediction. However, since 
the assumption of stationarity can be determined differently given an identical setting by 
different individuals and interpretations, stationarity is also referred to as a subjective 
decision. The latter classification of stationarity as a decision is the most popular in 
practice and literature and is adopted for the remainder of this dissertation. This thesis 
presents five major considerations the practitioner should address in order to make a 
reasonable decision of stationarity.

1.2.2 Methodology
Some important methodological terminology will be used to classify currently available 
and new modeling techniques.

Implicit and Explicit Approaches
An implicit approach in this dissertation is defined as one that intrinsically or inherently 
honors realistic geological heterogeneity although this heterogeneity is not directly 
incorporated into the formulation or implementation of the methodology. An explicit 
approach is then a methodology that has been tailored to directly incorporate the desired 
geological heterogeneity.

3
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Stochastic, Deterministic, and Probabilistic
The SRF models used in geostatistics are stochastic meaning that they contain elements 
of random and deterministic variability. The random component represents uncertainty 
and is modeled with probabilistic algorithms such as ones available within the discipline 
of geostatistics. The deterministic component represents causal determinations based on 
preceding events or natural geological laws. These terms are used throughout the entire 
thesis to describe various techniques.

Subjective and Objective
Subjectivity can be defined as making observations and conclusions that are dependent 
on the interpreter. A subjective technique would then be one that is in general non- 
repeatable. Objectivity and objective techniques are then independent of individual 
interpretation. These two terms are used primarily to evaluate the reasonableness of 
various techniques.

1.2.3 Mining and Petroleum
This dissertation does not focus solely on mining or petroleum natural resource settings. 
Although the basic concepts are the same, the terminology is different. Some widespread 
parallelisms used throughout the dissertation are:

1. Rocktype (Mining) and Facies (Petroleum) are both terms used to describe different 
rock material with significantly different geological properties;

2 . Mineral (Mining) and Hydrocarbon (Petroleum) are terms referring to the material 
of economic interest within the entire natural resource accumulation;

3. Net and Non-Net are classifications of either rocktypes (mining) that do and do not 
host economic mineral concentrations or facies (petroleum) that do and do not host 
economic hydrocarbon concentrations;

4. Petrophysical Property is a common term to both mining and petroleum referring to 
geological variables regionalized within the natural resource accumulation;

5. Grade (Mining) and Value (Petroleum) are general terms used to describe 
concentrations of petrophysical properties.

Throughout the thesis, the distinction between mining and petroleum examples and 
discussions is made clear with these terms.

1.3 An Introductory Example
A small example is presented to illustrate (1) the choice of how many SRFs to use, (2) 
establishing the significance of a trend, (3) constructing a trend model, (4) choosing the 
amount of variability to capture with a trend, and (5) geostatistical simulation with and 
without the trend model.

The grades in this example are from a vein-type gold deposit. There are 67 samples 
located on a 2D easting-elevation (X-Z) cross section. The grades are in g/t and distances 
are meters. Figure 1-1 shows the histogram (left) and location map (right) of the samples.

4
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The gold grade distribution is positively skewed with a mean and variance of 1.36 and 
1.72, respectively.

Variography is performed on the normal score transforms of the gold grade data. The best 
correlation and principle variogram direction is in the direction 45° from the elevation 
coordinate; the perpendicular minor variogram direction is then 135°. Figure 1-2 shows 
the final variogram points and models for both the 45° principle (dark) and 135° minor 
(shaded) direction. The variogram shows that there is effectively no spatial correlation for 
distances greater than roughly 50m in the 135° direction and 150m in the 45° direction.

Choosing to represent gold grade with a single SRF implies the expected gold grade of 
1.36, variance of 1.72, and covariance/variogram function in Figure 1-2 are constant and 
independent of location within the full 600 x 300m domain. The corresponding boundary 
model for this decision is the 600 x 300m rectangular accumulation limits. However, 
Figures 1-1 and 1-2 suggest that there are two distinct populations of gold grades: lower 
gold grades at higher depths and further along in the easting direction and higher gold 
grades at lower depths and not as far along in the easting direction. Two SRFs could be 
used: one for higher grades at higher elevations and the other for lower grades at lower 
elevations. The assumptions of mathematical homogeneity for each separate SRF are 
improved over those for a single SRF. For two SRFs, a boundary model would be needed 
between the high and low grade areas to separate the influence of the corresponding 
SRFs; boundary transitions would also need to be considered. The decision to separate 
the full accumulation limits into multiple domain types with multiple SRF representations 
must consider a balance between the degree of homogeneity and the number of available 
data for inference. In this introductory example, a single SRF is used to ensure there are 
sufficient data to infer the SRF parameters and to increase the influence of any trend.

Figures 1-1 and 1-2 show some indications of a significant trend within the accumulation 
limits. With the exception of two high grade samples at a depth of approximately 460m, 
the location map suggests low gold grades are more commonly encountered at higher 
depths and further along in the easting direction. Deterministic geological interpretation 
should be used to confirm this observation in practice. Variography can also be used for 
confirmation. Figure 1 -2 shows that the significance of a trend is not isotropic; the trend 
is particularly important in this example for the minor variogram direction shown by a 
steady increase in experimental points past the sill or overall variance. Moreover, 
comparing the variogram range to the average spacing between potential prediction and 
sample locations, there is a significant portion of lower elevation locations where the 
variogram will exert very little control during prediction. In these sparsely sampled 
locations, the numerical model runs the risk of departing from realistic geological 
heterogeneity due to an overruling influence of SRF assumptions. The trend is more 
important in these locations; the SRF assumptions should be relaxed and a trend model 
should receive more influence over prediction. A trend model will be needed in this 
example to represent important large-scale variability.

Three different trend models are created at a 2 x 2m resolution and shown in Figure 1-3. 
They represent high (left), medium (middle), and low (right) amounts of variability in the
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trend. These models are built using global ordinary kriging with a long range variogram 
with zero, 5%, and 50% nugget effects, respectively. The decision to choose one trend 
model over another is a subjective balance between the amount o f deterministic 
variability modeled by the trend and probabilistic variability left to more conventional 
geostatistical modeling algorithms.

A traditional sequential Gaussian simulation (SGS) is implemented using the distribution 
of 67 sample data in Figure 1-1 and variogram in Figure 1-2 to condition 30 realizations. 
Figure 1-4 shows the first 3 realizations and expected value maps and confirms the need 
to explicitly model and incorporate the trend into the simulation algorithm. In the regions 
of widely spaced data in the deeper-eastern parts of the cross section, the weight given to 
the stationary mean of 1.36 increases and the etype result converges to this mean. This 
contradicts all of the deterministic trend models shown in Figure 1-3 and would not be 
appropriate for geological and production uncertainty quantification. This discrepancy 
between predictions and the trend becomes less significant as the prediction locations 
approach the sample data locations.

There is a need to explicitly account for the trend model within a simulation framework. 
There are several options available to incorporate the trend model in simulation. Figure 1- 
5 shows the results of perhaps the most popular and definitely the most straightforward 
option. In this approach, the medium variability trend model in Figure 1-2 is used to 
calculate residual values at the 67 sample locations. A traditional SGS is then applied to 
the residuals and added back to the trend model. The first 3 realizations and expected 
value maps are shown in Figure 1-5. The results appear more consistent with the medium 
variability trend model in Figure 1-3 and would be more appropriate for geological and 
production uncertainty quantification.

This small example shows a short preview of some issues addressed in this dissertation. 
In particular, the choice of the number of SRFs to adopt, establishing when the trend is 
significant enough to incorporate explicitly into prediction, constructing the trend model, 
choosing the amount of deterministic variability to model in the trend, and the results of 
simulation with and without incorporating the trend.

GOLD GRADES
NUM BER 6 7  

MEAN 1.36 
ST D  DEV 1.31 

CV 0 .97  

MAX 4 .45  
P 75  2 .48  
PSO 1.22 
P 25  0.04 
MIN 0 .00

GOLD GRADES

A ufg/t]

•  •  ® a

Figure 1-1: The histogram (left) and location (right) of 67 gold grade samples used in this introductory 
example.
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Figure 1-2: The experimental (points) and model (line) variogram in the 45° principle (dark) and 135° 
minor (shaded) directions.
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Figure 1-3: Three possible trend models ranging from high (left), medium (middle), and low (right) spatial 
variability. The gray scale used is shown in Figure 1-1.
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Figure 1-4: The first three realization maps (left) and etype map (right) using a traditional SGS without 
explicitly accounting for the trend. The gray scale used is shown in Figure 1-1.
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Figure 1-5: The first three realization maps (left) and etype map (right) using SGS on the residuals 
calculated from the medium variability trend model in Figure 1-3. The gray scale used is shown in Figure 
1- 1.

1.4 Dissertation Outline
The central theme of this dissertation is the presentation of the five phase framework to a 
decision of stationarity. This idea is fully developed. Within each phase, techniques to 
handle non-stationarity are proposed. These new techniques are not fully developed.

Chapter 2 outlines the theoretical basis needed to develop and understand the concepts 
and techniques illustrated in the remainder of the dissertation.

The third chapter is the most significant. It presents the framework for making a decision 
of stationarity including the context, alternative modeling approaches, and reasonability 
criteria for each of the five steps required for making a decision of stationarity.

Chapter 4 reviews deterministic and probabilistic boundary modeling methodologies. A 
new boundary modeling idea with what are referred to as smooth volume functions is 
then proposed. An application to coal-bed-methane (CBM) is presented for illustration.

Chapter 5 addresses the detection of different transitional natures of petrophysical 
properties across geological boundaries as well as techniques to model these transitions. 
A new linear mixing model idea is proposed as a simple model for representing the 
influence of surrounding SRF predictions across soft boundaries. An application example 
is presented for illustration.

Chapter 6 addresses trend modeling including the various methods available for modeling 
the trend. The application of different probability combination schemes to combine lower 
dimensional trends into full 3D trends is proposed. An application example is presented 
for illustration.

Chapter 7 addresses the integration of trend models into geostatistical prediction. A new 
geostatistical simulation algorithm using locally varying transformation tables is 
proposed. Application to the same data used in this chapter is presented for illustration.
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Chapter 8 concludes the dissertation with final comments. An appraisal of what this 
dissertation offers, some practical guidelines for implementation, and the numerous 
opportunities for future work on the techniques proposed within each phase of making a 
reasonable decision of stationarity are discussed.
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C h a p t e r  2 

F u n d a m e n t a l  G eo sta tistic a l  C o n c e pt s

This chapter presents an overview of the concepts, theory, and notation underlying the 
practice of geostatistics for numerical modeling. This chapter also provides a foundation 
for subsequent techniques and developments in this dissertation. A 2D reservoir quality 
example is used for illustration. The geostatistical material presented in this chapter is 
derived from a comprehensive foundation of statistical and mathematical theory [1, 2, 3, 
4, 5, 6 , 7, 8 ]. These references are cited throughout this chapter.

2.1 From Statistics to Geostatistics
Statistics relates to the collection, organization, analysis, interpretation, and presentation 
of data. Statistics are applicable to a wide variety of disciplines. The field of geostatistics 
is one such discipline where statistics are applied to earth sciences phenomenon. There 
are three fundamental differences between geostatistics applications and classic statistics:

1. Emphasis on the geological context of the sample data;

2 . Quantification of the spatial correlation between data; and

3. Integration of a variety o f data from different volume scales, precision, and quality.

The first difference relates to the decision of stationarity where the geological context of 
both boundary modeling and trend modeling are integrated into geostatistical modeling.

2.2 The Random Function Model
Statistics and geostatistics alike are concerned with population inference from a sample 
of a population. The population is an unattainable set of exhaustive sample measurements 
over the entire study area, the sample is the limited set of measurements available for 
study, and inference refers to prediction at unknown locations.

An essential prerequisite for applying any prediction algorithm is a choice of model type 
dictating how unsampled locations are represented and described. Two types of models 
are available: deterministic and stochastic. Deterministic models are possible when the 
geological context of the sample data is well understood and there is essentially zero 
uncertainty attached to predicting at unknown locations. Unfortunately, however, very 
few earth science phenomenons are understood in sufficient detail to permit a fully 
deterministic prediction approach [2]. There is always uncertainty due to incomplete
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geological information. The geostatistical approach to prediction is based on a stochastic 
model that is capable of capturing this inherent uncertainty with probabilistic algorithms. 
This stochastic model is referred to as the RF model.

2.2.1 Setting
Petrophysical properties of natural resource phenomenon are referred to as regionalized 
variables (ReV) distributed through 3D space. The paradigm of geostatistics is predicting 
ReV values at unsampled locations via location dependent random variables (RVs). A 
random variable (RV) is typically denoted with a capital letter such as Z while its actual 
values are denoted with the corresponding lower case letter z. The notation Z(u) indicates 
that each RV is attached to a certain location given by the vector of 3D coordinates u, 
making it also a ReV.

Where the u location is a sample location, a RV is unnecessary since the sample value is 
recognized with zero uncertainty (assuming no sampling error). At unsampled locations, 
a RV Z(u) is used to model the uncertainty about the true unknown z value through a 
cumulative distribution function (cdf) denoted F(u; z). Often the cdf is updated by n 
relevant sample data; the cdf in this case is referred to as a conditional cdf (ccdf) and is 
denoted F(u; z\(n)). The uncertainty about z is a function of the location u as well as the 
amount, configuration, and values of the n neighboring sample data.

Figure 2-1 shows the setting for the 2D example used throughout this chapter. There are a 
total of 310 scattered z samples of reservoir quality within a domain measuring 3 x 5km 
in the easting and northing directions, respectively. Typically, a fall grid o f RV locations 
is considered and the u location is taken at the centre of these grid blocks. A 100 x 100m 
RV location is outlined and highlighted in Figure 2-1. There are a total of n = 26 sample 
data within a predetermined search neighborhood that can be used to condition the 
corresponding local ccdf. The goal of geostatistical modeling is to build the ccdf for each 
of the uninformed locations. The inference of the F(u; z\(n)) ccdfs using n relevant 
sample data can be achieved with the RF model formalism presented in this section.

2.2.2 Random Variable Formalism
A continuous RV is one that takes on an infinite number of possibilities. In the example, 
Z(u) is a continuous RV representing reservoir quality in units of percent. Any particular 
z(u) sample then takes on any value within the interval [0 , 1 0 0%].

A continuous RV is fally characterized by its ccdf, which provides the probability that 
the attribute Z is no greater than any threshold value z conditional to n surrounding data:

The ccdf in relation (2-1) must be a non-decreasing function within the interval [0,1]:

F^u;z|(n)^ = P r o b |z (u )< z |(« ) | Vz (2-1)

F(u ;z |(« ))e[0 ,l] Vz 

f ( u ; z | ( « ) ) < f ( u ; z ' | ( « ) )  V z ' > z

(2-2)
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Figure 2-1: The 2D example geostatistical setting for this chapter. There are a total of 310 z sample data 
within a 3 x 5km domain. A 100 x 100m grid block is shown; the search window centered on this location 
retains n = 26 samples for conditioning the corresponding local ccdf.

2 .2.3 R andom  Function Form alism
A RF is defined as a collection of RVs within a preset domain. The RF for a continuous 
RV Z is the set of RVs: {Z(u) for all u in domain D}. For a total number of RV locations 
L, the entire RF is fully characterized by the set of ccdfs:

F'(ui,...,ui ;z11(n),...,zL |(n)) = P r o b jz ^ )  < zx \(n),...,Z(uL) < zL |(«)} (2-3)

for all possible numbers of RV locations / = 1 and all possible combinations of the 
locations of these L  RVs, u i,..., u/,. This multivariate ccdf describes the joint uncertainty 
about the L  unknown zi,..., z i  values and is referred to as the spatial law of the RF. In 
general, there are lQ  possible combinations of RV locations for each value of / and zQ  
+ ...,+  lC l ccdfs to infer in total. For example, a grid of just 15 x 25 RV locations (500m 
x 500m blocks) in Figure 2-1 would require 10112 unique ccdfs. Practical geostatistical 
applications, therefore, usually limit the spatial law to the set of univariate distributions at
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each L location u and the set of bivariate distributions at each 1 C2 pair of two different 
locations, u/ -  u (z/ = z) and u/> -  u ’ (z/> = z’):

f (u;z |(m)) = P ro b |z  (u) < z |(« ) |

F^u,u';z|(n),z'|(«)j = P robjz (u) < z|(«),Z (u ') < z'|(«)|

If this now L = 2-variate spatial law is then assumed multivariate Gaussian, its evaluation 
reduces to inferring the first order mean of all L univariate ccdfs and the second order 
covariance of all 1 C2 bivariate ccdfs. These moments are denoted:

m (u) = E { z (u ) |
V '  1 W j (2-5)

Cz (u,u') = E {Z (u )-Z (u ')}-E {Z (u )}-E {Z (u ')}

The first order mean appears as the result of the expected value of a set of z samples at 
location u. The second order covariance is also a function of the expected value operator 
and requires a set of paired samples at locations u and u ’. These sample sets do not exist.

2.2.4 Decision of Stationarity
It is impossible to infer the mean or covariance function in (2-5) with the sample data 
since there is at most one sample per u location and one pair of samples per two locations 
u and u \  The decision of stationarity is made in order to substitute the need for repetitive 
realizations at all locations for scattered sampling at sample locations [3], This decision 
allows the spatial law to be inferred from sample data alone.

The assumption of stationarity entails invariance of the spatial law under any translation 
vector h from location u to location u ’ (u’ = u + h):

^(up-.^u^Zj |(n),...,zL |(n)) = f ( u j  +h,...,ui +h;z, |(n),...,zL |(w)) Vh (2-6)

However, since classical geostatistical analysis does not exceed the bivariate distribution, 
a much less stringent assumption of second order stationarity is required. This entails L = 
2 in (2-6). This assumption of stationarity allows inference of the spatial law in (2-6). The 
stationary univariate distribution F(z) and associated first order mean m can be inferred 
from the cdf o f z sample data available within the domain D:

F (u ;z ) = F (z )  V u e D  ^

m (u) = m V u e D

And the stationary bivariate distribution F(h;z,z’) and associated second order covariance 
Cz(h) can be inferred from the bivariate cdf of all z and z’ sample data collected from all 
u to u ’ pairs of locations, respectively, approximately separated by the lag vector h:

F  (u, u'; z, z') = F  (h; z, z') V (u ,u ')eD

Cz (u,u') = Cz (h) = E {Z (u) • Z (u + h)} -  m2 V(u,u') e D

The spatial law in (2-6) can be calculated with the assumption of stationarity. The 
stationary first order mean m is inferred from the global stationary univariate cdf F(z); the
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stationary second order covariance Cz(h) is inferred from the stationary h-bivariate cdf 
F(h; z, z’). This type of function is referred to as a stationary random function (SRF). 
Once the spatial law is quantified, it is exploited in geostatistical prediction to update the 
global stationary univariate cdf F(z) to local F(u; z\(nj) ccdfs using n sample data 
surrounding each unknown u location.

Relations (2-6), (2-7), and (2-8) represent the assumption of stationarity required to 
perform geostatistical prediction mathematically. For practical modeling purposes, the 
decision of stationarity involves consideration of a number of separate phases. Five steps 
are listed and investigated in this dissertation: (1) choosing the number and types of 
domains for numerical petrophysical property modeling, (2 ) modeling these domain 
boundaries, (3) near boundary type detection and model mixing, (4) trend modeling, and 
(5) predicting with a trend model. The aim of this dissertation is the development and 
clear presentation of a support system for integrating these components of a decision of 
stationarity into a reasonable numerical model of geological heterogeneity.

It is important to note that stationarity is not a geological property -  stationarity refers to 
the mathematical properties of a SRF in (2-7) and (2-8) needed to perform inference. A 
mineral deposit or hydrocarbon reservoir is, therefore, not stationary', however, a SRF 
can be applied within the limits of the deposit or reservoir.

2.2.5 Trend Modeling
The spatial distribution of a geological variable is of dual character: partly structured and 
partly random. The structured component manifests from a particular sequence of 
interpretable depositional events that acted to originally concentrate the ReV; the random 
component is due to chance fluctuations in these geological formation processes. This 
notion of dual character can be represented analytically. The typical decomposition 
technique calls for dissociation of the Z(u) RF into an additive structured and random 
component:

Z(u) = w(u) + i?(u) (2-9)

where m(u) is the structured trend part and R(u) is the random residual part. The first 
order assumption of stationarity assumes the trend model is a constant m value with no 
spatial variability; however, this assumption may not contain sufficient variability to 
reproduce large-scale deterministic geological variability in the final numerical model. In 
these cases, a locally varying mean or trend may need to be integrated into geostatistical 
prediction explicitly.

2.3 Univariate Description
Geostatistical modeling starts from petrophysical property samples at a limited number of 
locations. The ultimate goal is to characterize unsampled areas; however, a combined 
spatial and statistical description of the available sample data exerts significant control on 
prediction at unsampled locations. The results of this data analysis inform the practitioner 
about the intricacies of the data and may reveal problem, outlier, or erroneous data. These 
descriptions can also be used to determine or help determine important geostatistical
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parameters of the global univariate distribution as well as detect and even calculate large- 
scale trend models.

One particularly important summary of any continuous RV Z is its cdf. In geostatistics, 
this is the unique stationary cdf F(z) computed from all available z samples:

f (z) = / 4 Z x(z(u0 ;z) Vz (2_l°)
s = l

where z(us) is the z measurement at the us sample location and its indicator transform is:

(2-11)
/ / S \ [l i fz (u s)< z  

x(z(us);z) = ̂  Vz
0 otherwise

The plot of the proportion of data equal to and below each z data versus the z data is the 
F(z) cdf. A similar depiction of the distribution of a RV Z  is a histogram which is 
essentially a bar chart of frequencies within z bin widths.

2.3.1 Summary Statistics
Figure 2-2 shows a histogram and cdf of the reservoir quality variable available at the 
310 sample data locations in Figure 2-1. The information contained in these distributions 
is important for subsequent application of geostatistics. Several informative summaries of 
these RVs are reported and written next to the distributions. These are now described.

R e s e rv o ir  Q u a lity
NUMBER 310 

MEAN 7.24 
STD DEV 4.22 

CV 0.5B 
MAX 19.13 
P75 9.92 
P50 3.96 
P25 4.22 
MIN 0.00

10 15

RESERVOIR QUALITY

c u

R e s e rv o ir  Q u a lity
1 .0 0 ,

>-2
111
ZJo NUMBER 310 

MEAN 7.24 
STD DEV 4.22

UJ

E
UJ
>

MAX 19.13 
P75 9.92 
P50 0.963O

0.20.

0 155 10 20

RESERVOIR QUALITY

Figure 2-2: The distribution of reservoir quality in the example shown as a histogram (left) and cdf (right). 
The summary statistics of both are reported.

Measures o f  Central Tendency
The central value of a continuous distribution is usually taken as the arithmetic mean, m:

m = / s l l z (n s )
S = 1

(2-12)

The mean of the reservoir quality variable is reported in Figure 2-2 as 7.24.

The median quantile denoted zo.50 or M is another measure of central tendency. This value 
is M  = 6.96 for the reservoir quality data in Figure 2-2. The median is a more appropriate 
measure than the mean m when the distribution is highly skewed.
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Quantiles
In general, the q quantile or zq value is equal to F 1(q) which is the value where 
approximately 100-q% of the data is less than zq. Typically used quantiles are the three 
quartiles z o .2 5 ,  z o .5 0 ,  2 0 .7 5  (4.22, 6.96, and 9.92, respectively, in Figure 2-2), nine
deciles z < n o ,  z o .2 0 ,  - . 2 0 . 9 0 ,  and ninety-nine percentiles z 0 .0 1 ,  2 0 .0 2 ,  • • - ,  2 0 .9 9 -

Measures o f Spread
The most popular and robust measure of spread is the variance a  calculated as:

o-2=/4ZWus)-m)2 (2_13)
S = l

The standard deviation a  is the square root of the variance. The <7 and cr2 values are 4.22 
and 17.81, respectively.

Another measure of spread is the ratio of the standard deviation to the mean d m  referred 
to as the coefficient o f variation CV. The CV measure can only be calculated for strictly 
positive or strictly negative variables. The CV measure can be useful when comparing 
variation of variables with significantly different units.

The data range, that is, the difference between the minimum MIN  (0.00) and maximum 
MAX  (19.13) is another measure of spread; however, this can be misleading due to the 
irregular nature of extreme values. The range is 19.13 in Figure 2-4. Similar but more 
robust measures of spread are inter-quantile ranges IQR. The range ( z o .7 5  -  z o . 2 5 )  is one 
possible IQR often referred to as the inter-quartile range. The z o .2 5 ,  z o .7 5 ,  and ( z o .7 5  -  2 0 .2 5 )  

IQR are 4.22, 9.92, and 5.70, respectively.

2.3.2 Spatial Description
The statistical summaries presented in the previous section do not take into account the 
locations u attached to each of the sample data z(us). The spatial arrangement of data is 
important for extending classical statistics to geostatistical applications.

Location Map
A basic spatial description of a ReV consists of posting the z(us) sample values within the 
domain. Location maps are simple to construct and useful for visualizing the data, 
determining if  the data are representative, detecting trends, and helping decide on 
parameters for subsequent geostatistical operations. Figure 2-3 shows the location and 
value of the 310 reservoir quality samples.

Moving Window Statistics
Moving window statistics are an effective tool for summarizing the spatial distribution of 
a variable. Summary statistics such as the mean m and variance cr2 are easily calculated 
within local windows. Figure 2-3 reports the m and a2 within the fifteen 1km2 non­
overlapping windows indicated with dark broken lines and shows a cross plot of these (m, 
a 2) pairs. This plot reveals a specific type of heteroscedasticity referred to as the 
proportional effect where the standard deviation or variance increases with the mean.
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Figure 2-3: Location map and non-overlapping moving window statistics using 310 reservoir quality data 
(left) showing a proportional effect by increasing variance for increasing means (right).

2.4 Bivariate Description
In order to undertake geostatistical prediction, the spatial law of the SRF is needed. The 
stationary mean m was presented in the previous section along with other summaries. 
This section describes calculating the stationary covariance Cz(h), a summary of the 
stationary bivariate F(h;z,z’) distribution. Other summary statistics are also considered. 
Similar to the univariate description, this bivariate analysis gives the practitioner a more 
thorough understanding about the intricacies of the data.

2.4.1 Single Variable Type h Distributions
The implications of the assumption of stationarity allow replacing an investigation of all 
possible combinations of two RV locations, Z(u) and Z(u’), with an investigation of just 
those u and u’ locations approximately separated by h; thus, Z(u) and Z(u+h). The start 
of the vector h at z ( u s)  is usually referred to as the head value and the end of the vector h
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at z(us+h) is usually referred to as the tail value. Using this notation, these distributions 
are made up of all (z(us), z(us+h)) pairs of sample data. In practice, only a few h  values 
are possible due to limited sampling. The covariance, correlogram, and variogram are 
summary statistics of this stationary bivariate F (h;z,z’) distribution.

h Scatterplot
The bivariate distribution of samples from the same ReV at all locations approximately 
separated by lag h can be viewed as a scatterplot of data pairs (z(us), z(us+h)). These 
plots are useful for geological understanding and identifying problem or outlier data. 
Both the distance and direction of the h vector have prescribed tolerances to ensure there 
are enough data within the resulting h-scatterplot to visualize interactions and calculate 
reliable statistical summaries.

Figure 2-4 (left) shows the h-scatterplot for h ~ 200m using the reservoir quality variable 
posted on the location map in Figure 2-3. The direction tolerance is set so that h is 
independent of direction and the distance tolerance is 100m below and above h = 200m; 
therefore, h in this plot are distances within the interval [100m, 300m]. There are a total 
of 1,520 (z(us), z(us+h)) pairs in this bivariate scatter. These pairs are symmetric about 
the 45° line since h does not depend on direction. In general, however, the plotted points 
are not symmetric when direction-dependent lag vectors are used.

Notice the relatively strong relationship of the reservoir quality variable between any two 
locations u and u + 200m. This means a low or high value at any particular location u 
generally implies a correspondingly low or high value at locations roughly 200m away. 
The degree of similarity is an important characteristic of the h-scatterplot. There are 
many quantitative summaries of this measure of similarity. The covariance, correlogram, 
and variogram are summaries described here.

Semivariogram
The semivariogram, often referred to as the variogram, denoted yz(h) is a measure of 
dissimilarity between the z(us) head and z(us+h) tail value pairs on the h-scatterplot. The 
variogram is one half the variance of the (z(us) -  z(us+h)) h-increments:

2yz (h) = E {(z(u )-Z (u  + h))2} (2-14)

A simplification in (2-14) is made under the first order assumption of stationarity where 
the expected value of Z(u) and Z(u+h) are the same stationary mean m. The variogram is 
not sensitive to the mean. The variogram is experimentally calculated as:

1 />(h) 9

^ (h) = ̂ ^ Z W us) - * ( us+ l1)) (2-15)

where P(h) is the number of pairs. P{h) = 1,520 in Figure 2-4. Figure 2-4 also shows the 
yz(h) function for the Z RV at h  = h ~ 200m, 400m, ..., 2400m lag vectors each with the 
100m tolerance below and above. The h ~ 200m case is represented by the large dark 
bullet. The yz(200m) value is low since the 200m-scatterplot shows good correlation. In 
general, as the h value increases, the h-scatterplot shows less correlation and yz(h)
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increases. There are, however, exceptions to this generalization for different geological 
settings.

Covariance
The covariance provides a measure of similarity of the pairs in an h-scatterplot. In 
expected value notation, and assuming second order stationarity, the covariance is:

Cz (h) = E {z (u) • Z (11 + h)} -  m2 (2-16)

And can be calculated:
i n  h)

Cz ( h )  =  Z  ( z ( u s )  • z ( u s +  h ) )  -  ( 2 - 1 7 )
S = 1

The covariance is sensitive to the mean. This is why the variogram is often used instead. 
Figure 2-4 shows the Q fh )  function for the same lags as yz (h ). The h ~ 200m case is 
shown by the larger shaded bullet. The Cz(200m) value is high since the 200m- 
scatterplot shows good correlation.

Correlogram
The correlogram p jh )  is the standardized covariance. The stationary correlogram is 
obtained by dividing each Cz(h) covariance by the stationary variance:

M b ) = W >  <2' l8 )
A

Where the covariance at h = 0 Cz(0) is the stationary variance cr .

20 h -S C A T T E R P L O T
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Figure 2-4: The h-scatterplot for the h = h ~ 200m lag (left) and the semivariogram (dark) and covariance 
functions (shaded) summarizing the distribution of all h = h ~ 200m, 400m,..., 2400m scatterplots (right); 
the h = 200m summaries are shown with larger circles.

The variogram is a more robust bivariate summary statistic than covariance since it is less 
sensitive to the stationary mean m. For this reason, it is the variogram that is primarily 
used to quantify spatial correlation. The covariance Cz(h) needed to identify the spatial 
law is then obtained through the following relation allowed by stationarity:
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rz (h) = cz («) -  c2 (h)=cz (o)(i ■- Pz (k)) (2-19)

Therefore, under the assumption of second order stationarity, the variogram, covariance, 
and correlation contain equivalent information about the SRF.

2.4.2 Two Variable Type Distributions
Consider two different ReV types Z and Y available at the same locations. The variables 
are referred to as collocated. Dropping the us notation, these distributions are made up of 
all collocated (z, y) pairs of sample data and provide insight into the relationship between 
the Z and TReVs.

The distribution between two different variables at the same location could be visualized 
in a scatterplot. This plot shows an approximation of the full Z vs. Y bivariate distribution 
by the density of (z, y) sample pairs. Figure 2-5 shows scatterplots of the reservoir quality 
variable Z versus a net continuous bitumen NCB variable in meters (left) and Z versus a 
volume of shale F s h a l e  variable (right). The reservoir quality samples are strongly related 
to both NCB and F s h a l e  samples; however, the nature of the relationship is different. 
That is, an increase in reservoir quality corresponds to an increase in NCB, but a decrease 
in F s h a l e -

Correlation Coefficient
The summary statistic used most often for a scatterplot is the correlation coefficient pzf-

where c rz  and cry are the standard deviations of z andy samples and <j z y  is a covariance:

The interpretation for the correlation coefficient is both the strength and type (positive or 
negative) of linear relationship between two variables. The correlation coefficient exists 
in the interval [-1, +1]. When p  = -1, an increase in one variable corresponds to a 
decrease in the other; when p  = +1, an increase in one variable corresponds to an increase 
in the other. And as p  approaches zero, the two variables show less similarity. The 
correlation coefficients between reservoir quality and the NCB and F s h a l e  variables are
0.79 and -0.85, respectively, indicating relatively strong increasing and decreasing linear 
relationships with increasing reservoir quality.

It is important to note that the correlation coefficient measures only the degree of linear 
similarity. This means that two variables may be strongly related and still have a low 
correlation coefficient.

Scatterplot

(2-21)
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Figure 2-5: The scatterplot approximations of the bivariate distributions for reservoir quality versus NCB 
(left) and reservoir quality versus F SHa l e  ReVs. The correlations are 0.79 and -0.85, respectively, indicating 
strong positive and negative linear relationships.

2.5 Statistical Inference
The previous two sections presented several descriptions of continuous RVs. Seldom, 
however, is the final goal of a geostatistical study a description of the available sample 
data. Ultimately, the goal is to model the SRF spatial law in order to predict beyond the 
available sample data. Univariate inference of the first order mean and bivariate inference 
of the second order variogram and covariance are addressed in the following sections.

2.5.1 Univariate Inference
The goal here is to attain a stationary univariate distribution representative of the entire 
domain. Often this distribution is different than the raw histogram. Two reasons for this 
are preferential sampling and incomplete sampling. Both sampling practices commonly 
occur in practice. Declustering and debiasing procedures correct the biased distributions 
that represent such settings.

Declustering
Preferential sampling of high potential reservoir is a common and encouraged practice. 
Notice the clustering of high reservoir qualities in Figure 2-3. However, the univariate 
distribution or histogram of z(us) samples is often biased due to clustering. The mean in 
particular is high and not representative of the entire area to be modeled. For example, 
the mean reservoir quality of 7.24 in Figure 2-3 must be lowered in order to account for 
the fact that this value is calculated using preferentially sampled high reservoir qualities.

All forms of declustering assign declustering weights w(us) to the z(us) data in order to 
decrease the influence of clustered values in the univariate distribution. Since data are 
often clustered in higher sampled areas, the influence of lower quality samples is usually 
increased. The new representative stationary univariate distribution F(z) is calculated:

F (Z) = ̂ - ^ ----- Z W(Us ) 'X(Z(US)’2) Vz (2_22)
5>(«.r
S = 1
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with the indicator x(z(us); z) the same as in (2-11). The declustered mean m is then:

m ■
Z w(us ) S=1

- 2 > ( us M us) (2-23)

And the declustered variance o2 is:

1

2 > ( u s )

Z w(us)(z (us ) - w)
S = 1

(2-24)

Different types of declustering assign declustering weights w(us) differently. Polygonal 
and cell declustering techniques are two common techniques. Polygonal declustering 
assigns weights inversely proportional to the data polygonal areas of influence ̂ 4(us):

wpD(Us) = ^ ; ^ ) (2-25)

S = 1

Polygonal declustering is typically used in 2D settings when the domain boundaries are 
well known. Cell declustering is often used in 3D settings and assigns weights inversely 
proportional to the number of data within cells:

w C D (  « . )  = (2-26)

where K  is the number of cells that contain at least one datum and s/dUs) is the number of 
data in the cell within which the sample location us exists. The sum of cell and polygonal 
weights is S; therefore, z(us) samples that receive more influence have w(us) > 1.0  while 
z(us) samples that receive less influence have w(us) < 1.0.

Polygonal and cell declustering are both applied to the reservoir quality example in this 
chapter. Figure 2-6 shows the original reservoir quality distribution (left) with more 
representative or declustered distributions calculated with polygonal declustering weights 
wPD(us) (middle) and cell declustering weights wCD(us) (right). Both declustering methods 
reduce the mean m from 7.24 to roughly 6.4 by accounting for the clustering of high 
reservoir quality samples. Notice also the drop in standard deviation crwhich is consistent 
with the previously observed proportional effect.

RESERVOIR QUALITY
NLM3ER 310

RESERVOIR QUALITY RESERVOIR QUALITY

t u .
RESERVOIP QUALITY RESERVOIR QUALITY RESERVOIR QUALITY

Figure 2-6: The original (left), polygonal declustered (middle), and cell declustered (right) distributions.
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Debiasing
Declustering corrects the global cdf for clustered samples extracted from higher potential 
deposit or reservoir areas and requires ample data in both high and low potential areas. It 
is important to note, however, that declustering is in fact not effective in correcting the 
cdf in the presence of incomplete information. For instance, in the absence of lower 
reservoir quality, there are simply no low quality data to assign higher weights to. In 
these situations, a different approach must be taken.

2.5.2 Bivariate Inference
The variogram and covariance calculations in (2-15) and (2-17) are available for only a 
few discrete h lags. The variogram and covariance values for intermediate h ’s are needed 
to define the full spatial law. This section deals with inference of the complete model of 
spatial correlation for all possible h that may be encountered during prediction.

The spatial law for a SRF is usually inferred from the previously calculated experimental 
variogram and is, therefore, referred to as a variogram model. The solid black line in 
Figure 2-4 is actually a variogram model. It provides the degree of dissimilarity between 
Z(u) and Z(u+h) RVs for all h in between the discrete h points where the variogram is 
not calculated directly. In general, there are three main reasons for variogram modeling:

1. The covariance Cz(h) for all lag distances and directions h is required to perform 
geostatistical prediction;

2. A positive definite covariance Cz(h) must be ensured; and
3. The covariance Cz(h) model must incorporate any available analog or deterministic 

geological knowledge.

Variogram modeling is not a curve-fitting exercise. There are several factors to consider 
while modeling a variogram from the few available experimental points. Some factors are 
addressed here.

Anisotropy
Geological phenomenon is rarely isotropic -  there are always preferential directions of 
greater and less spatial continuity. There are generally two types of anisotropy. The first 
is known as geometric anisotropy meaning the variogram model reaches the same 
maximum variability of the overall variability or sill, but the distance or range where this 
occurs is different depending on the orientation of h. The second type is referred to as 
zonal anisotropy meaning the variogram model reaches a different sill for different h 
orientations. Different directions can also have different ranges for a zonal anisotropy.

The procedure used to account for both geometric and zonal anisotropy is specifying 
different range parameters in different h directions. In calculating the separation distance 
between any two RV locations, these ranges are then used to scale the component 
distances within the h vector to an anisotropic distance. For example, to specify a 
geometric anisotropy such that the horizontal variogram is more correlated for longer 
distances than the vertical, horizontal distances are divided by larger ranges making them 
geologically closer while vertical distances are divided by smaller ranges making them
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geologically further. A horizontal zonal anisotropy is defined by setting the horizontal 
range to infinity. This simple variography procedure offers a considerable amount of 
flexibility for modeling various types of complex anisotropic geology in three dimensions
[4]-

Positive Definite Models
In application to variogram modeling, the condition of positive definiteness is interpreted 
to mean that the variogram yz(h) be non-negative. A negative variogram value implies a 
negative distance that is not physically possible. Only non-negative variogram values can 
be used for subsequent estimation and simulation.

In order to ensure a variogram is positive definite, a group of previously determined 
positive definite variogram models have been collected to ensure the final variogram 
model is positive definite [5]. The four most commonly used positive definite models are 
the (1) nugget effect, (2) spherical, (3) exponential, and (4) Gaussian models. The 
definition of these models is a function of the anisotropic geological distance and 
direction vector h. The nugget effect model is used to account for variability at short 
scale distances approximately equal to zero; the rest of the models are used to describe 
larger distances.

Nested Variogram Structures
Typically, the variance on the ordinate axis of the experimental variogram plot is divided 
into significantly different variance contributions, each of which is modeled by a separate 
anisotropic variogram model. The models are then combined linearly; since each separate 
variogram model is positive definite, the full variogram model is also positive definite. 
The variogram model shown in Figure 2-4 has a spherical structure with zero nugget and 
isotropic range of 1.35km.

Limited Data
Often there are limited samples for building numerical models. Some h-scatterplots have 
too little data for inferring reliable bivariate summary statistics. For example, although 
vertical coreholes often yield reliable or stable vertical variograms, the aerial sample 
spacing may be too high to infer reliable horizontal variograms. In these situations, some 
analog geological background information is required in addition to the sample data in 
order to produce a credible variogram model [6].

Outlier Data
Like univariate statistical summaries, bivariate variogram and covariance summaries are 
sensitive to outlier data. Any discussion on how to handle outlier data is subjective, that 
is, different geological and personnel situations call for different techniques. Nonetheless, 
these data can be detected from visualizing histograms and h-scatterplots o f the different 
petrophysical properties and simply flagging data that do not seem to belong to the 
population. Once identified, these outlier data and their locations must be investigated for 
possible explanations and a decision must be made as to weather to include this data in 
further analyses.
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Proportional Effect
When the proportional effect is combined with clustered data, the h-scatterplot for small 
h includes mostly pairs of higher potential sample data and the calculated variogram 
summary of such bivariate distributions is high since the variance is inherently higher for 
higher potential data. This leads to the appearance of a more random spatial structure and 
in particular overestimation of the nugget effect. In these cases, the variogram model 
must somehow take into account this bias.

2.6 Multivariate Gaussian Distribution
A common implicit assumption involved with predicting at unsampled locations is that 
the SRF follows a multivariate Gaussian or normal spatial law. This assumption is made 
for convenience. Recall, for example, the necessary assumption of multivariate 
Gaussianity made before presenting the first order mean and second order covariance in 
(2-5) as the only necessary moments required to infer the spatial law of a SRF.

Continuous RVs never exactly obey the distinctive symmetric bell shape normal density 
nor the perfectly elliptical bivariate normal h-scatterplot contours. There is no bivariate 
transformation to ensure all the h-scatterplots are normal; however, there exists a well 
known, proven, and straightforward univariate normal transformation technique to ensure 
the univariate distribution of a ReV is Gaussian regardless of its original shape. The 
Gaussian transform y ( u s)  of each sample data z ( u s )  is obtained by matching its cdf value 
to the cdf value on a standardized Gaussian distribution G with zero mean and unit 
standard deviation:

y M  = G'l(F (z (u*))) (2-27)

The resulting distribution of y ( u s )  data is normal with a mean of zero and variance of one. 
This transformation is easily reversed to real units. Figure 2-7 shows the original (left) 
and normal score distribution (right) of the reservoir quality variable before and after a 
univariate Gaussian transformation. Both the histograms (top) and cdfs (bottom) are 
shown. The transformation of z ( u s )  = 9.92 to y ( u s )  = 0.67 for the 0.75 quantile is shown 
explicitly with arrows. Any distribution can be transformed into a Gaussian distribution.

2.7 Estimation
The early development of geostatistics is rooted to the mining industry and estimation of 
various ReVs from drillhole/blasthole samples in the 1940s. These early methods include 
hand contouring, polygonal estimation, triangulation, inverse distance, moving window 
averages, and so on. These maps were used calculating recoverable reserves and mine 
planning. Estimation algorithms have evolved from these subjective hand and machine 
contouring procedures to more sophisticated objective statistically optimum schemes.

One particular problem with the earliest subjective mapping techniques was the sacrifice 
of local or conditional bias for global unbiasedness. Conditional bias is the systematic 
overestimation of high grades and underestimation of low grades. Correcting this bias
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was of particular concern to mining engineers involved in South African underground 
gold mining deposits. The existence of truly lower grade areas where higher grades were 
predicted was obviously undesirable. The pioneering work of Daniel Krige during the 
1950s to correct conditional bias was the seed for the currently most popular group of 
estimation techniques collectively referred to as kriging [7].
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Figure 2-7: The original (left) and normal score Gaussian (right) histograms (top) and cdfs (bottom) for the 
reservoir quality data.

The kriging estimator is often replaced with the acronym BLUE:

■ Best since the estimate is optimum in that the error variance is a minimum;
■ Linear since the estimate is a weighted linear combination of surrounding data;
■ Unbiased since the expected value of the estimate and true value are the same;
■ Estimate.

This objective criteria for optimum estimation is the reason for the popularity of kriging.

From the 1960s, kriging was used to calculate recoverable reserves for mine planning and 
economic forecasting [8]. From the early 1980s until present, however, the use of kriging 
or any type of estimation for production planning is no longer recommended due to the 
inherent smoothing effect and persistence of conditional bias in these methods. Although 
kriging is not used exclusively, its simplest form, simple kriging, serves a central role in 
supplementing modem geostatistical simulation.
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2.7.1 A General Kriging Estimator
The kriging estimator at the unsampled location uo takes on the form:

4 ( » o )  =  A  +  X ;1k ( u s ) ’ z ( u s )  (2 -28)
S = 1

A is a constant shift parameter and the Ak(us)’s are the kriging weights assigned to the n 
surrounding z(us) sample data. Probabilistically, the kriging estimator is:

Zk(“ o) = A + 2 X ( « s)-Z (Us) (2_29)
S=1

The actual error of estimation e(uo) is:

e(u0) = z ( u „ ) - 4  (“ o) (2-30)

Little can be done about this error unless its probabilistic version E(uo) is considered:

£(u o )  = Z ( u o ) - Z ; ( u 0) (2-31)

In this case, the expected value and variance of £(uo) can be calculated and thus acted 
upon. In particular, we require the expected value of E(uo) to be zero for unbiasedness 
and the variance of E(uo) to be a minimum for optimality. The expected value of is(uo) is:

E{£(u0)} = E{z (u0)}-E {A }-e {x \ ( usK ( » s)]
ls=1 J (2-32)

= ™(u0) - A - 2 X ( u s)m(us)
s—1

where E is the expected value operator. In order for the kriging estimator Z*k(uo) to be 
unbiased, this expected error must be zero. For this, the shift parameter A is set to:

A = w (u0) - ^ 2 K(us)m(us) (2-33)
S=1

Indeed, the E{ii(uo)} is zero; and the kriging estimator is then:

Z K (“ o )  =  « ( “ o )  -  2 X  ( U S M “ s )  +  2 X  ( U s ) Z ( “ s )
s= l S=1

= ™(“ o) + f  (“ s ) [ z  (“ s) -» » (“ , )]1 (2-34)
V s=l J

Rt
S = 1

The other moment of E(uo) required to develop the kriging equations is the variance:

VAR { E (u0 )} = J i  (n ,)■4 (n,.) Cz (u, -■us,)
s=o s ~o ^  ̂ (2-35)

= Cz (0) - 2 ^ 4  (u, )Cz (»0- u s) + t E \ K ) 4  (“ s') Cz (“ . -  “ s')
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where VAR is the variance operator, us -  uS’ is the h lag between two sample data z(us) 
and z(us+h), and uo -  us is the h lag between the estimation location and the sample 
datum z(us). The error variance in (2-35) is interpreted as the sum of the overall variance 
(first term), closeness (second term), and redundancy (last term). The error variance 
increases with increasing overall variance, decreased closeness, and increased 
redundancy of the n surrounding sample data.

2.7.2 Simple Kriging
The simple or unconstrained kriging algorithm assumes first order stationarity in (2-7) 
with constant mean m(u) -  m. The shift parameter A then becomes:

S = 1  

(  n= m +
K, S = 1

A = w - 2 ^ sK(u,)»» (2-36)
S = 1

And the simple kriging estimator Z * Sk ( u o )  is:
n n

ZSK (Uo )_  Z^SK (Us)m + 5 j 2 SK (us) z ( u s)
5 = 1  S = 1

(Us)[Z («S) - m]
s=l y

The simple kriging estimator is unbiased since the expected error is zero: 

E { £ ( u 0)} =  E { Z ( u 0) } - E { z s*k ( u 0)}

= m - m - ^ 2 s K (us) E { z ( u s )} + Z ' W ( us)m
S = 1  S = 1

n n

= m - m - Z 4 K ( us)w + Z ;isK («s) m
S = 1  S = 1

=  0

(2-37)

(2-38)

There remains to determine the simple kriging weights A s k ( u s) ,  s  = 1,..., n. These weights 
are determined such that the error variance is a minimum. This is done by setting one half
the partial derivatives of the error variance in (2-35) with respect to each of the n A s k ( u s)

simple kriging weights to zero:

3(VAR{£(u0)|) n
— — =  C z ( u 0 - u s ) - ^ 4 k ( u s, ) Cz ( u . , - u 5)  = 0 s  = 1 ,...,/i  (2-39)

^ C^ \ / *SK ( U s / J  s '—1

This results in the following system of simple kriging equations:

s = !,...,« (2-40)
S - l

There are n equations with as many simple kriging weights Z s k ( u s )  to be determined. 
This vector of weights Xsk is solved by inverting the matrix of redundancy covariances C 
= Cz(iiS’ -  us) and multiplying this by the vector of closeness covariances c = Cz(uo -  us), 
that is, -  C_1c. The simple kriging estimate z * s k ( u o )  is then simply the sum of
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weights multiplied by the sample data vector z = z(us), that is, z*sk(« o) = ^skzT- From (2- 
39) and (2-40), the minimized simple kriging variance c72sk(uo) is then:

< 4 .  K )  =  Cz ( ° ) -  Z ^  ( « ,  )Pz K  -  u s )  (2-41)
s = l

Simple kriging is referred to as unconstrained kriging since no constraints are imposed in 
order to achieve unbiasedness in (2-38) or the minimum error variance in (2-39).

Consider a grid of 150,000 (300 x 500) RV locations in the example setting. Figure 2-8 
shows a map of simple kriging estimates using the reservoir quality data. A large search 
routine is used to condition each estimate. The result is a smooth reservoir quality map.

1000

EASTING

Figure 2-8: A smooth simple kriging map of the reservoir quality variable.

2.7.3 Ordinary and Universal Kriging
These variations of kriging correspond to locally varying forms for the mean m{u). These 
kriging algorithms are referred to as kriging with a trend (KT). The current approach is to
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assume m(u) is a smoothly varying deterministic function of the coordinates vector u 
whose unknown V parameters are fit from the n data within local search windows [4]:

w(u) = Z av(«)/v(«) (2-42)
v = 0

The /i(u)’s are known and constant functions of the coordinate vectors over the domain 
D. The av(u)’s are estimated functional coefficients and constant within local search 
windows. The actual mean value m(u) is unknown since the a„(u)’s are also unknown. By 
convention /o(u) = 1 and m(u) = tfo(u) corresponding to what is referred to as Ordinary 
Kriging where the mean m(u) is re-estimated to a constant n0(u) value within local often 
overlapping search windows.

To derive the KT kriging equations, the mean m(u) is substituted into the expression for 
A in (2-32), which can then be substituted into (2-29) to obtain the KT kriging estimator. 
For unbiasedness, V+ 1 constraints are needed:

Z ^ t ( " . ) / v K ) = / v ( " )  v  = 0,...,V ( 2 - 4 3 )
s = I

where the / v(u)’s are the monomial trend functions evaluated at unsampled locations u 
and the f v(us)’s are the monomial trend functions evaluated at the sample locations u5. By 
considering these constraints, the estimator Z*uk(u) is unbiased. In order to determine the 
n /Lkt(us) constrained kriging weights, the error variance in relation (2-35) is minimized 
under the V+ 1 constraints in (2-43). These constraints call for the Lagrangian formalism.

2.8 Simulation
It is no longer acceptable to report a single deemed best estimate within a particular area 
or volume of interest without any attached uncertainty. Geological uncertainty can be 
quantified with geostatistical simulation. Many geostatistical simulation algorithms have 
been forwarded to generate multiple stochastic and equally probable realizations of the 
spatial distribution of ReVs. These include matrix approaches (LU decomposition) used 
for select areas due to computer resource demand, turning band methods where the 
variable is simulate on ID lines and then combined into a 3D model, (3) spectral methods 
using FFTs, (4) fractals that are imbedded with a signature of self-similarity, (5) moving 
average methods, (6) object-based modeling for lithofacies and rock type uncertainty and 
(7) sequential methods such as sequential Gaussian and indicator simulation [6]. The 
details of sequential Gaussian simulation (SGS) are covered here.

2.8.1 Sequential Gaussian simulation (SGS)
The following are 3 minimum criteria for a map of a particular petrophysical property, 
estimated or simulated, used for recoverable reserves and making production decisions:

1. The data-to-data covariance Cz(us -  us>) involving the sample data is reproduced 
after prediction;

2. The estimate-to-data covariance Cz(uo -  us) involving the predicted values and 
sample data is reproduced after prediction; and
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3. The estimate-to-estimate covariance Cz(uo -  uo) which is the variance of predicted 
values reproduces the stationary variance a2.

The motivation for simulation techniques can be derived by evaluating these three criteria 
for simple kriging. The first of these three conditions is easily met. The sample data do 
not change after estimation; therefore, the data-to-data covariance C(us -  us>) is the same 
after prediction. The second condition, however, involves the z * s k ( u o )  estimates and is 
checked:

C z ( u 0- u s )  =  E { ^ K ( u 0) i ? ( u s ) } - E { ^ * K ( u 0) } E { i ? ( u s ) }

=  E j Z ;1S K ( U s ' ) i ? ( U s ' V ? ( U s ) j

J (2-44)

s '= l

=  C z ( u 0 - u s )

Therefore, in probabilistic terms, the second condition is also satisfied for SK. Note the 
use of the SK system of equations in (2-40) to make the last substitution. It is also 
important to note that this condition can not be met with the KT algorithm. The third 
condition involves the new set of z * s k ( u o )  estimates and is also be checked:

V A R { Z s-K ( n t ) }  =  E { j ! ' ( u 0) S - ( u , ) }

= Z  E'•sK (", )-tsK ) Cz (u, -  us )
s= l s ’—1

n

=  ° s k  ( u o )  — Cz ( 0)  +  2^ 4sK ( u „ )CZ ( u 0 — u s )  ( 2- 45)
s = l

=  a sK  ( « o )  — Cz ( ® ) +  2{cz ( 0)  — a SK ( u 0 ) )

=  Cz ( 0)  — a SK ( u 0 )

=  < j l  ~  CTS K  ( u 0  )

The variance of the estimates V A R { Z * s k ( u o ) }  is underestimated by an amount equal to 
the SK estimation variance in (2-41). This is known as the smoothing effect o f kriging. 
Ideally, the variance of the kriging estimator would be the global variance o2 in expected 
value. This deficiency of kriging is the motivation for simulation.

Simulation acts to correct the variance via the addition of a random residual Q(u): 

z s g s  K ) = R * K ) + Q («o) (2-46)

The residual is drawn randomly from a Gaussian distribution with an expected value of 
zero and variance equal to the kriging variance c ^ s k ^ o ) -  This does not change the 
optimal kriging estimate z * s k ( u o ) ,  but does act to increase the variance by the amount 
missing in (2-45). Therefore, the variance of the newly simulated values z s g s ( u o )  is the 
correct global variance o2. Therefore, the first and third minimum criteria previously 
identified are upheld for the z s g s ( u o )  simulation values. The second condition is also
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satisfied since the addition of the random residual (2(u) does not change the estimate-to- 
data covariance:

Cz (u0- u s) = E {^GS(u0)i?(us)}-E{i?s*K(u0)}E{i?(us)}

= E< E A k M r M + q Ms-1 * (Us)
(2-47)

= 1 4* K  )E {R (u, )R (us)} + E {0(uo )R (us)}
s - l

= Cz (u0- u s)

Therefore, the simulated values z S g s ( u o )  satisfy all three criteria.

As its name suggests there are two key concepts involved in deriving an SGS algorithm. 
The first is the process of proceeding sequentially by adding previously simulated nodes 
^ s g s ( u o )  to the pool of conditioning data for subsequent simulation locations. As shown in 
(2-47), this ensures the estimate-to-data covariance is correct. The other core concept in 
SGS is the multivariate Gaussian assumption for the Q(uo) residual distribution. The SK 
variance in (2-41) and mean of zero is all that is needed to completely parameterize these 
distributions. The # ( u o )  draws are then simply added to the SK estimate z * s k ( u o )  to obtain 
the simulated value z S g s ( u o ) .

The following is a basic seven step SGS algorithm:

1. Transform the z(us) sample data to follow a normal distribution;
2. Visit an unsampled location uo and perform simple kriging to obtain z * s k ( u o )  and 

o 2 s k ( u o ) ;

3. Draw a random residual #(uo) from a normal distribution centered at 0 and spread 
with ĉ skOio);

4. Add the simple kriging estimate z * s k ( u o )  and random residual g(uo) to obtain the 
simulated value zsgs(uo);

5. Add z s g s ( u o )  to the set of conditioning data;
6. Repeat 2 through 5 visiting all unsampled uo locations in random order; and
7. Back transform the z s g s ( u o )  from Gaussian to real units.

A map of simulated values using the SGS algorithm is generated for the same 300 x 500 
resolution used for the kriging estimates and is shown in Figure 2-9.

2.9 Reasonability Criteria
The reasonability of making a decision of stationarity is evaluated within each of the five 
phases proposed for making the decision of stationarity. That is, any technique reviewed 
is evaluated according to some criteria. The techniques prototyped are intentioned to 
satisfy all criteria. The two most basic and important criteria are simplicity and geological 
realism.
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The technique formulation, description, and implementation within each phase of making 
a decision of stationarity should be relatively straightforward. Too complex algorithms 
will be difficult to implement, explain, and justify in practical settings. More popular 
mainstream algorithms are generally more straightforward.

After a technique is simple, it must capture realistic geology; but what exactly is realistic 
geology when the truth is never known before recovery begins. In this dissertation 
geological reality means plausible geological features that are known and considered to 
have a significant impact on production uncertainty.

47KC

22S0 2500 2750

EASTING
Figure 2-9: A sequential Gaussian simulation map of the reservoir quality variable.

33

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



C h a p t e r  3

T h e  D e c isio n  o f  Sta tio n a r ity

The decision of stationarity is a five step process: (1) choosing the number and type of 
domains to apply separate SRFs within, (2) modeling domain boundaries, (3) quantifying 
and modeling the nature of transitions across domain boundaries, (4) quantifying large- 
scale deterministic trends within domain boundaries, and (5) predicting with a trend 
model. The aim of this dissertation is the development and presentation of this support 
system for managing these consequences a decision of stationarity has on the workflow 
of a geostatistical project. The context, modeling approaches, and criteria for evaluating 
the reasonableness of each step are identified in this chapter. Additional details on 
specialized subjects are given in subsequent chapters.

3.1 Framework of a Decision of Stationarity
Figures 3-la to 3-le illustrate the five geostatistical modeling steps proposed for making 
a reasonable decision of stationarity each with their own associated context, approaches 
to modeling, and reasonability criteria. In each figure, a flow chart is shown to the left 
and a schematic example is shown at the right. Each part of Figure 3-1 represents a 
geostatistical modeling step or phase that can potentially improve the reasonability of the 
decision of stationarity. A typical study will address these steps in the order (a-e) 
presented. The collective approach to all five of these steps encompasses a decision of 
stationarity.

The most important element of each geostatistical modeling phase is shown with the 
schematic example to the right of the flow chart. The setting is mining. There are four 
corehole traces (CHOI to CH04) of varying length below ground surface available in this 
2D illustration; each corehole shows a petrophysical property profile to the right o f its 
trace for an attribute of interest. No sample data are available above a certain elevation in 
overburden or below a certain elevation in bedrock. The decision of stationarity for this 
setting is described in the following sections.

3.1.1 Choosing Domain Types
The first modeling step for a decision of stationarity is choosing the number and type of 
domains. This is done to ensure the mathematical SRF assumptions within each domain 
type are as appropriate as possible. This choice is based on logical geological divisions. 
The approach to this aspect of the decision of stationarity should be hierarchical starting 
from the full accumulation limits to selecting increasingly smaller more geologically
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homogeneous domains. At each stage in such a hierarchy, the suitability o f assumed SRF 
parameters and number of available data are balanced.

Accumulation limits are needed to identify regions where a numerical model is required. 
The choice in Figure 3-la  avoids modeling the attribute within overburden and bedrock 
material; these boundaries are marked on the corehole traces with level bars where data 
becomes unavailable. Assuming a single SRF applicable within the accumulation limits, 
however, may be inappropriate considering the heterogeneity suggested by the corehole 
profiles. Separate SRFs for the low and high attribute intervals may be more appropriate. 
These intervals are also separated with level bars and labeled non-net and net.

C hoosing
IVf

D om ain
>es
...

-  SRF A ssum ptions
-  Logical Paritions

H ierarchical

SRF S ta b i l i ty  vs. D a ta  
G eo lo g y

CH O I.
CHOI

BEDROCK

Figure 3-la: The framework for the decision o f stationarity: the first of five steps during geostatistical 
modeling is choosing domain types. The context, modeling approaches, and reasonability criteria are listed 
to the left; net and non-net rocktypes are indicated for the 2D example to the right.

3.1.2 Boundary Modeling
Once domain types are chosen, a model of their 3D bounding surfaces is needed to 
identify the spatial jurisdiction of separate SRFs. There is unavoidable uncertainty in 
these boundaries. A range of boundary modeling approaches can be considered.

One possible boundary model separating non-net from net material is sketched in Figure 
3-lb. The uncertainty in this boundary is shown between CHOI and CH02 with arrows of 
varying length; in general, the amount of uncertainty increases away from data where the 
arrows are longer. Portions of a Cartesian grid are shown illustrating that it is uncertain 
which SRF the grid cells along the margins of the boundary model belong to. There is 
also uncertainty in the top and bottom accumulation limit surfaces between coreholes. In 
practice, several bounding surfaces would be considered inside the accumulation limits.

3.1.3 Nature of Boundaries
The geological boundaries separating predictions from significantly different SRF models 
can rarely be modeled by abrupt transitions. A model quantifying the influence of the 
predictions from surrounding SRFs may be required to create more geologically realistic
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transitions. A linear mixing model (LMM) parameterized by a contact analysis is one 
possible model available to quantify the influence of sample data and subsequent 
predicted values across geological boundaries; alternatively, a global or local linear 
model of coregionalization (LMC) can be used [49].

Two linear mixing models (LMMs) are shown between the CH02 and CH03 coreholes in 
Figure 3-lc. For a particular grid cell a distance J n e t  inside net material or ^ n o n -n e t  

inside non-net material, the LMMs provide the weight to predictions from both a non-net 
SRF' w n o n -n e t  and a net SRF w Ne t  at that same grid cell location. The LMM parameters 
may vary throughout the accumulation; the mixing model shown at the higher elevation 
will produce smoother transitions than the lower elevation mixing model.

Boundary M odeling

f

in h e ren t u n s j i g i i s

Deterministic 
to  
h

Simplicity 
S p e e d  U ncertainly 
Ot-.c-. ‘ • V _

CH03 GROUND surface

b e d r o c k

BEDROCK

Figure 3-lb: The framework for the decision o f stationarity: the second of five steps during geostatistical 
modeling is modeling domain boundaries. The context, modeling approaches, and reasonability criteria are 
listed to the left; a boundary model and its uncertainty are indicated for the 2D example to the right.

3.1.4 Trend Modeling
There are two reasons for trend modeling: first, because geostatistical prediction requires 
a locally varying mean or trend model (often the trend model is ignored by adopting a 
constant first order stationary mean); and second, because it is usually possible to detect 
large-scale deterministic trends within geological domains where separate SRFs were 
previously deemed suitable. A trend model should always be built and reproduced in any 
legitimate numerical model. Trends are built manually or automatically and should 
represent large-scale deterministic geological interpretations.

Notice in Figure 3-ld the rapid increase and slow decrease of the petrophysical property 
value with increasing depth in net. This general relationship is proportionally contracted 
or expanded near the thinner ends and the thicker middle, respectively. In practice, this 
observed trend would be confirmed with deterministic geological interpretation. Two 
manually built vertical trend models are shown between CH03 and CH04 for two strings 
of unsampled grid cells. These smoothly varying local expectations should be reproduced 
in the final numerical model of predictions.
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seh sd c k

Figure 3-lc: The framework for the decision o f stationarity: the third of five steps during geostatistical 
modeling is quantifying and modeling the transitional nature of the attribute over boundaries. The context, 
modeling approaches, and reasonability criteria are listed to the left; two LMMs are shown to the right.

CH0 4 GROUND SUPPAi- cCH03

T re n d  M o d e lin g
CH0 2

lanuoi
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Simplicity variability 
Subjectivity G eo lo g y

Figure 3-ld: The framework for the decision o f stationarity: the fourth of five steps during geostatistical 
modeling is trend modeling. The context, modeling approaches, and reasonability criteria are listed to the 
left; a trend model for two vertical strings of grid cells is shown to the right.

3.1.5 Prediction with a T rend Model
Classic geostatistical prediction does not guarantee the trend will be reproduced; in 
general, the discrepancy between predicted values and a trend model will increase away 
from the sample data. In these settings, it may be necessary to directly integrate the trend 
within a modified geostatistical algorithm to reproduce key large-scale geological 
features explicitly.

Figure 3-1 e shows predicted petrophysical property profiles along the strings of unknown 
grid cells. The results fluctuate about the trend as they should. In practice, this is achieved
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implicitly with conventional geostatistical methods applied with a sufficient number of 
conditioning data or explicitly integrating the trend into the prediction method.

GROUND subpageCHOIPrediction with th e  
Trend M ode:

Implicit
Explicit

U ncertainty
G eo lo g y 3£D$OCK

“bed | o c kBEDROCK

Figure 3-le: The framework for the decision of stationarity: the last of five steps during geostatistical 
modeling is predicting with a trend model. The context, modeling approaches, and reasonability criteria are 
listed to the left; a predicted profile for the two vertical strings of grid cells is shown to the right.

3.2 Choosing Domain Types
Choosing the number and type of geological domains for applying separate SRFs is the 
first step in making the decision of stationarity. This decision is needed to ensure the 
resulting numerical models are consistent with the geology.

3.2.1 Context
The context and motivation for choosing domain types is derived from both a theoretical 
and geological perspective.

Theoretical Context
Consider the domain D. A SRF representation of the petrophysical property Z within D is 
a RF made up of the set of RVs {Z(u) for all u in D} such that each RV Z(u) has the 
same first order expected value m and each RV pair approximately separated by h (Z(u), 
Z(u + h)) has the same second order covariance Cf(h) despite the location u within D. 
This is a decision of stationarity since different choices of domain types results in 
different mathematical assumptions of homogeneity. For example, by replacing the full 
domain D with a set of N  mutually exclusive sub-domains {D = Di, D2, ..., Dv}, the 
assumption of stationarity is transferred from the single SRF within D to the new set o f N  
SRFs enclosed within the N  corresponding sub-domains Di, D2, ..., D/y.

Geological Context
Choosing domain types is necessary for most geological settings. Implementing different 
SRFs within domains chosen according to prevailing rocktypes and/or formation histories 
will often accomplish a reasonable level of homogeneity for the SRF assumptions. This is
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the geological context for boundary modeling. Two examples are presented to illustrate 
the choice o f domain types. The first is a vein-type deposit encountered in the mining 
industry. The second is a clastic sedimentary sequence encountered in the petroleum 
industry. The formation history, mineralogy, and logical divisions for distinct SRFs are 
addressed in both settings.

Figure 3-2 shows a portion of a hydrothermal gold-quartz vein mineral deposit. There is a 
pen in the photograph for scale. The vein is formed from gold and quartz minerals being 
soluble and mixing in solution under the application of immense heat and pressure [9]. A 
gold-quartz ore precipitates out of solution accommodating space formed by the release 
of heat and pressure; mechanisms for the application and release of heat and pressure are 
usually intrusive, collisional, or shear [9]. The vein depicted in Figure 3-2 was formed 
along a shearing dextral fault zone.

Figure 3-2 also shows the mineralogy typical of gold-quartz veins. The ore material is a 
quartz mixture. The example shows an arsenopyrite-quartz composition (top right). A 
variety of host rocks are possible; however, mafic to ultramafic igneous material is most 
common [9]. The example shows a basalt host rock (bottom right).

Source: Internet, http://en.wikipedia.org/wiki/Vein_(geology), access September, 2006
Figure 3-2: A photograph of a gold-quartz vein (left) showing arsenopyrite quartz ore (top right) and basalt 
waste (bottom right) rock samples. A pen is shown for scale on the left. The photographs on the right 
measure 1cm (top) and 10cm (bottom) a side.

Gold grades behave significantly different within quartz ore versus mafic waste material. 
The gold grades are higher and more variable within the ore vein. The assumptions of 
stationarity would be quite poor if  a single SRF is used to model gold grade within both 
ore and waste since the mean m and covariance Cz(h) are significantly different within 
ore and waste. The numerical model will be more consistent with the geology when 
separate SRFs are used.

Figure 3-3 shows an outcrop of a shore face sand-shale sequence typically exploited in 
the subsurface for petroleum reserves. The exact scale is unknown, but the width of the 
photograph represents some order of kilometers. Deposition of sand and shale facies is 
controlled by relative sea level change. During transgressions, sea level lowers relative to 
the shore line and river delta sand spreads out over the shore; during regressions, sea
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level elevates relative to the shore line and marine shale migrates over the shore [10]. 
Common drivers of relative sea level change are tectonics and environment. A petroleum 
reservoir forms when oil migrates into and is trapped within the sequence.

Figure 3-3 also shows samples of sand and shale facies from the outcrop photo. The high 
energy river sands are coarse grained matrices of high porosity sandstone while the low 
energy marine shales are fine grained matrices of low porosity siltstone.

Source: Internet, http://wps.prenhall.com/esm_hamblin_eds_l0/0,8010,837539-,00.utf8.html, access September, 2006 
Figure 3-3: A photograph of a layered sand-shale clastic sedimentary sequence (left) and typical net sand 
(top right) and non-net shale (bottom right) facies samples. The scale on the left is on the order of a few 
kilometers. The photographs on the right each measure 15 x 30cm.

Sand facies will store recoverable hydrocarbons while shale facies act as barriers to flow. 
Petrophysical properties such as porosity, permeability, and oil saturation are very 
different within sand and shale. And since the mean m and covariance Cz(h) will also be 
significantly different, the numerical model will be more consistent with the geology 
when separate SRFs are used.

3.2.2 Modeling Approaches
There is essentially one modeling approach for choosing domain types. Choosing domain 
types should be done in a geometrically nested or hierarchical manner starting from the 
global mineral or reservoir accumulation domain to selecting increasingly smaller more 
geologically homogeneous domains.

Figure 3-4 illustrates the hierarchical approach to choosing the number and type of 
domains within a typical shore face reservoir. The first stage in the hierarchy is the option 
of applying a single SRF to the full hydrocarbon accumulation limits. Often, however, the 
assumption of stationarity in this case is inadequate to represent geological heterogeneity 
over multiple distinct geological compartments. Like the mining and petroleum examples 
presented earlier (Figures 3-2 and 3-3), the assumption of stationarity may improve when 
additional SRFs are applied within smaller more geologically homogeneous regions. And 
so moving down the example hierarchy in Figure 3-4, separate SRFs are considered 
within increasingly smaller domain sizes. In many settings, the identification of net 
versus non-net domains may drastically improve the assumption of stationarity. If this 
choice is still inadequate, structural layering may be identified within the net and non-net 
volumes. Figure 3-4 demonstrates five HST (high-stand systems tract) and one TST 
(transgressive systems tract) within net geology; and two LST (low-stand systems tract) 
and two FSST (falling stage systems tract) layers are shown within non-net geology [10].
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If this level of detail is still inadequate for a reasonable assumption of stationarity, facies 
types can be considered within each layer. Figure 3-4 identifies four possible facies types: 
sand, breccia, inclined heterolithic strata (IHS), and shale.

G lobal A ccum ulation  Limits Net I Non-Net M aterial

N on-Net

Net

S tra tig rap h ic  Layering

LST̂
f s s  ,

R ocktype I F ac ies
SAND
BRECCIA
IHS
SHALE

Figure 3-4: An illustration of the hierarchical approach to choosing the number and type of geological
domains for a typical shore face reservoir. The scale is similar to that in the photograph of Figure 3-4.

3.2.3 Reasonableness
Choosing domain types for the application of separate SRFs is the first and likely most 
important out of five steps for making a decision of stationarity. There are significant 
practical challenges to overcome for making a reasonable choice.

Inference Challenges
At any level in the hierarchy of Figure 3-4, the stationary first order expected value m and 
stationary second order covariance Cz(h) parameters of the enclosed SRF are inferred 
from the available geological information. For reliable inference, a sufficient number of 
data are required. Limited data is a common problem even within the entire accumulation 
limits. The consequence of increased geological consistency with the stationary first and 
second order moments is a reduction in conditioning sample data. Choosing an additional 
domain type must always balance the degree of increased geological consistency with the 
number of data available to infer the enclosed SRF parameters.

Considering the extremes is instructive. The most geologically homogenous domain type 
would centre on a single sample datum; however, such a solitary sample is inadequate for 
calculating a reliable m parameter and impossible for calculating the Cz(h) parameters. In 
contrast, by pooling all possible sample data together to calculate m and Cz(h), there is a 
significant risk of masking important heterogeneous features that could otherwise be 
modeled more suitably with multiple SRFs each with different m and Cz(h) parameters.

Reasonability Criteria
The reasonability of choosing a particular set of domains each with a separate SRF is 
evaluated on the basis of an optimal balance between the level of geological consistency 
with an assumption of a SRF and the amount of available sample data to infer the SRF 
parameters. This balance is always subjective; a choice of domain types, therefore, can 
not be proven wrong, but can be argued unreasonable on this basis.
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3.3 Boundary Modeling
A major model operation imposed on geostatistical modeling for a reasonable decision of 
stationarity is boundary modeling. Boundary models are needed to quantify the 
uncertainty in the spatial jurisdiction of SRFs throughout the numerical model. A more 
detailed treatment of this topic is given in Chapter 4.

3.3.1 Context
There is unavoidable uncertainty in the location of domain bounding surfaces where there 
is incomplete sample data and geological information. There is also then uncertainty in 
the assignment of grid cells to a particular SRF near geological boundaries. Quantifying 
this structural uncertainty with multiple possible boundary models is an essential aspect 
of making a reasonable decision of stationarity and a significant component of calculating 
geological uncertainty.

Figure 3-5 shows a schematic 2D example. Four corehole traces of varying length from 
ground surface are available. Net and non-net domain types are chosen for separate SRFs 
and shown as dark and shaded traces, respectively. The domain boundaries are known 
with zero uncertainty at corehole locations; however, between data, there is unavoidable 
uncertainty in the boundary location. This structural uncertainty is represented with six 
possible net/non-net boundary surfaces. The grid of prediction locations within known 
accumulation limits illustrates that grid cells near the net/non-net geological boundary 
will switch between being predicted with the net and non-net SRF models depending on 
the particular boundary realization.

Similar scenarios are constructed for the mining and petroleum examples presented in 
Figures 3-2 and 3-3, respectively. True geological models are created in each setting 
using image analysis. The original photo and these true geological models are shown on 
the left and in the middle of Figures 3-6 and 3-7, respectively. Net ore vein and sand 
facies are black while non-net waste and shale facies are shaded gray. Two drillholes are 
extracted from the mining example and two wells are extracted from the petroleum 
example. There is an implicit assumption that the scale in Figure 3-6 is increased from 
Figure 3-2 to something appropriate for the application of a block model. The right of 
Figures 3-6 and 3-7 show the location and geology of these samples. In both settings, the 
conditioning sample data are located relatively far apart meaning there will likely be a 
significant level of structural uncertainty in the boundaries.

3.3.2 Modeling Approaches
There is a full continuum of modeling approaches available to build domain bounding 
surfaces ranging from entirely deterministic techniques to entirely stochastic techniques. 
Figure 3-8 shows a sketch of this continuum. Several categories of boundary modeling 
algorithms are shown. The general position of deterministic digitization (DD), volume 
function (VF), object-based (OB), surface-based (SB), and stochastic pixel-based (SPB) 
algorithms are all indicated. Depending on how the algorithm is parameterized and 
implemented, these methods can shift along the scale. Choosing a boundary modeling 
method from this continuum depends on the geometrical nature of the boundaries as well 
as the amount and type of conditioning data available.
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Figure 3-5: A schematic 2D example showing unavoidable uncertainty in the location of a net/non-net 
boundary between coreholes locations.

PHOTOGRAPH ROCKTYPE (TRUTH) DRILLHOLE SAMPLES

Figure 3-6: The setting for modeling boundaries of a vein-type deposit including the original photograph 
(left), the true vein/waste rocktype model after image analysis (middle), and two conditioning drillholes for 
subsequent modeling (right).

PHOTOGRAPH FACIES (TRUTH)

SAND SHALE

WELL SAMPLES WEIL 02

SAND SHALE

Figure 3-7: The setting for modeling boundaries of a clastic sedimentary reservoir including the original 
photograph (left), the true sand/shale facies model after image analysis (middle), and two conditioning 
wells for subsequent modeling (right).

D D  1 1 VF ■ I O B  1 1 1 SB i ' SPB

Figure 3-8: An illustration of the continuum of boundary modeling approaches available from fully 
deterministic (left) to fully stochastic (right).
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The drillhole and well data shown in Figures 3-6 and 3-7 are now used to demonstrate 
and compare the performance of different modeling methods. Figures 3-9 and 3-10 show 
DD (left), VF (middle) and SPB (right) boundary models built conditional to the two 
drillholes or two wells from each setting.

DD boundary models are time consuming and subjective exercises. The left of Figures 3- 
9 and 3-10 show digitized ore vein and sand facies boundaries (broken lines) for the 
mining and petroleum settings. The result is just one deterministic model. There is no 
objective measure of the inherent uncertainty in boundaries.

The top right of Figures 3-9 and 3-10 show an SIS realization of the geology from each 
setting. The construction of multiple realizations provides fast objective measures of 
uncertainty; however, the results may not be geologically realistic. Without a relatively 
large amount of conditioning data, large deviations from reality are possible. These 
uncertainties are theoretically correct, but geologically unrealistic. The SIS results in 
Figures 3-9 and 3-10 are clearly different from the true geology in each case. Cleaning 
algorithms [11] improve the image (bottom right of Figures 3-9 and 3-10), but do not fix 
the problem. There is a need to capture global uncertainty with realistic geology.

DETERMINISTIC

PROBABILISTIC
V F - L O W  RISK

vOLUMfc FUNCTION

PROBABILISTIC
VF -  HIGH RISK

OIUME FUNCTION

STOCHASTIC

STOCHASTIC

Figure 3-9: DD (left), VF (middle), and SPB (right) boundary models for the setting in Figure 3-6.
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Boundaries can also be defined with the relatively fast VF method. The middle of Figures 
3-9 and 3-10 show a volume function in grayscale for the mining and petroleum settings. 
Darker shades represent distances farther inside the vein or sand facies. Different 
bounding surfaces can be extracted from different iso-values of the volume function. An 
expanded high risk (top) and contracted low risk (bottom) boundary separating vein from 
waste and sand from shale are shown. The iso-value where each boundary is extracted is 
represented with a vertical bar on the volume function scale. The VF method allows the 
fast construction of multiple boundaries with a measure of global uncertainty and realistic 
geological features.

Figure 3-10: DD (left), VF (middle), and SPB (right) boundary models for the setting in Figure 3-7.

3.3.3 Reasonableness
Modeling uncertain domain boundaries that describe the spatial jurisdiction of separate 
SRFs throughout the numerical model is the second of five geostatistical modeling steps 
performed to making a decision of stationarity. There are some practical challenges to 
overcome for making a reasonable boundary modeling algorithm choice.

Inference Challenges
Six main challenges associated to choosing an appropriate boundary modeling algorithm 
are addressed in this dissertation:

1. Simplicity. The algorithm should be relatively straightforward to implement;
2. Speed: The algorithm should be capable of creating multiple possible boundary 

models in a reasonable amount of time;
3. Objectivity: The algorithm should avoid subjectivity in order to be repeatable;
4. Data Integration: The algorithm should be flexible and amenable to incorporate 

incremental geological information;
5. Access to Uncertainty: The algorithm should allow access to uncertainty; and
6. Geologically Realistic: The algorithm should be keyed to the geometrical nature of 

boundaries and create geologically realistic models.

3D SHALE
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PROBABILISTIC
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PROBABILISTIC
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The collective approach to these challenges is an important aspect of formulating and 
executing a credible decision of stationarity.

The most important challenges are the last two: access to global boundary uncertainty via 
multiple geologically realistic boundary model realizations. Neither fully deterministic 
nor fully stochastic methods are capable of overcoming both. DD methods sacrifice 
uncertainty quantification for realistic geology while SPB methods sacrifice realistic 
geology for uncertainty quantification. VF methods provide a potential alternative.

Reasonability Criteria
A reasonable boundary model and algorithm is evaluated on the basis of overcoming the 
six inference challenges listed above. As Figure 3-8 shows, there several approaches 
varying in their balance of determinism and stochasticity are available for addressing 
these challenges.

The reasonableness of different boundary models and boundary modeling methods will 
be evaluated with a yes/no type report card. An empty report card example is shown in 
Table 3-1. Both the description and evaluation of several specific boundary modeling 
methods will be given in Chapter 4. Emphasis is given to a new probabilistic approach 
using volume functions.

Boundary Modeling: Evaluation Criteria
lioumlsm Modcliug 

Vpprnacli Simplistic? Fast? Objective? Data
Integration?

Access to 
Uncertainty?

Geologically
Realistic?

#
. . . .
. . . • . .

Table 3-1: Empty report card for evaluating different boundary modeling algorithms.

3.4 Nature of Boundaries
Another model operation imposed on geostatistical modeling for a suitable decision of 
stationarity is recognizing and quantifying the nature of petrophysical properties across 
geological boundaries. A model describing these transitions is often needed to ensure the 
final numerical model contains geologically realistic petrophysical property transitions 
across boundaries. A more detailed treatment of this topic is given in Chapter 5.

3.4.1 Context
Conventional geostatistical prediction techniques populate petrophysical properties inside 
distinct geological domains enclosed by modeled boundaries. The predictions within each 
domain are derived from separate SRF models parameterized by the data available within 
the corresponding domain. The resulting numerical models built by pasting together these 
different predicted domains are not geologically realistic when smoother transitions are 
obvious from geological interpretations and/or sample data. The solution to this problem 
should not involve an amendment to the choice of separate domain type SRFs; this will 
damage the consistency of geological homogeneity with the assumptions of stationarity. 
A better solution is to quantify the influence of different SRFs near domain boundaries in 
order to reproduce geologically realistic transitions.
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An example copper porphyry mining deposit is used to illustrate the need to quantify the 
transitional nature of geological boundaries. Copper porphyries usually initiate from a 
significant igneous granitic porphyry intrusion in a volcanically active region. Ascending 
hydrothermal hot water solutions circulate around the solidifying magmatic intrusion 
disseminating low grade primary copper sulphide mineralization. High grade secondary 
or supergene enriched copper oxide mineralization occurs when descending oxidized 
water leaches and reconcentrates copper minerals capping the primary zones along thin 
bands below the water table [9]. In general, copper grades increase from zero within the 
leached zone, continue to increase to a maximum and decrease within the secondary 
oxide zone, and then remain constantly low within the primary sulphide zone. However, 
the nature or spatial distribution of copper grades near the geological boundaries 
separating these distinct zones can be quite different.

Figure 3-11 shows representative copper grade profiles (in units of %Cu by weight) from 
two different copper porphyry deposits each with leached, oxide, and sulphide geological 
domain type intervals identified. The profile on the left indicates copper grades smoothly 
transition from leached to oxide and from oxide to sulphide zones; the nature of these 
boundaries are generally referred to as soft. The profile on the right indicates copper 
grades abruptly transition from leached to oxide and from oxide to sulphide zones; the 
nature of these types of boundaries are generally referred to as hard. The hard or soft 
nature of transitions across geological boundaries must be reproduced in any geologically 
realistic numerical model.

3.4.2 Modeling Approaches
The techniques for modeling the nature of boundaries can be classified into two general 
categories. The first category is referred to as implicit corresponding to the conventional 
method of pasting together domains predicted from separate SRFs and conditioning data 
sets. The resulting abrupt transitions across boundaries are realistic only when the nature 
of boundaries can be generalized as hard. For soft boundaries, however, a near-boundary 
model describing how separate SRF parameters interact is needed to build in realistic 
geological transitions explicitly.

The choice between implicit and explicit approaches to modeling transitions across a 
particular boundary is based on whether the boundary can be classified as hard or soft. 
The exact definition of hard and soft as well as a group of techniques collectively referred 
to as contact analysis used to quantify hard and soft natured boundaries are presented in 
Chapter 5.

An explicit approach to modeling soft boundary transitions and the implicit approach to 
modeling hard boundary transitions are both followed. Figures 3-12 and 3-13 show the 
copper grade profiles from Figure 3-11 positioned at the center of a small 2D portion of 
the full aerial accumulation, 275 x 120m for the soft boundary scenario (Figure 3-12) and 
225 x 120m for the hard boundary scenario (Figure 3-13). A boundary model is shown 
with dark horizontal lines separating oxide from upper leached and lower sulphide ores. 
For both the explicit and implicit methods, three geostatistical realizations are simulated 
over the full 225 x 120m or 275 x 120m area assuming a single SRF for each of the three 
leached, oxide, and sulphide ores; each SRF is parameterized by separate first order mean
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and second order variogram/covariance moments inferred from the data exclusive to the 
corresponding domains. The predictions from separate SRFs are then merged with the 
boundary model to construct the full numerical model results in Figures 3-12 and 3-13. 
Explicit and implicit methods differ in the way separate SRF predictions are merged.
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Figure 3-11: Representative copper grade profiles (%Cu by weight) illustrating soft (left) and hard (right) 
natured geological boundaries within two different copper porphyry deposits.

Figure 3-12 illustrates the explicit results. The two LMMs shown at the leached-oxide 
and sulphide-oxide soft boundaries are used to weight predictions from different SRFs. 
Consider, for example, the leached SRF. Zero weight is given to these predictions within 
the full 0 to 135m sulphide ore interval and the 135m to 205m portion of the oxide ore 
interval; at locations within oxide ore but within 20m of the leached-oxide boundary, the 
weight increases linearly from zero at 20m outside leached ore to one at 20m inside 
leached ore; the weight is then one for the remaining higher leached ore elevations. The 
resulting copper grade transitions are geologically consistent with soft boundaries.

The implicit results are shown in Figure 3-13. For predictions within a particular ore 
domain, the implicit approach corresponds to a particular LMM in which full weight is 
given to predictions coming from the corresponding enclosed SRF and no weight is given 
to predictions from surrounding SRFs. The resulting copper grade transitions are hard.
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% C u EASTING (m)
Figure 3-12: Soft boundary copper grade profile (left) and simulation model (right) using an explicit LMM 
approach. A separate LMM is used at each of the two soft boundaries.
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Figure 3-13: Hard boundary grade profile (left) and simulation model (right) using the implicit method.
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3.4.3 Reasonableness
Decisions of stationarity are more reasonable when the character of petrophysical 
property transitions across geological boundaries is identified and reproduced accurately.

Inference Challenges
There is no direct control on the transition of petrophysical properties across the domain 
boundaries when choosing domain types or modeling the domain boundaries. Generating 
geologically realistic transitions with the most straightforward procedure possible can be 
challenging.

Reasonability Criteria
Credibility of the decision of stationarity depends on realistic depictions of petrophysical 
property transitions across domain boundaries. The best technique for identifying and 
reproducing the nature of boundaries is as geologically realistic and simple as possible. 
The implicit approach is the simplest, but appropriate only for hard boundaries. Explicit 
models are used for soft boundaries; alternative models such as the LMM, global LMC, 
or locally varying LMC are evaluated on the basis of simplicity and geological reality.

3.5 Trend Modeling
Another major model operation imposed on geostatistical modeling for a reasonable 
decision of stationarity is trend modeling. Trend models capture any unresolved large- 
scale variability that boundary modeling can not. A more detailed treatment o f this topic 
is given in Chapter 6.

3.5.1 Context
There is definitely a geological context for the presence of large-scale deterministic trend 
models; however, there is also a theoretical one.

Theoretical Context
Geostatistical estimation is synonymous with kriging; and the foundation of more modem 
geostatistical simulation is kriging. Kriging is unquestionably an essential algorithm for 
standard geostatistical prediction. Derivation of the kriging equations requires a trend 
model. Recall in relation (2-34) the kriging estimator at an unknown uo appears as the 
result of linear estimation of the residual value at the unsampled location r*(uo) from n 
surrounding residual data r(us). This interpretation is true for all varieties of kriging and 
requires additively decomposing Z(u) as in relation (2-9). Therefore, a trend model m(u) 
is needed at all sampled and unsampled locations within the domain to implement usual 
geostatistical estimation or simulation.

The mathematical first order assumption of a stationary mean assumes the trend model is 
a constant m value with no spatial variability. However, this assumption may not contain 
sufficient variability to reproduce large-scale deterministic geological variability in the 
final numerical model. In these cases, a locally varying mean or trend model must be 
incorporated into the prediction algorithm explicitly.
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Geological Context
The additive decomposition of Z(u) is convenient in that although it is required for 
kriging theoretically, it also has a rational geological interpretation. The trend is often 
referred to as the locally varying mean or the m(u) component in (2-9) which can explain 
the deterministic nature of petrophysical properties due to clearly understood geological 
processes; the residual component i?(u) is then intended to explain the leftover chaotic 
nature of these processes. Although it is never fully correct and there may be more 
accurate approaches, geological phenomenon are assumed to conform to the additive 
division of smooth and erratic variability in (2-9) so that geostatistical prediction can be 
performed.

An example is presented to illustrate the geological context of a trend. Figure 3-14 shows 
a photograph of a corehole extracted from a 20m elevation interval within the Athabasca 
Oil Sands in Alberta, Canada. The darker shades indicate higher oil saturation within 
higher porosity sand facies; the lighter shades indicate lower oil saturation within lower 
porosity shale facies. The corresponding porosity profile is shown to the right of the core 
photo. A fining upward trend is clearly visible due to a transition of depositional 
environments from transgressive packages of fluvial to estuary sand facies dominating 
lower elevations to regressive packages of fine grained marine shale facies dominating 
higher elevations.

I

POR (%)
Figure 3-14: A corehole photograph from the Athabasca Oil Sands, Alberta, Canada (left) and related 
fining upward log porosity profile (right) with additive trend and residual components indicated.

The additive decomposition in (2-9) is also indicated in Figure 3-14. The trend m(u) line 
represents a locally varying deterministic expectation in porosity; the leftover variability 
is represented by the stochastic residual R(u).
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3.5.2 Modeling Approaches
There are alternative algorithms available for building trend models. These alternatives 
are explored in this section with a continuation of the example shown in Figure 3-14.

The techniques for building trend models can be classified into two general categories. 
The first category is manual techniques including hand contouring and digitization. The 
second category is automatic techniques including moving window averages, inverse 
distance schemes, and kriging. The classic application of inverse distance and kriging for 
modeling the trend is very different than for classic estimation. Large search routines and 
smooth spatial correlation (low inverse distance powers and continuous long range 
variograms) must be used to ensure the trend does not represent too much variability and 
is consistent with geological interpretations.

Ten samples are extracted from the full porosity profile shown in Figure 3-14. Figure 3- 
15 shows the location of these samples (bullets) with manual (left) and automatic (right) 
trend models. No samples are available at elevations below the level indicated with the 
horizontal bar in order to represent regions of limited sampling typically encountered in 
practice. Nonetheless, the deterministic expectation of a fining upward porosity profile as 
shown in Figure 3-14 is still available and well understood from a reliable geological 
investigation of the area surrounding the corehole. The broken line in Figure 3-15 shows 
this trend; it is taken as a reference hereafter since it is interpreted from the entire profile 
of porosity values as well as reliable deterministic geological information.
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Figure 3-15: A manual (left) and automatic (right) trend model built from the ten available sample data 
(shaded bullets). The interpreted trend using all the available sample data and a high level geological 
understanding is represented by the broken line.
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The manual trend model is easily adapted to the geological interpretation regardless of 
limited data. The manual trend also does not over-interpret the geological understanding 
by representing additional variability past what is deterministically discemable. However, 
special effort is required to adapt an automated method to the geological interpretation. 
For this example, simple kriging with a global search, 40% nugget effect, and long range 
variogram is used to ensure the trend model is as smooth as possible. Although smooth, 
the automated results are inconsistent with the reference trend. This contradiction is more 
pronounced at locations where no sample data are present. Actually, below the elevations 
where no sample data are available, the automatically built trend shows an opposite 
fining downward expectation. This is due to an increasing weight being assigned to the 
stationary expected vale. This is a common problem with automated methods. In general, 
automated methods are used only when the resulting trend models are consistent with 
basic geological interpretations.

It is the recommendation of this author to construct a valid trend model in all cases; even 
when the trend model will not be used explicitly for prediction. This is to ensure that 
large-scale deterministic geological features in the trend are reasonably captured in the 
final numerical model.

3.5.3 R easonableness

Modeling trends improves the assumption of stationarity by handling any outstanding 
determinism not addressed by domain types and boundary models. However, there are 
some important inference challenges to overcome to generate an appropriate trend model.

Inference Challenges
Four main challenges face inference of a trend:

1. Simplicity: Choosing the parameters and implementing a trend modeling algorithm 
should be relatively straightforward;

2. Subjectivity: The trend modeling algorithm should emphasize subjective geological 
interpretations, but also be repeatable;

3. Variability: The trend model should not represent any more variability than what is 
not known with high certainty; and

4. Geologically Realistic: The trend model should portray key deterministic geological 
features and be consistent with the underlying genesis.

The collective approach to all these challenges is an important aspect of formulating and 
executing a decision of stationarity.

The most important challenges are the last two: ensuring the trend model is geologically 
realistic and does not represent too much variability. Manual trend modeling is well 
suited for this guideline; however, automated methods need to be tailored towards this.

Reasonability Criteria
Choosing a reasonable trend model and construction algorithm is evaluated on the basis 
of overcoming the four inference challenges listed above. The reasonability o f different
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trend modeling methods is evaluated with a yes/no report card. An empty report card is 
shown in Table 3-2. Both the description and evaluation of several specific trend 
modeling methods will be given in Chapter 6.

Table 3-2: Empty report card for evaluating different trend models and trend modeling algorithms.

3.6 Prediction with the Trend Model
The decision of stationarity must consider trends. The use of a trend model in prediction 
ensures the final numerical model contains important large-scale geological features. A 
more detailed treatment of this topic is given in Chapter 7.

3.6.1 Context
Regardless of how many SRFs and domains are chosen to model a regionalized variable, 
it is almost always possible to detect large-scale deterministic trends within each separate 
domain. Numerical models of geological heterogeneity must reflect these deterministic 
trends. The context and motivation for predicting with a trend model is ensuring trends 
are reproduced in the final numerical model.

3.6.2 Modeling Approaches
Methodologies used to account for the trend are classified as implicit or explicit. Implicit 
methods do not explicitly use a previously built trend model except for validating large- 
scale geological features in the numerical models built with conventional geostatistical 
methods. Explicit approaches are modified geostatistical algorithms to integrate and 
honor the trend by construction.

A trend model is always needed, but may or may not be used directly. The most common 
use of a trend model is verifying large-scale deterministic geological features are honored 
with standard prediction techniques; in this way, the trend is honored implicitly. When 
there is insufficient conditioning information, however, conventional methods must be 
adapted to incorporate the trend model exactly; here, the trend is honored explicitly. 
Therefore, whether it is used implicitly for checking or explicitly for prediction, a model 
of the trend is always needed to build geologically realistic numerical models.

The implicit and explicit approaches to geostatistical estimation with the trend model are 
implemented using the manual trend model from Figure 3-15. The implicit approach is 
illustrated in Figure 3-16. Simple kriging is used for estimation. A range of 40% of the 
elevation interval and 5% nugget effect are used. The resulting numerical model fails to 
reproduce both the reference and manual trend models. The discrepancies are spread 
throughout the entire elevation interval, but are increasingly severe where limited data are 
available. Below a certain elevation, for example, sample data are beyond the range of 
correlation and the SRF mean parameter of 18.35% porosity is exactly estimated.

I m id  Modeling 
\p p r in ic h_ Simplistic? Subjective? Low Variability?

Trend Modeling: Evaluation Criteria
Geologicall)

Realistic?
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Figure 3-16: An illustration of the implicit approach to account for the trend in estimation. The kriging 
model (dark curve), manual trend (shaded solid line), and reference trend (dark broken line) are all shown.
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Figure 3-17: An illustration of the explicit approach to account for the trend in estimation. The residual 
data (shaded bullets) and kriged residual model are shown on the left. The final explicit model with the 
residuals added back to the manual trend (shaded solid line) is shown on the right.

55

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



An explicit approach is needed to capture a reasonable trend model in prediction models. 
Instead of kriging the original data, the residual data are kriged. The residual data and 
kriged residual model are shown in Figure 3-17 (left). The kriged residual model is then 
added to the manual trend model to generate the final explicit numerical model (right). 
Here, the trend is satisfactorily reproduced by construction.

3.6.3 Reasonableness
The fifth and last aspect of the decision of stationarity is predicting with the trend model. 
A number of challenges must be overcome.

Inference Challenges
Five key challenges facing inference with a trend are addressed in this dissertation:

1. Simplicity: The methodology used to incorporate the trend model into geostatistical 
estimation or simulation should be relatively straightforward;

2. Spatial Law Inference: Inference of the spatial law of the variable being predicted 
should be possible and straightforward;

3. Accurate and Precise Uncertainty: The resulting numerical models should represent 
accurate and precise local distributions of uncertainty [6];

4. Reproduction o f Bivariate Residual Distribution: The bivariate distribution between 
the R(u) RF and both the trend and original Z(u) RF should be reproduced; and

5. Geologically Realistic: The resulting models should satisfactorily reproduce key 
deterministic geological features in the trend model.

The collective approach to all these challenges is an important aspect of formulating and 
executing a decision of stationarity.

The most important of these challenges is making certain the resulting numerical models 
reproduce the key large-scale geological features in the trend model. An explicit account 
for the trend is not needed when the assumption of a stationarity mean is enough to 
reproduce the trend implicitly; however, there are times when the trend model needs to be 
explicitly integrated into the prediction algorithm so that it is honored by construction.

Reasonability Criteria
Choosing a reasonable prediction algorithm is evaluated on the basis of overcoming the 
four inference challenges listed above. The reasonability of different algorithms to predict 
with the trend model is evaluated with a yes/no report card. An empty report card is 
shown in Table 3-3. Both the description and evaluation of several specific algorithms 
will be given in Chapter 7.

Prediction with the Trend Model: Evaluation Criteria

Prediction with the .... .. ... „ 
Trend Model

Spatial Law 
Inference?

Accurate/Precise
Uncertainty?

Reproduction of 
Bivariate J?(u) 
Distributions

Geologically
Realistic?

. . . .

' , . .
. • . . •

Table 3-3: Empty report card for evaluating different approaches to accounting for the trend in prediction.
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3.7 Remarks
A decision of stationarity involves five main modeling steps: (1) choosing domain types 
for separate SRFs, (2) modeling the domain boundaries, (3) quantifying the influence of 
SRFs across domain boundaries, (4) quantifying trends within the domains, and (5) 
predicting with the trends. The collective approach to all five steps encompasses the 
decision of stationarity.

Up until now, there was no structured approach available to make a reasonable decision 
of stationarity; this decision is often based solely on choosing domain types for separate 
SRFs. The comprehensive five step framework of geostatistical modeling phases, each 
with its own context, modeling approaches, and reasonability criteria, provide a source 
for making a suitable decision of stationarity. This is new to the practice of geostatistics.

Decisions of stationarity are routinely debated by practitioners on the basis of subjective 
geological conditions. The structure for decisions of stationarity presented in this chapter 
acknowledges this criterion by including realistic geological consistency as a minimum 
standard for reasonable modeling approaches, but also offers additional more objective 
criteria. Therefore, although the decision of stationarity can still never be tested or refuted 
in a theoretically precise manner, the decision can certainly be deemed unreasonable.

A separate decision of stationarity is made for each ReV of interest. The approach to the 
five consequences of a decision of stationarity identified in Figure 3-1 can be different for 
different ReVs. For example, within a layered reservoir, a single SRF may be suitable for 
modeling water saturation whereas porosity and permeability SRFs may be more suitable 
when applied on a by-layer or by-facies basis.

Stationarity is not a geological property; stationarity encompasses the first and second 
order mathematical properties of a RF needed to be a SRF. It is incorrect then to refer to a 
resource accumulation or geological compartment thereof as stationary. It is in fact the 
corresponding SRF and its first and second order moments that can be correctly referred 
to as stationary.
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C h a p t e r  4

B o u n d a r y  M o d e l in g

A boundary model is needed when the full accumulation limits are divided into separate 
geological units consistent with SRFs. The utility of the boundary model is to identify the 
spatial jurisdiction of SRFs and the inherent uncertainty in the structural framework of 
the deposit or reservoir.

There is a variety o f modeling approaches available to build bounding surfaces ranging 
from deterministic techniques to more probabilistic techniques. These techniques are 
reviewed and evaluated according to the criteria identified in Chapter 3. Choosing a 
boundary modeling method depends on the geometric character of the boundaries and the 
amount and type of available geological information. These dependencies are developed 
and discussed.

A volume function technique is developed, described, and implemented. This technique 
is linked to global uncertainty characterization.

4.1 Boundary Modeling Principles
The construction of a reasonable boundary model is an essential aspect of making the 
best possible decision of stationarity. Chapter 3 identified six main criteria used for 
evaluating the reasonableness of different boundary modeling approaches: (1) simplicity, 
(2) speed, (3) objectivity, (4) data integration ability, (5) access to uncertainty, and (6) 
geologically realistic. Before reviewing and evaluating alternative boundary modeling 
techniques, these evaluation criteria are briefly discussed.

The boundary modeling algorithm formulation, description, and implementation should 
be relatively straightforward. Too complex algorithms will be difficult to implement, 
explain, and justify in practical settings. More popular boundary modeling algorithms are 
generally more straightforward.

The algorithm should be capable of creating multiple realizations in a reasonable amount 
of time. Practically, it is generally inappropriate to spend more than one day generating a 
boundary model in the exploration phase of a natural resource venture. Algorithm speed 
should also be relatively independent from the geological complexity.

The boundary modeling algorithm should be repeatable by any professional geologist or 
engineer given the exact same input conditioning information.
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Exploration drilling is often performed in campaigns. There is a need to quickly update 
the boundary model in the advent of new geological information. The boundary modeling 
algorithm should be readily amenable to incorporate incremental geological information.

An important criterion for boundary modeling methods is access to structural uncertainty. 
Boundary surface uncertainty can be a major source of exploration and production 
uncertainty needed to make informed planning decisions.

The uncertainty should be modeled by geologically realistic boundaries. Geologically 
realistic models are built from algorithms that are tailored to the geometrical nature of 
boundaries as well as the amount and type of conditioning data available.

4.2 Boundary Modeling Approaches
Deterministic digitization (DD), volume function (VF), object-based (OB), surface-based 
(SB), and stochastic pixel-based (SPB) algorithms were all indicated in Chapter 3. These 
boundary modeling techniques are now described and evaluated for reasonableness.

4.2.1 Deterministic Digitization (DD)
The traditional approach to modeling geological boundaries is through a 3D triangulation 
of polygons representing the solid body on a discrete series of offset cross sections. The 
cross sections are then joined by tie lines to guide the connectivity of a 3D triangulation 
of the solid boundary [13]. The procedure is referred to as an explicit model of the solid 
since the bounding surface is defined unequivocally by the 3D coordinates positioning 
the patchwork of triangles. The DD approach is implemented in most general mine 
planning packages (GMPs) such as GEMS [14] and VULCAN [15].

Reasonableness
The DD boundary modeling approach is simple to apply and is capable of generating 
realistic boundaries; however, there are a number of important limitations. These include 
high professional time, subjectivity, inflexibility, and inaccessible uncertainty. Detailed 
comments organized by reasonableness criteria follow:

1. Simplicity: DD techniques of digitizing offset polygons and tying them together by 
way of triangulation is simple, owing to the highly visual nature of this method;

2. Speed: Drawing 2D polygons and tie lines demands an often overwhelming amount 
of time in many practical geological settings;

3. Objectivity: The resulting boundaries are the result of a prolonged series of small 
subjective decisions specifying where the volumetric surface exists; although this 
may generate a geologically realistic model, a non-repeatable signature of the 
interpreter is inevitably imparted to the boundary surface;

4. Data Integration: It is difficult to update a DD boundary model with new corehole 
information -  modifications are often undertaken in costly campaigns;
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5. Access to Uncertainty: No direct measure of uncertainty is possible; only a rough 
measure is possible when there is enough professional time and resources to create 
multiple DD models;

6. Geologically Realistic: Since the interpreter has direct control on the digitization 
procedure, DD type boundaries are usually geologically realistic.

4.2.2 Volume Function (VF)
VF techniques represent boundary surfaces indirectly with a volume function model. 
Leapfrog is the only commercial implementation of the volume function method at the 
time of writing this dissertation [16, 17, 18]. This technique is reviewed here.

There are four major steps to the Leapfrog implementation of the VF approach: (1) data 
preparation, (2) radial basis function (RBF) interpolation, (3) geological interpretation, 
(4) morphological interpolation, and (5) morphologically constrained interpolation [17]. 
At least the first two phases are required. The result is a smooth volume fimction within 
which a constant valued surface representation of the desired boundary exists and can be 
extracted at any desired resolution [18].

Reasonableness
The Leapfrog approach is straightforward, fast, objective, flexible, and realistic; however, 
current applications do not allow direct access to uncertainty. Some additional comments:

1. Simplicity'. Coding data to the volume function and subsequent smooth interpolation 
of these codes is straightforward;

2. Speed: Interpolation is fast on the order of hours using a VF approach;
3. Objectivity: The choice of interpolation method and parameters may be subjective, 

but the volume function will be identical for the same data and interpolation setup;
4. Data Integration: Additional conditioning data can be included easily;
5. Access to Uncertainty: Boundary uncertainty is only accessible subjectively through 

different morphological interpretations;
6. Geologically Realistic: Although there is more direct control with DD methods, 

realistic boundaries can still be generated in various settings.

The VF approach is simple, flexible, and can easily be fully automated to construct 
geologically realistic boundary models quickly and objectively. However, there is no 
direct access to global uncertainty.

4.2.3 Object-Based (OB)
DD and VF methods do not account for uncertainty in geological boundaries. Stochastic 
models are needed for this purpose. The first boundary modeling algorithm with 
stochastic functionality explored in this thesis is object-based approaches.

OB modeling algorithms are formulated for reservoirs of fluvial origin. Fluvial sediments 
are deposited along sinuous sand-filled channels. Plan and section view illustrations of 
some key architectural elements of a fluvial system are shown in [19].
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In 1979, Bridge and Leeder [20] presented a process-based computer model to simulate 
multiple equally possible fluvial stratigraphic realizations. The program calculates a set 
of fluvial flood plain surface geometries based on various interdependent channel sand 
deposition processes. Stochasticity is introduced by randomizing some key geometric 
parameters. This original approach was the beginning of a series of process-based and 
OB modeling algorithm advance. The work of Haldorsen and others [21, 22] popularized 
the implementation to practical settings in the mid 1980s.

OB modeling currently refers to direct location of spatial geological bodies (geobodies) 
and is differentiated from process-based models referring to the placement o f geobodies 
in space according to time-dependant processes [23]. The term OB, however, is often 
used interchangeably with process-based. Deutsch and Wang [24] created a fully OB 
algorithm involving a hierarchical progression of geometric coordinate transformations in 
1996; a move towards process-based modeling was made in 2002 by Deutsch and Tran 
[25]; in 2004, Pyrcz and Deutsch [26] developed a process-based modeling algorithm 
using streamline events. Stochasticity is added to both process-based and OB models by 
randomizing geobody geometric parameters.

Conditioning hard and soft geological data is a common challenge facing OB models. 
Three possibilities exist: (1) constraining the evolution process and erodibility schedule 
[27], (2) kriging for conditioning [28], and (3) direct fitting of geometries to the data [29, 
30], Current OB technology is focused at conditioning of hard and soft geological data.

Reasonableness
OB methods are capable of generating realistic and probabilistic boundary realizations 
with relatively simple and fast algorithms; however, conditioning to well data remains a 
significant challenge. Detailed comments organized by reasonableness criteria follow:

1. Simplicity. The parameterization of governing fluvial geometries and processes can 
be made as straightforward or as complex as desired;

2. Speed: Object placement with multiple geometric parameter set realizations is 
relatively fast;

3. Objectivity: The choice of both object types and processes is subjective, but non- 
repeatable by different individuals;

4. Data Integration: Conditioning can be difficult in some settings in which case 
incorporating incremental hard and/or soft data would also be difficult;

5. Access to Uncertainty: Uncertainty is accessible by way of randomly drawing a set 
of geometric geobody parameters per object and per realization;

6. Geologically Realistic: The types of objects and processes chosen are aimed to be 
geologically realistic for the particular model setting.

4.2.4 Surface-Based (SB)
The second boundary modeling approach with stochastic functionality explored in this 
thesis is SB algorithms. These methods are relatively new, yet there are some well 
developed techniques available.
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For several years, fluvial deposits have been the primary focus for petroleum research, 
development, and implementation of OB modeling. Lately, significant petroleum 
exploration energy is being focused on submarine turbidite systems [31]. There has been 
an effort to adapt fluvial OB methods to the submarine environment [32]; however, these 
variations do not mimic all turbidite processes. A new SB approach is proposed as a 
supplement for compensational stacking regimes in the more distal portion of turbidites. 
[33].

Large-scale stochastic surface modeling began in 1999 by Xie [34] based on a simulated 
annealing algorithm; this methodology was later refined into a streamline-based approach 
by Pyrcz in 2004 [35]; and then modified again by Zhang and Pyrcz in 2006 [36] to be 
capable of reproducing a hierarchy of stacked composite facies proportion trends. The 
large-scale algorithm was adapted to intermediate-scale SB model of the Cengio turbidite 
system and integrated into a geostatistical study in 2005 [33]. Stochasticity is added to 
these models by randomizing surface geometry parameters.

Small-scale stochastic surface modeling has also received some attention. SBED software 
[37], for example, has utilities for a wide variety of bedding and stacked bedding 
template patterns for smaller scale SB modeling.

Reasonableness
SB techniques can be applied in a simple, fast, objective, and flexible manner and are 
capable of assessing uncertainty with realistic boundary surface heterogeneity. Detailed 
comments organized by reasonableness criteria follow:

1. Simplicity. The parameterization of surface geometries and processes can be made 
as straightforward or as complex as desired;

2. Speed: Interpolation between data is fast;
3. Objectivity. Surface geometry can either be directly chosen and added as a 

constraint during interpolation or left unknown and objectively modeled;
4. Data Integration: The integration of a wide variety of soft and hard conditioning 

data into the algorithms is relatively straightforward;
5. Access to Uncertainty: Uncertainty is accessible by way of randomly drawing a set 

of geometric surface parameters per realization;
6. Geologically Realistic: When chosen, the geometry of surfaces are aimed to be 

geologically realistic for the particular model setting.

4.2.5 Stochastic Pixel-Based (SPB)
When clear geological objects or surface types and complimentary geological processes 
exist, OB and SB techniques are applied. However, lacking clear deterministic geological 
understanding, SPB methods are more appropriate.

The truncated Gaussian method was established in 1984 by Chiles [38] and Isaaks [39] 
and by Matheron in 1987 [40] to truncate a single Gaussian RF by experimentally 
determined facies proportions. Recognizing the facies associations and spatial correlation
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limitations of the truncated Gaussian method, Le Loch and Galli in 1996 formalized the 
truncated pluri-Gaussian method that uses multiple Gaussian RFs [41]. Sequential 
indicator simulation of indicator RFs, currently the most popular SPB method, was 
introduced in 1990 [42] and first implemented in 1993 by Joumel and Gomez-Hemandez 
[43] on the Wilmington Clastic Sequence. Truncated Gaussian, truncated pluri-Gaussian, 
and sequential indicator simulation techniques are capable of constructing heterogeneity 
represented by only a two-point statistical semivariogram model. Multiple point statistics 
simulation, first proposed by Guardiano and Srivastiva [44] in 1993 and later developed 
by Strebelle and Joumel [45] in 2000, is capable of reproducing multiple-point statistics 
from a training image.

Reasonableness
SPB techniques are simple, fast, repeatable, and flexible, but are generally unable to 
capture uncertainty with realistic geological heterogeneity. Some additional comments:

1. Simplicity: Histogram and spatial correlation inference are straightforward;
2. Speed: Interpolation and simulation is relatively fast;
3. Objectivity: The interpolation and simulation algorithms are repeatable;
4. Data Integration: The integration of a wide variety of soft and hard conditioning 

data into can be achieved easily;

5. Access to Uncertainty: Local uncertainty is characterized through the local 
conditional cumulative distribution functions (ccdfs) built with simple kriging;

6. Geologically Realistic: The results may not be geologically realistic in some settings 
due to the presence of isolated cells surrounded by a contrasting facies types.’

Many comments above do not apply to MPS. MPS techniques are more complex, slower, 
more subjective (due to the choice of training image), less flexible, and are capable of 
generating geologically realistic models.

4.2.6 Reasonableness Summary
The detailed comments made above are summarized into the report card in Table 4-1 
organized by boundary modeling approach.

Boundary Modeling: Evaluation Criteria
linundan  Modeling 

Approach Simplistic? Fast? Objective? Data
Integration?

Access to 
1 nccriuiim ?

Geologically
Realistic?

D D yes no no no no yes
VF yes yes yes yes no yes
OH yes yes no no yes yes
SB yes yes yes yes yes yes

SPB yes yes yes yes yes no
Table 4-1: Report card for evaluating the continuum of boundary modeling approaches in Figure 4-1.

For certain settings, OB and SB methods are capable of accessing geologically realistic 
uncertainty. But only SB approaches achieve this goal objectively and flexibly. DD and 
SPB approaches may not be easily modified to achieve this goal. The VF approach, 
however, can easily be customized to access uncertainty. This is the major focus of this 
chapter and one of the developments made in this dissertation.
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Now the topic of choosing a particular boundary modeling approach is discussed. All the 
approaches can be parameterized straightforwardly. Relative to DD, all approaches are 
fast; but, out of these faster approaches, only OB and SB techniques are capable of 
quantifying structural uncertainty with geologically realistic realizations. Since the OB 
approach is subjective and inflexible and the SB approach is objective and flexible, the 
SB approach is logically the method of choice. However, depending on the geometrical 
nature of the boundaries and amount and type of available conditioning information, this 
is not necessarily the case.

4.3 Choosing a Boundary Modeling Technique
Reasonableness helps guide the decision as to which boundary modeling approach and 
technique is adopted for a particular setting. However, other than the six reasonableness 
criteria identified previously, two additional criteria are considered for this decision: (1) 
the boundary modeling approach chosen should be suitable for the geometrical nature of 
boundaries in the setting being considered, and (2) the amount and type of conditioning 
geological information available must be handled straightforwardly.

Consider a small example. An OB approach would be chosen over a SB approach in a 
fluvial setting with a well known channel sand complex dominating the reservoir. Yet, if  
numerous hard data are available and need to be honored, an OB method may not be 
appropriate. SB methods are also unsuitable. If uncertainty is required, a SPB approach 
may be applied. However, more realistic boundaries could be created with VF methods. 
Global uncertainty would be accessible with the work presented later in this chapter.

4.3.1 The Geometric Nature of Boundaries
The intention now is to present some different boundary types that the five boundary 
modeling approaches presented and described previously can be applied. Four general 
classifications are: (1) vein-type, (2) ellipsoidal, (3) process-based (fluvial/turbidite), and 
(4) layered. A schematic depiction of each of these geometries is shown in Figure 4-1.

The geometric nature o f boundary surfaces is quite different in each of the geological 
settings depicted in Figure 4-1. And, certainly, no one boundary modeling approach is 
suitable for all possible geometrical varieties. The best boundary modeling approach is 
capable of generating boundary surfaces similar to the characteristic geometric features 
of the geological setting. Achieving this consistency depends on the modeling approach 
and on the amount and type of conditioning geological information available as well as 
professional judgment.

4.3.2 Conditioning Data
The geometric nature of boundaries and the amount of conditioning information are 
interdependent. The choice of a suitable boundary modeling approach, therefore, depends 
on the configuration and quality of conditioning information. The main concern is that 
geological complexity depends on sample data density. Less data imply less complex 
geometries. For example, when increasing conditioning data is available, the geometric
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complexity of the boundary will increase and DD techniques become too cumbersome to 
apply; VF, SB, or SPB are more appropriate approaches.

4.3.3 Geometric Capabilities and Required Geological Information
Both the ability of reproducing key geometric features from the geological setting and the 
dependability on the amount and type of conditioning geological information are now 
discussed for each of boundary modeling approaches separately.

NON-NET

PROCESS-BASED

SOURCE

PLAN VIEW

E llip so id a l

GROUND SURFACE

NON-NET

L a y e re d

GROUND SURFACE

Figure 4-1: Schematic drawings of vein-type (top left), ellipsoidal (top right), process-based (bottom left) 
and layered (bottom right) boundary surface geometries.

Deterministic Digitization (DD)
The DD approach does not require large amounts of conditioning information to generate 
geometrically realistic boundary surfaces. In fact, digitizing boundaries becomes more 
difficult and time consuming as the amount of conditioning data increases. This is true 
for all varieties of geometries in Figure 4-1. An example is Figure 4-1 where boundary 
surfaces are easily drawn deterministically without any conditioning information.
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Volume Function (VF)
With the exception of process-based geometries, the VF approach is capable of modeling 
any geometry in Figure 4-1; vein-type and ellipsoidal geometries are particularly well 
modeled. However, a relatively large amount of hard data control is required to condition 
the creation and interpolation of the volume function.

Object-Based (OB)
OB approaches are tailored to process-based geometrical boundaries and are generally 
inappropriate for modeling the other geometrical varieties in Figure 4-1. OB approaches 
do not require a large amount of hard conditioning data and often perform better with few 
hard data. Alternate techniques may be considered when hard data integration is a 
priority. The OB approach is more amenable to the integration of soft data.

Surface-Based (SB)
Layered boundary geometries are most reasonably modeled with SB approaches. The SB 
approach is also applicable for process-based boundary surface geometries, but currently 
only for turbidite processes in particular. Most of the conditioning geological information 
for layered geometries consists of structural rules; only a small amount of hard data is 
required.

Stochastic Pixel-Based (SPB)
The SPB approach is equally applicable to all varieties of boundary surface geometries in 
Figure 4-1. However, these techniques are best applied with a large amount o f hard and 
soft conditioning geological information. Unrealistic boundary surface geometries can be 
generated in the presence of sparse data.

4.4 Volume Function Boundary Modeling with Global Uncertainty
VF boundary modeling was reviewed in the beginning of this chapter. Out of the six 
reasonability criteria used to evaluate boundary modeling approaches, only one was left 
unsatisfied: that of objectively capturing structural uncertainty with multiple possible 
geologically realistic boundary surfaces. This section describes the framework of the VF 
approach and then presents some simple modifications for quantifying global uncertainty.

4.4.1 The Volume Function Concept
The definition of a VF is attached to the notion of distance to an interface where the 
interface is defined as the surface separating two distinct domains within which different 
SRFs will subsequently be developed for geostatistical modeling. Distance is measured to 
the nearest interface. The bounding interface of interest is the surface corresponding to a 
particular iso-value of the VF.

Some Examples
Figure 4-2 shows four binary indicator models (left) and their corresponding VF (right) 
for four basic 2D geometries. The binary indicator models are analogous to a net (inside) 
/ non-net (outside) rocktype model. From top to bottom in Figure 4-2, the boundary 
interface is a circle, square, plus (+) sign, and set of four small squares. The accumulation
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limits correspond to the same square outline in all four cases. The VF smoothly varies 
between increasingly negative values inside and further away from the boundary 
interface to increasingly positive values outside and further away from the boundary 
interface. The VF color scale ranges from black for highly negative values to white for 
highly positive values. Notice the boundary interfaces are where the VF value is zero.

VFs are used in practice to forecast the location of boundaries in between limited sample 
data. Figures 3-6 and 3-7 show a true binary geological model representative of a mining 
and petroleum setting using image analysis with separate digital photographs. A VF in 
each case was then constructed from two drillholes in the mining setting and two wells in 
the petroleum setting. Figure 4-3 shows the underlying geological model, the sample data 
locations, and the VF generated for both settings. The locations where the VF value is 
zero are predictions of the boundary interfaces.

VF Distance
A VF is essentially a distance function. Distance is measured to the nearest interface and 
increases with locations further away from an interface. Two important characteristics of 
this distance measure make its definition unique to VF applications. First, VF distance 
can be negative or positive depending on whether the location is inside or outside the 
solid; second, VF distance can be spatially correlated. Correlation of distance is a strange 
concept. These characteristics are now both addressed.

Although not necessary, a straightforward way of interpreting the boundary interface of 
interest is as the zero-surface of the VF, that is, the surface defined by all locations within 
the accumulation limits where the VF is valued at zero. This requires that the VF distance 
be either negative inside the boundary and positive outside the boundary or positive 
inside the boundary and negative outside the boundary. The former convention is taken in 
Figures 4-2 and 4-3 and in the remainder of this dissertation. Therefore, although the term 
distance is used, the sign is modified for VF distance.

Anisotropy introduces another complicating feature of VF distance. Realistic boundary 
geometries are not isotropic. The schematic boundaries in Figure 4-1, for example, all 
show different anisotropy. Since VFs contain anisotropic boundary surfaces of interest, 
VF distances must also be anisotropic. This can be taken into account by interpolating VF 
distance codes with anisotropic variogram models.

Coding Conditioning Data
An initial binary coding of the available sample data in terms of net and non-net geology 
is a prerequisite for constructing a VF. The VF distance of all the sample data must be 
calculated for subsequent interpolation. Figure 4-4 is a small example illustrating how 
samples are coded as VF distances for four vertical lm  composite coreholes. A binary net 
(1) / non-net (0) geological model is available at the sample locations. VF conditioning 
data for sample locations within net geology are set to the negative distance between the 
net sample location and the nearest non-net geological sample location; for sample 
locations within non-net geology, the VF conditioning data are set to the positive distance 
between the non-net sample location and the nearest net geological sample location. Each
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sample composite in Figure 4-4 is shaded with its corresponding VF value. A boundary 
drawn with a broken line; it is known only at data locations.

C IR C L E  R T CIRCLE VF

S Q U A R E  R T S Q U A R E  V F

P L U S  S IG N  R T  P L U S  S IG N  V F

Figure 4-2: The rocktype model and corresponding volume function (VF) for some basic geometries.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



DRILLHOLE SAMPLES MINING VF

DH 01

DH 02

VOLUME FUNCTION

WELL SAMPLES WELL 02

SAND

PETROLEUM VF

WELL 01

WELL 02

VOLUME FUNCTION

Figure 4-3: The true geological model, sample data locations, and VFs constructed using the sample data 
for a typical mining and petroleum setting.
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Figure 4-4: A small example showing the VF distance codes in four vertical coreholes using net / non-net 
geological indicators and the sign rule indicated. A zero-surface boundary surface of interest is also shown.

VF Interpolation
The VF must be interpolated in order to define the boundary interface. Choosing an 
appropriate interpolation algorithm is crucial to the success of generating a reasonable 
boundary model. The algorithm used for interpolating VF codes must be capable of 
producing smoothly varying VFs. Geostatistical simulation is not recommended; short
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scale abrupt variations fluctuating between positive and negative VF values may generate 
unrealistic geological features in the boundary surface. Both kriging and inverse distance, 
however, are adequately flexible geostatistical estimation algorithms that can generate 
smooth VFs for realistic boundary surfaces. There is no possibility to predict a boundary 
where no intersecting corehole data exist. Therefore, as much data as possible should be 
used for interpolation.

The framework and derivation of kriging is addressed in Chapter 2. Like kriging, an 
inverse distance estimate at the unsampled location u o ,  is a weighted linear combination 
of n surrounding z(us) sample data:

Unlike kriging, however, inverse distance weights A id ( u s)  are not derived by minimizing 
the variance of error from estimating the true z(uo) value with z * id ( uo) .  Inverse distance 
weights are calculated inversely proportional to the distance cf(us) between the estimation 
location uq and the z(us) sample data:

where co is an inverse distance power and c is a constant. The inverse distance power co 
controls the smoothness of the inverse distance estimates. Increasing co generates more 
variable inverse distance estimates and will approach nearest neighbor estimates when co 
nears infinity. Decreasing co generates smoother inverse distance estimates and will 
approach arithmetic average estimates when co nears zero. The constant c controls short- 
scale variability in the estimates. Increasing c has the same effect of increasing the nugget 
effect in the variogram model used for kriging.

Kriging and inverse distance algorithms are particularly suited to VF interpolation. Four 
essential features of a VF that both kriging and inverse distance are capable o f producing 
are listed and described below:

1. Exactitude: VF conditioning data need to be honored exactly. Kriging possesses the 
property of exactitude. Inverse distance schemes do not; however, estimates can be 
set equal to conditioning data when d(us) is below a critically small distance.

2. VF Variability. A VF should show large-scale variability mimicking the continuous 
nature of geological boundaries. To avoid artificial short-scale variability, a zero 
nugget effect variogram model can be used for kriging and a constant c equal to 
zero can be used for inverse distance. To generate large-scale variability, variogram 
models with long ranges of correlation can be used for kriging and relatively small 
inverse distance powers co (0.5 to 1.0) can be used for inverse distance. Moreover, it 
is very important to use large searches using all the data to ensure smooth kriging 
and inverse distance estimates.

4 K ) = Z 4 d(us)-z (us) (4-1)
S = 1

(4-2)
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3. VF Anisotropy: A VF should reproduce key anisotropy when the available sample 
and geological information suggests this. Kriging and inverse distance both account 
for anisotropy ratios through the scaling of h used to calculate the variogram value 
for kriging and the scaling of d(us) used in relation (4-2) for inverse distance.

4. Uncertainty. A VF can be tailored to a particular position of risk in known 
intersections using either kriging or inverse distance schemes. The techniques and 
implementation detail are reserved to a later section.

In general, a relatively large amount of VF conditioning data is needed to condition the 
construction of a VF containing geologically realistic boundary surfaces. This is because 
a VF is interpolated using two-point covariance weighted or two-point distance weighted 
functions incapable of producing curvilinear and undulating features unless there are 
ample conditioning data defining the geometry explicitly. That is, the kriging and inverse 
distance schemes will only reproduce geometries that are well delineated.

The continuous VF is represented discretely on a moderate resolution Cartesian grid. As 
the resolution of the volume function increases, the boundary interface of interest more 
closely honors sample VF data, is smoother, and possibly more realistic. Increased 
resolution, however, comes at the cost of computer resources and time.

VF Stationarity
A VF is not a stationary random function (SRF). A VF necessarily contradicts the level of 
homogeneity in relation (2-7) assumed of a typical first order stationary RF. Certainly, 
the expected VF value is not constant independent of location inside the accumulation 
limits. There must be significant populations of both positive and negative VF distance 
values in order to define and extract a boundary surface imbedded within the VF.

Figure 4-5 shows a histogram of the VF values for the simple circle geometry in Figure 
4-2. In practice, the full VF distribution is not known, only a few samples are extracted. 
Since the circle position and geometry is known perfectly, the VF can be fully defined at 
any resolution in this case. Notice the marked density of negative values corresponding to 
locations inside the circle (net) and positive values corresponding to locations outside the 
circle (non-net).

V F D ISTA NCE
C IR C L E  VF

.POSITIVE
NEGATIVE Z ER O  POSTIVE

VF CODES

Figure 4-5: The VF for the circle geometry in Figure 4-2 shown in 2D and as a histogram.
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Classic geostatistical prediction utilizes a stationary random function (SRF) to predict 
petrophysical properties within distinct domains that are geologically consistent with the 
assumptions of stationarity in relations (2-7) and (2-8). This is far from the case for VF 
techniques -  the VF is not a SRF. Therefore, structural uncertainty assessed using a VF is 
not derived from traditional probabilistic measures of local and/or joint uncertainty like 
those based on estimation or kriging variance. Improvised procedures are needed.

VF Uncertainty
Since the VF is not a SRF and uncertainty cannot be assessed rigorously through a 
traditional probabilistic model, alternative less formal procedures are developed. These 
tools are not rigorously defined; the procedures investigated in this dissertation can be 
described as heuristic modifications to conventional approaches coupled with practical 
pre and post processing techniques.

The key to structural uncertainty quantification using VF techniques is the generation of a 
unique VF customized to a certain risk stance. Figure 4-6 is a modification of Figure 3-5 
with the coreholes traces replaced with VF codes from Figure 4-4. The six boundary 
surfaces in Figure 4-6 are now interpreted as the zero-surface of six different interpolated 
VFs. The variation in these interfaces is a measure of structural boundary uncertainty. 
The conditioning VF data do not change. However, in between sample data, positive VF 
values are preferentially weighted in order to expand the interface towards a higher risk 
more optimistic structural interface or negative VF values are preferentially weighted in 
order to contract the interface towards a lower risk more conservative structural interface.

VOLUME FUNCTION COLOR SCALE

ZERO

VOLUME FUNCTION SIGN RULE 

NET —  NON-NET ~  - 'v e  

NON-NET —  NET ~  + 'v e

  ZERO-SURFACE
BOUNDARY SURFACES

H 1 +3 - :
Figure 4-6: A schematic 2D example showing six risk based boundary models extracted from separate VFs 
that give weight to either positive or negative VF distance codes preferentially.

Two methods are developed in this dissertation to assign uncertainty in interpolated VF 
distances. The basis of the first is the spatial bootstrap to determine the uncertainty in the 
expected VF value. The basis of the second method is data conditioned inverse distance. 
Both methods produce uncertainty in the VF for quantification of structural uncertainty.
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These methods are both described and implemented for the simple circle geometry shown 
previously.

The Place o fV F  Techniques
The most suitable utility of boundary models built from VF techniques is a preliminary 
volumetric uncertainty assessment during early exploration phases of a natural resources 
venture. Data must be easily accessible and inexpensive to have a sufficient amount in 
the exploration phase. Detailed local geological heterogeneity is not a high priority -  a 
globally smooth geologically realistic boundary with an attached appraisal of volumetric 
uncertainty is the priority. In practice, a more probabilistic or stochastic boundary 
modeling approach may be implemented to quantify structural uncertainty on a localized 
scale and constrain the subsequent population of continuous petrophysical properties. The 
VF boundary can be used as an alternative model for validation.

There are exceptions. A VF boundary model may be used almost exclusively when 
volume is the primary variable influencing project economics. This may be the case for 
diamond deposits where the volume of diamond bearing kimberlite pipes is a key 
variable, the global uncertainty of which will directly translate to economic uncertainty. 
The interpolation and uncertainty of diamond grades may then be less important than 
structural uncertainty.

VF surfaces can be used in combination with different boundary modeling approaches. 
For example, net / non-net surface can be predicted with VF techniques, then a SB 
approach could be used to model system tract boundaries, and then an OB or SPB 
approach could be used to model lithofacies. Again, these methodology choices depend 
on the geometrical nature of the boundaries as well as the amount and type of data.

4.4.2 Bootstrap Technique for Quantifying Global Uncertainty
The first approach to quantifying global uncertainty with VF techniques is implementing 
a bootstrap of the expected VF value. Sample VF codes are interpolated with a smooth 
estimation algorithm with the intention to reproduce the mean VF parameter. Global 
uncertainty is accessed through (the mean) parameter uncertainty by interpolating a series 
of VFs, each with a different mean outcome.

A common challenge is encountered with this approach. The requirement for a smooth 
interpolation algorithm and several conditioning VF data undermines the capability of 
building significantly different VF distributions from which significantly different zero- 
surface boundaries can be extracted as bounding surfaces; post processing is then often 
required to enforce the interpolated VF distributions to honor specific mean VF values.

There are three steps to the overall spatial bootstrap technique towards quantifying global 
uncertainty: (1) pre processing with the spatial bootstrap, (2) interpolation with simple 
kriging, and (3) post processing with a histogram transformation. These steps are now 
described and demonstrated with an example.
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Pre Processing: The Spatial Bootstrap
The bootstrap procedure is used as a pre processing step to a simple kriging interpolation 
setup. The mean VF distance is the parameter of interest. The uncertainty in the mean VF 
value is established with the bootstrap in order to parameterize the interpolation of 
different VF distributions from which different boundary surfaces can be extracted to 
represent global uncertainty.

The bootstrap is a resampling technique. We would resample VF distance codes with 
replacement to construct multiple realizations of the mean assuming the sampled VF code 
locations were spatially independent. However, the VF distances are not independent. 
Depending on the governing geological formation processes, they have a particular 
correlation structure manifested by the geometry of the boundary surfaces. The spatial 
bootstrap technique [46] accounts for correlation with the specification of a variogram 
model. Sampling is not random. Correlated sampling is undertaken according to the 
variogram so that VF samples that are highly correlated have a higher probability to be 
drawn and included in the calculation of the mean statistic for any particular bootstrap 
realization. The uncertainty predicted by the spatial bootstrap is always higher than that 
for the traditional bootstrap as long as there is some spatial correlation in the VF.

The circle example from Figures 4-2 and 4-5 is placed within accumulation limits 50m a 
side and used to demonstrate the spatial bootstrap technique as well as subsequent simple 
kriging and post processing steps. Figure 4-7 shows 25 sample locations drawn on a 
randomized 10 x 10m grid. These samples are superimposed on the true geological model 
(left) and used to calculate VF distance codes (right). Notice the VF sample codes do not 
directly sample the true underlying VF in Figures 4-2 and 4-5. However, the true circle 
geometry should reside within the smallest and largest possible zero-surface extractable 
from the subsequent VF distributions.
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Figure 4-7: The 25 sample locations drawn on a randomized 10 x 10m grid used for the spatial bootstrap, 
simple kriging interpolation, and histogram post processing.

The traditional and spatial bootstrap are both implemented with the 25 VF sample data. A 
total of 10,000 mean VF realizations are generated. A Gaussian variogram model with no 
nugget and 30m isotropic range is used for the spatial bootstrap. The results are shown in 
Figure 4-8 in the form of cumulative distribution functions. The plO, p50, p90 VF
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quantiles are 2.0, 5.0, 7.8 using the traditional bootstrap and -1.1, 6.0, and 11.5 using the 
spatial bootstrap. The magnitude of difference between the YF mean p90 and plO values 
is a quantitative measure of the expected VF value uncertainty and translates to structural 
uncertainty.

Interpolation: Simple Kriging
The histogram of 10,000 possible mean VF values in Figure 4-8 is the fundamental link 
to generating different boundary models with a spatial bootstrap approach. Consider 
building 10,000 different spatial VF distributions, each one exactly reproducing the 
conditioning VF data in Figure 4-7 but giving weight to just one of the 10,000 different 
mean VF values when predicting away from data. At a particular location in between 
conditioning data, therefore, the interpolated VF will increase when the mean VF value 
used for weighting increases; and since the boundary is always extracted at the zero- 
surface VF contour, higher VF values will effectively contract the boundary interface and 
enclosed volume. For example, high risk boundary surfaces can be generated by choosing 
lower VF quantiles as the expected VF value to weight for interpolated VF values.

TRADITIONAL BO O TSTRA P O F  VF MEAN SPATIAL BO O TSTRA P O F  VF MEAN

NUMBER 10,000 
MEAN 4.95 

STD DEV 2.27

MAX 10.63 
P75 6.50 
P50 5.01 
P25 3.40 
MIN -1.87

5

VF MEAN
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Figure 4-8: The 25 sample locations drawn on a randomized 10 x 10m grid used for the spatial bootstrap, 
simple kriging interpolation, and histogram post processing.

Simple kriging provides a convenient framework for weighting the mean while predicting 
unsampled locations. The simple kriging estimator in (2-37) is a function o f the mean m. 
This mean m receives increasing weight further away from conditioning data. Although 
the VF mean is not stationary, m can be substituted for different mean VF values from the 
spatial bootstrap distribution in Figure 4-8. It is important to emphasize that there is a 
strong assumption of stationarity that is clearly violated. The mean m input for simple 
kriging VF interpolation is not stationary. And reference to kriging in this context should 
not be as a probabilistic tool. However, this procedure does allow the assignment of 
different boundary models based on different positions of risk.

Three simple kriging runs are performed for the circle geometry. The same conditioning 
data and the same Gaussian variogram model with zero nugget and 30m isotropic range is 
used for all three interpolated VF distributions. Global kriging, using all 25 conditioning 
data to estimate each location, is implemented in order to ensure the VF is smooth. The 
conventional stationary mean m is replaced by the plO (-1.1), p50 (6.0), and p90 (11.5) 
expected VF values to parameterize the three simple kriging runs.
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Figure 4-9 shows the resulting plO and p90 simple kriging VF distribution as maps and 
histograms. The subsequent zero-surface boundary extracted from the p90 interpolated 
VF will be smaller than that from the plO VF. This is because the probabilistic VF mean 
weighted for the p90 VF (+11.5) is higher than that for the plO VF (-1.1). However, the 
difference between the p i0 and p90 in Figure 4-9 is indiscernible; these VF distributions 
do not represent the mean VF parameter uncertainty calculated with the spatial bootstrap. 
The plO and p90 VF maps are visually identical and their corresponding histograms show 
only a subtle difference of 0.147 in the expected VF value. Post processing is required to 
enforce the interpolated VF distributions honor specified probabilistic mean VF values.
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Figure 4-9: The plO and (left) and p90 (right) simple kriging VF estimates shown as maps (top) and 
histograms (bottom).

Post Processing: Histogram Transformation
The requirement for a smooth interpolation algorithm retaining several conditioning VF 
data damages the ability to access boundary uncertainty with significantly different VF 
distributions. This is because simple kriging does give significant weight to the mean 
when there are many correlated surrounding data. This is the case in Figure 4-9 where a 
zero nugget long (30m) range Gaussian variogram model coupled with a global search 
routine is implemented. Although it necessitates a post processing step, the global search 
is needed to ensure smooth VF estimates.

In order to accurately represent structural uncertainty with boundaries derived from VF 
distributions, the corresponding VF distributions should honor the mean VF parameters 
specified from the spatial bootstrap. Therefore, the p i0 and p90 interpolated VFs need to
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be changed towards honoring the input -1.1 and +11.5 expected VF values without 
changing the conditioning VF sample data or sacrificing smoothness.

In 1994, Joumel and Xu [47] illustrate a continuous variable posterior transformation of 
an original distribution to a target distribution. The transformation method is a quantile 
transformation. The transformation is increasingly applied at locations further away from 
conditioning data. The intended application was matching the input possibly declustered 
distribution to a particular set of simulated realizations. Deutsch extended the algorithm 
capability to honor trends and probabilistic mean values from the spatial bootstrap [48], 
This newest version of the transformation can be applied to the simple kriging VF 
distributions in Figure 4-14 to reproduce the target plO and p90 VF mean values. The 
kriging variances are needed.

Figure 4-10 shows the transformed plO and p90 VF results. Although the transformed 
expected VF values are still not exactly honored, they are much closer than in Figure 4-9. 
The transformed mean is 1.1 versus -1.1 for the plO VF and 10.0 versus 11.5 for the p90 
VF. These VFs better represent the prior mean VF values from the spatial bootstrap. 
Figure 4-11 shows the VF distributions within the -2.0 to 2.0 distance range for the p i0 
and within the -10.0 to 10.0 distance range for the p90.
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Figure 4-10: The transformed plO (left) and p90 (right) simple kriging VF estimates shown as maps (top) 
and histograms (bottom).
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Figure 4-11: The transformed plO (left) and p90 (right) VF rendered between VF values of -2.0 and 2.0 for 
the p i0 and -10.0 and 10.0 for the p90.

4.4.3 Data Conditioning Techniques for Quantifying Global Uncertainty
The second approach to quantifying global uncertainty with VF techniques explored in 
this dissertation is applying data conditioning factors to VF predictions. The general idea 
of preferentially weighting negative or positive VF values to predict smooth plO or p90 
VF and imbedded optimistic or pessimistic boundary surfaces, respectively, is the same 
as for the spatial bootstrap technique. Here, however, global uncertainty is accessed via 
adjusting inverse distance weights with a factor that is calibrated to the VF conditioning 
data and the desired position of risk.

Data Conditioned Estimation
Kriging and inverse distance weights typically depend on the geometrical arrangement of 
data, but not the actual data values. The data-dependent weights are applied to the actual 
numerical values of the data to calculate the estimate as in (4-1) for inverse distance. The 
proposal is to alter the weights by a data conditioning factor in order assign uncertainty in 
the VF and extractable boundaries. Still, the kriging or inverse distance weights are 
calculated in the traditional manner; but they are now combined with the data values in 
the following manner:

z* (u0) = Z  / DC (us) • ̂  (us) •2 K ) (4-3)
s = l

where z*(uo) is the kriging or inverse distance estimate, / DC(us) is the data conditioning 
factor, 2(us) are the kriging or inverse distance weights, and z(us) are the data values. The 
weights account for the geometrical configuration of the data while th e /^ U s) parameter 
accounts for the actual numerical values of the data. Classic kriging and inverse distance 
schemes correspond to a constant/ 5C(us) value of 1.0 regardless of the data values.

T h e / C( us) data conditioning factor is the crucial element allowing structural uncertainty 
access in this approach. For example, to create a pessimistically small boundary surface, 
/ c(us) can be set progressively lower than 1.0 as the z(us) VF data decrease in value from 
zero and be set progressively higher than 1.0 as the z(us) VF data increase in value from 
zero.
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Data Conditioning Factor and Uncertainty Assignment
The assignment ofyDC(us) to the z(us) VF data corresponds to different positions o f risk. 
Figure 4-12 shows a linear approach. The VF of zero a n d /3C(us) of one are plotted with 
thin vertical and horizontal lines. The z(us) VF data are plotted on the abscissa axis 
ranging from a minimum to maximum conditioning VF sample value labeled V F Min  and 
V F m a x ,  respectively. And the / DC(us) factor is plotted on the ordinate axis ranging from 
the minimum to maximum VF data conditioning factor labeled /m in  and . /m a x , 
respectively.

Optimistic and pessimistic boundaries can be generated with the linear parameterizations 
shown in Figure 4-12. The negative sloping line gives gradually higher weight to VF 
samples that are more negative and gradually lower weight to VF samples that are more 
positive producing a VF from which an optimistically large boundary surface can be 
extracted. The positive sloping line gives gradually lower weight to VF samples that are 
more negative and gradually higher weight to VF samples that are more positive 
producing a VF from which a pessimistically small boundary surface can be extracted. 
The zero slope flat line corresponds to traditional kriging or inverse distance schemes 
giving no influence to data values producing a VF from which an intermediate sized 
boundary surface can be extracted. All three linear parameterizations intersect at the 
/ )C(us) factor of one where the VF code is zero.

The linear calibration in Figure 4-12 is flexible. For symmetric optimistic and pessimistic 
boundaries, the absolute value slope is the same for both lines; also, for the same line, the 
slope is not allowed to be different within negative and positive VF values. However, the 
magnitude of uncertainty between optimistic and pessimistic boundaries can be changed 
by adjusting the slope through the /min parameter. For example, the least extreme 
probabilistic boundaries would be achieved with lowest sloped lines built by the / m in  

parameter set slightly below one. Since the lines must cross the/^/U s) factor equal to 1.0 
line at the VF equal to zero line and have the same slope within negative and positive VF 
values, the/max parameter can be calculated. More extreme boundaries are modeled with 

/ m in  closer but not lower than zero.

T h e /^ U s) parameterization need not be linear. For example, if  the upper 1.0 and lower 
zero limits on / m in  do generate the desired level of uncertainty, the piecewise quadratic 
function in Figure 4-13 can be used to increase the uncertainty.

The / DC(us) parameterizations in Figures 4-12 and 4-13 are very heuristic -  virtually any 
amount of uncertainty can be tuned in with this method. In practice, the interpolated VF 
resulting from this process should be checked against the results of a spatial bootstrap. 
For example, / m in  would be too low when the optimistic interpolated VF mean is lower 
than the minimum VF mean from a spatial bootstrap. Other geological validations can be 
performed depending on the setting.

Interpolation: Inverse Distance
Kriging is not recommended for data conditioned estimation of the VF for two reasons: 
The first is the elevated likelihood of calculating negative kriging weights due to the
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presence of corehole strings and the requirement for a continuous variogram model 
coupled with an extensive search routine. Negative weights should not be used in relation 
(4-3) since they will contribute to reversing the intended assignment of uncertainty. The 
second reason is the string effect where disproportionately large amounts of weight are 
given to data at the extreme ends of a string of corehole data. Since it is the VF that is 
being predicted with an imbedded boundary surface, the string effect can have a large 
effect on the location of boundary interfaces near the extreme locations of corehole data.

DC

IN T E R M E D IA T E  B O U N D A R Y1.0  -
( e . g .  p 5 0  V F )

VF, VF,
VF VALUE

Figure 4-12: A linear parameterization of the/DC data conditioning factor shown with a negative slope plO 
VF, no slope p50 VF, and positive slope p90 VF calibration from which optimistically large, intermediate, 
and pessimistically small boundaries can be extracted, respectively.

(e '9- P10 VF)

I N T E R M E D I A T E  B O U N D A R Y1.0  -
( e . g .  p 5 0  V F )

VFHIM VF*  * MAX0
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Figure 4-13: A quadratic parameterization of the f DC data conditioning factor shown with a negative slope 
plO VF, no slope p50 VF, and positive slope p90 VF calibration from which optimistically large, 
intermediate, and pessimistically small boundaries can be extracted, respectively.

Inverse distance avoids calculating negative weights and is not subject to the string effect. 
It is the recommended interpolation scheme to obtain the weights in relation (4-3). And, 
as previously mentioned, the inverse distance scheme can be parameterized with a small 
co power near 0.5, zero c constant, and global search to ensure smooth VF distributions 
are generated.

Implementation: Circle Example
The data conditioned inverse distance approach is implemented for the circle example. A 
linear calibration of th e /50 factor is used with /min equal to 0.75 in Figure 4-12 in order 
to generate a plO and p90 VF. The inverse distance power co and nugget constant are 1.5 
and zero, respectively. Figure 4-14 shows the resulting plO and p90 VF distributions as
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maps and histograms. Notice the data conditioned inverse distance estimated VF means 
are consistent with the kriged VF means in Figure 4-9 in that the expected p90 mean is 
slightly larger than the expected plO mean. Figure 4-15 shows the VF distributions in the 
-1.0 to 1.0 distance range.

4.4.4 Boundary Surface Refinement and Extraction
The last step of the overall VF approach is to extract the boundary surface from the 
smooth spatial VF distributions. This step may involve refining the VF grid prior to 
extraction if  additional geological detail is required.

Locally Varying Grid Refinement
The VF is interpolated at an intermediate resolution grid to avoid the increased computer 
resource demand associated with a kriging or inverse distance scheme with a large search 
routine at high resolutions. Additional VF resolution, especially in the area surrounding 
the zero-surface VF contour, may improve the geological realism of the extracted surface.

The locally varying grid refinement method is proposed as a compromise between 
computer resource demand and additional geological detail. The VF is downscaled within 
only those grid cells in the immediate area of the zero-surface VF contour. This allows 
the full VF grid to be interpolated first at a coarse resolution and then at finer resolution 
nearby the zero-surface VF contour in a practically reasonable amount of time without 
sacrificing geological detail.

Figure 4-14: The data conditioned inverse distance plO (left) and p90 (right) VF estimates shown as maps 
(top) and histograms (bottom).
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Figure 4-16 demonstrates a locally varying grid refinement procedure in 2D. A schematic 
curvilinear boundary surface is drawn within a subset of a full VF grid. There are thirteen 
conditioning VF samples within this area, seven negative values (solid bullets) inside the 
boundary and six positive values (open bullets) outside the boundary. The sign of 
interpolated VF values on the grid is indicated. Within the 9 x 9 grid subset, a 3 x 3 grid 
cell template is centered on each of the 81 cells. Three such templates are shaded in 
Figure 4-16. The VF grid is then refined within grid cells that are connected diagonally (4 
possibilities) or by face (4 possibilities) to the central cell in each template. For each of 
the three templates in Figure 4-16, connected cells are downscaled by a 3 x 3 refinement 
level. The downscaling approach is an inverse distance weighting scheme using all 
previously interpolated VF values and original conditioning VF values that are inside the 
template. Cells that are not connected are left at the coarse resolution.

P 1 0  D C E  V F P 9 0  D C E  V F

Figure 4-15: The data conditioned inverse distance plO (left) and p90 (right) VF rendered between VF 
values of-1.0 and 1.0.
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Figure 4-16: A 2D illustration of the locally varying grid refinement procedure.

In 3D, the process is the same. However, a 27 cell ( 3 x 3 x 3 )  template is superimposed 
on each of the interpolated volume function grid cell values. All 26 possible connections 
to the center (6 face, 12 edge, and 8 diagonal) are tested for candidate refinement sites.
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The local boundary refinement procedure is applied to both the p i0 and p90 VF boundary 
models in Figure 4-11. A 3 x 3 refinement level is used for downscaling with a 0.5 co 
power and zero c inverse distance parameters. Figure 4-17 shows the locally refined VF 
distributions within the -2.0 to 2.0 distance range for the plO and within the -10.0 to 10.0 
distance range for the p90.

Extraction, Visualization, and Summary Calculations
Geologically realistic boundary surfaces are now extracted as the zero-surface from the 
VF distribution. The recommended approach for extraction in more complex geological 
settings is importing the refined VF into a commercial software package and triangulating 
the zero-surface. The boundary interface of interest can then be visualized from many 
perspectives in 3D. Simple volumetric summary calculations can also be performed.

For the circle example, the boundaries are extracted manually by hand. Figure 4-18 
shows the optimistic and pessimistic zero-surface boundary surfaces drawn from Figure
4-17. The volumes assuming unit thickness are 802.5m3 and 475.0m3, respectively.

4.4.5 Implementation Issues
Two additional implementation details may occur in practice. The first is the choice of 
VF grid limits. The second is how VF techniques can be used for settings with more than 
two domain types within which separate SRFs will be used.

P 1 0  R E F I N E D  V F P 9 0  R E F I N E D  V F

Figure 4-17: The refined plO (left) and p90 (right) VF rendered between VF values of -10.0 and 10.0 for 
the plO and -2.0 and 2.0 for the p90.

O P T IM IS T IC  E X T R A C T E D  B O U N D A R Y

VOLUME =  8 0 2 .5 m '

P E S S I M I S T I C  E X T R A C T E D  B O U N D A R Y

VOLUME =  475.0m *

Figure 4-18: The extracted optimistic plO (left) and pessimistic p90 (right) boundary surfaces.
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VF Data Limits
VF grid extents are referred to as accumulation limits. In all previous examples, the VF 
distance codes are originally interpolated on a moderate resolution grid such as the one 
shown in Figure 4-6. The extent of this grid system and the data is important. The final 
VF limits can have a significant impact on the extracted boundary interface.

Regardless of what accumulation limits and data limits are used, the distribution of 
negative VF values remains constant. What changes is the distribution of positive VF 
values. This will have an effect on the geometry of extracted boundary models. In the 
spatial bootstrap, probabilistic VF values increase with larger data extents and result in 
larger volumetric boundaries. Furthermore, with increasingly positive VF distance codes, 
data conditioned estimation schemes increasingly transfer weight to positive VF values 
which also results in an ultimate increase in the ultimate boundary size.

In general, the VF grid system should be large enough to generate a mean VF value that 
is positive; a negative expected value means there are more VF distances inside than 
outside the boundary. In these situations, the grid system may be expanded. Exceptions to 
this generalization are when the boundary geometries are not required to close as is the 
case for layered geometries. Open boundary interfaces may be poor for visualization and 
may incorrectly suggest lower economic potential based on volumetric calculations in 
some settings.

Although the relationship of increasing boundary size with increasing data limits does 
exist, the effects are small with the relatively large amount of data used to condition the 
VF. The significance of this effect can be determined by comparing the change in volume 
due to different data extents versus the volumetric uncertainty.

Three or more Domain Types
VF techniques are applied with a binary geological model. The VF for multiple (greater 
than two) populations of negative and positive VF distance codes would be difficult to 
construct, understand, and use for global uncertainty.

An alternative is available when there are some well known geological rules that must be 
obeyed by the boundary surfaces. These rules are exploited in several stages to construct 
a binary geological model at each stage. For example, nesting and cutting rules based on 
geological age are often recognized in several settings. Reproduction of such fundamental 
rules may be an advantage over alternative boundary modeling approaches.

Figure 4-19 shows a schematic fluvial example with four diverse domain types identified 
by geometry: channel, lobe deposits, cutting, and flood plain. The boundaries in this 
setting can be modeled in four stages. Channel and lobe deposits may contain coarse and 
fine grained sand facies, respectively; cutting domains could host interbedded facies of 
sand and shale; and floodplain domains could represent mudstone. First, a VF would be 
constructed using channel and floodplain domains coded into net and non-net geology, 
respectively; the extracted interface would be the channel outline. To reproduce nesting 
of lobes within the channel, a second VF would be constructed using lobe and channel
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domain types coded as net and non-net, respectively; and finally, a third VF constructed 
by setting the cutting domain type to net and all the rest to non-net would be generated to 
represent the youngest cutting geological domain interfaces.

CHANNEL f 1

CUTTING H |  

FLOODPLAIN | |

ACCUMULATION LIMITS

Figure 4-19: A schematic fluvial channel domain imbedded within a floodplain domain is shown with
nested lobe and cutting domains used to illustrate a staged approach to modeling more than two domain 
types with VF techniques.

4.5 Application Example
Coal Bed Methane (CBM) is essentially natural gas produced from coal seams. CBM is 
gaining recognition within the oil and gas industry as an economically viable source of 
natural gas. Alberta, Canada has a promising CBM future with an estimated potential 500 
trillion cubic feet (TCF) of reserves. EnCana is a leading CBM operator and producer in 
Canada focusing on shallow dry coal seams within the Horseshoe Canyon formation in 
south central Alberta. Figure 4-20 shows a regional map of EnCana land and the overall 
focus area for this application example.

P a l t i s e rBio#

Source: Internet, http://www.encana.com/flash/map, access February, 2007.
Figure 4-20: A regional map showing the overall CBM focus area from which the data for this example is 
made available.
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VF Construction
From the focus area in Figure 4-20, an area of interest (AOI) is selected for investigation. 
All units are meters (m). An AOI spanning 9,000m in the easting direction by 7,000m in 
the northing direction is chosen to extract well data. Figure 4-21 shows the aerial location 
of 111 vertical wells available within the AOI, approximately five wells a section. A 
central 3,000 x 2,000m detailed focus area (DFA) padded by wells within the AOI 
perimeter is chosen for modeling, visualization, and post processing results. This model 
area is shaded in Figure 4-21.

The stratigraphic interval investigated within the DFA is taken between what are referred 
to as the Strathmore and Lower Bearspaw surfaces. The average thickness of this layer is 
60m. Since significant structural deformation has occurred after the time of formation, a 
stratigraphic coordinate that is proportional to the top and bottom bounding surfaces is 
chosen and standardized to the 60m thickness for subsequent model construction. The 
back transform is available.

The stratigraphic top and bottom surfaces used for the back coordinate transformation are 
now modeled within the DFA using all 111 well picks. The mapping procedure is a 
global kriging using a variogram model with no nugget and long 1,500m isotropic range. 
Figure 4-22 shows the resulting top and bottom surfaces as histograms (left) and maps 
(right).

CBM is automatically detected in the 111 available wells with a high resolution (0.15m 
sample step) logging tool. A gamma ray cutoff is calculated and applied over the length 
of each well separately. The result is the appearance of several very thin coal beds. This 
presents some challenges. On average per well over the full accumulation interval, there 
are 21 coal seams each with an average thickness of just 0.7m. Gridding is an important 
issue. Balancing high computer resource demands with higher grid resolutions needed to 
accurately represent several thin coal beds must be a priority when deciding on any 
particular 3D modeling approach.

The VF approach is implemented in this example to model the coal bed boundaries. This 
approach is especially suitable in this setting for several reasons: forecasting methane gas 
reserves and subsequent project economics is directly related to the volume contained 
within modeled coal bed boundaries, the geometrical nature of the coal beds within the 
AOI can be characterized as ellipsoidal to layered to which VF techniques are suitable, 
there is a relatively large amount of data, and the locally varying grid refinement earlier 
described could be implemented to mitigate high computer resource demands without 
sacrificing high resolution coal bed heterogeneity. The complexity offered by the quantity 
and thinness of coal beds make deterministic digitization (DD), object-based (OB), and 
stochastic pixel based (SPB) approaches unsuitable. A surface-based (SB) approach 
could, however, also be taken.

To gain an appreciation of high potential areas within the DFA and an initial idea of 
original gas in place (OGIP), a total coal thickness map is generated for the stratigraphic 
layer. For each of the 111 wells, coal bed thicknesses are accumulated into a single 2D
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total coal thickness value. These conditioning data are then mapped with global kriging 
using a variogram model with no nugget and long 1,500m isotropic range. Figure 4-23 
shows the histogram (left) and map (right) of estimates with the calculated conditioning 
data. Using the 3,000 x 2,000m area, an average thickness of 3.80m from the histogram 
in Figure 4-23, and assuming a recovery factor of 50%, a rough OGIP estimate o f 402.59 
million cubic feet (MCF) is calculated.

EXAMPLE SETTING
7000,

6 0 0 0  _

C3z 4 0 0 0  J
I
DCoz

1000J

0 2000 4000 6000 8000

EASTING

Figure 4-21: The application with 111 wells (open bullets) in the 9,000m (easting) by 7,000m (northing) 
area of interest (AOI) and a central 3,000m (easting) by 2,000m (northing) detailed focus area (DFA).
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Figure 4-22: The histogram (left) and map (right) of top and bottom layer elevations within the DFA.
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Figure 4-23: The distribution of layer coal thickness generated from a global kriging setup similar to that 
for trend modeling shown as a histogram (left) and map (right).

The VF distance codes are now calculated and investigated. There are a total of 47,541 
sample data locations from the 111 wells within the AOI and layer of interest that need to 
be coded. Figure 4-24 illustrates the distribution of calculated VF codes. A small bin 
width is used to show the relatively small contribution of negative VF values, a signature 
of the laterally extensive and thin geometry of the coal seams. The accumulation limits 
could be reduced in order to reduce the dominance of positive values; however, in this 
setting, the accumulation limits are tied to the top and bottom layer surfaces which should 
not be modified. Moreover, reducing the positive VF value influence may undermine the 
high resolution log data and neglect to model the thin nature of the coal bed boundaries or 
even neglect to model boundaries that truly exist.

VOLUME FUNCTION CODES
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Figure 4-24: The distribution of 47,541 VF distance codes (left).

The VF distance codes are now interpolated to a grid within the 3,000 x 2,000m DFA. An 
initial grid of 60 x 40 x 120 cells (288,000 total) measuring 50 x 50 x 0.5m in the easting, 
northing, and elevation directions, respectively, is adopted. This initial grid is relatively 
coarse so that the computer resource demand is reasonable at this stage. This grid is later 
refined. The approach to interpolation is a data conditioned inverse distance scheme. A 
global search is utilized. A 300:1 horizontal to vertical anisotropy ratio is used with an 
inverse distance power of 1.5 and nugget constant of zero.
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Parameterizing the / ° c data conditioning factor is a vital step to allow the assignment of 
structural uncertainty. Consider Figure 4-12 with V F m in  and V F m a x  equal to -1.0 and 
32.0, respectively. A series of six/min parameters ranging from 0.85 to 0.90 increasing in 
increments of 0.01 are used for predicting 6 pairs of optimistic and pessimistic VFs.

Without the 50% recovery factor, an OGIP estimate of 805.20 MCF is calculated from 
Figure 4-23. OGIP can also be approximated from the VF distribution at the coarse grid 
resolution as the product of the full accumulation limits (3,000 x 2,000 x 60m) multiplied 
by the proportion of negative VF values interpolated. The p50 VF obtained w ith /MlN set 
to 1.0 has an OGIP estimate of 728.97 which closely matches the 805.20 MCF estimate 
obtained from 2D coal thickness mapping. The pessimistic p90 and optimistic plO 
interpolated VF distributions are taken to be the ones built with/ Min  set at 0.87; the OGIP 
estimates are 482.51 and 1087.56 MCF, respectively.

Figure 4-25 shows an XZ  and YZ cross section through the p90 pessimistic, p50 medium, 
and plO optimistic VF distributions. The vertical axis is exaggerated by a factor of 25. 
The location of each cross section is reported in the titles. The mean p90, p50, and plO 
VF values are, 0.942, 0.753, and 0.566, respectively.

Boundary Model
On average, from the fine scale log data within the layer of interest, there are 6 to 7 coal 
seams with 0.70m thickness. The locally varying grid refinement procedure is 
implemented so that boundaries can be extracted from VFs at a high resolution. This 
procedure will also smooth the discontinuities created where well data is honored. The 
refinement is done in the proportional stratigraphic coordinate system. The original 50 x 
50 x 0.5m grid cells located near a boundary where the VF switches sign are downscaled 
to a sub-grid of 5 x 5 x 5 cells each measuring 10 x 10 x 0.10m.

A facies model is then constructed by setting the fine scale VF values to CBM facies and 
positive VF values to an outside CBM facies. Figure 4-26 shows the facies models of the 
extracted p90, p50, and plO coal seam boundaries at each of the cross sections in Figure
4-25.

Sequential Indicator Simulation Comparison
Sequential indicator simulation (SIS) is a popular technique used to model uncertainty. 
SIS is implemented within the proportional stratigraphic coordinate system to compare 
with the VF results. The experimental and model horizontal and vertical indicator 
variograms are shown in Figure 4-27. A total of 50 realizations are generated. The global 
proportion of the net coal indicator from log data is 0.0635.

The OGIP for each of the 50 realizations is calculated as the proportion of simulated net 
coal multiplied by the frill layer volume (3,000 x 2,000 x 60m). The realizations are then 
ranked according to OGIP. The OGIP and realization numbers are 704.5 MCF and 27,
803.1 MCF and 24, and 944.5 MCF and 16, respectively. Figure 4-28 shows the SIS 
models at the same cross sections in Figure 4-25. Notice that although uncertainty is 
captured, the SIS boundaries are unrealistic compared to the VF boundaries.
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4.6 Remarks
When two or more SRFs are employed to characterize the same petrophysical property 
within the full accumulation limits, there is unavoidable uncertainty in the assignment of 
grid cells to one SRF or another for subsequent prediction. A new boundary modeling 
technique using volume functions was developed, described, and implemented with real 
data. This method is aimed at quantifying global uncertainty with different geologically 
realistic boundaries. The decision to use this volume function methodology is made when 
data paucity is not an issue at the exploration phase of the project and the boundary 
geometry is not amenable to an OB or SB approach.

Uncertainty and probability can be defined in different ways. The classic interpretation of 
uncertainty is through probabilities which are actual proportions of favorable outcomes 
over a number of realizations. This analytical assessment is not always available, as is the 
case for boundary modeling with VF techniques. In these cases, a more subjective 
assessment is still available. Uncertainty can also be defined according to a combination 
of a degree of belief supported be expert knowledge.

The VF techniques presented in this chapter are referred to as probabilistic. Since plO 
and p90 boundaries, for instance, do not represent actual proportions, the interpretation of 
these boundaries as probabilistic may be challenged. However, in light of the alternative 
definitions of uncertainty, more specifically its assessment through degree of belief and 
expert judgment, this is an accurate reference.

The volume function algorithm presented in this dissertation does not have to be applied 
to a binary categorical variable representing a geological model. It can also be applied to 
continuous variable models at several thresholds to generate grade shell boundaries. 
There are several other avenues for refining VF techniques. Interpolation with kriging in 
particular offers much flexibility. For example, other than specifying anisotropic 
boundaries through the variogram, more advanced shape parameters and controls exist. 
For instance, a deterministic interpretation of geological morphology could be integrated 
with prior volume function trend modeling.
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Figure 4-25: Two elevation sections (XZ at Y=  6239300 on left; YZ a tX =  337500) through the pessimistic 
p90 (top), p50 (middle), and optimistic (bottom) plO coal seam VF.
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Figure 4-26: Two elevation sections (XZ at Y = 6239300 on left; YZ a tX =  337500) through the pessimistic 
p90 (top), p50 (middle), and optimistic (bottom) plO coal seam facies model built from the VF method.
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Figure 4-27: The experimental and model horizontal (left) and vertical (right) variograms for SIS.
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Figure 4-28: Two elevation sections (XZ at 7= 6239300 on left; YZat X =  337500) through the pessimistic 
plO (top), p50 (middle), and optimistic (bottom) p90 coal seam facies model built from the SIS method.
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C h a p t e r  5 

N e a r  B o u n d a r y  M o del  M ix in g

Recognizing and quantifying the nature of petrophysical property transitions across 
geological boundaries is an important phase of natural resource characterization using 
geostatistics. The traditional geostatistical approach of independent SRF predictions in 
each geological domain may result in unrealistic models. When this more conventional 
approach is deemed unacceptable by geological interpretation and/or sample data, an 
alternative approach should be employed.

Domain boundaries are referred to as either soft or hard, referring to the nature of 
geological transitions across the boundary. A contact analysis can be undertaken to detect 
hard and soft boundary transitions as well as different types of soft boundary transitions. 
An expected value and covariance contact analysis is explained and demonstrated with a 
simple example. One well defined boundary model mixing approach using a global or 
local linear model of coregionalization (LMC) framework is briefly described and 
evaluated. The emphasis of this chapter then shifts to developing an alternative to the 
LMC framework. A new linear mixing model (LMM) approach to near boundary model 
mixing is presented with implementation details and an example.

5.1 Principles for Near Boundary Model Mixing
The construction of reasonable models in the presence of boundaries is a vital aspect of 
making the best possible decision of stationarity. In Chapter 3, two criteria to assess the 
reasonableness of different approaches to near boundary model mixing were identified: 
simplicity and geological realism.

5.2 Contact Analysis
To aid in choosing and parameterizing a near boundary mixing model, the geological 
nature of petrophysical property transitions across the boundary must be understood. This 
investigation is usually referred to as a contact analysis. The corehole data with rocktype 
or facies information are required for this analysis.

Four aspects of a contact analysis are addressed: (1) defining transitional behaviors that 
can occur near geological boundaries, (2) conducting a near boundary expected value 
study, (3) conducting a near boundary covariance study, and (4) choosing an approach to 
adopt for model mixing.
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5.2.1 Boundary Transition Types
The general nature of petrophysical property transitions across boundaries is described as 
either soft or hard.

Soft boundaries show a gradational transition across and near boundaries. In Chapter 3, 
Figures 3-11 (left) and 3-12 show soft boundaries in a copper grade drillhole profile and 
then a conditioned 2D geostatistical model using near boundary model mixing.

Hard boundaries are described by abrupt changes across and near the boundary. Figures 
3-11 (right) and 3-13 show hard boundaries in a copper grade drillhole profile and then a 
conditional 2D geostatistical model using independent SRFs within each rocktype.

5.2.2 Expected Value Contact Analysis
Soft boundaries show non-stationarity in the mean within a local boundary transition 
zone. A hard boundary does not show a transition zone; the mean is independent of 
distance to the boundary. The distinction between a soft and hard boundary can be made 
based on an expected value contact analysis alone.

Figure 5-1 illustrates a schematic ID example of soft (left) and hard (right) boundaries 
separating two domains. Sample data values z are plotted against their distance inside 
either the left domain 1 d \2 or right domain 2 rfei from the boundary. The expected values 
are represented with the solid lines. Notice the transition zone bound by broken vertical 
lines on the left. Although the size of transition zone varies, this zone will be present for 
soft boundaries. Both a smooth and abrupt non-stationarity is shown within the transition 
zone with dark and gray shade, respectively. The SRF to the left and right of the 
transition zone are denoted by Zi(u) and Z2 (u). In contrast to soft boundaries, the Zi(u) 
and Z2(u) SRF expected values are applicable all the way through their respective 
domains up until the hard boundary. There is no transition zone present.

z

 Z s(u ) SRF

Z ,(u ) SRF 

♦ • * * *

» * * * • .  ,

Z ;(u) SRF

* <*,= d„ *
SOFT BOUNDARY HARD BOUNDARY

Figure 5-1: A schematic illustration of soft boundaries (left) with a transition zone containing first and/or 
second order non-stationarities and hard boundaries (right) without this transition zone.

A numerical example is now used to illustrate the expected value contact analysis. The 
example is derived from the reservoir quality example in Chapter 2. The coordinate axes 
are reversed, the quality sample values modified within a transition zone and taken to 
represent mineral quality, and a rocktype model is calculated. Figure 5-2 shows the 2D 
boundary/rocktype model (left) with the 310 mineral quality sample locations. Figure 5-2
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(right) shows a posting of the 310 mineral quality sample grades. The dark rocktype is 
inside the boundary and generally hosts higher mineral potential while the shaded 
rocktype outside the boundary generally hosts lower mineral potential.

Figure 5-3 shows a histogram of all 310 samples (left), the 62 samples located inside the 
boundary (middle), and the 248 samples located outside the boundary (right). The choice 
to separate the accumulation limits and data into separate domain types is warranted by 
the presence of two distinct homogeneous distributions of mineral quality within the full 
distribution of 310 sample data. The domain type histograms are shown in Figure 5-3. 
The stationary means are 16.54 and 5.96 for rocktypes inside and outside the boundary, 
respectively.

To maintain the terminology and notation introduced in Figure 5-1, the inside boundary 
dark rocktype is domain 1 with the Zi(u) SRF and the outside boundary shaded rocktype 
is domain 2 with the Z2(u) SRF. A plot similar to that in Figure 5-1 is generated in Figure
5-4 (left) by plotting each mineral quality sample versus either the nearest distance from 
inside the boundary to the boundary interface d\2 or the nearest distance from outside the 
boundary to the boundary interface d2\. The expected value is plotted as a line.

The boundary in Figure 5-4 shows a transition zone with locally varying mean. Choosing 
the extent of this transition zone is subjective; nonetheless, a 400 unit transition zone is 
assumed from d\2 -  100 to d2\ = 300 and indicated with broken vertical lines. Since the 
mean within the 100 unit transition zone from the boundary towards domain 1 is 
considerably different than the stationary Zi(u) mean and the mean within the 300 unit 
transition zone from the boundary towards domain 2 is considerably different than the 
stationary Z2(u) mean, the boundary is considered to be soft.
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Figure 5-2: The 2D rocktype model (left) and 310 mineral quality samples (right) used for the near 
boundary mixing example.
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Figure 5-3: The histogram of all 310 samples (left), the 62 samples located inside the boundary (middle), 
and the 248 samples located outside the boundary (right).
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Figure 5-4: The results of a first order contact analysis for the example in Figures 5-2 and 5-3 illustrating 
that the expected value (solid line) within a transitional zone (broken vertical lines) is non-stationary for a 
soft boundary types.

5.2.3 Covariance Function Contact Analysis
A soft boundary shows a non-stationary mean within a transition zone near the boundary. 
A second order non-stationary covariance may or may not be present. This second phase 
of a contact analysis involves an investigation into the stationarity of the covariance 
within the transition zone. The result is a further classification of the soft boundary as 
either a soft boundary with a non-stationary covariance or not. The subsequent choice of 
a boundary model mixing approach depends on this classification.

The schematic soft boundary illustration in Figure 5-1 includes a smooth (dark line) and 
abrupt (shaded line) non-stationary mean within the transition zone. A non-stationary 
mean is a common underlying factor; however, the transition zone covariance of the 
domain 1 sample data from the abruptly varying case is significantly higher than that for 
the stationary Zi(u) covariance outside the transition zone (the variance of shaded points 
about the shaded line is larger than that for the dark points and line in domain 1). 
Similarly, the transitional zone covariance of the domain 2 sample data would be 
significantly higher than that for the stationary Z2(u) covariance outside the transition 
zone. Therefore, the type of boundary in the abruptly varying case is classified as a soft 
boundary with a non-stationary covariance. The boundary type for the smoothly varying 
case with dark would be a soft boundary without a non-stationary covariance.

The contact analysis for the simple 2D example in Figures 5-2 to 5-4 is continued with 
the covariance investigation. Figure 5-5 shows the calculated (points) and model (line) 
variogram function for both the domain 1 sample data (left) and the domain 2 sample 
data (right). The experimental transition zone domain sample data variograms are shown 
with shaded points whereas the full dataset variograms are shown with the dark points 
and modeled with the dark lines. Due to the extent of the transition in Figure 5-4, the 
transition zone variograms can only be calculated up to a maximum lag vector o f 100 for 
domain 1 and 300 for domain 2; these variograms are not modeled. Notice the slight
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tendency of the domain 1 transition zone variogram points to decrease towards the 
domain 2 variogram and the domain 2 transition variogram points to increase towards the 
domain 1 variogram. Judging the significance of these departures is subjective; however, 
the non-stationarity of the covariance within the soft boundary transition zone in Figure
5-5 does seem slight. The boundary type for this example would then be classified as soft 
without a non-stationary covariance.
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Figure 5-5: The calculated (points) and model (line) variogram for the domain 1 sample data (left) and 
domain 2 sample data (right). The transition zone sample data variograms are shown with shaded points 
and lines whereas the full dataset variograms are shown with the dark points and lines.

5.2.4 Independent versus Correlated SRFs
The decision whether or not to adopt a near boundary mixing model is made on the basis 
of the nature o f boundary transitions. This decision can be based on the expected value 
contact analysis. In the case of a soft boundary, the choice of approach depends on the 
type of soft boundary as determined from the covariance contact analysis.

Correlated SRFs
A decision to adopt correlated SRFs is made when the nature of the geological boundary 
is soft. A characteristic feature common to all soft boundaries is non-stationarity in the 
transition zone surrounding the boundary. A non-stationarity may also be present in the 
covariance. Outside the transition zone, the SRF formalism is reasonable for prediction. 
Geologically realistic soft boundary transitions need to be generated with a model o f the 
local non-stationary mean and possibly covariance.

Considering again the schematic in Figure 5-1, some mixture of the Zi(u) or Z2(u) SRFs 
must be considered within the transition zone. Neither Zi(u) nor Z2(u) is suitable for 
characterizing the gradational nature of petrophysical property transitions within the 
transition zone unless sufficient sample data are available. A model of the transitions may 
be required.

There are two techniques for near boundary model mixing. The first is the utilization of 
an LMC framework that can be parameterized to model both first and second order non- 
stationarity within a soft boundary transition zone [49]. LMC techniques are most 
suitable for soft boundaries with a non-stationary covariance such as the abrupt non- 
stationarity case (dark points and line) in Figure 5-1. The alternative linear mixing model
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(LMM) approach proposed in this dissertation, is most suitable for modeling soft 
boundaries with a stationary covariance such as the smoothly varying case (lighter points 
and line) in Figure 5-1 and the example shown through Figures 5-2 to 5-5. These two 
models are described in the next two sections.

Independent SRFs
Independent SRFs are invoked for hard boundaries. Hard boundaries do not have a 
transition zone. The Zftu) and Z2 (u) SRF means are applicable all the way through their 
respective domains up until the hard boundary.

The SRF mean and covariance are defined from the sample data within each domain and 
used for prediction. The results are then merged together according to a rocktype model. 
Predictions in one SRF are not influenced by predictions from a different SRF.

5.3 The Linear Model of Coregionalization (LMC) Approach
Soft boundaries mean that both petrophysical property samples and model predictions 
influence both sides of the boundary within the transition zone. The SRFs surrounding 
the boundaries must somehow be correlated or mixed. The LMC approach explicitly 
defines the correlation between surrounding SRFs with a model of cross covariance.

The LMC technique was developed in 2004 by Larrondo [49]. Traditionally, the LMC 
models the direct and cross spatial law of different variables. Here, the same variable is 
used; it is the different rocktypes or facies surrounding the soft boundary that are used in 
the LMC. For example, the Zftu) inside boundary SRF and the Z2 (u) outside boundary 
SRF in Figures 5-1 through 5-5. Once parameterized, the LMC is used within a co- 
kriging or co-simulation prediction algorithm.

Larrondo also proposed and developed an LMC with non-stationary parameters inside the 
transition zone to handle soft boundaries with a non-stationary covariance such as the 
abrupt non-stationarity depicted in Figure 5-1 with a dark line. Implementation details 
and results are available in [49].

5.4 The Linear Mixing Model (LMM) Approach
The linear mixing model (LMM) is a special non-stationary RF model applied within the 
transition zone of a boundary classified as soft without a non-stationary covariance. The 
LMM amounts to specify the influence of surrounding SRFs with a linear weighting 
function. The form of the LMM RF is:

ZiA1M(»,d) = £ a t (u,d)-Zt (u,d) V ueD  (5-1)
k = 1

where ZuviM(u;d) is the new non-stationary LMM RF model at the location u a distance d 
away from the soft boundary, D is the transition zone overlapping k  = 1,..., K different 
surrounding rocktypes and corresponding Z*(u;d) SRFs, and a*(u;d) are the weights 
given to each Z (̂u;d) SRF in the transition zone.
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In practice, the Zlmm(u;<!) RF is used for merging predictions together with the rocktype 
model. That is, original sample data are not mixed. Predictions from the Zk{w) SRFs are 
unchanged outside the transition zone. Inside the transition zone, the mixed predictions 
have the following form:

K
z I m m  (u> d y  )  =  X ( u ’ dy ) '  Z l  (u> d,y) V ueD .. /  =  l,...,K ;/ = l,...,K (/*y ) (5-2)

k-l

where the d,y notation is now used to indicate the portion of soft boundary transition zone 
being considered. For example, An are distances inside the domain 1 transition zone and 
d2i are distances inside the domain 2 transition zone in Figure 5-1.

The tf*(u;d) weights identify the influence of the Zt(u;d) SRF predictions overlapping a 
soft boundary transition zone. The u;d) weighting function is a linear function of the 
distance d from the soft boundary. The a/c(u;d) weights for a particular distance d must 
sum to one:

(u ;d ,) = 1; / = l,...,K;y = 1,...,K (/ *  j )  (5-3)
£=1

Figure 5-6 shows two simple a*(u;d) weighting functions for a two domain setting. The 
weight profiles on the left were used earlier in Chapter 3 to merge simulated copper grade 
predictions from a primary copper sulphide SRF and from a secondary copper oxide SRF 
within a 100m transition zone, 50m into each domain from the soft boundary. The weight 
profiles on the right were then used to merge simulated copper grades from a leached 
SRF and the secondary copper oxide SRF within a 40m transition zone, 20m into each 
domain from this soft boundary. Figure 3-12 shows the final merged copper realization. 
Although the weight profiles in Figure 5-6 are symmetric about the boundary, they do not 
have to be. In practice, the weighting functions are determined with the expected value 
contact analysis results such as in Figure 5-4.

1 .0 - 1 .0 -

DOMAIN 1 DOMAIN 2 DOMAIN 1 DOMAIN 2

0 .6 - 0 .6 -

0.4-

0 .2 - 0 .2 -

0-*
0,2 SOFT BOUNDARY

Figure 5-6: The a^u;d) weighting functions used in Figure 3-12 to represent soft boundaries.
a >2 SOFT BOUNDARY

soft boundaries.

The ZLMM(u;d) RF is non-stationary in the first order expected value. This is necessary in 
order to accurately represent first order non-stationarities from the contact analysis. An 
assumption underlying the LMM technique, however, is the Z l m m ( u ;<1) RF is stationary 
in the second order covariance, that is, the Z l m m ( u ;<I) transition zone spatial laws are the 
same as the corresponding Z*(u) SRF covariance on either side o f the boundary. There
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will always be some degree of second order covariance non-stationarity since the spatial 
correlation in the transition zone is a function of both the Zi(u) and Z2 (u) covariance 
functions. However, it should be decidedly minor as in Figure 5-5 when implementing 
the LMM approach.

5.4.1 Application Example
The simple 2D example carried through this chapter in Figures 5-2 to 5-5 is also used to 
illustrate the application of the LMM. From the contact analysis results in Figures 5-4 
and 5-5, the boundary is classified as soft without a non-stationary covariance; the LMM 
technique is appropriate.

Figure 5-2 shows the two domain rocktype model as well as the location and value of 310 
mineral quality samples. The Zi(u) and Z2(u) SRF parameters were previously calculated. 
Figure 5-3 shows the stationary univariate distributions of mineral quality samples within 
both domains; the Zi(u) and Z2(u) SRF expected values are 16.54 and 5.96, respectively. 
Figure 5-5 then shows the second order stationary Zi(u) and Z2(u) SRF calculated (dark 
points) and variogram model (line). These isotropic 20% nugget variogram models are 
written analytically as:

Yzl (h) = 0.20 + 0.80 • Sph(h)^2S0m 

Vz2 (h) = 0-20 + 0.80 • Exp(h\=ns0m
(5-4)

The first step is implementing prediction using each SRF parameterized by its histogram 
and covariance assuming the full accumulation limits for each SRF. The data is filtered 
by rocktype for each predicted model. Figure 5-7 shows the simulated Zi(u) predictions 
(left) and Z2(u) predictions (right). Notice the longer range and lower mineral quality of 
spatial correlation in the Z2(u) simulation results.

IN S ID E  R O C K T Y P E  S IM U L A T IO N O U T S ID E  R O C K T Y P E  S IM U L A T IO N

Figure 5-7: The Z {̂u) and Z2(u) simulation results assuming the full accumulation limits are all the inside 
boundary rocktype (left) and all the outside boundary rocktype (right).

The next step is parameterizing the LMM with the a*(ii;d) weighting function. The first 
phase expected value contact analysis results in Figure 5-4 are used to infer the «i(di2) 
and a2(u;d2i) weight profiles in Figure 5-8 within the soft boundary transition zone. The 
profiles are not symmetric about the boundary line since the transition zone within 
domain 1 is smaller than that for domain 2.

The simulation results in Figure 5-7 are now merged using the ZLMM(u;d) RF within the 
transition zone. Figure 5-9 (left) shows the results. For comparison, the conventional
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merge without the transition zone Zlmm(u;£|) is also shown (right). The near boundary 
LMM satisfactorily captures the transitional nature of the soft boundary described in the 
expected value contact analysis. It is a simple model and generates geologically realistic 
results. The conventional merge, however, does not capture geologically realistic soft 
boundary transitions as indicated in the contact analysis.
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Figure 5-8: The a^u;d) weighting functions used in Figure 3-12 to represent soft boundaries.

Figure 5-9: The conventional merge (left) and near boundary LMM mixing model merge (right) of the 
simulations in Figure 5-7.

5.5 Reasonableness
Reasonability is based on simplicity and the ability to capture geologically realistic 
boundary transitions. Independent SRFs are the simplest, but reasonable only for hard 
boundaries. Alternative models for transition zones such as the global LMC, LMC with 
locally varying mean and covariance parameters, or LMM are evaluated on the basis of 
simplicity and their suitability to the particular type of soft boundary transition 
determined from the contact analysis.

The global LMC technique will effectively capture soft boundary transitions such as the 
smoothly varying non-stationarity depicted in Figure 5-1 with a shaded line. However, 
the LMC is notoriously difficult to parameterize considering the number variograms that 
need to be calculated and modeled within constraints to ensure a licit LMC model. This 
level of complexity and effort is usually warranted only for soft boundaries with a non- 
stationary covariance. The LMC approach is overly complex for handling soft boundaries 
without a non-stationary covariance. The linear mixing model (LMM) is presented as a 
more straightforward option for handling this type of soft boundary.
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5.6 Remarks
Near boundary model mixing can be important. Choosing separate and homogeneous 
domain types and modeling these domain boundaries will not account for the transitional 
nature of petrophysical properties across the boundaries. The only situation where this 
independent SRF approach is reasonable is when the domain boundaries can be classified 
as hard based on an expected value contact analysis.

There are two major categories of near boundary mixing models. The first is an LMC 
framework. This technique can be parameterized to account for a soft boundary with a 
non-stationary mean and covariance. The LMM technique proposed in this thesis is 
reasonable for a soft boundary without a non-stationary covariance.
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C h a p t e r  6  

T r e n d  M o d e l i n g

Generating numerical models with realistic geologic large-scale features is a critical 
aspect of natural resource characterization using geostatistics. A trend consists of 
deterministic variability. Modeling a trend should not incorporate any variability that is 
not deterministic and better suited for probabilistic modeling with geostatistics. The trend 
should be reproduced in prediction results; however, this does not mean the trend must 
always be used directly for prediction. Chapter 7 explains when and how the trend is used 
for prediction. This chapter is primarily concerned with creating reasonable trend models.

With many data the trend model is not important and deterministic knowledge is ensured 
through data conditioning. Data conditioning is based on the data values and improved 
knowledge of geological domains. The domains can be relatively small if  there is enough 
data to parameterize the enclosed SRFs. Often, however, there are too few sample data to 
choose many domains and still reliably infer SRF parameters. In practice, domains are 
relatively large with a small amount of data. A deterministic interpretation of large-scale 
variability is important because it may not otherwise be captured by usual prediction with 
SRF parameters.

Trend modeling is unavoidably subjective and dependent on the interpreter. This has led 
to a variety of trend modeling techniques each with different implementation parameters. 
These methods could be categorized as either manual or automatic. Manual techniques 
are straightforward. Some different automatic techniques are reviewed with examples and 
implementation guidelines. They are then evaluated according to the reasonability criteria 
presented in Chapter 3. Automation can possibly undermine the required determinism of 
a trend model. Nonetheless, automated techniques can often be implemented to build a 
reasonable trend. Crucial implementation parameters pertaining to building reasonable 
models of the trend are explained.

Two probability combination schemes that can be used to construct 3D and 2D trend 
models from lower dimensional 2D and ID trend models are presented.

6.1 Trend Modeling Principles
The construction of a reasonable trend model is an essential aspect of making the best 
possible decision of stationarity. Chapter 3 identifies four criteria used for evaluating the 
reasonableness of different trends: (1) simplicity, (2) subjectivity, (3) low variability, and 
(4) geological realism. These evaluation criteria are recalled.
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The trend modeling algorithm formulation, description, and implementation should be 
relatively straightforward. Too complex algorithms with several sensitive parameters will 
be difficult to implement, explain, and justify in practical settings.

Although the trend is necessarily subjective, the trend should not be significantly 
different depending on the interpreter. This motivates careful parameterization choices in 
automated trend modeling.

Over-interpreting geological features incorporating too much deterministic information 
should be avoided. This is a common problem. The most important guideline for building 
reasonable trend models is avoiding the incorporation of spatial variability that cannot be 
accurately considered as deterministic and known. Such variability should be left to a 
SRF and modeled with conventional geostatistics. The resulting trend models that follow 
this guideline possess low variability. Highly variable trend models are only suitable 
when the geological formation is well known and fully supported by abundant hard 
sample data and soft secondary data sources.

The trend model should depict geologically realistic large-scale deterministic variability. 
Since the trend model should be honored in subsequent predictions, the final numerical 
model of any petrophysical property of interest should also be geologically realistic in 
that large-scale deterministic variability will be fairly represented together with stochastic 
variability representing the inherent uncertainty where the variability cannot be modeled 
deterministically.

6.2 Key Trend (Modeling) Concepts
Trends are subjective. It is for this reason that trends and modeling the trend is a 
notoriously elusive phase of the modeling process. Before modeling the trend, it is 
important to understand what constitutes a trend and what its role is in geostatistical 
modeling.

The trend is a deterministic gradually varying expectation in a variable over some 
domain of interest.

The term trend is used in many settings. For example, economists often use this term to 
describe an increase or decrease of a mineral or hydrocarbon commodity price over some 
time period. For geostatistical applications, the variable of interest is a petrophysical 
property and the domain of interest corresponds to the set of domain volumes identified 
by a previously built boundary model within which separate SRFs apply.

The trend describes variability that is known deterministically with certainty. Uncertain 
heterogeneity is then modeled with geostatistical techniques capable o f quantifying the 
inevitable uncertainty.

The trend is denoted by m(u) suggesting that the mean is a function of location u within 
the domain D. Recall the definition of first order stationarity in relation (2-7) where m(u)
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is set to a constant m value that is independent of location u. A trend is, therefore, a 
modification of first order stationarity. The presence of a trend does not necessarily imply 
that the second order covariance is location dependent; it may be possible to assume 
second order stationarity in the presence of a trend in the mean.

Purpose
The trend model has two purposes. The first includes visualizing deterministic variability 
and validating subsequent estimation and/or simulation models. Predicted models must 
honor the trend in expected value. The second purpose of a trend model is its explicit use 
for prediction. Here, the trend is directly included in prediction at unsampled locations. 
This is not always relevant and is used only when the trend cannot be satisfactorily 
reproduced with conventional geostatistical prediction techniques that do not explicitly 
use the trend. Different approaches to predicting with a trend are addressed in Chapter 7.

Significance
The significance of a trend model is established by whether or not it is reproduced by 
conventional geostatistical prediction results that do not explicitly account for the trend. 
As the inconsistency between these results and the trend increases, the significance of the 
trend increases. When significant, direct use of the trend should be implemented.

The trend is often more significant when data are sparse, but a relatively high level of 
deterministic understanding is also still available. The importance of the trend is 
highlighted in sparsely sampled areas where the deterministic nature o f the trend is an 
important component of the variability. In densely sampled areas, the trend is less 
important.

Detection
The detection of significant trends is an important concept for subsequent prediction and 
validation. Although the trend is subjective with various deterministic information 
sources and interpretations, detection is often based on the sample data. Geological 
interpretation should form the primary basis for detection. Data should then support the 
interpretation.

The variogram inference phase of geostatistical modeling can also be used to support the 
presence of a trend. A trend is supported if  the calculated variogram shows an increase 
above the sill variance for increasing lag vectors h. Anisotropy in the trend may be 
detected by noting this relationship in different directions.

Figure 6-1 shows a reproduction of the core photograph and derived porosity profile over 
a 20m elevation interval (see also Figure 3-14). Recall the geologically interpreted 
evidence for a trend: a fining upward tendency is present due to a transition of 
depositional environments from coarse grained fluvial to estuary sand facies dominating 
lower elevations to fine grained marine shale facies dominating higher elevations. The 
vertical variogram is calculated and shown to the right. The presence of this trend is 
supported with the systematically increasing variogram value above the sill for lags 
greater than roughly 10 units.
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Figure 6-1: A corehole photograph from the Athabasca Oil Sands, Alberta, Canada (left) and related fining 
upward log porosity profile (right) with additive trend and residual components indicated. An unestimated 
vertical string of thirty grid cells is also shown at a lag vector h away from the porosity profile location.

Interpreting and modeling the trend is highly dependent on scale. For example, if  the 
elevation interval is chosen too small, it is even possible to observe a coarsening upward 
trend in the porosity interval of Figure 6-1; conversely, the elevation interval enclosed by 
the broken horizontal lines suggests there is no trend at all. A deterministic understanding 
of the geology is required to support modeling a trend.

There is a reasonable scale for interpreting and modeling a trend. Previously constructed 
boundary models identify domain types within which separate SRFs can be applied. Each 
SRF assumes a constant mean and covariance throughout its corresponding domain. The 
trend model suggests that first order stationarity is inappropriate. In order to make this 
assessment fairly, the scale of the domain must be considered. It would be unfair, for 
example, to consider a trend at a much smaller scale.

Balancing Deterministic and Stochastic Variability
Most geostatistical prediction tools that employ kriging estimators requires the additive 
decomposition of the original Z(u) RF into a locally varying mean or trend model RF 
component m(u) and a stochastic residual RF component R(u). This decomposition leads 
to a corresponding decomposition of the original Z(u) RF variability:

where Cz(0) or oz2 is the Z(u) variance, Cm(0) or crm2 is the m(u) variance, C«(0) or ctr2 is 
the i?(u) variance, and CmR(0) or <jmR is the covariance between the m(u) and R(u) RFs.

Scale

Q (0) = Cm(0) + C,(0) + 2-Cmfi(0) 

<7Z ~ (Jm + a R + 2 -  CmR
(6-1)
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Balancing deterministic and stochastic variability is the most important concept of trend 
modeling since it directly relates to the criteria for a reasonable trend model. In practice, 
due to the subjective nature of trends, it is quite challenging to separate variability that 
should be modeled deterministically with a trend model from variability that should be 
modeled stochastically with geostatistical techniques. However, relation (6-1) provides a 
mechanism to assign some quantitative guidelines to this balance.

The balance between deterministic and stochastic variability can be calculated from the 
ratio of am2 to az2. For most practical settings, this ratio should be no greater than 0.50, 
that is, no more than 50% of the original Z(u) RF variability should be modeled without 
uncertainty deterministically. Subjectivity is inescapable -  the 50% guideline is still 
subjective. This guideline will change with the amount of hard and soft geological data.

The covariance term in relation (6-1), CmR(0) or <JmR ,  is an important part of deciding on 
the approach to account for a trend. Some techniques are able to capture complex 
relationships between m ( u )  and R(u) with possibly high absolute Cmr{0) or <jmR values; 
however, most prediction tools assume that m ( u )  and R{u )  are independent. More detail is 
given in Chapter 7.

6.3 Trend Modeling Approaches
For most geological settings, the recommended procedure in this thesis is investigating 
and building a trend in 2D over the full aerial extent of the domain, doing the same for 
the ID vertical extent of the domain, and then combining these lower dimensional trends 
into a 3D trend over the full domain.

There are several methods available for generating lower dimensional 2D and ID aerial 
and vertical trends, each method with its own implementation details, advantages and 
disadvantages, as well as range of applicability. Five different trend modeling techniques 
are now presented: (1) hand mapping, (2) moving window averages, (3) global inverse 
distance, (4) global block kriging, and (5) kriging the trend.

These five trend modeling techniques can effectively capture any trend encountered in 
practice. The parameters may change depending on the geological setting and intended 
purpose of the numerical model.

The implementation of each automatic trend modeling technique is demonstrated with a 
common example that mimics geology found within the McMurray Formation located in 
northern Alberta, Canada. Trend modeling is performed for facies proportions. In this 
case, m ( u )  is taken as pk{u ) ,  the locally varying probability of facies k. There is k = 1,..., 
4 facies: sand, breccia, interbedded sand/shale, and shale. The domain of the McMurray 
Formation example and 159 available corehole locations are shown in Figure 6-2. The 
domain is one township. The 36 sections are delineated with dark broken lines; half­
section lines are shaded broken lines. The formation is about 100m thick. The trend may 
be significant near the outside of the lease where detailed sampling is not available.
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Figure 6-2: Township domain and 159 corehole locations used for describing trend modeling techniques 
presented in this chapter.

6.3.1 Hand Mapping
Hand mapping is the first of five techniques that can be implemented to generate 2D 
aerial or ID vertical trend models. This is a manual trend modeling approach.

Description
The hand mapping process for trend modeling involves simply hand contouring large- 
scale deterministic features of the petrophysical property of interest. All the fundamental 
rules and guidelines for drawing contour maps apply. In general, a relatively large 
contour interval should be adopted in order to avoid incorporating too much geological 
heterogeneity. The contour map can be used for comparison to prediction results or and, 
when the trend is deemed significant, for direct integration into prediction algorithms.

Hand mapping forces the interpreter to make decisions about large-scale trends. In terms 
of the simplicity and subjectivity criteria cited previously, this approach is often the most 
reasonable. However, these methods are not repeatable and may be difficult to adjust 
when faced with new data. Moreover, if required, their digitization and incorporation into 
prediction algorithms may be time consuming and cumbersome.
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Projects that require automation such as ones with abundant sample data within multiple 
large domain types should avoid hand mapping and contouring. An automatic trend 
modeling technique may be suitably parameterized and implemented.

6.3.2 Moving Window Average
Moving window averages of petrophysical properties are the first and simplest of the four 
automatic trend modeling techniques.

Description
Moving window averages are implemented by translating a specified ID or 2D window 
over the domain and averaging data values. The window extents are centered on each 
grid cell location u to identify the sample locations that should receive influence. The 
windows overlap. Large windows result in more overlap and smoother trend models. This 
allows for the flexibility to generate low variability trends. A power law average could be 
applied for a permeability trend.

Moving window average techniques are simple and effective for trend modeling. 
Subjectivity, low variability, and geological realism criteria can all be satisfied by 
changing the size of window and amount of overlap. However, the trend is often 
calculated with equal weighted sample data regardless of where the samples are located 
within the windows. Direct control over spatial correlation is not possible.

It is recommended that the moving window average technique be applied to ID trend 
modeling. Fitting the window averages is more straightforward in ID. In 2D, the 
approach is similar to hand mapping techniques. There are more sophisticated techniques 
for 2D trend modeling capable of directly accounting for the spatial correlation and the 
configuration of the data.

Application
The moving window averages technique is used to generate a vertical trend model for all 
four facies types in the McMurray Formation example. There is a large amount of data; 
the 159 wells are logged at 0.50m intervals for a total of 31,800 sample locations. 
Therefore, a relatively small vertical window size of 4m can be used to calculate the 
moving window averages. Figure 6-3 shows the moving window averages at a 2m 
vertical grid cell resolution. At each 2m grid cell location, the facies averages or 
proportions are standardized so that they add to one.

The by-facies results in Figure 6-3 are smooth enough to interpret locally varying 
proportions, but not smooth enough for the final vertical trend model. These points are fit 
with lines and combined into a full by-facies trend model. This trend model, referred to 
as a vertical proportion curve, is shown in Figure 6-4. The most significant trend is in 
interbedded sand/shale facies where there is a strong tendency for low proportions deeper 
in the formation. The proportion of sand has a slight tendency to increase with depth, 
significant breccia proportions are found at elevations lower than 215m, and the 
proportion of shale is constantly low regardless of elevation.
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Figure 6-3: The by-facies vertical moving window averages for the McMurray Formation example.
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Figure 6-4: The McMurray Formation by-facies vertical trend model shown as a vertical proportion curve. 

6.3.3 Inverse Distance
Inverse distance with a global search is the next automatic technique for modeling the 
trend presented in this dissertation. This estimation technique was discussed in Chapter 4 
to interpolate volume function distance codes. The implementation here is similar.
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Description
Recall the inverse distance estimator in relation (4-1) and relation (4-2) for the inverse 
distance weights in this estimator. Note that a global search and relatively low inverse 
distance power co can be used to generate a smooth distribution of estimates. This inverse 
distance scheme was applied in Chapter 4 with VF distance codes; the implementation 
for constructing a trend model shares the common goal of generating a smooth spatial 
distribution of estimates. Anisotropy can be incorporated into the calculation of distances 
and weights.

There is, however, one essential difference between the implementation of global inverse 
distance in Chapter 4 versus the implementation here for trend modeling. This difference 
is exactitude. Exactitude is not a desired property for the trend. The next chapter shows 
that trend models that reproduce the original sample conditioning data exactly result in a 
fundamentally flawed R(u) RF. The recommendation and implementation is using a non­
zero nugget constant c.

Inverse distance is a straightforward tool for trend modeling. Flexibility can be achieved 
by adjusting the inverse distance power co, the nugget constant c, and the anisotropy ratio. 
No additional post processing is required; the trend model is made up of the inverse 
distance estimates. One possible drawback may be that the variogram is not directly 
incorporated into the estimates; however, this is seldom a concern for trend modeling in 
many geological scenarios since the trend model should conservatively model spatial 
variability. Inverse distance is often applied in 2D to construct aerial trend models.

Application Example
The technique is now implemented to generate a horizontal trend model for all four facies 
types within the domain lease. The conditioning data used are the facies proportions for 
each of the 159 wells. At each well location, the facies proportions will add to one. The 
trend model is directly interpolated to a 60 x 60m aerial grid network within the township 
lease with a total of 25,921 grid cells (161 x 161). An inverse distance power o f 1.5 is 
used with a global search.

Figure 6-5 shows the final trend model for each of the four facies types. The proportion 
of sand and interbedded sand/shale seems to have a tendency to decrease and increase, 
respectively, towards the center of the domain. Similar to the vertical trend, the breccia 
and shale facies proportions are low, constant, and independent of aerial location.

6.3.4 Global Block Ordinary Kriging
Block kriging with a global search is another automatic technique for modeling the trend. 
This estimation technique was presented in Chapter 4 to interpolate volume function 
distance codes. The implementation here is similar.

Description
Recall in relation (2-29) the general kriging estimator and the system of equations in (2- 
40) that minimize the error variance in (2-35). Recall also that a global search and 
relatively continuous variogram can be used to generate a smooth distribution of kriging
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estimates. Although in Chapter 4 this global kriging scheme is applied to VF distance 
codes, the implementation here for constructing a trend model shares the common goal of 
generating a smooth spatial distribution of estimates. Anisotropy is directly incorporated 
into the calculation of the weights through the variogram.

S A N D  T R E N D

f B m

—
M iH g l

IHS T R E N D

c n o  i uN\a EASTING

BR EC C IA  T R E N D S H A L E T R E N D

Figure 6-5: The McMurray Formation by-facies horizontal trend model calculated with inverse distance.

Like inverse distance for trend modeling, exactitude is not desired of the trend model. 
The recommendation here is to discretize each unknown grid cell and apply a block 
kriging scheme combined with a relatively significant nugget effect and global search.

Kriging is a well established technique for trend modeling. Flexibility can be achieved by 
adjusting the nugget effect, the block discretization level, and the anisotropy ratio in the 
variogram model. No additional post processing is required; the trend model is directly 
inferred with the estimates. This method is often applied in 2D to construct aerial trends.

Application Example
The technique is now implemented to generate a horizontal trend model for all four facies 
types within the domain lease. The conditioning data are the same facies proportions used 
in the previous section. The grid network is also the same. A spherical variogram model 
with a long 5,000m isotropic range and 30% nugget effect is used with a 6 x 6 
discretization level. Figure 6-6 shows the trend model for each of the four facies types 
within the township domain. Although slightly different, the trend in Figure 6-6 is similar 
to the inverse distance results in Figure 6-5.
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Figure 6 -6 : The McMurray Formation by-facies horizontal trend model calculated with global kriging. 

6.3.5 Kriging the Trend (KT)
Kriging the trend (KT) is the next automatic technique for modeling the trend presented 
in this dissertation. It is the most complex technique.

Kriging with the Trend Description
The derivation of the system of equations for simple kriging is presented in Chapter 2. It 
was noted that there are several different variations of these simple kriging equations; KT 
is one variation where first order stationarity is no longer assumed and the mean function 
m(u) is no longer set equal to m. Unbiasedness and minimum error variance must still be 
achieved; however, different constraints and procedures for minimization will be needed.

The current approach is assuming m{u) is a smoothly varying deterministic function of 
the coordinates vector u whose unknown parameters are fit from the data within local 
search windows:

w ( u )  =  E « v ( u ) / v ( u ) (6-2)

The/v (u )’s are known functions of the coordinate vectors over the domain D. The csv(u)’s 
are estimated within local search windows centered on the unsampled locations. The 
actual m(u) trend values are unknown since the av(u)’s are not estimated directly.
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Ordinary kriging is a particular type of KT whereby convention /o(u) = 1 and m(u) = 
ao(u). This corresponds to the case where m(u) is re-estimated to a constant «0(u) value 
within local often overlapping search windows.

The shift parameter A in relation (2-33) then becomes:

A = X 'av (“o ) /v M - t  (U. ) £  a v (®. ) /v K  )
v=0 s=l v-0

And the kriging with the trend estimator Z * k t ( uo)  is then:

Z KT ( U 0 ) =  E  " v  ( « 0  )  / v  ( U0 )  -  Z  ( « s  )  Z  Qv ( U s )  / v  ( « .  )  ■+ Z  ̂ KT ( « ,  )  ■Z  ( l l ,  )

(6-3)

v=0

V
s=T 

(  n
= Z av(uo)/v(«o)+ Z 4 c r(us)

v=0
Z ( U s ) - Z f lv ( « s ) / v ( U s )

v=0

(6-4)

There are many ways to ensure the kriging with the trend estimator Z*uk(uo) is unbiased. 
The classic approach is to impose the following V + 1 constraint equations:

Z Z K t ( U s ) / v ( « s ) = / v ( « o )  V = 0,...,V (6-5)

where f v(uo) are the trend ftmctions evaluated at the unsampled locations and f v(us) the 
trend ftmctions evaluated at the sampled locations. By considering these constraints, the 
resulting kriging with the trend estimator Z * u k ( u o )  is then unbiased:

E ( £ K ) )  =  E { Z K ) ) - E | 4 ( « 1 ) )

= Z flv(uo ) /v K ) - Z fl«(uo K K ) -  Z ^ ctK )
v=0 v=0 \  s=l

=  Z ^ C T  ( « s  ) Z f lv ( « s  ) / ,  ( « s  )  -  Z ^ T  ( U s ) Z f lv ( « .  ) / »  ( U s )
s=l v=0 s=l v=0

=  Z f lv ( « 0  ) [ / ,  ( U 0 )  -  / v  ( « 0  ) ]  =  0

Z(Us)-Z « v (« s)/v K )
(6-6)

KT can be considered as constrained kriging with V + 1 constraint equations in relation 
(6-5) that need to be imposed on the system in order to achieve unbiasedness in (6-6).

There remains to determine the kriging with the trend weights T k t ( u s) .  These n weights 
are determined so that the error variance in relation (2-35) is a minimum. However, the 
minimization must be performed subject to the V+ 1 constraint equations in (6-5). These 
constraints call for the definition of the following Lagrangian function G(uo) that depends 
on the n weights in addition to the Lagrange parameter / /v(uo):

G(u0) = VAR{£(u0)} + 2//v(u0) 2 X t ( u s ) / v ( u s ) - . / ; ( u o )

. s=l
v = 0,...,V (6-7)

The optimal weights Zkt(us) are obtained by setting to zero the n partial derivatives of the 
error variance in (2-35) with respect to Z k t ( u s )  and the (V + 1) partial derivatives of (6-5) 
with respect to //v(uo):
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a(V A R {£(u0)}) »
2 8 (^ (u .) )  = C. ( v « , ) - E V K ) C , K - » , )

- Z M “o K (“. ) =0 (6_8)
v = 0

| g g j ) = S ^ ( » , ) / , ( . , . ) - / , K ) = o

This results in the following system of kriging with the trend equations:
n  V

Z ( “ s ' )Pr ( “ s ' - ■ “ s )  +  Z  A -  ( “ o ) / v  ( “ s ) = Cr ( “ o -■“ s ) s = 1,...n
s - 1  v=0

Z \ t ( “ s' ) / v ( “ s ) = / v ( “ o )  V  =  0

(6-9)

s - 1

The key to estimating the trend m(u) is simply setting all the right hand side C/?(uo-us) 
covariances to zero:

Z A c t(“ s'X7«(“ s '- “ s) + Z ^ v ( “ o)/v(“ s) = 0  S = l,...n
s’; 1 y=° (6 -10)
Z \ t ( “ s' ) / v ( “ s ) = / v ( » o )  V =  0 ,.„ ,K
S-1

There are (n + V+ 1) equations with n kriging with the trend weights 2kt(us) and (V + 1) 
Lagrange parameters //v(uo) to be determined. The minimized kriging variance ct2kt(“o) is 
then:

4 k  («0) = CR (0) -  ̂  (u, )pR (u0 -  us) ■- X  (« 0 ) (6-11)
s=I v=0

Similar to inverse distance and conventional kriging schemes for predicting the trend, the 
implementation of KT should involve a global search. This is because the deterministic 
form of the trend should be decided on at the scale of the lull domain and the KT trend is 
a least squares fit of this deterministic form from the available sample data.

The KT algorithm allows the incorporation of a variety of different types of deterministic 
trend information through the parameterization of a polynomial form for m(u). However, 
this flexibility is traded for a number of implementation challenges. It is difficult to 
decide on the deterministic form of the trend. The number of data n must always be 
greater than the number of constraints V. And the sample data can not be perfectly 
aligned in a straight line perpendicular to the direction in which the mean is a function.

6.4 Combining Lower Order Trend Models
Recall an approach to three dimensional trend modeling is building separately a 2D aerial 
trend and ID vertical trend then combining these lower dimensional trends into the full 
3D trend model.
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A variety of different combinatorial schemes exist. Probability combination procedures 
are addressed in this dissertation [50]. A relatively new probability scheme, an alternative 
to what is referred to as the full independence hypothesis, is proposed for building trend 
models [50]. Probability schemes have been applied in the past for categorical variable 
trends. An extension to continuous variable trends is made. These combination schemes 
are also applied with the lower dimensional 2D and ID trends built for the McMurray 
Formation example in this chapter.

6.4.1 T heory

The following theoretical background for probability combination schemes is largely 
derived from the work of Joumel in 2002 [50]. Consider the assessment of any unknown 
event A through its posterior probability P(A|B,C) given two conditioning events B and 
C. A, B, and C can be any events as long as the prior P(A) and pre-posterior P(A|B) and 
P(A|C) probabilities can be inferred. Figure 6-7 shows the application in this dissertation 
where P(A|B,C), P(A|B), and P(A|C) represent the full 3D, 2D horizontal, and ID vertical 
trend models, respectively. The idea is to combine the lower dimensional horizontal and 
vertical trend, the pre-posterior P(A|B) and P(A|C) probabilities, into a full 3D trend, the 
P(A|B,C) posterior probability.

9 0 -

P(A|B.C)7 5 -

6 0 -

4 5 -

3 0  -

1 5 -

P (A |C )

Figure 6-7: Pre-posterior A|B and A|C and posterior A]B,C probabilities represented on the left with events 
as the 2D horizontal, ID vertical, and 3D trend model, respectively, and on the right with a Venn diagram.

There are two main approaches to assessing P(A|B,C). These are referred to as full 
independence and permanence of ratios. The difference between the two is the underlying 
assumptions about the dependence between events B and C. Full independence assumes 
events B and C are fully independent while the permanence of ratios assume events B 
and C are incrementally conditionally independent. Both techniques are now developed 
in all necessary detail.

Full Independence
The posterior P(A|B,C) probability is exactly.

P(A |B.C) = P̂ B4 > = P<A) 'P<B ' A) ' : ( C |A -B) (6-12)
v ’ p (b ,c )  p (b ,c )
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The difficulty in solving for P(A|B,C) exactly is the dependence between events B and C 
in the P(C|A,B) and P(B,C) terms. The full independence approach to this challenge is to 
assume that events B and C are fully independent. This implies the following for the 
P(C|A,B) and P(B,C) terms:

Relation (6-15) is the full independence probability scheme for calculating P(A|B,C). 
This posterior probability is interpreted as a simple scaling of the P(A|B) probability with 
the P(A|B) probability and standardization by the prior P(A) probability. That is, the full 
3D trend model is calculated from a scaling of the horizontal trend with the vertical trend 
standardized by the global mean.

The full independence scheme is simple; however, there is a fundamental problem with 
this procedure in practice. Notice that it is possible in (6-15) for extreme probabilities to 
exceed 1.0. For example, consider a 3D grid cell in Figure 6-7 where the aerial mean is 
P(A|B) = 0.89, the vertical mean is P(A|C) = 0.78, and the global mean is P(A) = 0.65. 
This results in an impossible trend value of P(A|B,C) = 1.07. The permanence of ratios 
version of P(A|B,C) is regarded as more robust since P(A|B,C) is guaranteed to be [0,1].

Permanence o f  Ratios
The derivation of the permanence of ratios approach starts by assuming that events B and 
C are conditionally independent. When B and C are independent conditional to the event 
A, the following is true:

Notice, however, this conditional independence assumption does not remove the difficult 
to evaluate P(B,C) term. Notice also that relation (6-17) does not ensure the following 
posterior probability closure:

P(C | A,B) = P(C | A)

p (b ,c ) = p (b )-p (c )
(6-13)

Relation (6-12) can then be simplified to:

(6-14)

And then using Bayes inversion, the following is used to calculate P(A|B,C):

P(A)
(6-15)

p (b ,c | a ) = p (b | a )-p (c | a ) (6-16)

Relation (6-12) can then be simplified to:

(6-17)
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P (A |B ,C )  + p ( a ° | B , c ) = 1
( 6  1 8 )

p (a )-p (b | a )-p (c | a ) + p (a c)-p (b | a c)-p (c | a c) = i

where the superscript c is used to denote complement of. The P(B,C) term is avoided by 
standardizing the P(A|B,C) to close within (6-18):

p ( A |B,C) = ____________ P (a ) P(B|A) P(C| a )____________
p (a )-p (b | a )-p (c | a ) + p (a c)-p (b | a °)-p (c | a c)

p (a | b )-p (a i c )
- V (6-19)

 _____________  P (A)
P(A |B)-P(A |C)  p (a c | b )-p (a c | c ) 

p (a ) p (a c)

This posterior probability can be reshaped as follows:

P(A |B ,c )  = - ^  = - l -  = i ^  = ̂  (6-20)
1 + x a + bc b a

where the a, b, c, and x terms are:

a - l z Z M .  b l - P ( A I B ) , 1 ~ P ( a  IC) 1-P(A |B,C)
P(A) ' P(A|B) ’ P(A|C) ’ P(A|B,C) ( ’

Relations (6-19) and (6-20) is the permanence of ratios scheme for calculating P(A|B,C). 
The notion of the permanence of ratios terminology can be found in relation (6-21) where 
the incremental contribution of event C over the contribution of event A to the P(A|B,C) 
posterior probability is the same regardless of event B. The interpretation is that events B 
and C are incrementally conditionally independent. This assumption is less severe that 
the full independence model.

The permanence of ratios scheme is slightly more complex than the M l independence 
model; however, the P(A|B,C) posterior probabilities are guaranteed to lie within the 
interval [0,1]. Consider again the small example where P(A|B) = 0.75, P(A|C) = 0.78, and 
P(A) = 0.65. Relations (6-19) and (6-20) give P(AjB,C) = 0.85 versus the impossible 
P(A|B,C) value of 1.17 using M l independence.

6.4.2 Categorical Variable Trends
The M l independence and permanence of ratios probability combination schemes can be 
used to construct a M l 3D trend model from lower dimensional 2D aerial and ID vertical 
trends for categorical variables. The M l independence (6-15) and permanence o f ratios 
(6-19) probability combination schemes are written with the following substiMions:
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p ( a  I B,c) = mk (u) = mk (x ,y , z)  = p k (u) = p k (x,y, z)

P(A ) = mk = p k

P(A|B) = /nt (x,^) = p k (x,y)

P(A|C ) = mk(z) = p k (z)

(6-22)

The lines in relation (6-22), from top to bottom, for facies k, correspond to the posterior 
3D locally varying trend or proportion, prior global mean or proportion, pre-posterior 2D 
locally varying horizontal trend or proportion, and pre-posterior ID vertical trend or 
proportion. With these substitutions, in terms of proportions, full independence becomes:

Fk{ v ) - p *(x ' y ) 'P*(z )
Pk

(6-23)

And the permanence of ratios relation becomes:

Q - a )

Pk M =
Pk

ix-p>c) +
Pk

(l - p k{x,y))  

Pk{x^y)
[X~Pk{z))

P k ( z )

(6-24)

Application Example
The full independence and permanence of ratios schemes in relations (6-23) and (6-24) 
are now implemented on the McMurray Formation example. The by-facies vertical trend 
was created with a moving window average technique and is shown in Figure 6-4. The 
by-facies 2D trends are taken from the global block kriging models in Figure 6-6.

Figure 6-8 shows for the interbedded sand/shale facies some aerial cross sections through 
the full independence trend (left) and the permanence of ratios trend (right). The top cross 
sections are located at a high elevation of 270m where the trend suggests the facies 
proportion is higher; the bottom cross sections are located at a low elevation of 180m 
where the trend suggests the facies proportion is lower. Although the differences are 
slight due to the intermediate proportions, notice that the full independence trend seems 
to overemphasize low and high trend values while the permanence of ratios trend is less 
variable in the extremes.

6.5 Remarks
Regardless of domain size, the SRF formalism is incapable of accounting for smooth 
large-scale trends when there is inadequate amount of conditioning data. The trend is 
always constructed. It is used later for either validation or directly in prediction.

Trends are subjective. The criteria used to evaluate the reasonableness of the trend must 
then also be subjective. This has resulted in a wide variety of trend modeling practices. A 
collection of five trend modeling methods have been presented above. The essential
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underlying guideline is that the trend be smooth and not overly influenced by local data 
driven features.

A strong emphasis is made on parameterizing the last four automated trend modeling 
techniques so that a reasonably subjective and low variability trend model can still be 
constructed. For example, kriging parameters for building a trend model and for building 
local distributions of uncertainty are very different since exactitude is no longer a desired 
property and a smoothly varying representation of deterministic knowledge is a priority.

All categorical and continuous variable trend models can be represented as some 
combination of prior, pre-posterior, and posterior probabilities. For categorical variables, 
the trend is a proportion or probability model; for continuous variables, the inverse cdf is 
needed to convert real data to probabilities. The lower dimensional trends are then 
combined using a particular probability combination scheme to generate a full 3D model.

It is worth reemphasizing that although there are sound geological reasons to consider 
dissociating a smooth m{u) and more random J?(u) component from Z(u), the particular 
additive decomposition in (2-9) is arbitrary and not necessarily supported by any 
geological phenomenon.

The scale for interpreting and modeling the trend is important. There is a full continuum 
of scales, all of which a separate trend could be detected and modeled. This dissertation 
deals with a particular scale. Corehole samples are interpolated to a geo-cellular level. 
Trends are detected, interpreted, and modeled at this scale. This dissertation does not 
address trends that would exist at smaller and larger scales.

IHS/FI TREND (ELEV. = 270m) 1HS/PR TREND (ELEV. = 270m)

= “■

EV. = 180m) IH8/PR TREND (ELEV. = 180m)

EASTING

Figure 6 -8 : The full independence (left) and permanence of ratios (right) interbedded sand/shale trend 
model at the higher 270m elevation (top) and lower 180m elevation (bottom).
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C h a p t e r  7

P r e d ic t io n  w it h  A  T r en d

Predicting the spatial distribution of petrophysical properties is an essential aspect of 
natural resource characterization. Traditional geostatistical prediction without explicitly 
incorporating the trend does not guarantee reproduction of the trend. An explicit approach 
may be employed.

There is a variety of explicit approaches to perform estimation and simulation with a 
trend. These techniques are reviewed and evaluated according to the reasonability criteria 
identified in Chapter 3. In general, currently available explicit techniques are undermined 
by the same challenge of inferring the underlying spatial law of the decomposed residual 
RF R(u) needed for prediction. This challenge is recognized, explained, and demonstrated 
with a ID porosity profile example. Although subjective, a straightforward solution is 
proposed to infer this spatial law.

The emphasis of this chapter then shifts to developing, describing, and implementing a 
new explicit approach to estimation and simulation with the trend. The key feature of this 
method is the use of locally varying transformation tables for the transformation from 
original units to a Gaussian distribution.

7.1 Principles for Predicting with the Trend
The construction of reasonable petrophysical property models in the presence of the trend 
is an essential aspect of geostatistical modeling. Chapter 3 identified five criteria used for 
evaluating the reasonableness of prediction with the trend: (1) simplicity, (2) spatial law 
inference, (3) accurate and precise uncertainty, (4) reproduction of bivariate residual 
distributions, and (5) geologically realistic. These are briefly discussed.

The prediction algorithm formulation, description, and implementation should be 
straightforward. Too complex algorithms will be difficult to implement, modify, explain, 
and justify in practical settings. The most popular prediction algorithms incorporating the 
trend are also generally the simplest.

The spatial law of R(u) is required for prediction with a trend. The usual assumption of 
stationarity for Z(u) is transferred to the residual RF R(u), but inference of the R(u) 
spatial law is notoriously difficult since the R(u) RF is not sampled in reality and its 
realizations are only a product of the artificial additive decomposition construct. Section
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7.4 is devoted to understanding and solving the problem of inferring the underlying 
spatial law.

An important goal of geostatistical prediction is quantifying local and joint uncertainty. 
Uncertainty is model-dependent. Prediction algorithms incorporating the trend should 
generate more accurate and precise models of uncertainty compared to prediction without 
the trend. Accurate and precise uncertainty is defined by Deutsch [51] for both estimation 
and simulation. These criteria can also be used to evaluate the reasonableness of 
alternative trend models and trend modeling algorithms. Different trend models and 
prediction algorithms will result in different measures of uncertainty; therefore, the 
particular trend model and trend modeling algorithm that is associated with the lowest 
uncertainty and highest accuracy and precision would be deemed most reasonable.

The trend model value m(u), original data value z(u), and calculated residual value r(u) 
are available at the sample data locations. The bivariate residual-mean R-m distribution 
built from all (r(u), m(u)) pairs and bivariate residual-variable R-Z distribution built from 
all (r(u), z(u)) pairs each reveal important relationships that should be reproduced by the 
predicted r*(u) and z*(u) values. Algorithms with direct control over replicating these 
features are more reasonable compared to ones that do not.

Petrophysical property uncertainty should be characterized by a framework of random 
fluctuations representing uncertainty combined with deterministic variability representing 
the trend.

7.2 Explicit Approaches to Estimation with the Trend
The goal of geostatistical estimation is to quantify local uncertainty. The pioneering work 
of Danie Krige [53] during the 1950s to correct conditional biases [52] was the seed for 
the popular group of estimation techniques collectively referred to as kriging. From the 
1960s the utility of kriging has been for both large-scale trend modeling and calculating 
recoverable reserves for production planning. The trend modeling capability o f kriging 
was dealt with in Chapter 6. The detail of recoverable reserves calculations is addressed 
in [8].

The techniques in this dissertation explicitly consider a trend model during quantification 
of local uncertainty. These techniques can also be referred to as non-stationary kriging 
implementations since the mean function m(u) used is not a constant as in stationary or 
simple kriging. Three non-stationary kriging implementations now reviewed.

Kriging with a locally varying mean is the first technique. Recall the kriging estimator:

Z’ (u<)) - ot(u0) = J X  (us) [z (u , ) - m(us)] (7-1)
S - 1

Instead of stationary simple kriging with stationary mean m inferred from F(z), the mean 
m(u) corresponds to a non-stationary trend [5],
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Kriging with a trend (KT), originally known and developed as universal kriging (UK) by 
Matheron in 1969 [54], provides minimum error variance estimates of the original Z(u) 
RF in the presence of a trend model m(u). Given that m(u) is a deterministic function of 
the coordinates vector u, the trend is also estimated according to the same minimum error 
variance optimality criteria. Chapter 2 provides guidance on deriving the KT system of 
equations; and the recent reference [55] provides a more comprehensive derivation. The 
convenience of KT for simultaneously and optimally estimating both the m(u) trend and 
the original RF Z(u) is offset by a number of practical implementation issues. Among 
others, Armstrong in 1984 [56] highlights the most important one: that of inferring the 
underlying spatial law.

Kriging with an external drift variable is an extension of KT where the functional form of 
the m(u) trend model is limited to V = 1 functionals: /o(u ) = 1 and /i(u ) set equal to a 
secondary (external) variable [5]. This was first implemented successfully with secondary 
seismic data by Marechal, 1984 [57],

For a set of K  indicator RFs, two methods are available to account for the trend. The first 
is the same as the approach for kriging with a prior mean except the prior mean m(u) are 
the locally varying proportions of the particular k  indicator variable denoted /?(u*) [4]. 
The second approach is referred to as soft kriging. As long as soft data is available and is 
amenable to a Bayesian coding into prior p(ujt) mean values, the Markov-Bayes model 
[58, 59] can be applied to explicitly integrate the trend into the resulting model of 
predicted geological heterogeneity and local uncertainty [5].

7.2.1 Reasonableness Summary
The reasonableness evaluation results for all three non-stationary kriging approaches to 
explicitly estimating local uncertainty with the trend are the same. These techniques are 
simple and capable of generating accurate and precise models of local uncertainty with 
geologically realistic heterogeneity; however, inference of the underlying spatial law is 
not evident and there is no guarantee the estimated bivariate R-m and R-Z relationships 
are reproduced. Detailed comments organized into the five reasonableness criteria follow:

1. Simplicity: Other than the subjective choice of functional form for the m(u) trend in 
the KT approach, the implementation of non-stationary kriging is straightforward;

2. Spatial Law Inference: Since kriging of the residual RF R(u) is being conditioned by 
synthetic r(u) data derived from a non-stationary mean function m(u), the spatial 
law of R(u) is not evident;

3. Accurate and Precise Uncertainty: Accurate and precise uncertainty can be assessed 
and optimized by modifying the m(u) model and changing kriging parameters;

4. Reproduction o f  Bivariate Residual Distribution: There is no direct control on the 
reproduction of the original scatter of (r(u), m(u)) or (r(u), z(u)) data by the scatter 
o f (r*(u), m(u)) or (r*(u), z*(u)) estimates;

5. Geologically Realistic: Since predictions explicitly honor the previously constructed 
trend model, non-stationary kriging approaches are capable of creating geologically 
realistic models of heterogeneity and local uncertainty.
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The three non-stationary kriging approaches reviewed are equivalent in terms of the four 
reasonability criteria identified. All are simple and able to produce geologically realistic 
models. None are capable of either inferring a reasonable spatial law or reproducing the 
bivariate R-m and R-Z relationships.

Another practically important drawback of all of these estimation methods is that they 
cannot be used in simulation when joint uncertainty is required. The covariance of the 
predicted models is incorrect. A non-traditional approach to simulation without simple 
kriging is required to reproduce the reference covariance. Alternative approaches are 
investigated next.

7.3 Explicit Approaches to Simulation with the Trend
The goal of geostatistical simulation is to quantify joint uncertainty, that is, geological 
uncertainty over multiple locations with multiple realizations. For production planning, 
alternative geostatistical realizations must be geologically realistic and, consequently, 
should reproduce significant large-scale variability modeled by a trend.

There are a variety of explicit approaches to ensure geostatistical simulation models are 
geologically realistic and consistent with the trend. Three approaches are now discussed.

7.3.1 Intrinsic Random Functions of Order k (IRF-k)
The challenges associated with (1) inferring the spatial law of the residual RF R(u) for 
the non-stationary kriging approaches and (2) the inability to use non-stationary kriging 
in the traditional SGS algorithm motivated the consideration and use of intrinsic random 
functions of order k  (IRF-k) [12]. IRF-k are interpreted as random functions with second- 
order stationary increments of order k. A generalized covariance AT(h) is defined as the 
correlation structure of its IRF-k. Conventional geostatistics corresponds to the zero-order 
(k = 0) increments [Z(u+h) -  Z(u)] to which the variogram is the function AT(h). However, 
IRF-k applications are restricted to isotropic K(h) models [60].

In 1990, Dimitrakopoulos [61] developed a comprehensive step-by-step non-stationary 
simulation procedure using IRF-k. There are four main steps: (1) on-line unconditional 
simulation of a Wiener-Levy process for the IRF-k in Rl, (2) use of the tuming-bands 
method to map the R l realizations into Rn, (3) conditioning to available data with kriging, 
and (4) verification of covariance reproduction. Unlike with non-stationary kriging using 
the variogram, the use of generalized covariances from IRF-k yield theoretically correct 
results in a conditional simulation framework.

Unlike KT, prediction results using IRF-k would reproduce both the theoretically correct 
input spatial law of the GC K{h) and key large-scale geological features of the trend. For 
example, kf(h) for an IRF of order one (k = 1) would be capable of filtering a linear trend 
from the spatial law K(h) of the IRF-1. The use of IRF-k, however, can be relatively 
complex and the generalized covariances used are usually arbitrarily assumed to be of 
rather restrictive isotropic form [60].
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Reasonableness
The advantage of the IRF-A: approach is a consistent underlying spatial law. However, 
this conies at a significant cost:

1. Simplicity: The Wiener-Levy simulation for the IRF-A: and tuming-bands simulation 
are relatively difficult procedures to implement;

2. Spatial Law Inference: Inference of the generalized covariance for IRF-A: through 
the Wiener-Levy process is possible;

3. Accurate and Precise Uncertainty: The accuracy and precision of uncertainty can be 
measured;

4. Reproduction o f  Bivariate Residual Distribution: There is no i?(u) -  this criterion is 
not applicable for IRF-A:;

5. Geologically Realistic: The resulting IRF-A: simulation model is capable of creating 
geologically realistic models of heterogeneity and joint uncertainty consistent with 
key large-scale features of the trend.

7.3.2 Residual Simulation
The most common and most straightforward explicit approach to geostatistical simulation 
with the trend model is a traditional simulation of the assumed stationary residual RF 
R(u) after the modeled trend m(u) is subtracted from the original RF Z(u) at the available 
data locations [62]. The simulated residuals are then simply added back to the m(u) trend 
model. The example in Chapter 1 implements this approach.

Reasonableness
The classic residual simulation approach is straightforward and is capable of generating 
geologically realistic models of joint uncertainty consistent with key large-scale features 
o f the trend; however, the underlying spatial law of the residuals can not be inferred from 
residual data and there is no guarantee that simulated residual-mean or residual-variable 
distributions will reproduce key features of the original data versions. Detailed comments 
organized by reasonableness criteria follow:

1. Simplicity: The residual simulation algorithm is straightforward;
2. Spatial Law Inference: Since kriging of the residual RF R{u) is being conditioned by 

synthetic r(u) data derived from a non-stationary mean function m{u), the spatial 
law of R(u) is not equivalent to that of Z(u) and is difficult to infer;

3. Accurate and Precise Uncertainty: It is possible to modify the simulation setup or 
use alternative m(u) mean models to improve the accuracy/precision of uncertainty;

4. Reproduction o f  Bivariate Residual Distribution: There is no direct control on the 
reproduction of residual-mean or residual-variable distributions;

5. Geologically Realistic: Since the simulated residuals are added back to the prior 
trend model m(u), the residual simulation approach is capable o f creating 
geologically realistic models of heterogeneity and joint uncertainty honoring trends.
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7.3.3 Stepwise Conditional Transformation of Residuals
An important disadvantage of both the IRF-& and residual simulation approaches is the 
inability to control the bivariate residual-mean and residual-variable distributions. In each 
of these distributions, a characteristic feature can possibly be present. Leuangthong and 
Deutsch [63] illustrate how each of these two features is detected:

1. Applications of traditional geostatistical simulation tools to the R(u) SRF imply 
R(u) is homoscedastic meaning the variance of the r(u) residuals is independent of
the trend values m(u). However, virtually all residual-mean scatters of (r(u), m(u))
pairs will reveal some heteroscedastic behavior.

2 . The additive dissociation of Z(u) imposes the constraint R(u) > m(u) for non­
negative Z(u) variables. Simulating the spatial distribution of residuals and adding 
the mean back does not ensure this constraint is satisfied.

These two problems of the residual simulation approach motivate a stepwise conditional 
transformation technique proposed in [63]. The key idea is a stepwise transformation of 
the residual data conditional to the trend. This transformation assumes the following 
form:

Yx {u) = (T'[Fm (R(u)\m(u))] (7-2)

where T«(u) is the Gaussian G transform of the residual random variable R(u) conditional 
to local m(u) windows. Similarly, the solution when the second of these problems persists 
is a stepwise transformation of the original variable conditional to the trend:

7z (u )-(? -1[T’zlm(Z(u)|m(u))] (7-3)

Both transformations complement conventional practice. The same decomposition in 
relation (2-9) is used in that the trend m(u) and residual R(u) is modeled separately and 
recombined. The pre and post processing steps are implemented in order to preserve 
heteroscedastic and constraint features. All necessary implementation details as well as 
mining and petroleum examples are given in [63].

Reasonableness
The stepwise conditional transformation approach is straightforward, reproduces the 
bivariate residual distributions, and is capable of generating low, accurate, precise, and 
geologically realistic uncertainty [15]. However, the problem of inferring the underlying 
spatial law persists. Detailed comments organized by reasonableness criteria follow:

1. Simplicity. The conventional Gaussian transformation applied to classes o f Z or R is 
easy to implement;

2 . Spatial Law Inference: The spatial law of Yr{u) is not equivalent to that of Z(u) and 
is not immediately evident;

3. Accurate and Precise Uncertainly: It is possible to modify or optimize the 
simulation parameters or stepwise conditional transformation parameters or adopt 
alternative m(u) mean models to improve the accuracy and precision of uncertainty;

127

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ith out p erm issio n .



4. Reproduction o f Bivariate Residual Distribution: The SCT procedure ensures the 
predicted scatter of residual-mean or residual-variable pairs reproduces the original 
versions through the stepwise conditional transformation;

5. Geologically Realistic: Since the residuals are forward and backtransformed 
according to the stepwise conditional transformation tables, the trend model m(u) is 
honored and the realizations of uncertainty are the geologically realistic.

7.3.4 Indicator Simulation Approaches
One common simulation technique that could account for a trend model consists of using 
the Markov-Bayes model for soft kriging. The covariance, cross-covariance, and Bayes 
probability calibration are as defined in [5], Full implementation is presented in [64].

7.3.5 Reasonableness Summary
The detailed reasonability comments made above are summarized into the report card in 
Table 7-1 organized by simulation approach.

Simulation with the Trend Model: Evaluation Criteria

Simulation with the 
1 rend Model Simplistic? Spatial Law 

Inference?
Accurate/Prccise

Uncertainty?

Reproduction of 
Bivariate J?(u) 
Distributions

Geologically
Realistic?

IRF-k n o V e ­ ve* 110 yes
VCM nn \es no ves
yes no yes yes yes

Table 7-1: Report card for evaluating different approaches to account for the trend in simulation.

All of the approaches for simulation of the trend are capable of producing geologically 
realistic models of accurate and precise uncertainty. The IRF-A: approach also allows 
inference of the underlying spatial law; however, it is a complex method. The stepwise 
conditional transformation is simple and the only one capable of controlling bivariate 
residual distribution behavior. Residual simulation is the simplest method but does not 
allow control over the bivariate residual distributions.

Each of the approaches to simulation with the trend can also be applied to estimation. For 
example, instead of simulating the residual RF i?(u) before adding back the mean w(u), 
kriging could be applied as is done in the example shown in Chapter 3. Deutsch, 2006 
describes the stepwise conditional transformation in estimation mode [65].

7.4 Inference of the Underlying Spatial Law
With the exception of the IRF-A: and R\m stepwise conditional transform methodologies, 
the approaches for prediction with the trend employ the additive decomposition in (2-9) 
to which the underlying spatial law is that of the unknown, unsampled, synthetically 
determined, and assumed stationary residual RF R(u). This spatial law is difficult to infer 
since the R(u) RF and r(u) data do not exist in reality. This ftindamental challenge facing 
prediction with the trend is addressed with a detailed problem description, solution, and 
illustrative ID example.
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SK and associated first order stationarity may be adequate to reproduce the large-scale 
variability of a trend. In this case, the variogram of the residual RF R(u) is close to the 
variogram of the original variable RF Z(u):

1 2 
^ ( h) = ̂ ^ Z ( M us ) - ^ us ) ] - W us + h ) - ^ u s+h)]) =yz (h) (7-4)

The derivation of relation (7-4) requires the additive decomposition in relation (2-9) and 
the first order assumption of stationarity in relation (2-7). The original variable variogram 
7 2 (h) filters a constant mean and is equivalent to the residual variable variogram y«(h). 
SK for estimation and simulation, therefore, is correctly applied using the variogram of 
the original data 7 2 (h).

Consider now an explicit approach to predicting with the trend where the assumption of 
first order stationarity is relaxed. Relation (7-4) no longer holds since the trend model 
m(u) varies locally, that is, the original variable variogram 7 2 (h) does not filter a non­
constant mean. The residual variable variogram y*(h) must somehow be inferred.

Components o f the Residual Variogram
Despite the theoretical consistency of inferring and predicting with the generalized 
covariance, simpler approaches to prediction with the trend have prevailed. The spatial 
law of the residual RF R(u) can not be easily calculated, however, a variety o f ad-hoc 
practices have emerged. Before describing these options, it will be useful to understand 
what the components o f the residual variogram y«(h) and how they are related. The 
residual variogram can be decomposed as follows:

^ ( h )  = r z (h ) -y m(h)-2y^ (h )  (7-5)

where 7 2 (h) is the original variable variogram calculated with relation (2-15) using z(u) 
data approximately separated by h, yw(h) is the mean variable variogram calculated with 
relation (2-15) using m(u) data approximately separated by h, and ym«(h) is the cross 
variogram between m(u) and i?(u) calculated with:

1

7mR ^  = 2 F(h) £  (W U‘) ~ ™ (u° + hfl M u°) “ *  (u* + h)J  (7'6)

using collocated r(u) and m(u) data approximately separated by h. The derivation of 
relation (7-5) requires only the additive decomposition in relation (2-9).

The sill of the cross variogram ym/?(h) is the correlation coefficient between all r(u) and 
m(u) data calculated with relation (2-20). This correlation coefficient is zero when the 
trend m(u) is independent of the residual RF i?(u). The 7 m«(h) cross variogram for most h 
could be assumed negligible in many cases; therefore:

r * ( h ) * r z ( h ) - r m(h) (7-7)

There is no guarantee that m(u) and R{u) are independent; however, the stepwise 
conditional transformation of the residual data r(u) does ensure independence.

129

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



After adopting relation (7-7) and the attached assumption of independence between m(u) 
and R ( vl), some important observations and interpretations become available. Figure 7-1 
shows a schematic illustration of an experimental (open circles) and model (line) original 
variable variogram yz(h). One possible ym(h) mean variable variogram model (broken 
line) and y«(h) residual variable variogram model (line) calculated with relation (7-7) is 
shown.

The ym(h) variogram is zero when the trend model m(u) is a constant equal to the first 
order stationary mean m, increases as more spatial variability is modeled within the trend 
m(u), and approaches yz(h) when the mean model is highly variable and honors the z(u) 
sample data. Considering now all trend models within this range, the shaded region 
between yz(h) and zero in Figure 7-1 represents where the residual variogram can 
theoretically exist according to relation (7-7). The upper and lower residual variogram 
y«(h) limits are the yz(h) variogram and zero, respectively.

° ^ ^ ( h ) < r z (h) (7-8)

Notice that yz(h) and y«(h) are nearly equivalent for relatively small h where the mean is 
approximately constant. For these distances and directions h where yz(h) and y«(h) are 
effectively equal, yz(h) acts as an effective filter of a relatively constant mean. As h 
increases, however, the m(u) and m(u + h) values become significantly different and 
yz(h) is then no longer an effective filter. Intuitively, there is a critical h value where the 
approximation of y«(h) with yz(h) breaks down.

Options for Calculating the R(u) Spatial Law
The problem of inferring the underlying spatial law of the R{u) RF after decomposing the 
original Z(u) RF according to relation (2-9) has been addressed by way of various 
informal inference options. Four options are generally available in practice: (1) calculate 
y«(h) using r(u) data, (2) approximate y«(h) with y /h )  using z(u) sample data, (3) 
calculate yz(h) at only h distances and directions where yz(h) can be anticipated to 
effectively filter a constant mean, or (4) use yz(h) to represent y«(h) up to certain h lag 
vectors after which y«(h) and yz(h) are significantly different, and then extrapolate from 
this h to an intermediate y«(h) range between the yz(h) and ym(h) ranges. Each of these 
options is now briefly described.

The most logical approach to inferring the underlying R{u) spatial law is calculating y*(h) 
using residual data approximately separated by h, (r(us), r(us + h)). This approach, 
however, usually results in a significant practical problem: the resulting y^(h) variogram 
consistently predicts too much spatial variability. More specifically, y«(h) often is greater 
than the original variable variogram yz(h), which contradicts the original variable 
variogram decomposition in relation (7-7) and the inequality in (7-8). Nevertheless, the 
y*(h) variogram often appears as a nugget effect model.

The problem with calculating y«(h) directly is related to the residual data, which are 
calculated using relation (2-9) as r(u) = z(u) -  /n(u). These are not actually data since 
they exist only as artificial outcomes of the additive decomposition assumed in (2-9). The
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problem worsens when too much spatial variability is incorporated into the trend model 
m(u). Understanding the origin o f this problem is described in more detail and illustrated 
with an example below.

C{ 0)

y,.(hfy(H)

to

h
Figure 7-1: A schematic illustration of relation (7-7) with a trend model and associated ym(h) variogram
model. The residual variable variogram model ys(h) calculated from an experimental and model original 
variable variogram y (̂h) and the mean variable variogram ym(h) is shown. The shaded region represents the 
residual variogram yff(h) range in the inequality in (7-8) when considering multiple trend models.

The appearance of too much spatial variability in y«(h) is an infamous problem; yet it is 
not well documented. A common solution is to approximate y«(h) with yz(h) calculated 
using the original sample data. However, as Figure 7-1 shows, this is effective only for h 
distances and directions where the trend m(n) is roughly constant; beyond h lags where 
m(u) and m(u + h) are significantly different, /z(h) will overestimate 7 /?(h). This 
approach can only be recommended within regions or directions where the trend is not 
strong and in settings where there are many conditioning data and the short range 
variogram is used almost exclusively for prediction. This approach is not recommended 
when there are limited conditioning data and overestimation of the long range variogram 
will have a high impact on prediction.

Another option is approximating y«(h) with yz(h) for h within relatively homogeneous 
regions where the trend model is known to be relatively constant and can be effectively 
filtered with yz(h). Identifying areas where the trend is relatively constant is subjective 
and may be difficult to determine in some settings. This is the classic recommendation 
for practice [3].

The last option combines an approximation of y«(h) with yz(h) for all h such that m{u) is 
nearly equal to m(u + h) and an extrapolation of y^(h) beyond this h lag to a y«(h) range 
between yz(h) and ym(h). This is currently the most reasonable approach even if  it is 
subjective.

Inference o f  Residual Variogram
Although a sensible approximation of the underlying i?(u) spatial law can be made using 
one of the previously described options for inferring y*(h), none of these draw on the r(u)
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data directly or attempt to address why these data may appear significantly more random 
than they truly are. The reason why r(u) data show too much variability is investigated.

Some attention is due to the significant inconsistency between the expected spatial law of 
the R(u) RF and the inferred one using r(u) data derived from relation (2-9). The residual 
RF 7?(u) decomposed from the original RF Z(u) does not exist in reality -  there are no 
r(u) sample data from the R(u) RF as there are z(u) samples from the Z(u) RF. Both the 
r(u) data and y«(h) calculated using r(u) data are reliant on the trend model m(u). For 
example, if  m(u) is nearly a constant value m over all possible u, y«(h) is approximately 
equal to 7 2 (h); as the trend increases in variability and approaches the z(u) data at their 
locations, y«(h) approaches a nugget effect model with low variance.

One solution is to assign the z(u) sample data very little if  any direct influence in building 
the trend. The trend model should incorporate no more variability than what a 
deterministic understanding of the geological processes suggests. When this guideline is 
followed, the R(u) RF will exhibit the correct amount of spatial variability. Still, in 
practice this is difficult because the trend variability is revealed by through the z(u) data.

If the 7?(u) RF existed in reality, we could sample for r(u) data and calculate y^(h) with 
residual sample data r(u). This calculated y*(h) variogram would be correct in that it 
would satisfy (7-7), (7-8), and fall within the shaded region in Figure 7-1. However, since 
R(u) does not exist in reality, focus must be given to correctly modeling the trend m(u) as 
a strictly deterministic component of the overall Z(u) variability in order to avoid 
artificially inflating the true randomness of the R(u) spatial law.

7.4.2 Example
A porosity profile example is presented to illustrate the commonly encountered problem 
of overestimating the spatial variability of R(u) when calculating y«(h) directly with r(u) 
data. Particular attention is given to the relationship between how much spatial variability 
is modeled in the trend m(u) and the severity in which y«(h) is overvalued. A practical 
solution to this problem is also demonstrated.

Setting
A synthetic porosity profile is generated by first simulating a correlated residual variable 
profile and adding it to a predetermined trend model according to the decomposition in 
(2-9). The resulting true porosity profile Z(u) is analogous to the underlying true spatial 
distribution of the original variable value that is inaccessible in practice. Furthermore, the 
true R(u) RF and associated spatial law are known in this example; these are inaccessible 
in practice. Since the true porosity profile is created with a known trend, this locally 
varying mean model can be viewed as the true or reference trend, still only known 
subjectively. Prior knowledge of the true Z(u), R(u), and m(u) components and their 
corresponding variogram or spatial laws allows comparisons to be made with common 
experimental models inferred using limited samples from the Z(u) RF in practice.

A stationary Gaussian residual porosity profile is simulated within a 20m elevation 
interval at 0.10m increments (200 points total) using a variogram model with an isotropic
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10m range of correlation and zero nugget effect. The units of porosity are in fractions. 
The variance of R(u) is standardized to 0.0025 by multiplying through by 0.05. Figure 7- 
2 shows the full R(u) profile (top left) within the 20m elevation interval as well as the 
histogram of the true residual values (bottom left); the simulated residual porosity mean 
and variance are 0.00310 and 0.00130, respectively.

It is previously known that there is a clear fining upward trend in the porosity variable. 
The mean function is fully defined by a linear increase in porosity from 0.15 to 0.25 over 
the 20m elevation interval:

m(zSTRAT ) = 0.15 + O.IO^strat̂  (7-9)

where u is replaced by z s t r a t  which is the stratigraphic elevation coordinate incremented 
by 0.10m starting at zero and ending at 20m. Figure 7-2 (top right) shows this reference 
linear trend model m(u). The true Z(u) porosity profile is then calculated by adding m(u) 
to R(u) as in (2-9). Figure 7-2 also displays Z(u) (top right) and its histogram (bottom 
right); the simulated porosity mean and variance are 0.20320 and 0.00108, respectively.

Figure 7-3 depicts the true or reference spatial laws for the Z(u) and R(u) RFs and the 
m(u) trend component with normalized yz(h), y«(h), and ym(h) variograms, respectively. 
Notice the consistency with relation (7-7), the inequality in (7-8), and the shaded region 
for y«(h) in Figure 7-1. The ym(h) variogram is a smooth quadratic with more spatial 
correlation than both the Z(u) and i?(u) RFs. The residual data r(u) are more correlated 
than z(u) values. Since the trend model is very smooth and nearly constant, the yz(h) and 
y/?(h) variograms are similar.

Trend Modeling and yR(h)
Fifty random z s t r a t  locations are chosen to extract z(u) samples from the reference Z(u) 
profile. Four trend models are created using block ordinary kriging conditioned by the 50 
sample data. These m(u) trend models are built to increase in spatial variability by way of 
decreasing the nugget effect of the variogram model from 80% to 60% to 40% to 20%. 
The variogram and kriging setup are otherwise identical. The resulting trend models are 
shown together with the sample data in Figure 7-4.

Figure 7-5 shows the r(u) residual data at the fifty random sample locations using the 
original z(u) sample data and the four different m{u) trend models previously constructed. 
Notice that as the nugget effect decreases and more variability is modeled by the trend, 
the z(u) sample data are honored more closely and the r(u) values appear more random. 
To confirm this observation, the residual variogram y«(h) is calculated using each set of 
r(u) data and compared to the true y«(h) variogram and spatial law shown in Figure 7-3 
and calculated from the simulated R(u) profile in Figure 7-2. This residual variography 
comparison is shown in Figure 7-6. All four calculated y«(h) variograms overestimate the 
true y«(h) variogram model. The overestimation of the true R(u) variability is more 
severe for m(u) trends that are built to represent more spatial variability. The spatial law 
of R(u), therefore, cannot be calculated correctly with the y«(h) variogram measure using 
any of the previously constructed trend models and associated sets of r(u) values.
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Figure 7-2: An illustration of the ID porosity profile example setting including the reference residual /?(u) 
profile (top left) and histogram (bottom left), trend m(u) (top right), and original variable Z(u) profile (top 
right) and histogram (bottom right).

Figure 7-6 shows that too much variability is modeled by the block ordinary kriging trend 
modeling approach. The corresponding experimental residual variograms overestimate 
the true residual variogram and variability. Since the r(u) values are an outcome of the 
construct in (2-9) rather than actual samples from i?(u), the spatial law of R(u) inferred in 
practice relies greatly on the model of m(u). Automatically built trends unfortunately 
incorporate too much variability by too closely honoring conditioning z(u) sample data. 
The result is r(u) values that appear more random than the true R(u) spatial law as shown 
in Figure 7-6.

A reasonable trend model represents no more spatial variability than is available 
deterministically. Sample data should only be used as a rough guide. This criterion is
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often satisfied with the manual trend modeling technique that does not place undue 
influence on honoring the original z(u) sample data.
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Figure 7-3: The true R(n), Z(u), and m(u) spatial laws as y*(h), 7 2 (h), and ym(h) variograms, respectively.

Given the fifty z(u) sample data in the example, there is no deterministic geological 
evidence for a trend model or significant lack of data control in this setting. That is, the 
spacing between the fifty z(u) sample data in Figure 7-4 is small enough to reproduce key 
large-scale variability. Therefore, the stationary mean porosity of 0.20320 is used with a 
conventional approach to prediction. The underlying spatial law of the residual R(u) RF 
is then equivalent to the spatial law of the original variable Z(u) RF. The comparison 
between this spatial law and the reference R(u) spatial law is shown in Figure 7-7. The 
underlying spatial law and y*(h) variogram can be accurately inferred when a reasonable 
trend model is built, that is, when the trend is built without direct conditioning to z(u) 
sample data.

135

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



LOW VARIABILITY TREND (40% NUGGET)
20

MED-LOW VARIABILITY TREND (20% NUGGET)

§CC
US

z0
1

SAMPLE

T~T-'
0.10

«T»
0.20

TT—T
0.30

T-r-r
0.40

POROSITY

M ED-H IG H VA R IA B ILITY  TR EN D  (10%  NUGGET)

E

1UI

§
Ui

•  SAMPLE

"i " ■y—t  f  r
0,30

T
0,10 0.40

POROSITY

<>£C

Z
2
5>
UJ

20

•  SAMPLE

T "
0.10 0.40

POROSITY

HIGH VARIABILITY TR EN D  (1%  NUG G ET)

<
§
Ui

zo
g
3

T
0.10

r - j -
0.30 0.40

POROSITY

Figure 7-4: The 50 randomly chosen z(u) sample data shown with four m(u) trend models built to increase 
in spatial variability by decreasing the nugget effect in a block ordinary kriging scheme from 40% to 20% 
to 1 0 % to 1 %.
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Figure 7-6: The true y*(h) variogram and spatial law using simulated r(u) residual data and the four y^h) 
variograms calculated using r(u) residual data from the z(u) sample data and four trend models shown in 
Figure 7-4.
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Figure 7-7: The true y«(h) variogram and spatial law using simulated r(u) residual data and experimental 
spatial law using a first order assumption of stationarity for an implicit trend model approach.

7.5 Simulation with the Trend via Locally Varying Transformations
A new approach to accounting for the trend within a geostatistical prediction framework 
is now presented. This method is based on a locally varying transformation (LVT) to 
account for non-stationarity. The trend is built into and honored through the LVT. The 
theoretical framework, inference of the LVT, inference of the spatial law, estimation and 
simulation procedures, and implementation details are presented.

7.5.1 Theoretical Framework
The LVT approach does not conform to traditional Gaussian theory underlying multi- 
Gaussian kriging and sequential Gaussian simulation approaches. Two unique theoretical
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aspects of the LVT approach differentiate it from traditional theory. The first aspect is the 
use of a transformation that is unique to each location in place of the common global 
transformation. The second aspect is the use of locally transformed conditioning data 
instead of globally transformed Gaussian values to infer the spatial law for subsequent 
prediction.

Locally Varying Transformation (LVT) Tables
Recall the first order assumption of stationarity in Chapter 2 and relation (2-7) where all 
prior F f  u; z) cdfs are equivalent to a single stationary univariate distribution F fz )  at all 
locations u within a preset domain. The stationary F fz )  distribution and associated first 
order moments are inferred with the cdf of all z  sample data available within the domain 
where the SRF will be subsequently applied. The usual computation of the global F fz )  
cdf is performed using relation (2-10); however, the F fz )  distribution and associated first 
order mean and variance moments may be adjusted with declustering weights as in (2-22) 
to (2-24) when preferential sampling is prevalent.

Traditionally, a single stationary transformation between original z sample data values 
and subsequently transformed Gaussian y  values is defined using the single stationary 
F fz )  distribution as follows:

y = GYl (Fz {z)) (7-10)

Original z data is forward-transformed according to (7-10), predictions are performed 
using conditioning y  values, and then the predicted y  values are back-transformed into 
original z unit predictions with the reverse of (7-10):

t = r ' ( G , w )  (7 -n )

Quantiles, not estimates, are back-transformed according to (7-11). Estimates are derived 
then by numerical integration. The forward and back transformation in (7-10) and (7-11) 
converts the original Z(u) SRF to a standard normal Gaussian F(u) SRF for the purpose 
of prediction and then converts F(u) back to Z(u) predictions for post processing and 
visualization. All that is needed to perform these transformations is an assumption of 
multi-Gaussianity and the representative stationary F fz )  cdf.

The theoretical framework for the LVT technique is fundamentally different than the 
traditional theory underlying geostatistical prediction in that an assumption of first order 
stationarity is not employed. That is, the local F f u; z) cdfs are not equivalent to a single 
stationary univariate distribution F fz )  built from all z sample data available within a 
fixed domain D:

z)*F z{z)  V« eD  (7' 12>

The inequality in relation (7-12) is the foundation of the LVT approach and the following 
theoretical developments and prediction procedures.

The local F f  u; z) cdfs are calculated at each u location by applying locally varying 
weights wLT(u; us) to each available conditioning sample data:
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/7z(„;z)(z) = ^ — 1------- Z X T Vz (7-13)
Z - L T ( « ; » s ) s=1
S = 1

where the notation wLT(u; us) indicates a location-dependent set of weights applied to the 
conditioning data available within the determined domain D. The indicator transform 
x(z(us); z) is:

/ / \ \ fl> ifz (u ,)< zx(z(us);z) = . Vz (7-14)
[0, otherwise

LTThe w (u; us) weights are not declustering weights that adjust F ^z)  to be representative 
of the domain D in the presence of biased sampling. The weights in relation (7-13) adjust 
the global Fz(z) distribution to be representative at that particular location u.

LTThe w (u; us) weights are calculated with a smooth kriging or inverse distance scheme 
parameterized similar to that for building a smoothly varying trend model. A different set 
of weights and different local Fz(u; z) cdf are calculated at different u locations since the 
configuration of available sample data relative to the u location changes depending on u.

All univariate summary statistics addressed in Chapter 2 can be calculated to summarize 
each local Fz(u; z) distribution. The locally varying transformed mean m(u) for each of 
the Fz(u; z) cdfs is calculated as:

m(u) = ̂ ------!-------------------------------------------------------------------- (7-15)
i > LVT(u;«s) s“'
s=l

And the locally varying transformed variance <t 2( u )  for each of the Fz(u; z) cdfs is:

(“ ) =  ------ ---------- (u ;u ,)(z (n ,)  -  m (u))! (7-16)

S= 1

Prediction utilizing an underlying assumption of Gaussianity is still employed in the LVT 
approach. However, Z(u) is no longer assumed a SRF. It is a RF without first order 
stationarity since there is no longer a single stationary Fz(z) distribution from which a 
global transformation from original Z(u) space to a Gaussian SRF 7(u) space for 
prediction as in relation (7-10) can be defined.

An intermediate RF T(u) is used to convert from original Z(u) space to a Gaussian SRF 
space. A locally varying transformation between original z sample data values and 
subsequently transformed t values is defined using the standard Gaussian distribution Gy 
and the previously defined local Fz(u; z) cdfs as follows:

< = < V ( W Z)) (7-17)
Since the z sample data are transformed to t from a set of different Fz{u; z) cdfs, the 
resulting global distribution of transformed t values denoted by Fj{t) is Gaussian but not
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standard Gaussian with zero mean and unit variance. The expected value of the T(u) RF 
is zero, and the variance will be less than unity for increased variability in the wLT(u; us) 
weights.

Unlike Z(u), the T(u) RF will be assumed to have stationary first order mean and second 
order covariance because the non-stationary trend model m(u) is built into the locally 
varying transformation through the Fz(u; z) cdfs calculated from the wLT(u; us) weights. 
Traditional Gaussian estimation and simulation procedures can be performed using this 
non-standard Gaussian T(u) SRF. Nonetheless, the F(u) SRF is converted to a standard 
Gaussian SRF for prediction.

A transform of the t values to standard Gaussian y l t  values is defined using the stationary 
Fi{t) distribution:

yu = G t(F T(i)) (7-18)

Original z data is forward-transformed according to the locally varying transformation in 
relation (7-17), the transformed t values are forward-transformed according to (7-18), and 
predictions are made with conditioning j^lt values.

The predicted y u  quantile values are then back-transformed to the intermediate T(u) SRF 
space with the reverse of (7-18):

t = F?(Gy{ytT)) (7-19)

And then the back-transformed t quantiles from (7-19) are back-transformed to original 
unit values using the reverse of (7-17):

zL ,= ^;.« ,(e ,(< )) (7-20)

Estimates are derived by numerically integrating over a series of quantiles.

The stepwise forward transformation procedure converting from the non-standard 
Gaussian non-stationary RF Z(u) to the intermediate non-standard Gaussian stationary RF 
m  to the standard Gaussian stationary RF T L t ( u )  space can be summarized as:

t  =  G Y  ( F Z ( » ; z )  ( Z ) )

T l t  =  Gy (Ft ( t ) )

Similarly, the stepwise backward transformation procedure converting from a standard 
Gaussian stationary Gaussian RF T l t ( u )  to the intermediate non-standard Gaussian 
stationary RF T(u) to the original non-standard Gaussian non-stationary RF Z(u) space 
can be summarized as:

t = F -(G ,(yhT)) ^

Z L T  -  ^ Z ( u ; z )  {Gy ( 0 )

Notice that even though both 7 l t ( u )  and 7(u) are standard Gaussian SRFs, the T l t ( u )  

SRF is different than its traditional analog 7(u) due to the locally varying transformation.
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The y  conditioning data are calculated only once; they are the same regardless of the u  

location being estimated.

Notice that the local F z ( u ;  z )  cdfs need to be defined at all sample data and potential 
prediction locations u .  To implement the forward stepwise transformation in relation (7- 
21), F z ( u ;  z )  is only needed at the sample data locations u .  To visualize the trend model 
m ( u )  and to implement the backward stepwise transformation in relation (7-22), F z ( u ;  z )  

is needed at all prediction locations u .

It is through the w L T ( u ;  u s )  kriging or inverse distance weights and resulting local F z ( t i ;  z )  

cdfs that the non-stationary trend model m(u) is built into prediction. The transformation 
procedure in relation (7-21) including the locally varying transformation in relation (7- 
18) removes the trend to create a standard normal Gaussian SRF where traditional 
geostatistical prediction can be performed. The back transformation in relation (7-22) 
preserves the trend model m ( u )  or non-stationarity.

Consider a small example where a location u  resides within a high potential area inside 
the domain D .  High valued sample data will receive higher w T ( u ;  u s)  weights, low 
sample data values will receive lower w L T ( u ;  u s )  weights, and the local F(u ;  z )  cdf will be 
lower for lower z  values and higher for higher z  values. The forward transformed y u  
conditioning values using relation (7-21) and the j l t  predictions will tend to be lower 
than forward transformed y  conditioning values using relation (7-10) and y  predictions. 
The back transformation using relation (7-22) to z lt  predictions will then tend to be 
higher than z  predictions effectively accounting for the trend model m(u) or locally 
varying mean in this high valued area.

The Underlying Spatial Law
The spatial law or SRF is defined by a multivariate Gaussian distribution and a 
covariance or variogram function. The original Z ( u )  SRF is transformed to a standard 
normal Gaussian SRF 7( u )  for prediction in a multivariate Gaussian context. The 
Gaussian variogram yy(h) identifies the spatial law used for subsequent prediction. The 
yy(h) variogram in integral notation and incorporating the transform in (7-10) is:

Y y (h) = i L W u) “ ■y (u+ h)]2du=t L d [ ^  W u))) -  G'y (Fz W u + h )))Tdu (7_23)

where the integration volume u  includes all possible h  lag vector locations within the 
domain D .  The yfili) variogram is required by theory. Relation (2-19) is then used to 
calculate the C y ( h )  covariance needed for prediction.

The inference of y y ( h )  is straightforward. Replacing z with y  in relation (2-15), y y ( h )  is 
inferred by calculating:

Yy ( h )  =  2P ( h )  ^  ( “ s )  _  ( “ s +  h ) )  ( 7 ' 2 4 )
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7 l t ( u )  is a standard Gaussian SRF. The first order mean and variance moments are zero 
and one, respectively. The spatial law of the T l t ( u )  SRF can be identified with the 
variogram y n / r ( h ) .  In integral notation the y n . T( h )  variogram is written:

rr„ (h) = («) -  Ax (a + h)]2du (7-25)

One approach to infer yyLT(h) is with the direct calculation:
1 PW „ ,

Yra  ^  = 2 ^  £  (7 lt ( u s ) -  Tlt (a, + h)) (7-26)

This approach results in the same problems as attempting to calculate the residual y«(h) 
variogram directly with r(u) data derived from relation (2-9) with a non-stationary mean 
previously. These problems were discussed earlier in this chapter.

A procedure for calculating and inferring the yn.T(h) variogram is developed below. This 
offers a distinct advantage over other conventional methods for predicting with the trend.

7.5.2 LVT and YfltO1) Inference
There are two inference problems with the LVT approach. The first is inference of the 
locally varying F(u; z) cdfs with wLT(u; us) weighting. The second is that of inferring the 
yKi;r(h) variogram and spatial law.

Inference o f  Locally Varying Transformation Tables
The local non-stationary prior F fu \  z) cdf representative of the area surrounding the u 
location must be constructed. All available sample data z(us) within the predetermined 
domain D are used to construct each local Ffxi\ z) cdf. The weights wLT(u; u5) assigned to 
the z(u,) data at a particular u location are based on either global kriging or global inverse 
distance schemes presented earlier in Chapter 6 for modeling the trend. The spatial 
distribution of wLT(u; u5) weights are used to generate a set of local Fz(u„; z) cdfs 
containing a first order mean moment m(u) that varies smoothly through D representing a 
deterministic understanding of the trend or non-stationarity.

Figure 7-8 illustrates the LVT idea using a simple 2D schematic example with 10 z(us) 
sample data shaded lighter for lower values and darker for higher values. The example is 
conceptual. Two hand-drawn contour lines separate the domain D into high, medium, and 
low valued locations. The conventional approach to prediction, invoking the assumption 
of stationarity, assumes all local F z ( u ;  z) cdfs are equivalent to the stationary F fz )  cdf 
built from the 10 sample data weighted equally (w(us) = 1/S = 1/10) or by weighted by 
declustering (w(u,s) = w°(u5)). This cdf is shown in Figure 7-8. The proposed LVT 
approach to prediction does not assume first order stationarity and instead calculates each 
local Fz{u; z) cdf differently by weighting the 10 z(us) data. A low, medium, and high 
valued location F z ( u ;  z) cdf is shown in Figure 7-8 with light, medium, and dark lines, 
respectively. When u is located within high valued zones, F(u; z) shifts to the right (high 
values) since lower valued and further away sample data receive lower wLT(u; us).
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Recall an essential guideline to trend modeling is to avoid the tendency to model too 
much spatial variability. This principle is relevant here when calculating the wLT(u; us) 
weights to determine each Fz(u; z) cdf, since these locally varying cdfs have the trend 
m(u) imbedded within them. For both the kriging and inverse distance schemes, a global 
search is used retaining all S sample data at each u location. A relatively low inverse 
distance power and significant nugget constant c are used for an inverse distance 
approach while a relatively high nugget and long range is combined with a block 
discretization for the kriging approach.

MEDIUM

CONVENTIONAL APPROACH LVT APPROACH

LOWER ZONES

HIGHER ZONES

u?

Figure 7-8: An illustration of the stationary cdf used for conventional prediction and a low, medium, and 
high case local F>fu; z) cdf used for the proposed LVT prediction approach within a schematic 2D domain.

The spatial variability of the local Fz(u; z) cdfs and trend model m(u) is sensitive to the 
inverse distance power and variogram parameters. Figure 7-9 (top) schematically shows 
these parameters for a low and high variability trend model. The resulting local Fz(u„; z) 
cdfs are also shown (bottom). For inverse distance powers near zero or kriging with high 
nugget effect variograms, the set of wLT(u; us) weights are nearly equal to 1/5 at all u 
locations; the assumption of stationarity is strong, and the variation between Fz(u; z) cdfs 
is small. For increasing inverse distance powers and decreased nugget effect variograms, 
the set of wLT(u; us) weights increase from one u location to another, the assumption of 
stationarity is relaxed, and the variation between local Fz(u„; z) cdfs increases.

Calculating locally varying F ^ u; z) cdfs as described above will account for trends in the 
variable of interest. The Fz(u; z) cdfs are implemented within prediction as locally 
varying transformation tables.

Inference o f  the Spatial Law
The variogram for the FLT(u) RF is not as straightforward as calculating ym(h) according 
to relation (7-25) using y LT data. There are several qualitative solutions to approximate 
the spatial law of R(u) and F l t ( u ) ;  the one proposed earlier in this chapter was modeling 
no more spatial variability in m(u) than is offered deterministically; however, there is no 
robust calculation of the residual variogram when predicting with a trend.
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y ( h )

I DP ~ 0
Nugget ~  100%

y(h)
IDP ~  Increasing 
Nugget ~  Decreasing

NON-STATIONARITY

Figure 7-9: An illustration of the effect of increasing the variability in the trend with increasing inverse 
distance powers (IDP) or more continuous variograms has on the spatial variation of the local z) cdfs.

An advantage of the LVT approach is that the variogram of the F l t ( u )  RF can be 
calculated directly and quantitatively. Calculating the yyLT(h) variogram is done with a 
mapping procedure starting from the yy(h) Gaussian variogram model and transforming 
through the locally varying Fy(u; z) cdfs to the yyLT(h) variogram model. There are two 
main steps required to map a yy variogram value to its corresponding yyLT variogram value 
for a given h lag vector.

The conventional Gaussian transformation in relation and associated Gaussian variogram 
model yy(h) is required. Figure 7-10 shows a calculated (open bullets) and modeled (line) 
yy(h) variogram.

V(U) h-SCATTERPLOT

p,(h)=0.77
y ,(u )  h-SCATTERPLOT

p(h)=0.91
v /h )  VA R IO G R A M

h LAG FOR INVESTIGATION
T>

Figure 7-10: An illustration of the procedure implemented to map the single yjfh) variogram value 
indicated to its corresponding yjF(h) variogram value.

The next step entails constructing the h-scatterplot for the particular h lag of interest and 
sampling many y  pairs. These pairs are denoted:

(v(»)!y(« + h))/ l = l,-.,L (7-27)
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where L is on the order of 1,000 to 10,000 pairs. In the space of 7(u), the distribution of 
pairs in (7-27) is bivariate Gaussian and fully parameterized by the correlation py{h), 
which is calculated:

^ ( h )  = l - y y(h) (7-28)

Relation (7-28) is derived from relation (2-19) with Z replaced with 7  and C(0) equal to 
one. An underlying assumption is that a reliable variogram model and correlation in (7-
28) can be derived from the available;; data.

The L  sample pairs in (7-27) are then drawn from a bivariate Gaussian h-scatterplot with 
a Monte Carlo Simulation procedure. Two values, J(u) and y(u + h )  are drawn randomly 
from each marginal distribution; the correlation between y(u) and y(u + h )  is then 
imparted with the following equation:

> ( . /  = py (h) • d (u)' + ̂ (l -  & (h)2) • y  (u + h ) ‘ l = (7-29)

Relation (7-29) is equivalent to sequential Gaussian simulation with a single conditioning 
datum. Figure 7-10 shows an h-scatterplot of the L y(u) and y(u + h )  pairs for the h  lag 
indicated on the y y ( h )  variogram plot.

The other main step is transforming these L pairs from the 7(u) Gaussian SRF space to a 
new set of L pairs within the 7 l t ( u )  Gaussian SRF space where /?rLT(h) can be calculated 
directly. This new set of pairs is denoted:

(jLT(u)^LT(» + h))/ / = 1 , - (7-30)

There is, however, no single stationary F ^z)  cdf from which a unique transformation to 
7 Lt ( u )  can be made since, by definition of the local Fz(u; z) cdfs, the transformation is 
locally varying. Therefore, a manageable number N  of randomly chosen u„ head locations 
are used to identify N  u and u + h  head-tail paired locations where the transformation 
from y(u) to > > l t ( u )  and y(u + h )  to yLT(u + h )  is performed as:

z{uM) = F?(Gr (y («„)))

t(un) = G? (Fz{U'Z) ( z ( u „ ))) n = l,...,N  (7-31)

3;L iK )  = G;1(7y(f(u„)))

for all head locations and similarly for all u„ + h  tail locations (replace u„ with u„ + h ) .  

Relation (7-31) is a three stage stepwise transformation. The three transforms are: (1) 
from y  values within 7(u) space to z values within Z(u) space, (2) from z values within 
Z(u) space to t values within T(u) space, and then (3) from t values within T{u) space to 
y u  values within 7 l t ( u )  space. The number of head-tail location pairs N  is on the order 
of 10 to 100 depending on the size of domain.

The stepwise transformation in relation (7-31) is repeated for all L pairs to obtain a total 
of L  x N  (yur(u), Z l t ( u  +  h ) )  pairs. One (y(u), y(u + h ) )  pair and the corresponding set of
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N  (yLi(u), J lt(u  + h)) pairs are shown in Figure 7-10. The foil bivariate distribution of 
(yur(u), j l t ( «  + h)) pairs is then used to construct an h-scatterplot in bivariate Gaussian 
F l t ( u )  SRF space from which the correlation /?yur(h) is calculated. Since the 7 l t ( u )  SRF 
has unit variance, the yyLT(h) variogram is calculated as:

XyLT(h) = l - ^ LT(h) (7-32)

This mapping procedure is then repeated for all h lags from the yyLT(h) variogram model 
until the foil yyLT(h) variogram model is built. The mapped yyLT(h) variogram is then used 
to interpolate conditioning j / y x  values within 1 l t ( u )  space.

7.5.3 Prediction
The traditional procedures for prediction must be modified in order to integrate the LVT 
approach. A step-by-step methodology is now presented for geostatistical estimation and 
simulation with the trend using the LVT approach.

Estimation: MG
Estimation is implemented within a multi-Gaussian framework. There are nine major 
steps to the methodology:

1. Collect all relevant hard z(us) sample data of the attribute of interest subsequently 
used for conditioning the estimation;

2. At each sample location u, perform global kriging or global inverse distance to 
determine the wLT(u; us) weights, calculate the local F(u; z) cdf using relation (7- 
13), and then transform the z(us) values to their corresponding yLT(us) values using 
the stepwise forward transformation in relation (7-21);

3. Establish the local F(u; z) cdfs at all subsequent simulation locations u by applying 
global kriging or global inverse distance to determine the wLT(u; us) set o f weights 
and calculating the local F(u; z) cdfs using relation (7-13);

4. Construct and display the trend model m(u) at all subsequent estimation locations;
5. Determine the spatial law of 7lt(u) by transforming the original z(us) sample data to 

Gaussian y(us) data using (7-10), calculating the yy(h) variogram using relation (7- 
24), performing Monte Carlo Simulation from the 7(u) space h-scatterplot with (7-
29), transforming the 7(u) space h-scatterplot to the 7 l t ( u )  space h-scatterplot with 
(7-31), and calculating the resulting correlation pyLT(h) and yyLT(h) variogram with 
(7-32) for all h;

6. Establish a regular path through the network of subsequent estimation locations u;
7. At an estimation location u, build the conditional cumulative distribution function 

(ccdf) with SK using the standard normal yuKus) conditioning data values and 
yrur(h) variogram established in steps 2 and 3. The resulting Gaussian ccdf is 
parameterized by the SK estimate y LT*(u) and standard deviation g L t * ( u ) ;

8. Univariate summaries of the local ccdfs are calculated by back transforming a 
suitable number of quantiles:
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z J J) (u) = Fzju;z) (Vr Î Gy (tr*T (u) • (g y [p(i))) + j;*T (u ))J j  j  = 1,..., J (7-33)

where the pi probabilities are evenly spaced between zero and one discretizing a 
standard Gaussian distribution. The resulting conditional distributions of z ltW(u) 
values can be used to calculate univariate summaries such as the mean and variance;

9. Proceed to the next estimation location u and loop over steps 7 and 8 until all 
estimation locations have been visited.

Simulation: SGS
Simulation is implemented within a sequential Gaussian simulation framework. There are 
twelve major steps to the methodology. The first five steps of the methodology are the 
same as the first five steps in the multi-Gaussian methodology above. There are seven 
additional steps:

6. Establish a random path through the network of subsequent simulation locations u;

7. At a simulation location u, build the conditional cumulative distribution function 
(ccdf) with SK using the standard Gaussian .v l t ( u s )  conditioning data values and 
yyLT(h) variogram established in steps 2 and 3. The resulting Gaussian ccdf is 
parameterized by the SK estimate yLT*(u) and standard deviation c t l t * ( u ) ;

8. Draw a simulated value yLTW(u) from the local ccdf;
9. Perform the stepwise backward transformation of yLTW(u) to zltW(u) using (7-22);
10. Add the previously simulated zltW(u) value to the pool of conditioning data;
11. Proceed to the next simulation location u according to the previously established 

random path established in step 6 and loop over steps 7 to 10 until all simulation 
locations have been visited;

12. Repeat steps 6 through 11 with a different random path and random number seed to 
construct r=  1 ,..,R  realizations.

7.6 Application Example
An example is presented to illustrate the LVT approach to simulation with the trend. The 
data used in this example are the same as in the introductory example in Chapter 1. The 
grades are from a vein-type gold deposit. There are 67 samples (g/t) located on a 2D 
easting-elevation section. Figure 7-11 shows the distribution of equally weighted gold 
data spatially in a location map (left) and statistically in a cdf (top right). Since clustered 
samples were taken from higher gold grade areas, polygonal declustering is performed to 
obtain a representative cdf (bottom right). Although this cdf is not used directly in the 
LVT approach, it will be referenced later for validation of the LVT simulation results. 
The representative gold grade distribution is positively skewed with a mean and variance 
of 0.86 and 1.32, respectively.

The location map in Figure 7-11 reveals a strong trend of decreasing gold concentration 
with depth that should be honored in simulation. Chapter 1 implemented the residual
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simulation approach reviewed earlier in this chapter. It was noted then, that since there is 
an inadequate amount of data for reproducing the trend automatically, the trend must be 
incorporated explicitly. The LVT simulation approach is now presented.

Gold G rades (g/t)

NUMBER 67 
MEAN 1.36 

STC D EV  1.31 
CV 0.97 

MAX 4 46 
P75 2.48 
P50 1 3 2  
P25 0.04 
MIN 0

D eclu ste red  G old G rad es  (g/t)

NUMBER 67  
MEAN 0.86 

STD DEV 1.15 
GV 1.33 

MAX 4.46 
P75 1.34 
P50 0 33 
P25 0 
MIN 0 

w eights used
2 0 1 0 0  2 0 1 5 0  2 0 2 0 0  2 0 2 S 0  2 0 3 0 0  2 0 3 5 0  2 0 4 0 0

EASTING

A U[g.t]

Figure 7-11: The distribution of original z  sample data shown spatially in the location map (left) and as a 
cdf (top right) and the declustered distribution shown as a cdf (bottom right). The same grayscale is used 
throughout the remainder of the application example.

At each of the 67 sample data locations, global ordinary kriging is performed to 
determine the FAu; z) cdf. A 3 x 3 discretization is combined with the 40% nugget 
variogram with 500m isotropic range. Figures 7-12 and 7-13 show the distributions of t 
and t l t  values, respectively, with a location map (left) and cdf (right). The standard 
normal cdf of transformed y  values is also calculated and shown with both cdfs as a 
shaded line. Notice in Figure 7-12 that although both the Fj{t) and Fy(y) cdfs are normal 
with a mean of zero, Fj(t) is non-standard normal with a variance of 0.69. Both 
distributions in Figure 7-13 are standard normal.

To show the variation in the local FAu; z) cdfs, a high valued and low valued location are
T Tconsidered for observation. Figure 7-14 shows the FAu; z) and w (u; us) spatial 

distribution of weights for a low (left) and high (right) valued location. The exact sample 
locations are enclosed in a small square. The equally weighted FAz) cdf in Figure 7-11 is 
also shown here with a shaded line. Notice the increase of FAu; z) in low valued areas 
and increase of FAu; z) in high valued areas. The means m(u) of the low and high valued 
u location Fz(u; z) cdfs are 0.74 and 1.91, respectively.

Now the local FAu; z) cdfs are calculated for each u location on a 150 x 300 grid of 
simulation locations. There are then a total of 45,000 Fz(u; z) cdfs that are calculated.
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The locally varying mean m(u) or trend is extracted as the expected value of each of these 
local cdfs. Figure 7-15 shows the spatial distribution and cdf of the m{u) trend values. 
Notice the smooth deterministic nature of the trend in the spatial distribution and low 
variance in the cdf. Also notice that the trend model lowers the equal weighted mean 
from 1.36 to 1.19 effectively accounting for the clustered high grade gold samples.
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Figure 7-12: The location map (left) and cdf (right) of the 67 calculated t values. The distribution of y  
values is also shown with a shaded line for comparison.
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Figure 7-13: The location map (left) and cdf (right) of the 67 calculated > 'l t  values. The distribution of y  
values is essentially identical.

The variogram mapping procedure is now performed to convert the yy(h) variogram to 
the full yyLT(h) variogram needed for the interpolation of y u  data. A variography study 
was conducted on the normal score y  values of the 67 original z gold sample data. The 
highest correlation and principle variogram direction is at 45° in the easting-elevation 
plane; the minor variogram direction is then at a 135° direction. Figure 7-15 shows the 
final calculated yy(h) variogram points and model line for both the 45° (dark) and 135° 
(shaded) direction. The analytical form of the yfifi) variogram model is:

yY (h) = 0.20 + 0.80 • Sph(h) i ,  =145m
45°

a ,  „ = 9 0 t n

(7-34)
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Figure 7-14: The local Fz(u; z) cdf and spatial distribution of wLT(u; us) weights for the low valued u 
location (left) and high valued u location (right) indicated by the squares.
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Figure 7-15: The trend m(u) map (left) and cdf calculated from all 150,000 local F^u; z) cdfs. The 
grayscale is the same as in Figure 7-11.
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The variogram model in relation (7-34) is then mapped to the yyLT( h )  variogram model. 
The y / 'ih )  variogram model is shown in Figure 7-16 with the broken dark and shaded 
lines. Notice the spatial correlation of the y u  values is much greater than that for the y  
values. The analytical form of the y n .T( h )  variogram model is:

ria (h) = 0.10 + 0.69■Sphih)^ 140m +0.21 -h o=00 (7-35)
L i 45° 45°

a  n = 7 5 m  a  n = 2 9 5 m
135° 135°

! .20 NS AND MAPPED LVNS VARIOGRAMS

• •
1.00

0 .8 0 _

0 .6 0

0 .4 0 _

0 .20 _

1000 300 4 0 0200

DISTANCE
Figure 7-16: The y  values normal score yjfh) experimental (points) and model (line) variogram shown with 
the mapped yyLi(h) model (broken line) variogram. The principle 45° direction is shown in dark and the 
minor 135° direction is shaded.

All of the information required to perform simulation with the trend imbedded within 
locally varying F/(u; z) cdfs is ready. The z data have been collected and transformed to 
> > lt data with the 67 local Fz{u ;  z) cdfs at sample u  locations, the 150,000 simulation 
location Fz(u; z) cdfs have been calculated, the trend m(u) model has been extracted and 
visualized, and the T l t ( u )  spatial law has been determined. The remaining seven steps in 
the SGS simulation procedure are now implemented for R = 30 realizations. The first four 
realizations are shown in Figure 7-17 spatially and in the form of a cdf. The declustered 
cdf and original cdf in Figure 7-11 are also shown with the shaded and broken lines, 
respectively, for comparison. The declustered distribution is honored via incorporating 
the trend through the locally varying transformation. The original cdf without 
declustering is not reproduced.

The LVT approach to simulation with the trend should honor the large-scale features of 
the trend. This check is performed by comparing the etype from the 30 realizations to the 
trend model in Figure 7-15. As Figure 7-18 illustrates, the large-scale features of the 
trend model are honored. The most important advantage of the LVT approach is the 
ability to reproduce key features in the trend with an underlying spatial law that can be 
calculated directly.
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Figure 7-17: The first four LVT SGS simulated realization maps (left) and cdfs (right). The declustered 
distribution of z values is also shown with a shaded line for comparison. The grayscale is as in Figure 7-11.
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Figure 7-18: The comparison between the input m(u) trend model imbedded within the local F^u; z) cdfs 
and the etype from 30 SGS realizations using the LVT approach. The grayscale is as in Figure 7-11.

7.7 Remarks
Prediction with the trend can be an important aspect of improving predictions. Regardless 
of the chosen domain size, the SRF formalism may be incapable of accounting for large- 
scale continuity characteristic of the trend model when there is an inadequate amount of 
conditioning data.

There is a large variety of estimation and simulation techniques available to incorporate 
trends. Underlying these techniques, however, is an ambiguous definition of the 
variogram and spatial parameters needed. This problem can be addressed with techniques 
that combine separate RFs or by modeling the trend with no more variability than is 
offered deterministically. Still, there is no objective quantitative procedure for inferring 
the spatial law underlying prediction with the trend.

The motivation for the LVT approach to predicting with the trend was an alternative 
prediction technique for which the underlying variogram can be calculated directly. The 
fundamental basis of the LVT technique is the use of a locally varying transformation to 
and from standard normal space where conventional prediction can be performed. The 
local non-stationary cdfs used for the transformations effectively account for the trend 
and allow the correct spatial law to be calculated directly.
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C h a p t e r  8  

C o n c l u d i n g  R e m a r k s

Geostatistical prediction is applied with a stationary random function (SRF). The mean 
and covariance parameters of this SRF are assumed independent of location. Stationarity 
is defined in this thesis as a decision involving five key phases of intervention from the 
practitioner: (1) choosing domain types, (2) boundary modeling, (3) determining the 
nature of transitions across boundaries, (4) trend modeling, and (5) predicting with a 
trend. This five step framework provides a support system for making a reasonable 
decision of stationarity.

Four new modeling techniques were proposed and prototyped within each of the last four 
chapters: (1) boundary modeling with volume functions, (2) near boundary model mixing 
with a linear mixing model, (3) probability combination schemes for building 3D trend 
models from lower dimensional trends, and (4) sequential Gaussian simulation with a 
locally varying transformation to account for the trend. Procedures and implementations 
are presented for each. These methodologies are not fully developed and require further 
testing and experimentation before mainstream use. Additional research and development 
is needed.

8.1 A Reasonable Decision of Stationarity
The key contribution of this research is offering guidelines and considerations to make a 
reasonable decision of stationarity. The reasonableness of a decision of stationarity can 
be evaluated on the basis of clearly defined criteria organized within each of the five 
phases.

Choosing Domain Types
The reasonability of choosing the number and type of domains for hosting separate SRFs 
is based on a subjective balance between the level of geologically homogeneity consistent 
with the mathematical first order expected value and second order covariance assumption 
of stationarity with the number of available data for inferring the SRF parameters.

Boundary Modeling
Reasonability criteria for boundary modeling techniques are summarized in Table 8-1. 
The acronyms are: (1) DD = deterministic digitization, (2) VF = volume functions, (3) 
OB = object based, (4) SB = surface based, and (5) SPB = stochastic pixel-based. The 
boundary modeling procedure using volume functions proposed at the end of Chapter 4 is 
not included in this table, but satisfies all five criteria.
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Nature o f Boundaries
The reasonability of a method used for quantifying and modeling the transitional nature 
of petrophysical properties near previously modeled geological boundaries is based on a 
subjective balance between simplicity and geological consistency of the resulting models 
with reality. The linear mixing model (LMM) proposed at the end of Chapter 5 satisfies 
this criteria for soft boundaries.

Trend Modeling
Reasonability for trend modeling techniques is evaluated with four criteria: (1) simplicity,
(2) subjectivity, (3) low variability, and (4) geological reality. Five trend modeling 
methods were presented in Chapter 6: (1) hand mapping, (2) moving window averages,
(3) global inverse distance, (4) global block ordinary kriging, and (5) kriging the trend. 
These five algorithms are all currently available. If they are properly implemented as 
explained in Chapter 6, all four reasonability criteria are satisfied. The probability 
combination procedures proposed at the end of Chapter 6 are reasonable when the results 
are geologically realistic and consistent with the lower dimensional models.

Prediction with the Trend
Reasonability criteria for techniques to estimate and simulate with the trend are reviewed 
in Tables 8-2 and 8-3, respectively. The acronyms are: KPM = kriging with a prior mean, 
KT = kriging with the trend, KED = kriging with an external drift, IRF-k = intrinsic 
random function of order k, RS = residual simulation, and SCT = stepwise conditional 
transformation. The locally varying transformation proposed at the end of Chapter 7 is 
not included in this table, but does satisfy all four criteria for estimation and simulation.

Iloundarx Modeling 
\pp roarh

n o
vi_
OB
SB

SPB E
Simplistic? Fast? Objective? Data

Integration?
Access to 

Uncertainty?
Geologicall)

Realistic?
yes no no no no yes
yes yes yes yes no yes
yes yes no no yes yes
yes yes yes yes yes yes
yes yes yes yes yes no

Table 8-1: Report card for evaluating boundary modeling approaches.

Estimation with the Trend Model: Evaluation Criteria

1 stiniation with the 
1 rend Model Simplistic? Spatial Law 

Inference?
Accurate/Precise

Uncertainty?

Reproduction of 
Bivariate /?(u) 
Distributions

Geologically
Realistic?

\ C S no yes no yes
H h h B H H B i■ yes no yes no yes

KKD yes no yes no yes
Table 8-2: Report card for evaluating different approaches to account for the trend in estimation.

Simulation with the Trend Model: Evaluation Criteria

Simulation ivilh the 
1 rend Model Simplistic? Spatial Law 

Inference?
Accurate/Precise

Uncertainty?

Reproduction of 
Bivariate R( u) 
Distributions

Geologically
Realistic?

tRF-k no yes yes no yes
RS yes no yes no yes

s c r yes no yes yes yes
Table 8-3: Report card for evaluating different approaches to account for the trend in simulation.
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Making a decision of stationarity is inescapably subjective -  it is impossible to defend a 
right or wrong decision. The evaluation criteria defined above are subjective. Without a 
full model of the physics underlying the regionalized variable, it is impossible to have 
objective criteria for the evaluation of a decision of stationarity. Nevertheless, the 
decision of stationarity can be deemed unreasonable based on judgment and experience.

Choosing an appropriate modeling approach within each of the five modeling phases is 
important to establish a reasonable overall decision of stationarity. The choices for one 
setting, however, may not be the best for a different setting.

Making a reasonable decision of stationarity is essential for building numerical models 
with realistic geological heterogeneity. The resulting models are better in the sense that 
they more closely reproduce the overall structural architecture, petrophysical property 
transitions across structural surfaces, and large-scale variability within structural surfaces. 
These improved models then lead to improved geological and production uncertainty 
characterization.

8.2 Practical Application
Practical application guidelines are crucial for proposed techniques or implementation 
parameters to be adopted for widespread use in the natural resources industry. For this 
reason, some practical application guidelines are now provided.

Many techniques were reviewed or developed within the five step framework of this 
thesis. There are many application guidelines for proper implementation. The following 
discussion is limited to the original methods proposed in this dissertation.

Boundary Modeling with Volume Functions
The volume function approach to quantifying structural uncertainty with probabilistic 
boundaries is normally chosen in the early exploration phase of a project if  there is a 
relatively large number of conditioning data available. Two alternative volume function 
methods were proposed to generate probabilistic boundaries: the bootstrap combined with 
kriging, or data conditioned estimation combined with inverse distance.

The following issues may arise when adopting the bootstrap technique:

1. Spatial Bootstrap: The conventional random sample bootstrap cannot be used due to 
an underestimation of the VF mean uncertainty -  correlated samples must be taken 
in a spatial bootstrap. Computer resource demand becomes intractable when more 
than approximately 5,000 sample data are used. Alternatives include using a subset 
of data representative of the full dataset or adjusting conventional bootstraps;

2. Conditioning Data: There must be a sufficient amount of data to fairly explore the 
space of structural uncertainty. There is no possibility to model boundaries where 
there are no intersection data. There must also not be too many data so as to make 
exploration obsolete;
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3. Simple Kriging: Simple kriging must be used for interpolation due to the weighting 
of the mean away from data. Inverse distance should not be used with the bootstrap 
approach. A global search and continuous variogram should be used in order to 
ensure the VF results are smooth;

4. Grid Resolution: The grid resolution at the interpolation stage can be relatively 
coarse and then refined later around the vicinity of the boundary saving significant 
processing time. Grid refinement may also be needed when data is honored with a 
discontinuity at the sample locations;

5. Histogram Transformation: Since a large number of data should be available for the 
interpolation, the difference in location of the boundary and associated zero-surface 
VF contour is small and often undetectable between VFs interpolated with different 
probabilistic mean values in the simple kriging routine; a quantile transformation is 
often needed.

The following issues may arise when adopting the data conditioning technique:

1. Interpolation: Kriging should not be used for interpolation due to the combination 
of the data conditioning factor with extreme and negative weights that are subject to 
the string effect and/or screening. A relatively large search and low inverse distance 
power should be used to ensure the VF results are smooth.

2. Grid Resolution: The grid resolution at the interpolation stage can be relatively 
coarse and then refined later around the vicinity of the boundary saving significant 
processing time. Grid refinement may also be needed when data is honored with a 
discontinuity at the sample locations;

3. Calibration: The/min value used for calibrating a l i n e a r d a t a  conditioning factor 
depends on the distribution of VF distance codes. When the separation between the 
magnitude of negative and positive VF codes is large, smaller / m i n  values down to 
zero can be used to identify probabilistic boundaries. As this magnitude separation 
decreases, probabilistic boundaries can be defined with/yiiN values nearer to one;

4. Validation: The p90/p50/pl0 VFs interpolated with the / m in  parameterization should 
be consistent with the spatial bootstrap. That is, the mean value from an interpolated 
probabilistic VF should be close to that probability on the distribution of uncertainty 
in the mean VF value.

Near Boundary Model Mixing
The linear mixing model (LMM) proposed at the end of Chapter 5 is chosen for soft 
boundaries without first order stationarity of the expected value, but with second order 
stationarity of the covariance.

The following issues may arise when adopting the linear mixing model technique:

1. Hard Boundaries: The choice to classify boundaries as hard and adopt independent 
SRFs is rare. There is almost always some degree of gradual transitional nature. The
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choice of hard boundaries should be well known with sample data and a high degree 
of geological understanding;

2. Covariance Function Contact Analysis'. The transition zone of many soft boundaries 
is considerably lower than the variogram range for RFs surrounding the boundary. 
The comparison between the inside and outside transition zone spatial correlation 
should be made within the lag vectors available within the transition zone;

Trend Modeling
All of the trend modeling techniques presented in Chapter 6 possess a common essential 
implementation principle, which is modeling no more spatial variability in the trend than 
what is previously known deterministically. The guidelines for applying any one of the 
five proposed techniques follow this principle. For example, kriging the trend with is 
done with a global search and continuous variogram models in order to ensure the trend 
model has low variability.

The full independence and permanence of ratios probability combinations proposed in 
Chapter 6 are used to build 3D trends from lower dimensional 2D horizontal and ID 
vertical trends.

The following issues may arise when adopting a probability combination scheme:

1. Full Independence'. The full independence probability combination scheme is a poor 
choice when there are extreme values in the trend. Extreme values in either the 
horizontal or vertical trend are over-exaggerated in the final 3D trend using this 
method;

2. Continuous Variables'. Although some petrophysical properties such as porosity and 
water saturation exist in the interval [0,1], these should not be used within either the 
full independence or permanence of ratios probability combination scheme before 
transforming these values to probabilities through the inverse of their global cdfs;

Locally Varying Transformation
Geostatistical prediction with a locally varying transformation (LVT) accounts for a trend 
with a set of non-stationary univariate distributions and their associated locally varying 
transformations. The following issues may arise when implementing the locally varying 
transformation technique in practice:

1. Declustering'. The LVT approach effectively declusters non-representative samples. 
Traditional polygonal or cell declustering techniques, therefore, declustering 
techniques do not need to be applied before or after application. The LVT 
realizations should compare well with declustered distributions;

2. Simple Kriging'. Ideally, the local non-stationary ccdfs are conditioned by the entire 
set of sample data weights from a global kriging or inverse distance scheme similar 
to that used for constructing a trend model. This is because the LVT defined by the 
local ccdfs represents the trend and should share the deterministic smooth variability 
characteristics of the trend;
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3. Spatial Law: The variogram mapping procedure followed to quantify the spatial law 
should be implemented with at least 1,000 sample pairs drawn from the bivariate 
Gaussian h-scatterplot and then for each of these sample pairs, at least 10 head-tail 
location pairs to transform through the LVT to the final locally varying bivariate h- 
scatterplot space;

8.3 Future Research
New techniques proposed in each of the last four modeling phases of the decision of 
stationarity are prototyped ideas. Numerous avenues of research and development can be 
followed from these prototyped ideas. Future research and development is also organized 
by phase of the decision of stationarity.

The Decision o f  Stationarity
Although different decisions could not be proven right or wrong, a case study that is 
amenable to different decisions of stationarity (different combinations of techniques from 
the five modeling phases) could be undertaken to further understand the significance 
different decisions of stationarity may have on project economics.

Boundary Modeling with Volume Functions
The following possible research venues for the volume function technique exist:

1. Practical Implementation: Implementation of the bootstrap and data conditioning 
technique to additional natural resource projects;

2. Three or More Rocktypes/Facies: The volume function implementations presented 
depend on a binary representation of the continuous data. However, it may be 
difficult or inaccurate to separate geological rocktype or continuous petrophysical 
property data into just two categories. The definition of a VF and probabilistic 
boundary modeling framework for three or more categories is an interesting avenue 
of research;

3. Trend Modeling: Incorporating trends into the interpolation of the VF may produce 
more geologically realistic boundaries. A KT formalism or prior trend model or 
prior secondary variable could be used to reproduce key structural controls;

4. Expanding/Contracting Current Boundary Models: Several natural resource projects 
already have a working geological boundary model usually built by deterministic 
digitization. Techniques to probabilistically inflate or contract a current boundary 
model could be developed;

5. Single VF: A single VF could also be used to extract probabilistic boundaries from. 
VF values above and less than zero would be used to extract probabilistic 
boundaries as iso-contours from a single interpolated VF. Conditioning exactly to 
data would be an important issue for this idea;

6. VF Conditioning: After calculating the VF distance codes and before interpolating 
them, the VF distance codes could be adjusted (increased or decreased) in absolute 
value to generate probabilistic boundaries.
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Near Boundary Model Mixing with a Linear Mixing Model
Implementation of the linear mixing model and linear model of coregionalization to
additional natural resource projects is needed for further comparison.

Trend Modeling
The following possible research venues for trend modeling exist:

1. Practical Implementation’. Implementation of the trend modeling techniques and 
probability combination schemes to additional natural resource projects;

2. Continuous Variables: More testing of the probability combination schemes with 
continuous variables is needed to ensure that the combined probabilities derived 
from the inverse cdf do not result in artificial geological continuity;

3. Random Function Decomposition: Although there are sound geological reasons to 
consider dissociating a smooth m(u) and more random R{u) component from Z(u), 
this particular additive decomposition technique is arbitrary and not necessarily 
supported by any geological phenomenon. Better approaches may exist, for 
example, m(u) and R(u) could be multiplicative. Alternative techniques such as 
these can and be should be investigated.

4. Second Order Trends: Second order non-stationarity in the variogram or covariance 
occur as frequently as first order non-stationarity in the mean, but were not directly 
addressed in this thesis. Prediction with locally varying variogram or covariance 
parameters is not new [6], but could be further explored to account for second order 
trends;

Locally Varying Transformation
The following possible research venues for prediction with the trend using locally
varying transformation tables exist:

1. Practical Implementation: Implementation of the LVT technique coupled with 
alternative residual simulation and stepwise conditional transformation simulation to 
additional natural resource projects for further testing and comparison;

2. Categorical Variables: Accounting for the trend while estimating and predicting 
categorical variables is important. The locally varying cdfs and transformations can 
be built for categorical variables as well;

3. Spatial Law: The calculation procedure to obtain the underlying spatial law should 
be investigated further and validated analytically if  possible;

4. Sensitivities: There are several parameters in the LVT procedure that are sensitive 
and affect the local cdfs and transformation tables. The most important ones that 
should be investigated include the inverse distance power and nugget effect used for 
assigning weights to the sample data;

5. Computer Resources: The global search used to calculate the weights can be time 
consuming in practice. CPU comparison between this and other techniques should 
be performed;
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6. Cross Validation: Cross validation studies could be conducted for this method and 
alternative methods to evaluate the best approach for a particular setting.

8.4 Final Remark
Numerical modeling of regionalized variables in natural resource assessment requires the 
selection of a modeling approach and a decision of how to combine data for statistical 
analysis. The modeling approach and associated decisions can neither be refuted nor 
unequivocally accepted on the basis of the available data; we are necessarily predicting at 
locations where we have no data. People building numerical models must be sensitive to 
the consequences of their choices.
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