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Abstract

As the size of the World Wide Web and the type of documents it holds grow, the

need for tools helping users to find their required information becomes more in-

creasingly important. There are several ways to summarize, navigate through or

retrieve documents on the web, such as query-based search and tag clouds; but

neither are sufficient for both getting a summary and finding desired documents.

In this thesis, we introduce BubbleNet: a new interface that helps users to get

an overview of document collections and explore them by providing an interactive

network of topics, their semantic relationships and their related documents. Our

experiments show that BubbleNet gives a better overview, is faster and more useful

in certain information retrieval tasks.
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Chapter 1

Introduction

As the size of the World Wide Web grows, and more and more people are using it

to find, publish and share information of different types and structures, the need of

tools and methods to hold, maintain and retrieve huge amounts of information also

becomes more increasingly important.

There are several forms of sharing information on the Web: static websites,

news groups, mailing lists, social networks, discussion forums, personal blogs, etc.

Recently generated media on the web are more interactive and let people collaborate

on sharing related pieces of information. News websites nowadays allow users to

comment on news articles, which is a great way for people to discuss about the

news. A user can understand how other people think about news as well as how the

author of the article thinks. Discussion forums are another group of websites that

host several threads of discussions under different topics. Users can post their own

comments or reply to others. This makes discussion forums dynamic environments

for people to share streams of ideas and thoughts.

When using a website that contains thousands of documents, the user may want

to get an abstract/high-level image of the contents of the documents without the

need to study all of them. Also, the user may want to easily and quickly find a

particular document or topic within all the topics contained in the website.

The first scenario happens when there is a large number of documents that are

mentioning different topics or different aspects of a particular topic. Similarly, in

a news website where users are encouraged to comment on news articles, there are

two main parts of information: the news article itself which is from the authors’ or
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editors’ point of view, and the set of comments that people make on the article that

represents the perspective and opinion of the reader on that article. Within a huge

amount of comments made on several news articles, it might be difficult to obtain

an overall view on the concepts mentioned in the discussions or to find specific

comments concerning a particular topic related to an article.

There has been a large body of work on how to summarize texts, news articles

and discussions. Some are listed in Chapter 3. Such summaries can be used for

helping the user acquire a big picture view of the contents of a website. There are

also other approaches for representing a high-level image of major topics discussed

in a website, such as word clouds and tag clouds. They represent the most fre-

quent words (or tags) of documents with different sizes together in a page. The

size of a word or tag indicates its importance (i.e. how many times it appeared in

the documents). We introduce previous works on word clouds and tag clouds in

Section 1.1.1.

The second goal is finding desired information within all of the documents in a

website, which can be difficult for users considering the growing size of information

shared on the web. Even in a single, but long document, the same difficulty may

occur. For example, in a discussion forum, when several people take part in a

discussion, it is likely to see topic drifts in the thread of comments, which means

that new topics that are not originally discussed in the main post of a discussion will

appear as people continue the discussion. Thus, a user may be interested in a topic

that is mentioned in the middle of a long discussion, which is difficult to find.

There are several methods to help users access their desired information. They

can use search tools by entering a query containing keywords that are likely to

appear in desired documents. Alternatively, they can use hierarchies of categories

and links provided by most of websites to reach a particular document from the first

page of a site. Again, word clouds and tag clouds can help users find documents

based on frequent words and tags appearing in them.

In this thesis, we introduce another approach to this issue. We aim to obtain

an abstract and high-level representation of major concepts discussed in a set of

documents (either a set of individual documents, such as news articles, or a set of
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parts of a long document, such as individual comments made on the same news

article or individual posts in a discussion thread) and to provide an interactive user

interface to help users access a desired document. In the following sections, we will

describe this approach in more detail.

1.1 Bubbles Network: An Innovative Interface

A human expert (for example, a librarian) can provide some keywords for a doc-

ument. These terms are a very high-level representation of the major topics in a

document. The more keywords we extract, the more detailed information the set of

keywords gives about the contents of the document.

A computer program can do a similar task: given a document (and a set of

documents as the background or domain knowledge), there are several algorithms

for extracting important terms that represent the major topics of the given document.

Some of those methods are briefly introduced in Chapter 3. Using keywords, a user

can find documents relevant to a particular topic or more effectively query those

documents.

Within a corpus of documents, such as a news website with many articles, or a

discussion forum with thousands of discussion threads, there are often many docu-

ments referring to the same concepts. For example, if one searches Google News

for Android, there will be hundreds of documents returned as the results. They all

share the same topic, but they are also about different aspects of that topic (such

as Android OS, Android Phones, Android Apps, Android Market, etc.) or different

events related to it (such as Android Release, Android Update, Android Unveiling).

The collection of these documents represents some information about the topic,

for example, the fact that Android is an operating system, it is used on touch screen

devices, it is an open-source software, etc. All these topics are related to the topic

Android. Also, because of this, as well as many other open-source operating sys-

tems such as Linux and OpenBSD, the concepts operating system and open-source

are also somehow related. The same relation would exist between terms open-

source and application. Such relations can be inferred by looking at the whole set
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of documents related to these topics.

When users are trying to find a document, they have a topic in their minds. This

might be an abstract concept or sense and the user may have no words in mind to

explain it accurately. Using query-based search engines, they have to convert that

topic to one or more words and find their desired document within a set of doc-

uments containing those words, returned by the search enginge. More advanced

search engines help users enhance their queries by suggesting similar words or au-

tomatically refining the query to match more related documents.

Our approach, on the other hand, is quite different. In our approach, we aim

to provide a high-level representation of topics appearing in the corpus in the form

of a network, showing the topics as well as their relationships. These relationships

will be defined in the next chapters, but generally, they tend to be an estimation

of semantic relationship between topics. For example, if topic A is a major event

related to product B, or a product that is often used together with B, or a problem

that always rises when people use product B, it is reasonable to expect that a user

who is querying for B would like to see A as a related topic to B.

Having such a network, a user can obtain a big picture of all major concepts

within a corpus at a very high-level. The user can then navigate through this net-

work: drill down from a topic to see other related concepts in a lower and more

detailed level. A user may also want to enter a query (i.e. a term) to start naviga-

tion. He or she can then navigate to other related topics and finally find a set of

documents related to their desired topics.

This network can also be constructed on a single but long document instead of a

corpus of documents. For example, given a news article and hundreds of comments

that people added to that article, such a network could be constructed showing dif-

ferent topics and concepts mentioned in the long thread. This way, by looking at this

network, a user can find a big picture of the entire discussion at a glance and then

navigate to find a specific comment talking about a specific aspect of the article. A

similar application can be considered for discussion forums with long discussions.
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1.1.1 Comparing to Similar Approaches

As mentioned previously, there are other solutions to these problems. Tag clouds

are a method of representation for the statistics of tag usage in a set of documents.

Tags are often manually chosen by the authors or other users reading documents

and indicate the topics to which documents are related. A tag cloud represents tags

according to their frequency, i.e. a tag that is more frequent in the set of given doc-

uments will apear with larger font size. Similarly, word clouds represent frequent

words appearing in documents. Tags and words are often arranged randomly, how-

ever, there are other methods for arranging them in more meaningful ways such

as alphabetical order or based on semantic relationships[1] or to fill a geometrical

space or to minimize empty spaces.

Figure 1.1 shows a sample text cloud comparing 2002 State of the Union Ad-

dress by U.S. President Bush and 2011 State of the Union Address by President

Obama[2].

Figure 1.1: A sample text cloud comparing 2002 State of the Union Address by
U.S. President Bush and 2011 State of the Union Address by President Obama.

Scientists also aggregated tag statistics and the information about semantic rela-

tionships between tags to provide a better and more useful representation. Applying

tag clustering to visualize tags in clusters was performed by [3]. They show tags in
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clusters, combined with a search box to accept user’s queries. Their scenario works

this way: A user enters a word as a query, and related tags are represented according

to the clustering. By clicking on a tag, that tag is added to the query using AND

operator. This way, tag clusters are similar to term suggestion methods in search

engines.

Another approach was used by The Economist website for representing the most

commented topics. They counted how many times the named entities (such as coun-

tries, organizations and persons) were mentioned in the comments that users have

made on news articles. Entities are represented in bubbles. The more frequent a

word appears in the comments, the larger the corresponding bubble. The technol-

ogy for this bubble representation is provided by Infomous[4], but they have not

published the details of their technology as it is a commercial product. Figure 1.2

shows this bubble approach in The Economist website[5].

Figure 1.2: Bubbles approach for representing most commented named entities in
The Economist website.
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The previously mentioned approaches all have limitations. Tag clouds require

manually chosen tags. Word clouds, in contrast, do not choose an appropriate subset

of words. For a very large set of documents, we need a system to automatically find

good tags to summarize the documents. They also ignore semantic relationships

between tags or words, which could be a very powerful assistant for users to find

topics. Clustered tag clouds are a solution to this limitation, but they only let users

add tags to the query, while a user may want to explore tags and navigate through

them without adding the tag to their query.

The bubble representation that is used by The Economist has also its limita-

tions. It only extracts named entities such as names of countries, organizations and

persons, and allows the user to find a list of documents mentioning those entities.

For a more general application, we need to consider other possible tags (keywords)

that properly present the topics. These topics are not equally important, so the user

might want to be able to start from a more general or important topic and drill down

to reach a more specific and less important one. Another limitation is that the only

way that a user can access the comments is by clicking on entities. This prevents

users from retrieving comments that include combinations of topics according to

relations between pairs of topics.

1.1.2 Thesis Statement

Based on the discussions above, we hypothesize that a user interface that provides

an interactive visualization of topics extracted from documents and their semantic

relationships will help users in certain information retrieval tasks, including getting

an overview of the contents of a set of documents and finding relevant informa-

tion to a given topic. Such an interface can result in more satisfaction of users in

terms of a faster and easier way to find desired information, a better interface for

getting an overview of contents of the documents and a more pleasant experience

of information retrieval.

Section 7.3 discusses how our evaluations support this hypothesis.
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1.1.3 Our Contribution

BubbleNet addresses some of the limitations mentioned in the previous section.

Below is the list of our contributions:

• Keyword Extraction: We utilize a state-of-the-art keyword extraction and

named entity recognition tools to provide an effective method for automati-

cally annotating documents. These keywords will appear in the interface to

guide users to find their desired information.

• Domain-Specific Ontologies: We open the doors of our system to pre-constructed,

domain-specific ontologies to improve keyword extraction and relation ex-

traction. We provide a way to combine domain ontologies and keyword/-

named entity extraction tools. Our method is applicable on both document

sets and long individual documents, allowing websites to provide a novel

method for navigating within a single, but long document.

• Browsable Interface: By constructing a network of topics and relationships,

we create an interactive interface that allows users to start from a topic, ex-

plore the network to reach other topics freely and find the list of related doc-

uments without entering a query.

• Time Trend Visualization: The way we construct our network lets us pro-

vide a high-level image of discussed topics within a specific timespan. This

way, users can see the trends of changing topics in a website during the time.

• Evaluation: We conducted an effective user experiment to show the useful-

ness and usability of BubbleNet in certain information retrieval tasks.

1.2 Our methodology at a glance

For building a bubbles network, we have to complete the following stages:

• Keyword extraction/topic assignment: for each document (or each part of

discussions), we need to identify one or a few words that represent the main

topics discussed in a document.
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• Relation extraction/similarity estimation: once some keywords or topics as-

signed to each document, the nodes of the network can be formed. We then

need to extract/estimate relations between those topics based on the contents

of documents to form the edges/links in the network.

• User interface: having the network constructed, we need to index all docu-

ments based on the network nodes and links and provide a user interface that

enables users to navigate to documents using nodes and edges of the network.

We now briefly describe each stage separately.

1.2.1 Keyword Extraction

Keywords are supposed to be representative of the major topics discussed in a doc-

ument. There are several algorithms for extracting keywords. Some of them are

introduced in the next chapter. They use statistical methods, linguistic methods or

a combination of both for finding keywords. We combine three different methods:

tf-idf, named-entity recognition, and other advanced methods.

1.2.2 Relation Extraction

There are methods for learning ontologies from text that aim to detect relationships:

They find relationships such as generalization, specialization, equality, part-of, etc.

Some methods are explained in Chapter 3. In our work, in contrast, we do not focus

on the type of relationships. The only important point is to capture a relationship

(of any kind) between entities. Showing all those relationships can lead users to

interpret the type of the relationship.

To extract relationships, we use statistics on the occurrences of keywords in

sentences of the documents. The process must be relatively fast so that as the new

documents are being added to the corpus, we can update the relationship list on

the fly. We also need to store all this information (keywords, their relationships

and their ties to documents) in an appropriate data structure to be able to retrieve

and update information quickly. Our methodology is described in the following

chapters in detail.
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1.2.3 User Interface

After building the network in stages 1 and 2, we provide a user interface to help

users search/navigate a set of documents using this network. This network enables

a user to see major topics and their relationships, drill down to more specific relevant

topics, and finally navigate to a particular document or a part of a document.
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Chapter 2

Perliminary Definitions and
Overview

In this chapter, we define a set of terms and concepts we are using throughout the

thesis and provide an overview of the input and the expected output of our proposed

system.

2.1 Term Definitions

• Document: A document is a piece of information generated by an author or

authors. Each document consists of a text (called body), a date and option-

ally a text called title representing the main subject of the document, and a set

of tags provided by the author to describe the contents of the document. In

different applications, different formats of data can be considered as a docu-

ment: an individual comment made on an article, an article together with all it

comments, a thread in a discussion forum, an individual reply in a discussion

or a post in a blog.

• Entity: An entity is a phrase that represents a concept, such as a topic, a

person, an organization, a location or any other significant concept or object.

An entity is said to be occurring in a document if that document refers to

that entity (either implicitly or explicitly). An entity has a score that indicates

how “important” an entity is. An entity is said to be important if it occurs in a

significant number of documents frequently. In this manuscript, we will use

‘term’, ‘phrase’, ‘word’ and ‘topic’ all to refer to entities.

11



• Relationship: A relationship is a scored pair of entities, indicating the se-

mantic relation between two entities. Two entities are said to be semantically

related if it is likely for a user to prefer to include the second entity in their

query to get more accurate results when already using the first one. The score

of a relationship indicates how strong a relationship is.

• Corpus: A set of all documents in a website or information system.

2.2 The System Overview

Our system is expected to build a network of entities and their relationships from a

given set of documents, as well as providing an interactive user interface. The first

task can be formulated as follows:

Given a set of documents D = {di},

• find a set of representetive entities E = {ej} such that ∀e ∈ E ∃d ∈ D : e

occurs in d

• find a set of relationshipsR = {rk} such that ∀ei, ej ∈ E ∃r ∈ R : r shows

the relation between ei and ej .

The latter part, the user interface, has to provide the following functionality:

• The user, at the first glance, should see the most important entities for a partic-

ular period of time. This set must be updated if the user changes the timespan.

• The user should be able to see the entities related to a particular entity by

clicking on it. The size of the entity indicates its score. This is done with

respect to the indicated timespan.

• The user should see links between the entities indicating relationships. The

thickness of the link indicates the score of the relationship. This is done with

respect to the indicated timespan.

• The interface is supposed to provide a list of documents when the user points

to or right-clicks on an entity or a relationship. This is done with respect to
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the indicated timespan. By clicking on an item of this list, the user can access

that document.
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Chapter 3

Literature Review

As a novel interface for retrieving and navigating through documents, BubbleNet

can be considered as a consequence of several attempts to improve methods that

users use to access information in a website. The work relates to several areas of

data mining and information retrieval. Here we review the related literature.

3.1 Keyword Extraction

Keyphrase extraction or keyword extraction is the process of recognizing represen-

tative words within a text. This process can be done manually, as performed by

librarians in order to index books and documents. This task can also be performed

automatically and there are different methods for finding significant words:

• Statistical Methods: In this approach, the statistics of words, such as TF

(term frequency: the frequency of appearance of a word in a document), IDF

(inverse document frequency: the number of documents in a corpus that con-

tain that word) and the position of a word in the document, are used to esti-

mate how important and representative a word is.

The idea behind this approach is that representative words usually have spe-

cial statistics: They tend to appear in earlier paragraphs of a text since the

first few paragraphs usually introduce the main topic of the document; they

are likely to appear in the document several times as they are important and

related to the topic of the document, and at the same time they are unlikely to
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appear in many other documents because they are discriminating the topic in

which a particular document is specialized.

In [6] the authors introduce a method for extracting important terms and noun

phrases in both English and French based on words’ statistical characteristics.

[7] uses the statistics of compound words for automatic term recognition.

Several variations of tf-idf were used by [8] for extracting keywords from

news articles. [9] provides a survey of these methods.

The advantage of statistical methods is that they are easy to use and do not

have much requirements. They can be used without training data and their

results are satisfactory.

• Linguistic Methods: In these approaches, the linguistic knowledge such as

sentence structure analysis, part of speech tags and other linguistic features

are combined with statistics to improve the results. This approach is based on

the idea that phrases with special linguistic features (such as part of speech) or

appearing in some linguistic patterns are more likely to be useful keywords.

[10] added linguistic knowledge (such as PoS) to term extraction methods

from abstracts and reported a significant improvement. [11] combined lin-

guistic information with statistics for multiword term extraction. Wermter

and Hahn claimed that based on their experiments, term extraction meth-

ods cannot beat simple frequency-based methods unless they utilize linguistic

knowledge [12].

• Machine Learning Methods: Using training data to learn models of key-

word extraction is also a common method. In many applications, there is

a training set available, which contains documents with manually extracted

keywords. Machine learning based methods use the training set to learn a

model to recognise important words. This model can be constructed based

on features ranging from statistical and linguistic features to words and n-

grams. For example, some words are more likely to be keywords due to their

meanings or their grammatical role in text based on samples in training set.
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The Keyphrase Extraction Algorithm (kea) is a sample of machine learning

based algorithms [13]. Kea extracts keyphrases in two main stages: First,

it chooses a subset of phrases in a document as candidate phrases. In order

to choose candidate phrases, Kea uses some heuristics, such as the number

of words in a phrase, stop words, etc. These words are then assessed based

on features such as tf-idf and first appearance (position), and keyphrases are

selected on the basis of a model learned from the training data.

Machine learning based methods can be domain-specific, as they build a

model using a training set. This could be considered as an advantage and

as a disadvantage. The main positive point with this characteristic is that in

applications with predefined domain that we have a set of training documents

available, the algorithm can generate better results. In contrast, if we aim

to use the algorithm for a general domain, we need a large-enough and di-

verse enough training set to cover different topics than can be discussed in

documents.

Assignment vs. Extraction: Some methods aim to assign keywords chosen

from a controlled vocabulary to documents, while others choose phrases from doc-

uments. Algorithms of the first group are appropriate for domain-specific applica-

tions where pre-constructed vocabularies are available. In contrast, in general ap-

plications (such as our system) we prefer to extract phrases from documents rather

than having a large general vocabulary.

Single Document vs. Corpus: From this perspective, keyword extraction

methods can be categorized into two main classes: methods that extract keywords

from a single document without need to look at a corpus of documents, and meth-

ods that require a whole corpus of documents to extract keywords even from an

individual one. In [14], for example, the authors propose a method for extracting

keywords from a single document, while many other methods (including the meth-

ods we cited above) use a corpus to train models before extracting keywords. Using

a corpus in a keyword extraction method has the benefit of generating more corpus-

specific results, which might be more accurate. But the disadvantage is that it is not
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useful for applications for which there is no corpus available.

In our case, the database is supposed to be constructed incrementally. That is,

there will be a set of new documents arriving everyday, and those documents will

be added to the database. Thus, particularly in the early stages, the database is not

populated enough to be considered as a corpus of documents. An ideal algorithm

should be able to use individual documents (and any external source of knowledge,

such as a trained classifier) only. But there is still the possibility to use corpus-

wide statistics using so-far constructed database. Indeed, it is impossible to use

algorithms that need a training set since it is not reasonable to train the algorithm

everyday on a huge amount of data.

3.2 Named Entity Recognition

While keyword extraction aims to find terms and phrases that summarize the most

important points discussed in a document, named entity recognition finds terms

and phrases that refer to special entities, such as persons, organizations, locations,

facilities, etc.

There are different approaches to this problem:

• Rule Based: Having a set of patterns in which named entities are likely to

appear, an automated system can recognize named entities. [15] introduces

a system that uses a set of rules to find named entities. For example, names

of persons usually consist of a first name and a last name, both capitalized,

with an optional middle name. These names are also likely to be followed or

preceded by professional titles.

• Machine Learning Methods: If there is a set of training documents avail-

able, machine learning can be used to build models for recognizing named

entities. A piece of text can be seen as a sequence of phrases. Each phrase

has a label that indicates its type, such as person, location, product, or non-

named-entity. Markov chains and conditional random fields are then used to

predict labels of new documents based on models created using training data.
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The authors in [16] propose a machine learning based method for extracting

named entities from advertisement text.

Named entity recognition methods mostly work for well-written and formal

texts such as news articles. Liu et al. introduce a method for named entity recogni-

tion from tweets, where texts are short and there is no training data available [17].

Named entity recognition can improve the quality of summarization, as men-

tioned in [18]. Named entities are ideal for our system, as we are interested in ex-

tracting names of persons, locations and other important entities from documents.

An ideal method for our system should have a trained classifier so that it does not

require training data and can be used for our incrementally growing database.

3.3 Topic Modelling

Another set of methods has been developed for assigning topics to documents. This

task is different from extracting important terms, but can produce similar results.

A topic modelling method gets a document or a set of documents as input and

assigns one or more topics to each document. Topics are not necessarily well-known

terms. That is, a topic is not something like ‘sports’, ‘politics’ or ‘obesity’. It is

an abstract assignment of several documents to a shared subject. Mathematically

speaking, a topic is a probability distribution over a vocabulary of words. Topics do

usually correspond to an actual topic in the real world. For example, a topic can be

equivalent to ‘University of Alberta Budget Cut’, while another topic can represent

subjects about ‘BC Pipeline’. From a mathematics point of view, the former gives

more probability of appearance to words like student, salary, president and cut-off,

while the latter makes words such as environment, oil, energy and ecology. Words

like Alberta and province are likely to appear in both topics. A document, then, is

a mixture of different topics.

These algorithms generally use some form of generative models where it is as-

sumed that the text is produced from a topic model, and they then try to find that

model using singular value decomposition [19] or, more recently, non-negative ma-

trix factorization [20]. More advanced methods are Latent Semantic Analysis [21]
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and Latent Dirichlet Allocation [22]. In Latent Dirichlet Allocation (LDA), the

generative model is supposed to have a Dirichlet distribution. Each topic is seen

as a probability distribution over words and each document is seen as a probabil-

ity distribution over topics. LDA then tries to find these distributions based on the

sets of words (documents) it gets as input. By doing this, LDA assigns a topic to

every word in every document with a confidence level, and thus, a mixture of most

probable topics to every document.

In LDA, the number of topics to be found is fixed before training. This means

that the user needs to know how many topics the documents in a corpus belong

to, and then ask LDA to find them. There are extensions to LDA to remove this

limitation. One of them is nested Chinese Restaurant Process [23]. This process

aims to build a hierarchy of topics and does not require the number of topics to be

fixed before running the process.

Since topic modelling methods need a training stage that has to be done on the

entire corpus, they are not appropriate for our work, because we assume that our

database will be created incrementally (updated as new documents arrive daily).

This requires us to use methods for annotating documents that can use only the

individual document (and, of course, any other information such as a pre-trained

classifier, but not the rest of the corpus). Furthermore, topic modelling algorithms

are relatively slow and are not appropriate for applications that require high speed.

3.4 Automatic Summarization

The task of automatic summarization aims to make a summary of a document so

that a user can understand the main points discussed in a document by reading the

summary instead of the entire document. Thus, a summary is a short, coherent,

readable text that briefly covers most important stories mentioned in a document.

When dealing with long documents or large number of documents, studying sum-

maries helps users save time while getting an important portion of information.

There are several approaches to automatic summarization. Here we briefly ex-

plain each approach:
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• Extraction-based: In this approach, a summary is generated by extracting

important clauses and sentences from text. Therefore, the summary will be

a subset of sentences forming the document. Several heuristics can be used

to find the most important and informative sentences, such as keywords in a

sentence, position of a sentence and its structure. For example, sentences in

the first paragraph often carry significant information about the main points

of a document, as well as sentences containing several keywords. Important

clauses and sentences can be recognized based on such rules or using machine

learning when a set of documents and their human-extracted summaries is

available. This way, the task of extraction-based summarization can be seen

as a classification task. Chuang and Yang, for instance, propose a method

for extracting summaries using machine learning. In their method, sentences

are divided to segments and some features are calculated for each segment,

including position, average term frequencies and number of title words. A

model trained on labeled data is then used to find important segments to be

extracted [24].

Considering a thread of comments made by readers on a news article or blog

post, researchers have also developed methods for recognizing the most com-

mented parts of an article/post and summarize it based on this characteristic

[25][26]. In this approach, finding a sentence or paragraph in an article that

corresponds to each comment is used to find the most commented, and there-

fore, the most important parts of the article to be included in the summary.

• Abstraction-based: A human can build a synopsis of contents of a document

by reading it. If a machine does the same, a summary can be then generated

from that synopsis using natural language generation technologies. In this

approach, a model of the story discussed in a document is built and then a

coherent and human-readable summary is produced using that model. Thus,

the sentences appearing in such a summary are not necessarily part of the

document. Some methods also use humans aid to generate summaries, such

as getting highlighted candidate paragraphs or requiring post-processing by
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human experts.

• Multiple-Document Summarization: While many summarization algorithms

produce summary of a single document, there are also methods for generat-

ing summaries of multiple documents. Having several documents related to

similar topics, an automated summarization task should produce a summary

that outlines all important points in all documents. This is something more

than generating separated summaries for each document and then concatenat-

ing them since documents might be sharing topics and discussing different

aspects of them. Thus, multi-document summarization should extract infor-

mation from documents and then bring them together to produce a consistent

summary. Therefore, the task of multi-document summarization can be seen

as an application of information extraction. [27] discusses the challenges and

prospects of multi-document summarization via information extraction.

Summarization vs. Keyword Extraction: A summary is a coherent text that

contains a brief description of the stories mentioned in a document. In contrast,

keywords only represent the main topics of a document and do not tell the story

about them. For example, consider two articles about the University of Alberta

budget cuts, one criticizing this issue and the other supporting it. The set of key-

words extracted from both might be very similar, as both documents are discussing

the same topic, but summaries have to be different as the documents are describing

two opposing perspectives.

In BubbleNet, we assume that the user wants to get a picture of all important

issues discussed in a corpus and be able to easily find articles related to a particular

topic. To this end, keywords and named entities are good representatives, while

textual summaries are not appropriate.

3.5 Document Clustering

Putting documents in categories based on their contents is called document clus-

tering. Using document clustering, we can organize documents of a corpus such

that they can be accessed through topical categories. This has several advantages:
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First, by looking at clusters, a user can infer the main categories that documents of

a corpus fall into. In addition, it helps users find their desired documents because

similar documents (documents that share similar topics) are placed together. This

also helps users explore documents that were not exactly matching the keywords

they had in mind at first, but are related to their aimed topic and users might be

interested in them.

There have been several researches conducted in the field of document cluster-

ing. There are two main approaches to this problem:

• Hierarchical Clustering: In this approach, all documents are first considered

in a single cluster. This cluster is then divided into several clusters based on

the contents of documents. This way, a document falls under one and only

one cluster in second level, while all documents belong to the same set in

first level. The process of division continues until a hierarchy of documents

gets formed. This process can also be done in reverse direction, i.e. every

document is an individual cluster at first and then in each step, similar clusters

are merged together to form larger ones. A label will be assigned to each

cluster based on the contents of its documents.

For clustering, the similarity of documents has to be measured. Different

measures can be used to estimate similarity of documents, including sim-

ple text-mining features (bag-of-words and cosine similarity), page titles and

meta data and link structures.

• K-means: Despite hierarchical clustering, k-means method generates a flat

set of clusters. In this method, k documents are selected as centroids to rep-

resent k clusters of documents. Other documents are then assigned to those

clusters. This method is more efficient, but results in a non-hierarchical clus-

ter structure.

In [28] a comparison of document clustering methods and their efficiency is

provided.

Clustering of Comments and Tweets: Having a large volume of comments or

short posts (such as tweets), researchers aimed to group comments that are similar
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in topic or direction of the opinion they express. [29] [30] In [31], the authors use

Latent Dirichlet Allocation (described in section 3.3) to annotate social network

blogs and short posts.

Document Clustering vs. BubbleNet: As discussed above, the result of docu-

ment clustering is a grouped structure of documents, either in a flat or hierarchical

form. In a flat clustering, each document belongs to one category, and in a hierar-

chical structure, documents belong to a set of categories, from the most general to

the most specific.

This has some characteristics. First, a document cannot belong to more than

one category (or in a hierarchy, a document cannot have more than one parent).

This limits the freedom to model the topics appearing in documents when we are

not only interested in general topics, but also in more detailed ones discussed in

documents.

For example, consider a document related to built-in Google search features in

Chrome web browser. This document can be categorized under, for example, ‘web

search’ category, or under a hierarchy like ‘technology / world wide web / search

engines / google’. This document, however, should belong to categories such as

‘chrome’, ‘information retrieval’, ‘user interface’ and ‘web browsing’. It may also

refer to Chrome plug-ins, compatible operating systems and comparison to other

web browsers. All these topics cannot be captured in a clustering at the same time.

Ideally, what we aim to do in BubbleNet is to capture all these topics mentioned

in this document. Furthermore, we want to provide users with links to similar top-

ics. For example, documents related to other built-in features of Chrome, other

properties of Chrome, other web browsers such as Firefox and Safari and other

search engines such as Yahoo! and AltaVista. To this end, we extract keyphrases

representing those topics and entities, remembering which documents mentioned

them. We then build a network of these topics based on relationships between those

entities. This is quite different from clustering, as a document can be linked to sev-

eral nodes, and nodes are interconnected based on their similarity or relationship.

Figure 3.1 shows the difference between document clustering and BubbleNet,

how the concepts are organized and how the sample document mentioned above is
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Figure 3.1: Comparison of a sample hierarchical clustering to a sample BubbleNet
entity network.

linked to these concepts.

3.6 Query Expansion

In order to help users find exactly what they want, search engines use methods for

helping users perform better searches. In most search engines, users have to enter a

query (which is a set of words or phrases, optionally combined with some operators)

to express what they have in mind. This is not always an easy task for users to do,

as they may not be aware of all words used in the literature to refer to the concept

they mean, or they may have difficulties finding the words that precisely explain

their desired topic.

Search engines basically try to retrieve documents that contain words mentioned

in user’s query. This obviously requires preprocessing on queries, as users may have

entered words incorrectly. Removing stop words (such as ‘of’, ‘the’ and ‘a’), spell

correction and punctuation refinement are some basic preprocessing steps. Search
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engines then try to perform more advanced refinements, as we discuss below.

• Stemming: Stemming words of a query (such as converting ‘negotiating’ to

‘negotiate’) will result in more documents being retrieved and the chance of

missing relevant documents to be decreased.

• Finding Synonyms: Adding synonyms of query words also improves search

results, such as adding the word ‘buy’ to a query containing the word ‘pur-

chase’.

• Re-weighting Words: Words in a query are not necessarily having equal

importance. Re-weighting methods assign an importance to each word based

on relevance feedbacks to improve information retrieval [32].

Figure 3.2: A sample of spell correction in Google search. (Captured on June 16,
2013.)

Researchers in this field applied ontology-based query expansion to improve

search results by adding words extracted from ontologies such as WordNet [33].

There is an important issue to be considered when using query expansion. As the

query is manipulated by an information retrieval system, the recall is expected to in-

crease since more documents are now matching the refined query, but the precision

can drop because the refined query is different from what the user entered.
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3.7 Term Suggestion

In addition to query expansion, search engines try to help users refine their query at

the time they are entering the original query by suggesting terms. This helps users

find words that best describe what they mean. Search engines suggest words that

are relevant to the rest of the query (i.e. the part of query that user has entered so

far). There are several ways to find these relevant words:

• Query Logs: By analyzing a large number of queries that users have en-

tered before, a search engine can find the words that are likely to appear

together in queries. For example, there are thousands of queries including

words ‘Edmonton’, ‘weather’ and ‘forecast’. Thus, it is easy to guess that

if a user enters ‘Edmonton weather’, he or she would like to add the word

‘forecast’ as well. Query logs are great sources of information about how

users use keywords to find documents and some research has been done on

using them [34].

• Users’ Feedback: In addition to co-occurrences of words in queries, query

logs can be analyzed to find how users change their queries by adding, re-

moving or reordering words in their queries after seeing search results. If

many users add word B to a query containing word A after seeing the search

results, it is very likely that others also would like to do the same. Thus,

a search engine can use this information to suggest word B when a user is

entering word A as a query [35].

• Semantic Relations: Words that are semantically related to query words are

also good candidates for suggestion. Having a network of semantically re-

lated words, a search engine can provide users with a list of suggestions that

are related to the words appearing in the query. There are several ways to

infer semantic relationships between words. Shieh et al. propose a method

for building a social network of words where nodes represent terms and edges

represent semantic relations between them. To build this network, they use

Wikipedia articles and lists of their authors, assuming that if an author writes
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several articles, their topics tend to be relevant. They compare the results of

their proposed system to another method that uses WordNet, a public ontol-

ogy of English language to extract relevant words [36].

• User Specific Suggestion: By profiling recent queries of a user, as well as

information about user’s location, institute or company and so on, search en-

gines can suggest more personalized terms to a specific user. This can im-

prove user satisfaction, specially when the query is ambiguous [37].

Figure 3.3: A sample of term suggestion in Google search. (Captured on June 16,
2013.)

Term Suggestion and BubbleNet: Term suggestion has some aspects in com-

mon with BubbleNet. In BubbleNet, we aim to provide the user with a set of related

topics to every particular topic or entity. This is similar to what term suggestion al-

gorithms do in terms of finding relevant terms and phrases to another word. But

the difference is the way we extract relationships between entities. In term sug-

gestion, query logs and statistics from a huge amount of crawled web pages by

search engines can be used to infer relationships. In contrast, in BubbleNet, we do

not have access to such information. Although it is possible to embed knowledge

bases extracted from such resources in BubbleNet, it is incompatible with the mis-

sion of BubbleNet. The reason is that in BubbleNet we aim to extract entities that

occurred in documents of a specific corpus (for example, within the domain of a

website). Similarly, we want to extract relationships based on the contents of those

documents, not based on the contents of the entire web. For example, we know that

in the real world, Google and Yahoo! are related entities since both provide web

search and other similar services. Yet in a corpus that contains two different sets

of documents, one talking about Google Maps and the other talking about Yahoo!

Weather, it is possible that no document talks about both Google and Yahoo!. Thus,
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BubbleNet should not consider a relationship between those two entities as they are

not relevant according to the contents of the corpus.

However, other methods of relation extraction, such as statistical methods and

ontology-based methods can be used to extract relationships in BubbleNet. More

discussion about relation extraction methods is provided in Section 3.9.

3.8 Word Sense Disambiguation

When a user enters the word ‘apple’ as a query, it is difficult for search engines

to find out if the user means apple, the fruit, or apple, the company. There are

several words that have more than one meaning and therefore, they can fit in several

totally different contexts. This is a very common, and consequently, widely studied

problem in information retrieval.

There are two main approaches to this problem. The first, called deep approach,

is based on a deep knowledge of facts in the real world. For example, consider the

following two sentences:

• John eats an apple every day.

• Apple is trying to win the competition of cellphone production with Google.

Knowing the facts that ‘a human can not eat a company or a computer’ and

‘a fruit is not often interested in competing with technology companies’ can help

search engines disambiguate the sense of word ‘apple’ in these sentences. This

approach can generate more accurate results, but is often impossible or difficult as

it requires a huge machine-readable knowledge base.

Despite the first approach, one can guess the sense of a word without under-

standing the text by looking at clues such as surrounding words. In the above ex-

ample, the word ‘eats’ is an evidence that ‘apple’ is in the fruit sense, but the words

‘cellphone’, ‘production’ and ‘Google’ suggest that ‘apple’ is in the company sense.

In [38], the authors provides an introduction to word sense disambiguation

methods. The authors of [39] provide a method that forms a network of keywords

to detect word sense communities and use it to cluster web search results.
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Although ambiguous words cause ambiguity in BubbleNet entity network, we

do not consider this problem in this thesis to keep the problem simple. As a future

work, entity disambiguation should be added to BubbleNet system.

3.9 Relation Extraction

The problem of finding relations between entities from unstructured text is widely

studied. In general, there are various kinds of relationships that can be consid-

ered for different applications, such as typed relationships (is-part-of, is-member-

of, belongs-to, is-owner-of, born-in, etc.), synonymity, generalization/specialization

and topical association. Researchers have proposed several methods for extracting

such relationships. Below we describe different approaches to this problem. We

limit our discussion to binary relationships (i.e. relationships between two entities).

• Co-occurrence: Word co-occurrence is a traditional approach to find seman-

tic associations between words. Spence and Owens in [40] study theoretical

aspects of this approach, as well as its practical applicability. They propose

hypothesizes about the correlation of the number of co-occurrences of pairs

of terms in specific windows of text and semantic association between terms.

Their findings show that the words that are semantically associated are more

likely to appear close to each other in a text. They state that the number

of co-occurrences of associated pairs of terms forms a Poisson distribution,

peaked when terms are one right after the other (less than 10 characters dis-

tant) and then decreasing as the distance increases. Up to a window size of

250 characters, co-occurrence statistics are highly correlated with semantic

association of term pairs and this effect remains observable until the window

size reaches 1000 characters. This indicates that even words appearing in

separate sentences can be associated if they frequently co-occur.

• Feature-based Classification: The task of relation extraction can be seen as

a classification task: given a pair of entities, assign a class to the pair that

indicates whether they are related or not, and if they are relevant, what type

of relationship exists between them. As this method extracts typed entities, it
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mostly considers terms appearing in the same sentence because there are rare

cases that separate sentences indicate typed relationships. These methods are

used for learning ontologies from unstructured text [41].

The classification task described here needs feature engineering to choose

appropriate features, as well as enough training data to build models. Some

features that are commonly used for this task include entities themselves,

lexical contexts and syntactical features. For example, if two entities are both

persons and the surrounding words are ‘is’ and ‘father’, it is likely that the

relationship is of type is-father-of. As another example, if the first entity is a

person and the other one is a club or party, it is likely that they are related in

type of membership.

• Pattern-based: Along with feature-based classification methods, patterns are

widely used for relation extraction. The idea behind this approach is that

sentences that indicate typed relationships between entities tend to follow

particular patterns. For example, patterns such as X was born in Y or In Y, X

was born are common forms of indicating birth dates of persons. Similarly,

ownership can be found in sentences like X belongs to Y, X’s Y and X of Y,

although the last one may indicate other relation types as well.

Patterns can be written manually by human experts, or learned from annotated

data, or learned from text itself. The last method is called bootstrapping. It

starts with a set of seeds (i.e. pairs of terms with known relationships). These

pairs are then thrown into the corpus to catch sentences that contain them.

By looking at these sentences, patterns that indicate those relationships can

be inferred. These patterns are then applied to the corpus to find new pairs of

related terms and then new patterns again. By repeating this cycle, the set of

patterns grows and helps the system extract related entities.

Several researchers applied relation extraction methods on specific domains,

such as medical text. The authors in [42] extracted temporal relations from clinical

text using temporal information of entities, and [43] extracted drug-drug interac-

tions by processing medical texts. Chapter 2 of [44] provides a survey of supervised
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relation extraction methods.

Relationship Extraction for BubbleNet: In BubbleNet, we primarily limited

the scope of our system to untyped semantic associations. This means that we do

not distinguish between different types of relationships, such as synonymy, general-

ization/specialization and etc. We consider the notion of ‘relationship’ as a general

concept that indicates a relationship (of any kind) between two entities. To extract

these kinds of relationships, we use traditional co-occurrence method to extract re-

lationships between pairs of entities appearing in the same document. However,

different relationship extractor modules can be plugged into the system to improve

its performance, especially in more specific domains. For example, pre-constructed

medical ontologies can be used to score relationships between medical entities in

addition to the traditional co-occurrence method.

3.10 User Interfaces for Information Retrieval Sys-
tems

As we discussed in Chapter 1, BubbleNet is a system for helping users acquire an

image of contents of a website and navigate through its documents more efficiently.

This is what the user interface of an information retrieval system does. There have

been various ways of representing information proposed. Here we discuss some of

them and explain their differences with our work.

3.10.1 Query-based Search

A very common way for retrieving documents is using query-based search. The

user enters a query, which consists of words, phrases and operators, and the IR

system retrieves documents matching entered search criteria. Almost all websites

or text databases that contain a large number of documents provide search features.

They often allow users to specify dates, types of documents and fields to be searched

to help users get better results.

In addition to customizable search criteria, techniques discussed in sections 3.6

and 3.7 can be used to improve search results. While search engines are general
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purpose tools for retrieving documents from the World Wide Web, search features

embedded in websites provide search facilities limited to the domain of that partic-

ular website.

Figure 3.4 shows BBC search page when using the word ‘obama’ as a query.

Figure 3.4: BBC search results for query ‘obama’. Features for customizing search
results such as dates, ranking order and search scope are provided on the left. (Cap-
tured on June 17, 2013.)

Limitations: Query-based search is only a way to retrieve documents. It is

useful when the user has a good intuition of what he or she is looking for, and

can explain it in terms of a textual query. Although a good search engine can help

the user find better words to form more accurate queries, this method is not useful

when the user does not have exact words in mind to express his or her desired topic.

This is also true when the user is not aware of the exact content of the document

collection such as in a forum. This method also does not allow users to interact with

the system except by changing and resubmitting queries based on returned results.
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Another limitation is that this method does not give users a picture of main topics

mentioned in the corpus, so they have to spend a lot of time exploring documents

to get a summary of the contents of the website.

3.10.2 Hierarchical Directories

Figure 3.5: BBC categorized menu for sports. (Captured on June 17, 2013.)

Another way to represent and retrieve documents in a corpus is using hierar-

chical directories. In this approach, documents are clustered hierarchically and a

directory of topics is shown on the website. Users can browse this hierarchy to

reach a particular document. Many websites partially provide this features. For ex-

ample, BBC shows a menu bar with several topics that users can choose and filter

documents based on their topics.

Advantages: This method has many advantages. First, it represents a big pic-

ture of topics in the corpus in an abstract form. Users can get a picture of topics

by looking at categories, and they can interact with the system by expanding cat-

egories and going down from more general to more specific levels. They also can

find desired documents without the need of expressing their meaning in terms of a

query, as they can follow the hierarchy to find what they want.
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Figure 3.6: A screenshot of Open Directory Project under Regional/Middle East/I-
ran. (Captured on June 17, 2013.)

Figure 3.5 shows BBC categories for sports. A screenshot of a general directory

of websites, called ‘open directory project’1 is also shown in Figure 3.6.

Limitations: To build a hierarchy of documents, IR systems use document

clustering. Thus, hierarchical directories do suffer from the same problems that

document clusters do (see Section 3.5). First, each document falls into one category,

and therefore, it is difficult to cover different aspects of documents. Furthermore,

relations between topics discussed in documents are not provided to the user in a

browsable way, except the generalization-specialization links of the hierarchy. This

prevents users from freely exploring relevant topics regardless of the structure of

the hierarchy.

3.10.3 Word Clouds

Word clouds have been growing in popularity and are often used by websites to

provide a means for summarizing and navigating through website contents. A word

cloud visualizes statistics of term usage in a text or a corpus. The more frequently

1http://www.dmoz.org/
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a word is used in a corpus, the larger that word appears in the cloud. Figure 3.7

shows a word cloud generated from the first part of Chapter 1 of this dissertation

using ToCloud2, a free tag cloud generator tool.

Figure 3.7: A word cloud generated from the first part of Chapter 1 of this disserta-
tion using ToCloud.

Word clouds can also be constructed using folksonomies: tags that users assign

to documents. By using tags instead of words, a tag cloud can represent the most

important topics discussed in a corpus.

Scientists tried to improve tag cloud representation. In [45] the authors provide

a method for selecting appropriate tags, clustering them and arranging them in al-

phabetic order. An assessment of different methods of tag cloud visualization was

performed in [46].

Clustering tags was performed by [3] to help users find related tags around

a particular tag. In their interface, tags are shown in clusters and users can add

relevant tags to their queries. New tags are combined with the current query using

AND operator. This way, users can build their queries incrementally by choosing

relevant tags to what they have entered so far.

2http://www.tocloud.com/
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Advantages: An advantage of word cloud is that it gives the user a broad per-

spective of important topics discussed in a document or a corpus of documents in

just one glance, as a way of summarizing its contents. Another advantage is that

user can decide which word to click by looking at the list of words, not by having

query words beforehand. By clicking a word, an IR system can provide the user

with a list of documents containing that topic.

Limitations: Primarily, a word cloud does not say anything about relationships

between important topics. Words are ordered alphabetically or other esthetic-based

ordering and there is no clue about possible relationships between entities. There

are variations of word cloud that tried to solve this problem by arranging relevant

words together.

Another limitation is that a word cloud generates a flat view of topics and does

not provide any means for interacting with users. Thus, a user can only look at

the list of words and choose a topic to retrieve relevant documents. As the space

is limited in a flat representation, this interface can not provide an efficient way of

information presentation.

Furthermore, it is important to select appropriate terms to be counted to build

a word cloud. If using all words in a document, there will be several unimportant

words listed in word clouds. On the other hand, if using manually-assigned tags,

there will be a need for human experts to tag documents. Word cloud, by itself, is

not able to extract important topics from documents.

3.10.4 Topic Graphs

A similar approach to BubbleNet is topic graphs. As introduced in Section 1.1.1,

The Economist uses this approach to represent most commented entities. They

extract named entities and keyphrases from user comments and provide a graphical

view of them according to their frequency. They also draw links between entities

representing their co-occurrence rate (see Figure 1.2).

Advantages: Representing the most commented topics in the form of bubbles

is a great way to give a picture of topics discussed in a corpus to the user. Links

are also shown to represent relationships between entities, which makes this way of
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representation very effective. The user is also able to click on entities to get a list

of comments referring to that topic.

Limitations: This interface lacks some features. First, it does not capture

all topics in documents. A more general approach should extract keywords and

keyphrases from documents. Furthermore, this interface does not allow users to re-

trieve documents based on combinations of topics, since the only way of accessing

documents is by clicking on entities.

3.10.5 SKIMMR: Machine-Aided Skim-Reading

Published in March 2013, SKIMMR is a tool for summarizing and retrieving docu-

ments that uses methods very similar to ours [47]. It automatically extracts entities

from a set of documents using natural language tools and provides a web-based

interface to an interconnected graph of the extracted entities.

Specially for medical texts, they use a text-mining tool for extracting named

entities. They use a co-occurrence method for extracting relationships, as well as

corpus-wide analysis of similarities. This is very similar to our approach to sum-

marizing entities and forming the network of BubbleNet.

It was interesting to us that other people are also working on the same idea as it

means this is a hot topic in information retrieval. However, there are differences be-

tween our work and SKIMMR. First, BubbleNet is able to provide an overview of

the entire corpus by showing the most important entities and their significant rela-

tionships at the first page and let the user navigate through the entities, while users

can access to SKIMMR’s graph only by entering a query. Second, they only ex-

tract named entities using domain-specific tools while we use a general-domain ap-

proach and extract keyphrases and topical words as well to better represent contents

of documents. Since we extract relationships based on individual documents and

then aggregate relationships, our system is capable of being incrementally updated,

while SKIMMR needs the entire corpus to evaluate corpus-wide relationships. And

finally, our method provides a feature to limit the search to specific time intervals.

37



3.11 BubbleNet: Keeping Advantages and Removing
Limitations

In BubbleNet, we aim to provide an interface that has the advantages of all the

different interfaces mentioned above as much as possible, while not suffering most

of their limitations.

• BubbleNet aims to represent the most important topics and their relationships

in the form of interconnected bubbles. This allows users to get an overview

of the contents of a corpus at first glance.

• Topics are extracted from documents automatically. Thus, there is no need

for training data or human-assigned tags.

• BubbleNet is general and can be used for all kinds of documents. However, it

can easily be specialized for a particular domain by plugging pre-constructed

ontologies to the system for entity extraction and relationship extraction.

• BubbleNet shows bubbles in different levels, i.e. users can start from the

more important topics and drill down to more specific ones. This looks like a

hierarchy, but it is different since topics are not subsumed by others, but they

are semantically related in different levels of importance.

• BubbleNet allows users to interact with the system and browse topics. This

way, a user can start from a topic and end up browsing with a totally different

topic.

• Users can access documents by clicking on entities or links between them.

This way, they can retrieve documents related to an individual entity or com-

binations of entities.
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Chapter 4

A Small Experiment: Navigation
Through Health Discussion Forums

4.1 Navigating Health Discussion Forums

The idea of this thesis was originated from a course project we have done before: An

Innovative Way for Exploring Health Discussion Forums using Medical Ontologies.

This project was done with cooperation of Afsaneh Esteki, a gradute student at the

University of Alberta. In this chapter, we explain this project and how it helped us

develop the idea of this thesis.

Online health discussion forums contain a large amount of valuable user-generated

content, which can be used as a useful resource to collect information from. There

are different entities and relations in forum discussions. For example several dis-

eases might share similar symptoms or several names and expressions may refer to

a particular disease, symptom or treatment.

Finding a particular discussion that is relevant to a user’s query might be diffi-

cult in large discussion forums. We introduce an innovative method for navigating

through discussions: A visual version of the ontology of medical entities used in

discussions will help users to see a high-level summary of information in discus-

sions and find the topic they are interested in.

There are pre-constructed ontologies for medical domain, such as MeSH (Med-

ical Subject Headings) [48]. MeSH is the National Library of Medicine’s controlled

vocabulary thesaurus that is used for indexing articles for PubMed, and consists of

sets of descriptors in a hierarchical structure.
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For our application, we need a specialized version of ontology for a particular

discussion forum. To this end, we first use MeSH to recognize medical entities.

The relations are then extracted using different methods to form the ontology. At

the end, we explain how to use this ontology to provide an efficient interface for

navigating through discussions.

Researchers have used health discussion forums for information extraction. [49]

used sentence-level shallow information extraction to extract medical case descrip-

tions from forums. For this purpose two important sets of features are used: se-

mantically generalized terms and forum structure features. [50] use patterns of key-

words to detect semantic relations in National Library of Medicine (MEDLINE)

article titles. In order to generate relation extraction rules, they use MeSH descrip-

tors associated with articles and the co-occurrence of terms. [51] try to find question

answer pairs from online forums. They use a sequential patterns based classifica-

tion method in order to detect questions in a forum thread, and also a graph based

propagation method for detecting answers for questions in the same thread. A com-

bination of feature based and graph based approaches has been used in [52] for

automatically generating medical ontologies from structured Wikipedia. [53] use

a decision tree based classifier for information extraction from medical records in

resources such as WordNet and UMLS. They try to extract past medical history and

social behaviour from the records. [54] use online health forums such as Yahoo

Health and Wellness Group for drugs safety investigation purposes. They try to

identify those drugs which are likely similar to watchlist and withdrawn drugs by

using multiple machine learning classifiers.

4.2 Dataset

Our dataset consists of two main parts: health discussions and medical entities.

Here we explained how we collected these two sets.

Health Discussions. We used three health discussion forums with populated
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Table 4.1: Number of discussions from each forum
Forum # files Percent
eHealthForum 10,096 20.4 %
Healthboards A 7,141 14.5 %
MedHelp B 32,143 65.1 %
total 49,380 100 %

communities: Healthboards1, eHealthForum2 and MedHelp3. A crawler program

was used to download discussions from those forums. Storing one complete discus-

sion in a file, we gathered total of 49,390 files (almost 200 MB). Table 4.1 shows

number of files extracted from each forum. We did our best to keep our dataset

biased in terms of categories, so we collected discussions from all categories within

each forum.

Medical Entities. In order to identify a significant and suitable set of medical

entities, we have used the MeSH We first extracted the set of MeSH main headings

from the MeSH descriptors and in order to reduce the number of terms, we have

only used those that are in the MeSH categories [A] Anatomy, [C] Diseases, and

[E] Analytical, Diagnostic and Therapeutic Techniques and Equipment [55]. This

set of terms constitutes a bag of words of about 6,000 terms. For the purpose of our

experiment we have only used singleton terms, terms formed by one only word.

4.3 The Experiment Method

4.3.1 Pattern Matching

A common method for extracting relations between entities is using pattern match-

ing. A pattern is a sequence of words and wildcards (which we call them slots)

that represent a certain relationship. For example, X is a type of Y is a pattern

representing the generalization relationship between X and Y.

We first reviewed some of discussions to find some frequent patterns people

use to express relations between entities in health forums. Then, we wrote some

patterns manually. They can be categorized in 4 groups. Table 4.2 shows some of

1http://www.healthboards.com/
2http://www.http://ehealthforum.com/
3http://www.medhelp.org/forums/list/

41



Table 4.2: Examples of manually-written patterns
Category Pattern

Treatments
X is cured by Y
X is used in treatment of Y

Causes
X is a result of Y
X causes Y

Symptoms
X symptoms include Y
signs of X are Y

Association
X is a type of Y
X is associated with Y

those manually-written patterns.

We tried to design a flexible pattern matching algorithm in order to catch as

many related sentences as possible. At the time, we considered a scoring method

to be able to rank match instances so as to increase precision. Here we explained

pattern matching algorithm in details.

Pattern Matching Algorithm. Having a set of patterns in hand, we iterate on

sentences in sentence repository and try to match every sentence with all patterns.

If a pair (pattern, sentence) has a matching score higher than some threshold, we

keep it as a match instance.

Matching a pattern to a sentence consists of two steps: First, we map tokens of

the pattern to tokens of the sentence. This mapping is then represented in the form

of two words that each character corresponds to a token (if not matched) or a pair of

matched tokens. The second step is to calculate matching score using edit distance

of the two words.

Consider the following example:

• Pattern: X causes Y

• Sentence: Depression can cause headache

First we want to map tokens of the pattern to tokens of the sentence. For this

purpose, we use Levenshtein edit distance[56] to estimate how similar two words

are. Then we map each word of the pattern to the most similar word of the sentence.

Slots, on the other hand, can match any word, but they prefer medical entities that

are listed in our dataset. For the above example, we have the following mapping:
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{X → Depression, null→ can, causes→ cause, Y → headache}

A character is assigned to each character (or pair of characters) so that the map-

ping will look like {acd→ abcd}. The better the sentence matches the pattern, the

more these two words look similar. Thus, using edit distance, we can estimate the

matching score for the given pattern-sentence pair.

In many cases, the sentence is longer than provided patterns: People usually

write long sentences to explain what they mean. Those sentences may contain

several information chunks that can be caught by different patterns. To address this

problem, we slide a window of the same length of the pattern over the sentence to

find the position in which the pattern fits best.

A match instance consists of a pattern, a sentence, their mapping and a matching

score. Using a threshold, we can keep only match instances that are highly scored.

Match instances are stored in a repository. Every time we look for related entities to

a particular entity, we can find match instances in which the entity we are interested

in is mapped to a wildcard. The word matching the other slot is then considered as

target of the relation.

4.3.2 Co-occurrence Matrix

Another way to find relations between entities is to look for their co-occurrences.

The idea is that if two entities are strongly related, they are likely to occur in many

sentences together. Thus, we can estimate relations using a measure of how many

times two entities co-occur in sentences of our dataset. For this purpose, we form a

co-occurrence matrix using the following strategy:

We iterate over the sentence repository. For each sentence, we look for all

entities occurred in that sentence. Then, for each pair of entities appeared in the

sentence (which is corresponding to an entry of co-occurrence matrix), we create a

co-occurrence instance and calculate a co-occurrence score. We then accumulate

all those scores and also keep up to 5 most highly-scored co-occurrence instances

for each entry.

In order to calculate co-occurrence score, we use the following heuristics:

• The closer two entities, the higher the score the co-occurrence instance gets.
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The idea is that if two entities appear in two ends of a long sentence far away

from each other, they are less likely to be related rather than the case they are

close.

• The shorter the sentence, the higher the score it gets. This is because short

sentences are more probable to represent coherent relationships between en-

tities than longer ones.

• We collected a set of words that are frequently used for representing relations.

Some examples are associated, related, causes, .... We call them relational

words. The more relational words a sentence have, the more score it gets.

To find entities related to a particular word, we simply scan corresponding row

in the matrix and find the column in which their intersection gets maximized. Note

that this relation is not symmetric. That is, the co-occurrence matrix is not symmet-

ric because the order in which the two entities appear in a sentence is important.

For example, X causes Y and Y causes X are different relationships.

Figure 4.1 shows a simplified version of similarity matrix.

4.3.3 Distribution-Based Method

The idea of this method is that if two words are similar (or relevant), they tend to

have similar distribution of co-occurrences with other words. Thus, for each entity,

we looked for a word that has the most similar distribution of co-occurrence scores.

Despite simple co-occurrence method, distribution-based similarity is a sym-

metric relationship. Therefore, we first add a transposed version of co-occurrence

matrix to it to make it symmetric. We then normalize values of each row with

respect to its maximum so that in each row values vary between 0 and 1.

The next step is to subtract a row from another. By calculating sum of squares of

the components of resulting vector, we can measure how similar or different those

two rows are. This way, it is possible to find the most similar row for each row of

the matrix, which is equivalent to finding the most similar word to another one.
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Figure 4.1: A simplified version of similarity matrix.

4.4 User Interface

We have implemented a user interface for our extracted medical ontology. For this

purpose we have used Swing, the Java GUI widget toolkit. A user can enter a

medical keyword, for example the name of a disease or a medicine, and by clicking

on a button we suggest to him/her a set of related words. Since we consider all

discussions from 3 forums, a large set of terms is returned as the related words.

However we only show ten first related words, which have higher scores. Figure 4.2

depicts an example of the interface. As figure shows when user enters “vomiting”

keyword, our system returns a set of related words. These words might be some

body organs such as “stomach”, a drug like “promethazine”, a symptom such as

“dizziness” or another similar word for the keyword, like “anorexia”. Also, the

user can see the relationship between two words. Relations are returned based on

any of the three methods; co-occurrence, patterns or similarity in distribution. For

example, the figure shows that “vomiting causes dizziness”, and at the same time it

is in relation with “promethazine” based on the similarity in distance. There is also

45



an option of reviewing a random medical entity and its related words.

Figure 4.2: User Interface

4.5 Results and Discussions

Running our algorithms on almost 50,000 discussions and 6,000 medical entities,

it took an hour to calculate similarity matrix and half an hour to extract pattern

matches. Keeping only matches with scores higher than 0.5, we got 4456 match in-

stances. Table 4.3 lists some of match instances extracted from our dataset. Entities

that have been mapped to slots are bold.

Applying the other two methods (co-occurrence matrix and distribution-based)

also gave us pairs of entities. Table 4 lists some instances of results of co-occurrence

and distribution- based methods.

Evaluating our method was a serious challenge. The problem is we do not have

any ground truth. We are not looking for scientifically true relationships between

entities; thus, we can not use medical information to evaluate results. In addition,

we do not have a set of discussions with extracted ontology to calculate a recall.
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Table 4.3: Examples of pattern match instances (results of running pattern-matching
algorithm)

Pattern Sentence
X causes Y Could a 4mm prolactinoma cause tinnitus and nausea
X causes Y can drinking soy milk cause your hair to fall out
X causes Y Severe hypotension caused by shock is a medical em...
X is related to Y ...cervical lordosis possibly related to muscle spasm
X is related to Y I believe the back pain is related to prostate conditions
symptoms of X are Y If you are having symptoms of meningitis (stiff neck...
X symptoms include Y kidney stone symptoms, abdominal pain, ...
symptoms of X are Y The most significant symptom of fibromyalgia is pain

Table 4.4: Examples of results of co-occurrence (left) and distribution-based (right)
algorithms

Entity 1 Entity 2 Entity 1 Entity 2
calcium zinc gastritis esophagus
blood plasma eczema scabies

mercury poisoning uveitis sclera
biopsy fibrosis mercury arsenic

abdomen pelvis foot knee

Even if we had such an ontology, it was difficult to evaluate our work because the

notion of relations between entities is not a true/false or presence/absence matter.

In order to estimate how efficient and accurate our method works, we used the

following method: Given the set of found pattern matches and the set of pairs gen-

erated by co- occurrence and distributed-based algorithms, we picked 50 instances

of each set of results randomly. Then, we asked a friend (who is neither computer

scientist or physician) to evaluate them.

For pattern matches, there are two notions to be evaluated: First, we need to see

if our method catches the correct relations. For example, if an X causes Y pattern

is matched with an X cures Y, the pattern is not consistent with the real nature of

relationship that the sentence is representing. Second, the algorithm is supposed to

match right entities with slots. Thus, we have two percentages reported for pattern

matching algorithm.

Co-occurrence and distribution-based methods are evaluated in a different man-

ner: we roughly marked a pair of words as ‘correct’ if the two words were related
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Table 4.5: Evaluation Results
Method Evaluation Result
Pattern Matching 80%, 63%
Co-occurrence 70%
Distribution-based 68%

(ex. symptoms of the same disease, organs of human body, drugs of the same cate-

gory, etc.) and ‘incorrect’ otherwise. Thus, we have only one percentage reported

for each algorithm.

Table 4.5 lists the evaluation results.

Pattern matching algorithm is a simple method in terms of ideas, although its

implementation was not totally straightforward. Using pattern matching, one can

extract specific relations with known meanings and directions. But it needs an ap-

propriate level of domain knowledge. The results of evaluating our method show

that pattern matching has a good performance on the task of finding similar relation-

ships. However, we do not know the recall, that is, how much of existing relations

are extracted using this method. The other weakness is its low performance in

finding entities that are related. In one third of evaluated instances, our algorithm

mapped slots to incorrect entities. But this problem can be addressed effectively by

adding more natural language processing ideas to the algorithm.

In co-occurrence method, the main difference is that we do not know the exact

semantic of relations anymore. We can only say that ‘there is a relationship, but

we do not know what it is’. This is because several different relations can result

in the same effect: high frequency of co-occurrence. Therefore, this method may

not work well when we need to know the nature of relations or we are looking for

specific relations between entities. But it can be combined with other methods, such

as pattern matching, to find out the type of relationship once it was found.

Co-occurrence method is also helpful when we do not care what type the rela-

tionships are. An example is query expansion for improving performance of infor-

mation retrieval systems, where we do not worry about the semantic of relationships

and we only need to know words that often appear close to a particular entity.

Since co-occurrence method considers all co-occurrences of a pair of entities,
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the only thing we need to do is to define a wise and accurate scoring strategy to

rank co-occurrence instances. Once we came up with such a strategy, we can easily

find related words to a particular word by scanning the matrix.

This method is also ideal for real time systems in which we want to update the

system every time new data arrives. The idea is to simply scan new discussions for

probable co- occurrences of existing entities and for each co-occurrence, update the

corresponding entry in co-occurrence matrix.

Distribution-based method is similar to co-occurrence to some extent in terms

of problem set up and implementation issues. In our experiments, it performed

worse than other methods since it is not as precise as the others, but it was still

much better that what we expected. But its performance grows significantly as the

size of data set grows because the greater data set we have, the more accurate and

meaningful co-occurrence distributions are. Thus, it can be kept as a useful tool

besides a co-occurrence based ontology extraction system.

4.6 Towards BubbleNet

After finishing this project, we realized that this interface, regardless of domain-

specific entity and relation extraction methods, can be useful for navigating web-

sites. By generalizing the idea of the project explained in this chapter to all domains

and document formats, we ended up in BubbleNet: a tool for extracting key entities

and relationships from all kinds of texts and providing a graph-based user interface

for helping users navigate websites and retrieve documents. Thus, we decided to

use general keyword extraction and named entity recognition methods, as well as

general relation extraction so that the system can be used for any website in any do-

main. At the time, we kept the idea of using ontologies in mind so that our system is

designed to be able to use domain-specific ontologies, when available, to improve

results in specific domains.
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Chapter 5

The System Model and Design

In this chapter we give an implementation-based overview of BubbleNet.

5.1 Objects

The objects that our system deals with are documents, entities, relationships.

5.1.1 Document

A document is a piece of text that is given as input. This can be a blog post, a news

article, a user-made comment, a post in a discussion forum, an entire discussion in

a discussion forum or any other kind of text grabbed from a corpus.

The notion of “document” is important because it is defined according to the

needs of an application. For example, if BubbleNet is going to summarize and

visualize contents of a news website, each news article could be considered as a

document. In contrast, if we are interested in building a BubbleNet from the set of

comments that users made on an individual article, a document should be equiva-

lent to an individual comment. Similarly, we can call each post in a discussion a

document to build a BubbleNet summarizing an entire individual discussion, or we

can divide discussions to single posts and build the BubbleNet from the set of posts

coming from a discussion. In summary, a document is the smallest individual piece

of text that we deal with.

Each document can possess several data fields, such as title, author’s name,

document type, category, page number and volume, etc. In BubbleNet, we limit
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these fields to contents (body), date, address (URL or file path where a document is

available at) and an automatically assigned document ID.

Figure 5.1: An abstract model of a document

5.1.2 Entity

An entity is a word or phrase extracted from or assigned to a document, representing

a topic, concept, object, person or any other real world entity that is mentioned in

that document.

Entities are used in summarizing documents, i.e. we use entities as representa-

tives of topics discussed in a document. For example, a document concerning the

budget cuts of the University of Alberta might be represented by extracting entities

like U of A, budget cut, financials, tuition fees, research funds and so on.

Entities can be single words or multi-word phrases. They can be extracted from

the text itself, or assigned to a text using a topic modeling or tagging algorithm.

As entities are derived from documents, they can be assigned the fields of a

document they are derived from, including document ID, date and score. An entity

may have a score that shows how important that entity is in a document or a corpus.

Importance here refers to the amount of information that an entity carries about the

topics discussed in the document. If the entity is extracted from a document, its

score means its importance in that document. If an entity is representing a topic for

a set of documents, its score means an overall importance of that entity across all

documents in that set.
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Figure 5.2: An abstract model of an entity

5.1.3 Relationship

Relationships indicate how semantically relevant two entities are. This relevance

has to be defined according to the application and is estimated by relationship ex-

traction modules. Generally, relationships may engage more than two entities, but

in BubbleNet, we limit relationships to two entities.

Like entities, relationships also possess scores. The score of a relationship indi-

cates how strong the two entities are related (according to the definition of relevancy

in that application). Relationships may also be assigned a date and document ID

fields similar to entities.

In general, relationships are not necessarily symmetric, that is, if A is related to

B, B is not necessarily related to A in the same way and with the same strength (or

score). In BubbleNet, however, we consider relationships symmetric. This way, if

there is a relationship with a particular strength between A and B, the order of A

and B is not important.

5.2 System Components

Now we provide a high-level model of BubbleNet system, indicating the system

components and their functionalities.
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Figure 5.3: An abstract model of a relationship

5.2.1 Document Loader

The journey of documents through BubbleNet starts in the Document Loader. In a

practical setting, we may have a number of new documents arriving daily (or even

hourly). The Document Loader is responsible for dealing with different document

formats, as well as providing an interface to the back end user (e.g. the system

administrator) to add documents to BubbleNet system.

The input for Document Loader is a set of documents and a signal from the sys-

tem maintainer to start adding new documents, and the output is a set of document

objects. Note that the entity objects generated by this component are representa-

tives of a single document and are not representing topics among all documents in

the corpus.

Figure 5.4: Components: Document Loader
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5.2.2 Entity Extractor

BubbleNet is flexible to use different entity extraction and relationship extraction

methods. The purpose of this component at a high level is to extract a set of scored

entities from a given document using an appropriate algorithm. We implemented

different concrete modules extending this abstract interface for different extraction

methods.

The input of this component is a document object, and the output is a list of

entity objects extracted from (or assigned to) that document. The entities are scored

according to their importance, and the extraction algorithm thus should provide a

way for scoring entities.

Figure 5.5: Components: Entity Extractor

5.2.3 Relationship Extractor

Similar to the Entity Extractor, this module has responsibility to extract relation-

ships between pairs of entities in a document. The ‘extraction’ of relationships

means ‘estimating their strengths’ as we assume that the entities are already ex-

tracted and given. Thus, this module scores relationships between all the pairs of

entities for a given document.

The input for Relationship Extractor is a document and the set of entity objects

extracted from that document. The output is a set of scored relationship objects.

Note that the relationship objects generated by this component are representatives

of a single document and are not representing topic similarities or relationships

among all documents in the corpus.
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Figure 5.6: Components: Relationship Extractor

5.2.4 Database

Documents, entities and relationships are all stored in a database. The database

stores entity and relationship objects extracted from different documents as separate

objects even if their words or phrases are the same, so that we can query the database

for entities and relationships belonging to a particular time span. More detail of the

database and its schema can be found in Section D.4.

5.2.5 User Experience Scenario

BubbleNet is designed to provide an effective user experience for exploring entities

and relationships extracted from documents. Below we describe some user experi-

ence scenarios:

• Overview: A big picture of the contents of a corpus is given by showing the

most important entities and relationships extracted from all of the documents

within a particular time interval.

• Exploring Bubbles: The user is able to explore a given BubbleNet. Clicking

on a bubble expands the entity, revealing related entities around the clicked

one. The user can click other bubbles to make them centre and further expand

them. The user can also enter a word or phrase to look for the matching bub-

ble immediately. The result can be restricted to documents within a particular

time interval.

• Retrieving Documents: When a user is interested in studying documents

related to a bubble or a link, he or she can simply hover the mouse over the

bubble (when it is centered and expanded) or the relationship, and see a list
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of related documents and click the one that looks interesting. This action can

also be restricted to documents within a particular time interval.

5.2.6 User Interface

This module plays the role of an interface between the end user and the database to

make the user experience explained in the previous section happen.

This module can be divided into two main parts: database interface and visual-

ization . The database interface has to submit the following queries into the database

and prepare well-formatted results for the visualization part:

• Given a time interval, return the k most important entities and the most strong

relationships between them.

• Given an entity and a time interval, return the k entities that are most strongly

related to this entity.

• Given an entity or a pair of entities and a time interval, return a list of docu-

ments that are most relevant to that entity or relationship. (This means that the

given entity or relationship has the highest score in those documents within

the specified time interval).

• Given a document ID, retrieve the document address and contents.

The visualization component sends requests to the database interface and visu-

alizes the obtained results for the user.

5.3 System Architecture

Figure 5.7 shows the connection between the components. As a new document

arrives, it is loaded by Document Loader and is stored in a document object. Doc-

ument objects are then passed to the Entity Extractor component, which produces

entity objects extracted from documents. A document object is then passed to the

Relationship Extractor component, followed by a set of extracted entity objects.

The result is a set of relationship objects. Then, all the objects (documents, entities
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and relationships) are stored in the database. The User Interface component helps

user access the database and get a visualized presentation.

Different implementations of those components can be plugged into this archi-

tecture. For example, different document loaders for different document formats are

implemented. Also, if there is a pre-constructed ontology for a particular domain, it

can be used in an implementation of entity and relationship extraction components.

In the next chapter, we explain how we implemented BubbleNet system based

on the model we provided in this chapter.

Figure 5.7: The Architecture of BubbleNet System
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Chapter 6

Constructing BubbleNet

6.1 Extracting Entities and Relationships

BubbleNet is constructed based on entities that represent topics of documents and

their similarity relationships. Since we want BubbleNet to be useful for a general

domain, we consider domain-independent entity and relationship extractors. The

method used for extracting entities and relationships for a general domain is ex-

plained in sections 6.1.1 and 6.1.2.

In addition, we wanted to investigate if using a domain-specific ontology helps

BubbleNet . To this end, we report some of our experiments with an entity extractor

that uses MeSH to extract medical entities and a relationship extractor that uses

WordNet to better estimate the similarities of extracted entities.

6.1.1 Entity Extraction Using Alchemy

In order to extract entities from a document, we use keyword extraction as well

as named entity recognition. There exist several tools for extracting keywords and

named entities, such as Yahoo! Content Analysis1, Kea2, Calais3, Stanford Named

Entity Recognizer4, OpenNLP5 and AlchemyAPI6.

We tried all the tools listed previously to see which one is more appropriate for

1http://developer.yahoo.com/contentanalysis/
2http://www.nzdl.org/Kea/
3http://www.opencalais.com/
4http://nlp.stanford.edu/software/CRF- NER.shtml
5http://opennlp.apache.org/
6http://www.alchemyapi.com/
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our application. An ideal tool for BubbleNet should:

• Be fast, since we want BubbleNet to be updated quickly as new documents

arrive,

• Extract good keywords and named entities that best represent the contents of

documents,

• Not require training documents as BubbleNet has to be independent of dataset

characteristics,

• Assign scores to extracted entities so that BubbleNet can recognize the most

important ones.

Among the tools that we investigated, AlchemyAPI came on top in our case-

based evaluations. AlchemyAPI is a commercial online service for text analysis,

including keyphrase extraction, named entity recognition. (Since it is commercial,

they have not published the technology behind it.) The free version of this system

has a limitation of 1000 transactions per day. We managed to get access to Alchemy

for this research for free.

We used both keyphrase extraction and named entity recognition services pro-

vided by Alchemy. For each document, we sent its content to the Alchemy server

and obtained a list of scored keyphrases and a list of scored named entities. We

combined the two lists and normalized the scores so that they are between 0 and 1.

6.1.2 Relationship Extraction based on Co-Occurrence

Following Spence and Owens’ work in [40], we estimate the relatedness of two

entities based on how frequent they co-occur in documents, as well as how close

they appear in a particular document. In other words, every coincidence of two

entities in a single document increases the total score of the relationship between

the two entities, and the amount of this increase depends on their distance.

To take the distance of the occurrences of two entities into account when scoring

their relationship, we define a function called DistanceBasedScore(DBS) that
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gives the score of a relationship based on the distance of the first characters of two

entities (in characters). Figure 6.1 shows this function:

Figure 6.1: Distance-based score function (score based on distance in characters)

The values in this function are set so that it estimates the score similar to what

we explained in section 3.9. This function gives the score for a pair of entities.

Since entities may appear in a document several times, we accumulate distance-

based scores for all pairs of occurrences of two entities to get the total score.

Now, suppose that entity A appears 10 times in document D and entity B ap-

pears 4 times in the same document. There will be 4 ∗ 10 = 40 pairs of occurrences

that produce partial scores for the relationship between A and B. But intuitively,

we can say that the score of the relationship between a pair of entities should not

grow linearly as the number of occurrences of those entities grows. For example,

if entity A appears just once and entity B appears 10 times, it should not produce a

score two times higher than the score of a relationship in which B appears 5 times.

In order to reduce the growth rate of the scoring function, we divide the total score

by the square roots of the frequencies of A and B in document D. Given a pair of

entities A and B and a document D, the score of their relationship is computed as

follows:

• For every occurrence of A and every occurrence of B, calculate a score based

on their distance (as described below). Thus, if A appears m times and B

appears n times, there will be m× n scores calculated.
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• Sum up all of the scores calculated in the previous step to get the total score

for the pair of entities A and B.

• Divide the resulting total score by the geometric mean of the number of oc-

currences of A and B in D.

This can be summarized as follows: Assume that O(A) = {ai} and O(B) =

{bj} are sets of positions of occurrences of entities A and B (measured in number

of characters from the beginning of the text) and dbs(ai, bj) is their distance-based

score. Then the relationship score between A and B in D is calculated as follows:

score(A,B) =

∑
i,j dbs(ai, bj)√
|O(A)||O(B)|

(6.1)

6.1.3 Entity Extraction Using MeSH

MeSH is a controlled medical vocabulary that contains a large number of catego-

rized medical headings such as body anatomy, disease names, medications, etc. To

investigate if such resources can help us improve BubbleNet, we extracted entity

names from MeSH, and forced the entity extractor module to use entities in MeSH

as a lookup-table to extract entities from documents. That is, if an entry of this

vocabulary appears in a document, this module extracts it as an entity.

Since this method recognizes the entities but does not score them, we need to

find a way to score extracted entities. For this purpose, we use the intuition that

term frequency in a document is a clue to estimate its importance. Thus, we assign

the square root of term frequencies to entities as their scores.

6.1.4 Relationship Extraction Using WordNet

Similarly, relationships may be scored using resources such as WordNet. We wanted

to investigate how BubbleNet performs if we use knowledge from other resources

to estimate how similar two entities are instead of evaluating their similarity based

on their co-occurrence in the corpus.

WordNet provides a distance measure between two given phrases, which is be-

tween 0 and 1 or equals -1 if the phrases do not exist in the ontology. Assuming
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that w(A,B) gives this distance, we calculate a relationship score between A and

B as follows:

score(A,B) =

{
0.001 if w(A,B) = −1
1

w(A,B)+0.001
otherwise

(6.2)

Given a document and a set of extracted entities, we score the relationships be-

tween the extracted entities using the function explained above. It is important to

mention that this score is the score of the relationship between A and B extracted

from document D. The total score of the relationship between A and B is a function

of all scores from all documents. Thus, a notion of co-occurrence is taken into ac-

count since every co-occurrence of two entities introduces a non-zero partial score

in their overall relationship score.

6.2 Constructing the Network

BubbleNet network provides nodes corresponding to entities and edges correspond-

ing to relationships, say within a given particular time span. For this purpose, it

has to combine extracted entities with the same phrase from all individual docu-

ments. For example, having the entity ‘apple’ extracted from 10 documents pub-

lished on 2013-01-12 and 15 documents published on 2013-01-13 (each with a

different score), we need to aggregate these scores to end up with a score for the

entity ‘apple’ for the interval 2013-01-12 till 2013-01-13, since they all will be

represented as a single node.

There are several functions that we can use in order to aggregate the scores of

extracted entities. We experimented with the functions listed in table 6.1.

To compare the functions, we created 5 sets of documents: Each set contained

50 documents randomly chosen from the 5 datasets that we prepared for our experi-

ments (see Section 6.4.1 for complete description of our datasets). For each set, we

built four BubbleNet networks corresponding to the functions in Table 6.1. We vi-

sualized the networks and captured a snapshot of the first page, showing top-ranked

15 important entities and their significant links (the user interface is explained in

Section D.5 in detail). We asked three judges to look at those snapshots and choose
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Table 6.1: Different aggregation functions for entity scores
# Function Description
1

∑
si Scores are summed up.

2
∑

(si × log (tfi)) Scores are multiplied by log of number of times
the entity appears in a document. Then they are
summed up.

3 (
∑
si)/ log (dfi) Scores are summed up and then divided by log

of number of documents in which the entity
appears (document frequency).

4
∑

(si × log (tfi))/ log (dfi) Scores are multiplied by log of number of times
the entity appears in a document. Then they are
summed up and divided by log of document
frequency.

Table 6.2: Results of comparing aggregation functions by three evaluators
# Function Score
1

∑
si 6

2
∑

(si × log (tfi)) 1
3 (

∑
si)/ log (dfi) 4

4
∑

(si × log (tfi))/ log (dfi) 4

one based on the quality of the extracted entities and their connections.

Table 6.2 shows the results. The third column shows how many times the snap-

shot corresponding to a particular aggregation function was selected as the best one

among other functions, summed up for all 5 datasets. As we can see, functions 1,

3 and 4 performed very similarly. However, we chose function 1 as it received the

highest score. In all our experiments, the score of a relationship between two en-

tities is the sum of the scores of all relationships between those two entities within

the specified time interval.

6.3 Visualization

Our goal in this visualization is to represent the bubbles in a way that the user can

understand retrieved information, including entities and their importance, as well as

relationships between entities and their strength, in a glance. To this end, we used

the idea of simulating masses, springs and forces as a visualization layout for our

network.
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Using the physics of masses and springs is a great way for visualizing graphs

as it has been widely used by others under the name of spring embedder algorithms

and force directed graphs[57][58]. We followed this layout with some changes. In

this section, we describe how we create, place, link and move the bubbles.

6.3.1 Creating Bubbles

A bubble is a simple circle with a label on it, showing the entity caption. To rep-

resent the importance of the entities, we use different radiuses and fill colors. The

radius of bubble i is specified as:

ri = 55× s′i + 15 + 1.5× leni (6.3)

where s′i is the normalized score of bubble i among other retrieved bubbles and leni

is the length of the phrase of entity i in characters. The parameters in this formula

are chosen by experiments in a way that entity captions fit in the circles.

The colour of a bubble is then selected according to its calculated radius based

on a scale that maps radiuses to colors. We used 5 different colors for drawing

the bubbles. The font sizes for the bubbles texts are also chosen based on both the

bubbles’ radiuses and scores, so that the more important an entity is, the larger its

font size is.

From a masses-springs perspective, a bubble has a mass, which is proportional

to its size. Considering bubbles as discs with equal thicknesses, the mass of a bubble

is proportional to r2.

6.3.2 Links Between Bubbles

A link is a spring between two entities and is shown as a line between the bubbles.

The strength of a relationship is represented using both line thickness and length.

Stronger relationships are thicker. They are also shorter, resulting in the two bubbles

standing closer to each other following the intuition of their relatedness.

The intial length of a spring is specified as:

leni,j = 50× s′i,j + 20 (6.4)
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where leni,j is the length of the spring between entities i and j and s′i,j is the nor-

malized score of the corresponding relationship among retrieved relationships.

The initial positions of bubbles are random. The springs always connect the

closest points of the two bubbles, thus, their lengths are not necessarily equal to

their initial lengths until they reach an equilibrium.

6.3.3 Masses, Springs and Forces Simulation

We simulate physical laws governing masses and springs by calculating forces ex-

erted on the bubbles, their accelerations, velocities and position updates as the time

goes by. There are four forces exerted on bubbles:

• Spring Forces: Every spring that is connected to a bubble exerts a force on

it. According to Hooke’s law7, the magnitude and sign of this force depends

on the distance the spring is extended or compressed. The direction of this

force is specified by the relative position of the other tail of the spring, which

is the other bubble.

Fk ∝ ∆x (6.5)

• Repulsion Between Bubbles: To avoid bubbles having overlap, we consider

a repulsion force between bubbles. This force is proportional to the masses

of the bubbles and is inversely proportional to their distance.

Fr ∝
mi ×mj

di,j
(6.6)

• Boundary Repulsion: To keep the bubbles inside a bounding box, we con-

sider four springs connected to the bubbles and the borders; but these springs

can freely slide on the borders so that they always exert forces in horizon-

tal or vertical direction on bubbles. Boundary forces are considered to be

proportional to bubbles’ distances from the borders and their masses:

Fb ∝ mi × di,border (6.7)

7http://en.wikipedia.org/wiki/Hooke’s law
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• Friction Force: If two bubbles are connected by a spring that is not in its

initial length, they will fluctuate around an equilibrium point forever. To

avoid this, we simulate a friction point that causes the bubbles to gradually

lose their velocities. The friction force is proportional to the mass of a bubble

as well as its velocity and is always in reverse direction of its velocity:

Ff ∝ −mi × vi (6.8)

Summing up all the forces in a two dimensional space, the interface repeatedly

calculates the bubbles’ accelerations and updates their velocities and positions to

simulate their movements. Figure 6.2 summarizes the forces exerted on bubbles.

The parameters in force equations have been set by experiment to get a realistic

behaviour.

6.4 Experimental Setup

In this section, we explain our experimental setup, including our dataset preparation

and cleaning.

6.4.1 Datasets

We prepared three datasets consisting of three different types of documents:

Reuters News Articles

This dataset consists of 15,000 news articles extracted from the Reuters-21578

dataset8. The original dataset consists of 21,578 categorized news articles from

Reuters and is widely used for text categorization tasks. We extracted the first

15,000 articles, ignoring all categorization metadata. For each article, we kept the

contents as well as its publishing date.

Health Discussion Forums

We introduced our health discussions dataset in section 4.2. We grabbed 5,000 dis-

cussions from each of the three discussion forums (HealthBoards, eHealthForum
8Available at: http://www.daviddlewis.com/resources/testcollections/reuters21578
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Figure 6.2: Forces exerted on a bubble: Spring force (Fk), repulsion force (Fr),
border repulsion forces (Fb) and friction force (Ff ). V indicates current velocity
vector of the bubble.

and MedHelp), resulting in a dataset with a total of 15,000 discussions. We re-

moved all metadata and considered each discussion (in its entirety) as an individual

document.

Dr. Arya’s Obesity Blog

Our third dataset is a set of 900 blog posts from a professional blog about obesity.

From each post, we kept the body text as well as publishing date.

6.4.2 BubbleNet Configurations

For the Reuters news articles dataset we used Alchemy Entity Extractor and Co-

occurrence Relationship Extractor for constructing BubbleNet. For the two other
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Table 6.3: Different BubbleNet configurations
Config. Name Dataset Entity Extractor Relation Extractor
Reuters-AC Reuters News Alchemy Co-occurrence
Health-AC Health Forums Alchemy Co-occurrence
Health-MW Health Forums MeSH WordNet
Arya-AC Obesity Blog Posts Alchemy Co-occurrence
Arya-MW Obesity Blog Posts MeSH WordNet

datasets (i.e. health discussion forums and obesity blog posts) we constructed

BubbleNet with two different configurations: The first configuration is similar to

Reuters dataset using Alchemy Entity Extractor and Co-occurrence Relationship

Extractor. But the second configuration uses MeSH Entity Extractor and WordNet

Relationship Extractor as we wanted to investigate if using an ontology will help

BubbleNet produce better results on medical texts. Table 6.3 summarizes these

configurations. We used these five configurations in evaluating our system (see

Chapter 7).

6.4.3 Data Cleaning

Since entity extraction methods are not ideal, we have to perform a cleaning step to

remove inappropriate entities and relationships.

The first thing to do is to unify different forms of words. We limited this to uni-

fying singular and plural forms. To this end, we used a dictionary of singular En-

glish words9 as a look up table. For every extracted entity, we checked if the phrase

ends with s, es or ies. If so, we remove the suffix (fruits → fruit, boxes →

box, berries → berry) and looked in the dictionary for the resulting phrase. If the

entry was in that dictionary, we treated the modified phrase as a singular form of

the initial entity.

This process can result in duplicate entities and/or self-referring relationships

if both singular and plural forms of a word were originally extracted. We merged

duplicates and removed self-referring relationships.

Finally, there are sometimes entities that appear in many documents while they

are not very informative, such as the name of the news website or the blog author.

9http://www.puzzlers.org/dokuwiki/doku.php? id=solving:wordlists:about:start
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Table 6.4: Examples of filtered entities
Config. Filtered entities
Reuters-AC pct, dlrs, mln dlrs, reuter
Health-AC doctor, thing, problem, case
Health-MW will, all, problem

Similar to removing stop words, we can filter these entities by choosing them from

the top most frequent entities. The process of choosing these entities consists of: (1)

listing all entities orderd by frequency (or score), (2) looking at the most frequent

entities, (3) recognizing useless or meaningless entities. Table 6.4 shows some

entities that are filtered.
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Chapter 7

Evaluation

We indicated two goals for BubbleNet: First, to provide an overview of the content

of a website or a set of documents, and second, to help users navigate through doc-

uments and find their desired information. In this chapter, we evaluate BubbleNet

and report how successful it is in reaching these goals. We also provide an analysis

of the backend and the practicality of the system in a real world setting.

7.1 Evaluation Method

We designed a user study to evaluate BubbleNet. In our study, users were invited

to complete an online survey, consisting of two information retrieval tasks and a

questionnaire. In this section, we explain this experiment in detail.

7.1.1 Task 1: Getting an Overview
Task Description

In this task, we provide the users with a set of documents and ask them to skim

through the documents to get an idea of the topics mentioned in them. To help

users organize their thoughts and summarize the contents of the documents, we

asked them to choose a set of 3 to 5 keywords that best explain the documents in

each case. Keywords could be extracted from documents or assigned from outside

the document vocabulary. We expected this will force users to ignore details and

concentrate on important parts of documents. We also expected that having a set

of words in mind, representing the contents of provided texts, can help them in the
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next step.

After they typed their selected keywords, the survey showed them two different

‘summaries’ of the documents: a tag cloud (see Section 3.10.3) and a BubbleNet,

both created using the entities extracted from the same set of documents. We created

tag clouds using the same set of entities extracted by the Entity Extractor module.

Tag cloud shows the most frequent tags (entities) with sizes corresponding to their

frequencies, while BubbleNet shows the entities together with their relationships in

the form of bubbles interactive network.

After the user was shown both interfaces, he or she was asked to choose one

that gave a better overview of the documents. They were also welcome to make a

comment on their selection.

Experiment Setup

As listed in table 6.3, we developed five different configurations of BubbleNet with

respect to different data sets and extraction methods. Of each configuration, we

randomly picked three sets of documents, each of size 10, resulting in 15 different

document sets (a total of 150 documents). Each time a user starts Task 1, one of

these 15 sets is assigned to the user randomly. A user can repeat Task 1 up to 15

times.

In Task 1, a tag cloud shows the top 50 most-frequent entities and a BubbleNet

shows 20 entities in the first view and 15 entities when expanding an entity.

7.1.2 Task 2: Finding Information in Relevant Documents
Task Description

In Task 2, we want to evaluate how useful BubbleNet is when users want to look

for their desired information. There is a wide variety of information retrieval tasks

that one can imagine, but here we chose a task as an example of users’ information

needs: Given the name of a disease, the users are asked to find the names of 3 to

5 symptoms, medications, diagnosis or treatments related to that disease. They are

asked to find those names from the documents provided by our system, not outside

or based on their own knowledge.
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For this task we only used our health discussion forums dataset. Task 2 consists

of two steps: First, we provide the users with the name of a disease and ask them

to find related entities using a query-based search. A conventional search interface

is developed so that users can enter queries and retrieve documents that match their

query. In the second step, we provide the name of another disease and ask the

users to find related entities, this time using BubbleNet. Users can navigate through

bubbles and hover on the bubbles and their links to access relevant documents.

After doing both steps, we ask the users to choose a method that they think is

more appropriate for this task. As an optional question, we asked them why they

made that choice. We also measure the time they spend on each step to compare

which interface provided a faster way for doing this task.

Experiment Setup

As we described above, we limited Task 2 to our health discussion forums. There-

fore, we have had two BubbleNet configurations: Health-AC and Health-MW (see

Section 6.3). Each time a user starts Task 2, a configuration is randomly assigned

to him.

For selecting disease names, we used a list of disease names in English from

Wikipedia1 and looked up each disease name in our data set to see if there are

enough documents related to that disease. This way we picked ten different dis-

eases: cancer, flu, migraine, asthma, diabetes, anemia, lupus, mumps, hepatitis,

tumor. Each time a user starts Task 2, a pair of different diseases are assigned to

him from the above list; one for the query-based search and one for BubbleNet

search. For BubbleNet, we also provided a short visual guide to show the user how

to use bubbles and their links to find topics and access relevant documents. A user

can repeat Task 2 up to 10 times.

7.1.3 The Final Questionnaire

After performing tasks 1 and 2, users were asked to fill a questionnaire. The ques-

tionnaire asked users to choose one of the three provided interfaces (tag cloud,

1http://simple.wikipedia.org/wiki/List of diseases
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query- based search and BubbleNet) as the most useful interface and one as the

most joyful. This is to see how users evaluate our interface in general after they

have used it for some information retrieval tasks. They were also welcome to make

a comment on their selection.

7.1.4 Implementation Issues

The survey is implemented as a web-based application so that people can easily

access the survey by following a link. Users had the option to start Task 1 or 2

or repeat any of those tasks until they do a task for all possible datasets. They are

then forwarded to the questionnaire. The results were saved into our database as the

users proceeded with the tasks or the questionnaire.

We removed the name of BubbleNet from the survey in order to avoid biasing

the users as far as we could. We asked people from academia (graduate students

and professors) to complete the survey.

In the next section we will list the results of this experiment.

7.2 Results

In total, we had 50 participants in Task 1, 40 participants in Task 2 and 41 answers

to the questionnaire. In this section we list the results for each part of the experiment

in detail. Complete listings of collected data are provided in appendices A, B and

C.

7.2.1 Task 1

Out of 56 completions of Task 1, BubbleNet was selected 49 times (87%) as the

best interface for getting an overview of the contents, while tag cloud was selected

7 times (13%). We have broken down these results for different data sets and config-

urations (see Table 7.1). Star signs means that the results are aggregated. For exam-

ple, *- AC means aggregated results for all datasets with Alchemy-Co-occurrence

configuration. Similarly, Reuters-* means aggregated results for the Reuters dataset

including both Alchemy-Co-occurrence and MeSH-WordNet configurations.
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Table 7.1: Results for Task 1 (Getting Overview of Documents)
Config/Dataset BubbleNet TagCloud Total
*-AC 30 (88%) 4 (12%) 34
*-MW 19 (86%) 3 (14%) 22
Reuters-* 11 (92%) 1 (8%) 12
Health-* 20 (80%) 5 (20%)y 25
Arya-* 18 (95%) 1 (5%) 19
Total 49 (87%) 7 (13%) 56

Results listed in Table 7.1 show that almost the same ratio of preference is ob-

tained in all data sets and configurations in Task 1. Figures 7.1 and 7.2 also show

these results.

Figure 7.1: Results of Task 1 among different configurations: Users prefer Bub-
bleNet against TagCloud

7.2.2 Task 2

Out of 42 participations in Task 2, BubbleNet was selected 27 times (64%) as the

best interface for completing task 2, while query-based search was selected 15 times

(36%). Using query-based search, the users spent on average 348 seconds to com-

plete Task 2, while using BubbleNet it took on average 273 seconds (22% decrease).

Note that the average search time using BubbleNet also includes the time users

spent on learning how to use BubbleNet, while most of the users are familiar with
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Figure 7.2: Results of Task 1 among different datasets: Users prefer BubbleNet
against TagCloud

Table 7.2: Results for Task 2 (Finding Entities Related to a Disease Name)
Config BubbleNet Query Search Total
AC 20 (80%) 5 (20%) 25
MW 7 (39%) 11 (61%) 18
Total 27 (63%) 16 (37%) 43

query-based search.

Table 7.2 and Figure 7.3 show the break-down of the results for AC and MW

configurations.

Table 7.3 lists the average search times for Task 2. These results are also shown

in Figure 7.4 and Figure 7.5.

Table 7.3: Average Search Times for Task 2 (Finding Entities Related to a Disease
Name)

Config Avg. Time for BubbleNet Avg. Time for Query Search
AC 213 s 285 s
MW 336 s 447 s
Total 268 s 353 s
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Figure 7.3: Results of Task 2 among different configurations: Users compare query-
based search and BubbleNet

Table 7.4: Results of the Final Questionnaire
Config Question Tag Cloud Query Search BubbleNet Total

AC
Most Useful 0 (0%) 5 (21%) 19 (79%) 24
Most Joyful 0 (0%) 2 (8%) 22 (92%) 24

MW
Most Useful 3 (15%) 10 (50%) 7 (35%) 20
Most Joyful 1 (5%) 5 (25%) 14 (70%) 20

7.2.3 Final Questionnaire

Finally, we report the results of the final questionnaire that users answered when

completing the survey. This questionnaire contains two questions: Among the three

interfaces that users have observed during completing the survey (tag cloud, query-

based search and the BubbleNet), which interface is the most useful and which

interface is the most joyful. Similar to Task 2, users to which the AC configuration

was assigned for Task 2 were more satisfied with the usefulness of BubbleNet.

Table 7.4 lists the results. Note that the first row indicates the configuration assigned

to the user for Task 2, regardless of Task 1 configuration.
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7.3 Discussion

In our thesis statement, we hypothesized that BubbleNet, as an interactive inter-

face providing an explorable network of interconnected topics extracted from doc-

uments, will make users more satisfied in certain information retrieval tasks.

We considered two tasks to investigate if BubbleNet helps users completing

those tasks: Getting an overview of the content of a set of documents and finding

relevant entities to a given topic.

Task 1 aimed to evaluate BubbleNet on providing a good overview. First, we

asked users to choose keywords that they think best represent a summary of the doc-

uments. This has two advantages: First, this encourages users to study documents

(and make sure they really studied them) before they want to compare BubbleNet

vs. tag cloud. Second, having keywords extracted/assigned by users, we can discuss

about the words that users tend to choose vs. the words extracted by BubbleNet.

The results of Task 1 (see Table 7.1) show that for all datasets and configura-

tions, the users preferred BubbleNet with a significant difference. This supports a

part of our hypothesis, that is, BubbleNet will help users get a better overview of

the content of the documents.

We looked at users’ comments to see why people preferred tag cloud or Bub-

bleNet (see Appendix A). Among 6 persons who chose tag cloud, only one made

a comment, regarding an error they faced in loading documents. Summarizing the

comments of users who preferred BubbleNet, they mentioned the following advan-

tages:

• The relationships between topics are also shown

• It is dynamic and interactive, more systematic, intuitive and easier to track

• Topics are simply understood and remembered (better complexity manage-

ment and attention economy)

• It is more systematic, intuitive and easier to track

• The information is nested in different levels, not all at one level
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• It looks nicer and more attractive

In general, people liked BubbleNet mostly because it provided the overview

using a structured (interconnected) and explorable (multi-level) visualization.

In Appendix A, we list the keywords users suggested for each dataset/configu-

ration. We mark them if they also appear in the corresponding tag cloud (T) and the

first and second levels of BubbleNet (B1, B2).

Task 2 was intended to measure the usefulness of BubbleNet in a search task in

comparison to a traditional query-based search. Figure 7.3 compares the number

of users that chose BubbleNet vs. tag cloud for different configurations. It shows

that for the AC configuration, most of the users preferred BubbleNet, supporting

our hypothesis that the BubbleNet helps users find relevant entities to a given dis-

ease name more effectively. However, for the MW configuration, users didn’t like

BubbleNet as much as query-based search. This was unexpected, but showed that

the entities and relationships extracted in the MW configuration were not as precise

and informative as the AC configuration.

Does this mean that using an ontology won’t help BubbleNet produce better

results? What these results say is that the combination of MeSH entity extraction

and WordNet-based relationship extraction did not produce good results. However,

other ontologies may produce better entities and relationships for specific domains.

Especially, if we combine an ontology with a domain-independent extraction tool

(such as AC), we may observe an improvement as the ontology could help with

entities and relationships that are not caught by a domain-independent method.

In the AC configuration the average search time for BubbleNet was less than

traditional search. Running a T-test on the search times show that their difference

is statistically significant at α = 0.05. This difference is not significant for the MW

configuration. It can be inferred that the users spent less time to complete Task 2

using BubbleNet (in AC configuration) even when they prefered traditional search

over BubbleNet. This supports another part of our statement, that is, BubbleNet

helps users perform searching tasks explained in Chapter 7 faster.

Appendix B lists the results for Task 2. Summarizing the users’ comments,

people who preferred BubbleNet mainly mentioned the following points:
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• Easier to follow and much faster to find relevant information

• Suggests more keywords that users can consider when looking for their de-

sired information

• Well structured, complexity management and focusability

On the other hand, people who preferred a traditional search mentioned the

following issues:

• BubbleNet cannot combine several keywords and does not accept users’ own

words to search

• BubbleNet contains misleading information and irrelevant keywords

• Not all documents shown in BubbleNet were relevant to the topic (see the

discussion below)

• Search is more straightforward

We also observed some of the mistakes made by users: Some thought that when

BubbleNet shows entities related to a particular topic, they are subcategories of the

central topic. For example, if entity symptom is connected to the central entity mi-

graine, some thought that it refers to migraine’s symptoms. That is, the user expects

retrieving topics and documents related to both symptom and migraine when they

click on symptom. But in BubbleNet, topics are emerged separately and they are

not hierarchical although they are connected. Users have to point the link between

migraine and symptom to retrieve documents related to both topics. This obser-

vation shows that people may have different intuitions when using BubbleNet and

therefore they may have expectations that are different from our intuition. A pos-

sible improvement is to change BubbleNet so that it fits users intuition about the

hierarchy of topics.

Finally, after completing the survey, we asked users which interface was the

most useful one, as well as the most joyful. This is to measure the users’ overall

satisfaction about their experience with BubbleNet. As figures 7.6 and 7.7 show,
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users preferred BubbleNet with AC configuration over the other interfaces in terms

of usefulness in performed tasks. They also significantly preferred BubbleNet as the

most joyful interface. This supports another part of our statement that BubbleNet

is more useful in certain information retrieval tasks and also provides users with a

more pleasant experience.

Appendix C lists the final comments that users made while answering the final

questionnaire.
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Figure 7.4: Comparing average search times for Task 2 (AC configuration)

Figure 7.5: Comparing average search times for Task 2 (MW configuration)
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Figure 7.6: Questionnaire results: The most useful interface

Figure 7.7: Questionnaire results: The most joyful interface
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Chapter 8

Conclusion and Research Directions

There have been several interfaces developed for information retrieval systems,

such as traditional query-based search and tag clouds. Each has advantages and lim-

itations. Traditional search is very common and effective in retrieving documents,

but does not help users get an overview of the documents and requires them to have

informative keywords in mind to explain their information need. Tag cloud, on the

other hand, provides a summary of contents of the documents, but is not explorable

and does not say anything about the relationships between topics mentioned in the

documents. It also needs tagged documents as it does not extract important topics

automatically.

We introduced an interactive user interface, called BubbleNet, that provides

users with an overview of the content of a corpus at a glance in the form of an

interconnected network of topics represented as bubbles. It automatically extracts

important topics, names, places, etc. and evaluates their semantic similarity to form

a network of related entities. Users can navigate through this network, expand

bubbles and explore related documents to find their desired information.

We evaluated BubbleNet by asking users to complete an online survey consist-

ing two tasks: Comparing BubbleNet and tag cloud in providing a good overview

of documents, and finding entities relevant to a given topic. The results show that

users are more satisfied when using BubbleNet for the mentioned tasks when us-

ing a domain-independent configuration: They mostly prefer BubbleNet over tag

cloud in providing an overview. They also find BubbleNet more useful and faster

for finding entities related to a topic, and vote for BubbleNet as the most useful and
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pleasant tool among the three interfaces.

Using an ontology-based and domain-specific method for extracting entities and

relationships didn’t help BubbleNet produce better results. But this does not mean

that using domain-specific knowledge can not be helpful. More experiments are

needed to evaluate the success of our system when using domain specific knowledge

or combining it with domain independent methods.

The current BubbleNet has limitations: It currently doesn’t distinguish between

different senses of entities (such as apple: the fruit and apple: the company),

doesn’t unify similar entities (such as over-weight and overweight) and doesn’t

integrate different forms of words (such as negotiate and negotiation). More ad-

vanced natural language processing methods can be used to improve BubbleNet in

these aspects.

BubbleNet is a very new interface, meaning that it is not still adapted to users’

intuitions. For example, many people complained that they didn’t know that by

pointing a link between two bubbles they could retrieve documents related to both

topics, or the bubbles related to an expanded topic are not subcategories of that

topic. Conducting more user experiments will help us improve BubbleNet interface

and can make it more intuitive and user friendly.

A very important direction of improvement is the idea of combining the bubbles

with the traditional search. People are mostly familiar with traditional search, and

it is a very flexible way of retrieving documents. Combining BubbleNet (as an

interactive graphical interface) with traditional search can result in a very effective

and flexible interface where users can take advantage of both interfaces.

In a frequently visited website, BubbleNet can improve by using users’ feed-

back. Logging the paths that users follow when exploring the network can give

us valuable information about importance of the entities and strength of their re-

lationships. For example, if the entity Canada is clicked significantly more fre-

quently than others, it means that it is more important than other extracted entities.

Similarly, if users always click the bubble Budget Cut after expanding the bubble

University of Alberta, it can be inferred that the link between those two entities is

strong. This information can be used to continuously update BubbleNet to better fit
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the users’ information needs.

Another important issue is studying the use of ontologies in constructing Bub-

bleNet. Although our small experiment here indicated that our configuration of

domain specific entity and relation extraction was not improving BubbleNet, using

better knowledge resources might be more helpful and has to be investigated.

Finally, a precise evaluation of BubbleNet needs further user experiments, con-

sisting of more information retrieval tasks and a larger population of users.
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Appendix A

Results Listing for Task 1

Table A.1 lists the results of Task 1. Each row corresponds to a participation in this

task, including user’s field of study (major), assigned dataset and configuration,

user’s suggested keywords, user’s choice (between BubbleNet and tag cloud) and

user’s comments, if any.
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# Major Dataset Config keywords Choice Comment
1 Computer

Science Health mw medicine, bp, hospital(T) tagcloud

2 Computer
Science Health mw

thyroid(TB1),
test(TB1),
blood(T),
pres-
sure(TB2),
results,
alcohol,
alcoholics,
health,
support,
medical,
x-ray(T),
health,
healthy,
metabolic

bubblenet Neither are really good.

3 Computer
Science Health mw

thyroid,
tsh(TB1),
hor-
mone(TB2)

bubblenet

4
Chemical
Engi-
neering

Health ac

medical
help, pa-
tient, seek-
ing medical
advice, long
questions

tagcloud

5 MBA Aria mw
health(TB1),
study(TB1),
theory

bubblenet
because they are separated and
beautiful and duyamic :) I liked
it

6

information
technol-
ogy
engineer-
ing

Aria ac
obesity(TB1),
weight(TB1),
food(T)

bubblenet
more attractive simply under-
stood simply remembered and
analysed

7 Civil En-
gineering Health ac health medical forum bubblenet 1- It looks better 2- It shows the

relation between the keywords

8 engineering Reuters ac
bussiness,
money,
manage-
ment

bubblenet

9 Computer Reuters ac
Computer(B1),
network,
economy,
share(B2)

bubblenet

10 mathematics Health ac whatever, toolong, blah bubblenet
11 Computer

Science Reuters ac trade finance bank(T) bubblenet Describes how the entities are
connected with each other.

12 Computer
Science Aria ac

obesity(TB1),
weight
loss(TB1),
good diet

bubblenet

because it shows the relation of
the words that gives more in-
formation. And also the infor-
mation is nested so you could
find more information in differ-
ent levels.

13 Computing
Science Health ac

lump(TB1),
pain(TB1),
normal,
suggestion,
help(T),
health,
hernia(TB1)

bubblenet

There are several advantages:
1) Connection of each subject
to the relevant one 2) It is inter-
active, so search, and work with
it would be easier 3) It is more
attractive 4) There is a search
box making search so easy

14 computer
science Aria mw

exercise(TB2),
canadian,
activity(T)

bubblenet

15 Civil Reuters ac
fiscal(B2),
orders ,
shipment(T)

bubblenet

16 Massage
therapy Health ac running, pain, marathon tagcloud
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# Major Dataset Config keywords Choice Comment

17 Computer
Science Aria ac

health,
obesity,
research,
case study

bubblenet

18 Computing
Science Health mw

diagnosis,
blood pres-
sure(TB1),
hospital(T)

bubblenet

19 Computer
Science Aria ac

food(T),
adipocyte-
derived
protein
leptin,
health(T),
eating(B2)

bubblenet It is more systematic and easier
to track

20 civil en-
gineering Health mw pain, knee, gym bubblenet

21 Computing
Science Reuters ac

acquisition
of brooks
drug, report,
agricultural
commod-
ity(TB2),
federal
limits, bo-
livia(TB1),
economic
stabilisation
program,
public
spending,
the soviet
union(TB1),
motor in-
dustry(T),
shipment,
export,
financial
struc-
ture, cash
flow(B1)

bubblenet intractable shows topics rela-
tions

22
Electrical
Engi-
neering

Aria mw

obesity(TB1),
impli-
cations,
diseases,
prediction,
health(TB1),
treatment

bubblenet
It makes relations more under-
standable and it is more or-
ganaized. It is more like what
brain works.

23 Civil En-
gineering Aria ac

obesity,
health,
medical
research

bubblenet

Visualization 2 provides better
overview, but using it is not
easy enough. Using Visualiza-
tion 1 in nice and easy

24 Computer
Science Aria mw

obesity(TB1),
cause, treat-
ment(TB1)

bubblenet

25
software
engineer-
ing

Aria mw

overweight(T),
height,
weight(TB1),
self-
reported
obesity

bubblenet

in terms of precision and re-
call and also the better com-
plexity management and atten-
tion economy in visualization(=
better HCI-related Characteris-
tics).

26 cs Reuters ac
shares(T),
stock(T), fi-
nance(TB1),
trade

bubblenet more information but not all at
one time

27 computer
science Health ac

health
symptoms
question
diagnosis

bubblenet

28 CS Health ac
disease(T),
problem,
question

bubblenet
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# Major Dataset Config keywords Choice Comment

29 Electromagnetics Aria ac

obesity(TB1),
pa-
tient(TB2),
treat-
ment(TB2),
pro-
gram(TB2),
weight
loss(TB1)

bubblenet

30
Environmental
engineer-
ing

Health ac
biopsy(T),
thy-
roid(TB1),
heart(TB2)

bubblenet

31 Computer
Science Health ac fever, sore throat, mumps bubblenet looks nicer!

32
Electrical
Engi-
neering

Aria ac

weight
loss(TB1),
mortality
risk(T), obe-
sity(TB1),
chronic dis-
eases(B2),
hypothala-
mus

tagcloud

33 computer
science Aria ac

bariatric-
obesity-
chronic
disease-
dgat1- food
industry

bubblenet

34 Computing
Science Aria mw obesity(TB1), diet, bmi bubblenet

35 computing
science Health ac

mump, sore
throat(B1),
rash(B2)

bubblenet

36

Electrical
Engi-
neering
(Com-
munica-
tion)

Aria mw

Obesity(TB1),
Public
Health,
Weight
Manage-
ment

bubblenet

It contains a much more so-
phisticated information content
along with relations and struc-
tural connections between the
concepts which is a much more
complete model for the text
content. Yet it is also interac-
tive, which makes it possible to
customize the representation to
ones appropriate way.

37 Business
& IT Aria mw

fitness, obe-
sity(TB1),
health(B1)

bubblenet It looks more organized

38 Physics Health mw

Pain(B2),
dis-
ease(TB1),
cure, illness,
help(B2),
problem

bubblenet

39
Chemical
Engi-
neering

Reuters ac

business,
coffee mar-
ket(TB2),
ex-
port(TB2),
import,
stock mar-
ket(TB2)

bubblenet

40 health Health mw
health, pa-
tient(B2),
questions

bubblenet

41 computer
science Health ac diseas, cure, medical bubblenet

42 Computer
Science Health mw health, medicine, disease tagcloud

43 cs Health ac
sport, reflux,
symptom,
depression

bubblenet more information
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# Major Dataset Config keywords Choice Comment
44 Computer

Science Reuters ac business, news, financials bubblenet More intuitive
45 Health Reuters ac economy, finances, money tagcloud
46 medicine Health mw exercie, knee, pain(TB2) bubblenet faster emphasis of the search

word

47
Physical
Educa-
tion

Aria mw
obesity, co-
morbidity,
determi-
nants

bubblenet

48 Medicine Aria ac meeting bubblenet

49 none Reuters ac

loss(T),
agriculture
commod-
ity(TB2)

bubblenet I like bubbles

50 Music Health mw Advice, health, overwhelmed bubblenet

51 Nursing Health mw
Personal,
hypochon-
dria, advice

bubblenet

52

Diabetes
Educa-
tion and
Manage-
ment

Health ac

Post op
experience,
sports in-
jury, pain,
first-person
descriptions
of personal
experience

bubblenet

53 Kinesiology Aria mw

obesity(TB1),
weight-
management(TB2),
treatment
strategy

bubblenet

Visualization 2 allows you to
break down the topic from big-
ger ideas to smaller ideas and
sub-categories. Although I find
visualization 2 less impactful in
terms of its presentation.

54 chemistry-
medicine Reuters ac profit, trade markets bubblenet

55 medicine Reuters ac
financial
commod-
ity mar-
kets(TB2)

bubblenet

it shows visually which term is
important and how it is linked
to other terms and we can in-
teractively explore each term,
satellite terms and even the
links

56 Nursing Health mw

Thyroid(TB1),
abnormal
levels,
questions

tagcloud
There was an error loading the
documents I was unable to view
the second document.

Table A.1: Results Listing for Task 1
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Appendix B

Results Listing for Task 2

Table B.1 lists the results of Task 2. Each row corresponds to a participation in

this task, including user’s field of study (major), assigned configuration and disease

names, user’s suggested entities for the two diseases (using two different meth-

ods), average search times, user’s choice (between BubbleNet and traditional query-

based search) and user’s comments, if any.

In this table, QST and BST stand for query-based search average search time

and BubbleNet average search time respectively.
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# Major Config Diseases QST
Query
Search:
Entities

BST BubbleNet:
Entities

Choice Comments

1 Computer
Science

Health-AC tumor,cancer 372

mitomycin,
cancer, mri,
adenoma,
chemo

245

lekema,
chemo,
swelling,
radiation,
surgery

bubblenet

2

information
technology
engineer-
ing

Health-AC anemia,diabetes 311

low circu-
lation, not
sleeping well,
anigma

187
constipation,
dizziness,
headache

bubblenet it is faster

3
Civil Engi-
neering

Health-AC flu,hepatitis 322

sore throat,
fatigue,
stomachace,
protonix

360
lack of ap-
petite, weight
loss,catalase

query

because I wanted to search
a combination of the words
which were not available in the
second one

4 Computer
Science

Health-MW tumor,cancer 47
sorafenib
sunitinib
bevacizumab

100 chemo jaun-
dice liver

bubblenet

Although second method has
more potential, it is not with-
out its faults for the purpose
of this experiment. Specifi-
cally, the name of documents
is trimmed so it is not possi-
ble to identify what a docu-
ment pertains to.

5 Computer
Science

Health-MW cancer,tumor 896

biopsy,
chemo, radi-
ation, pain,
nose bleeds

682

ice pick
headaches,loss
of ap-
petite,tingling,
prickling,
dizziness

bubblenet

You can be more sure of the
documents to choose when us-
ing bubble network. You need
less search through a loaded
document to see if it is related
to what you need or not.

6 Computing
Science

Health-AC migraine,mumps 180
headache,
anxiety,
dizziness

201
swelling,
fever, pain

bubblenet Easier to follow

7 Computer sci-
ence

Health-AC lupus,asthma 276
joint pain,
accutane,
fatigue

499

pain in toe
nails, brittle
muscles,
chest pain

bubblenet

It gave me more related words,
so I had an expectation about
the words that I should look
for in the document.

8 Civil Health-AC mumps,migraine 53 swollen testes 30 throbbing bubblenet

9
Massage
therapy

Health-MW hepatitis,flu 76
jaundice,
cirrhosis,
diclofenac

94

constipation,
imuran, ran-
dom body
aches

query

10 Computing
Science

Health-MW mumps,migraine 98

inoculation
pain swollen
head hurting
herpes

119 pain headache
hemicrania

bubblenet
Much faster to find relevant in-
formation about the topic

11 Computer
Science

Health-AC flu,hepatitis 132
atches, nex-
ium, stomach
pain, burping

144 blood test,
liver disease

query Bubbles did not contain much
information

12 Computing
Science

Health-AC lupus,asthma 454
joint pain,
hair loss, rash

291

coughing,
chest pain,
inhaler,
prednisone,
allergy

bubblenet easier and faster

13
Electrical
Engineer-
ing

Health-AC mumps,migraine 222

throat pain,
clogged
ears feeling,
swelling,

215

headaches,
spinach juice,
beet, car-
rot juice,
cucumber
juices

bubblenet easier to find out!

14
Civil Engi-
neering

Health-AC mumps,migraine 591
pain in
neck, pain,
headache

15
pain in eyes,
headache, mri

query bubble were full of misleading
and unusable information.

15 Computer
Science

Health-MW cancer,tumor 452
pain fatigue
weight loss

482 pain radiation
vitamin

query
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# Major Config Diseases QST
Query
Search:
Entities

BST BubbleNet:
Entities

Choice Comments

16
software
engineer-
ing

Health-AC flu,hepatitis 277

no appetite,
gurgling in
his abdomen
like he was
hungry, loss
of weight,
a lump ap-
peared at the
base of his
neck and his
stomach was
swelling ( he
had peritoneal
( stomach )
mesothelioma
) that causes
ascites in the
stomach re-
gion, allergy
treatments

554

blood test,
fluid in the
belly, jaun-
dice, weight
loss, fa-
tigue, lack
of appetite,
confusion

bubblenet
well structured, complexity
management of huge con-
tents,focusability

17 cs Health-AC lupus,asthma 198

headache,
visual prob-
lems, clots,
vein thrombo-
sis

296

headache,
albuturol,
cough, itchy
feeling inside
ches

query
Not all documents presented
in the second method where
about asthma

18 Computing
Science

Health-AC anemia,diabetes 258

dehyderation,
weekness,
angina, fever,
stomach pain

43 pain, anxiety,
headaches

bubblenet

19
computer
science

Health-AC asthma,lupus 408

feel short of
breath, bron-
choconstric-
tion,fatigued

139
plaquenil,
rash, fibro

bubblenet

20 CS Health-MW lupus,asthma 133
nausea vdrl
plaquenil

178 back pain in-
fection

query Could not find any answers
with bubbles!

21 Electromagnetics Health-MW mumps,migraine 2502

fever, pain
killer, sali-
vary glands
swelling,

356

headaches,
hemicrania,
pain killer,
properanolol

query

The bubbles method was more
convenient if the keywords in
the bubbles were more rele-
vant.

22
Electrical
Engineer-
ing

Health-MW asthma,lupus 683
albuterol,
inhaler,
theophylline

232
arthritis,
blood, pain

bubblenet

23 CS Health-MW mumps,migraine 440

pregnancy,
pain killer,
paracetamol,
fever, swollen
glands

679

headache,
surgery,
buprenor-
phine, stress,
pressure on
optic nerve

bubblenet

1) More fun. 2) It helps with
useful keywords. 3) I assume
otherwise your research would
be meaningless :)

24 CS Health-AC hepatitis,flu 345
isoniazid,
vaccine, liver
test, blood

499
fatigue, virus,
flu shot, pain,
fever

bubblenet

25
computer
science

Health-AC diabetes,anemia 430
blood sugar-
insulin-
tiredness

164
allergy-
anxiety- body
pain

bubblenet

26 Computing
Science

Health-MW hepatitis,flu 304

liver, cir-
rhosis, liver
transplant,
dna test

357

flu shot,
throat
pain, virus,
headache

bubblenet

1) More fun. 2) It helps with
useful keywords. 3) I guess
otherwise your research would
be meaningless :)

27 computing
science

Health-AC asthma,lupus 221

sinusitis ,
infections ,
acid reflux
, eczema ,
zithromax

32 pain , fibro ,
rash

bubblenet much easier

28 computing
science

Health-AC tumor,cancer 81
grows, carci-
noid , ade-
noma

156

abscess ,
rash , oral
lichen planus
, , bump , ,
reaction

bubblenet more useful, informatic

29

Electrical
Engi-
neering
(Commu-
nication)

Health-MW tumor,cancer 594

nephrectomy,
manual lymph
drainage (
mld ), radia-
tion therapy

981

esr count, en-
dometriosis,
white blood
cell count,

query

the search option is not limited
to some predefined words and
combination of words are not
limited to two.
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# Major Config Diseases QST
Query
Search:
Entities

BST BubbleNet:
Entities

Choice Comments

30 Business
& IT

Health-MW anemia,diabetes 259

fever iron
deficiency
fatigue de-
pression
weight gain

112
ache numb-
ness body
odor

query The second was slow and dif-
ficult to follow

31 Physics Health-MW lupus,asthma 305
rash, foot
pain, blood in
urine

926 query

32 health Health-AC hepatitis,flu 404
pain, fatigue,
enzymes,
methotrexate

111
sius conges-
tion, pressure,
fever

bubblenet

33 engineering Health-AC tumor,cancer 311

remove
tumore, phys-
ical therapy,
lazer beam

192

ionized
treatment,
chemother-
apy,numbness

bubblenet

34
computer
science

Health-AC lupus,asthma 505
rosaica joint
rash toung
rheumatoid

155 lung coughing
inhaler

bubblenet

35 Computer
Science

Health-MW asthma,lupus 140
allergy, in-
flammation,
steroids

305
feel
dizzy,fatigue,ssri

query

36 cs Health-MW lupus,asthma 237

rash, mi-
graine,
nausea, sen-
sitivity to
light

81

coughing,
wheezing,
shortness of
breath, chest
tightness and
pain.

bubblenet quicker

37 Computer
Science

Health-AC anemia,diabetes 307

hypoglycemia,
low blood
pressure, iron
capsules, iron
deficiency,
vitamin c

152

upper ab-
dominal pain,
headaches,
blood sugar

bubblenet
More intuitive interface. Re-
quires quite a bit of refining
though.

38 Health Health-AC tumor,cancer 202
surgery,
chemother-
apy, swelling

329
pain, chemo,
radiation,
surgery

bubblenet

39 Health Health-AC tumor,cancer 202
surgery,
chemother-
apy, swelling

329
pain, chemo,
radiation,
surgery

bubblenet

40 Nursing Health-MW asthma,lupus 177

shortness
of breath,
salbutamol,
peak flow.

308
pain, rashes,
mental fog.

query

41 Nursing Health-MW flu,hepatitis 136
Sore throat,
fever, ache

13 query
Bubbles do not work as in-
structed on ipad

42 Kinesiology Health-AC tumor,cancer 66

cancer,
growing,
malignant,
surgery, death

129

pain, chemo,
breast,
surgery,
test

query

More straight forward. The
floating bubbles are a bit dif-
ficult to get accustomed to be-
cause they move around. Per-
haps if they were stable it
would be easier.

43 Nursing Health-MW flu,hepatitis 572

vomiting,
achey, fluids,
headaches,
rest

38
Error un-
able to see
documents

query Unable to view second box
documents

Table B.1: Results Listing for Task 2
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Appendix C

User Comments from the Final
Questionnaire

Below are the comments that users made on our system. They pointed out some

issues that they faced when dealing with BubbleNet and comparisons to the other

interfaces.

Note that the letters A, B and C refer to tag cloud, query-based search and

BubbleNet interfaces respectively.

• I think bubble net along with word cloud provides better insights. Word clouds

some how give a more general and big picture of the documents you have they

are simpler. On the other hand bubble net provides more thorough informa-

tion about the document but it is more complicated. But for if you are familiar

with them you could get more information and find what you want easier and

faster with bubble net. Bubble net has more usages, word Cloud could just

help to get the big picture of the whole stack of documents. Search box is the

most primary method and takes more time.

• First,this page has no question (3) Second, the third interface is quite slow.

The search box could be limited to search within a specific domain (optional).

E.g, there would be a checkbox that limits the search for the center bubble.

• Interface (C) was great but I experienced some slowness and freezing when

clicking on bubbles

• I think it was not consistence for different experiments. In general C is easier

to track and to find info. But sometimes it do not give enough information.
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• complexity management of huge results, focus-ability, attention economy and

HCI-related issues are other important factors in the usefulness, efficiency,

pleasure-ability and joyfulness of using Bubbles in information retrieval. Thank

You...

• B and C could be combined.

• You should have a better guide for the bubbles method. It was a little confused

how to open a document at first. Also once I figured out how to use the edges

it was much better experience, which I think was not explained. I wonder

whether the path to a bubble is relevant to what the user sees, but I think

it should be. For example if I click on the pain bubble while the flu bubble

is expanded it should not be the same pain bubble that I expand from the

migraine bubble.

• Combining a search with the bubbles could be useful. Search is powerful

and the bubble interface can reduce the search space doing a selection of the

documents.

• I think I am accustomed to interface 2 but prefer the idea of interface 3. I find

interface 1 prescriptive and limiting.

• I definitely find the search box the most useful, however I can see the appeal

of the bubbles interface with the sub-categories of ideas. I think with some

work to make it a bit more user-friendly (less movement) it could be a good

system.
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Appendix D

Implementation Details

After providing a high-level model of the system, in this chapter we explain the

details of our implementation.

D.1 Overview

Most of the parts were implemented in Java, while the user interface is implemented

in PHP and Javascript. Documents, entities and relationships are implemented as

Java classes until they are stored in the database. Beyond that point, they are treated

as database records.

For each component (Document Loader, Entity Extractor, Relationship Extrac-

tor and Database Interface) we first designed a Java interface to set a standard way

of communication between components. Then, for each method we used, we de-

signed a separate class implementing that interface. This way, the system could be

easily adapted for a particular application just by configuring appropriate concrete

classes subsuming abstract interfaces.

D.2 Document Loader

The Document Loader interface defines the functionality of Document Loader com-

ponent, which is accepting new documents and loading them into BubbleNet sys-

tem. Our dataset consists of files stored in two different formats as we explained

in section 6.4.1: .dcu and .txt. Therefore, we implemented two different Docu-

ment Loader classes to load documents. Once a document is loaded, a new instance

of the Document class is created and the contents of the document is stored in it, as
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well as the document address and its date. Also, a unique document ID is generated

and assigned to that document. Then the resulting object is passed to the next layer.

D.3 Entity and Relationship Extractors

We implemented two Java interfaces for Entity Extractor and Relationship Extractor

components. The former provides the functionality of accepting documents and

returning a list of Entity objects. The latter one, similarly, provides interface for

accepting documents and entities and returning a list of Relationship objects. Below

is the definition of these interfaces:

// Entity Extractor Interface
public interface EntityExtractor
{

public void initialize(); // Called at startup time

public Entity[] getEntities(Document d) // Returns
list of entities extracted from

document d
public Entity[] getEntities(Document d, int n) //

Returns top-n entities extracted
from document d
}

// Relationship Extractor Interface
public interface RelationshipExtractor
{

public void initialize(); // Called at the startup
time

public Relationship[] getRelationships(Document d,
Entity[] entities); // Extracts

relationships between given entities from document d
}

As described in sections 6.1.1 to 6.1.4, we used two different methods for ex-

tracting entities and two different methods for extracting relationships. Correspond-

ingly, we have two implementations of the Entity Extractor component, as well as

two implementations of the Relationship Extractor.
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Alchemy Entity Extractor: AlchemyAPI provides an API for using their ser-

vices online. Thus, we extracted keyphrases and named entities from all documents

in our datasets using this API and stored them so that we can access them offline.

At the time of adding documents to BubbleNet, this module loads the extracted

keyphrases and named entities, performs the pre-processing stage described below

and returns the list of entity objects. The pre-processing steps are:

• Removing unusable entities, such as URLs and symbols

• Trimming up extracted entities (removing extra spaces, etc.)

• Combining keyphrases and named entities

• Removing duplicates

For every extracted entity, an instance of class Entity is generated and appropri-

ate document ID, phrase, score and date is assigned to it. Then an array of entities

is returned.

Since the number of entities indicates the number of relationships and therefore,

the size of database and processing times, this module can be set in a way that it

returns only k top- scored entities.

Co-Occurrence Based Relationship Extractor: This class generates an array

of Relationship objects for a given document and its extracted entities. For ev-

ery pair of entities, the score of the corresponding relationship is calculated using

the algorithm explained in section 6.1.2 and an instance of class Relationship with

appropriate entities, score, document ID and date is generated.

To limit the number of relationships generated for a given document, this mod-

ule can be set to pass only relationships with scores higher than a threshold.

MeSH Entity Extractor: This module uses the list of medical headings we

extracted from MeSH, as we explained in section 6.1.3, removing all categorization

data. We also removed entities shorter than 3 characters, as well as phrases that

have a single-letter word at the beginning or the end. This process resulted in a

vocabulary with 104,277 entries.

At the time of program startup, this dictionary is loaded into memory. As a

document arrives, entries of this vocabulary that appear in documents are extracted
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and scored according their term frequencies. Similar to Alchemy Entity Extractor,

this module generates an array of Entity objects and can be set to return only k

top-scored entities.

WordNet Relationship Extractor: In order to connect to WordNet, we used

RiTa.WordNet1: a Java library for accessing WordNet API. Similar to Co-occurrence

Based Relationship Extractor, this module produces an array of Relationship objects

and can be set to return only relationships with scores higher than a threshold.

D.4 Database Layer

Documents, as well as extracted entities and relationships are stored in a database.

The Database Layer has responsibility to build and maintain the database and to

provide an interface for connecting to the database. As database server, we used

MySQL, which is a high-performance server that is easily integrable with both Java

environment and web applications.

The design of database schema was a challenging problem, because the database

has to be able to answer queries in an appropriate response time, as well as to update

and organize newly arrived information with an acceptable speed. BubbleNet can

be used for huge text corpora, thus, the database should be designed in a way that

it can deal with large amount of data in reasonable time.

To this end, we tried different designs and ended up in a schema that satisfies

the conditions mentioned above. We have five tables in the database:

• Documents: Table documents stores all documents, including their con-

tents, automatically-generated ID, date and address fields and is indexed based

on document IDs. When a user wants to retrieve a document, this table is used

to retrieve the contents of the desired document or its (physical or online) ad-

dress.

• Entities: Table E stores all entities, including their phrase, date and score

fields. Each record in this table indicates an entity extracted from documents

of a particular date. If an entity appears in multiple documents within a single

date, the score in this table is the total score of those entities. Yet, if an entity

1http://www.rednoise.org/rita/wordnet
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appears in documents of several dates, it also appears multiple times in this

table (one entry for each date). Thus, each record corresponds to appearance

of an entity in all documents of a particular date.

This table is indexed based on entity phrases, scores and dates and is used to

find the most important entities within a particular time interval.

• Entity-Documents: Table ED stores the ties between entities and documents.

Each entry corresponds to appearance of a single entry in a document. Thus,

if a document appears in several documents of a single date, there will be one

entry for each document in this table. Note that even if an entity appears sev-

eral times in a single document, it is extracted as a single entity and therefore,

it occupies only one row in this table.

The table ED is indexed based on entity phrases, scores and dates and is used

to find documents that are most relevant to an entity within a particular time

interval.

• Relationships: Table R stores all relationships, including the phrases of the

pair of entities engaged in the relationship, date and score fields. Phrases of

the two entities are sorted alphabetically and concatenated using a delimiter

character to form a single field in order to make the indexing process easier.

Similar to table E, each entry in this table corresponds to a particular date.

Therefore, all relationships extracted from documents of a specific date that

engage two particular entities will be summed up and stored in this table as a

single row.

This table is indexed based on phrases, scores and dates and is used to find

the strongest relationships between two given entities within a particular time

interval.

• Relationship-Documents: Table RD is used to store the ties between rela-

tionships and documents. That is, every single relationship extracted from a

document has a row in this table. This way, if two entities appear in several

documents in a single date, there is multiple records in this table, one for each

document.
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This table is indexed based on entity phrases, scores and dates and is used

to find documents from which two given entities get the highest relationship

scores.

In order to reduce the size of the database, we rounded all dates to the first days

of the week. That is, all documents published during a week are labeled with the

date of the first day of that week. This reduces the number of possible distinct dates

while keeps users able to search within particular time intervals with an acceptable

precision.

Figure D.1 shows the five tables described above with a few sample rows.

D.5 User Interface

The user interface for this system consists of two parts: A visualizer module that

retrieves information and represents it in a visually pleasant manner, and an inter-

mediate component that connects to the database layer and translates user actions

into database queries. Here we describe these two parts:

Intermediate Component: The graphical interface (visualizer) is a client-side

application that retrieves data from website and visualizes them. Thus, the interme-

diate component should be a server-side application that connects to the database

and provides an interface for the client-side graphical user interface. We imple-

mented this module in PHP2, providing the following functionalities:

• Connecting to BubbleNet database

• Accepting requests from the client-side application through GET method3

• Interpreting requests and translating them into MySQL valid queries

• Getting query results from MySQL database and extract desired information

• Pack desired information in a format that the client-side application can use

• Send the results back to the client-side application

2http://www.php.net/
3http://en.wikipedia.org/wiki/GET (HTTP)#Request methods
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A request from the client-side application contains information such as the func-

tion to be called (e.g. get most important entities, get related entities, etc.), dataset

name, number of items (e.g. entities) to be returned and start and end dates of the

desired interval. The response from the server-side component is the information

retrieved from database in an appropriate format.

Graphical Interface: This component is where the entire BubbleNet system

meets end users and has the responsibility to provide an interactive graphical envi-

ronment to the users. We implemented this part in JavaScript4 which is a safe and

fast platform for client-side user interface implementation and is compatible with

most of commonly-used web browsers.

Using Ajax5 technology, the interface first connects to the server-side compo-

nent and requests for a list of the most important entities and their significant rela-

tionships. Results are then unpacked and appropriate bubbles and links are created

according to retrieved data. For visualization and graphics tools, we used Paper.js6,

a free graphics library for JavaScript that provides many useful graphical tools for

drawing shapes, creating interactive objects and dealing with user’s behaviour.

The script simulates physics laws to predict the movements of bubbles, as de-

scribed in Section 6.3.3. It then captures mouse events to interact with the user:

• When the user points a bubble, that bubble gets a thicker stroke to tell the

user that it something will happen if the user hovers or clicks on it.

• When the user hovers on a bubble for a short while, the script expands that

bubble as a preview, while keeping the rest of bubbles with less opacity.

• When the user clicks on a bubble, other bubbles are removed, a new request

is sent to the server to retrieve related entities to the clicked one, and once the

script receives the results, it generates new bubbles and connects them to the

clicked one. Physics laws then move this expanded bubble to the center as

others tend to stand around it due to the links between them and the central

bubble.
4http://en.wikipedia.org/wiki/JavaScript
5https://en.wikipedia.org/wiki/Ajax (programming)
6http://www.paperjs.org/
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• When the user hovers on a link or on an expanded bubble, the script retrieves

a list of most relevant documents and shows it to the user. By clicking an

item in that list, the document will be shown to the user with the keywords

highlighted.

• The user is also able to slide handles of the time interval slide bar to indicate

desired time span.

The script also keeps the record of the bubbles a user navigates, so that the

user can click on the arrow buttons on the left and right sides to navigate back and

forward in the history.

Finally, the user can enter a phrase to fly immediately to its corresponding bub-

ble (if exists). The script accepts the phrase and sends a request to the server to get

related information.

Figure D.2 shows a snapshot of the first view of the interface which shows the

top-15 important entities of a blog and their significant links. Figure D.3 shows

the overview when the time interval has changed. Figure D.4 shows the interface

when a bubble is expanded and the list of related documents is retrieved. Figure D.5

shows the preview of related entities to an entity when the user hovers on it.
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Figure D.1: Database tables with sample rows
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Figure D.2: Graphical User Interface: An overview of the most important entities
and their significant relationships.
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Figure D.3: Graphical User Interface: The overview with a narrower time interval
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Figure D.4: Graphical User Interface: The bubble ‘vivus’ is expanded and the list
of related documents is shown.
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Figure D.5: Graphical User Interface: A preview of related entities to the entity
‘vitamin’
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