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Abstract

Composite is a multiphase material that is artificially made, as opposed to one

that occurs or forms naturally. Many composite materials are composed of just

two phases; one is termed the matrix, which is continuous and surrounds the

other phase, often called the dispersed phase. Composites have endless appli-

cations in industries such as biomedical, automotive, and aerospace products.

The most distinctive characteristic that made them popular among corpora-

tions and factories is that they can be designed to achieve the desired proper-

ties. It is worth mentioning that the main objective of obtaining the optimal

design by various types of analysis and simulations is avoiding failure and dam-

ages subjected to the load and prevent indemnification and outrageous costs

in industries.

Continuum mechanics is a universal tool that gained so much attention

during recent years due to its ability to formulate mechanical responses of

composites. It would eventually lead to a comprehensive analysis of matrix

material subject to mechanical loads. In this thesis, a continuum-based model

has been developed to predict the behavior of composite material subject to

flexural and bias extension loads. Equilibrium equation has been augmented

with the concept of incompressibility to start elastic solids analysis. Non-linear

formulations, accounting by the second, and third-order gradient methods in-

tegrated by principles of virtual work and refined energy density function have

been derived analytically. Numerical approaches such as linearization and fi-

nite element analysis consisting of higher-order Gateaux derivatives along the
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fiber direction have been taken into account to solve the ordinary and partial

differential equations.

The FEniCS project open-source finite element package is used to solve the

corresponding systems of partial differential equations. Remarkably, The nu-

merical results, such as deformation profiles and shear strain contours, demon-

strate a reasonable agreement with the experimental results.
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Chapter 1

Introduction

1.1 Background on Composite Materials

In modern society, composites are widely used in daily life. From shower stalls

to spacecrafts, composite materials are all around us [1], [2]. Composite struc-

tures consist of at least two components with entirely different properties [3].

The primary constituent materials are called matrix and reinforcement. The

reinforcement component is generally stiffer and more durable to provide the

necessary strength while the composite structure is under the load. The typ-

ical reinforcement material is in the form of fibers, which is normally made

of glass, carbon, and boron. As a matter of fact, it adds tensile strength to

the matrix material, which is designed to bear mostly compression and shear

loads [4]. Additionally, the matrix material prevents the fibers from being de-

graded as a result of mechanical and chemical interactions. The main factors

that determine the characteristics of the reinforcement component are geom-

etry, volume, orientation, and packing arrangement [5]. Unidirectional and

bidirectional structures are examples of different packing arrangements that

are presented in Figure 1.1 [6].

Researchers have been trying to describe the behavior of composites un-

der various types of loads within a wide range of boundary conditions [8],

[9]. However, analytical solutions describing the behavior of composites sub-

jected to extension and bending are very few. A mathematical framework

integrated with continuum mechanics principles such as employing the virtual

work statement and strain energy function to derive the deformation formula-
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Figure 1.1: the difference between carbon fiber unidirectional cloth and bidi-
rectional cloth [7]

.

tion is a reasonable approach that helps us anticipate what happens in different

conditions and would help us design the structure in a way that satisfies our

mechanical requirements [10]. Notably, primary continuum mechanics meth-

ods consider composites as anisotropic materials whose response function only

depends on the first gradient of deformation [11], [12]. However, the classical

theory consisting of only the first gradients of deformation is not always the

best method to predict the mechanical response of the solids [13]–[15]. In-

deed, Conventional models augmented with bulk incompressibility condition

are often so constrained that demonstrate the deformation profile as a func-

tion determined only by the kinematics of the structure [16], [17]. Despite the

limitations of classic models, the first gradient continuum models have been

widely used due to the straightforwardness in the derivation of corresponding

mathematical frameworks over the discretized domain [18]–[20].

Classification of composite materials have been tendered in literature at

two different stages:

1. The first condition that is investigated is the matrix constituent material.

Some of the popular types of matrix composites are encompass organic

matrix composites (OMCs), and ceramic matrix composites (CMCs). It

is worth noting that, composite materials that have carbon as the pri-
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mary component in their chemical compound formula, such as polymer

matrix composites (PMCs) are categorized as OMCs [21].

2. The second criterion is based on the reinforcement material. Fiber-

reinforced composites (FRCs), and laminar composites are the main

subcategories of this type of classification. The main discussion in this

thesis is around the first subcategory, which continuous or discontinuous

strings of fiber surround the matrix material. In such cases, the radius

of fiber is far smaller than the fiber length, and they usually increase the

matrix strength while experiencing the bending or twist moment [22],

[23].

Fiber-reinforced composites are usually made by cross-linking cellulosic

fiber molecules in the material matrix. This method of re-engineering the

matrix material by adding a complementary component is very effective in

increasing the durability and strength of the material [24]. It is notable that

previously mentioned composites can be recycled up to 20 times [24], [25]. This

capability decreases the price of production in industries and helps us to main-

tain the ecological balance. Continuity or discontinuity in the reinforcement

phase of the composites is a critical property that determines the mechanical

characteristics of the material. For instance, Discontinuous fiber composites

are designed to be random in alignment, which significantly decreases their

strength [26].

1.2 Elastic and Hyperelastic Materials

Different types of materials and their properties have been studied using con-

tinuum mechanics principals. For many cases, a linear relationship between

stress and strain is not enough to accurately predict the mechanical behavior,

and that is the point where hyperelasticity comes into play [27]. Neo-Hookean

and Mooney-Rivlin solids are elastic and hyperelastic materials that have been

used widely in continuum mechanics analysis [28], [29].

Neo-Hookean solid inherited its name from Hook’s law and is designed
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to model the non-linear behavior of stress-strain responses. Ronald Rivlin

proposed this model in the 19th century to predict the deformation of plastics

and rubber-like substances [30], [31]. It should be stressed that the Neo-

Hookean model does not consider the waste of energy during deformation

and assumes the perfect elasticity at all stages. It is usually used for small

deformations(strains less than 20%) and does not show enough accuracy for

large deformations [28], [32]. For compressible solids, the strain energy density

function (1.3) is obtained with D1 as the material constant. By substituting

J = 1 into the energy equation, (1.1) is derived that is used for incompressible

Neo-Hookean solids [33].

W = C1(I1 − 3) (1.1)

I1 = ( λ1)
2 + ( λ2)

2 + ( λ3)
2 (1.2)

W = C1(I1 − 3− 2 ln J) +D1(J − 1)2; J = det(F) = λ1λ2 λ3 (1.3)

In Mooney-Rivlin types of solids, the strain energy density function is pre-

sented as a linear combination of two invariants of Cauchy-Green deformation

tensor [34]–[36]. It is notable that C1 and C2 are material constants, and F is

the deformation gradient tensor. The detailed formulation of Mooney-Rivlin

continuum mechanics model is mentioned below:

W = C1(I1 − 3) + C2(I2 − 3) (1.4)

I1 = J (−2/3)((λ1)
2 + ( λ2)

2 + ( λ3)
2) (1.5)

I2 = J (−4/3)((λ1λ2)
2 + (λ1λ3)

2 + (λ2λ3)
2); J = det(F) = λ1λ2 λ3 (1.6)

1.3 Stress Measures

There are several stress measures in continuum mechanics. Some of the most

prominent ones are Cauchy stress tensor, the first, and the second Piola-

Kirchhoff stress. They can be useful in different computational contexts. Many

parameters are used in defining stress measures that can be found in Figure

1.2.
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The Cauchy stress is a symmetric tensor and is defined on an element

after deformation. In this formulation t is the traction vector, n is the out-

ward normal to a surface, P is the first Piola-Kirchhoff stress, S is the second

Piola-Kirchhoff stress, T is the Biot stress, and df corresponds to the force

vector [37].

df = tdT = σT .ndT (1.7)

The first Piola-Kirchhof stress is an assymetric tensor. It depends on the

reference configuration in addition to the deformed shape. It can be defined

as it is shown below:

df = tdT = NT .n0dT0 = P.n0dT0 (1.8)

The second Piola-Kirchhof stress is defind in a way that is symmetric unlike

the first Piola-Kirchhof stress [28].

df0 = ST .n0dT0 = F−1.t0dT0 (1.9)

Figure 1.2: Quantities used in the definition of stress measures [38].

It is always essential to use appropriate stress and strain measures when a

continuum mechanic problem is subjected to investigation. Consequently, we

need to identify the natural reference before starting the analysis and make

use of measures that cause conjugate pairing. Using this procedure, the ex-

pression for elastic potential is expressed. Mostly we are interested in the rate
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of changing quantities for the material rather than their absolute value. Sub-

sequently, the strain-stress measures, which possess an equal rate compared to

the rate of deformation, are more appropriate for conventional use [39], [40].

1.4 Higher-Order Gradient Analysis

Continuum theory augmented with microstructural effects of fibers has begun

receiving attention in the view of having more reliable estimations compared to

the classical theories [8], [41], [42]. Some research projects have been designed

to demonstrate the impact of higher-order terms on fracture and fatigue me-

chanics. As an illustration, some works have been done to provide an analytical

model to delineate the failure behavior of very large atomic models of IGF in

silicon nitride by adopting the principals of the granular microstructural me-

chanics and higher-order continuum [43]. Moreover, [44] presented a thorough

model using higher-gradient terms to describe the damage evolution in dual-

phase steels. They incorporated the rate of change in shear strain to show

that strength and ductility of the material is not only the function of plastic

strain localization ,and material damage evolution plays a deterministic role

as well. Lastly, it is worth mentioning that the higher-order gradient analysis

is applicable to the continuum analysis of nano-beams [45], [46]. They utilized

Euler–Bernoulli theory as the leading equation and correspondingly solved the

obtained partial differential equations with the help of numerical approaches

such as finite element analysis. Static, buckling, and dynamic responses of

nano-beams have been presented in the previously mentioned paper.

Continuum mechanics analysis of fiber-reinforced materials considering the

second gradient of deformation to derive the corresponding partial differential

equations is the subject of discussion in [9], [47], [48]. The authors of aforemen-

tioned papers successfully derived a comprehensive formulation to describe the

mechanical behavior of composites and obtained smooth shear strain contours.

Recent studies on lipid membranes’ morphology with intra-membrane viscous

flows indicate the effects of non-linearity followed by the second-order gradi-

ent terms the obtain a complete solution [49]–[51]. These ideas seem necessary
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and practical to achieve a decent accuracy in biomechanics and mechanics of

composites. In detail, the equilibrium state of the purely elastic surface is the

base-line to derive the corresponding equations. Additionally, the straining ef-

fects of the fluid were accommodated by taking the rate of different properties

with respect to time. Finally, the augmentation of linearization and partial

differential equations solving algorithms would result in membrane shape evo-

lutions in the presence of intra-membrane and similar deflection contours that

can be seen in Figure 1.3.

Figure 1.3: Defections of lipid membrane with respect to intra-membrane vis-
cous flows considering higher-order gradients. [51].

Investigating fiber composites incorporating the effects of bending and ten-

sile resistance of continua that is resulted by microstructure entanglement

would cause the higher-order gradients of deformation to appear in the formu-

lations. The previously mentioned analysis can be framed in a mathematical

space by integrating non-linear terms into the partial differential equations.

It should be emphasized that the computation of gradients of deformation is

based on the assumption of having continuous curves along the structure that

are depicted in the Cartesian coordinate system [52]. Figure 1.4 and Figure 1.5

are good illustrations of how the first-order and higher-order gradient meth-
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ods differ. The relative rotation is considered to be an additional property of

the material compared to traditional approaches that significantly affect the

shear-strain relation.

Figure 1.4: Rate of changes in lengths/angles via the first gradient [53].

Figure 1.5: Rate of changes in length via the second gradient [53].

1.4.1 Cosserat Theory

The Cosserat theory is a famous micropolar elasticity analysis that, unlike the

classical interpretation, takes the local rotation of points into account. The

idea of couple stress can be considered as the foundation of this higher-order

theory. Cosserat brothers have initiated the early stage of using micro-inertia

in modern continuum mechanics [54], [55].

8



In contrast to two elastic coefficients for materials in the classical contin-

uum mechanics, micropolar elasticity assumes four more constants to investi-

gate the effects of rotation and nonlocality. By adopting micropolar continuum

mechanics, strain gradient and other internal properties are affected in com-

posite materials. For instance, the stress concentration factor around the hole

or crack in the material is less than classical values. Additionally, in wave

propagation analysis, the pace of dilational waves in the Cosserat medium is

independent of frequency [56]–[58].

The Cosserat continuum has the equilibrium equations that are mentioned

below:

σji,j = 0 (1.10)

µji,j + εijkσjk = 0; i, j = 1, 2, 3 (1.11)

σji = (µ+ α)γji + (µ− α)γij + λγkk (1.12)

µji = (γ + ε)κji + (γ − ε)κij + βκkk (1.13)

σij,µij,and εijk are stress, moment stress ,and the altering tensor [59].

1.4.2 Higher-Order Gradient Theory Applications

Continuum mechanics theories play vital roles in the analysis of solid materi-

als. Detailed and accurate investigation of solid materials is needed in every

industry to design most expertly and avoid outrageous costs of maintenance

and replacements. Currently, the number of analytical solutions for predicting

the response of composite subjected to different types of boundary conditions

such as bending and twist is limited. Consequently, numerical approaches

augmented with higher-order gradients are commonly stable and precise al-

ternatives that would help industries achieve their desired output. Higher-

order gradient analysis is a practical approach in fiber-reinforced composites,

biomedical engineering, and crack and fracture analysis [60], [61].

1. Fiber-reinforced composites:

Authors in [9], [47], [48] investigated the effects of second-order terms

in shear strain and deformation contour. The corresponding results are
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used to design composite materials based on the necessary mechanical

expectations. Their numerical methods are fast and stable, which would

generate the desired results in the global composite materials market.

The composites market, including materials and products, is worth ap-

proximately 30 billion dollars in the US as the second-largest market

after China [62], [63]. It is worth mentioning that the growing popular-

ity and considerable demands of fiber-reinforced composites have been

resulted from low maintenance costs and high durability [64].

2. Tissues in the Human Body:

The human body can be categorized at different levels at scales such as

cellular, tissue, and organ levels [65]. The nature of living tissues in the

body is so complicated that finding a general formulation to model the

mechanical behavior of these structures seems to be very difficult. Con-

sidering tissue structures as composites with continuous fibers is a novel

idea that is implemented in [66], [67]. In point of fact, the previously

mentioned authors superposed the effects of matrix material and statis-

tically oriented fibers to generate a model to describe what happens to

biological tissues when they are subjected to mechanical loads. A good

illustration of higher-order Cauchy stresses in a cylindrical cartilage is

presented in Figure 1.6.

3. Crack and fracture:

Mechanics of fracture and fatigue is a branch that focuses on the propa-

gation of the crack in the solid material [68]. It evaluates the force on the

critical points of the structure by utilizing continuum mechanics princi-

pals. Classical models fail in some particular cases when mathematical

models become ill-posed in accumulated damages [69]. For instance, it

has been shown that cracks are one of the main reasons for failure in

vehicles [70]. Analyzing the corresponding failures show that cracks un-

dergo an oscillatory instability controlled by elastic nonlinearity [69], [71].

Moreover, regarding the damage analysis, we can mention the works of
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Figure 1.6: Distribution of the (a) first, (b) second and (c) third principal
Cauchy stresses in a cylindrical cartilage specimen under unconfined compres-
sion [66].

authors in [72] introduced a gradient-enhanced damage model to improve

the predictions of the traditional model.

1.5 Experimental Setup Details

In this thesis, two types of experimental tests have been designed to validate

the numerical results. To check the quality and the accuracy of analytical

and numerical results for the tensile stress, the bias-extension test was done.

In fact, the composite sample has been placed between two jaws. One of

them was completely fixed, and the other one was moving with the pace of

10mm/min. The X and Y coordinates of the moving jaw have been recorded

in a data sheet. Moreover, a three-point bending test was arranged to com-

pare the experimental outcome with the results obtained from the third-order

gradient model for the flexural load. The sample has been located between

two fixed stands, and the compressive load has been placed in the middle of

the sample. The mechanical load gradually produced deformation, and the

X, Y coordinates of the moving end were filed. Some details regarding the

properties of the corresponding composite materials are mentioned in Table
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Table 1.1: Material Properties.

Material C µ

Crystalline Nanocellulose (CNC) 150GPa 1GPa
Nylon-6 Fiber Neoprene Rubber Composite 2000MPa 1MPa

Table 1.2: Constituent Materials.

Material Fiber Percentage Matrix percentage

nylon/spandex (NSP-8020) 80 20
nylon/spandex (NSP-8515) 85 15

1.1, and Table 1.2.

It is worth mentioning that NSP-8020 and NSP-8515 composites are fab-

ricated in a three-layer procedure. In the first step, Ecoex 0050 elastomer is

produced by mixing two components (a base and curing agent) with an equal

ratio. Then entrapped bubbles are removed using a vacuum chamber. In the

second step, the second layer of fibers is placed on the first layer. Next, gaps

between pores are filled using a small amount of elastomer, and the surface is

flattened. Lastly, a proper amount of elastomer is poured over the second layer

and placed into the film applicator rod to obtain the hyper-elastic composite.

1.6 Gist and Structure of Thesis

This thesis consists of 5 main chapters, including the introduction and the

overall conclusion. The primary objective is to investigate the behavior of

composite materials subject to mechanical loads such as tensile and flexural

forces.

In addition to the introduction, the next two chapters are third-order analy-

sis of reinforced composite material with unidirectional fibers under the flexural

and tensile loads. They start with basic formulations of continuum mechan-

ics followed by the bending and tensile energy of fibers introduced by Spencer

and Soldatos. As the next step, the Euler equilibrium equation has been taken
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into account to complete the analysis and derive the corresponding Piola stress

equation. Linearization is also a necessary step to reduce the complexity of

the equations. Neo-Hookean type of materials with small deformations are

investigated in the following chapters. To find the solutions to the linearized

formulations, I have implemented various approaches such as change of vari-

ables, separation of variables, and method of characteristics. The analytical

solution is derived as a result of the analysis and can be applied to real-world

problems by imposing the appropriate boundary conditions. The final results

are assessed with the help of a dataset that was collected from the experi-

mental set. The comparison shows us a perfect match between predictions

from the model and the experimental data. The results that have been inves-

tigated in the previously mentioned chapters are categorized into two different

classes. The first class mostly depends on the deformation profile to explain

the properties of composite material. Changing the material parameters such

as C and E and investigating the effect of these parameters on the deformation

contour is the first step in the following analysis. The second step is experi-

menting with the material’s intrinsic properties, such as shear angle and shear

strain contours. Augmenting these two aspects give us a comprehensive view

regarding the mechanical response expected from the material under the load.

In chapter four, the second-order terms and exponential strain energy func-

tion are considered to be investigated, and the procedure is the same to obtain

the partial differential equations through using Euler equilibrium formulations

and continuum mechanics fundamental concepts. However, the idea of solving

the corresponding system of PDE is using the finite element method instead

of analytical methods. I used the Galerkin method and integration by parts

to derive the weak form that can be analyzed by FEM packages. The Newton

non-linear solver solves the system of non-linear partial differential equations

and provides us the deformation and shear strain contour. It should be stressed

that the most crucial factor that has been analyzed in the fourth chapter is the

strain-energy function. In fact, hyperelastic materials can be delineated with

the exponential form of the strain energy equation. By having this assump-

tion, the corresponding equation for the finite element analysis was obtained.
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The outcome of this numerical approach has been compared with the exper-

imental data collected from NSP-8020 and NSP-8515 tensile tests. Finally,

a reasonable agreement has been observed in such hyperelastic cases and the

numerical model using the exponential form of the strain energy function.

The conclusion chapter is a wrap-up of all three previous approaches to

describe the behavior of fiber-reinforced composite materials. It states the

results and the possible future works that can be done in this regard to make

the analysis more comprehensive and practical.

Throughout the thesis, we use standard notation such as AT , A−1, A∗ and

tr(A). These are the transpose, the inverse, the cofactor and the trace of a

tensor A, respectively. The tensor product of vectors is indicated by interpos-

ing the symbol ⊗, and the Euclidian inner product of tensors A, B is defined

by A ·B =tr(ABT ); the associated norm is |A| =
√
A ·A. The symbol |∗|

is also used to denote the usual Euclidian norm of three-vectors. Latin and

Greek indices take values in {1, 2} and, when repeated, are summed over their

ranges. Lastly, the notation FA stands for the tensor-valued derivatives of a

scalar-valued function F (A).
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Chapter 2

Linear theory for the mechanics
of third-gradient continua
reinforced with fibers resistance
to flexure

2.1 Kinematics

Let D denote the unit tangent to the fiber’s trajectory so that the orientation

of a particular fiber can be written as

λ = |d| = ds

dS
and τ = λ−1d, (2.1)

where

d = FD. (2.2)

Here, F is the first gradient of the deformation function (χ(X)) and d is the

unit tangent to the fiber trajectory in the current configuration. Eq. (2.2)

can be derived by taking the derivative of r(S) = χ(X(S)), upon making the

identifications D =dX(S)/dS and d = dr(s)/ds. Thus, from Eq. (2.2), the

geodesic curvature of an arc (r (S)) is obtained by

g =
d2r(s)

ds2
=

d(dr(s)
ds

)

dS
=

∂(FD)

∂X

dX

dS
= ∇[FD]D. (2.3)

In the present study, we consider the cases of initially straight fibers such that

∇D = 0, (2.4)
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and thereby reduce Eq. (2.3) to

g(G) = G(D⊗D), (2.5)

where we adopt the conventions of the second gradient of deformations (see,

also, [47], [73] and [74])

∇F ≡ G. (2.6)

Further, the compatibility condition of G are given by

GiAB = FiA,B = FiB,A = GiBA. (2.7)

Based on the above kinematical settings, the authors in [41] proposed that

the bending energy of fibers is accounted for by the second gradient of the

continuum deformation explicitly such that

ˆ︂W (F) +W (G) = W (I, g), W (G) ≡ 1

2
C (F) |g|2 , (2.8)

where C(F) refers to the material properties of fibers and I is the first in-

variant of the deformation gradient tensor F, respectively. Also, in general,

C(F) is independent of the deformation gradient (i.e. C(F) = C). The above

energy density form (Eq. 2.8) has been widely and successfully adopted in

the relevant studies (see, for example, [47], [73], [74], [75], and [76]). Within

the framework of [41], the following form of the higher-gradient energy func-

tion may be considered to achieve a more comprehensive description of the

mechanics of the fiber-reinforced composite;

ˆ︂W (F) +W (G) +W (H) = W (I, g, α),

W (G) ≡ 1
2
C (F) |g|2 , W (H) ≡ 1

2
A (F) |α|2 . (2.9)

In the above, α is designated to accommodate the rate of change in curvature

computed at points on the convected curves of fibers as

α =
d3r(s)

ds3
=

d(∇[FD]D)

dS
=

∂(∇[FD]D)

∂X

dX

dS
= [∇{∇[FD]D}]D

= [∇{∇[FD]}D+∇[FD](∇D)]D. (2.10)
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Eq. (2.10) can be further simplified similarly as in Eqs. (2.3)-(2.5) so that

α = ∇(∇F)(D⊗D⊗D),

∇(∇F) = ∇(G) ≡ H, and

α = H(D⊗D⊗D) = α(H,D), (2.11)

in which we denote H as the third gradient of deformation; i.e.

∇G = H. (2.12)

The phenomenological implications of Eq. (2.9) will be discussed in later

sections through selected examples and experiments. In this section, we focus

on the mathematical framework and the associated formulations, which will be

used in the derivation of a compatible linearized model. Also, in the foregoing

analysis, the parameter A is assumed to be independent of the deformation

gradient (i.e. A(F) = A), similar to the second gradient parameter. For use in

the formulation of the Euler equation, we continue by evaluating the induced

energy variation of the response function with respect to I, g, and α as

Ẇ (I, g, α) = WI · İ+Wg · ġ+Wα · α̇, (2.13)

where the superposed dot refers to the derivatives with respect to a parameter

ϵ at a fixed value (e.g. ϵ = 0 at equilibrium) that labels a one-parameter family

of deformations. In particular, the variational derivatives of W (G) and W (H)

in the sense of [41] (see, Eq. (2.9)) yield

Ẇ (G) = Cg · ġ and Ẇ (H) = Aα · α̇. (2.14)

Also, İ can be equated as

İ = [tr(FTF)]̇ = (I · FTF)̇ = I · (FTF)̇ = 2F · Ḟ. (2.15)

Now, taking derivatives of Eqs. (2.5) and (2.11)3 with respect to ϵ (e.g.

ġ = Ġ(D⊗D)), and substituting them into Eq. (2.14), we find

Ẇ (H) = Aα· ·
α = Aαjej·Ḣ iABCDADBDCei = AαiḢ iABCDADBDC

Ẇ (G) = Cg· ·g = Cgjej·ĠiABDADBei = CgiĠiABDADB (2.16)
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Whereas DA,DB, and DC stand for fiber trajectory in different directions. The

above are also equivalent to

Ẇ (H) = WH · Ḣ = WHiABC
(ei⊗EA⊗EB⊗EC)ḢjDEF (ej⊗ED⊗EE⊗EF )

= WHiABC
Ḣ iABC , and

Ẇ (G) = WG ·
·
G = WGiAB

(ei⊗EA⊗EB⊗)ĠjCD(ej⊗EC⊗ED)

= WGiAB
ĠiAB (2.17)

It should be noted that A, B, C, D, E, and F were taken into account to imply

Einstein summation notation. Therefore, by comparing Eqs. (2.16)-(2.17) we

have

∂W
∂GiAB

= CgiDADB and
∂W

∂HiABC

= AαiDADBDC

↔ WG = Cg ⊗D⊗D ,and WG = Aα⊗D⊗D⊗D. (2.18)

In a typical environment, volumetric changes in the materials’ deformations

are energetically expensive processes (see, also, [28]-[77]). Thus, to reflect the

condition of bulk incompressibility, the energy density function Eq. (2.9) is

augmented by

U(I, g, α, p) = W (I, g, α)− p(J − 1), (2.19)

where J is determinant of F and p is a Lagrange-multiplied field. Lastly,

by using the identity J̇ = JF ·Ḟ = F∗ · Ḟ, together with the results in Eqs.

(2.16-2.18), the variational derivative of the above can be formulated as

U̇ = (2WIF− pF∗)·Ḟ+WG·Ġ+WH·Ḣ, (2.20)

or, equivalently,

U̇ = (2WIFiA − pF ∗
iA)Ḟ iA+WGiAB

ĠiAB+WHiABC
Ḣ iABC . (2.21)

Clearly, the obtained variational form (2.21) is dependent on both the second

and third gradient of deformations, as intended (i.e. U̇ = U̇(F,G,H,p)).
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2.2 Equilibrium

The derivation of the Euler equation and boundary conditions arising in second-

gradient elasticity are well-established (see, for example, [52]-[78] and [79] and

references therein). There authors formulate the weak form of the equilibrium

equations by employing the principles of the virtual work statement,

·
E = P, (2.22)

where P is the virtual work of the applied load and the superposed dot refers

to the variational and/or Gateâux derivative. In this section, by means of

iterated integrations by parts [80]–[82], we present the derivation of the Euler

equilibrium equations, which will be used to obtain a linear model.

To begin with, the strain energy of the system can be expressed as

E =

∫︂
Ω

U(F, G, H, p)dA, (2.23)

where Ω is the domain occupied by a fiber-matrix material. We note that

the conservative loads are characterized by the existence of a potential L such

that P = L̇. In the present cases, the problem of determining equilibrium

deformations of a fiber subjected to a flexural force at the boundaries is then

reduced to the problem of minimizing the potential energy E − L. Hence we

find
·
E =

∫︂
Ω

U̇(F, G, H, p)dA. (2.24)

Also, in view of Eq. (2.17), we rewrite the energy variations with respect to

the second and third gradient of deformation (i.e. G and H) as

∂W

∂GiAB

·
GiAB =

∂W

∂GiAB

ui,AB and

∂W

∂HiABC

·
H iABC =

∂W

∂HiABC

ui,ABC , (2.25)

where ui = χ̇i denotes the variation of the position field χ(X). Now, by

applying integration by parts, Eq. (2.25) becomes

∂W

∂GiAB

ui,AB =

(︃
∂W

∂GiAB

ui,A

)︃
,B

−
(︃

∂W

∂GiAB

)︃
,B

ui,A and

∂W

∂HiABC

ui,ABC =

(︃
∂W

∂HiABC

ui,AB

)︃
,C

−
(︃

∂W

∂HiABC

)︃
,C

ui,AB. (2.26)
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We then substitute Eqs. (2.21) and (2.26) into Eq. (2.24) and thereby obtain

·
E =

∫︂
Ω

[(2WIFiA − pF ∗
iA) ·

·
FiA +

(︃
∂W

∂GiAB

ui,A

)︃
,B

−
(︃

∂W

∂GiAB

)︃
,B

ui,A

+

(︃
∂W

∂HiABC

ui,AB

)︃
,C

−
(︃

∂W

∂HiABC

)︃
,C

ui,AB]dA. (2.27)

The above further reduces to

·
E =

∫︂
Ω

[2WIFiA − pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

]ui,AdA−
∫︂
Ω

(︃
∂W

∂HiABC

)︃
,C

ui,ABdA

+

∫︂
∂Ω

[

(︃
∂W

∂GiAB

ui,A

)︃
NB +

(︃
∂W

∂HiABC

ui,AB

)︃
NC ]dS, (2.28)

where N is the rightward unit normal to the boundary ∂Ω in the sense of

Green-Stoke’s theorem. The ui,AB terms in Eq. (2.28) are due to the third

gradient of deformation and is required to be in the form of the first derivative

of the position field (i.e. ui,A) for the formulation of the Piola stresses. For

this purpose, we perform iterated integrations by parts and successively deliver

from the second integral of the Eq. (2.28) that∫︂
Ω

(︃
∂W

∂HiABC

)︃
,C

ui,ABdA =

∫︂
Ω

(

(︃
∂W

∂HiABC

)︃
,C

ui,A),B

−
(︃

∂W

∂HiABC

)︃
,CB

ui,AdA. (2.29)

Applying the Green-Stokes theorem on Eq. (2.29) and substituting it into Eq.

(2.28) furnishes

·
E =

∫︂
Ω

[2WI − pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

]ui,AdA− [−
∫︂
Ω

(︃
∂W

∂HiABC

)︃
,CB

ui,AdA

+

∫︂
∂Ω

(

(︃
∂W

∂HiABC

)︃
,C

ui,A)NBdS] +

∫︂
∂Ω

[

(︃
∂W

∂GiAB

ui,A

)︃
NB

+

(︃
∂W

∂HiABC

ui,AB

)︃
NC ]dS (2.30)

Lastly, Eq. (2.30) may be recast to yield

·
E =

∫︂
Ω

PiA

·
FiAdA+

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB

+
∂W

∂HiABC

ui,ABNC ]dS, (2.31)
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where

PiA = 2WIFiA − pF ∗
iA −

(︃
∂W

∂GiAB

)︃
,B

+

(︃
∂W

∂HiABC

)︃
,CB

, (2.32)

is the expression of the Piola stress. Clearly, the resulting Piola-type stress is

dependent on both the second and third gradient of deformations. In the case

of initially straight fibers (i.e. ∇D = 0), we evaluate from Eq. (2.18) that(︃
∂W

∂GiAB

)︃
,B

= Cgi,BDADB and

(︃
∂W

∂HiABC

)︃
,CB

= Aαi,BCDADBDC (2.33)

and hence reduce Eq. (2.32) to

PiA = 2WIFiA − pF ∗
iA − Cgi,BDADB + Aαi,BCDADBDC . (2.34)

Eq. (2.32) then satisfies

PiA,A = 0 or Div(P) = 0, (2.35)

which can be used to obtain the linearized Euler equilibrium equation for the

reinforced solids occupying the domain of Ω.

2.3 Boundary conditions

In this section, we derive the admissible boundary conditions arising in the

third gradient of virtual displacement. For the sake of conciseness, we confine

our analysis to the case where fibers are aligned along the directions of ei-

ther normal and/or tangential to straight (or fairly straight) boundaries (e.g.

rectangular boundaries) such that

(D ·T)(D ·N) = 0 and ∇T = ∇N = 0. (2.36)

By decomposing PiAui,A, as in Eq. (2.26), we obtain from Eq. (2.31) that

·
E =

∫︂
∂Ω

PiAuiNAdS −
∫︂
Ω

PiA,AuidA+

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB

+
∂W

∂HiABC

ui,ABNC ]dS, (2.37)
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where, the Green-Stoke’s theorem is applied in the first term of Eq. (2.37).

Since PiA,A = 0 in Ω (see, Eq. (2.26), the above reduces to

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[{ ∂W

∂GiAB

−
(︃

∂W

∂HiABC

)︃
,C

}ui,ANB

+
∂W

∂HiABC

ui,ABNC ]dS. (2.38)

In addition, we project ∇u onto the normal and tangential direction as

∇u =∇u(T⊗T)+∇u(N⊗N) = u′⊗T+ u,N⊗N, (2.39)

whereT = X
′
(S) = k×N is the unit tangent to ∂Ω. u

′
and u,N are the tangen-

tial and normal derivatives of u on ∂Ω, respectively (i.e. u
′
i = ui,ATA, ui,N =

ui,ANA). Thus, we find

ui,A =
∂ui

∂s

∂s

∂XA

+
∂ui

∂N

∂N

∂XA

= u
′

iTA + ui,NNA, (2.40)

ui,AB = u
′′

i TATB + u
′

i,N(NATB + TANB) + ui,NNNANB, (2.41)

where T
′
A = TA,N = N

′
A = NA,N = 0 from Eq. (2.36). We then substitute Eqs.

(2.40)-(2.41) into Eq. (2.38) and thereby obtain

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

{︄(︃
∂W

∂GiAB

)︃
−
(︃

∂W

∂HiABC

)︃
,C

}︄
(︂
u

′

iTANB + ui,NNANB

)︂
dS +

∫︂
∂Ω

∂W

∂HiABC

[u
′′

i TATB + u
′

i,N(NATB

+ TANB) + ui,NNNANB]NCdS. (2.42)

Now, by decomposing the terms in the above the same as in Eq. (2.26), we

find, for example,

∂W

∂GiAB

TANBu
′

i =

(︃
∂W

∂GiAB

TANBui

)︃′

−
(︃

∂W

∂GiAB

TANB

)︃′

ui, (2.43)

∂W
∂HiABC

(NATBNC + TANBNC)u
′
i,N =

[︂
∂W

∂HiABC
(NATBNC + TANBNC)ui,N

]︂′

−
[︂

∂W
∂HiABC

(NATBNC + TANBNC)
]︂′

ui,N , (2.44)

∂W
∂HiABC

TATBNCu
′′
i =

(︂
∂W

∂HiABC
TATBNCui

)︂′′

+
(︂

∂W
∂HiABC

TATBNC

)︂′′

ui

−2

[︃(︂
∂W

∂HiABC
TATBNC

)︂′

ui

]︃′

, (2.45)

22



and similarly for other terms. Therefore, Eq. (2.46) can be rewritten as

·
E =

∫︂
∂Ω

[PiANA − { ∂W

∂GiAB

TANB

−
(︃

∂W

∂HiABC

)︃
,C

TANB}
′
]uidS −

∫︂
∂Ω

[

(︃
∂W

∂HiABC

TATBNC

)︃′′

]uidS

+

∫︂
∂Ω

[{ ∂W

∂GiAB

TANB −
(︃

∂W

∂HiABC

)︃
,C

TANB

−2

(︃
∂W

∂HiABC

TATBNC

)︃′

}ui]
′
dS

+

∫︂
∂Ω

[︃
∂W

∂HiABC

(NATBNC + TANBNC)ui,N

]︃′

dS

+

∫︂
∂Ω

[{
(︃

∂W

∂GiAB

)︃
−
(︃

∂W

∂HiABC

)︃
,C

}NANB]ui,NdS

−
∫︂
∂Ω

[

{︃
∂W

∂HiABC

(NATBNC + TANBNC)

}︃′

]ui,NdS

+

∫︂
∂Ω

(︃
∂W

∂HiABC

TATBNCui

)︃′′

dS

+

∫︂
∂Ω

∂W

∂HiABC

ui,NNNANBNCdS. (2.46)

Further, by means of Eqs. (2.18) and (2.33) (e.g. ∂W
∂GiAB

= CgiDADB,(︂
∂W

∂GiAB

)︂
,B

= Cgi,BDADB etc. . . ), (2.46) may be recast as

·
E =

∫︂
∂Ω

[PiANA − {(Cgi

−Aαi,CDC)DATADBNB}
′
]uidS +

∫︂
∂Ω

[(AαiDATADBTBDCNC)
′′
]uidS

+
∑︂⃦⃦⃦

[(Cgi − Aαi,CDC)DATADBNB − 2 (AαiDATADBTBDCNC)
′
]ui

⃦⃦⃦
+
∑︂

∥Aαi(DANADBTBDCNC +DATADBNBDCNC)ui,N∥

+
∑︂⃦⃦⃦⃦

d

ds
(AαiDATADBTBNCDCui)

⃦⃦⃦⃦
+

∫︂
∂Ω

[(Cgi − Aαi,CDC)DANADBNB]ui,NdS

+

∫︂
∂Ω

[{AαiDADBDC(NATBNC + TANBNC)}
′
ui,N ]dS

+

∫︂
∂Ω

(AαiDANADBNBDCNCui,NN)dS (2.47)

where the double bar symbol refers to the jump across the discontinuities on
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the boundary ∂w (i.e. ∥∗∥ = (∗)+− (∗)−), and the sum refers to the collection

of all discontinuities. Therefore, using Eq. (2.36)1, we reduce the above to

·
E =

∫︂
∂Ω

[PiANA]uidS +

∫︂
∂Ω

[(Cgi − Aαi,CDC)DANADBNB]ui,NdS

+

∫︂
∂Ω

(AαiDANADBNBDCNCui,NN)dS. (2.48)

Since the virtual work statement (
·
E = P ) implies that the admissible me-

chanical powers are expressed in the following form:

P =

∫︂
∂wt

tiuidS +

∫︂
∂w

miui,NdS +

∫︂
∂w

riui,NNdS +
∑︂

fiui. (2.49)

We find by comparing Eqs. (2.48) and (2.49) that

t = PN,

m = [Cg − A(∇α)D](D ·N)2,

r = Aα(D ·N)3,

f = 0, (2.50)

which will be used to extract linearized boundary conditions.

2.4 Linear Theory

The superposed “small” incremental deformation is defined by (see, for exam-

ple, [28] and [77])

χ = χo + ε
·
χ; |ε| ≪ 1, (2.51)

where (∗)o denote the configuration of ∗, evaluated at ε = 0, and (
·∗) =

∂(∗)/∂ε. Also, here and henceforth, we denote the induced small variation

of deformation as
·
χ = u. (2.52)

In the above, caution needs to be taken that the present notation is not con-

fused with the one used for the variational computation. Thus from Eq. (2.53),

the deformation gradient tensor can be approximated as

F = Fo + ε∇u, where
·
F = ∇u. (2.53)
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In general, the body is initially undeformed and stress free. This can be

accommodated by imposing the initial conditions of

Fo = I and Po = 0, at ε = 0. (2.54)

Accordingly, Eq. (2.53) becomes

F = I+ ε∇u, (2.55)

and subsequently yields

F−1 = I− ε∇u+o(ε), and

J = detF =1 + ε divu+o(ε). (2.56)

Further, in view of Eq. (2.51), the Euler equilibrium equation (2.35) can be

expanded to

Div(P) = Div(Po) + εDiv(
·
P) + o(ε) = 0. (2.57)

Hence, dividing the above by ε and limiting ε → 0, we find

Div(
·
P) = 0, (2.58)

which serves as the compatible linearized Euler equation. The expression of

the Piola-type stress in Eq. (2.58) can also be obtained by taking variational

derivative of Eq. (2.34) with respect to ε as

·
P = 2WII İ(F)o + 2(WI)oḞ− ·

pF∗
o − po

·
F∗ − Cġi,BDADB(ei⊗EA)

+ Aα̇i,BCDADBDC(ei⊗EA). (2.59)

For example, the Neo-Hookian type materials can be considered where the

energy density function is defined by

W (I1, I3) =
µ

2
(I1 − 3)− µ log I3 +

λ

2
(log I3)

2, (2.60)

where µ and λ are the material constants, and I1(here denoted as I) and I3 are

respectively the first and third invariant of the deformation gradient tensor. In

the case of the incompressible model (i.e. I3 = 1), Eq. (2.60) further reduces

to

W (I1) =
µ

2
(I1 − 3). (2.61)

25



Therefore, we evaluate

WII = 0 and (WI)o =
µ

2
, (2.62)

and thereby obtain from Eq. (2.59) that

·
P=µḞ− ·

pF∗
o−po

·
F∗−Cġi,BDADB(ei⊗EA)+Aα̇i,BCDADBDC(ei⊗EA). (2.63)

In this equation C is the double stress parameter, u corresponds to the defor-

mation, and A is the triple stress paramter. Now, combining Eqs. (2.58) and

(2.63) yields

Div(µḞ)−Div(
·
pF∗

o)−Div(po
·
F∗)−Div[Cġi,BDADB(ei⊗EA)]

+Div[Aα̇i,BCDADBDC(ei⊗EA)] = 0. (2.64)

In view of Eq. (2.51), terms in the above can be simplified as

Div(µḞ) = Div(µ∇u) = µui,AAei, (2.65)

Div(
·
pF∗

o) = F∗
o∇ṗ = I∇ṗ =

·
p,iei, ∵ Div(F∗) = 0, and (2.66)

Div(poḞ
∗
) = poDiv(F∗)· = 0, (2.67)

Here, the unknown constant p0 can be determined such that the Piola-type

stress admits the initial stress free state at ε = 0; i.e.

Ṗo = µḞo − poḞ
∗
o = 0, (2.68)

and thus yielding

po = µ. (2.69)

Also, since g = G(D⊗D) and α = H(D⊗D⊗D) (see, Eqs. (2.5) and

(2.11)), we evaluate

Div[Cġi,BDADB(ei⊗EA)] = CDiv[ui,BCDDADBDCDDei⊗EA]

= Cui,ABCDDADBDCDDei, and (2.70)

Div[Aα̇i,BCDADBDC(ei⊗EA)] = ADiv[ui,BCDEFDADBDCDDDEDF

(ei⊗EA)] = Aui,ABCDEFDADBDCDDDEDFei, (2.71)
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where Ḟ iA = ui,A and ĠiAB = ui,AB from Eqs. (2.6), (2.11)2 and (2.53).

Therefore, by substituting Eqs (2.65)-(2.71) into Eq. (2.64), we obtain the

following linearized Euler equilibrium equation

µui,AA − ·
p,i − Cui,ABCDDADBDCDD

+Aui,ABCDEFDADBDCDDDEDF = 0, (2.72)

which solves for u1,u2 and p.

Similarly, the constraint of bulk incompressibility and the associated bound-

ary conditions (Eq. (2.50)) can be approximated as (e.g. t = to + ε
·
t + o(e)

etc...)

(J − 1)· = F∗
o ·

·
F = divu = 0, and (2.73)

ṫ = ṖN,

ṁ = [Cġ − A(∇α̇)D](D ·N)2,

ṙ = Aα̇(D ·N)3,

ḟ = 0, (2.74)

where

Ṗ iA=µḞ iA − ·
p(F ∗

iA)o − poḞ
∗ − Cġi,BDADB + Aα̇i,BCDADBDC , (2.75)

and

(F ∗
iA)o = δiA, ∵ (FiA)o = δiA at ε = 0. (2.76)

Finally, since J∂F ∗
jB/∂FiA = F ∗

jBF
∗
iA − F ∗

iBF
∗
jA, we obtain at ε = 0,

(∂F ∗
jB/∂FiA)o = δjBδiA − δiBδjA and (F∗

F[
·
F])jB = (δjBδiA − δiBδjA)ui,A.

(2.77)

Hence Eq. (2.76) furnishes

·
F ∗
iA = (Divu)δiA − uA,i = −uA,i, ∵ Divu = divu = 0 . (2.78)

The boundary conditions ṫ, ṁ, and ḟ in Eq. (2.74) are the expressions of

linearized edge tractions, edge moments and the corner forces, respectively.

In particular, an additional boundary condition ṙ is identified as a result of
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introducing the third gradient of continuum deformations. This boundary

condition ṙ falls into the category of the triple forces which characterizes the

mechanical contact interactions on edges and points of Cauchy cuts (see, for

example [82]–[84]). In the present case, the letter may be understood as the

local interactions between the fibers and the matrix, and are coupled with

the Piola-type triple stress exerted by third gradient continua (see, also, [83],

[80] and [80]). Further, within the description of the proposed model, the

configuration of such local interactions and the associated triple forces may

be achieved via the computation of the third gradient of the continuum de-

formation on the convected curves of fibers. In this regard, a set of selected

examples and experiments are considered in the following sections. Further

analysis, including a more general class of materials is, however, beyond the

scope of the present study due to the paucity of available data, yet certainly

deserves for further research.

2.5 Solution to the linearized problem

For the purposes of demonstration, we consider an elastic solid of Neo-Hookean

type, which is reinforced with the single family of fibers and subjected to the

double force ṁ (bending moment) and triple force ṙ (see, Figure 2.1).

Figure 2.1: Schematic of the problem.

28



The corresponding director field of the fibers is defined by the unit tangent

D on the convected curve sof fibers as

D = E1, D1 = 1, D2 = 0. (2.79)

Therefore, Eq. (2.72) becomes

µ(u1,11 + u1,22)−
·
p,1 − Cu1,1111 + Au1,111111 = 0

µ(u2,11 + u2,22)−
·
p,2 − Cu2,1111 + Au2,111111 = 0

u1,1 + u2,2 = 0, (2.80)

where, the third equation of the above is linearized incompressibility con-

ditions from Eq. (2.73). The systems of equations in (2.80) can be treated by

introducing the following scalar field ϕ as

u = k×∇ϕ, k(unit normal); ui = ελiϕ,λ, (2.81)

such that the condition of bulk incompressibility is met (i.e. u1,1 + u2,2 =

ϕ,12 − ϕ,21 = 0). Hence, invoking Eq. (2.81), Eq. (2.80) may be recast as

ṗ,1 = −µ(φ,211 + φ,222) + Cφ,21111 − Aφ,2111111,

ṗ,2 = µ(φ,111 + φ,122)− Cφ,11111 + Aφ,1111111. (2.82)

We now utilize the compatibility condition of p (i.e.
·

p,ij =
·

p,ji) and obtain

µ(φ,1111+φ,2222+2φ,1122)−C(φ,111111+φ,221111)+A(φ,11111111+φ,22111111) = 0,

(2.83)

which solves unknown function, ϕ(x, y). Further, the auxiliary function H =

∆ϕ may be introduced to reduce the above to

µ∆H − CH,1111 + AH,111111 = 0. (2.84)

Hence, the general solution of Eq. (2.83) can be found:

φ =
∞∑︂

m=1

[{Ame
amx +Bme

−amx + ebmx(Cm sin(cmx) +Dm cos(cmx))

+e−bmx(Em sin(cmx) + Fm cos(cmx))} × {sin(my)}], (2.85)
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where

am =
2

√︃
P

1
3 − N

O
+O, bm =

2

√︄
F + 2

√
F 2 + S2

2
, cm = 2

√︄
S2

2(F + 2
√
F 2 + S2)

,

P =
C3

27A3
, N = − C2

9A2
+

µ

3A
, S =

1

2
(
N

O
+O)

1
3 ,

M = (P −Q+
m2µ

2A
) 2, O = (

2
√
M + 2

√︁
(M +N3))

1
3 , F =

N

2O
+ P

1
3 − O

2
,

and

m =
nπ

2d
for n = 1, 3, 5, ... (2.86)

By using Eqs. (2.85)-(2.86) and the admissible boundary conditions (Eq.

(2.74)), am, bm and cm are computed for each m (e.g. m = π/2d, for n =

1etc. . . ) so that the unknown constant real numbers Am, Bm, Cm, Dm, Em,

and Fm can be completely determined. In the analysis, the applied double

force ṁ1 and ṙ1 triple force are assumed to be 5 which is a constant number

that can be approximated by using Fourier series to match the left-hand side

of the equation.

ṁ = ṁ1e1 + ṁ2e2,

ṁ1 = Cu1,11 − Au1,1111 = 5 ≃
30∑︂
n=1

20

nπ
(−1)

n−1
2 cos(

nπ

2d
y),

ṁ2 = Cu2,11 − Au2,1111 = 0,

ṙ = Aα̇(D ·N)3 = ṙ1e1 + ṙ2e2, ṙ1 = Au1,111 = 5 ≃
30∑︂
n=1

20

nπ
(−1)

n−1
2 ,

ṙ2 = Au2,111 = 0, (2.87)

which demonstrate fast convergence ranges between 20 and 30 iterations

(see, Figure 2.2).
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Figure 2.2: Deformation profiles with respect to the number of iterations (N).

Finally, the obtained solution, ϕ, is substituted into the following expression

χ = (X1 − ϕ,2)e1 + (X2 + ϕ,1)e2, (2.88)

Figure 2.3: Deformed configurations with respect to C/µ .
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Figure 2.4: Deformed configurations with respect to A/µ .

2.5.1 Theoretical results obtained from the 3rd order

gradient model

To configure the deformation map and the corresponding stress field can be

computed through Eqs. (2.63), (2.81) and (2.82). It is noted that the cor-

responding data are obtained under the normalized setting unless otherwise

specified (e.g. C/µ = 150, A/µ = 100 ,etc...). Also, we conveniently de-

note the material constants pertaining to the Piolar-type double stress and

triple stress (i.e. C and A) as the ‘double stress parameter’ and ‘triple stress

parameter’, respectively.

It is shown in Figures 2.3-2.5 that the resulting deformation fields are

sensitive to both the double stress and triple stress parameters and the applied

triple load ṙ. For example, gradual decreases in the deformed configuration

of the composite are observed with increasing the double stress parameter C

which is also aligned with the results in and [9] and [73]. In fact, the obtained

results reduce to those obtained from the second gradient model in the limit

of the vanishing triple stress parameter and triple stress (i.e. A = ṙ = 0, see,

Figure 2.6.
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Figure 2.5: Deformed configurations with respect to r/µ .

Figure 2.6: Comparison with the existing results in [73].

More importantly, in order to examine the effects of the third gradient of

deformations, we compute the shear strain gradients, and the corresponding

shear angle fields using, the following relations [85],

ϕ′ =
u′′
2(1 + u′

1)− u′
2u

′′
1

u′2
2 + (1 + u′

1)
2

, (2.89)

and
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ϕ = tan−1(
χ2,1 − χ1,1

2 + χ1,1 + χ2,1

). (2.90)

The results in Figure 2.7 indicate that the shear strain gradually increase with

r > 0 and decreases when r < 0. In addition, the continuous shear strain

gradient fields give rise to the smooth and dilatational shear angle distribu-

tions throughout the domain of interest and the corresponding distribution

rates are determined by the applied triple force, ṙ (see, Figure 2.8). This fur-

ther implies that, with the given double force, ṁ, the proposed linear model

predicts multiple configurations of shear zones, as opposed to those obtained

from the second gradient model where only one configuration (smooth but not

dilatational) is possible.

Remark

The presented model accommodates the second gradient-based model as a

particular case when the applied triple force ṙ is removed. In other words, the

deformation profiles, shear strain distributions and shear angle zones obtained

from the second gradient continuum model can be reproduced directly from

the proposed model by setting ṙ = 0 (see, Figures 2.6, 9b and 10b). This also

can be seen from Eqs. (2.74) and (2.80) where the systems of PDEs and the

associated boundary conditions yield

µ(u1,11 + u1,22)−
·
p,1 − Cu1,1111 = 0

µ(u2,11 + u2,22)−
·
p,2 − Cu2,1111 = 0

u1,1 + u2,2 = 0, (2.91)

and

ṫ = ṖN,

ṁ = Cġ(D ·N)2,

ṙ = 0,

ḟ = 0, (2.92)
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when ṙ = Aα̇(D ·N)3 = 0. Further, the expression of the corresponding Piola-

type stress (Eq. (2.63)) become

·
P=µḞ− ·

pF∗
o − po

·
F∗ − Cġi,BDADB(ei⊗EA). (2.93)

Therefore, the systems of equations and the boundary conditions (Eqs. (2.74)

and (2.80)) are now reduced to those formulated from the second gradient

continuum model (see, Eqs. (2.69), (2.71), and (2.72))[73].

Figure 2.7: Shear strain gradients with respect to r: r > 0 (a) and r < 0 (b)
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Figure 2.8: Shear angle contours with respect to r: r > 0 (a) and r < 0 (b)

We also plot the shear gradient and shear angle distributions estimated

by the first (classical), second and third gradient models in order to exam-

ine their capability in prediction ranges. It is clear from Figure 2.9 that the

proposed model (third gradient) assimilates gradual changes in shear gradient

field whereas the first and second gradient-based model are limited insofar

as they estimate either zero or constant strain gradient distributions. As a

result, the corresponding shear zones illustrate, discontinued (first gradient),

smooth but non-dilatational (second gradient), and smooth and dilatational

(third gradient) distributions, respectively (see, Figure 2.10). Lastly, the ob-

tained linear solutions demonstrate reasonable agreement with those from the

nonlinear model in the prediction of both the shear angle contours (Figure

2.11), and shear strain gradient fields (Figure 2.12).
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Figure 2.9: Shear strain gradients predicted by first gradient (a), second gra-
dient (b), third gradient (c) model.
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Figure 2.10: Shear angle contours predicted by first gradient (a), second gra-
dient (b), third gradient (c) model.
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Figure 2.11: Comparison with the nonlinear solution (Shear angle zone): linear
model (a), nonlinear model (b).

Figure 2.12: Comparison with the nonlinear solution (Shear strain gradient):
linear model (a), nonlinear model (b).
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2.5.2 Comparison between experimental results and the-
oretical predictions

So far, we have shown that the proposed model, based on the third gradient

continua, is able to sustain forces, double forces and triple forces to induce

dilatational deformations. These forces are coupled, respectively, with the

Piola-type stress, double stress, and triple stress through an appropriate ma-

terial parameter. More precisely, the obtained expression of the Piola-type

stress is a combination of the Nth order stresses so that the third gradient

of the deformation term in Eq. (2.63) can be regarded as the energy couple

of the triple force ṙ via the triple stress parameter A. A similar statement

can be made for the first and second order stresses where the corresponding

parameters C and µ are related to the bending energy of a fiber and the de-

formation energy of the matrix, respectively. However, little has been studied

for parameter A mainly due to the complex nature of mechanical interactions

on edges and point of Cauchy cuts [82]–[84].

Here, we present an indirect approach in an effort to estimate the triples

stress parameter A through which the accuracy of the proposed model in the

deformation analysis of the composites is also examined. For this purpose,

two experiments are considered (see, Figures 2.13-14) a three point bending

test of Crystalline Nanocellulose (CNC) which is a natural linear biopolymer

(C = 150GPa, µ = 1GPa) and the bending test of a Nylon-6 Fiber Neoprene

Rubber Composites (C = 2000MPa, µ = 1MPa) with clamped ends. In the

experiments, the out-of-plane direction (x3) is defined in the parallel direction

of either the loading cylinder or the guide clamp so that the corresponding

deflections can be estimated by using the proposed model with the setting of

c ≫ d. The resulting deformation profiles are recoded using the MTS load cell

and high speed camera.
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Figure 2.13: (a) is the three points bending test experimental setup for CNC,
and (b) is the numerical comparison with the CNC experimental results.

The results in Figures 2.13-14 indicate that the proposed linear model

produces reasonably accurate estimations for both the maximum deflections

and the deformation profiles of each composite. In particular, we were able to

identify a specific range of numbers for A that minimize the prediction errors

(see, Figure 2.15). These characteristic numbers turn out to be unique for each

material (A = 208 for CNC fiber composite and A = 0.95 for Nylon rubber

composite) and are insensitive to either the magnitude of the applied loadings
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(i.e. r and m) or the types of boundary conditions (e.g. simple support,

clamped ends). The results are also fairly close to those estimated from the

nonlinear model where the A value is found to be 0.825 (see, Figure 2.16).

Hence, the estimated values of A may be inferred as the intrinsic properties

of the examined composites pertaining the Piola-type triple stress. Further

examination regarding the triple stress parameters and the associated triple

forces may be of necessary to include more general class of materials, which is

beyond the scope of the present study due to the lack of available data. At the

same time, progress is being made toward these problems and our intention is

to report elsewhere.

2.6 Denouement

In this study, we have presented a complete linear model describing the me-

chanics of an elastic solid reinforced with a single family of fibers and subjected

to both the double force and triple force. The kinematics of fibers have been

formulated via the second and third gradient of deformations and subsequently

integrated into the model of the continuum deformation. The energy density

function of the Spencer and Soldatos type is augmented by the third gradient

of deformations in order to accommodate the third gradient continua. Us-

ing the virtual work statement and the variational principles arising in the

third gradient of virtual displacement, the Euler equation and the associated

boundary conditions have also been obtained.

42



Figure 2.14: (a) is the bending experimental setup for Nylon-6 fiber neoprene
rubber composite, and (b) is the numerical comparison with the Nylon-6 fiber
neoprene rubber composites experimental results.

Figure 2.15: Maximum error with respect to A: CNC fiber composite (a),
Neoprene rubber composite (b).
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Figure 2.16: Comparison with the nonlinear solution: linear model (a), non-
linear model (b).

More importantly, we have derived a compatible linear model from which a

complete analytical solution has been obtained for small deformations super-

posed on large. The obtained solution describes smooth and dilatational shear

angle distributions, unlike those predicted by the first and second gradient

continuum model where either a sharp variations of the gradient fields or the

non-dilatational shear zones are observed. This is due to the smooth transi-

tions in the corresponding shear gradient fields sustained by the third gradient

continua. In addition, the obtained solution demonstrates a close correspon-

dence with the experimental results of both the CNC and rubber composites.

The proposed model also predicts the intrinsic properties of the composites

which may pertain to the Piola-type triple stress. Lastly, the results obtained

from the proposed linear model are comparable with those obtained from the

nonlinear analysis and, thus, can be employed as an alternative to the nonlin-

ear model for small deformation analyses.
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Chapter 3

A model for the second strain
gradient continua reinforced
with extensible fibers in plane
elastostatics

3.1 Kinematics

Let τ be the unit tangent to the fiber’s parametric trajectory of r(s) in the

current configuration and D and X(S) are their counterparts in the reference

frame. The orientations of a particular fiber are then defined by

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (3.1)

where s and S are respectively, the arclength parameters in current and ref-

erence configuration and d is the director field of fibers in the reference frame

which can be expressed as

d = FD, F =λτ ⊗D, (3.2)

and F is the first gradient of the deformation function (χ(X)). Eq. (3.2) is

obtained by taking the derivative of r(S) = χ(X(S)), upon making the identi-

fications of D = dX(S)/dS and d = dr(s)/ds. Here d(∗)/ds and d(∗)/dS refer

to the arclength derivative of (∗) along fibers’ directions in the deformed and

reference configurations, respectively. Therefore, from Eq. (3.2), the geodesic

curvature of a parametric curve (r (S)) and the associated rate of changes in
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curvature are obtained by following equations

g = r′′=
d2r(s)

ds2
=
∂(FD)

∂X

dX

dS
=∇[FD]D. (3.3)

In a typical environment, most of the fibers are straight prior to deformations.

Even slightly curved fibers can be idealized as ‘fairly straight’ fibers, consider-

ing their length scales with respect to that of matrix materials. This further

leads to the assumption of vanishing gradients fields ofD (i.e. ∇D = 0). Thus,

Eq. (3.3) reduces to

g(G) = G(D⊗D), (3.4)

where we adopt the commonly used convention of strain gradient tensor:

∇F ≡ G. (3.5)

The corresponding strain gradient field is compatible in the sense of Leibniz

differentiation which can be seen as

GiAB = FiA,B = FiB,A = GiBA. (3.6)

Eqs. (3.3)-(3.6) constitute a second gradient-based energy function in the

description of an elastic solid reinforced with fibers resistant to flexure

W (F,g(G)) = W (F) +
1

2
C (F) |g(G)|2 , (3.7)

where C (F) refers to the material parameter associated Piola-type double

stress which is, in general, independent of the deformation gradient, i.e.

C (F) = C. (3.8)

Eq. (3.7) is based on the kinematic relevance between the bending motions

of embedded fibers and the adjoined second gradient fields [41] that has been

widely and successfully adopted in the relevant studies (see, for example, [9],

[73], [76], and [74]). For the desired applications, the above energy potential

is now augmented to accommodate extensible fibers as

W (F, ε(F),g(G)) = W (F) +
1

2
Eε2 +

1

2
C |g(G)|2 , (3.9)
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where E is a modulus pertaining to the fiber’s extension and the expression

of ε is given by

ε =
1

2
(λ2 − 1). (3.10)

Further, in view of Eqs. (3.1)-(3.2), λ2 can be written in terms of the defor-

mation gradient tensor F and the director field of fibers D as

λ2 = FD · FD = FTFD ·D = (FTF) ·D⊗D. (3.11)

In particular, the third gradient of deformations is introduced into the mod-

els of continuum deformation to achieve a more comprehensive description of

generalized continua of higher-order. More precisely, we compute the rate of

changes in curvature at points of the fibers as

α = r′′′ =
d(∇[FD]D)

dS
=

∂(∇[FD]D)

∂X

dX

dS
= [∇{∇[FD]D}]D

= [∇{∇[FD]}D+∇[FD](∇D)]D, (3.12)

such that the interactions between the fibers and the surrounding matrix may

be characterized. The required third order gradient fields can be formulated

in the same spirit as Eqs (3.4)-(3.5) that

α = ∇(∇F)(D⊗D⊗D),

∇(∇F) = ∇(G) ≡ H, and

α = H(D⊗D⊗D) = α(H,D). (3.13)

Consequently, the energy potential accommodating the third gradient of con-

tinuum deformation can be obtained as

W (F, ε(F),g(G),α(H)) = W (F) +
1

2
Eε2 +

1

2
C |g(G)|2

+
1

2
A(H) |α(H)|2 . (3.14)

We note here that, similar to Eq. (3.8), A(H) pertaining to the third gradient

of continuum deformations is assumed to be constant for the sake of simplicity.

A(H) = A. (3.15)
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The phenomenological implications vis-a-vis the third gradient of deformations

(e.g., interactions between fibers and a matrix material) and the identification

of the associated coefficient (here, denoted as A) is addressed in the literature

[86], [82], [79], [87], [88], and [89]. In the present study, we place an emphasis

on the development of a mathematical framework and the associated analyses

in order to promote the implementation of higher-order strain gradient theory

in plane elastostatics. For uses in the derivation of Euler equations and the

necessary boundary conditions, we continue by evaluating the induced energy

variation of the response function with respect to F,ε, g, and α as

Ẇ (F, ε,g,α) = WF·Ḟ+Wεε̇+Wg·ġ+Wα · α̇, (3.16)

where the superposed dot refers to derivatives with respect to a parameter

ϵ at the particular configuration of the composite (ϵ = 0) that labels a one-

parameter family of deformations.

The desired expressions for the induced energy variation can be obtained

from Eqs. (3.4) and (3.10)-(3.14) that

ε̇ =
1

2
(λ2 − 1)̇ =

1

2
(FD · FD− 1)̇ = FD · ḞD = FD⊗D · Ḟ, Wεε̇

= (
1

2
Eε2) = Eεε̇, (3.17)

Wg·ġ =Cg· ·g = Cgjej·ĠiABDADBei = CgiDADBĠiAB, (3.18)

and

Ẇ (H) = Aα· ·
α = Aαjej·Ḣ iABCDADBDCei = AαiDADBDCḢ iABC . (3.19)

Hence, from Eqs. (3.16)-(3.19), we find

Ẇ (F, ε,g,α) = WFiA
Ḟ iA +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)Ḟ iA

+ CgiDADBĠiAB + AαiDADBDCḢ iABC . (3.20)

Clearly, the resulting energy variation (Eq. (3.20)) is dependent on both the

second and third gradients of continuum deformations as intended. It will

be seen in the later sections that Eq. (3.20) furnishes the relevant mathe-

matical framework to accommodate the triple force (e.g. interaction forces)

and its energy couple (Piola-type triple stress) sustained by the third-gradient

continua.
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3.2 Equilibrium

The derivation of the Euler equation and boundary conditions arising in second-

gradient elasticity is well-established (see, for example, [79], [90] and references

therein). In this section, we present a variational formulation arising in the

third gradient of the continuum deformation by employing the principles of

the virtual work statement and iterated integrations by parts [82], [79]-[88]

and [89].

In a typical environment, volumetric changes in materials’ deformations

are energetically expensive processes and thus are constrained in most of en-

gineering analyses (see, also, [77],[28]). This can be achieved by introducing

the weak form of bulk incompressibility condition into the proposed energy

potential such that

U(F, ε,g,α,p) = W (F, ε,g,α)− p(J − 1), (3.21)

J is determinant of F and p is a constitutively indeterminate scalar filed. The

strain energy of the system is then expressed as

E =

∫︂
Ω

U(F, G, H, p)dA, (3.22)

where Ω is the referential domain occupied by a fiber-matrix material.

Now, the principle of virtual work states that

Ė = P. (3.23)

In the above, P is the virtual work of the applied load and the superposed dot

refers to the variational and/or Gateâux derivative. Since the conservative

loads are characterized by the existence of a potential L such that P = L̇,

the problem of determining equilibrium deformations is then reduced to the

problem of minimizing the potential energy E − L. Accordingly, we find

·
E =

∫︂
Ω

U̇(F, G, H, p)dA. (3.24)

Using the identity J̇ = JFF · Ḟ = F
∗·Ḟ together with the results in Eqs. (3.20)-

(3.21), the variational derivative of the augmented energy potential can be
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evaluated as

U̇ = Ẇ − pJ̇ = [WFiA
ui,A +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)ui,A

+ C(giDADB)ui,AB + A(αiDADBDC)ui,ABC − pF ∗
iAuiA], (3.25)

where ui = χ̇i is the variation of the position field. Hence Eqs. (3.24)-(3.25)

yield

·
E =

∫︂
Ω

[WFiA
ui,A +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)ui,A

+ C(giDADB)ui,AB + A(αiDADBDC)ui,ABC − pF ∗
iAuiA]dA. (3.26)

Applying integration by parts on the third and forth terms in Eq. (3.18), we

find

C(giDADB)ui,AB = C(giDADBui,A),B − C(giDADB),Bui,A, and

A(αiDADBDC)ui,ABC = A(αiDADBDCui,AB),C

− A(αiDADBDC),Cui,AB, (3.27)

and thereby obtain

·
E =

∫︂
Ω

[WFiA
ui,A +

E

2
(FjCFjDDCDD − 1)(FiBDBDA)ui,A

+ C(giDADBui,A),B − C(giDADB),Bui,A + A(αiDADBDCui,AB),C

− A(αiDADBDC),Cui,AB − pF ∗
iAuiA]dA. (3.28)

Eq. (3.28) may be recast as

·
E =

∫︂
Ω

[WFiA
ui,A − pF ∗

iAuiA +
E

2
(FjCFjDDCDD − 1)(FiBDBDA)

− C(giDADB),B]ui,AdA−
∫︂
Ω

[A(αiDADBDC),Cui,AB]dA)

+

∫︂
∂Ω

(CgiDADBui,A)NBdS +

∫︂
∂Ω

(AαiDADBDCui,AB)NCdS, (3.29)

where N is the rightward unit normal to the boundary ∂Ω in the sense of

Green-Stoke’s theorem. To obtain the desired expression, we again apply

integration by parts and the Green-Stoke’s theorem on the second integral of
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the above; i.e.∫︂
Ω

[A(αiDADBDC),Cui,AB]dA =

∫︂
Ω

[{A(αiDADBDC),Cui,A},B

−A(αiDADBDC),CBui,A]dA =

∫︂
∂Ω

A(αiDADBDC),Cui,ANBdS

−
∫︂
Ω

A(αiDADBDC),CBui,A]dA. (3.30)

The substitution of Eq. (3.30) into Eq. (3.29) then furnishes

·
E =

∫︂
Ω

[WFiA
ui,A − pF ∗

iAuiA +
E

2
(FjCFjDDCDD − 1)(FiBDBDA)

− C(giDADB),B + A(αiDADBDC),CB]ui,AdA

∫︂
∂Ω

[{CgiDADB

− A(αiDADBDC),C}ui,ANB + AαiDADBDCui,ABNC ]dS. (3.31)

Finally, we obtain

·
E =

∫︂
Ω

PiAui,AdA+

∫︂
∂Ω

[{CgiDADB − A(αiDADBDC),C}ui,ANB

+ AαiDADBDCui,ABNC ]dS, (3.32)

where

PiA = WFiA
ui,A − pF ∗

iAuiA +
E

2
(FjCFjDDCDD − 1)(FiBDBDA)

− C(giDADB),B + A(αiDADBDC),CB. (3.33)

Hence, the Euler equation satisfies

PiA,A = 0 or Div(P) = 0 (3.34)

which holds in Ω. It is also noted here that, for the sake of clarity and com-

pleteness, the appropriate tensorial notations of Eqs. (3.32)-(3.33) may be

found as

·
E =

∫︂
Ω

P ·
·
FdA+

∫︂
∂Ω

[{C(g ⊗D⊗D)T − (Div(α⊗D⊗D⊗D)T}FT

+ (α⊗D⊗D⊗D)(∇F)T ]·NdS, (3.35)

and

P = WF − pF∗ +
E

2
(FD · FD− 1)F(D⊗D)

− Div(Cg ⊗D⊗D) +Div(Div(Aα⊗D⊗D⊗D)), (3.36)

which clearly meet the basis agreement requirement arising in multilinear

transformations of higher-order tensors with mixed bases.
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3.3 Boundary conditions

The incorporation of the high order gradient fields into the model of the con-

tinuum deformation leads to the necessary existence of their high-order energy

conjugate pairs (e.g., triple forces, contact interactions) suitably imposed on

the desired boundaries. Although the roles and phenomenological implications

regarding these higher-order boundary conditions are discussed in number of

studies (see, for example, [82], [87], [88], [91], and [92]), their implementation,

particularly those arising in plane elastostatics, in the actual analytical plat-

form has not been well addressed. Throughout the section, we present rigorous

derivations vis-a-vis admissible boundary forces of higher-order exerted on the

third-gradient continua.

To proceed, we apply integration by parts (i.e. PiAui,A = (PiAui),A −

PiA,Aui) on the first term of Eq. (3.32) and thereby obtain

·
E =

∫︂
∂Ω

PiAuiNAdS −
∫︂
Ω

PiA,AuidA+

∫︂
∂Ω

[{WGiAB
− (WHiABC

),C}ui,ANB

+ WHiABC
ui,ABNC ]dS, (3.37a)

where we define:

WGiAB
≡ CgiDADB and WHiABC

≡ AαiDADBDC , (3.38)

for the notational simplicity in the forgoing derivations. Since the Euler

equation, PiA,A = 0, holds in Ω, the above reduces to

·
E =

∫︂
∂Ω

PiAuiNAdS+

∫︂
∂Ω

[{WGiAB
−(WHiABC

),C}ui,ANB+WHiABC
ui,ABNC ]dS,

(3.39)

Now, the projection of onto normal and tangential direction yields

∇u =∇u(T⊗T)+∇u(N⊗N) = u′⊗T+ u,N⊗N, (3.40a)

In the above u
′
and u,N are respectively the tangential and normal derivatives

of u such that

u
′

i = ui,ATA, ui,N = ui,ANA, (3.41)

and T = X
′
(S) = k×N is the unit tangent to the boundary (∂Ω) andN is the

associated unit normal. Hence, invoking Eqs. (3.40a)-(3.41), the projections
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of the first and second coordinate derivatives of ui can be found respectively

as

ui,A =
dui

ds

ds

dXA

+
dui

dN

dN

dXA

= u
′

iTA + ui,NNA, and (3.42)

ui,AB = u
′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + ui,N(N
′

ATB +NA,NNB)

+ u
′

i,N(NATB + TANB) + ui,NNNANB. (3.43)

We then substitute Eq. (3.43) into Eq. (3.39) and thereby obtain

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[WGiAB
− (WHiABC

),C ](u
′

iTA + ui,NNA)NBdS

+

∫︂
∂Ω

WHiABC
[u

′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + ui,N(N
′

ATB +NA,NNB)

+ u
′

i,N(NATB + TANB) + ui,NNNANB]NCdS. (3.44)

In order to obtain desired expressions, we apply iterated integration by parts

on the tangential derivatives of u in Eq. (3.44). For example,

WGiAB
TANBu

′

i = (WGiAB
TANBui)

′
− (WGiAB

TANB)
′
ui, (3.45)

WHiABC
(NATBNC + TANBNC)u

′

i,N = [WHiABC
(NATBNC + TANBNC)ui,N ]

′ − [WHiABC
(NATBNC + TANBNC)]

′
ui,N , (3.46)

WHiABC
TATBNCu

′′

i = (WHiABC
TATBNCui)

′′
+ (WHiABC

TATBNC)
′′
ui

−2
[︂
(WHiABC

TATBNC)
′
ui

]︂′

, (3.47)

and similarly for other terms. Therefore, Eq. (3.44) can be replaced with
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·
E =

∫︂
∂Ω

[PiANA − {WGiAB
TANB − (WHiABC

),C TANB}
′
]uidS

−
∫︂
∂Ω

[{WHiABC
(T

′

ATBNC + TA,NNBNC)}
′ − (WHiABC

TATBNC)
′′
]uidS

+

∫︂
∂Ω

[{WGiAB
TANB − (WHiABC

),C TANB − 2 (WHiABC
TATBNC)

′
}ui]

′
dS

+

∫︂
∂Ω

[WHiABC
(T

′

ATBNC + TA,NNBNC)ui]
′
dS

+

∫︂
∂Ω

[WHiABC
(NATBNC + TANBNC)ui,N ]

′
dS

+

∫︂
∂Ω

[{(WGiAB
)− (WHiABC

),C}NANB

+ WHiABC
(N

′

ATB +NA,NNB)NC ]ui,NdS

−
∫︂
∂Ω

[{WHiABC
(NATBNC + TANBNC)}

′
]ui,NdS

+

∫︂
∂Ω

(WHiABC
TATBNCui)

′′
dS +

∫︂
∂Ω

WHiABC
ui,NNNANBNCdS. (3.48)

The above may be further recast as

·
E =

∫︂
∂Ω

[PiANA − {(Cgi − Aαi,CDC)DATADBNB}
′

− {AαiDCNC(DAT
′

ADBTB +DATA,NDBNB)}
′
]uidS

+

∫︂
∂Ω

[(AαiDATADBTBDCNC)
′′
]uidS

+
∑︂⃦⃦⃦

Aαi(DAT
′

ADBTBDCNC +DATA,NDBNBDCNC)ui

⃦⃦⃦
+

∑︂⃦⃦⃦
[(Cgi − Aαi,CDC)DATADBNB − 2 (AαiDATADBTBDCNC)

′
]ui

⃦⃦⃦
+

∑︂
∥Aαi(DANADBTBDCNC +DATADBNBDCNC)ui,N∥

+
∑︂⃦⃦⃦⃦

d

ds
(AαiDATADBTBNCDCui)

⃦⃦⃦⃦
+

∫︂
∂Ω

[(Cgi − Aαi,CDC)DANADBNB]

+
[︂
AαiDCNC(DAN

′

ADBTB +DANA,NDBNB)
]︂
ui,NdS

−
∫︂
∂Ω

[{AαiDADBDC(NATBNC + TANBNC)}
′
ui,N ]dS

+

∫︂
∂Ω

(AαiDANADBNBDCNCui,NN)dS, (3.49)

where the double bar symbol refers to the jump across the discontinuities on

the boundary ∂Ω (i.e. ∥∗∥ = (∗)+ − (∗)−) and the sum refers to the collection
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of all discontinuities. But the virtual work statement for the conservative loads

suggest the admissible mechanical powers are of the form

P =

∫︂
∂wt

tiuidS+

∫︂
∂w

miui,NdS+

∫︂
∂w

riui,NNdS+
∑︂

fiui+
∑︂

hiui,N , (3.50)

Consequently, by comparing Eqs. (3.49) and (3.50), we obtain

ti = PiANA +
d2

ds2
(AαiDATADBTBDCNC)

− d

ds
[(Cgi − Aαi,CDC)DATADBNB

− AαiDCNC(DAT
′

ADBTB +DATA,NDBNB)],

mi = (Cgi − Aαi,CDC)DANADBNB

+ AαiDCNC(DAN
′

ADBTB +DANA,NDBNB)

− d

ds
(2AαiDADBDCNATBNC),

ri = AαiDANADBNBDCNC ,

fi = (Cgi − Aαi,CDC)DATADBNB − d

ds
(2AαiDATADBTBDCNC)

+ Aαi(DAT
′

ADBTBDCNC +DATA,NDBNBDCNC),

d(fi)

ds
=

d

ds
(AαiDATADBTBNCDC) ,

hi = 2AαiDANADBTBDCNC , (3.51)

In the above ti, mi and fi are, respectively, the expressions of edge tractions,

edge moments and the corner forces. But more importantly, additional inter-

action boundary conditions (i.e. ri, d(fi)/ds, hi) are obtained via the intro-

duction of the third gradient of deformations. These boundary conditions can

be understood as the set of admissible contact interactions suitably sustained

by the third-gradient continua (see, for example, [79], [82] and [89]). More-

over, the induced interaction forces are, in turn, coupled with the Piola-type

triple stress and thus fall into the category of triple forces that characterize

the mechanical contacts on the edges and points of Cauchy cuts [91], [82] and

[87]. In the present case, the letter would mean the effects of local interactions

between the fiber and matrix which are assimilated via the computation of the

third gradient of the continuum deformation on the convected curves of fibers.
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We remark here that the obtained triple forces are meaningful only if there

exist their conjugate pairs (a class of Piolar-type triple stress) and are nec-

essary to capture the internal energy contributions to the mechanical contact

interactions induced on the adjoined boundary. In fact, such necessary mu-

tual existence arising in the third gradient of continuum deformation is equally

valid to a class of forces and stresses exerted by lower-order continua. For ex-

ample, the prescribed double force mi is the energy pair to the Piolar-type

double stress (Cgi,BDADB).

If fibers are aligned along the directions of either normal and/or tangential

(such cases are commonly observed in meshed composites, fabric composites

and particulate composites produced under controlled environment), we find

DATADBNB = 0 and TA,N = T ′
A = NA,N = N ′

A0, (3.52)

and thus Eq. (3.51) reduces to

ti = PiANA

mi = (Cgi − Aαi,CDC)DANADBNB

ri = AαiDANADBNBDCNC ,

fi = 0,

d(fi)

ds
= 0,

hi = 0. (3.53)

Further, the expression of the associated Piolar-stress now becomes

PiA = WFiA
ui,A − pF ∗

iAuiA +
E

2
(FjCFjDDCDD − 1)(FiBDBDA)

− Cgi,BDADB + Aαi,BCDADBDC ,

gi = FiA,BDADB and αi = FiA,BCDADBDC . (3.54)

It is clear from Eq. (3.54) that, in the cases of aligned fibers, ri is the only

meaningful boundary conditions due to the third gradient of continuum defor-

mations (i.e. fi, d(fi)/ds and hi are vanished identically). We also note that

the imposition of ri is necessary to determine a unique solution when solving

the associated Euler equation (i.e. Eq. (3.51)). The classifications of the
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obtained triple forces and boundary conditions may be of practical interest.

In this respect, a number of cases are investigated under the prescription of

superposed incremental deformations in the foregoing sections.

3.4 Linear Theory

Based on the constitutive formulations presented in the previous sections, we

develop a compatible linear model which describes the mechanical responses

of an elastic solid reinforced with fiber’s resistance to extension and flexure.

For this purpose, we consider, superposed ‘small ’ deformations defined by

χ = χo + ϵχ̇ ; |ϵ| ≪ 1, (3.55)

where (∗̇) = ∂(∗)/∂ε, χ̇ = u and (∗)o denote configuration of ∗ evaluated at

ϵ = 0, (∗̇) = ∂(∗)/∂ε. Here caution needs to be taken that the present notation

is not confused with the one used for the variational computation. Therefore,

the deformation gradient tensor can be approximated as

F = Fo + ε∇u, where
·
F = ∇u. (3.56)

In a typical environment, the body is initially undeformed and stress-free. This

can be accommodated by imposing the initial conditions of

Fo = I and Po = 0, at ε = 0, (3.57)

from which we subsequently reduce Eq. (3.56) to

F = I+ ε∇u. (3.58)

Eq. (3.58) further leads to

F−1 = I− ϵ∇u+o(ϵ) and J = detF =1 + ϵ divu+o(ϵ), (3.59a)

which are the linearized expressions of the inverse and determinant of defor-

mation gradient tensor F. Similarly, the constraint of bulk incompressibility

can be approximated as

(J − 1)· = F∗
o ·

·
F = divu = 0. (3.60)
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Now, using Eq. (3.55), the Euler equation (Eq. (3.30)) can be expanded as

Div(P) = Div(Po) + ϵDiv(Ṗ) + o(ϵ) = 0. (3.61)

Dividing the above by ε and limiting ε → 0, we obtain

Div(Ṗ) = 0 or Ṗ iA,A = 0, (3.62)

For the use in Eq. (3.62), the expression of Ṗ iA can be obtained from Eq.

(3.29) that

Ṗ iA = (WFiA
)̇− ṗ(F ∗

iA)o − pḞ
∗
iA + E[Ḟ jC(FjD)oDCDD][(FiB)oDBDA)]

+
E

2
[(FjC)o(FjD)oDCDD − 1](Ḟ iBDBDA)− Cġi,BDADB

+ A(αiDADBDC),CB. (3.63)

Also, evaluating at ϵ = 0 (e.g. (FjD)o = δjD, (F
∗
iA)o = δiA), we reduce Eq.

(3.63) to

Ṗ iA = (WFiA
)̇ + Euj,BDADBDiDj − ṗδiA − poḞ

∗
iA − Cui,BCDDCDDDADB

+ A[(ui,EFGDEDFDG)DADBDC ],CB, (3.64)

where:

δjCδjDDCDD = DCDC = 1, ġi,B = Ḟ iC,BDDCDD and αi = ui,EFGDEDFDG.

It is noted that the reference and current bases are now merged so that the

initial director field D is represented by the current basis (i.e. Diei) not by

the reference frame (i.e. DAEA). This can be explained by the collapse of the

two different bases dictated by the linear theory of elasticity (i.e. ei ≡ EA;

see, also, [77] and [28]). Hence, From Eqs. (3.62) and (3.64), the linearized

Euler equations can be obtained as

Ṗ iA,A = (WFiA
)̇,A + E(uj,BDADBDiDj),A − ṗ,i − C(ui,BCDDCDDDADB),A

+ A[(ui,EFGDEDFDG)DADBDC ],CBA, (3.65)

where Ḟ
∗
iA,A = 0 (Piola’s identity ) and (ṗδiA),A = ṗ,AδiA = ṗ,i.

In the case of initially straight fibers (i.e. ∇D = 0), the above further

reduces to

Ṗ iA,A = (WFiA
)̇,A + Euj,ABDADBDiDj − ṗ,i − Cui,ABCDDCDDDADB

+ Aui,ABCEFGDADBDCDEDFDG = 0. (3.66)
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Lastly, the boundary conditions in Eq. (3.51) can be approximated similarly

as in the above (e.g. t = to + εṫ+o(e) etc...)

ṫi = Ṗ iANA +
d2

ds2
(Aα̇iDATADBTBDCNC)

− d

ds
[(Cgi − Aα̇i,CDC)DATADBNB

− Aα̇iDCNC(DAT
′

ADBTB +DATA,NDBNB)],

ṁi = (Cġi − Aα̇i,CDC)DANADBNB

+ Aα̇iDCNC(DAN
′

ADBTB +DANA,NDBNB)

− d

ds
(2Aα̇iDADBDCNATBNC),

ṙi = Aα̇iDANADBNBDCNC ,

ḟ i = (Cġi − Aα̇i,CDC)DATADBNB − d

ds
(2Aα̇iDATADBTBDCNC)

+ Aα̇i(DAT
′

ADBTBDCNC +DATA,NDBNBDCNC),

d(ḟ i)

ds
=

d

ds
(Aα̇iDATADBTBNCDC) ,

ḣi = 2Aα̇iDANADBTBDCNC . (3.67)

Hence, Eqs. (3.60), (3.66) and (3.67) determine the deformed configurations

of fiber composites for small deformations superposed on large. In particular,

if the fiber’s directions are either normal or tangential to the boundary (see,

Eq. (3.52)), the above becomes

ṫi = Ṗ iANA

ṁi = (Cġi − Aα̇i,CDC)DANADBNB

ṙi = Aα̇iDANADBNBDCNC ,

ḟ i = 0,

d(ḟ i)

ds
= 0,

ḣi = 0. (3.68)

The imposition of the above boundary conditions will be further discussed in

the following section.
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3.4.1 Example: Neo-Hookean type materials

For the implementation of the obtained linear theory, we consider an elastic

solid of Neo Hookean type reinforced with a single family of fibers subjected to

plane bias extension. In the foregoing analysis, we confine our analysis to the

case where fibers are initially straight and aligned along the directions of either

normal or tangential to the boundaries (i.e. D = E1, D1 = 1, D2 = 0,see,

Figure 3.1) such that

(D ·T)(D ·N) = 0 and ∇D =∇T = ∇N = 0. (3.69)

We also note here that different types of boundaries and fibers alignments

can be readily accommodated by modifying Eq. (3.69) (e.g. D = E2, D1 =

0, D2 = 1 and D ·N = 1, etc...).

Accordingly, Eqs. (3.64) and (3.66) becomes

Ṗ iA = (WFiA
)̇ + Eu1,1DADi − ṗδiA − poḞ

∗
iA − Cui,111DA + A(ui,11111)DA,

Ṗ iA,A = (WFiA
)̇,A + Eu1,11Di − ṗ,i − Cui,1111 + Aui,111111 = 0. (3.70)

Now, the Neo Hookean strain energy function is given by

W (I1, I3) =
µ

2
(I1 − 3)− µ log I3 +

λ

2
(log I3)

2, (3.71)

where µ and λ are the material constants, and I1 = tr(FTF) and I3 =

det(FTF) are respectively the first and third invariant of the deformation gra-

dient tensor. In the case of incompressible materials (i.e. I3 = 1), Eq. (3.71)

further reduces to

W (F) =
µ

2
(F · F− 3). (3.72)

Thus, we evaluate WFiA
= µFiA and thereby obtain from Eq. (3.70) that

Ṗ iA = µui,A + Eu1,1DADi − ṗδiA − poḞ
∗
iA − Cui,111DA + A(ui,11111)DA, and

(3.73)

Ṗ iA,A = µui,AA + Eu1,11Di − ṗ,i − Cui,1111 + Aui,111111 = 0. (3.74)

In the above, the unknown constant po can be chosen such that the Piola-type

stress admits the initial stress free state at ε = 0; i.e.

Ṗo = µḞo − poḞ
∗
o = 0, (3.75)
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and thus yielding

po = µ. (3.76)

In addition, since J∂F ∗
jB/∂FiA = F ∗

jBF
∗
iA − F ∗

iBF
∗
jA, we evaluate at ε = 0 as

(∂F ∗
jB/∂FiA)o = δjBδiA − δiBδjA, (3.77)

and thus find

·
F ∗
iA = (∂F ∗

jB/∂FiA)Ḟ jB = (δjBδiA − δiBδjA)uj,B

= uB,BδiA − uA,i = −uA,i, (3.78)

where uB,B = 0 from Eq. (3.60).

Consequently, Eq. (3.74) together with the constraint of bulk incompress-

ibility (Eq. (3.60)) determines the deformed configuration of composites.

Figure 3.1: Schematic of the problem.

3.5 Solution to the linearized problem

For the purpose of illustration, we consider an elastic solid of Neo-Hookean

type reinforced with the single family of fibers and subjected to the double

force ti (extension) and triple force ri (see, Figure 3.1). Accordingly, we find
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from Eqs. (3.60) and (3.74) that

µ(u1,11 + u1,22) + Eu1,11 − Cu1,1111 + Au1,111111 −
.
p,1 = 0,

µ(u2,11 + u2,22)− C2,1111 + Au2,111111 −
.
p,2 = 0,

u1,1 + u2,2 = 0. (3.79)

Let us now introduce scalar field, ϕ,as

u = k×∇ϕ, k(unit normal); ui = ελiϕ,λ,

so that the third equation of Eq. (3.79) can be satisfied (i.e. ϕ,12 − ϕ,21 = 0).

Hence, Eq. (3.79) becomes

ṗ,1 = −µ(φ,211 + φ,222) + Cφ,21111 − Aφ,2111111,

ṗ,2 = µ(φ,111 + φ,122)− Cφ,11111 + Aφ,1111111. (3.80)

In addition, we use the compatibility condition of p (i.e.
·

p,ij =
·

p,ji) and thereby

reduce Eq. (3.80) to

µ(φ,1111+φ,2222+2φ,1122)−C(φ,111111+φ,221111)+A(φ,11111111+φ,22111111) = 0.

(3.81)

The above may be reacted into the following compact from

∆(∆ϕ− C

µ
ϕ,1111) +

E

µ
ϕ,1122 +

A

µ
∆(ϕ,111111) = 0, (3.82)

which solves the unknown mapping function, ϕ(x, y).

It is noted here that the solution of Eq. (3.82) is not accommodated by

conventional methods such as the Fourier transform or the separation of vari-

ables. Instead, we adopt the methods of iterative reduction and the principle

of eigenfunction expansion [93], [94] to yield

ϕ(x, y) = X(x)sin(my), (3.83)

and subsequently obtain from Eq. (3.82) that

[AX,11111111 − (C + Am2)X,111111 + (1 + Cm2)X,1111 −m2(2 + E)X,1111

+m4X] sinmy = 0. (3.84)
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Hence the general solution of ϕ can be found as

ϕ(x, y) =
∞∑︂

m=1

[{eamx(Am sin(bmx) +Bm cos(bmx))

+ e−amx(Cm sin(bmx) +Dm cos(bmx))

+ (Em sin(cmx) + Fm cos(cmx)) +Gme
dmx +Hme

−dmx}

× {sin(my)}]. (3.85)

The expressions of am, bm, cm and dm can then be obtained via the simple

algebraic procedures:

am =
(T2 + T1)

2
, bm =

(T2 − T1)

2i
, cm =

T3

i
, dm = T4,

m =
nπ

2d
(n = 1, 3, 5, etc...), T1 = [

T24

4A
− T5 − {−T8(T18)

2 − 9T8(T10)
2
3

+ 12T17T8 − T6 +
12(T10)

1
3T8T18

T7

}0.5]0.5,

T2 = [
T24

4A
− T5 + {−T8(T18)

2 − 9T8(T10)
2
3 + 12T17T8 − T6

+
12(T10)

1
3T8T18

T7

}0.5]0.5,

T3 = [
T24

4A
+ T5 − {−T8(T18)

2 − 9T8(T10)
2
3 + 12T17T8 + T6

+
12(T10)

1
3T8T18

T7

}0.5]0.5,

T4 = [
T24

4A
+ T5 + {−T8(T18)

2 − 9T8(T10)
2
3 + 12T17T8 + T6

+
12(T10)

1
3T8T18

T7

}0.5]0.5,

T5 =
T8

6(T9)
1
6

, T6 = 3
√
6T19[27(T19)

2 + 3
√
3T15 − 72T17T18 − 2(T18)

3]0.5,

T7 = 6(T9)
1
6 [6T18(T9)

1
3 + 9(T9)

2
3 − T12 +

12m4

A
+ (T18)

2 + T11 −
3T24T16

A2
]
1
4 ,

T8 = [6T18(T10)
1
3 + 9(T10)

2
3 − T12 +

12m4

A
+ (T18)

2 − 3T24T22

A2
+ T11]

1
2 ,

T9 =
(T14)

2

2
− 4T18T13

3
+ (

√
3

18
)[12(T18)

2(T13)
2 + 27(T14)

4 + 16(T18)
4T13

+ 256(T13)
3 − 4(T18)

3(T14)
2 − 144T18(T14)

2T13 −
(T18)

3

27
]0.5,
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T10 =
(T19)

2

2
+

√
3T15

18
− 4T18T17

3
− (T18)

3

27
, T11 =

3(T24)
2T23

4A3
, T12 =

9(T24)
4

64A4
,

T13 = T21 −
m4

A
− T20 +

T24T16

4A2
, T14 =

(T24)
3

8A3
+

T16

A
− T24T23

2A2
,

T15 = [27(T19)
4 + T16T17(T18)

4 + 256(T17)
3 − 4(T18)

3(T19)
2,

+ 128(T18)
2(T17)

2 − 144T18(T19)
2T17]

0.5,

T16 = (2 + E)m2, T17 = T21 −
m4

A
+

T24T22

4A2
− T20,

T18 =
3(T24)

2

8A2
− T23

A
, T19 =

(T24)
3

8A3
+

T22

A
+

T24T23

2A2
,

T20 =
(T24)

2T23

16A3
, T21 =

3(T24)
4

256A4
,

T22 = (2 + E)m2, T23 = Cm2 + 1 and T24 = Am2 + C. (3.86)

Lastly, the unknown constant real numbers Am, Bm, Cm, Dm, Em, Fm, Gm and

Hm can be completely determined by imposing the admissible boundary con-

ditions depicted in Eq. (3.68). In the assimilation, the applied forces and

triple forces are approximated using Fourier series expansion. For example,

t1 =
·
P 11N1 = µ(u1,1 − u2,2) + Eu1,1 −

·
p− Cu1,111 + Au1,11111

= 5 ≃
30∑︂
n=1

20

nπ
(−1)

n−1
2 cos(

nπ

2d
y),

ṙi = Aα̇iDANADBNBDCNC , ṙ1

= Au1,111 = 5 ≃
30∑︂
n=1

20

nπ
(−1)

n−1
2 cos(

nπ

2d
y),

ṙ2 = Au2,111 = 0. (3.87)

The obtained solution ϕ is then substituted into the following expression to

configure the deformation maps and the corresponding stress fields.

χ = (X1 − ϕ,2)E1 + (X2 + ϕ,1)E2. (3.88)

We also remark that the required computational cost is minimum (far less

expansive then pure numerical approaches) even with the presence of heavy

expressions (Eq. (3.63), since the Eq. (3.63) are merely in algebraic structures

once implemented. This is also evidenced by the fast convergence rate of the

obtained solutions, as illustrated in Figure 3.2 (within 30 iterations).
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Figure 3.2: Deformation profiles with respect to the number of iterations N.

3.5.1 Theoretical predictions and experimental compar-
isons

In this section, we simulate the responses of fiber-reinforced composite sub-

jected to plane deformations using the obtained linear model. Emphasis is

placed on the assimilation of the deformation profiles, strain field distributions

and, in particular, the sensitivity analyses of the proposed linear model with

respect to the applied loads and the parameters associated with the Piola-type

stresses and triple stresses. It is noted that the data are obtained under the nor-

malized setting unless otherwise specified (e.g. C/µ = 20, A/µ = 50 etc. . . ).

Figure 3.3 illustrate the post-processed deformation mapping for a composite

with fibers axial, bending and triple force moduli of E/µ = 150, C/µ = 150,

and A/µ = 150 when the composite is subjected to axial extension load of

t1/µ = 20. The deformation mapping predicted by the proposed linear solu-

tion demonstrates smooth profiles on the boundaries and within the domain

of interest (Figure 3.3).

Further, it is shown in Figs. 4-5 that the corresponding deformation con-

figurations are sensitive to both the first and triple stress moduli of Piola-type

(i.e. E and A). More precisely, the axial elongation of the composite gradually

decreases with increasing the first stress modulus (E). The deformation con-

figuration is also affected by the varying triple stress modulus (A). In this case,

the gradients of deformation profiles at each material points become steeper as
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Figure 3.3: Deformation mapping when t1/µ =20, E/µ =150, C/µ =150, and
A/µ =150.

the triple stress modulus decreases. These results are also closely aligned with

the observations in [95], [9] and [96]. In fact, the obtained solution accommo-

dates the deformation configurations predicted by the second gradient theory

in the limit of the vanishing triple stress modulus (i.e. A = 0, see, Figure 3.6).

Figure 3.4: Deformation configurations with respect to E/µ when t1/µ =20,
C/µ =150, and A/µ =150.

In particular, utilizing the following relations [85], we evaluate the shear

strain gradients and the associated shear angle contours to examine the effects

of the third gradient of deformations on the resulting deformation fields,

ϕ′ =
u′′
2(1 + u′

1)− u′
2u

′′
1

u′2
2 + (1 + u′

1)
2

, (3.89)
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Figure 3.5: Deformation configurations with respect to A/µ when t1/µ =20,
E/µ =135, and C/µ =150.

and

ϕ = tan−1(
χ2,1 − χ1,1

2 + χ1,1 + χ2,1

). (3.90)

Figure 3.7 clearly indicate that the magnitude of shear strain gradually in-

creases as approach the right and left boundaries when positive triple force is

applied (i.e. ṙi > 0) and vice versa in the case of negative triple force (i.e.

ṙi < 0). The continuous shear strain fields give rise to the smooth and di-

latational shear strain distributions where the rate of dilatation is dependent

on the applied triple force ṙi (see Figure 3.8). This, in turn suggests that the

proposed linear model is capable of predicting multiple configurations of shear

angle distributions given the single configuration of the applied force ṫi and

double force ṁi, whereas only one configuration is possible within the descrip-

tion of the second gradient based models (see, [95], [85], [83] and [9]). In fact,

the shear angle field estimated by the second gradient continuum model is one

of the particular configurations predicted by the proposed model in the limit

of vanishing triple force (i.e. ṙi = 0, see, also, Figure 3.6). This also can be

seen by setting Eq. (3.68) as

ṙi = Aα̇iDANADBNBDCNC = 0. (3.91)
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Figure 3.6: Comparison with the second gradient model.

Hence, the expressions of force and double force (Eq. (3.68)) and the associated

Piola-type stress (Eq. (3.73)) become

ṫi = Ṗ iANA, ṁi = CġiDANADBNB, and

Ṗ iA = µui,A + Eu1,1DADi − ṗδiA − poḞ
∗
iA − Cui,111DA,

which recover the results in [9] (see Eqs. (61)-(62) therein).

Figure 3.7: Shear strain gradient with respect to ṙi, ṙi > 0 (Left), and ṙi < 0
(Right).
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Figure 3.8: Shear angle contours with respect to ṙi, ṙi > 0 (a), and ṙi < 0(b).

We also summarize the shear strain gradients and the associated shear

angle contours computed, respectively by the first, second and third gradi-

ent continuum models for the purpose of further clarification. It is evident

from Figure 3.9 that the proposed model (third gradient) predicts smooth

and continuous shear strain gradient fields as opposed to those obtained from

the first and second gradient models where the corresponding strain gradient

fields display either zero or constant distributions (see, Figure 3.9). In results,

a comprehensive description of smooth and dilatational shear angle distribu-

tions ius assimilated by the proposed linear model (see, Figure 3.10). On the

other hand, conventional lower-order models produce limited predictions of

either discontinued (first gradient model) or non-dilatational (second gradient

model) field distributions (Figure 3.10). The obtained results are also aligned

with the earlier discussions regarding higher-order continua that Nth-order

continua can sustain continuous and smooth deformation gradient fields up to

(N − 1)th order [82]-[91] and [92].

Lastly, we compare the predicted shear angle distributions with those ob-

tained from the plane extension test of polymeric composites (PES) (see, Fig-

ure 3. 11 (Right)). Although the proposed linear model is not intended for

relatively large deformation analyses, it produces reasonably good prediction

results for both deformation profiles and shear angle distributions of PES com-

posites at 20% and 50% elongations (see, Figure 3.11). We also note that the

obtained model may be further extended to include practically more impor-

tant problems such as determination of the triple force moduli and analyses of

the residual triple stress on the mechanical responses of higher-order continua.
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Researches on these subjects certainly deserve further attention, which, how-

ever, are beyond the scope of the present study due to the paucity of available

experimental resources and data sets (especially with the current outbreak).

Figure 3.9: Shear strain gradients predicted by the first gradient (Left), second
gradient (Middle) and third gradient (Right) models.

Figure 3.10: Shear angle contours predicted by the first gradient (Left), second
gradient (Middle) and third gradient (Right) models.

Figure 3.11: Shear angle distributions: PES at 20% (top left) and 50%(bottom
left) elongation.
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3.6 Denouement

In this study, we present a second gradient-based continuum model for the

mechanics of an elastic solid reinforced with extensible fibers and subjected

to plane deformations. The fibers are presumed as continuously distributed

spatial rods of Kirchhoff type, under which the kinematics of fibers has been

formulated via the second and third gradient of continuum deformations. By

means of the variational principles and the virtual work statement, the Euler

equations and the associated necessary boundary conditions are obtained. The

energy density function of Spencer and Soldatos type is augmented by the third

gradient of deformations to accommodate the third gradient continua and the

associated bulk incompressibility.

More importantly, we formulate a complete linear model within the pre-

scription of superposed incremental deformations from which a complete ana-

lytical solution has been obtained. The presented linear model predicts smooth

deformations profiles and, in particular, assimilates gradual and dilatational

shear angle distributions of the composite subjected to plane bias extension.

This is due to the sufficient continuity of the resulting deformation fields suit-

ably sustained by the third gradient of continua, unlike those of lower-order

continua where sharp variations are present on the corresponding shear zones.

Lastly, we note that the proposed linear model demonstrates reasonably ac-

curate predictions in the deformation and shear angle analyses of polymeric

composites.
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Chapter 4

The second-order finite element
analysis of hyper-elastic
composites reinforced with
fibers subjected to tensile loads

4.1 Kinematics

The following model has been developed to describe the behavior of solids

reinforced with fibers resistance to extension. We propose that the mechanical

response of the hyper-elastic fiber material is governed by the following strain

energy function:

W (F,G) = ˆ︂W (F) +W (G), W (G) ≡ 1

2
C (F) |g|2 , (4.1)

where F is the first gradient of the deformation function (χ(X)) and G is the

second gradient of the deformation (i.e. G = ∇F). The conventional strain

energy function in the Eq. (4.1) has been borrowed from [41] by Spencer and

Soldatos.

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (4.2)

where

d = FD, (4.3)

in which D is the unit tangent to the fiber trajectory in the reference config-

uration. Eq. (4.3) can be derived by taking the derivative of r(s) = χ(X(s)),

and correspondingly utilizing D = X′(s) and d = r′(s). Derivatives respect to
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arclength parameter along the fiber in the initial configuration are presented

with primes(i.e. (∗)′ = d(∗)/dS).

The geodesic curvature of an arc is demonstrated as (r (s)) is derived from Eq.

(4.3) and is presented below:

g ≡ r
′′
= (FD)′ = F′D+ FD′ = F′D =

dF

dX
(
dX

ds
⊗D) =G(D⊗D), (4.4)

for initially straigth fibers (i.e. D′ = 0). Also, Eqs. (4.2-4.3) result in:

λ2 = FD · FD = FTFD ·D = CD ·D = C ·D⊗D. (4.5)

The compatibility condition is one of the principal equations in the kinematic

of fibers and is demonstrated below:

GiAB = FiA,B = FiB,A = GiBA. (4.6)

We can consider C(F) = C and thereby conclude:

ˆ︂W (F) = W (I1,I2, ε) , where I1 = trC =λ2
1 + λ2

2, I2 =
1

2
[tr(C)2 − [tr(C2)],

C = FTF and ε =
1

2

(︁
λ2 − 1

)︁
=

1

2
(C ·D⊗D−1) . (4.7)

We then have

W (I1, I2, ε,g) = W (I1, I2, ε) +
1

2
C |g|2 = W (F,G) (4.8)

Correspondingly, by taking the derivative, Eq. (4.8) can be shown in the below

format:
·
W =

·
W (I1, I2, ε,g) = WF

·
F +Wε

·
ε+Wg ·

·
g, (4.9)

It should be noted that the energy function W is a function of I1, I2, g, and

ε. G. To derive the required expressions, we use the principals of continuum

mechanics and obtain:

·
I1 = [tr(C)

·
] = (I ·C

·
) = I·

·
C = 2F·

·
F,

·
I2 = 2F[{(F · F)I− FTF}]·Ḟ. (4.10)

and (λ2
·
) = (FD · FD

·
) then

·
ε =

·
λλ = FD ·

·
FD =tr(FD⊗

·
FD) = tr((FD⊗D)

·
F

T

) = FD⊗D·
·
F.

(4.11)
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by substituting Eqs. (4.9), and (4.10) into Eq. (4.11):

·
W = WF ·

·
F+Wε

·
λλ+ Cg · ·

g

= WF ·
·
F+WεFD⊗D·

·
F+ Cg · ·

g. (4.12)

In order to accommodate bulk incompressibility, we augment the concept of

Lagrange multiplier into the original energy function:

U(I1, I2, ε,g,p) = W (I, ε,g)− p(J − 1). (4.13)

Then

·
U =

·
W − ·

p(J − 1)− p
·
J =

·
W − p

·
J, ∵

·
p(J − 1) = 0 for J = 1. (4.14)

Further, since
·
J = ∂J

∂F
·

·
F = J (F−1)

T ·
·
F = F∗ ·

·
F, augmenting (2.13) and

(2.19) furnishes to:

·
U = (WF +WεFD⊗D− pF∗) ·

·
F+WG ·

·
G, (4.15)

which considers bulk incompressibility in addition to fibers resistant to exten-

sion and flexure .

4.2 Equilibrium

Derivation of Euler equation and corresponding boundary conditions up the

second gradient order are owed to the efforts of authors in [52], [82]. The

relation between the mechanical loads, and the deformation can be derived by

using previously mentioned mathematical formulations and consequently, the

weak form of equilibrium equation is presented below:

·
E = P, (4.16)

where P is the virtual work of the applied loads and the superposed dot refers

to the variational derivative;

E =

∫︂
Ω

U (F,G) dA (4.17)

74



The procedure of finding the intended loads depends on the existence of poten-

tial L such that P =
·
L. It can be concluded that, the problem of determining

equilibrium deformations can be simplified as a local minima search of energy

potential function E − L.

Thus, We have
·
E =

∫︂
Ω

·
U (F,G) dA, (4.18)

where
·
U is taken from (2.21). By substituting the corresponding values we

then have:

WG ·
·
G =

∂W

∂GiAB

·
GiAB =

∂W

∂GiAB

·
F iA,B =

∂W

∂GiAB

ui,AB; ui ≡
·
ri =

·
χi, and

∂W

∂GiAB

ui,AB =

(︃
∂W

∂GiAB

ui,A

)︃
,B

−
(︃

∂W

∂GiAB

)︃
,B

ui,A, (4.19)

,and∫︂
Ω

WG ·
·
GdA =

∫︂
Ω

(︃
∂W

∂GiAB

ui,A

)︃
,B

dA−
∫︂
Ω

(︃
∂W

∂GiAB

)︃
,B

ui,AdA. (4.20)

By taking the Green-Stokes theorem into consideration, (2.26) can be reworked

as ∫︂
WG ·

·
GdA =

∫︂
∂Ω

∂W

∂GiAB

ui,ANBdS −
∫︂
Ω

(︃
∂W

∂GiAB

)︃
,B

ui,AdA, (4.21)

where N is the rightward unit normal to ∂Ω. Additionally, from (2.21)∫︂
WG ·

·
GdA =

∫︂
∂W

∂GiAB

ui,ANBdS −
∫︂

Cgi,BDADB

·
F iAdA,

= −
∫︂
Ω

C∇g(D⊗D)
·
·F dA+

∫︂
∂Ω

W T
G[

·
F]T ·NdS. (4.22)

By combining (2.21), (2.24), and (2.28), we deduce

·
E =

∫︂
Ω

P
·
·F dA+

∫︂
∂Ω

W T
G[

·
F]T ·NdS, (4.23)

where

P =WF +WεF(D⊗D)− pF∗ − C∇g(D⊗D), (4.24)

and hence the Euler equation

Div(P) = 0, (4.25)

which holds in Ω.

75



4.3 Composite with exponential Fibre Poten-

tial

Hyper-elastic materials are conventionally considered to be soft-material com-

posites such as carbon rubber-fiber composites and polymer composites. There

should be some modifications in the energy density function to describe their

behavior as it is presented below:

W (F, ε) = W (F) +W (ε) = W (F) + AeBε. (4.26)

In order to proceed we consider the following equations:

ε =
1

2

(︁
λ2 − 1

)︁
=

1

2
(FD · FD−1) , (4.27)

ε̇ = λλ̇ = FD · ḞD =tr(FD⊗ ḞD) =tr((FD⊗D)Ḟ
T
) (4.28)

= F(D⊗D) · Ḟ. (4.29)

By substituting the above equations in Eq. (4.12), we would obtain:

W (F, ε) = W (F) +W (ε) = W (F) + Ae
B
2
(FD·FD−1). (4.30)

while:

W (F) =
µ

2
(I1 − 3); µ > 0. (4.31)

Variational computation of Eq. (4.12) yields to:

Ẇ (F,ε) = WF·Ḟ+Wε
·
ε = WF·Ḟ+Wε·

·
F (4.32)

Wε·ε̇ = ABe
B
2
(FD·FD−1)F(D⊗D) · Ḟ (4.33)

WF · Ḟ = [µFiA + λFiB(FjCFjCδAB − FjAFjB)](ei⊗EA)·Ḟ kC(ek⊗EC) (4.34)

For desired applications, the above energy variation form can be employed.

For example, in the case of unidirectional and inextensible fibers, we combine

Eqs. (4.15), (4.18), (4.24), and (4.34). In conclusion, we derive the leading

equilibrium equation:

0 = PiA,A = µFiA,A + λFiB,A(FjCFjCδAB − FjAFjB) + λFiB(2FjC,AFjCδAB

− FjA,AFjB − FjAFjB,A) + (ABe
B
2
(Fj1Fj1−1))[BFj1,AFj1Fi1DA − Fi1,ADA)

− p,AF
∗
iA,A − CFi1,11ADA (4.35)
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We need to substitute F in Eq. (4. 35) as it mentioned below:

FiA = χi,A =
∂χi

∂XA

(4.36)

Now, If we expand the equations for A,B,C = 1, 2 ,and D1 = 1, D2 = 0, and

also expand the summations for j = 1, 2 we would finally obtain:

0 = µ(χi,11 + χi,22) + λ(χi,11 + χi,22)(χ1,1χ1,1 + χ1,2χ1,2 + χ2,1χ2,1 + χ2,2χ2,2)

− λ(χi,11 + χi,12 + χi,21 + χi,22)(χ1,1χ1,1 + χ1,1χ1,2 + χ1,2χ1,1 + χ1,2χ1,2

+ χ2,1χ2,1 + χ2,1χ2,2 + χ2,2χ2,1 + χ2,2χ2,2) + λ(χi,1 + χi,2)(2χ1,11χ1,1

+ 2χ1,21χ1,2 + 2χ1,12χ1,1 + 2χ1,22χ1,2 − χ1,11χ1,1 − χ1,11χ1,2 − χ1,22χ1,1

− χ1,22χ1,2 − χ1,1χ1,11 − χ1,1χ1,21 − χ1,2χ1,12 − χ1,2χ1,22 + 2χ2,11χ2,1

+ 2χ2,21χ2,2 + 2χ2,12χ2,1 + 2χ2,22χ2,2 − χ2,11χ2,1 − χ2,11χ2,2 − χ2,22χ2,1

− χ2,22χ2,2 − χ2,1χ2,11 − χ2,1χ2,21 − χ2,2χ2,12 − χ2,2χ2,22)

+ ABe
B
2
[(χ1,1χ1,1+χ2,1χ2,1)−1][B(χ1,11χ1,1 + χ2,11χ2,1)χi,1 − χi,11]

− p,1εijε12χj,2 − p,2εijε21χj,1 − Cχi,1111 (4.37)

Now plugging in i = 1, 2 would give us the following equilibrium equations:

0 = µ(χ1,11 + χ1,22) + λ(χ1,11 + χ1,22)(χ1,1χ1,1 + χ1,2χ1,2 + χ2,1χ2,1

+ χ2,2χ2,2)− λ(χ1,11 + χ1,12 + χ1,21 + χ1,22)(χ1,1χ1,1 + χ1,1χ1,2 + χ1,2χ1,1

+ χ1,2χ1,2 + χ2,1χ2,1 + χ2,1χ2,2 + χ2,2χ2,1 + χ2,2χ2,2) + λ(χ1,1 + χ1,2)

( 2χ1,11χ1,1 + 2χ1,21χ1,2 + 2χ1,12χ1,1 + 2χ1,22χ1,2 − χ1,11χ1,1 − χ1,11χ1,2

− χ1,22χ1,1 − χ1,22χ1,2 − χ1,1χ1,11 − χ1,1χ1,21 − χ1,2χ1,12

− χ1,2χ1,222χ2,11χ2,1 + 2χ2,21χ2,2 + 2χ2,12χ2,1 + 2χ2,22χ2,2 − χ2,11χ2,1

− χ2,11χ2,2 − χ2,22χ2,1 − χ2,22χ2,2 − χ2,1χ2,11 − χ2,1χ2,21 − χ2,2χ2,12

− χ2,2χ2,22) + ABe
B
2
[(χ1,1χ1,1+χ2,1χ2,1)−1][B(χ1,11χ1,1 + χ2,11χ2,1)χ1,1

− χ1,11]− p,1χ2,2 + p,2χ2,1 − Cχ1,1111 (4.38)
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0 = µ(χ2,11 + χ2,22) + λ(χ2,11 + χ2,22)(χ1,1χ1,1 + χ1,2χ1,2 + χ2,1χ2,1

+ χ2,2χ2,2)− λ(χ2,11 + χ2,12 + χ2,21 + χ2,22)(χ1,1χ1,1 + χ1,1χ1,2 + χ1,2χ1,1

+ χ1,2χ1,2 + χ2,1χ2,1 + χ2,1χ2,2 + χ2,2χ2,1 + χ2,2χ2,2) + λ(χ2,1 + χ2,2)

( 2χ1,11χ1,1 + 2χ1,21χ1,2 + 2χ1,12χ1,1 + 2χ1,22χ1,2 − χ1,11χ1,1 − χ1,11χ1,2

− χ1,22χ1,1 − χ1,22χ1,2 − χ1,1χ1,11 − χ1,1χ1,21 − χ1,2χ1,12

− χ1,2χ1,222χ2,11χ2,1 + 2χ2,21χ2,2 + 2χ2,12χ2,1 + 2χ2,22χ2,2 − χ2,11χ2,1

− χ2,11χ2,2 − χ2,22χ2,1 − χ2,22χ2,2 − χ2,1χ2,11 − χ2,1χ2,21 − χ2,2χ2,12

− χ2,2χ2,22) + ABe
B
2
[(χ1,1χ1,1+χ2,1χ2,1)−1][B(χ1,11χ1,1 + χ2,11χ2,1)χ2,1 − χ2,11]

+ p,1χ1,2 − p,2χ1,1 − Cχ2,1111 (4.39)

4.3.1 Finite element analysis of the 4th order coupled
PDE

The weak form of Eqs. (4.38), and (4.39) are the first two equations in imple-

menting the FEM procedure for the corresponding system of partial differential

equations. For the sake of conciseness, we would not go through their weak

form expansions in this manuscript. However, the necessary u-substitutions

to reduce the order of previously mentioned PDEs are presented below:

0 = Q− χ1,11, (4.40)

0 = R− χ2,11, (4.41)

0 = C − χ1,1, (4.42)

0 = D − χ2,1, (4.43)

0 = A− µ(Q+ χ1,22)− CQ,11, (4.44)

0 = B − µ(R + χ2,22)− CR,11, (4.45)

In order to simplify the nonlinearities that have been arisen in the original

equations, we make use of the Picard iterative method that is described below.

In fact, the non-linear terms in the original equations can be replaced by their
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corresponding constants and get updated after each iteration

−Aχ2,2 +Bχ2,1 =⇒ −A0χ2,2 +B0χ2,1 (4.46)

Aχ1,2 −Bχ1,1 =⇒ A0χ1,2 −B0χ1,1 (4.47)

4.4 Theoretical predictions and experimental

comparisons

The first step corresponding to the investigation of how the model performs

in the real-life application is visualizing the deformation contour. In order to

assess the results that have been obtained from the numerical model, [8], [53],

[96] seem to be appropriate references. The schematic shape of deformation

contours can be visualized in Figure 4.1.

Figure 4.1: Deformation contour for E1/µ = 150, and P/µ = 200.

In terms of schematic deformation contour, It seems to show a reasonable

agreement with the experimental results. Some more experiments with the

fiber coefficients have been done that are shown in Figure 4.2, and Figure 4.3.

In the following cases, all the coefficients except one have been kept the same

for both cases.
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Figure 4.2: Node-based deformation contours comparison for P/µ = 150(left),
and P/µ = 230(right).

Figure 4.3: Node-based deformation contours comparison for E/µ = 200(left),
and E/µ = 150(right).

In the first figure having different tensile force causes the extension pro-

files and deformation contours to be changed drastically. It is observed that

having higher values of P corresponds to more longitudinal extension in the X

direction, which is justified with the conservation of mass theorem. Addition-

ally, the second figure compares the effects of E on the deformation profile. A

higher value of E can be inferred as the stiffer matrix in the X direction, and

consequently, less extension in parallel to this axis.

A significant measure to determine the accuracy of the numerical model is

making use of the stress-strain figure, and comparing the finite element re-

sults with the experimental dataset as presented in Figure 4.4, and Figure 4.5.
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NSP-8020 and NSP-8515 are the hyper elastic materials that were used in the

bias-extension test.

Figure 4.4: Comparison of stress-strain curves for NSP-8020, theoretical pre-
diction(red), and experiment(blue).
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Figure 4.5: Comparison of stress-strain curves for NSP-8515, theoretical pre-
diction(red), and experiment(blue).

As is inferred from the figures above, there is a reasonable agreement be-

tween the predictions of the theoretical model and experimental results. Basi-

cally, we find the exponential coefficients A, and B by trial and error to fit the

stress-strain curve obtained from FEM to the experimental results. It should

be noted that, A, and B play a vital role in determining the mechanical prop-

erties of hyper-elastic material. Values of A, and B that present the best fit

are 0.06, 0.4 for NSP-8020, and 0.1, 0.145 for NSP-8515.

Changing A, and B as the exponential coefficients would result in consider-

able adjustments in the stress-strain contour. Some experiments regarding

this matter have been done in the case of NSP-8020 ,and they are presented

in Figure 4.6, and Figure 4.7.
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Figure 4.6: Stress-strain curves comparison while B is constant: A =
0.06(red), A = 0.05(green), A = 0.04(blue).
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Figure 4.7: Stress-strain curves comparison while A is constant: B = 0.3(blue),
B = 0.35(green), B = 0.4(red).

The main focus of this research is predicting the behavior of composite

materials subject to the various mechanical loads. In this chapter, we would

try to estimate the behavior of the composite material based on the properties

that we have gathered from the raw fiber data. Notably, it can be applied

to the industries, and it would help the manufacturer to have a very clear

idea of the mechanical characteristics of the reinforced composites before the

production stage. For this purpose, we can fit the strain-stress predictions

obtained from the finite element model to the raw fiber data that is resulted

from the experiments by changing the values of exponential components. It

should be considered that, finding the appropriate A, and B to reduce the

error between the predictions and experiments is a trial and error procedure.

Using the specific coefficients that we acquired from the previous step, we can

acquire Figures 4.8 -4.11.
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Figure 4.8: Comparison of stress-strain curves for NSP-8020 raw fiber material,
theoretical prediction(red), and experiment(blue).

Figure 4.9: Comparison of stress-strain curves for NSP-8020 composite, theo-
retical prediction based on the raw fiber(red), and experiment(blue).
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Figure 4.10: Comparison of stress-strain curves for NSP-8515 raw fiber mate-
rial, theoretical prediction(red), and experiment(blue).
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Figure 4.11: Comparison of stress-strain curves for NSP-8515 composite, the-
oretical prediction based on the raw fiber(red), and experiment(blue).

As inferred from the figures above, there seems to be a rational closure be-

tween the predictions of the finite element model and the experimental dataset.

Values of A, and B that present the best fit are 0.0733, 1.4 for NSP-8020, and

0.0369, 1.8423 for NSP-8515. It should be noted that a cofactor has been used

for the exponent of exponential function B that stands for the transformation

of raw fiber to the composite, for each specific material.

4.5 Denouement

In this study, we present a second-order gradient method augmented with

exponential energy function. This model has been designed to predict the

non-linearity arose while the hyper-elastic composite is subjected to a tensile

force. The principles of continuum mechanics and equilibrium equations have

been used to derive a system of partial differential equations to describe the

87



composite material’s mechanical response. Numerical analysis is based on the

conventional finite element methods. Correspondingly, the weak form of the

partial differential equations was derived and fed to the newton solver. Re-

sults for different values of exponential components represent an acceptable

agreement with the experimental set obtained from NSP-8020 and NSP-8515

composite material. In conclusion, the values for A and B play a deterministic

role in predicting the mechanical response of fiber-reinforced material. Factu-

ally, we can predict the behavior of fiber-reinforced hyper-elastic solids using

the obtained coefficients from the raw fiber material.
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Chapter 5

Conclusion and Future works

5.1 Conclusion

During recent years, Many efforts have been made by researchers to determine

solutions to analyze the response of composite materials subjected to different

types of mechanical loads [8], [9]. In this thesis, continuum-based mathemati-

cal frameworks have been employed to predict the behavior of fiber-reinforced

composite materials.

In the first two chapters, the main objective is to derive an analytical ex-

pression that determines the mechanical response of composites subjected to

flexural and tensile loads. In point of fact, determining equilibrium deforma-

tions of the fiber-reinforced solid flexed or extended at the boundaries can

be resembled and correspondingly replaced by the problem of minimizing the

potential energy. Small incremental deformation respect to the initial config-

uration was served as the baseline to acquire the linearized Euler equation.

Elastic Neo-Hookean solid reinforced with unidirectional fiber is the structure

that has been investigated to examine the continuum-based theory. Several

measures, such as deformation contour, shear angle, and shear strain, have

been included to validate the higher-order gradient model’s accuracy. The ob-

tained deformation contours are sensitive to both the double stress and triple

stress parameters. For instance, we would see a gradual reduction in the de-

formed configuration by increasing the value of double stress caused by having

stiffer material under the same load. To investigate the effects of third-order

gradient parameter shear strain and shear angle contours have been computed.
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It has been demonstrated that there are no sharp variations of the gradient

in the acquired 3rd-order gradient shear strain contours, unlike the first and

second-order methods. These dilatational contours have resulted from the

smooth transitions in the corresponding shear gradient areas sustained by the

third gradient continua. Moreover, the deformation profiles generated from

the analytical model have been compared to the experimental results obtained

from rubber composites. The relative error has been computed for the nu-

merical predictions and the experimental data. A reasonable agreement can

be concluded based on the value of the error. Finally, the 3rd-order gradient

model seems to capture the behavior of fiber-reinforced solid accurately.

In the third chapter, a second gradient approach using the exponential

fiber potential has been considered to describe the response of soft-material

composites subjected to tensile load. Likewise, the continuum-based analysis

starts with deriving the weak form of equilibrium equation to achieve the par-

tial differential equations describing the behavior of fiber-reinforced material.

Although, this chapter focuses on finding the finite element solution for the

corresponding system of PDEs. The order of each equation has been decreased

using a change of variables approach. Consequently, the Newton finite element

solver is the primary solver that has been used to obtain the solution. Newton

solver has been implemented in the FEniCS project, which is an open-source

finite element solver in python. The main focus is on finding the exponential

components of the energy function. These components are deterministic in the

prediction of deformation contour. NSP-8020 and NSP-8515 are considered to

be the solids that are investigated in the case of hyperelastic material. Expo-

nential function properties are specified in such a way to fit the raw fiber data

since the deformation contour is sensitive to any change in previously men-

tioned parameters. After acquiring the fitting process coefficients, I used them

to approximate the composite deformation curve. Results have been presented

with acceptable compliance between NSP-8020 AND NSP-8515 deformation

curves and predictions from the FEM model. Overall, the previously men-

tioned parameters play a vital role in regulating the mechanical properties of

hyper-elastic material. It should be noted, a rough estimation of composite
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material response before going to the production stage in industries is very

beneficial, and correspondingly having substantial information from the theo-

retical model would save manufacturers time and money.

5.2 Future Works

Extending the previously mentioned models by adding higher-order terms

would be beneficial to predict the intrinsic properties of fiber-composites.

Indeed, microstructure analysis of fiber-composite material needs to be in-

vestigated in every comprehensive framework due to its complication in the

mathematical formulations. Using higher-order terms is beneficial in produc-

ing more accurate and reliable results. As a matter of fact, the microstructural

properties of materials are entangled with the gradients of deformation in the

case of fiber-reinforced composites

Moreover, the finite element analysis of the continuum mechanics formu-

lations, followed by the corresponding weak forms of partial differential equa-

tions, is a rational alternative to investigate the effects of loads on the me-

chanical response of the fiber-reinforced materials. Indeed, a finite element

framework can replace the analytical solution that has been derived in the

first and second chapters. However, according to the complexity that arose

from higher-order gradients, the convergence criterion is very sensitive in such

cases.

Lastly, Utilizing an additional term as a complementary factor in the en-

ergy expression, such as polynomial or exponential functions, can impact our

predictions tremendously. In this fashion, we can explore the behavior of raw

fiber to obtain the necessary information similar to the exponent of exponential

functions or the order of the polynomial to foresee the properties of fiber elas-

tic composite before production. It is necessary to point out; within the third

chapter of this thesis, the main focus is on soft rubber-like materials. However,

other types of materials, such as viscoelastic materials, can be analyzed in a

similar mathematical framework with different fiber potential functions.
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[29] Y. Başar and D. Weichert, “Constitutive modelling,” in Nonlinear Con-
tinuum Mechanics of Solids, Springer, 2000, pp. 139–174.

[30] R. S. Rivlin and D. Saunders, “Large elastic deformations of isotropic
materials vii. experiments on the deformation of rubber,” Philosophical
Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, vol. 243, no. 865, pp. 251–288, 1951.

[31] A. E. Green and R. S. Rivlin, “The mechanics of non-linear materials
with memory,” Archive for Rational Mechanics and Analysis, vol. 1,
no. 1, pp. 1–21, 1957.

[32] T. J. Pence and K. Gou, “On compressible versions of the incompressible
neo-hookean material,” Mathematics and Mechanics of Solids, vol. 20,
no. 2, pp. 157–182, 2015.

[33] Neo-hookean solid, Mar. 2020. [Online]. Available: https://en.wikipe
dia.org/wiki/Neo-Hookean_solid.

[34] P. Boulanger and M. Hayes, “Finite-amplitude waves in mooney-rivlin
and hadamard materials,” in Topics in finite elasticity, Springer, 2001,
pp. 131–167.

[35] M. Destrade and G. Saccomandi, “Finite-amplitude inhomogeneous waves
in mooney–rivlin viscoelastic solids,”Wave Motion, vol. 40, no. 3, pp. 251–
262, 2004.

[36] C.-H. Chen and Y.-C. Wang, “An extended nonlinear mechanical model
for solid-filled mooney-rivlin rubber composites,” Polymer, vol. 38, no. 3,
pp. 571–576, 1997.

[37] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite
element analysis. Cambridge university press, 1997.

94

https://en.wikipedia.org/wiki/Fiber-reinforced_composite
https://en.wikipedia.org/wiki/Fiber-reinforced_composite
https://www.amazon.com/Structural-Composite-Materials-F-Campbell/dp/1615030379
https://www.amazon.com/Structural-Composite-Materials-F-Campbell/dp/1615030379
https://en.wikipedia.org/wiki/Neo-Hookean_solid
https://en.wikipedia.org/wiki/Neo-Hookean_solid


[38] Stress measures, Feb. 2020. [Online]. Available: https://en.wikipedi
a.org/wiki/Stress_measures.

[39] Stress measures, Jun. 2020. [Online]. Available: https://abaqus-docs.
mit.edu/2017/English/SIMACAETHERefMap/simathe-c-stressmeas.

htm.

[40] R. M. Hackett, “Stress measures,” in Hyperelasticity Primer, Springer,
2018, pp. 29–48.

[41] A. Spencer and K. Soldatos, “Finite deformations of fibre-reinforced elas-
tic solids with fibre bending stiffness,” International Journal of Non-
Linear Mechanics, vol. 42, no. 2, pp. 355–368, 2007.

[42] K. Friedrich, “Microstructural efficiency and fracture toughness of short
fiber/thermoplastic matrix composites,” Composites Science and Tech-
nology, vol. 22, no. 1, pp. 43–74, 1985.

[43] Y. Yang, W. Ching, and A. Misra, “Higher-order continuum theory ap-
plied to fracture simulation of nanoscale intergranular glassy film,” Jour-
nal of Nanomechanics and Micromechanics, vol. 1, no. 2, pp. 60–71, 2011.

[44] R. K. A. Al-Rub, M. Ettehad, and A. N. Palazotto, “Microstructural
modeling of dual phase steel using a higher-order gradient plasticity–
damage model,” International Journal of solids and Structures, vol. 58,
pp. 178–189, 2015.

[45] M. Eltaher, M. Hamed, A. Sadoun, and A. Mansour, “Mechanical analy-
sis of higher order gradient nanobeams,” Applied Mathematics and Com-
putation, vol. 229, pp. 260–272, 2014.
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