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ABSTRACT 

Circular turbulent jets are essential in many engineering applications and are thoroughly studied. 

Most of these studies involve stationary jets. Contemporary studies lack the understanding of 

translating jets partly because the experimental setup is complicated, and computational models 

cannot simulate air entrainment and scour by translating jets reliably. This thesis presents some 

phenomena related to translating turbulent circular jets: scouring sand beds, air entrainment in a 

quiescent waterbody, and impingement on a flat wall. These phenomena of translating jets were 

compared against stationary jets. However, there is a research gap in the scouring of sand beds by 

short impinging circular jets. Therefore, an experimental study of stationary short-impinging jet 

scouring was also conducted. 

The scouring of sand beds by stationary jets is crucial because the failure of hydraulic structures 

is often related to the downstream scouring of these structures. Many studies have been conducted 

previously on the scour of sand beds by circular jet of long impinging height of more than 8.3 

times the jet diameter. The potential core of such a jet is completely diffused before it impinges on 

the bed. However, shallow waterbodies are often subjected to scouring by short jets of impinging 

height 5.5 times the jet diameter. Short impinging height is essential because it ensures a uniform 

jet velocity and strong impingement. Laboratory experiments were conducted with short 

axisymmetric jets and sands with mean diameters of 0.54 and 1.1 mm. Semi-empirical prediction 

equations for the ultimate scour hole and temporal development of the unsteady scour hole was 

developed. 

Practical applications like the fluidization of sand beds for dredging and clam collection, sewer 

cleaning, and movement of water vessels in shallow waterbodies involve sand beds scouring with 

translating jets. Therefore, experiments were conducted in a towing tank with a submerged sand 

bed and circular turbulent jets of different translating velocities to assess the erosion of sand beds 

under varied hydraulic conditions. A half-model configuration was used with a high-speed camera 

mounted at the side of the tank to capture sand movement using the Particle Image Velocimetry 

(PIV) technique. PIV analysis revealed the dynamics of the sand movement and properties of the 

dynamic scour by translating jets. 
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Air entrainment by jets is useful in many industrial applications. Many studies are available on air 

entrainment by stationary jets. However, the mechanism of air-entrainment by a translating jet 

could be different. An experimental study was conducted with translating turbulent circular jets 

impinging in a quiescent water pool to study the air entrainment mechanism and bubble 

characteristics. Shadowgraph images taken with a high-speed camera were used for analysis. It 

was found that the maximum penetration depth of the bubbles is a function of the jet translating 

speed and the Capillary number of the air-water interface. The spatial distribution of the bubbles 

in the bubble swarm cross-section shows Gaussian distribution. However, the terminal velocity of 

the bubbles shows no noticeable effect of the jet translation.   

The impingement of jets is a significant engineering problem. Such problems include jet issuing 

from hydraulic outlets, the vertical takeoff of space-rovers, and spraying devices. A translating jet 

impingement adds more complexities to the stationary jet impingement problem. A submerged 

translating jet is typically subjected to the relative crossflow and the relative drag of the 

impingement surface. Therefore, laboratory experiments and numerical simulations were 

conducted to understand the complex interaction between the translating jet and the impingement 

surface. The experiments were performed inside a towing tank with a 19 mm diameter translating 

jet. The PIV technique was used to capture the velocity field. Computational Fluid Dynamics 

(CFD) models were developed for translating jet velocities ranging between 0.03 and 0.09 m/s in 

OpenFOAM software. The CFD results were compared against the PIV experiments. In addition 

to the velocity field, the CFD models provided the distribution of the wall pressure and shear stress 

in the impingement region and the effect of different translating velocities. 

In summary, this thesis presents experimental and computational studies related to stationary and 

translating circular turbulent jets. Practical applications of this work include but are not limited to 

water injection dredging, submarine cable trenching, shellfish collection, sewer cleaning, and 

scouring by moving water vessels and space rovers.  
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Background 

Numerous challenging problems in fundamental research and industrial contexts involve the 

applications of turbulent jets. These applications include fluid mixing by jets, cooling thermal 

components by jet impingement, cleaning or removing objects coating using high-pressure jets, 

scouring loose beds, cutting metals, generating propulsion of aircraft, marine or spacecraft, and 

many other applications. However, although many studies have been conducted on the applications 

of stationary turbulent jets, studies related to translating jets are limited. Nevertheless, many 

industrial applications require the use of translating jets. 

The motivation of this study is threefold. First, although the stationary jets have been studied 

extensively, some specific problems in multiphase flow regimes need careful experimental study. 

For example, problems like loose-bed scouring by jets placed close to the bed need more attention 

because of the vast extent of practical applications. An analytical solution for this type of 

multiphase problem is complicated, and a numerical solution is unreliable until validated with 

experimental data. Second, the characteristics of a translating jet are not well understood. Despite 

having some similarities with jets in a crossflow, the presence of a fixed boundary near the jet 

makes the translating jet characteristics different. For example, erosion of a loose bed or 

impingement on a flat wall by a submerged translating jet is fundamentally different from a jet in 

a crossflow. Unlike the jet in a crossflow, both the ambient fluid and fixed boundary have relative 

velocities with respect to the translating jet.  Third, previous studies are mostly limited to stationary 

jets because it is difficult to conduct experiments with moving or translating jets, and the 

translation of the jet adds more complexities to the analytical or numerical solution of such 

problems.  

Based on the above-stated motivations, the following studies have been conducted using circular 

turbulent jets. 

1.1.1 Scouring of Sand Beds by Short-Impinging Turbulent Jets 

Previously, many experimental studies have been conducted to study the scouring of sand beds by 
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circular turbulent jets of long impinging heights so that the impingement occurs at the developed 

region of the jet. This technique is particularly advantageous in correlating the diffusion of the jet 

with the applied shear stress on the soil surface (e.g., see Hanson and Cook, 1997) and developing 

prediction equations for the amount of scour. However, many engineering applications require the 

jet to be placed close to the impingement surface, as it ensures a uniform velocity distribution and 

strong impingement. Furthermore, the extent of the impingement region and length scales for long 

and short jet impingement is different (Beltaos and Rajaratnam, 1977). Therefore, an experimental 

study of sand bed scouring with short impinging circular turbulent jets is presented here as an 

effort to fill the research gap in scouring by stationary jets and use the acquired experience in 

scouring by translating jets. 

1.1.2 Erosion of Sand Beds by Translating Turbulent Jets 

Scour by sand bed by translating jets has many practical applications, including channel bed 

fluidization to facilitate dredging or clam collection, removal of dumped rock cover, trenching of 

seabed for laying of submarine cables or pipes, and sewer cleaning. Although previous studies 

primarily focused on scouring by stationary jets, studies on scouring by translating jets are limited. 

This is because the experimental setup for translating jet is complicated. Contrary to the stationary 

jet scouring experiments, a translating jet does not stay in the same location of the sand bed to 

cause a significant amount of scouring. Thus, this study hypothesizes that scouring by a translating 

jet will be less than a stationary one and will depend on the translating velocity of the jet. An 

experimental study is conducted for scour testing of sand beds with translating circular turbulent 

jets. 

1.1.3 Air Entrainment by Translating Turbulent Plunging Jets 

Mechanisms of air entrainment by plunging jets are complicated and depend on many factors like 

the jet impact velocity, interacting fluid properties, jet diameters, and the plunging height of the 

jet. Contemporary knowledge of the air entrainment by stationary plunging jets is still inadequate. 

For a translating plunging jet, the air entrainment process is more complicated and requires 

research attention as it has some critical industrial applications like oxygenation and effluent 

mixing. Due to the translation of the plunging jet, the submerged portion of the jet has similarities 

with a jet in crossflow. Further, the air bubbles generated in this process have a relative movement 

in the upstream direction. This feature and the vortices generated with a translating jet may affect 
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the air bubble characteristics. An experimental study is conducted in the laboratory using a towing 

tank filled with water and translating circular plunging jets of different diameters, impinging 

height, and impact velocities. The hypothesis of this study is that the mechanism of air entrainment, 

bubble characteristics and maximum penetration depth of the bubbles will be affected by the jet 

translation. 

1.1.4 Impingement of Translating Turbulent Jets on a Flat Wall 

Many studies have been conducted on the normal and oblique impingement of submerged circular 

turbulent jets on a solid surface. Typically, the flow is characterized by different regions, and these 

regions are simplified into different jets or shear flows, namely the free circular jet and radial wall 

jet. Along with the mechanics of the jet, previous researchers also looked into energy dissipation, 

shear stress, and pressure on the wall. Understanding of the impingement of jets facilitated its 

application in many industrial processes, including drying textiles, cooling turbine blades, and 

annealing metal sheets. However, some of these applications relate to either a translating jet or a 

moving impingement surface. Although the instrumentation for this problem is complicated, being 

a single-phase problem, a numerical study for such a problem is easier to conduct to get reliable 

results. This study includes the development of computational fluid dynamics (CFD) models to 

study the impingement of a translating circular turbulent jet of different translating velocities and 

an experimental study using the particle image velocimetry (PIV) technique to validate the CFD 

models. 

1.2 Research Objectives 

This research aims to understand some specific features of translating turbulent jets: scouring of 

sand beds, air-entrainment in a stagnant waterbody, and impingement on a flat surface. Towards 

this overall aim, the specific objectives of this thesis are the followings: 

1. To understand the scouring of sand beds by short-impinging stationary circular turbulent jets, 

and to develop semi-empirical solutions to estimate temporal and asymptotic scour dimensions 

for jets of any impinging height. 

2. To understand the mechanism of sediment motion for sand bed scouring by translating circular 

turbulent jets, and to develop empirical equations to estimate the dynamic scour depth for 
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circular jets of different translating velocities and impingement angles. 

3. To investigate the air entrainment mechanism in quiescent waterbody due to the impact of 

translating circular turbulent jets, and assess the air-bubble characteristics, i.e., bubble 

distribution, diameter, and relative velocity. 

4. To understand the mechanics of translating jet impingement on a flat wall and estimate 

corresponding parameters, i.e., velocity distribution, pressure, and shear stress on the wall using 

computational fluid dynamics (CFD) models. 

1.3 Organization of the Thesis 

This thesis is organized into eight chapters. In Chapter 2, a review of literature on topics related to 

this thesis has been conducted. Chapters 3 and 4 present experimental studies of the scouring of 

sand beds by stationary and translating circular jets, respectively. Chapter 5 demonstrates another 

experimental study on the air entrainment in stagnant water by translating plunging jets. In 

Chapter 6, numerical studies and experimental validation for the impingement of translating 

circular jets on a flat wall are conducted. Chapter 7 includes a summary of the observations and 

conclusions developed from the study and recommendations for future research. Finally, 

Appendix A shows an analytical study of the flow and energy dissipation below a sharp-crested 

weir using the theory of plane jet. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

This chapter contains a literature review of previous studies related to the topics of this thesis. 

Since the studies associated with translating jet applications are novel and very limited, this section 

primarily focused on the acquired knowledge of stationary jet experiments, except for a review on 

jets in crossflow. However, the following chapters of this thesis contain reviews of corresponding 

translating jet applications. 

2.2 Sand Bed Scouring by Circular Turbulent Submerged Jets 

A good number of studies are available on the scour of cohesionless soils by circular turbulent jets 

(e.g., Aderibigbe and Rajaratnam, 1996; Bombardelli, Palermo, and Pagliara, 2018; Gioia and 

Bombardelli, 2005; Palermo, Bombardelli, and Pagliara, 2018; Westrich and Kobus, 1973, to name 

a few). The scouring of the sand bed occurs due to the applied shear stress by the jet on the soil 

surface. Before erosion occurs, the applied shear stress on the soil bed is maximum because the 

impingement height is minimum. As the soil erodes, the effective impingement height of the jet 

increases. Consequently, the applied shear stress reduces, and the erosion rate becomes very slow. 

This phase is typically termed the asymptotic phase. In the scouring of cohesionless soils with 

circular impinging jets, more than 70% of the total scour occurs in only the first 30 minutes 

(Rajaratnam, 1982). 

Previous studies reported that at the beginning of scouring, the maximum scour depth occurs at a 

small distance away from the point of jet impingement (Poreh and Hefez, 1967; Rajaratnam and 

Beltaos, 1977). This is a result of the distribution of the boundary shear stress on the soil surface 

imposed by the impinging circular turbulent jet (Rajaratnam and Beltaos 1977). Later in the 

scouring process, the maximum scour depth occurs at the point of impingement. The formation of 

a circular ridge is observed around the periphery of the scour hole as the eroded sand particles 

eventually deposit there.  

The characteristic lengths of the scour hole (e.g., the maximum scour depth) grow linearly with 

the logarithm of time (Rouse, 1939). After an appreciable amount of time, this length approaches 
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1 

an asymptotic value. The dimensionless plots of the growth of the scour hole depth are similar 

(Rajaratnam and Beltaos, 1977). Ansari et al. (2003) provided an empirical relation using a sine 

function to describe the temporal development of the scour hole depth. The sine function is 

advantageous since the logarithmic relationship is invalid near the initial and asymptotic phase of 

the scouring process. However, during the intermediate stage of scouring, the sine function may 

not describe the scouring process well compared to the logarithmic relation. 

Haehnel et al. (2008) simplified the impinging jet scouring problem assuming that the sand 

particles leave the bed surface due to excessive shear stress under uniform flow parallel to the bed 

surface, and provided an expression for scouring hole growth as a function of the sediment 

properties and jet characteristics. Here, excess shear stress denotes the amount of shear stress over 

the critical shear stress at which an impending motion of the sand particles occurs. However, this 

expression underestimates the depth of erosion for sand in the intermediate stages of the scour 

testing. Bombardelli et al. (2018) assumed that the rate of scour at any time could be scaled with 

the excess shear stress at that particular time and provided a relation for scour hole growth as a 

function of the sediment properties and jet characteristics like Haehnel et al. (2008). However, this 

requires the estimation of the asymptotic scour hole depth. 

To estimate the asymptotic scour depth, Aderibigbe and Rajaratnam (1996) adopted a 

dimensionless parameter, named the erosion parameter Ec, given by 𝐸𝑐 = 𝑉j(𝑑/ℎ)/√𝑔𝐷50∆𝜌/𝜌, 

where Vj is the jet velocity at the nozzle, d is the jet diameter, h is the impingement height, g is the 

gravitational acceleration, D50 is the mean diameter of the bed material, and ∆ρ is the difference 

between the bed material density and fluid density ρ. The erosion parameter represents the ratio of 

the force acting on the sediment bed directly under the jet at the uneroded bed level to the 

corresponding resistive force due to the buoyant weight of the particle. With the introduction of 

Ec, it has become possible to estimate the asymptotic scour depth εm∞ using a simple expression 

as a function of Ec. 

𝜀𝑚∞
ℎ

= 1.3𝐸𝑐
0.15 − 1 (2.1) 

Adopting the phenomenological theory of turbulence, Bombardelli and Gioia (2006) developed a 

theoretical expression for the asymptotic scour depth. However, this contains similar parameters 
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as used in the equation of Aderibigbe and Rajaratnam (1996). 

Previous studies reported that the asymptotic scour holes are self-similar, and the dimensionless 

scour hole in asymptotic conditions can be expressed as a Gaussian equation (e.g., Aderibigbe and 

Rajaratnam, 1996; Rajaratnam, 1982, and others),  

𝜀

𝜀𝑚∞
= 𝑒−0.693(𝑟 𝑏𝑚∞⁄ )2 (2.2) 

where r is the radial distance measured from the jet centerline; ε is scoured depth below the original 

bed level at distance r; bm∞ is the half-radius of the scour hole so that at r = bm∞, ε = ½ εm∞.   

Studies by Aderibigbe and Rajaratnam (1996), Rouse (1939), and Westrich and Kobus (1973) 

showed that two distinctive flow regimes might exist in the equilibrium scour hole. Rouse (1939) 

described the “Maximum Jet Deflection” flow regime where the flow turns back on itself inside 

the scour hole by about 180°, and the “Minimum Jet Deflection” flow regime was where the jet 

flowed along the boundary of the scour hole ridges. Westrich and Kobus (1973) identified “Scour 

Form I” and “Scour Form II” flow regimes based on the flow characteristics inside the equilibrium 

scour hole. Aderibigbe and Rajaratnam (1996) classified the flow regimes for the equilibrium 

scour hole as the “Strongly Deflected Jet Regime” (SDJR) when Ec > 0.35 and “Weakly Deflected 

Jet Regime” (WDJR) when Ec < 0.35.  

In the SDJR flow regime, the deflected jet carries lots of sediment in suspension, and the suspended 

sediments recirculate with the flow inside the scour hole. The flow is weak near the periphery of 

the scour hole, which results in the deposition of some sediments and the formation of a ridge. The 

suspended sediments settle inside the scour hole if the jet is stopped during scour testing. 

Therefore, the dynamic scour hole depth is greater than the static one for the SDJR. In the WDJR 

flow regime, the jet weakly penetrates the bed, and the flow follows the boundary of the scour 

hole. Typically, the amount of suspended sediments inside the scour hole is minimal. This results 

in almost the same dynamic and static scour depth for the WDRJ. 

2.3 Air Entrainment by Circular Turbulent Plunging Jets 

Many factors may contribute to air entrainment in the waterbody by a plunging jet. According to 
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Kiger and Duncan (2011), the dominant nondimensional groups relevant to this problem are 

Froude number, Fr = Vj
2/gL; Weber number, We = ρw Vj

 2L/σ; Capillary number, Ca = µwVj/σ; 

Reynolds number, Re = ρwVjd/µw; density ratio, γ = ρa/ρw; viscosity ratio, M = µa/µw; fluctuation 

intensity, U* = u'/Vj; and length ratio, L* =  λl/L. Here, g is the acceleration by gravity, L is a 

reference length, ρ is the density, µ is the dynamic viscosity, σ is the surface tension of the air-

water interface, u' is the fluctuation velocity of the local disturbances, and λl is the wavelength of 

the disturbances. Subscripts a and w refer to the properties of air and water, respectively. Inception 

conditions of air entrainment for low viscosity fluids like water are often characterized by the value 

of the critical Reynolds number and the Capillary number.  

Inception conditions for air entrainment by stationary jets have been studied extensively in 

previous works. In general, previous studies characterized the plunging jets into two regimes for 

air entrainment purposes- the continuous jet and the droplet regimes. Only the continuous jet 

regime will be considered in this study, which implies the jet does not break up before it impacts 

the water surface. For low-density fluids like water, the air entrainment may result from the low 

pressure due to the entrainment of the surrounding water. Also, air may entrain in the boundary 

layer of a jet with higher surface disturbances before it plunges into the waterbody (Sene, 1988). 

Typically, the jet pulls down the water surface at the impact point and forms a conical meniscus 

surrounding the jet. Air pockets form at the confluence of the jet and the meniscus, which may 

detach and create air bubbles at higher jet velocities. This is why the impact velocity of the jet 

plays a dominant role in the inception of air entrainment (Kiger and Duncan, 2011). McKeogh and 

Ervine (1981) reported that for air-water systems, the critical air entrainment conditions occur for 

Re = 2000 and Ca =0.04.  

As a result of the air entrainment due to the impact of the plunging jet in waterbodies, air bubbles 

generate below the water surface. The air bubbles are observed to disperse in two distinct regions 

– a biphasic conical region surrounding the jet with smaller bubbles of diameters 1 mm or less and 

a region with bigger rising bubbles (Biń, 1993). In the biphasic conical region, the bubbles are 

pushed down by the momentum of the jet, and some bubbles may coalesce and get bigger. At the 

maximum penetration depth, the buoyancy force of the bubbles and the downward momentum 

force of the jet becomes equal. The bubbles then escape sideways, get free from the jet momentum 

and rise freely due to buoyancy. Typically, the Sauter diameter of the rising bubbles is independent 
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of the jet velocity or nozzle size and ranges between 3 to 4 mm (Biń, 1993). The bubble size 

distribution in the biphasic conical region is typically a log-normal distribution, skewed to the 

smaller-sized bubbles (Evans et al., 1992). 

Although the maximum penetration depth for individual bubbles may vary, studies were conducted 

to find the average maximum penetration depth of the bubble. Many studies relied on the 

assumption that at maximum penetration depth, the rising velocity of the bubbles must be equal to 

the local jet velocity (e.g., Ervine and Falvey, 1987; Guyot et al., 2019; and others). However, 

buoyancy forces resulting from the entrained air make this problem complicated. Cumming (1975) 

carried out a theoretical study and showed that the maximum penetration depth is a function of the 

square of the jet velocity and the entrainment ratio. Other studies mainly provided purely empirical 

relations for estimating the maximum bubble penetration depth. 

2.4 Impingement of Circular Jets on a Flat Wall 

The normal impingement of a submerged circular jet against a flat wall is well studied by Beltaos 

and Rajaratnam (1974), Nishino et al. (1996), and Rajaratnam et al. (2010),  among others.  The 

flow pattern for such jet impingement can be divided into three distinct flow regions. The flat wall 

does not affect the flow in the first region, and the jet behaves like a free jet. Therefore, this region 

is called the “Free Jet Region”. In the second region, the flow experiences significant deflection 

due to the impact on the flat wall. The flow direction changes from vertical to parallel to the surface 

of the wall. This region is called the “Impingement Region”. In the third region, the flow 

demonstrates the properties of a wall jet. Therefore, this region is called the “Wall Jet Region”. It 

is expected to have transition zones between these flow regions. 

In the free jet region, turbulence in the nozzle causes jet velocity decay. However, the axial velocity 

remains undiminished in the form of a core for a certain distance. This core is termed the potential 

core. For a well-designed nozzle, Beltaos and Rajaratnam (1977) reported that the length of the 

potential core is within 6.1d to 6.3d. For jet issuing from a simple circular pipe, Hashiehbaf et al. 

(2015) found that the potential core length is 4d. For general purposes, Lee and Chu (2003) 

proposed an average potential core length of 6.2d. The portion of the jet along the length of the 

potential core is called the “Near-Field Region”. After this region, the remaining part of the free 
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jet is termed the “Far-Field Region” (Phares et al., 2000). 

In the far-field region, the axial velocity of the jet decays with increasing axial distance. As a result, 

the time-averaged axial velocity profiles of the jet change. However, the shape of the 

dimensionless axial velocity profiles remains unchanged and independent of the Reynolds number. 

The mean radial velocity is relatively small compared to the mean axial centerline velocity and 

can be estimated from the continuity equation with the known axial velocity component. Although 

the radial velocity is mostly positive, it is negative near the edge of the jet due to the entrainment 

of ambient fluid (Pope, 2000). 

The impingement region begins at an axial distance of about 0.86h from the nozzle along the jet 

axis, and radially it spreads about a radial distance of 0.22h from the jet centerline (Beltaos and 

Rajaratnam, 1974; Ghaneeizad et al., 2015). The impingement height is termed as short 

impingement height and long impingement height for h<5.5d and h>8.3d, respectively. The zone 

5.5d≤h≤8.3d is transitional. The characteristic parameters of the impingement region include the 

axial velocity, pressure distribution and shear stress on the wall.  According to Rajaratnam et al. 

(2010), the axial velocity profiles inside the impingement region are similar up to a distance 

of 0.96h. The static pressure is greater than the ambient pressure, and the maximum pressure lies 

along the jet centerline. The pressure profiles are self-similar. The maximum wall shear stress 

occurs at a radial distance of 0.14h.  

The wall jet region starts at a radial distance of 0.36h, while the range between 0.22h and 0.36h is 

a transition zone (Beltaos and Rajaratnam, 1974). Studies confirmed that the velocity profiles at 

the wall jet region are self-similar (Poreh et al., 1967). 

2.5 Circular Jets in Crossflow 

A jet in a crossflow typically refers to a jet issuing into a free-flowing stream at a large angle to 

the direction of the streamflow (Margason, 1993). This type of jet is also known as transverse jet 

and is very common in nature and engineering applications. Examples of transverse jets include 

the launch abort system of space vehicles, effluent discharge into a free stream, cooling of turbine 

blades, and fuel injection into the crossflow of an oxidizer. This discussion considers a circular jet 

injected flush into the crossflow of the same fluid. Only the incompressible regime of the jet is 
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considered. 

Let us consider a jet with velocity Vj is issuing at a right angle to a stream flowing freely at a 

velocity Ut. The stagnation pressure of the ambient stream causes the jet to bend to the direction 

of flow. Due to turbulent mixing at the outer layer of the jet, this layer easily bends and forms the 

characteristic kidney shape (Rajaratnam, 1976). The length and location of the end of the potential 

core depend on the jet velocity to crossflow velocity ratio, Rjc. For Rjc > 4, the endpoint of the 

potential core stays above the origin of the jet, while for smaller values of Rjc the endpoint is pushed 

downstream. The maximum bending of the jet occurs after the potential core. This zone of 

maximum bending is known as the zone of maximum deflection. The rest portion of the jet is 

known as the vortex region. As the jet deviates from its circular shape to form the kidney shape, a 

counter-rotating vortex pair (CVP) forms in the second region and continues to grow to keep the 

angular velocity constant. This CVP is responsible for the jet cross-section to change from circular 

to kidney shape. In the third zone, the CVP keeps growing but starts to lose angular velocity. 

The penetration of the jet into the crossflow is described by the jet trajectory. It is known that the 

jet trajectory is a function of Rjc and d, and can be shown by the general form as described in 

Mahesh (2013) 

𝑦

𝑅jc𝑑
= 𝐴(

𝑥

𝑅jc𝑑
)

𝐵

 (2.3) 

where x and y are the coordinates of the jet trajectory in the directions of the crossflow and initial 

jet flow, respectively; A and B are constants. However, the values of A and B depend on how the 

trajectory is defined. The trajectory can be defined on the basis of the jet's outer boundary, inner 

boundary, axis, or centerline of the jet. For Rjc from 5 to 35, Pratte and Baines (1967) found A = 

2.63 and B = 0.28 for the outer boundary, A = 1.35 and B = 0.28 for the inner boundary, A = 2.05 

and B = 0.28 for the centerline of the jet. For Rjc from 2 to 10, Margason (1968) found A = 1.59 

and B = 0.33 for the centerline of the jet. A list of values of A and B is provided in Margason (1993) 

based on previous studies by different researchers, which shows A varied between 1.2 to 2.6, while 

B varied between 0.28 to 0.4. 

In all cases, the transverse jet is more prone to velocity decay and mixing with the ambient fluid 
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compared to a free jet (Mahesh, 2013; Margason, 1993). The velocity decay is rapid in the near 

field and slows in the far field (Smith and Mungal, 1998). As the injection angle of the issuing jet 

in crossflow increases from 0 to 90° (oblique to normal to the crossflow), the decay of the jet 

velocity generally increases (Margason, 1993). 
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CHAPTER 3. SCOURING OF SAND BEDS BY SHORT IMPINGING 

CIRCULAR JETS* 

3.1 Introduction 

The scouring of a sand bed by water jets is important as it can lead to the failure of hydraulic 

structures due to the scouring often occurring downstream of those structures. Several investigators 

(e.g., Doddiah et al., 1953; Poreh and Hefez, 1967; Westrich and Kobus, 1973; Aderibigbe and 

Rajaratnam, 1996; Mazurek et al., 2001; Ansari et al., 2003; Mazurek and Hossain, 2007) have 

tried to understand the dynamics of scouring with impinging jets in both cohesive and cohesionless 

soil beds in the laboratory and field environments. The impinging jet was used because the 

interaction of the jet with the soil bed can be correlated with the resistance of the soil to erosion, 

namely the critical shear stress with the erosive capacity of water. Scouring in a cohesionless soil 

bed is particularly of interest because many of the natural stream beds are mainly composed of 

sand, and sand beds are more vulnerable to scouring than clay beds due to the lower resistance to 

erosion. 

Although studies of erosion involving jet impingement have considered mostly circular, plane, and 

wall jets with vertical, oblique, and parallel arrangements (e.g., Adduce and La Rocca, 2006; 

Adduce and Sciortino, 2006; Guan et al., 2016; Si et al., 2018 and 2019), the impingement of 

submerged circular and vertical jets is the most convenient as it can be operated in the field as well 

as in the laboratory environments, and the flow is easy to maintain with either a constant head tank 

or a pump. However, based on the impingement height in terms of the jet diameter, the experiments 

of impinging jet scouring can be broadly classified as either short or long impingement height. 

According to Beltaos and Rajaratnam (1977), the impingement height h of a submerged circular 

turbulent jet can be considered short if h < 5.5d, where d is the jet nozzle diameter, and long for h 

> 8.3d. The range 5.5d ≤ h ≤ 8.3d is considered as the transition region. 

 

* The content of this chapter has been published as: Amin, M. R., Rajaratnam, N., & Zhu, D. Z. (2021). Scouring of 

sand beds by short impinging turbulent jets. Proceedings of the Institution of Civil Engineers – Water Management, 

174(6), 309-320. https://doi.org/10.1680/jwama.20.00109 
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Most of the previous studies were performed mainly for the long impingement height. Although a 

few studies have referred to short impingement heights (e.g., Rajaratnam and Beltaos, 1977; 

Aderibigbe and Rajaratnam, 1996), these studies suffer from inadequate experimental data. For a 

submerged free jet, the maximum centerline velocity of the jet at any axial distance less than 6.3d 

is still the same as the velocity at the nozzle (Rajaratnam, 1976). Therefore, the short impinging 

jet possesses more erosive capacity than the long impinging jet having the same jet exit velocity. 

Further, the scouring mechanism is different due to a different velocity profile of the jet at the 

impingement region compared to a fully developed jet. Nevertheless, scouring by a short 

impinging jet closely represents many practical scouring phenomena, such as the cratering of the 

soil bed by the subsonic jet below a spacecraft (Haehenl et al., 2006), underwater jet trenching for 

pipe or cable laying operations (Zhang et al., 2017), fluidization of the channel bed with a jet for 

dredging purposes (Sullivan, 2000) and harvesting clams (Manning, 1960), and cleaning of sewers 

with high-pressure jets (Calomino et al., 2007).  

Another important aspect of scouring of sand beds with a vertically impinging jet is the dynamic 

depth of scour. As the jet scours the bed, bed particles are thrown outside the scour hole forming 

a “ridge” around the scour hole. During the process of scouring, the jet forms a toroidal vortex 

inside the scour hole. While this vortex throws bed particles outside the scour hole, a portion of 

the bed particles remains in suspension, being trapped inside the vortex. When the jet is stopped, 

these particles settle inside the scour hole. Consequently, the depth of the scour hole when the jet 

is stopped, known as the static scour depth, is smaller than the depth when the jet is running, known 

as the dynamic scour depth. Most of the previous studies only measured the static scour depth 

because it is rather difficult to obtain the dynamic scour depth precisely. Although a few studies 

(Aderibigbe and Rajaratnam, 1996; Rajaratnam and Mazurek, 2003; Chakravarti et al., 2014) 

reported the dynamic scour depth for the asymptotic state of the scour experiments (when the 

growth of scour depth with time is very small), the temporal development of the dynamic scour 

depth has been overlooked. Between the static and dynamic scour depths, the latter is apparently 

more important. This is because the The failure of hydraulic structures due to the scouring below 

the foundation is possibly associated with the dynamic scour depth rather than the static scour 

depth. Besides, the dynamic scour depth could be as large as three times the static scour depth 

(Rajaratnam and Mazurek, 2003; Chakravarti et al., 2014). Therefore, overlooking the dynamic 
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scour depth during the design stage can be catastrophic. 

The scouring of sand bed with short impinging vertical circular turbulent jets and the 

corresponding dynamic scour depth are of engineering concern. This study presents experimental 

results that allow for a fair insight into these scouring phenomena. The salient features of the scour 

hole, such as the characteristic lengths at the unsteady and asymptotic states are assessed and 

representative expressions are developed. The scour hole profiles are evaluated for similarity and 

a general expression for the scour hole is developed. 

3.2 Theoretical Approach 

Following the approach of Aderibigbe and Rajaratnam (1996), the expression for the asymptotic 

scour hole depth can be derived by combining the maximum bed shear stress with Shields’ relation 

for cohesionless soil in impending motion. The maximum bed shear stress, τm, for a fully developed 

axisymmetric vertical impinging jet is given by Beltaos and Rajaratnam (1974) 

𝜏𝑚 = 0.16
𝜌𝑉𝑗

2

(𝑥/𝑑)2
 (3.1) 

where Vj is jet velocity at the nozzle, x the distance of the bed from the nozzle along the jet axis, 

and ρ the density of the jet fluid. Although the present study is for short impinging jets, the height 

of the jet nozzle from the bottom of the scour hole at the asymptotic state is quite long. Therefore, 

the jet can be approximated as a fully developed jet. 

From Shields’ relation for a cohesionless soil bed, the Shields parameter is defined as 

𝜃 =
𝜏𝑚

∆𝜌𝑔𝐷50
 (3.2) 

where θ is Shields parameter, g the gravity acceleration, D50 the mean size of the sand particles, 

and Δρ the density difference between the sand particle and the eroding fluid. For the asymptotic 

scour hole, critical shear stress condition exists at the bottom of the scour hole. Therefore, 

combining the maximum shear stress and Shields’ relation for critical shear stress condition 

(Equations 3.1 and 3.2) gives 
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𝑥΄

𝑑
=
0.4

√𝜃
(

𝑉j

√(∆𝜌/𝜌)𝑔𝐷50
) (3.3) 

where x΄ the value of x for critical shear stress condition. Shields parameter θ is constant for the 

same sand-water phase for the impending motion of the sand particles. Therefore, for critical shear 

stress condition, Equation 3.3 can be re-written as 

𝑥΄

𝐿
= 𝐶1𝐸c (3.4) 

where 𝐸𝑐 = 𝑉j(𝑑/𝐿)/[(∆𝜌/𝜌)𝑔𝐷50]
1/2 the erosion parameter proposed by Rajaratnam and Beltaos 

(1977), L a characteristic length for the scouring process, and C1 = 0.4/(θ)1/2 a constant. 

Considering the scour depth along the jet centerline, one can write x΄ = nL+εm∞, where n is a 

coefficient, and εm∞ is the maximum static scour hole depth at the asymptotic condition. While H 

is the impinging height of the jet, nL gives the effective impinging height. Further, Aderibigbe and 

Rajaratnam (1996) assumed that C1 is a function of Ec. Therefore, Equation 3.4 becomes 

𝜀m∞
𝐿

= 𝐶2𝐸c
𝑚 − 𝑛 (3.5) 

where C2 and m are constants. Aderibigbe and Rajaratnam (1996) adopted the characteristic length 

L≈h, and x΄ = h+εm∞, which resulted in n=1. They combined data of Clarke (1962), Westrich and 

Kobus (1973), Rajaratnam (1982), and their own experiments, obtaining C2 = 1.26 and m = 0.11. 

Ansari et al. (2003) added data from Sarma (1967) along with their own experiments and found 

C2 = 1.3 and m = 0.15. However, all these experimental data came from long impinging jet 

experiments. Haehnel et al. (2006) assumed L=h+d, to prevent Ec→∞ for short impinging jets as 

H→0. This makes sense since according to Beltaos and Rajaratnam (1974), d becomes more 

important as a scale than h as the impinging height gets smaller. Therefore, Equation 3.5 can be 

re-written as 

𝜀m∞
ℎ + 𝑑

= 𝐶2𝐸c
𝑚 − 𝑛 (3.6) 

Equation 3.6 is the general equation for the asymptotic scour hole depth for cohesionless soil 

scouring with axisymmetric jets of any impinging heights. The applicability of this equation is 
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assessed using previous studies and new experimental data. 

3.3 Experimental Setup and Experiments 

Twelve experiments in total were conducted with two sand sizes, three impinging heights, and two 

jet velocities to evaluate the effects of these parameters (see Table 3.1). Altogether, these 

parameters produced different values of the erosion parameters, except for the experiments with 

zero impinging height. These experiments were carried out for sand of mean sizes D50 = 0.54 mm 

and 1.10 mm, so that they represented fine and coarse sand, respectively. Their uniformity 

coefficient were Cu = 1.66 and 2.02, respectively. The coefficient of curvature were Cc = 1.00 and 

0.59, respectively. These parameters indicate that the sand particles were quite uniform. Specific 

gravity for both sands was 2.65. Jet velocities at the nozzle Vj = 2.12 and 2.61 m/s were selected 

to produce a reasonable amount of scouring for both types of sands. 

However, the range of velocities was dictated by the experimental setup. The jet Reynolds number, 

Re = Vjd/ν, where ν is the kinematic viscosity of water, for the two water velocities were 26,483 

and 32,595, respectively, indicating turbulent jets. Three impinging heights of h = 0, 2d, and 4d 

were used in the experiments to ensure short impinging jets. The experiments are named using the 

code: sand type (1: D50 = 0.54 mm, 2: D50 = 1.1 mm)-nozzle velocity (S: Vj = 2.12 m/s, B: Vj = 

2.61 m/s)-relative impinging depth (h/d = 0, 2, or 4). For example, the experiment with 0.54 mm 

sand, 2.12 m/s nozzle velocity, and 0 relative impinging height is named as 1-S-0. 

The experiments were performed inside an octagonal plexiglass tank, 578 mm wide and 610 mm 

deep (see Figure 3.1a). The jet tank was placed inside a 1000 mm diameter cylindrical overflow 

tank and was filled with sand up to a depth of 300 mm. A well-designed circular nozzle of 12.5 

mm diameter was attached at the end of a 120 mm diameter pipe jet plenum placed vertically at 

the center of the jet tank. Pipes of lengths of either 330 mm or 385 mm were used for the jet plenum 

to create small or big velocities at the jet nozzle, respectively. An overflow cup was placed at the 

upper end of the jet plenum. The jet plenum assembly could be moved vertically or horizontally 

using a traverse system. 

At the test start, the sand bed was level, and the jet tank was slowly filled with water. A submersible 

pump was used to recirculate water between the overflow tank and jet tank through the jet plenum, 
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producing an impinging jet onto the sand bed. The nozzle was kept under water inside the jet tank 

so that the jet was submerged. The nozzle flow rate was measured from the effective water head 

at the nozzle using Bernoulli’s principle. This flow rate was verified by direct measurement of the 

inflow and outflow at the jet plenum using a magnetic flow meter and volumetric measurement, 

respectively. The static and dynamic scour hole depths were measured at intervals of 1 min, 2 min, 

5 min, 10 min, 20 min, 30 min, 1 hr, 2 hr, 3 hr, and 24 hr. The static depth measurement was 

accomplished using an offset point gauge with an accuracy of ±0.1 mm. The jet flow was stopped 

for this measurement for the suspended particles to settle. 

The dynamic scour depth was measured along the jet centerline while the jet was running, using a 

1 m long and 2 mm diameter depth rod placed inside a 0.5 m long and 3 mm diameter pipe (see 

Figure 3.1a). This pipe was placed inside the center of the jet plenum, well above the jet nozzle so 

that it would not interfere with the jet flow. The depth rod inside this pipe was held by a retaining 

clip. A vertical scale showed the position of the upper end of the depth rod. At the measurement 

time, the depth rod was simply dropped inside the scour hole by removing the retaining clip. The 

position of the depth rod was recorded, and the difference between this measurement and the initial 

uneroded bed surface measurement gave the dynamic depth. Once the dynamic depth was 

measured, the depth rod was quickly moved up and clamped in its resting position. The accuracy 

of this measurement was ±1 mm. 

The definition sketch (Figure 3.1b) shows the characteristic lengths of a typical scour hole, where 

ε is the scour hole depth at radial distance r from the jet centerline, εm and εmd are the static and 

dynamic scour hole depths, respectively, along the jet centerline. Further, r0 is the radius of the 

scour hole, defined as the distance from the jet centerline to the apex of the ridge, and b is the half-

radius of the scour hole, defined as b = r when ε = εm/2. The ridge height is represented by δ. The 

characteristics lengths for the asymptotic scour holes are written with a subscript ∞, i.e., εm∞, εmd∞, 

r0∞, b∞, and δ∞. 

3.4 Experimental Results 

For the description of the scour hole geometry, Exp. 1-B-4 is considered here. The static scour 

hole profiles at different times show approximately linear side slopes, representing two distinct 
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zones inside the scour hole (Figure 3.2a). The slope near the jet impingement point is steeper, and 

near the periphery is milder. The steeper slope near the scour hole center represents the “active 

scour zone”, where the toroidal vortex is active. The milder slope represents the “passive scour 

zone”, where the sand particles continuously move down the slope inside the scour hole and get 

trapped in the toroidal vortex. The side slope of the scour hole in the passive scour zone represents 

the submerged angle of repose of the sand particles. 

A closer look inside the static scour hole reveals that near the center of the scour hole the sand 

particles are bigger. This is because the smaller sand particles are thrown out of the scour hole by 

the vortex, while the bigger particles remain inside the vortex due to more weight. Therefore, a 

mechanical sorting of sand particles occurs due to the vortex action. A similar phenomenon was 

observed by Mih and Kabir (1983) for a vertical circular jet impingement on a gravel bed. When 

the jet is stopped, the particles inside the vortex settle down forming the steeper slope in the active 

scour zone. The angles of inclination in the two scour zones are due to the difference in the sand 

particle size mechanically sorted by the vortex. The side slopes of the scour hole in Exp. 1-B-4 in 

the active and passive scour zones are approximately 43° and 25.5°, respectively.  

Another interesting observation relates to the temporal development of the ridge. The apex of the 

ridge at different times stays at a constant virtual slope to the original bed surface. The angle of 

this virtual slope is approximately 8°. Rouse (1939) also observed a similar slope of the ridge apex 

for the impingement of vertical plane wall jet on the sand bed.  

Since the side slope of the scour hole in the passive scour zone represents the submerged angle of 

repose, irrespective of the experimental conditions, the side slopes for the same sand bed in 

different experimental conditions should be identical. To verify this, the asymptotic profiles of the 

static scour holes for different experiments are compared in Figure 3.2b. This figure shows that 

the side slopes are the same with slight variations between the experiments with 0.54 mm and 1.1 

mm sands. These variations are due to the different submerged angle of repose of these sands 

(Haehnel et al., 2006). Indeed, Figure 3.2b provides further insight into the scouring process. In 

general, the asymptotic profiles show that the size of the scour hole increases with the impingement 

height. This is because for the short impingement height jet scour experiments, as the nozzle comes 

closer to the original uneroded bed surface, the jet is strongly deflected by the return flow. Further, 
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considering the jet spreading, the impingement area reduces with reducing impingement height, 

while the centreline jet velocity is still the same as the nozzle. Therefore, the eroding capacity of 

the jet in terms of the static scour reduces as the impingement height decreases. 

The development of the characteristic lengths of the scour hole of different experiments shows that 

the dynamic scour hole depth reaches the asymptotic state earlier than the static scour hole depth 

(Figure 3.3). It happens because the dynamic scour depth is the result of the direct interaction of 

the impinging jet and the sand bed, while the static scour depth depends on the removal of the sand 

particles trapped in the vortex inside the active scour zone. The rate of the removal of sand particles 

from the scour hole becomes slower with time. Thus, it takes longer for the static scour depth to 

reach the asymptotic state. Further, instead of continuous growth, the dynamic scour depth 

fluctuates with time. This is reasonable since the bed under the jet influence is a moving bed. 

Considering the other characteristic lengths shown in Figure 3.3, εm, r0, and b are seen to grow 

with time. Since εm shows continuous growth with time, it is a good candidate for the assessment 

of the time development of the scour hole. However, δ seems to reach the asymptotic state early 

in some of the experiments for D50 = 1.1 mm.  

Table 3.2 shows the characteristic lengths of the asymptotic scour hole for different experiments. 

Considering all the experiments, the minimum dynamic scour depth is found as 106 mm or 8.5d, 

which indicates that the approximation of a fully developed jet inside the scour hole for Equation 

3.1 is reasonable. A quantitative comparison of the dynamic and static scour depths in terms of the 

ratios εmd∞/εm∞ varies between 2.1 to 4.3. For a circular impinging jet on a sand bed with long 

impingement height and small tailwater, Rajaratnam and Mazurek (2003) obtained εmd∞/ε∞ ≈ 3. 

For a gravel bed and a submerged circular impinging jet of long impinging height, Chakravarti et 

al. (2014) found εmd∞/εm∞ ≈ 1.6-3.6. Despite different experimental conditions, εmd∞/εm∞ values for 

this study are comparable to the previous. The values r0∞/b∞ for all the experiments ranged between 

3.1 and 4.7, while r0∞/εm∞ between 2.1 and 2.9. The dimensionless ridge heights δ∞/εm∞ are between 

0.23 and 0.42 for all the experiments. 
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3.5 Analysis and Discussion 

3.5.1 Characteristic Lengths in Asymptotic State 

Asymptotic static scour depth data from Rajaratnam (1982), Aderibigbe and Rajaratnam (1996), 

Ansari (2003), and this study are plotted in Figure 3.4a. All of these studies except the present one 

involve scouring with long impinging jets. Figure 3.4a shows that the data is separated into two 

groups. For Ec ≤ 1.35, the asymptotic static scour depth can be represented by a power function of 

Ec. For 1.35 < Ec < 28, εm∞ linearly varies with Ec. The evolution of the jet flow dynamics inside 

the scour hole with the jet impinging height is responsible for this separation. Rouse (1939) 

observed two different jet regimes in scouring with plane vertical jets. He termed those regimes as 

“maximum jet deflection”, and “minimum jet deflection” where the jet turns nearly 180º, and 

where it follows the boundary of the scour hole, respectively. Similarly, Westrich and Kobus 

(1973) classified the flow regimes into “scour form I” and “scour form II” based on the interaction 

of the jet with the scour hole. Aderibigbe and Rajaratnam (1996) classified the flow regimes as 

either the “strongly deflected jet regime” or the “weakly deflected jet regime”. Nonetheless, at 

least two different flow regimes exist in the souring of cohesionless bed with impinging jets. The 

effect of these flow regimes is significant for the characteristic scour depths since this controls 

how the sand particles are trapped in the toroidal vortex and remain in suspended motion. A 

fraction of these particles deposits along the ridge with time, and the rest settles inside the scour 

hole as the jet ceases. 

Regression analysis of the data in Figure 3.4a gives the equation for asymptotic static scour depth 

(Equation 3.7). 

𝜀m∞
ℎ + 𝑑

= 1.30𝐸c
0.14 − 1         for 𝐸𝑐 ≤ 1.35 ; (𝑅2 = 0.83) 

𝜀m∞
ℎ + 𝑑

= 0.14𝐸c + 0.15        for 1.35 < 𝐸c < 28 ; (𝑅2 = 0.97) 

(3.7) 

Figure 3.4(b) shows that the asymptotic dynamic scour depths can be represented by a single 

equation, irrespective of the jet impingement regime. This indicates that although the jet 

impingement height affects the dynamics of sand particle transport from the scour hole, it does not 

impact the fluidization of the sand bed significantly. Regression analysis shows that a linear 
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function of Ec fits the datasets satisfactorily (Equation 3.8). 

𝜀md∞
ℎ + 𝑑

= 0.49𝐸c − 0.06 ; (𝑅
2 = 0.98) (3.8) 

Other characteristic lengths of the scour hole, such as r0∞, b∞, and δ∞ are plotted against Ec in 

Figures 4c, d, and e, respectively. Similar to the plot of εm∞, data separation is observed at Ec=1.35. 

Regression analysis shows a power function of Ec for Ec ≤ 1.35, and a linear function of Ec for 

1.35 < Ec < 28 can describe these characteristic lengths satisfactorily. These relations are described 

in Equations 3.9 to 3.11. 

𝑟0∞
ℎ + 𝑑

= 1.55𝐸c
0.15 − 1      for 𝐸𝑐 ≤ 1.35 ; (𝑅2 = 0.87) 

𝑟0∞
ℎ + 𝑑

= 0.39𝐸c + 0.02      for 1.35 < 𝐸c < 28 ; (𝑅2 = 0.95) 

(3.9) 

  

  

𝑏∞
ℎ + 𝑑

= 1.20𝐸c
0.06 − 1        for 𝐸𝑐 ≤ 1.35 ; (𝑅2 = 0.83) 

𝑏∞
ℎ + 𝑑

= 0.12𝐸c − 0.06        for 1.35 < 𝐸c < 28 ; (𝑅2 = 0.93) 

(3.10) 

  

  

𝛿∞
ℎ + 𝑑

= 1.08𝐸c
0.04 − 1          for 𝐸𝑐 ≤ 1.35 ; (𝑅2 = 0.87) 

𝛿∞
ℎ + 𝑑

= 0.05𝐸c − 0.03           for 1.35 < 𝐸c < 28 ; (𝑅2 = 0.90) 

(3.11) 

Some scattering of the data is observed in the plot of δ∞ (Figure 3.4e) for Ec = 0.7-1.35. Aderibigbe 

and Rajaratnam (1996) explained this in terms of their experimental setup. In their experiments, 

the impinging height and the water depth above the original bed level were about the same, so that 

the jet was just submerged. It resulted in a strong radial flow for lower impingement height, which 

contributed to a lower ridge height. 
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3.5.2 Temporal Development of the Characteristic Lengths 

To investigate the temporal development of the maximum scour hole depth (εm), one needs to find 

the appropriate length and time scales to obtain a dimensionless relation. Rajaratnam and Beltaos 

(1977) used the maximum asymptotic static scour depth (εm∞) as the length scale, and  𝑡∗ as the 

time scale, which is the time in εm versus logt plot where εm starts to deviate from the initial linear 

trend with time t. They also used another time scale t+, such as t = t+, when εm = ½ εm∞. Ansari et 

al. (2003) adapted a sine function to describe the time development of εm, where εm∞ and t∞ were 

used as the length and time scales, respectively, and t∞ was the time to reach the asymptotic scour 

depth. However, for short impinging jet experiments with comparatively higher values of Ec, it is 

difficult to obtain 𝑡∗, t+, or t∞ with confidence because the scour depth reaches to the asymptotic 

state rapidly. Therefore, asymptotic lengths (εmd∞, εm∞, r0∞, and δ∞) are used as the length scale and 

h/Vj as the time scale. 

Figure 3.5 shows the temporal development of the dimensionless characteristic lengths. The static 

depth and radius show a good correlation with R2 = 0.74 and 0.80, respectively. However, for the 

dynamic depth and ridge height, the correlation is poor, with R2 = 0.28 and 0.41, respectively. This 

is because these two lengths reach the asymptotic state quickly, and not in a predictable manner. 

Therefore, the temporal development relations are appropriate for the static scour depth and radius 

of the scour hole only and given by 

𝜀m
𝜀m∞

= 0.03 ln (
𝑡𝑉j

ℎ
) + 0.58 ; (𝑅2 = 0.74) (3.12) 

𝑟0
𝑟0∞

= 0.04 ln (
𝑡𝑉j

ℎ
) + 0.35 ; (𝑅2 = 0.80) (3.13) 

 

3.5.3 Similarity in the Scour Hole Profiles  

In previous studies with long impinging jets, the similarity in the scour hole profiles was observed. 

In this short impinging jet scouring study, this similarity has been investigated for the development 

of the scour hole with time, and for the asymptotic scour hole. The dimensionless profiles are 

obtained using εm as the scale for ε, and r0 as the scale for r. The conventional approach of using 

b as the scale for r is also used to verify which scale provides a better result in finding the similarity 

of profiles.  
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Figure 3.6 provides the dimensionless profiles for different times of Exp. 1-B-4. Dimensionless 

asymptotic scour hole profiles for all the experiments are shown in Figure 3.7. These show that r0 

works better as a scale for radial distance. One reason for this is the way r0 is defined. Since r0 is 

defined up to the crest of the ridge, it works better to scale the entire profile, whereas, b is defined 

as b = r when ε = εm/2. Therefore, b only describes the inner part of the scour hole well. Further, 

it is easy to accurately identify the crest of the ridge during measurement, whereas b is rather 

estimated from the measured profiles by interpolation. 

Figure 3.7a shows the data for the dimensionless asymptotic scour hole profiles of this study along 

with the curve provided by Aderibigbe and Rajaratnam (1996) as a general profile for asymptotic 

scour hole. Due to the previously described reason, b is not performing well as a scale for the radial 

distances. The curve fit provided by Aderibigbe and Rajaratnam (1996) is indeed a Gaussian curve 

assuming a Gaussian scour hole profile, and based on long impinging jet experiments. However, 

for short impinging jets, the side slope of the scour hole is almost linear, corresponding to the 

submerged angle of repose of the bed material. Therefore, it is necessary to develop a general 

equation of the asymptotic scour hole for the short impinging jet experiments using εm∞ and r0∞ as 

the length scales. 

Figure 3.7b shows the dimensionless asymptotic scour hole profiles using εm∞ and r0∞ as the length 

scales. It is observed that r0∞ provides less scatter than b∞ as the length scale. Except for the 

dynamic scour zone, experiments with different sands show different slopes due to the different 

submerged angle of repose of the sand particles. A general curve is proposed in Figure 3.8 based 

on the dimensionless asymptotic scour hole data where O is the origin of the coordinate system in 

the plot. Line AB represents the slope for the dynamic scour zone, which is assumed constant, 

equal to 2 vertical to 1 horizontal. This agrees with the experimental data. The slope of the line BC 

is a function of the submerged angle of repose, αr, of the sand particle. Therefore, the angle at point 

B, α' is a function of αr. Line CE is the dimensionless length δ∞/εm∞. Now, since the coordinates of 

A, B, C, and D are known, the equations of the lines AB, BC, and CD can be written as follows 
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𝜀

𝜀m∞
=

{
  
 

  
 2 (

𝑟

𝑟0∞
) − 1, for line AB

tan 𝛼′ (
𝑟

𝑟0∞
− 1) +

𝛿

𝜀m∞
, for line BC

−tan𝛼′ (
𝑟

𝑟0∞
− 1) +

𝛿

𝜀m∞
, for line CD

 (3.14) 

where tan 𝛼′ is a function of the angle of repose 𝛼r. Therefore, tan 𝛼′ can be expressed in terms of 

𝛼r, using the geometry of Figure 3.8 as 

tan𝛼′ = (
𝑟0∞

𝜀m∞
) tan𝛼r (3.15) 

Experimental data show that the mean value of r0∞/εm∞ and δ∞/εm∞ are 2.6 and 0.34, respectively. 

Therefore, the final form of the general equation for the dimensionless scour hole profile is given 

by 

𝜀

𝜀m∞
=

{
 
 

 
 2(

𝑟

𝑟0∞
) − 1, for line AB

2.6 tan𝛼r (
𝑟

𝑟0∞
− 1) + 0.34, for line BC

−2.6 tan𝛼r (
𝑟

𝑟0∞
− 1) + 0.34, for line CD

 (3.16) 

Values of αr for 0.54 mm and 1.1 mm sands are 25.5° and 30.1°, respectively. 

3.6 Summary and Conclusions 

The scouring of sand bed is experimentally investigated for vertical jets of short impinging height 

of 5.5 times the jet diameter. Dynamic depth of scour is measured along with static scour profiles. 

Experimental results show that the short and long impinging jet scouring experiments are quite 

different. Some of the important findings include: 

• The characteristic lengths at the asymptotic state normalized with the total length of the jet 

impinging height and diameter are functions of the erosion parameter. 

• The dynamic scour depth is larger than the static scour depth and reaches the asymptotic state 

quickly. The ratio of the dynamic to static scour depths varies between 2.1 to 4.3, for Ec ranges 



26 

 

between 3 to 28. 

• The side slopes of the scour hole indicate two distinct scour zones, the active and passive scour 

zones. The slope at the passive scour zone represents the submerged angle of repose of the sand. 

• The dimensionless profiles of the scour hole are similar, considering profiles at different 

measurement time and at the asymptotic state. 

Semi-empirical prediction equations are developed for the characteristic lengths of the scour hole 

at asymptotic state using experimental data from this study and previous studies, for the erosion 

parameter varies between 0 to 28, covering both long and short impinging jet regimes. Empirical 

prediction equations are developed for the temporal development of the static scour depth and 

radius. A general expression for the dimensionless scour hole profile is developed as a function of 

the submerged angle of repose of sand. Although the study of scour on sand bed by impinging jets 

is not novel, this study includes the short impingement regime with bigger erosion parameters 

(e.g., Ec = 28), and temporal development of dynamic scour. Both of these aspects were not 

investigated before.  
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Table 3.1: Details of experiments 

Exp. No. D50 Q Vj h h/d Ec Re 

(mm) (L/s) (m/s) (mm)   

1-S-0 0.54 0.26 2.12 0 0 22.7 26483 

1-S-2  0.26 2.12 25 2 7.6 26483 

1-S-4  0.26 2.12 50 4 4.5 26483 

1-B-0  0.32 2.61 0 0 27.9 32595 

1-B-2  0.32 2.61 25 2 9.3 32595 

1-B-4  0.32 2.61 50 4 5.6 32595 

2-S-0 1.1 0.26 2.12 0 0 15.9 26483 

2-S-2  0.26 2.12 25 2 5.3 26483 

2-S-4  0.26 2.12 50 4 3.2 26483 

2-B-0  0.32 2.61 0 0 19.6 32595 

2-B-2  0.32 2.61 25 2 6.5 32595 

2-B-4  0.32 2.61 50 4 3.9 32595 

For all experiments, the jet diameter at the nozzle was d = 12.5 mm. 
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Table 3.2: Characteristic lengths of the scour hole in the asymptotic state 

Exp. No. εm∞ εmd∞ εmd∞/εm∞ r∞ b∞ r∞/b∞ δ∞ r∞/εm∞ δ∞/εm∞ 
 

(mm) (mm) (-) (mm) (mm) (-) (mm) (-) (-) 

1-S-0 44 126 2.86 122 40.0 3.1 17 2.8 0.39 

1-S-2 51 106 2.08 119 36.8 3.2 13 2.3 0.25 

1-S-4 51.5 110 2.14 116 29.5 3.9 16 2.3 0.31 

1-B-0 53 - - 155 47.8 3.2 22 2.9 0.42 

1-B-2 54 157 2.91 149 42.0 3.5 21 2.8 0.39 

1-B-4 58 143 2.47 147 46.0 3.2 21 2.5 0.36 

2-S-0 25 107 4.28 64 19.3 3.3 8 2.6 0.32 

2-S-2 36 115 3.19 94 20.0 4.7 13 2.6 0.36 

2-S-4 36 112 3.11 101 22.0 4.6 15 2.8 0.42 

2-B-0 30 129 4.30 63 18.0 3.5 7 2.1 0.23 

2-B-2 42 112 2.67 103 26.6 3.9 11 2.5 0.26 

2-B-4 47 134 2.85 109 26.5 4.1 15 2.3 0.32 
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Figure 3.1: Experimental setup for scour testing and dynamic scour depth measurement by short 

impinging jets: (a) schematic diagram, (b) definition sketch 
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Figure 3.2: Static scour hole profiles (a) Temporal development for Exp. 1-B-4, (b) Asymptotic 

profiles for different experiments 
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Figure 3.3: Temporal development of the characteristic lengths of the scour hole 
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Figure 3.4: Normalized characteristic scour lengths in asymptotic state as a function of the 

erosion parameter; (a) static scour depth; (b) dynamic scour depth; (c) radius; (d) half-radius; and 

(e) ridge height. Symbol denotes: () experimental observations, (Δ) Rajaratnam (1982), (○) 

Aderibigbe and Rajaratnam (1996), (+) Ansari et al. (2003); (−) power function; (- -) linear 

function  
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Figure 3.5: Temporal development of the characteristic lengths of the scour hole; (○) 

experimental observations and (−) best fit lines for (a) εmd/εmd∞ vs. tVj/h; (b) εm/εm∞ vs. tVj/h; (c) 

r0/r0∞ vs. tVj/h; (d) δ/δ∞ vs. tVj/h 

  



34 

 

 

Figure 3.6: Dimensionless scour hole profiles at different times of Exp. 1-B-4 using (a) εm and b, 

(b) εm and r0 as length scales 
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Figure 3.7: Dimensionless asymptotic scour hole profiles for all the experiments using (a) εm∞ 

and b∞, and (b) εm∞ and r∞ as length scales 
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Figure 3.8: Schematic diagram of general curve fitting for dimensionless asymptotic scour hole 

profile for sand bed scouring by short impinging jets 
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CHAPTER 4. EROSION OF SAND BEDS WITH TRANSLATING 

CIRCULAR JETS 

4.1 Introduction 

Scour of cohesionless beds by translating turbulent jets is an important topic because of several 

engineering applications. These applications include water-jet assisted dredging (Sullivan, 2000), 

ocean bed fluidization for clam harvesting (Manning, 1959), jet induced trenching to lay submarine 

cables or pipes (Zhang et al., 2017), removal of dumped rock cover with moving jet (Schoen, 

2014), and sewer cleaning with high-pressure jets (Calomino et al., 2007). Further, risks of 

unintended erosion are associated with translating jets generated in other operations, e.g., cratering 

below a spacecraft by subsonic jets (Haehnel et al., 2006), and erosion of shallow channel bed due 

to discharge below a moving vessel (Yeh et al., 2009). Although a number of studies have been 

conducted on the scouring of cohesive and cohesionless soil by impinging stationary jets (Amin, 

2016; Amin, et al., 2021; Ansari et al., 2003; Bombardelli et al., 2018; Bombardelli and Gioia, 

2006; Mazurek, 2001), there is a paucity of studies on the scouring by translating jets. This is 

because the experimental setup for translating jet scour testing is complicated; the dynamics of a 

translating jet has some analogy with a jet in crossflow, and is not well understood, and the 

knowledge on the impingement of translating jet is not sufficient. 

Understanding scouring by translating jet requires the knowledge of scouring by impinging 

stationary jets with different impinging heights and inclination angles. A vertically impinging 

circular jet of diameter d is considered long for h > 8.3d, and short for h < 5.5d, where h is the 

impinging height of the jet (Beltaos and Rajaratnam, 1977). Mostly, the previous studies 

considered scour testing with a long jet so that the impingement of the jet happens in the developed 

region of the jet. Researchers related the critical shear stress of the bed to the velocity of the jet at 

the impingement location because the velocity decay for a developed jet is predictable (e.g., 

Hanson and Cook, 1997). Recently, Amin et al. (2021) conducted experiments with short jets and 

showed that there are both similarities and differences in scour features for short and long jets. 

Experiments with short translating jets will be interesting because most of the engineering 

applications of jets require strong jets, which are typically short impinging jets. Moreover, it is 

necessary to assess the scour by short translating jets in oblique configurations to compare the 
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amount and mechanism of scour at different impinging angles.  

Another rarely studied aspect of stationary jet scour research on sand bed is the dynamic depth of 

scour. During the jet scour experiments, a portion of the sand particles remain in suspension due 

to the vortex created by the impinging jet, and the depth of scour is termed as the dynamic scour 

depth. When the jet is stopped, these particles settle down inside the scour hole, resulting a smaller 

depth of scour, namely the static scour depth. Dynamic scour depth is more important because the 

failure of hydraulic structures is associated with this scour depth. Further, some practical problems, 

like dredging of waterbody and fluidization of sand bed for clam collection involve dynamic 

scouring. Despite the importance of dynamic scour depth, only few studies (Rajaratnam and 

Mazurek, 2003; Amin et al., 2021; Chakravarti et al., 2014) measured this parameter due to the 

difficulty in measurement when the jet is running. However, studies with stationary jets showed 

that dynamic depth progresses to the asymptotic depth relatively quickly (Amin et al., 2021), while 

static depth increases slowly with time. Here, asymptotic depth is characterized by the scour depth 

at a particular time of scour, after which the growth of scour depth is negligible. Nonetheless, for 

a translating jet scouring, the dynamic depth is more important as the jet does not stay at the same 

location for a considerable amount of static scour to occur. 

Although a good number of studies have been carried out on scour by stationary jets, only a few 

studies involved scouring with translating jets. Many of these translating jet scour studies were 

conducted for clay beds (Gu et al., 2018; Nobel, 2013; Rockwell, 1981; Zhang et al., 2016 and 

2017). Since there is a fundamental difference in scour mechanism between cohesive and 

cohesionless soil (Amin, 2018), it is important to particularly review the moving jet experiments 

conducted in sand beds in connection to this study. Studies of scour in sand beds with translating 

jets include scour of sand bed with inclined plane jets (Perng and Capart, 2008), with inclined 

circular jets (Berghe et al., 2011; Su et al., 2007), with vertical circular jets (Weegenaar et al., 

2015; Yeh et al., 2009). A summary of these studies is shown in Table 4.1. 

Perng and Capart (2008) used a moving jetting head consisting of a series of circular orifices which 

formed a plane jet inclined at 60° to the opposite direction of travel, i.e., the angle of inclination 

of the jet at the direction of the jet translation, α =210°. The translating velocity of the plane jet Ut 

ranged between 10 to 100 mm/s, while the water velocities at the nozzle Vj were between 8 to 10.9 
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m/s. They used a medium quartz sand of median diameter, D50 = 0.33 mm, and assumed that the 

turbulent current induced by the jet stratified into sediment-laden and sediment-free sublayers, and 

thus proposed a shallow-flow theory. The sediment-laden sublayer may continue as supercritical 

flow inside the trench formed by the jet, or may produce an internal hydraulic jump, depending on 

the translating speed of the jet. However, compared to an axisymmetric jet, the plane jet scouring 

is a much simpler problem being a 2D case instead of 3D. It will be worth investigating the flow 

regimes for a circular translating jet with smaller impinging angles (α ≤ 90°). 

Small scale scour experiments were performed by Su et al. (2007) and Berghe et al., (2011) inside 

a glass-walled tank with needle jets of small internal diameter (d = 0.6 mm) and very fine sand 

beds (D50 = 0.08, 0.17 mm). In these studies, Vj varied between 6 to 36 m/s and Ut was ranged 

between 0 to 70 mm/s. The needle jets were inclined (α = 210°) and positioned at various vertical 

locations starting from the sand bed surface to inside the bed. The amount of the bed fluidization 

was found to depend on Vj and Ut. It was reported that the geometry of the trench scoured by the 

jet depends on five mechanisms- entrainment, erosion, deposition, breaching, and overspill. A 

model was proposed based on the gravity and jet-driven turbidity currents theory. The effect of α 

in the scouring process was absent in these studies, and the scale of the experiments was very small 

compared to the prototype cases, e.g., the jetting swords for burying submarine cables.  

Large scale laboratory experiments of scour of sand bed (D50 = 0.26 mm) with a translating vertical 

circular jet (d =127 mm) was conducted by Yeh et al., (2009). The experiments were carried out 

in a towing tank, with Vj = 2.05 m/s and Ut = 0.09 - 0.51 m/s. It was found that the maximum static 

scour depth and ridge height depend on the ratio of the jet nozzle velocity to traveling velocity 

(Vj/Ut), and the erosion parameter Ec (Ec is defined later in this work). However, this study mostly 

considered the static features of scour, which are smaller in scale compared to the dynamic ones 

and thus not very significant for most of the practical purposes. 

Weegenaar et al. (2015) studied the fluidization of sand bed (D50 = 0.14 and 0.28 mm) by a moving 

vertical circular jet (d = 5 – 11 mm, h = 17 mm, Vj = 30 – 40 m/s, Ut = 0.25 – 1 m/s) to assess the 

performance of jets used in the water-assisted dragheads of dredgers. This study showed that the 

fluidized sand flux was proportional to the jet momentum flux, and more specific energy was 

needed to fluidize finer sand than coarser sand. However, the evolution of the dynamic depth, or 
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the extent of the fluidized zone was not reported. 

In general, the previous studies on the scour of sand beds by traveling jets were application specific 

(Table 4.1). While the study of Yeh et al. (2009) was comprised of large-scale laboratory 

experiments, the studies by Su et al. (2007), and Berghe et al. (2011) used small-scale physical 

models of the prototypes. Interestingly, although small-scale, the latter studies used bigger jet 

velocities. Weegenaar et al. (2015) used the biggest jet nozzle velocities of all the experiments 

discussed. The maximum scour depth measured in the studies of Su et al. (2007), Berghe et al. 

(2011), and Weegenaar et al. (2015) was dynamic scour depth. For the dynamic depth 

measurement, the concept of the wall of symmetry was used so that the fluidized zone could be 

captured with a camera. Since the practical applications demand a strong impinging jet, the 

impinging heights in these studies were quite small. Further, the ratio of the jet nozzle velocity to 

the jet traveling velocity was quite large in all the studies except Yeh et al. (2009). 

It should be noted that in the studies where inclined jets were used, the large inclination angle 

(210°) allowed the jet to continue to fluidize the bed along the direction of horizontal jet travel, 

while the sands settle down and filled up the scoured trench upstream of the jet. This technique is 

particularly useful for laying of submarine pipelines where downstream scouring of trench and 

upstream burying of pipes occur at the same time. On the contrary, with vertically impinging 

traveling jets, the depth of the upstream trench could be significant even after the settlement of 

some sand particles. Translating jet experiments with oblique impingement to the direction of 

travel would be particularly interesting, as the scouring mechanism could be different and could 

be useful for many applications. For examples, in cleaning in storm sewer system, traveling jets 

with oblique impingement to the direction of travel could be beneficial. However, this will need 

to be confirmed by laboratory experiments with traveling jets of different impinging angles. 

The present study involves laboratory investigation of scour in cohesionless beds with circular 

translating jets at different impinging angles. The features of the static and fluidized zone are 

discussed along with a comparison with stationary jet results. The kinematics of the sediment 

motion is also discussed for the conducted experiments to explore the fluidization regimes. 
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4.2 Experimental Setup and Experiments 

The experiments were conducted in the T. Blench Hydraulics Laboratory at the University of 

Alberta in Canada. Figure 4.1 shows the schematics of the experimental setup. A 10 m long, 0.8 

m wide, and 0.8 m deep towing tank was used for the scour experiments, with a computer-

controlled carriage on the top that moves along the length of the tank (x – direction). The carriage 

held a 1 m long and 25 mm diameter PVC pipe with a well-designed circular nozzle at the lower 

end to produce a circular jet. The upper end of the pipe was attached to a flexible hose, connected 

to a 0.5 HP centrifugal pump. The pump drove water from the towing tank to produce the jet and 

thus recirculated water during scour testing. A valve, and a magnetic flowmeter were attached 

between the pump and the flexible hose to control and measure the flow. The attachment of the 

PVC pipe at the carriage allowed to produce a submerged jet with α between 30° and 90°, and h 

between 0 and 150 mm. A 1.5 m long, 0.5 m wide, and 0.25 m deep plexiglass sandbox was used 

to create a 0.25 m deep sand bed for scour testing. The sand box had sand traps on both sides to 

prevent sand moving on the towing tank bed during scour test.  

For the static scour measurement, a point gauge was mounted on the carriage on the opposite side 

of the PVC pipe. It could be moved in both y and z - directions to take profiles of the scoured 

trench. A high-speed camera (Phantom v211, Vision Research, Wayne, New Jersey), equipped 

with a Nikon lens ((Nikon AF Micro NIKKOR 60 mm f/2.8D) was used to capture the sand 

movement and identify the fluidized zone. The camera was placed close to the front panel of the 

towing tank focusing on the center of the sand box at z-x plane. A LED lamp was placed under the 

camera to illuminate the sands on that plane. 

Before the start of scour testing, the sand bed inside the sand box was levelled, with the towing 

tank filled with water to 0.6 m depth. The nozzle was adjusted to set the desired jet impinging 

height and angle. The jet nozzle was set 2 m upstream of the sand box center by translating the 

carriage. The travel length of the carriage was set to 4 m so that the sand box remained about at 

the middle of the run and could be less affected by acceleration or deceleration of the carriage. The 

PVC pipe was set close to the tank sidewall so that the gap between the jet nozzle and the wall was 

about 2 mm. This ensured that the jet was very close to the wall to resemble a half-model for jet 

scour testing, similar to the approach of Pagliara et al. (2008). The half-model features the same 
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jet velocity so that 𝑑 = √2𝑑t, where dt is the jet diameter in half-model and d is the equivalent 

full-model jet diameter. This half-model configuration facilitates the observation of the dynamic 

characteristics of the scour hole. According to Unger and Hager (2006 and 2007) and Bombardelli 

et al. (2018), the boundary layer along the glass wall has minimal effect on the jet characteristics 

for such arrangement. Further, Rajaratnam and Pani (1974) reported that if the wall shear stress 

can be neglected, the circular wall jet can be treated as a circular free jet. Figure 4.2 shows that the 

scour profiles for half and full-model for scour testing by stationary and translating jets match 

quite well. The little discrepancies in the profiles may have resulted since an 18 mm nozzle was 

used for the full-model. For a 12.5 mm nozzle in the half model, using a 17.6 mm nozzle would 

be more appropriate since 𝑑 = √2𝑑t. However, a 17.6 mm nozzle was not available. 

At the beginning of the test, the pump was started to create the jet. Flowrate in the nozzle was 

measured with a magnetic flowmeter, and controlled with a valve. The carriage was then operated 

using LabVIEW software by National Instruments to translate the jet at the desired translating 

velocity. During the jet translation, sand movement was recorded using the high-speed camera. 

After the carriage completed its 4 m run, the jet was stopped by switching off the pump, and the 

carriage was moved over the sand box. Then the point gauge was used to take profile of the scoured 

trench at the middle of the sand box. After that the carriage was moved to its initial position 

upstream of the sand box and the sand bed was prepared for a new test. 

Table 4.2 shows the details of the experiments. To assess the effect of jet inclination for short jets 

(h = 4dt), test series A to D were conducted for 30° ≤ α ≤ 90°. In each of these series, the effect of 

jet translation was explored for 0 ≤ Ut ≤ 224 mm/s. Test series E was conducted to realize the 

effect of long impingement (h = 9dt) for scour at different translating velocities. Test series F and 

G were carried out for a single translating velocity (Ut = 12 mm/s) to understand the effect of jet 

diameters and jet velocities, respectively. 

Since previous studies for translating jet scouring mostly used finer sands with a median sediment 

size of D50 < 0.33 mm, all the test series except H were conducted with a coarse sand of D50 = 0.54 

mm and a sediment non-uniformity of σs = (D84/D16)
1/2 = 1.4. The test series H was conducted with 

finer sands of D50= 0.23 mm and σs = (D84/D16)
1/2 = 1.3, to compare the results for fine and coarse 

sands. 
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4.3 Scouring Features 

4.3.1 Static Scour Profiles 

Figure 4.3 shows the scour profiles of the sand bed as the sand particles settle down after the jet 

passed. Therefore, these profiles are the static scour profiles in the transverse direction of the jet 

translation (y – direction). For impingement angles α ≥ 60°, the profiles show deposition rather 

than erosion (test series A and B). This is because at these angles, the amount of sediment 

deposition downstream of the jet exceeds the amount of sediment movement outside the ridge. As 

Ut increases, deposition increases for 60° ≤ α ≤ 90°. However, for test series C and D, at smaller 

impingement angles (i.e., α ≤ 30°), and smaller translational velocity (Ut = 12 mm/s), mild trench 

and prominent ridge formation are seen with maximum static scour depth, zsm = 8 mm and 26 mm, 

for α = 45° and 30°, respectively. For fine sand in test series H (D50 = 0.23 mm), trench with 

distinctive ridge can be seen even for bigger impingement angle (α = 90°) and for 

2 mm/s ≤Ut ≤ 52 mm/s. This confirms that, for the same experimental conditions, static scour for 

finer sand is more than the coarser sand – an observation similar to experiments with stationary 

jets in previous studies (e.g., Aderibigbe and Rajaratnam, 1996; Amin et al., 2021). However, 

considering test series A and E, the effect of the impingement height for 4d ≤ h ≤ 9d seems 

negligible. Figure 4.3b shows the effect of jet diameters and velocities on the static scour depth in 

test series F and G, respectively. As the jet diameter or velocity increases, the static scour depth 

and ridge height increases. However, for all the test series, the static scour depths for translating 

jet scour are minimal, even for lower translating velocity, i.e., Ut = 12 mm/s. This is because the 

jet does not stay at the same location long enough to allow the sand moving out of the scour regime. 

4.3.2 Dynamic Scour Profiles 

The dynamic sour profiles, extracted from the mean of the instantaneous sediment movement 

images are shown in Figure 4.4. Test series A, B, C, D, H, and E in Figure 4.4a show that as Ut 

increases, the dynamic scour profiles become shallow and elongated in the direction of the jet 

translation (x-direction). The shape of the profiles also varies with the jet impingement angle. In 

general, as the impingement angle decreases, the profiles become shallow. Comparison of test 

series A and H shows that the dynamic profile for finer sand is deeper and longer. For Ut = 52, 72, 

and 92 mm/s, pulsating forms are seen in the profiles of test series H. This indicates that the finer 

sand behaves like a fluid medium with wave formations at higher translating velocities. 
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Comparison of test series A and E shows that the depth of the profiles decreases with the increase 

of h. The profiles also become elongated as h increases. Figure 4.4b shows that the size of the 

fluidized regime increases noticeably with the increase of jet diameters (test series F), or jet 

velocity (test series G). 

Figure 4.5 shows dimensionless profiles of the dynamic scour for test series A, B, C, and D. The 

corresponding profiles in Figure 4.4a are normalized with the longitudinal length of the fluidized 

regime (xm), and the maximum dynamic scour depth (zm), in x and z – directions, respectively. For 

each test series, the profiles for different Ut collapse into a single shape. Therefore, the general 

equation for the dynamic scour profile can be expressed as functions of x and α 

𝑧

𝑧m
= 𝜑1(𝛼) (

𝑥

𝑥m
)
3

+ 𝜑2(𝛼) (
𝑥

𝑥m
)
2

+𝜑3(𝛼) (
𝑥

𝑥m
) + 𝜑4 (4.1a) 

where the sought mathematical function φ is given by the Equations 4.1b to 4.1e, for 30° ≤ α ≤ 90° 

and Ec = 5.8. 

𝜑1 = −7.5 sin 𝛼 + 9.0 (4.1b) 

𝜑2 = 11.5 sin 𝛼 + 15.6 (4.1c) 

𝜑3 = −3.6 sin 𝛼 + 6.0 (4.1d) 

𝜑4 = 0.3 sin 𝛼 + 0.28 (4.1e) 

Equation 4.1 fits the dynamic scour profiles well with R2 = 0.98, 0.95, 0.71, and 0.85 for test series 

A, B, C, and D. 

4.3.3 Maximum Dynamic Scour Depth 

Figure 4.6 shows the variation of maximum dynamic scour hole depth zm for different parameters. 

In Figure 4.6a, considering test series A to D, zm reduces with r and increases with α. Test series 

H with D50 = 0.23 mm exhibits bigger zm than test series A with D50 = 0.54 mm. Similarly, test 

series A with h = 4d shows bigger zm than test series E with h = 9d. These variations of zm with 

D50 and h are similar to the scour by stationary jets. Yeh et al. (2009) showed reported that a 

rational function predicts the relative scour depth in terms of the velocity ratio. However, a rational 

function does not satisfy the experimental data of this study for dynamic scour depth. Rather, a 
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general relation is developed considering the relative dynamic scour depth is a function of the 

impingement angle and translating velocity. 

𝑧m
(ℎ + 𝑑)

= 𝜓1(𝑅tj)𝛼
2 + 𝜓2(𝑅tj)𝛼 + 𝜓3(𝑅tj) (4.2a) 

where sought function 𝜓 is given by Equation 4.2b to 2d, for 30° ≤ α ≤ 90°, 29 ≤ r ≤ 224, and 

Ec = 5.8 

𝜓1(𝑟) = 0.67𝑅tj
2 − 0.04𝑅tj (4.2b) 

𝜓2(𝑟) = −84.12𝑅tj
2 + 4.21𝑅tj (4.2c) 

𝜓3(𝑟) = 2025.30𝑅tj
2 − 103.22𝑅tj + 1.05 (4.2d) 

Figure 4.6b shows the data fitting for Equation 4.2. 

4.3.4 Stationary vs Translating Jet Scouring  

As shown in Figure 4.6a, zm reduces with the increase of Ut. It can be inferred that zm is bigger for 

a stationary jet (Ut = 0) than for a translating jet (Ut > 0). To check this hypothesis, experimental 

results for Ut = 0 mm/s is compared with Ut = 12 mm/s for test series A, B, C, and D in Figure 4.7.  

It should be noted that the stationary jet scour is a function of testing time, while the translating jet 

scour is a function of translating speed. Therefore, to compare the stationary case with the 

translating one, dynamic scour depth for a short time of scour (t = 150 s) is compared with the 

dynamic scour depth for a small translating speed (Ut = 12 mm/s). It is observed that the scour 

depth for stationary jet scour is more than the translating jet. Further, as the impingement angle α 

increases, the difference in scour depth between stationary and translating jet scour decreases. 

Figure 4.8 shows that for 1.9 ≤ Ec ≤ 9.6, the dimensionless scour depths for different translating 

velocities vary linearly with the erosion parameter Ec. According to (Amin et al., 2021), Equation 

4.3 gives the asymptotic scour depth zm∞ for a stationary jet, 

𝑧𝑚∞
(ℎ + 𝑑)

= 0.49 𝐸𝑐 − 0.06 (4.3) 

Based on this expression and experimental results as shown in Figure 4.8, a general relation can 

be proposed for predicting the depth of scour as a function of Ec for vertically impinging jet of any 
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translating velocity, 

𝑧𝑚
(ℎ + 𝑑)

= 𝐶1 𝐸𝑐 − 𝐶2 (4.4) 

where C1 and C2 are dimensionless coefficients, which depend on the jet translating velocity Ut. 

4.4 Sediment Kinematics 

Sand motion inside the scour hole is captured by producing streamlines from the high-speed 

camera images using PIV technique.  Figure 4.9a shows the mean streamlines of sediment motion 

for test series A. For Ut = 12 to 52 mm/s, a vortex forms at the leeward side of the jet and remains 

close to the jet. The streamlines near the vortex center are sparsely distributed, indicating the sand 

particles are moving radially towards the periphery of the vortex due to centrifugal force. Although 

the pressure gradient inside the vortex tries to keep the sand particles near the center, Lasheras and 

Tio (1994) reported that the sand particles have greater inertia due to the density difference in 

sand-water system and thus the centrifugal force becomes dominant. As the jet is translating, it 

scours the sand bed in the windward direction, and entrains sand particles. A portion of the 

entrained sand translates directly to the leeward side and deposits there. Another portion gets 

entrapped in the vortex. As the vortex translates along with the jet, it captures some fresh sands 

and simultaneously discharges some to the leeward side. A flow separation is observed inside the 

scour hole, indicating the boundary of the vortex and deflected jet. The vortex is typically elliptical 

in shape and the orientation of the vortex changes from vertical to horizontal with Ut. For Ut = 72 

and 92 mm/s, sand particles are entrained inside the jet without any distinct principal vortex. 

However, multiple small vortices may be present without noticeable sand entrapment as reported 

by Unger and Hager (2005) for sand bed scouring at a cylindrical pier. 

Figure 4.9b shows the streamlines of sand motion for a small translating velocity, i.e., Ut = 12 

mm/s. For test A1, H1, and E1 with α = 90°, the streamlines show similar vortex formation. For 

test H1, the fluidized zone and vortex are larger compared to test A1 for the same hydraulic 

conditions. This is because H1 contains finer sands than A1 (D50 = 0.23 mm versus 0.54 mm). For 

test E1 with long impinging height (h = 9d), the vortex center stays near the bottom of the scour 

hole whereas for short impinging height (h = 4d) in test A1, it stays near the initial undisturbed 

surface of the sand bed. For 30° ≤ α ≤ 60°, the vortex forms at the windward side of the translating 
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jet. The principal vortex remains close to the jet boundary while the minor vortices remain either 

near the deflected jet or near the principle vortex. Figure 4.10 shows schematics of the sediment 

motion inside the scour hole for a translating jet with different jet inclinations. 

Figure 4.11 shows the vertical distribution of the velocity component in x- direction, u inside the 

principal vortex. Although for all the cases, the jet is translating to the right, the rotation of the 

principal vortex is in opposite direction for normal and obliquely impinging jets., characterized by 

the distribution of u. Velocity distribution in the opposite directions are nearly equal for α = 45°. 

For α = 30°, the velocity distribution is symmetric about the horizontal axis of the vortex center. 

Figure 4.12 shows the velocity distribution of sand particles inside the fluidized zone. For α = 90° 

(Figure 4.12a), the maximum velocity varies between 0.18 to 0.30 m/s for Ut = 12 to 92 mm/s. The 

maximum velocity for the stationary case is bigger and is observed in the vortex region. On 

contrary, for translating jets, the maximum velocity region of the sediment motion is inside the jet. 

The velocity vectors are mostly todards the leeward direction of the jet translation. However, in 

Figure 4.12b, the oblique impinging cases (test series B1, C1, and D1) show velocity vectors in 

both the windward and leeward direction of the jet. This indicates that the sediments initially 

moves to the windward direction due to the oblique impingement of jet since the jet has a jet 

velocity component in that direction. Thereafter, the sediments near the boundary of the fluidized 

zone travel backward to the leeward side of the jet and deposit there. Maximum velocity magnitude 

for oblique cases varies between 0.18 to 0.27 m/s. For fine sand with D50 = 0.23 mm, the velocity 

distribution of the sand particles resembles to the velocity distribution of a jet in crossflow, 

probably due to the fluidized nature of the sand bed with smaller grain size. For all the translating 

jet cases with Rtj = 0.004 to 0.034, the direction of the velocity vectors show that the u component 

of the velocity is the dominant velocity for sand movement. Therefore, in Figure 4.13, the profiles 

of the u –velocity are plotted as a function of the vertical depth. Note that inside principle vortex, 

there is a reversal of the direction of u, as shown in Figure 4.11. Therefore, inside the vortex, the 

bottom portion of the u-velocity near the bed is considered in Figure 4.13, similar to the approach 

of Unger and Hager (2007). 

To explore the similarity of the u-velocity profiles, the dimensionless profiles are created with the 

maximum u – velocity um as the scale for u, and zm as scale for z, where zm is the vertical distance 
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from um to 0.5um. The dimensionless profiles collapsed into a Gaussian equation, 

𝑢

𝑢𝑚
= 𝑒

−(
1
1.2
(𝑧 𝑧𝑚⁄ ))

2

 (4.5) 

 

4.5 Summary and Conclusions 

This work shows the results of an experimental study of scour of cohesionless soils with circular 

translating jets impinging at different inclinations. The testing was conducted in a half-model 

configuration, so that the experiments could be observed from the side of the tank. Direct 

measurements of static scour features were made using a point gauge. A high-speed camera was 

used to identify the fluidized zone, and understand sediment kinematics. The main conclusions of 

this study are as follows: 

1. The static scour depth is minimal for a translating jet scour, compared to the stationary case 

for D50 = 0.54 mm, 32 mm/s ≤Ut≤ 92 mm/s and 30° ≤ α ≤ 90°. However, depressions on the 

surface of the bed are observed for Ut = 12 mm/s, and 30° ≤ α ≤ 45°. 

2. The dynamic scour profiles in the longitudinal direction gets shallower and elongated as the 

jet translating velocity increases. 

3. For a constant translating velocity, the maximum depth of the fluidized zone decreases as the 

jet angle of inclination decreases. 

4. For constant translating velocity, jet inclination angle, and jet velocity, the maximum depth of 

the fluidized zone increases with the jet diameter. Similarly, for constant translating velocity, 

jet inclination angle, and jet diameter, the maximum depth increases with the jet velocity. 

5. For the same experimental conditions, the maximum depth of dynamic scour decreases with 

the increase of impinging height, and increases with the decrease of the median size of the 

sand. 

6. Dimensionless profiles of the fluidized zone at different jet translating velocities and a fixed 

impinging angle show similarity. 

7. For the same experimental conditions, the maximum dynamic scour depth for a stationary jet 

with even a short time of scour (≈150 s) is bigger than the one for a translating jet with a 
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slower translating velocity (≈12 mm/s). 

8. Dimensionless maximum dynamic scour depth can be expressed as functions of the erosion 

parameter and the jet velocity to translating velocity ratio. This is similar to the case for 

stationary jet, where this depth can be expressed as a function of the erosion parameter  

9. Sediment kinematics study of the fluidized zone reveals that a principal vortex is present 

inside the scour hole along with few minor vortices. The principal vortex resides on the 

leeward side of the jet for α = 90°, whereas it stays on the windward side of the jet for α < 90°. 

The vortices and the jet itself entrain sediment and play important role in the sediment 

transport. 

10. Due to the translation of the jet, the horizontal velocity component is the dominant component 

for sediment transport. This velocity can be expressed by a Gaussian relation. 

This study is one of the first on the detailed observation of sediment motion for translating jet 

scouring of loose bed. Empirical expressions have been developed for the fluidized zone, and 

sediment kinematics is discussed based on PIV technique. This study will help in practical 

engineering problems with moving jet scour, and will facilitate computational modeling by 

providing experimental measurements.  
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Table 4.1: Studies on the scour of sand beds by translating jets. 

Study Type of 

Jet 

α d 

(mm) 

Vj 

(m/s) 

Ut 

(m/s) 

D50 

(mm) 

h 

(mm) 

h/d Vj/Ut Ec Application 

Perng and Capart 

(2008) 

Plane jet 210° - 8-10.9 0.01-0.1 0.33 0 0 80-1090 - Engineering 

tools moving 

on the sea 

bed 

Su et al. (2007),  

and Berghe et al. 

(2011) 

Circular 

Jet 

(Needle) 

210° 0.6 6-36 0-0.07 0.08-0.17 0 0 85-∞ ∞ Marine 

Trenchers 

Yeh et al. (2009) Circular 

jet 

90° 127 2.05 0.09-

0.51 

0.26 760 6 4-24 5.28 Scour due to 

discharge 

below a 

vessel 

Weegenaar et al. 

(2015) 

Circular 

jet 

90° 5-11 30-40 0.25-1 0.14-0.28 17 1.5-3.4 30-160 1.54-9.90 Water-jet 

assisted 

dragheads of 

dredgers 

This study Circular 

jet 

30°-90° 8.5-

25.5 

0.9-

4.48 

0-0.092 0.23-0.54 50-

112.5 

2.0-6.4 9.8-∞ 1.9-9.6 Generic 

  



51 

 

Table 4.2: Details of the experiments 

Notes: Re = jet Reynolds number, Re = ρwVjd/µw, ρw is density of water, ρs is density of sand, µw is dynamic 

viscosity of water; Fd: densimetric Froude number, Fd = Vj/[{(ρw-ρs)/ρw} gD50]1/2, g is acceleration by 

gravity; Ec: erosion parameter, Ec =  Fd{dt/(h+dt)}. Note that dt is used for Ec since the impinging height for 

full-model = √2h, and therefore, the ratio h/(h+dt) is same for both full and half-model. 

 

Test 

series 

Test 

ID 

D50  

(mm) 

dt  

(mm) 

d 

(mm) 

h  

(mm) 

Vj  

(m/s) 

α  

(°) 

Ut  

(mm/s) 

Rtj  × 

10-3 

(-) 

Re × 104  

(-) 

Fd  

(-) 

Ec  

(-) 

Comment 

A A0 

A1 

A2 

A3 

A4 

A5 

0.54 12.5 17.7 50 2.69 90 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 28.8 5.8 Vertical jet (θ = 90°) at 

different translating 

velocities. Test ID: AUt, 

e.g., A0 for non translating, 

A12 for translating at 12 

mm/s. 

B B0 

B1 

B2 

B3 

B4 

B5 

0.54 12.5 17.7 50 2.69 60 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 28.8 5.8 Oblique jet (θ = 60°) at 

different translating 

velocities 

C C0 

C1 

C2 

C3 

C4 

C5 

0.54 12.5 17.7 50 2.69 45 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 28.8 5.8 Oblique jet (θ = 45°) at 

different translating 

velocities 

D D0 

D1 

D2 

D3 

D4 

D5 

0.54 12.5 17.7 50 2.69 30 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 28.8 5.8 Oblique jet (θ = 30°) at 

different translating 

velocities 

E E0 

E1 

E2 

E3 

E4 

E5 

0.54 12.5 17.7 112.5 2.69 90 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 28.8 2.9 Long impingement (h = 9d) 

of vertical jet at different 

translating velocities 

F F1 

F2 

F3 

F4 

F5 

0.54 6 

8 

12.5 

14 

18 

8.5 

11.3 

17.7

19.8 

25.5 

50 2.69 90 12 4.5 2.3 

3.0 

4.8 

5.3 

6.9 

28.8 3.1 Variable jet diameters with 

vertical impingement and a 

fixed translating velocity 

G G1 

G2 

G3 

G4 

G5 

0.54 12.5 17.7 50 0.90 

1.79 

2.61 

3.59 

4.48 

90 12 13.3 

6.7 

4.6 

3.3 

2.7 

1.6 

3.2 

4.6 

6.4 

7.9 

9.6 

19.2 

27.9 

38.4 

47.9 

1.9 

3.8 

5.6 

7.7 

9.6 

Variable jet velocities with 

vertical impingement and a 

fixed translating velocity 

H H0 

H1 

H2 

H3 

H4 

H5 

0.23 12.5 17.7 50 2.69 90 0 

12 

32 

52 

72 

92 

0 

4.5 

11.9 

19.3 

26.8 

34.2 

4.8 44.1 8.8 Fine sand (D50 = 0.23 mm) 

with vertical jet 

impingement and different 

translating velocities 



52 

 

 

Figure 4.1: Experimental setup for scour testing with translating jet (a) front panel of the towing 

tank, and (b) definition sketch for scour dimensions.  
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 (a) (b) 

Figure 4.2: Scour profiles along the cross-channel for half versus full-model arrangements: (a) 

scouring by stationary jet. D50 = 0.54 mm, dt = 12.5 mm, d = 18 mm, h = 50 mm, Vi = 2.69 m/s, 

and Ut = 0 m/s; (b) scouring by translating jet. D50 = 0.23 mm, dt = 12.5 mm, d = 18 mm, h = 50 

mm, Vi = 2.69 m/s, and Ut = 0.012 m/s.  
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(a) 

 

(b) 

Figure 4.3: Static scour profiles at transverse direction of jet translation (a) profiles for 12 mm/s 

≤ Ut ≤ 92 mm/s and 30° ≤ α ≤ 90°; (b) profiles for 6 mm ≤ dt ≤ 18 mm (F series), and 0.90 m/s ≤ 

Vj ≤ 3.59 m/s (G series). z = 0 and y = 0 indicate initial soil surface before scour, and tank wall, 

respectively.  
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(a) 

 

(b) 

Figure 4.4: Dynamic scour profiles at the direction of jet travel for (a) 12 mm/s ≤ Ut ≤ 92 mm/s 

and 90° ≤ α ≤ 60°; and (b) 6 mm ≤ dt ≤ 18 mm (F series), and 0.90 m/s ≤ Vj ≤ 3.59 m/s (G 

series). The jet is translating to the left.  
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Figure 4.5: Similarity of the fluidized zone boundary in the direction of jet translation for 

12 mm/s ≤ Ut ≤ 92 mm/s and 90° ≤ α ≤ 60°. Solid lines and marker symbols indicate Equation 

4.1, and observed data, respectively. z = 0 represents initial soil surface before jet translation.  



57 

 

 

(a) 

 

(b) 

Figure 4.6: Variation of maximum dynamic scour depth: (a) dimensionless zm(Rtj); and (b) 

dimensionless zm(α).  
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Figure 4.7: Comparison of zm between stationary and translating jet scouring. For both cases, D50 

= 0.54 mm, dt = 12.5 mm, h = 50 mm, and Vj = 2.69 m/s. For stationary jet, time of scouring = 

150 s; while for translating jet, Ut = 12 mm/s.  
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Figure 4.8: Dimensionless zm as a function of Ec for α = 90° and 0 mm/s ≤ Ut ≤ 92 mm/s.  
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(a) 

 

(b) 

Figure 4.9: Mean streamlines of sediment motion inside scour hole for (a) 12 mm/s ≤ Ut ≤ 92 

mm/s and α = 90°; and (b) 30° ≤ α ≤ 90° and Ut = 12 mm/s. Blue arrow indicates jet position. 

The jet is translating to the right.  
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Figure 4.10: Schematics of sediment motion inside the scour hole for 30° ≤ α ≤ 90°.  
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Figure 4.11: Vertical distribution of u through the principal vortex center.  
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(a) 

Figure 4.12: Velocity distribution of sand particles inside the fluidized zone for (a) vertical 

impingement with 12 mm/s ≤Ut≤ 92 mm/s; and (b) Ut = 12 mm/s and 30° ≤ α ≤ 90°. Red arrow 

indicates jet direction. Velocity unit is: m/s. For all plots, Vj = 2.69 m/s and the jet is translating 

to the right. 
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(b) 

Figure 4.12: Cont’d.  
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(a) 

 

Figure 4.13: u - velocity profiles of sand particles at different horizontal distance from the jet 

nozzle, plotted as a function of the vertical depth for (a) vertical impingement with 12 mm/s 

≤Ut≤ 92 mm/s; and (b) Ut = 12 mm/s and 30° ≤ α ≤ 90°. The right side shows dimensionless 

profiles. Velocity unit is: m/s. 
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(b) 

Figure 4.13: Cont’d.
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CHAPTER 5. AIR-BUBBLE ENTRAINMENT IN STAGNANT WATER BY 

TRANSLATING TURBULENT JETS 

5.1 Introduction 

Air entrainment by plunging liquid jets is a common phenomenon in nature and it has many 

industrial applications. When a moving column of liquid passes though a gas medium before 

impinges into a pool of liquid, it is termed as a plunging jet (Roy et al., 2013). Although the 

mechanism of air entrainment is very complex, it usually occurs at the periphery of the plunging 

jet where it impinges on the free liquid surface and forms a depression with an envelop of air 

surrounding the jet. This mechanism is very efficient since it produces a large air-water interfacial 

area (Chanson and Manasseh, 2003). Many industrial applications utilize this mechanism since it 

ensures efficient dissolving of air in gas-liquid reactors. It is very effective for aeration in 

wastewater treatment (Stenstrom and Gilbert, 1981), and it has many potential applications in 

chemical fermentation processes. Besides, water jet is useful for oxygenation because of its 

simplicity in construction and operation (Baylar et al., 2006), efficient mixing (Giger et al., 1991), 

and minimal energy requirements (Biń, 1993). Apart from the industrial applications, 

understanding plunging jet air entrainment is important because it plays a significant role in 

oxygenation of waterbodies. Breaking waves in ocean, two-dimensional jets downstream of 

spillways, plunging wavefronts formed by moving water vessels are examples of air-entrainment 

in waterbodies by plunging jets.  

A significant number of studies have been conducted on the air entrainment by stationary plunging 

jets in quiescent waterbodies. Key findings of these studies can be found in the reviews of Biń 

(1993), Chanson (1996), and Kiger and Duncan (2011). In contrast, studies related to translating 

plunging jets are rare. The reason could be the complexity in experimental measurements for 

translating jets. One of the easiest settings for such experiments would be experimenting with a 

stationary plunging jet in a crossflow (e.g., Jahromi and Khiadani, 2017). However, there are 

several drawbacks of conducting experiments in crossflows rather than with translating jets. 

Firstly, the translating jet is subject to air drag before it plunges into the waterbody, which increases 

surface disturbance and enhances air entrainment in jet surface. Secondly, the vertical velocity 

distribution of the crossflow is not usually uniform in the experimental setup, whereas a translating 
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jet can be moved at a uniform velocity. Despite scarcity of the studies of air entrainment by 

translating jets, it is important in many practical problems, like plunging breaking waves (Chanson 

and Lee, 1997), and plunging bow waves of hydraulic vessels at high speed (Gómez-Ledesma et 

al., 2011). 

Contemporary knowledge on stationary plunging jets is inadequate to explain the characteristics 

of air entrainment by translating plunging jets. Chirichella et al., (2002) conducted laboratory 

experiments with translating plunging laminar jets to study the air entrainment mechanism and 

determined the boundary between different entrainment regimes. They started experiments with 

stationary jets with no air-entrainment. As the jets started moving horizontally, air entrainment 

commenced at a certain flow condition. However, for turbulent stationary jets, it is usually 

common to observe air entrainment even at very low jet velocity, since air entrainment is a function 

of the relative turbulence of the jet at the nozzle (Ervine et al., 1980; Og̃uz, 1998). Therefore, the 

incorporation of translating velocity to a turbulent plunging jet may increase air entrainment, and 

the mechanism could be different from a laminar translating jet. 

Another aspect of the translating jet is that its trajectory bends over to the opposite direction of jet 

translation, similar to a jet in crossflow. It is known that a jet in crossflow bends over and produces 

a counter rotating vortex pair (Rajaratnam and Gangadharaiah, 1983). It is unknown yet, but will 

be interesting to know whether and how the bubble swarm produced by a translating jet is affected 

by the vortices. Further, self-similarity of the bubble characteristics (i.e., bubble frequency, void 

fraction, bubble velocity, etc.) was observed for stationary plunging jets (e.g., Chanson and 

Manasseh, 2003). Study on the self-similarity for bubbles produced by translating jets is required 

as well. 

With respect to the bubble size in an air-water system, the general consensus is that the Sauter 

mean diameter, D32 (D32 = ∑Db
3/ ∑Db

2, where Db is bubble diameter) of the rising bubbles is 

independent of the jet velocity and diameter (Biń, 1993). The distribution of bubble sizes can be 

typically represented by a log-normal distribution, skewed to the smaller bubble diameters (Evans, 

Jameson and Atkinson, 1992). The Sauter mean diameter and the distribution of bubble sizes for 

the case of translating plunging jets are not well-understood. Moreover, Maxworthy et al. (1996) 

reported that the rising velocity of a bubble is a function of the bubble diameter, considering the 
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properties of the inter-acting fluids remain constant. However, the change of the mean rising 

velocity of a bubble swarm is practically insignificant for stagnant water and typically considered 

as constant; whereas in crossflow, this velocity is considerably lower (Barczewski et al., 1975). 

Therefore, it is necessary to study the effect of the translating velocity on the mean rising velocity 

of bubble swarm produced by a translating jet. 

For the maximum penetration depth of bubbles entrained by stationary plunging jets, 

comprehensive studies were conducted previously, and theoretical development was done based 

on the assumption that at the maximum penetration depth, the local velocity of the submerged jet 

is equal to the free rising velocity of the bubble (Ervine and Falvey, 1987; Guyot et al., 2019). Due 

to the bending over of the translating jet, the local jet velocity is expected to equalize with the 

bubble rising velocity at a smaller depth. Further, as stated before, the mean rising velocity of the 

bubble swarm gets affected by the crossflow, and probably by the translating velocity of the jet as 

well. Therefore, a hypothesis for translating plunging jet is that the maximum penetration depth is 

smaller than the case of stationary jet, providing that other hydraulic conditions and fluid properties 

remain the same. 

This study is probably the first experimental work on air entrainment by translating turbulent 

plunging jets. The mechanism of air entrainment, bubble size distribution, rising velocity, 

maximum penetration depth of bubbles, trajectory of the bubble swarm, and void fraction are 

analyzed using a high-speed camera, and the results are compared with the literature on stationary 

plunging jets. This study improves the understanding of the characteristics of bubbles entrained by 

translating turbulent jets, and helps building computational fluid dynamics models for further 

investigation on this topic. 

5.2 Experiments 

5.2.1 Experimental Setup 

The experiments were carried out in the T. Blench Hydraulics Laboratory of the University of 

Alberta in Canada. Figure 5.1 shows the sketch of the experimental setup. The experiments were 

conducted inside a 10 m × 0.8 m × 0.8 m towing tank with plexiglass walls for visualization. The 

tank is equipped with a carriage on top, which moves along the length of the tank. The carriage is 
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computer-controlled and translates horizontally at a maximum velocity of 0.84 m/s. A 1 m long 

and 25 mm diameter PVC pipe is attached to the carriage vertically with a circular nozzle at the 

bottom end and a flexible hose at the top end of the pipe. A centrifugal pump is attached to the 

flexible hose and the towing tank. It pumps out water from the towing tank and injects through the 

nozzle, thus recirculates the same water during experiments. A valve attached to the pump controls 

the flowrate at the nozzle, which can be measured using a magnetic flowmeter. Water depth in the 

towing tank was kept at a constant depth of 0.5 m for all experiments. A high-speed camera 

(Phantom v211, Vision Research, Wayne, New Jersey) was attached to the carriage at one side of 

the tank which moved with the jet at the same translating velocity. The camera was equipped with 

a Nikon lens (Nikon AF Micro NIKKOR 60 mm f/2.8D). A fixed light source is used on the other 

side of the tank for back-lighting. The camera takes images of the jet impingement and entrainment 

of air bubbles using shadowgraph technique (Settles and Hargather, 2017). It was set to take 

images of resolution 1280×800 pixels, with a sample rate of 2000 frames per second at an exposure 

time of 150 µs. 

Table 5.1 summarizes the flow conditions of the experiments. The selection of the range of the 

experimental parameters were based on the limitations of the experimental setup.  Three different 

circular nozzles with diameters, d = 6.3, 7.9, and 12 mm; impinging height, h = 20 to 360 mm; jet 

velocity at nozzle, Vj = 3.21 to 9.62 m/s; and translating velocity of the jet, Ut = 0.16 to 0.84 m/s 

were used in the experiments. Considering free fall, the jet velocity at the impact with the water 

surface can be measured as follows, 

𝑉𝑖 = √𝑉𝑗
2 + 2𝑔ℎ (5.1) 

where g is acceleration by gravity. Based on Equation 5.1, Vi in the experiments ranged from 3.27 

to 9.64 m/s. Note that Vj and Vi do not vary much for smaller h, wherease they are quite different 

for a large h. For example, for h = 360 mm, Vj and Vi are 3.21 and 4.17 m/s, respectively.  The 

ratio of jet impact velocity to translating velocity Rit ranged from 4 to 40 in different experiments. 

In test series A to E, Ut was varied within each series. Test series A to C have same d and different 

Q, while test series D and E have different d. Test series F was conducted to study the effect of Q 

for a constant Ut. Lastly, test series G was carried out to study the effect of h for a constant Ut. 
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5.2.2 Measurement Techniques 

For the experiment with D =6.3 mm, h = 20 mm, Vi = 3.27 m/s, and Ut = 0.42 m/s, two images 

captured on two different times were compared to see if there is any difference in bubble size 

distribution. It was found that the bubble size distributions from different images of the same 

experiments were similar. Therefore, A single image was used from each experiment to measure 

the bubble size. ImageJ software (Schneider et al., 2012) with “Analyze Particles” tool was used 

to measure the bubble size automatically for experiments with a small number of bubbles in the 

image, i.e., experiments with translational velocities 0.16 and 0.27 m/s. However, for higher 

translational velocities like 0.42, 0.58, and 0.84 m/s, automatic particle detection does not work 

well because a large number of bubbles overlaps in the field of view. Therefore, for those cases, 

ImageJ “Line” tool was used to manually measure the bubble diameter. Nevertheless, for both 

automatic and manual bubble measurement techniques, more than 200 bubbles were measured in 

each case to get a reliable and representative frequency distribution histogram of bubble diameter. 

For the measurement of spatial distribution of bubbles, 1000 images were used for each 

experiment. First, the images were converted into binary images using a code written in Matlab. 

The bubbles could be easily identified in the binary images. Then another code was written to 

invert the colors of water and air bubbles and to average the intensity of 1000 images. The resulting 

averaged image represents the distribution of the bubbles in the scale of 0 to 1, where 0 and 1 

represent 100% water and 100% air, respectively. Figure 5.2 shows the processed images at 

different steps of this method for an experiment of test series A with Ut = 0.42 m/s. It should be 

noted that this spatial distribution is also a measure of the probability of bubble occupancy in the 

bubble swarm image. Although it does not provide the actual void fraction along a section, but it 

can be regarded as an indirect measurement of void fraction obtained from shadowgraph images. 

The trajectories of the bubble swarm are measured using the intensity-averaged image for bubble 

distribution (Figure 5.2c). The line connecting the pixels with peak intensities in the central region 

of the bubble swarm is identified as the axis of the bubble plume. The bubble penetration depth of 

the plume is identified as the vertical distance from the water surface to the lowest point of the of 

the bubble plume boundary, while the longitudinal length of the plume is defined as the horizontal 

distance from the jet impingement point to the upstream location of the water surface where the 

most distant water bubble rises.  
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Initially, the measurements of the velocity field of the bubble swarm was conducted using the 

particle image velocimetry (PIV) technique. A continuous 6W Argon-ion laser with a wavelength 

of 488 nm (Stabilite 2017, Spectra Physics) was used with optics (OZ optics) to generate a light 

sheet. The flow field was illuminated with the laser sheet and the images were captured with the 

high-speed camera. However, PIV did not work well because of the scattering of the laser sheet 

by the air bubbles. Further, applying the particle tracking velocimetry (PTV) technique on the 

shadowgraph images is not practical since the bubble density is higher for higher jet translating 

velocities and it is difficult to optically identify individual bubbles. Therefore, the bubble image 

velocimetry (BIV) technique introduced by Ryu et al. (2005) for highly aerated bubbly flow is 

used in this study with the shadowgraph images obtained using backlight. This technique has been 

used in many air-water flow problems for the measurements of velocity fields including studies on 

the plunging breaking waves (Lim et al., 2015) and jet bubbling reactor (Shuai et al., 2019)). In 

BIV, bubbles are used as tracers and the texture of the images gives the correlation for velocity 

measurements. The images are analyzed using with an open-source software, PIVlab (Thielicke 

and Sonntag, 2021). Figure 5.2d shows a typical velocity field of bubble swarm using BIV 

technique. 

5.3 Results and Discussions 

5.3.1 General Observations 

Figure 5.3 shows the bubble swarm at different translating velocities for test series A. The jet forms 

a cavity at the point of impact, and the cavity grows in size with the increase of translational 

velocity. Eventually parts of the cavity detach and generate air bubbles due to the turbulence 

induced by the translating jet. As the translational velocity increases, the number of bubbles was 

observed to increase until Ut = 0.58 m/s. However, at the maximum translational velocity of 

Ut = 0.84 m/s, number of bubbles was seen to decrease from Ut = 0.58 m/s. With the increment of 

the translational velocity, the bubble swarm elongates longitudinally, and the depth of penetration 

of bubbles reduces. The bubble size also appears to grow bigger with translational velocity. 

Further, at higher translational velocities, the bubbles are seen to move in lumps, rather than 

moving individually. These characteristics will be discussed in details in the following sections. 
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5.3.2 Mechanism of Air Entrainment 

Figure 5.4 shows the impingement of the jet at different translating velocities for test series A. At 

translational velocities Ut = 0.16, 0.27, and 0.42 m/s, capillary waves are observed downstream of 

the jet with measured wavelengths of 6.7, 5.9, and 1.8 mm, respectively. As the translational 

velocity increases, the wavelength decreases. At higher translation velocities, i.e., Ut = 0.58 and 

0.84 m/s, the capillary waves become too small to measure from images. A surface depression or 

cavity, followed by a wake region and gravity-capillary wavetrain can be seen upstream of the jet, 

similar to the observation made by Chirichella et al. (2002) for laminar translating jets. This 

gravity-capillary wavetrain in the wake region moves closer to the jet as the translational velocity 

increases. 

To understand the air entrainment process of a translating turbulent jet, observations were made 

on the same jet at stationary condition first, and later at different translating velocities (Figure 5.3 

and 4). For the stationary jet at an impact velocity Vi = 3.27 m/s and Weber number We = 935, the 

jet is a weakly disturbed jet with visibly rough surface. Due to the perturbations on the jet surface, 

the meniscus of the water surface surrounding the jet is observed to go below the initial undisturbed 

water surface. It forms an annular ventilated cavity surrounding the jet, similar to the observations 

of Cummings and Chanson (1997). This annular cavity frequently expands in the form of fingers 

or stems and transiently entrains air bubbles. Although it may seem that the air cavity surrounding 

the jet causes air entrainment, Kiger and Duncan (2011) suggested that the instability of the jet 

surface may be responsible for this. Og̃uz (1998) also reported that the jet surface disturbance is 

the principle factor of such air entrainment.  

For Ut = 0.16 and 0.27 m/s, and velocity ratios Rit
 = 20 and 12, the upstream meniscus remains 

under initial water surface, similar to a stationary jet. This facilitates air entrainment in both 

upstream and downstream direction of the jet. Subsurface images shows that air entrainment 

occurs continuously from the cusp of the downstream cavity and upstream meniscus of the jet 

(Figure 5.3).  

For higher translational velocities Ut
 = 0.42, 0.58, and 0.84 m/s, and velocity ratios Rit

 = 8, 6, and 

4, respectively, the meniscus at the upstream of the jet forms above the initial water surface. The 

radius of curvature of the meniscus decreases as the translational velocity increases. Since the 
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upstream meniscus is above the initial water surface at higher Ut, no entrapped air can be seen 

between the jet and the meniscus. The cavity is continuously forming a vortex with the translating 

jet inside, and air entrains continuously by the vortex of the cavity.  

Depending on the translating velocity and the characteristics of the upstream meniscus, air 

entrainment for a translating turbulent jet can occur either in the cusp of the cavity or both in the 

cusp and meniscus. However, (Chirichella et al., 2002) observed that for a laminar translating jet 

with d = 6 mm, Vi = 3.03 m/s, and Ut = 0.32 to 0.44 m/s, air entrainment occurs at the cusp only, 

since the upstream meniscus is formed above the initial water surface.  

The air entrainment in the upstream inverted meniscus can be either due to the low pressure 

resulted from the entrainment of the surrounding fluid into the submerged jet, or entrained air in 

the boundary layer of the jet itself before it impinges in the pool (Biń, 1993). The former was likely 

to be the case in this study since the jet is only weakly disturbed. The mechanism of air entrainment 

in the cavity can be explained by the intermittent vortex mechanism- described by McKeogh and 

Ervine (1981), which explained air entrainment by a stationary jet when the jet is in transition 

between the laminar and turbulent conditions. As the translating jet impinges into the pool, an axial 

vortex formed surrounding the jet, and the combined effects of low pressure in the vortex core and 

jet entrainment creates a deep cavity. Due to the translation of the jet, the cavity moves to the 

downstream wake region and air bubbles continuously emanate from the cusp of the cavity. 

5.3.3 Vortex Shedding by the Translating Jet 

Figure 5.5 shows the instantaneous unsteady behavior of the bubble swarm. At the windward side 

of the cavity, shear-layer vortices are observed. These are similar to Kelvin-Helmholtz rollers 

observed in regular jets in crossflow (Mahesh, 2013), and highly unsteady in nature. At the leeward 

side, regular coherent structure of the bubble swarm is observed, especially for Ut = 0.42 m/s. 

Considering the distance between two consecutive structures represents the wavelength of the 

vortex shedding (λ), the frequency of the shedding can be calculated by 

𝑓 =
𝑈𝑡
𝜆

 (5.2) 

The characteristics of the vortex shedding can be represented by a dimensionless parameter, 



75 

 

Strouhal number 

Str =
𝑓𝐷𝑗

𝑈𝑡
 (5.3) 

For d = 6.3 mm, Vi = 3.27 ms-1, and h = 20 mm, the calculated Strouhal numbers for Ut = 0.42, 

0.58, and 0.84 m/s are 0.27, 0.22, and 0.25, respectively. Since the impinging height is relatively 

small (h/Dj ≈ 3), the jet diameter doesnot change much before it impacts on the water surface. For 

circular cylinders in crossflow, the Strouhal number typically ranged between 0.2 to 0.3 (White, 

2011). Therefore, Str for translating jets found comparable to the case of circular cylinder in 

crossflow. 

5.3.4 Bubble Diameter 

For bubble entrainment by a plunging liquid jet in a quiescent pool, two distinct regions are 

identified (Biń 1993). The first region consists of fine bubbles with diameters less than 1 mm 

forming a biphasic conical region, and the second region consists of rising bubbles of bigger 

diameters surrounding the first region. For translating plunging jets, it is difficult to observe these 

two regions distinctively. Due to the translation of the jet, these regions become skewed to the 

opposite direction of jet translation. The longitudinal spread of these regions depends on the 

translating velocity of the jet. Coalescence of smaller bubbles to bigger bubbles occurs in the 

transition zones of first to second regions. 

Fig.6 shows the entrained air bubbles for the same plunging jet with Ut = 0.16 to 0.84 m/s (test 

series A). All the image slices are in the same scale and show the same location inside the towing 

tank. This figure shows that the bubble shape varies from the regular spherical or ellipsoidal shape 

as the translating velocity increases. Further, the average size of the bubble can be seen to increase 

with Ut  as well. To understand the distribution of bubble size, the probability density distributions 

of bubbles are analyzed for different jet impact and translating velocities. Similar to the 

observations of Chanson (1997), a log-normal distribution is found to be the best fit for bubble 

size distribution, skewed towards the smaller diameters. Equation 5.4 gives the probability density 

distribution of the bubble sizes, 
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𝑃𝐷 =
1

𝐷𝑏𝜎√2𝜋
exp {

−(ln𝐷b − 𝜇b)
2

2𝜎b
2 } (5.4) 

where Db is the bubble diameter, and σb and µb denote the log standard deviation, and logarithmic 

mean of the bubble diameters, respectively. For the bin width of the distribution, the 

Freedman-Diaconis rule (Freedman and Diaconis, 1981) is used, 

Bin width = 2 (
𝐼𝑄𝑅(𝐷𝑏)

√𝑛
3 ) (5.5) 

where IQR(Db) is the interquartile range of Db, i.e., the spread of the middle-half of the distribution; 

and n is the number of measurements of Db. 

The probability density distributions of the bubble size for test series A (Vi=3.27 m/s), B (Vi=4.85 

m/s), and C (Vi=6.45 m/s) are shown in Figure 5.7. The diameters of the bubbles range from 0 to 

9 mm, with the peaks between 0.5 to 1.5 mm. However, for comparison purpose, bubble sizes in 

Figure 5.7 are shown in the range of 0 to 5 mm. 

For any jet impact velocity, the peaks of the distributions show a similar trend, slowly increasing 

with the increase of the translating velocity from Ut = 0.16 to 0.58 m/s, and then decreasing as Ut 

is approaching 0.84 m/s. At Ut = 0.84 m/s, some of the bigger bubbles break down to smaller 

bubbles due to the turbulence induced by the jet translation. Evans et al. (1992) reported that the 

size of the bubble is a consequence of the balance of forces induced by the turbulence and surface 

tension of the liquid, and assumed that the bubble splits at a critical ratio of these quantities, i.e., 

the Weber number. This explains why the bubbles get smaller from Ut = 0.58 to 0.84 m/s. Further, 

the distributions are narrower for Ut = 0.16 and 0.27 m/s, while wider for Ut = 0.42 to 0.84 m/s. 

This indicates that the smaller translating velocities of the jet produce more uniform bubble sizes 

compared to the bigger ones.  

Figure 5.8 shows that the Sauter mean diameter of the bubble changes with the translating velocity 

of the jet as well. D32 reduces from 3.8 to 1.8 mm for Rit = 8 to 21. However, for stationary jets, 

D32 ranged between 3 to 4 mm, irrespective of the jet velocity and nozzle diameter (Biń, 1993).  

For translating jets, the change of the Sauter mean diameter for different impact velocities becomes 

significant for Rit ≤ 11. For aerated bubbly jets in a crossflow Zhang and Zhu (2013) also reported 

that D32 reduces with increasing Rit. However, they have only used one crossflow velocity of 0.20 
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m/s, and as such the effect of the crossflow velocity was not investigated. For Rit = 15 to 25, D32 

in their experiments varied between 1.77 and 2.79, which are comparable to the observations of 

this study. Interestingly, in the study of Zhang and Zhu (2013), the bubble sizes drastically got 

bigger for Rit < 15, similar to this study. 

5.3.5 Maximum Penetration Depth and Trajectory of the Bubble Plume 

We hypothesize that the maximum penetration depth for a translating jet depends on the usual 

parameters of the case of a stationary jet, in addition to the jet translating velocity. Therefore, for 

the maximum penetration depth, one can write 

𝐻 = 𝑓1{𝐻0, 𝑈𝑡} (5.6) 

where 𝐻0 = 𝑓2{𝐷𝑗 , 𝑔, 𝜌w, 𝜇w, 𝜎w, 𝑉𝑖} (5.7) 

In Equation 5.7, H0 is maximum penetration depth jet at stationary condition. The effect of air 

properties, i.e., density, and viscosity are neglected in this analysis. The jet plunging height h is 

not considered since the impact velocity Vi is a function of h, and Vi is already included in Equation 

5.7. Further, it was made sure that for the experimental range of h in this study, the jet does not 

breakup before plunging on the water surface. Numerous non-dimensional relations can be derived 

from Equation 5.6 and 5.7. To understand which dimensionless parameters are relevant to this 

problem, first the functional relations between H and d, H and Vi, and H and Ut are explored using 

plots of the corresponding variables. 

Considering the translating velocity (Ut) remains constant, Figure 5.9a shows that the maximum 

penetration depth of bubbles (H) increases linearly with the increase of the jet diameter (d). 

Similarly, Figure 5.9b shows that H increases linearly with the increase of the impact velocity (Vi), 

for the same translating velocity (Ut). However, H decreases with the increment of the translating 

velocity for the same Vi and d, but the relation is non-linear. Figure 5.9c shows that H increases 

linearly with the increase of 1/√𝑈t. This is because at higher translating velocity, the trajectory of 

the jet moves closer to the water surface – a phenomenon similar to jets in crossflow, where the 

jet trajectory moves closer to the jet-issuing boundary (Morton and Ibbetson, 1996).  

Now, from Equation 5.6 the following dimensionless expressions can be derived based on the plots 

at Figure 5.9a, 9b and 9c, 
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𝐻

𝐻0
= 𝐶1√𝑅it (5.8) 

𝐻

𝐷𝑗
= 𝐶2√𝑅itCa (5.9) 

where C1, and C2 are empirical coefficients. C1 depends on the nozzle characteristics. For d = 6.3 

mm, value of C1 is estimated as 0.116. C2 depends on the liquid property and estimated as 33.3. 

Lastly, Ca = µwVi/σw = We/Re, is the Capillary number of the air-water interface for the 

corresponding jet impact velocity. Kiger and Duncan (2011) reported that the Capillary number 

influences the onset of air entrainment in both viscous and low-viscosity (air-water) system. 

Therefore, it makes sense that the Capillary number also impacts the maximum air bubble 

penetration depth. Equation 5.9 reveals that the maximum penetration depth of bubbles for a 

translating plunging jet depends on the relative jet velocity as well as the inter-action between the 

viscous drag force and surface tension of the gas-liquid interface. 

Fig 10a shows the trajectory of the plume axis for different impinging and translating velocities 

for d = 6.3 mm and h = 20 mm. It can be observed that for any impact velocity, the maximum 

depth of the trajectory increases with translating velocity. This has been discussed previously for 

bubble penetration depth. However, the longitudinal length of the trajectory does not follow similar 

trend. Rather the length of the longitudinal trajectory follows this order for different translating 

velocities: Ut = 0.84, 0.27, 0.16, 0.58, and 0.42 m/s. A general equation of the trajectory is 

developed by scaling the x distances with the horizontal length of the trajectory xm, and y distances 

with the maximum vertical depth of the trajectory ym (Figure 5.10b), 

𝑦

𝑦𝑚
= 2.45 (

𝑥

𝑥𝑚
)
3

− 6.76 (
𝑥

𝑥𝑚
)
2

+ 4.08 (
𝑥

𝑥𝑚
) + 0.32 (5.10) 

Previous researchers, including Zhang and Zhu (2013), reported separation of the bubble plume 

trajectory from the water-jet due to the rising velocity of the bubble. Therefore, the bubble plume 

trajectory would be different from the water-jet in a crossflow. A water-jet in crossflow typically 

can be characterized by a power expression, which is a function of the velocity ratio Rit (see 

Rajaratnam, 1976). However, a polynomial expression is necessary to characterize a bubbly plume 

in crossflow as the plume bends over and releases to the water surface, unlike a submerged water-
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jet in crossflow of water, as it bends over and becomes parallel to the crossflow. 

5.3.6 Spatial Distribution of Bubbles 

From the intensity-averaged images as the one shown in Figure 5.2c, several sections 

perpendicular to the axis are extracted. η is the transverse distance from the plume axis. These 

sections give the profiles of the probability of bubble occupancy (αb) at 9d, 14d, 19d, and 24d 

distances along the axis of the bubble plume for d =6.3 mm, h = 20 mm, Vi = 3.27 m/s and Ut = 

0.27 to 0.84 m/s (Figure 5.11a). The maximum probability of bubble occupancy in the distribution 

is defined as αbm.  Figure 5.11a shows that along the plume axis αbm decreases as the distance from 

the jet impact increases.  In Figure 5.11b, α is scaled with αbm, and η is scaled with η50, where η50 

is the value of η where αb = 0.50 αbm. The dimensionless profiles collapse into a single 

dimensionless profile, and can be expressed as a Gaussian distribution, 

𝛼b
𝛼bm

= exp {−0.693 (
𝜂

𝜂50
)
2

} (5.11) 

Equation 5.11 fits the spatial distribution of bubbles well, except for Ut = 0.27 m/s. This is because 

the number of bubbles in this case is sparse (see Figure 5.3), which makes it difficult to assess 

spatial distribution reliably for lower translating velocities. Nevertheless, Equation 5.11 is similar 

to the expression for void fraction reported for bubbly jets in crossflow (Zhang and Zhu, 2013), 

for bubbly jets in stagnant water (Neto et al., 2008a), and for horizontal bubbly jets in a quiescent 

water tank (Neto et al., 2008b). Therefore, no obvious effect of the jet translation can be realized 

on the spatial distribution of bubbles along sections perpendicular to the bubble plume. 

5.3.7 Kinematics of the Bubble Swarm 

For the BIV analysis, ensemble correlation technique is used with 400 images for each analysis. 

This is because the regular PIV algorithm often fails to detect the correct displacement and 

averaging the displacement for multiple image pairs may not enhance the robaustness of the 

analysis (Thielicke and Sonntag, 2021). Fig 12a shows the results of the BIV analysis for Ut = 0.42 

m/s. The correlation matrix for most of the bubble swarm region is significant, especially in the 

region after the bubble pinches off from the cavity formed by the translating jet. This indicates the 

velocity field in this region can be obtained reliably. The vortex locator plot does not show much 

active vortices in the projection plane, except few near the edge of the bubble plume and around 
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the air cavity. This is consistent with the observation of the high-speed camera video. 

The u-velocity plot shows that for most the bubble swarm region, the u-velocity component varies 

between 0.40 and 0.45 m/s, which is expected because the frame of reference is moving with the 

jet carriage at 0.42 m/s. The bigger u-velocity region near the bottom edge of the bubble swarm 

has some uncertainty due to small correlation. Nevertheless, this region indicates the effect of the 

jet velocity on the bubble motion. As observed in previous studies (Zhang and Zhu, 2013), the 

submerged jet trajetory detaches from the bubble plume trajectory after some distance in the 

crossflow. Before and after a short distance of the detachment location, the bubble plume is 

affected by the jet velocity, and hence the u-velocity component is bigger there. 

The v-velocity component is initially downward as the bubbles travel with the jet. Later the bubbles 

move upwards due to buoyancy and v-velocity component becomes upward. Near the water 

surface the v-velocity component is between 0.20 to 0.35 m/s. Maxworthy et al., (1996) reported 

that the terminal rising velocity of individual bubbles depends on the Morton number (Mo = 

gµw
4ρw

-1σw
-3), and bubble diameter. They found that for any Morton number, the rising velocity 

increase from 0.22 to 0.36 m/s for a decrease of bubble diameter from 7 to 1.4 mm. Therefore, the 

v-velocity range obtained using the BIV analysis shows no obvious effect of the jet translation on 

the bubble rising velocity. The velocity magnitude plot in Figure 5.12a shows the combined effect 

of the u and v-velocity components. The higher velocity zone near the bottom of the bubble plume 

indicates the trajectory of the jet and detachment from the bubble plume. 

Figure 5.12b shows the velocity field of the bubble plume at different translating velocities. As Ut 

increases from 0.16 to 0.84 m/s, the trajectory of the high velocity zone (water jet trajectory), along 

with the bubble plume trajectory become flatter. The magnitude of the velocity fields is observed 

to be the function of the translating velocity of the jet. 

5.4 Summary and Conclusions 

This paper presents an experimental study of air-bubble entrainment in stagnant water by 

translating turbulent circular jets. Jet diameters from 6.3 to 12 mm, jet plunging height from 20 to 

360 mm, jet impact velocities from 1.72 to 9.64 m/s, and jet translating velocities from 0.16 to 

0.84 m/s were considered to study the entrained bubble characteristics. The main conclusions of 
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this study are as follows: 

1. Air-bubble entrainment by the translating turbulent jets occurs from the cavity formed by the 

jet impact. During the jet translation, the cavity continuously generates a rotating vortex with 

the translating jet inside. For translating velocities less than 0.27 m/s, air-bubble entrainment 

occurs at the cusp of the cavity and meniscus at the upstream contact location of the jet and 

water surface. For translating velocities greater than 0.42 m/s, air-bubble entrainment occurs at 

the cusp of the cavity only. Translating velocity between 0.27 to 0.42 m/s is characterized by 

the transition zone of air-entrainment mechanism. 

2. At the windward side of the jet impact cavity, highly unsteady shear-layer vortices can be 

observed; while at the leeward side regular coherent structure of the bubble swarm can be 

observed. This coherent structure or vortex shedding is prominent for translating velocities 0.42 

to 0.84 m/s, with Strouhal number ranged between 0.22 to 0.27. This is comparable with vortex 

shedding by circular cylinder in crossflow. 

3. The probability distribution of the bubble size exhibits that the bubbles get bigger with the 

translating velocity up to 0.58 m/s, then the bigger bubbles start to break down due to the 

turbulence at the wake region of the jet. The peak of the bubble size distribution ranged between 

0.5 to 1.5 mm. The Sauter mean diameter of the bubbles varies between 1.8 and 3.8 mm. This 

variation becomes significant for velocity ratio greater than 11. 

4. The maximum penetration depth of bubbles for a translating jet depends on the velocity ratio 

and interaction between the viscous drag force and surface tension of the gas-liquid interface. 

Hence, this depth is a function of the velocity ratio and Capillary number. Further, the 

penetration depth for the translating jet can be expressed as a function of the velocity ratio and 

penetration depth for the stationary jet.  

5. The trajectory of the bubble plume becomes flatter with the increase of the translating velocity. 

The dimensionless trajectories at different impact and translating velocities can be expressed 

with a general equation. 

6. The spatial distribution of bubbles in the sections perpendicular to the bubble plume axis 

follows a Gaussian distribution. This is comparable to the void fraction of bubbly jets in 

crossflow. 
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7. For the reference frame moving with the jet carriage, the BIV technique reveals that the u-

velocity component is mainly in the order of the jet translating velocity. Near of the bottom of 

the jet plume, both the u and v-velocity components are affected by the momentum of the water 

jet. The terminal rising velocity of the bubbles are between 0.20 and 0.35 m/s for the jet 

translating at 0.42 m/s, which is comparable to a jet at stationary condition. Therefore, no 

obvious effects of the jet translation can be realized on the terminal rising velocity. 

The present study improves the understanding of air-bubble entrainment mechanism, 

characteristics and kinematics by translating turbulent jets. Further, it provides the first-of-its-kind 

valuable data for computational modeling of multiphase flow. 
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Table 5.1: Experimental flow conditions. 

Test 

series 

Q  

(L/s) 

d  

(mm) 

h  

(mm) 

Vj  

(m/s) 

Vi (m/s) Ut  

(m/s) 

Rit  

(-) 

Re  

(-) × 104 

We  

(-) × 103 

A 0.1 6.3 20 3.21 3.27 0.16, 0.27, 

0.42, 0.58, 

and 0.84 

4 to 20 2.06  0.93 

B 0.15 6.3 4.81 4.85 3.06  2.06  

C 0.2 6.3 6.42 6.45 4.06  3.06  

D 0.16 7.9 3.26 3.32 2.63  1.21  

E 0.36 12 3.18 3.24 3.89  1.75  

F 0.05, 0.1, 0.15, 

0.20, 0.25, and 0.3 

6.3 20 1.60 to 

9.62 

1.72 to 

9.64 

0.42 4 to 23 1.08 to 

6.08 

0.26 to 

8.14 

G 0.1 6.3 20, 75, 145, 

280, and 

360 

3.21 3.27 to 

4.17 

0.42 8 2.06 to 

2.62  

0.93 to 

1.52 

Notes: Q: flow rate; d: jet diameter at nozzle; h: jet impinging height; Vj: jet velocity at nozzle; Vi: 

jet impact velocity; Ut: jet translating velocity; R: velocity ratio, Rit = Vi/Ut; Re = Reynolds number, 

Re = ρwVid/µw, ρw is density of water, µw is dynamic viscosity of water; We: Weber number, We 

= ρwVi
2d/σw, σw is surface tension of water.  
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Figure 5.1: Schematic view of the experimental setup 
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(a) (b) 

  

(c) (d) 

Figure 5.2: Image processing for spatial distribution of bubbles, swarm trajectory, and velocity 

field (a) original shadowgraph image, (b) binary image, (c) intensity-averaged image showing 

bubble distribution, plume axis, and sections at different distances (9d, 14d, 19d, and 24d) from 

jet impact, and (d) velocity field of bubble swarm using BIV technique and ensemble analysis. 

For all the images, d =6.3 mm, h = 20 mm, Vi = 3.27 m/s, and Ut = 0.42 m/s. 
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Figure 5.3: Shadowgraph images of bubble swarm at different jet translational velocities for d = 

6.3 mm, Vi = 3.27 m/s, and h = 20 mm. The jet is translating to the right. 
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(a) 

Figure 5.4: Water surface characteristics at the impact of the jet at different translational 

velocities, d = 6.3 mm, Vi = 3.27 m/s, and h = 20 mm; (a) side view with the jet translating to the 

right; (b) top view with the jet translating upwards. 
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(b) 

Figure 5.4: Cont’d. 
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Figure 5.5: Three-dimensional vortex shedding in bubble swarm. d = 6.3 mm, Vi = 3.27 m/s, and 

h = 20 mm. The jet is translating to the right. 
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Figure 5.6: Entrained air bubbles at different translational velocities for the same jet (d = 6.3 mm, 

Vi = 3.27 m/s, and h = 20 mm). Image centers are located at 12d depth below the water surface 

and 10d distance upstream of the jet nozzle. Each image slice is 21 mm by 70 mm.  
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Figure 5.7: Bubble size distribution for different jet impact and translating velocities. d = 6.3 

mm, and h = 20 mm. Green lines represents the trend of the peak of the distribution. 
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Figure 5.8: Sauter mean diameter of the bubbles as a function of jet translating velocity. d = 6.3 

mm, h = 20 mm. Variation in D32 becomes significant for Rit ≤ 11. 
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 (a) (b) 

 
 (c) (d) 

 
(e) 

Figure 5.9: Maximum penetration depth of bubble swarm by translating jet (a) H as a function Vi 

for  Ut = 0.16 to 0.84 m/s, d = 6.3 mm; (b) H as a function of d, for Ut = 0.16 to 0.84 m/s, Vi = 

3.27 m/s; (c) H as a function of Ut for Vi = 3.27 to 6.45 m/s, d = 6.3 mm; (d) H as a function of 

H0 and Rit, d = 6.3 mm; (e) H as a function of d, Rit, and Ca. Solid lines represent fitted 

equations. 
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(a) 

 

(b) 

Figure 5.10: Trajectory of the bubble plume at different jet impact and translating velocities (a) 

Plume axis trajectory with actual dimensions (b) Dimensionless trajectory. d = 6.3 mm, and h = 

20 mm. Solid line represents Equation 5.10. The jet nozzle is located at (0, 0), and the jet is 

translating to the left. 
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(a) 

 
(b) 

Figure 5.11: Spatial distribution of bubbles from shadowgraph images; (a) αb at different axial 

distances, (b) normalized distribution. For all the profiles, d = 6.3 mm, Vi = 3.27 m/s, and h = 20 

mm. 
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(a) 

Figure 5.12: Bubble image velocimetry (BIV) results of the bubble plume using ensemble 

correlation technique (a) Contours of correlation, velocity components, and velocity magnitude 

with vectors for Ut = 0.42 m/s, (b) Velocity contours with vectors for Ut = 0.16 to 0.84 m/s. For 

all the cases, d = 6.3 mm, h = 20 mm, and Vi = 3.27 m/s. The reference frame is moving with the 

jet to the right. 
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(b) 

Figure 5.12: Cont’d. 
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CHAPTER 6.  IMPINGEMENT OF A TRANSLATING CIRCULAR JET 

ON A FLAT WALL 

6.1 Introduction 

The Impingement of circular turbulent jets on solid surfaces got considerable research attention 

due to the extensive applications in practical engineering problems, including cooling turbine 

blades, drying textiles, annealing metal sheets, jet issuing from hydraulic outlets, and vertical 

takeoff of aircraft. Mainly, the perpendicular impingement of circular turbulent jets on a flat wall 

has been studied extensively because of the simplicity of the problem (e.g., Hassan et al., 2013; 

Fairweather and Hargrave, 2002; Giralt et al., 1977; Guerra et al., 2005; Looney and Walsh, 1984, 

and others). Previous studies also considered different types of jet impingement on a flat wall for 

turbulent axisymmetric jets. For example, the impingement of fully-developed or long jets (Beltaos 

and Rajaratnam, 1974), developing or short jets (Beltaos and Rajaratnam, 1977), and oblique jets 

(Beltaos, 1976; Jalil and Rajaratnam, 2006). Some studies have been conducted using a non-flat 

impingement surface, such as a convex semi-cylindrical surface (Cornaro et al., 2001), concave 

semi-cylindrical surface (Fenot et al., 2008), convex semi-spherical (Zhang et al., 2013), and 

concave semi-spherical surface (Xie et al., 2013). However, due to the complexity of the 

experimental setup, there is a research gap in the study of jet impingement on a solid surface 

involving either a translating impinging jet, or a moving impingement surface. The objective of 

this work is to study the impingement of a translating axisymmetric developing jet on a flat wall 

to understand the resulting flow field, pressure and wall shear stress. 

From earlier studies, it is known that the vertical impingement of an axisymmetric jet on a flat wall 

results in three distinct flow regions: the free jet region, impingement region, and wall jet region. 

Typically, the free jet region spans from the jet issuing point to some distance before the impact 

on the wall. In this region, the static pressure rise at the impingement location does not affect the 

jet; practically, the jet behaves like a free jet. In the impingement region, the static pressure exceeds 

the ambient pressure, and the significant pressure gradient causes the flow to turn and run almost 

parallel to the wall. After the flow entirely becomes parallel to the wall, and the static pressure 

drops to ambient pressure, the wall jet region begins. The flow structure in the wall jet region is 

similar to a radial wall jet. Because the jet is circular, axial symmetry of the mean flow 
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characteristics remains a significant feature in all these flow regions. However, for the oblique 

impingement of a fully-developed jet, Beltaos (1976) showed that the axial symmetry is observed 

only in the free jet region. The impingement and wall jet regions show symmetry in the plane of 

the jet inclination. For the normal impingement of a translating jet on a flat wall, the flow regime 

can be modeled as a stationary jet in a crossflow, which impinges on a moving surface of the same 

velocity as the crossflow.  Based on the observations of Beltaos (1976) on oblique jet impingement, 

An hypothesis can be drawn for the translating jet impingement is that the symmetry in the mean 

flow characteristics can be observed about the plane of the jet translation only. It is expected that 

the axial symmetry will not be present in any of the flow regions. Even the free jet region will not 

exhibit axial symmetry because this region will behave as a free jet in a crossflow. 

The behavior of a circular jet injected flush into the crossflow of the same liquid depends on the 

relative jet translating velocity, i.e., the ratio of the crossflow velocity to the jet velocity at the 

nozzle (Mahesh, 2013). Due to the interaction with the crossflow, the jet's trajectory bends to the 

jet's leeward direction, and the jet's cross-section forms a characteristic kidney shape, resulting 

from the turbulent mixing with the ambient fluid at the jet's outer layer (Rajaratnam, 1976). 

Typically, the jet flow is divided into three regions – the potential core region, the maximum 

deflection region, and the vortex region. Depending on the relative jet translating velocity, the end 

of the potential core may remain close to the central axis of the jet nozzle. A counter-rotating 

vortex pair (CVP) forms in the maximum deflection region, and is responsible for the characteristic 

kidney shape of the jet cross-section.  

Based on the above discussion on the axisymmetric jet impingement and jet in a crossflow, the 

flow field for a translating short jet (TSJ) impingement on a flat wall is expected to have several 

complex phenomena. Firstly, similar to a jet in crossflow, velocity decay for TSJ will be rapid with 

a short potential core. The cross-section of the TSJ will take a kidney shape depending on the 

translating velocity, and CVP will form at some axial distance. Secondly, although the jet is normal 

to the impingement wall, the impingement will be oblique due to the translating velocity. 

Therefore, the flow field will exhibit planar symmetry with respect to the plane of the jet 

translation. Furthermore, the location of the point of impingement, maximum shear stress, 

stagnation pressure, and other characteristic flow features will depend on the relative jet translating 

velocity. Lastly, similar to a cylinder in crossflow, the translating jet at the impingement location 



100 

 

behaves as an obstacle column to the crossflow. Therefore, vortex shedding in the wake of the 

deflected jet and horseshoe vortex formation on the windward side of the jet is likely to be observed 

for the translating jet. Moreover, at bigger relative translating velocities, the wall jet region of the 

impinging jet on the windward side may completely diminish, and even on the leeward side, the 

wall jet region may get affected due to the formation of the CVP. These interesting flow features 

and many engineering applications motivate this work to study the impingement of a short 

translating jet on a flat wall. 

6.2 Experimental Setup 

The PIV experiments were conducted in the T. Blench Hydraulics Laboratory of the University of 

Alberta. Figure 6.1 shows the schematics of the experimental setup. A towing tank of dimensions 

10 m long by 0.8 m wide by 0.8 m depth was used for the experiments. The walls and the tank 

floor are made of plexiglass for flow visualization. A computer-controlled carriage system, 

operated using LabVIEW software, is mounted on the top of the tank to carry instruments. A 1 m 

long and 25 mm diameter PVC pipe with a 19 mm nozzle was used to produce the impinging jet. 

The pipe was mounted vertically to the carriage to translate horizontally. Water was supplied to 

the pipe using a centrifugal pump through a flexible hose. The pump recirculates water between 

the towing tank and the pipe. Several Valves and a magnetic flowmeter were used for flow control 

and measurement, respectively. 

The PIV instrumentation comprised a high-speed camera (Phantom v211, Vision Research, 

Wayne, New Jersey) and a continuous 6W Argon-ion laser with a wavelength of 488 nm (Stabilite 

2017, Spectra Physics). A Nikon lens (Nikon AF Micro NIKKOR 60 mm f/2.8D) was used with 

the camera to focus on the location of interest. The camera was mounted to the side of the carriage 

so it could translate with the jet and capture images from the side of the towing tank. The laser was 

equipped with an optics (OZ optics) to generate a laser sheet from the laser beam. The optics was 

placed under the towing tank so that the laser sheet remained perpendicular to the towing tank 

floor. Further, the laser sheet was aligned with the jet translating plane. 

For PIV analysis, images were captured at a frequency of 1000 frames per second and preprocessed 

in MATLAB and ImageJ (Schneider et al., 2012) software. The PIV analysis was conducted using 
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PIVlab software (Thielicke and Sonntag, 2021). A 32 by 32 pixel interrogation window was 

selected for the analysis, where 1 pixel = 6 ✕ 10-5 m. 

Table 6.1 shows the experimental conditions for the PIV experiments. Experiments were 

conducted for four translating velocities, Ut = 0.03, 0.05, 0.07, and 0.09 m/s, while the jet 

properties (i.e., d, Vj, and h) were kept the same. Note that the continuous 6W laser was not strong 

enough to conduct PIV experiments with Vj and Ut bigger than the selected range. Nonetheless, 

the jet was turbulent since the Reynolds number was bigger than 3000 (Rajaratnam and Flint-

Petersen, 1989). Velocity ratio R for the experiments varied between 0.17 to 0.51 m/s. 

6.3 Numerical Model 

6.3.1 Model Geometry and Boundary Conditions 

Figure 6.2 shows the schematic diagram of the model domain. To reduce computational effort, a 

plane of symmetry was considered along the plane of the jet translation, and a smaller model was 

used compared to the towing tank. The model was 0.8 m long, 0.2 m wide, and 0.1 m deep. The 

jet was modeled with a 50 mm long and 19 mm diameter smooth pipe. Since the jet bends as it 

translates, the model had a longer dimension (0.5 m) in the opposite direction of jet translation. 

Typically, the mesh has to be finer at the impingement region, then gradually coarser in the radial 

direction going far from the point of impingement. Simulating a translating jet is not practical 

considering a finite domain and optimized meshing criteria. Therefore, a stationary jet with no-slip 

translating floor and a uniform cross-stream velocity equal to the jet translating velocity was 

considered to simulate the problem. In this way, the relative translation of the jet simulates the 

laboratory flow condition. Fig. 7.2a Shows the model geometry and boundary conditions. The 

description of the boundary conditions is as follows: 

(a) Inlet boundary: Two velocity inlets were used. One is the jet inlet with a uniform velocity of 

0.176 m/s. Another one with a uniform cross-stream flow of velocity equal to the jet 

translating velocity through the vertical wall at the windward side of the jet. 

(b) Outlet boundary: A pressure outlet boundary condition was used at the vertical wall on the 

leeward side of the jet. 
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(c) Symmetry boundary: Considering the symmetry of the velocity field of the jet, and cross-

stream velocity, a half-jet model was used with a vertical symmetry wall along the jet axis 

and parallel to the cross-stream flow. 

(d) Wall boundary: To account for the drag and development of boundary layers, the floor was 

modelled as a moving no-slip wall. Since the top surface and the vertical wall opposite the 

symmetry wall were located far from the impingement region, the flow was assumed to 

become parallel to these walls. Therefore, these walls were modelled as slip boundaries to 

ensure no flow through these walls and no boundary layers development. This simplification 

also reduced computational effort in the simulations and resulted in better convergence.  

6.3.2 Mesh Generation and Grid Independence 

A structured grid with hexahedral mesh elements was developed in the open-source software 

SALOME (see Figure 6.2b-7.2e). Although creating a structured mesh for complex geometries is 

difficult and time-consuming, it is less susceptible to artificial diffusion and more efficient to 

converge than an unstructured mesh.  To generate the structured mesh, the geometry of the towing 

tank with the jet nozzle inside was modeled in SALOME GEOM module. After that, the geometry 

was segmented into smaller volumes using the partition tool, so each contained eight vertices – a 

criterion to generate hexahedral mesh elements inside any volume. Because of the bigger velocity 

and pressure gradient in the impingement region, the mesh size should be smaller near the jet 

nozzle and the impingement region on the floor and gradually bigger as the distance from the 

nozzle and floor increases. This was ensured by systematic segmentation of the original geometry 

into smaller volumes. Finally, SALOME MESH module was used to generate hexahedrons inside 

these segments. 

The automatic meshing algorithm for hexahedrons was used to generate the mesh. This algorithm 

divides the dimensions of the geometric volumes into a user-provided number of segments. At 

first, a coarse mesh with 15 segments (15 cells or 16 nodes) inside each geometric volumes was 

generated. Then the number of segments was gradually increased until a mesh-independent 

solution was obtained. It should be noted that the numerical solution asymptotically approaches 

the exact solution with the increment of the number of cells. However, it is computationally very 

resource-intensive to simulate with a large number of cells, and the relative improvement of the 
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solution in the asymptotic convergence zone is relatively insignificant.   

The v-velocity component near the floor is critical due to the high gradient of v in this region and 

was tested for grid independence.  Figure 6.3a shows that the profiles for v-component do not vary 

much for the increment of volume segmentation from 35 to 40. Further, Figure 6.3b shows that 

the variation of point velocity is in the order of 10-4 for incrementing the number of cells from 7 

to 11 million. Therefore, considering the solution accuracy and computational resource utilization, 

the selected mesh for this study has 40 segments in each small geometric volume and about 11 

million cells.  

6.3.3 Flow Condition and Solver Setup 

A steady-state simulation was conducted in OpenFOAM using the SimpleFoam solver since the 

fluid was incompressible. A second-order scheme, the Bounded Gauss Upwind algorithm, was 

used for discretization. The Reynolds Averaged Navier-Stokes (RANS) equations were solved for 

turbulence modelling. For this purpose, the k-w model with Shear Stress Transport (SST) was 

selected because it is ideal for wall-bound flows. The turbulence intensity at the jet nozzle was set 

as 0.01. The residual values for all parameters in consecutive iterations were set as 10-6 or less as 

the criterion for simulation convergence. 

6.4 Results and Discussion 

6.4.1 Mean Flow Characteristics from PIV and CFD 

Figure 6.4 shows the effect of the translating velocity of the jet on the flow characteristics for PIV 

experimental results and OpenFOAM simulations. Entrainment of the surrounding fluid into the 

jet flow is identified as high-vorticity regions. The translating jet's windward and leeward sides 

show opposite signs for vorticity. As R increases from 0.17 to 0.51, the translating jet bends more 

to the leeward direction of travel, similar to a jet in crossflow (Margason, 1993). At R = 0.17, a 

vortex of size comparable to the jet diameter d is formed at the windward side of the jet. As the 

relative translating velocity increases to R = 0.28, the vortex size decreases to about 1/3d. Finally, 

the vortex completely diminishes at bigger relative translating velocity (R = 0.40 and 0.51).  

The velocity contours with streamlines in Figure 6.4(b) reveals further details of the flow 
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characteristics. At smaller relative translating velocities (i.e., R = 0.17 and 0.28), the impingement 

is strong, with a visible stagnation point at the intersection of the jet axis and the floor. Although 

the jet is a short jet with h = 2.6d, the jet velocity is expected to decay faster than a free jet due to 

the impingement. Significant velocity gradients are observed near the impingement and jet 

boundary. At the windward side, the streamlines are typically parallel to the floor except for certain 

proximity to the jet, especially at bigger R. On the windward side, the streamlines bend to the 

direction of the jet due to the surrounding fluid entrainment. In all cases, the deflected jet to the 

leeward side after impingement is comparable to a wall jet, similar to a vertical jet impingement 

on a flat wall (Beltaos and Rajaratnam, 1974). However, transverse sections of the deflected jet 

has to be studied to confirm the similarity with a wall jet. Further, the streamlines in the windward 

side do not show any resemblance to a wall jet for big relative translating velocities. 

For all the translating jet cases, the vorticity and velocity contours with streamlines show good 

similarity between the PIV experimental results and CFD simulations in OpenFOAM. Therefore, 

it is appropriate to use the developed CFD models for detailed analysis of the flow field. 

6.4.2 Mean Velocity Distribution 

Figure 6.5 shows the velocity fields of the impinging jet. Since the impingement height H is only 

2.6D, the jet is in the developing jet regime (Nallamuthu Rajaratnam, 1976). Velocity vectors in 

Figures 7.5a and 5b show a core with a uniform velocity of U = Vj for some distance from the 

nozzle, termed the potential core. The potential core is surrounded by an annular shear layer. For 

a relatively slower translating jet with Ut = 0.03 m/s and R = 0.17, the velocity distribution is quite 

similar to a stationary circular jet as depicted in the literature (e.g., Rajaratnam and Beltaos, 1977). 

With the increase of Ut, the velocity vectors align with a curvilinear trajectory as the jet sways to 

the leeward direction of travel. Considering the transverse plane of the jet translation (i.e., y-z 

plane), the velocity vectors show faster jet velocity decay as the translating velocity increases. 

However, the velocity distribution is symmetric about the nozzle centerline since there is no 

resultant crossflow in the transverse direction. 

The jet flows along the wall after impingement in the impingement region (Figure 6.5c and 5d). 

Figure 6.5c shows that for a small translating velocity with R = 0.17, the deflected jet flows in both 

the windward and leeward directions. However, after a short distance of x/d = 2, the deflected jet 
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in the windward direction folds back and creates a vortex. For bigger translating velocities with 

R ≥ 0.28, the deflected jet only flows to the leeward direction. For R = 0.17, the velocity profiles 

in the leeward direction resemble a wall jet, characterized by decaying and spreading velocity 

vectors as the deflected jet travels far from the impinging jet. Eventually, the velocity vectors 

match the jet's translating velocity at about x/d = -6.1. Interestingly, for R ≥ 0.28, the velocity 

vectors decay with distance from the impinging jet, due to bigger Ut. However, in Figure 6.5d, the 

similarity of the flow to a wall jet is observed in the transverse direction (y-z plane) for all 

translating velocities. After a distance of x/d = 4.2, flow velocity in this direction decays to almost 

zero, indicating that the model domain size in the y-direction (x/d = 10.5) is sufficient to simulate 

the flow field accurately. 

Profiles of the mean velocity component v in Figure 6.6a show that v decays rapidly as R increases. 

Unlike the velocity profiles of a stationary jet, the near-nozzle profiles of the v component around 

the jet axis are not horizontal but slanted due to the jet's translation. The peaks of the profiles also 

shift to the leeward direction of translation. In Figure 6.6b, profiles of the u component for R = 

0.17 and 0.28 show similarity with a wall jet. However, as the translating velocity increases, 

profiles in the windward direction deviate from the wall jet profiles first. Then the profiles in the 

leeward direction slowly differ from a wall jet. Instead, the profiles show uniform freestream 

velocity distribution as observed for R = 0.51.   

Figure 6.7 shows the potential core length Lp at different translating velocities for R = 0.17 to 0.51. 

As hypothesized, the potential core length decreases with the increase of translating velocity. A 

linear expression reasonably fits the simulation results for the potential core length.  

𝐿𝑝

𝑑
=  −2.81𝑅 + 1.49; for h/d = 2.6 and Re = 3344 (6.1) 

For a stationary impinging jet with h = 2.6d, extrapolating Equation 6.1 gives Lp = 1.5d. For 

h = 2.2d to 5.2d, Beltaos and Rajaratnam (1977) showed that the potential core length does not 

depend on h but diminishes at about a distance of 1.1d from the impingement wall. This also gives 

Lp = 2.6d −1.1d = 1.5d. This implies that the simple linear relation in Equation 6.1 predicts the 

potential core length for a translating short jet with good accuracy. It should be noted that apart 

from the hydraulics of the flow regime, the potential core length also depends on the nozzle 
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characteristics (Ashforth-Frost and Jambunathan, 1996). 

6.4.3 Vortex Structure 

Development of the velocity contours of the jet cross sections at increasing x/d gives an overview 

of the vortex structure of the impinging translating jet in Figure 6.8. For R = 0.17 and x/d = 0, the 

velocity contours resemble a stationary circular jet impingement, characterized by a high-velocity 

axial jet core and a stagnation region at the point of impingement. However, instead of forming 

radial wall jets along the y-direction, the deflected jet folds back due to the interaction with the 

relative crossflow in the x-direction. The crossflow eventually diminishes the deflected jet flow in 

the y-direction after a distance of y = 8 cm, as illustrated in Figure 6.5d. At x/d = 0.5, the central 

high-velocity core is observed to separate and start forming two vortices. For x/d ≥ 2, a fully-

developed counter-rotating vortex pair (CVP) with a high-velocity core at the center of the vortices 

are observed.  

For R = 0.28 the inner central velocity core shows separation into two vortices at x/d = 0.5. 

However, unlike the case for R = 0.17, the axial high-velocity core remains along with the CVPs. 

This phenomenon is also observed for R = 0.40 and x/d ≥ 1. However, for R = 0.40 and x/d ≤ 0.5, 

the cross-sections of the jet show an axial high-velocity kidney shape core, similar to a jet in 

crossflow (Rajaratnam and Gangadharaiah, 1983). This is because the jet's impingement does not 

influence these sections much. The axial high-velocity core is observed with a weak CVP for 

R = 0.51 and 0 ≤ x/d ≤ 3.8. In this case, due to the bigger translating velocity of Ut = 0.09 m/s, the 

jet moves farther leeward, and the impingement becomes weaker compared to other cases (R = 

0.19 to 0.40). 

6.4.4 Pressure Distribution 

A dimensionless parameter, the pressure coefficient Cp, is used to assess the effect of the relative 

pressure in the flow characteristics. Equation 6.2 gives the value of Cp, 

𝐶p = 
𝑃s−𝑃𝑎

1
2⁄ (𝜌𝑤𝑉𝑗

2)
  (6.2) 

where Ps is the static pressure on the impingement wall, Pa is the ambient pressure of the 

environment, and ρw is the density of the jet fluid used. 
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The distribution of Cp on the impingement wall along the course of the jet for Ut = 0.03 to 0.09 m/s 

is shown in Figure 6.9.  The reported pressure has both positive and negative values since it was 

calculated relative to the outlet boundary. The peak value of Cp indicates the impingement location, 

typically at the stagnation point. The peak gets bigger as R gets smaller. This is because a strong 

impingement occurs at a lower translating velocity. As the translating velocity increases, the peak 

value of Cp shifts towards the leeward direction. For R = 0.17, and 0.28, three distinct pressure 

regions are observed. Region A is the deflected jet region, where the jet changes its course after 

the impingement and eventually flows parallel to the impingement wall. Region B is the 

impingement region with peak relative pressure. Lastly, region C is the recirculation region, where 

the deflected jet folds and recirculates due to the adverse movement of the relative crossflow. For 

R = 0.17 and 0.28, Cp is close to unity due to strong impingement, and the impingement region is 

well demarcated. Due to the jet translation, the relative crossflow current is quite strong, and 

distinguishable recirculation regions exist in the windward direction. One of the major 

characteristics of the impingement region for R = 0.17 and 0.28 is the flow separation at the 

stagnation point. However, for R = 0.40 and 0.51, Cp is well below unity as the impingement is 

weak, and flow separation is not evident (see Figure 6.4). Therefore, the recirculation region does 

not exist for bigger jet translating velocities. Table 6.2 shows the salient features of these flow 

regions for the translating jet impingement. 

6.4.5 Wall Pressure 

Figure 6.10 shows the distribution of wall pressure for Ut = 0.03 to 0.09 m/s. At lower translating 

velocities, the pressure concentrates on a smaller area around the stagnation point. The pressure 

distribution pattern for R = 0.17 to 0.28 changes from a half-circle to a kidney shape. This pattern 

is consistent with the shape of the jet core in crossflow. With the increasing translating velocity, 

the maximum wall pressure decreases, but the area of influence of the pressure increases to an 

elongated area. For vertical impingement of long and short jets, Beltaos and Rajaratnam (1974, 

1977) showed that the dimensionless profiles of the wall pressure are similar. However, the 

impingement of a translating jet may resemble to an oblique stationary jet due to the bending of 

the jet at the relative crossflow. For oblique jet impingement, Beltaos (1976) showed that the wall 

pressure distribution is still similar in the transverse direction of the jet inclination plane. The 

following Gaussian relation was proposed to describe this similarity, 
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𝑃𝑠
𝑃sm

= 𝑒−0.693(
𝑦
𝑎
)
2

  (6.3) 

where Psm is the maximum static pressure, and a is the value of y where Ps = 0.5Psm. Dimensionless 

wall pressure profiles are plotted with Equation 6.3 in Figure 6.11 to investigate the similarity of 

wall pressure distribution for a translating jet. Figure 6.11a shows that the profiles are not similar 

for a fixed translating velocity at different longitudinal locations (x/d = -20 to 2). Further, Figure 

6.11b shows that for the exact longitudinal location, the profiles for different translating velocities 

(R = 0.17 and 0.51) are also not similar. However, for practical purposes, the pressure distribution 

in the transverse direction can be roughly similar for the range 0 ≤ y/b ≤ 1. 

6.4.6 Wall Shear Stress 

For the vertical impingement of a stationary jet of long and short impinging height, the wall shear 

stress contour is typically circular, with zero shear at the center of the contour plot just beneath the 

nozzle and an annular ring of maximum shear stress at some radial distance from the maximum 

shear location (Beltaos and Rajaratnam, 1974, 1977). However, for a translating jet, the 

distribution of wall shear stress will be different due to the translation of the jet. The effect of the 

jet translating velocities on the wall shear stress is shown in Figure 6.12. At small translating 

velocities (i.e., R = 0.17 and 0.28), the annular ring of the maximum shear stress elongates and 

forms a crescent shape. With further increments of translating velocities to R = 0.40 and 0.51, this 

shape evolves into a fly-wing shape, characterized by a low shear region on the axis of symmetry. 

Fig 13a shows the distributions of the wall shear stress 𝜏0 in the transverse direction of the jet 

translation for R = 0.17 to 0.51. Locations of the maximum wall shear stress 𝜏0𝑚 are different. If 

y0 is the y position of 𝜏0𝑚, and b is the y position of the 0.5𝜏0𝑚, then the shear stress distribution 

for y ≥ y0 can be shown by the following relation, 

𝜏0
𝜏0𝑚

= 
1

2
[1 + sin

𝜋

2
(1 +

𝑦 − 𝑦0
𝑏

)]  (6.4) 

Figure 6.13b shows that the performance of Equation 6.4 gets better in predicting the shear stress 

distribution as the translating velocity increases. It also implies a similarity in the distributions of 

the wall shear stress for y ≥ y0.  
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6.5 Summary and Conclusions 

This work shows a combined experimental and numerical study of the impingement of a 

translating submerged circular turbulent jet on a flat wall using particle image velocimetry (PIV) 

and computational fluid dynamics (CFD) techniques, respectively. The CFD model, developed in 

OpenFOAM has been validated against the PIV results. Since the experimental setup for PIV to 

obtain data from multiple planes was difficult for the translating jet experiment, CFD simulation 

has provided valuable insight into this three-dimensional problem's flow field. Some of the critical 

findings include: 

1. The structure of the flow field changes with the translating velocity. Streamlines of the flow 

field demonstrated that at lower jet translating velocity, a vortex forms at the windward side 

of the translating jet, which reduces in size with increasing translating velocity and ultimately 

diminishes at bigger translating velocity.  

2. Analysis of the mean velocity field showed a reduction of the potential core with translating 

velocity, and an expression for the length of the potential core has been developed.  

3. Depending on the magnitude of the jet translating velocity, a high-velocity jet core and a 

counter-rotating vortex pair (CVP) can be seen in the cross-sections of the jet. The CVP 

disrupts the formation of the wall jet at the leeward side after the impingement region.  

4. Based on the relative pressure distribution, three flow regions has been identified: the 

impingement region, the deflected jet region, and the recirculation region. However, at 

bigger translating velocities, the recirculation region collapses into the impingement region.  

5. The magnitude of the maximum wall pressure and shear stress reduces with translating 

velocity. As the translating velocity increases, the wall shear stress distribution evolves from 

a crescent shape to a fly-wing shape, with a low shear region at the axis of symmetry.  

6. Wall shear stress distribution at the transverse direction of the jet translation is similar, and 

an expression for the distribution has been developed.  
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Table 6.1: Experimental parameters of the PIV experiments 

Parameters Value 

Nozzle diameter, d (mm) 19 

Impingement height, h (mm) 50 

Jet velocity at nozzle, Vj (m/s) 0.176 

Jet translating velocity, Ut (m/s) 0.03, 0.05, 0.07, and 0.09 

Jet Reynolds number, Re = Vjd/ν (-) 3344 

Relative translating velocity, R = Ut/Vj (-) 0.17, 0.28, 0.40, and 0.51 
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Table 6.2: Features of flow regions for an impinging jet with different translating velocities. 

Features R = 0.17 R = 0.28 R = 0.40 R = 0.51 

Point of impingement (= x/d) -0.04 -0.46 -1.14 -0.17 

Peak pressure coefficient, Cpm 1 0.67 0.22 0.08 

Boundary of deflected jet and impingement 

regions (= x/d) 

-1.26 -1.43 -2.20 -2.4 

Boundary of impingement and recirculation 

regions (= x/d) 

1 0.12 - - 

Note: Negative x/d indicates leeward side of jet translation. 

 

 

 

 

  



112 

 

 

 

Figure 6.1: Schematics of the experimental setup: (a) flow control system and translating jet in 

the towing tank, and (b) image acquisition setup for PIV (top view). 
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Figure 6.2: Model generation: (a) geometry and boundary conditions, (b) hexahedral mesh in 

generation in model, (c) zoomed view of the jet region in z-x plane, (c) zoomed view of the jet 

region in x-y plane, and (d) detail of the structured mesh at the jet nozzle. 
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(a) (b) 

Figure 6.3: Grid independence testing for v-velocity component (a) profile at z = 5 mm, and (b) 

point velocity at x = 0 mm, and z = 5 mm. 
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(a) 

Figure 6.4: Comparison of PIV and OpenFOAM results for Ut = 0.03 to 0.09 m/s (a) vorticity 

contours (s-1), and (b) velocity contours (ms-1) and streamlines. The jet translates to the right. 
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(b) 

Figure 6.4: Cont’d. 
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(a) 

 

(b) 

Figure 6.5: Velocity fields for the impinging jet at translating velocities Ut = 0.03 to 0.09 m/s for 

(a) developing jet in xz – plane; (b) developing jet in yz – plane, (c) impingement region in 

xz – plane; and (d) impingement region in yz – plane. At (a) and (c), the jet is translating to the 

right, and at (b) and (d), the jet is moving into the plane. In the plots, (x, y, z) = (0, 0, 0) cm and 

z = 5 cm indicate the nozzle location and the impingement wall, respectively. Red broken lines in 

(a) and (c) indicate the nozzle axis. 
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(c) 

 

(d) 

Figure 6.5: Cont’d  
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(a) 

 

(b) 

Figure 6.6: Profiles of the mean velocity components: (a) distributions of the mean vertical velocity 

component v; and (b) distribution of the mean horizontal velocity component u. For (b), broken 

and solid lines represent velocity profiles for the windward and leeward direction, respectively. 

  



120 

 

 

Figure 6.7: Evolution of the potential core length with the relative translating velocity. 
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Figure 6.8: Velocity contours of the translating jet at sections normal to the impingement wall for 

R = 0.17 to 0.51 and x/d = 0 to 3.7. 
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Figure 6.9: Distribution of the pressure coefficient Cp on the impingement wall along the jet 

translation. Red vertical lines demarcate the boundaries between different flow regions. Regions 

A, B, and C represent deflected jet, impingement, and recirculation regions, respectively. 
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Figure 6.10: Distribution of wall pressure at the impingement wall for Ut = 0.17 to 0.51 m/s. Red 

dot denotes the position of the jet nozzle. The jet is translating to the right along x- axis. 
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(a) 

 

(b) 

Figure 6.11: Dimensionless wall pressure distribution in the transverse direction of jet 

translation: (a) pressure profiles for x/d = 2 to -20; and (b) pressure profiles for R = 0.17 and 

0.51. 
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Figure 6.12: Distribution of wall shear stress at the impingement wall for Ut = 0.17 to 0.51 m/s. 

Red dot denotes the position of the jet nozzle. The jet is translating to the right along x- axis. 
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(a) 

 

(b) 

Figure 6.13: Wall shear stress distribution profile in the transverse direction of the jet translation 

and through the location of the maximum wall shear stress: (a) dimensionless plots, (b) similarity 

of the distributions after the location of the maximum wall shear stress.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 General Conclusions 

Turbulent jets are used in many industrial processes and have applications in several engineering 

problems. However, contemporary knowledge of turbulent jets is mainly limited to stationary 

turbulent jets and lacks the understanding of translating turbulent jets. This thesis attempted to 

contribute to three crucial applications of circular turbulent jets: (1) scouring of sand beds by 

stationary and translating jets, (2) air entrainment by plunging translating jets in a quiescent 

waterbody, and (3) impingement of a submerged translating jet on a flat wall. Following are the 

general conclusions of this thesis: 

1. Scouring of Sand Beds by Short-Impinging Turbulent Jets: An experimental study was 

conducted to study the scouring of sand beds by submerged circular turbulent jets of short 

impinging height of 5.5 times the jet diameter. Experimental results showed that the scouring 

experiments by long and short jets are quite different. Semi-empirical prediction equations 

for the characteristic dimensions of the scour hole in the asymptotic state were developed, 

covering both long and short impinging jet regimes. Further, an expression for the 

asymptotic dynamic scour depth was developed, which was absent in previous studies. 

Lastly, empirical equations for the temporal development of the scour hole were developed. 

2. Erosion of Sand Beds by Translating Turbulent Jets: This work showed an experimental 

study of the erosion of sand beds by translating submerged circular turbulent jets impinging 

at different inclinations. Experimental results showed that static scour is minimal for 

translating jet scouring. Therefore, dynamic scour is a critical characteristic for most 

practical purposes. The similarity in the dynamic scour profiles at constant impingement 

angles and different jet translating velocities were found, and empirical equations for the 

scour hole profiles for different jet impingement angles were developed. Furthermore, 

empirical prediction equations were developed for the maximum scour depth as a function 

of the jet translating velocity and impingement angle. The analysis of the sediment 

kinematics using particle image velocimetry (PIV) technique revealed that a principal vortex 

resides inside the scour hole along with a few minor vortices and plays a vital role in sand 

transport. Further, the horizontal velocity component was found to be the significant 
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component for sand transport due to the horizontal translation of the jet, which can be 

expressed as a Gaussian expression. 

3. Air Entrainment by Translating Turbulent Plunging Jets: In this work, the mechanism of air 

bubble entraiment in a quiescent water tank by translating plunging circular jets was studied 

experimentally using shadowgraph and bubble image velocimetry (BIV) technique. 

Depending on the magnitude of the translating velocity, air entrainment was found to occur 

at the cusp of the cavity formed by the jet impact and at the upstream jet-water contact 

meniscus or at the cavity only. Highly unsteady shear-layer vortices were observed on the 

cavity's windward side, and a regular coherent structure of bubble swarm was observed on 

the leeward side. The Strouhal number of the coherent structure was comparable with vortex 

shedding by bridge piers. The probability distribution of the bubble diameters showed that 

the bubble size gets affected by the jet translating velocity. The maximum penetration depth 

of the bubble was found to be a function of the jet translating velocity and the interaction 

between the viscous drag force and surface tension of the air-water interface. Therefore, an 

equation for the maximum penetration depth was developed by correlating the jet velocity 

ratio and the capillary number. The dimensionless trajectory of the bubble swarm was found 

similar, and a general expression was developed. The spatial distribution of the bubbles in 

the bubble swarm was found to follow a Gaussian distribution, identical to the void fraction 

of bubbly jets in crossflow. Lastly, the bubbles' terminal rising velocity was unaffected by 

the jet translating velocity.  

4. Impingement of Translating Turbulent Jets on a Flat Wall: This work showed a combined 

experimental and numerical study of the impingement of a translating submerged circular 

turbulent jet on a flat wall using particle image velocimetry (PIV) and computational fluid 

dynamics (CFD) techniques, respectively. Analysis of the mean velocity field showed a 

reduction of the potential core with translating velocity, and an expression for the length of 

the potential core was developed. Depending on the magnitude of the jet translating velocity, 

a high-velocity jet core and a counter-rotating vortex pair (CVP) were observed in the cross-

sections of the jet. The CVP disrupted the formation of the wall jet at the leeward side after 

the impingement region. Based on the relative pressure distribution, three flow regions were 

identified: the impingement region, the deflected jet region, and the recirculation region. 

However, at bigger translating velocities, the recirculation region collapsed into the 
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impingement region. The maximum wall pressure and shear stress were reduced with 

translating velocity. As the translating velocity increased, the wall shear stress distribution 

evolved from a crescent shape to a fly-wing shape, with a low shear region at the axis of 

symmetry. Wall shear stress distribution at the transverse direction of the jet translation was 

found similar, and an expression for the distribution was developed. 

7.2 Recommendations for Future Research 

A limited number of studies have been conducted on translating turbulent jets compared to 

stationary ones. However, opportunities exist to broaden our understanding of translating jets to 

apply the acquired knowledge in potential engineering applications. Some recommendations for 

future research are described below. 

1. Analytical Study: This thesis contains an experiment and numerical study of the 

impingement of a translating jet. However, the mechanics of a jet in crossflow and the 

impingement of a stationary jet were well-investigated in previous studies. Therefore, 

developing an analytical model to explain the mean flow field resulting from a translating 

jet impingement is plausible. This will also help simplify the governing equations of related 

CFD models for better convergence. 

2. Experimental Study: Some industrial applications require the impingement of plane jets, e.g., 

cooling of sheet metals. One can follow the experimental setup for circular jet impingement 

described in this thesis and replace the jet with a plane jet to conduct an experimental study. 

Besides, a plane jet's flow field is simpler than a circular jet since the flow is two-

dimensional. This helps to conduct PIV experiments only in a single plane to reveal most of 

the salient flow features. 

3. Computational Study: A steady-state simulation was conducted in this thesis to reveal the 

mean flow features for the impingement of a translating jet. However, a short-impinging 

circular translating jet acts as a columnar obstacle to a crossflow, similar to a cylinder in a 

crossflow. Therefore, depending on the magnitude of the translating velocity, oscillatory 

behavior of the jet in relative crossflow and vortex shedding in the wake region can be 

observed. Therefore, a transient CFD model with large eddy simulation (LES) will be 
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instrumental in revealing all these exciting features of the impingement of translating jets. 

Furthermore, there are still research gaps in the area of sediment transport by stationary circular 

oblique jets. Understanding the sediment kinematics will facilitate accurately assessing the 

temporal development and asymptotic dimensions of a scour hole on a sand bed. A study can be 

carried out for sand bed scouring by stationary circular oblique jets with an experimental setup 

similar to the one with translating circular jets (Chapter 4) to reveal the sand motion inside the 

scour hole.  
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APPENDIX: ESTIMATION OF THE FLOW AND ENERGY LOSS 

DOWNSTREAM OF RECTANGULAR SHARP-CRESTED WEIRS USING 

JET THEORY†

A.1 Introduction 

The hydraulics of rectangular sharp-crested weirs have been studied extensively from the 

perspective of flow measurement (Rehbock, 1929; Rouse 1936; Kindsvater and Carter, 1957; 

Ramamurthy et al., 1987; Swamee, 1988; Johnson, 2000; and others). The flow varies from free 

flow for lower tailwater levels to submerged flow for sufficiently high tailwater levels. Another 

interesting aspect of this flow is the energy loss that occurs immediately downstream for free to 

fully submerged weir flows; this aspect has not been studied previously. This work considers in 

detail the flow and energy losses occurring immediately downstream of these weirs for the entire 

range of tailwater levels. 

For free flow over rectangular sharp-crested weirs, the discharge per unit weir length, q, is given 

by 

𝑞 =
2

3
𝐶𝑑√2𝑔ℎ

3/2 (A.1)
 

where h is the upstream water level above the weir, g is the gravitational acceleration, and Cd is 

the coefficient of discharge, described well by the equation below (Kandaswamy and Rouse, 1957) 

𝐶𝑑 = 0.605 + 0.08 (
ℎ

𝑃
) for 0<h/P<6 (A.2)

 

where P is the height of the weir crest above the bed of the approach flow channel. As shown in 

Figure A.1a, when the tailwater depth yt above the bed of the downstream channel approaches the 

crest level, the flow over the weir becomes submerged and a higher head is required to pass the 

 

† The content of this chapter has been published as: Amin, M. R., Rajaratnam, N., and Zhu, D. Z. (2022). Flow and 

energy loss downstream of rectangular sharp-crested weirs for free and submerged flows. ASME Journal of Fluids 

Engineering, 144(3), 031201. https://doi.org/10.1115/1.4052049 
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same discharge. Wu and Rajaratnam (1996) found that when the tailwater level t rises above the 

weir crest the flow gets submerged (t = yt−P > 0), and changes from an impinging jet to a surface 

flow regime (Figure A.1b). The surface flow regime changes from a surface jump to a surface 

wave and finally to a surface jet as t increases. The surface jet was studied by Rajaratnam and 

Muralidhar (1969) and the surface jump by Ahmed et al. (2018). 

Considering free flow in Figure A.1a (water surface 1), which occurs for relatively low tailwater 

depths, the falling nappe from the weir gets deflected by the bed which turns the falling nappe into 

a horizontal supercritical stream. Because of the formation of the pool behind the ventilated nappe 

and its turbulent interaction with the nappe, the supercritical stream has a non-uniform velocity 

profile (Moore, 1943). As the tailwater depth increases, a hydraulic jump is formed at a certain 

stage (water surface 2), and for higher tailwater depths, the toe of the jump forms on the falling 

nappe (water surfaces 3 and 4), similar to a jump on a steep slope (Amin et al., 2019). Further, the 

difference between the depth of the pool behind the nappe and the tailwater level disappears. Then, 

as the tailwater level approaches that of the weir crest, the nappe switches from the impinging jet 

to the surface flow regime (Wu and Rajaratnam, 1996).  

This work considers the flow regimes and energy losses occurring just downstream of a sharp-

crested weir for the entire range of tailwater levels. Although, the total energy loss for such weirs 

is already known, the objective of this study is to present an analytical treatment based on previous 

studies and theory of plane jet for the improved understanding of the major energy dissipation 

processes. For the surface flow regime, the analysis on surface jumps and surface waves are based 

on the experimental studies by Ahmed et al. (2018) and Rajaratnam and Muralidhar (1969), 

respectively. For the impinging jet regime, the first analysis considers free flow with supercritical 

downstream flow and no hydraulic jump based on the experimental study by Moore (1943). The 

second analysis in this regime considers impinging jets and jumps on nappe based on the theory 

of plane jet. 

It should be noted that the experimental investigation in the impinging jet regime is very 

challenging and reliable measurements are hard to obtain since the velocity distribution is non-

uniform, and the flow contains a significant amount of air bubbles. Perhaps, for this reason 

experimental study in this regime with carefully taken velocity profiles is still missing in the 
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literature. In the absence of experimental investigations, the analytical treatment shown in this 

study can improve the understanding of energy loss immediately downstream of a rectangular 

sharp crested weir. This likely can be an interesting future research project to validate the work 

presented herein with improved experimental techniques. 

A.2 Free Flow with No Hydraulic Jump 

For free flow below the weir, the falling nappe converts to a supercritical stream. Considering the 

region starting from the weir to the initiation of the supercritical stream, the energy loss is mainly 

due to the mixing behind the nappe (Moore, 1943; Rajaratnam and Chamani, 1995). There does 

not appear to be any experimental data on this loss, whereas for the corresponding case of flow at 

an abrupt drop, there are several studies (Moore, 1943; Rand, 1955; Rajaratnam and Chamani, 

1995; and others]. Rajaratnam and Chamani (1995) found that the relative energy loss at an abrupt 

drop in a rectangular channel can be described by the equation 

∆𝐸

𝐸0
=

0.09

(𝑦𝑐 𝑃⁄ )0.77
 (A.3)

 

where ∆E is the loss of the energy head, E0 is the energy head upstream of the drop, P is the drop 

height, and yc is the critical depth of the flow. The flow for the drop and a weir of the same height 

is similar except the flow contraction above the weir. Since the energy loss is primarily due to the 

mixing in the pool behind the nappe, it is safe to assume that Equation A.3 can be used to calculate 

the energy loss for a weir with proper adjustment for the flow contraction. For open channel flow 

in a rectangular channel yc=(q2/g)1/3, and for a sharp-crested weir q is given by Equation A.1 

considering the flow contraction. Therefore, Equation A.3 is rewritten to describe the relative 

energy loss at a sharp-crested weir 

∆𝐸

𝐸0
=
0.09

𝐶𝑑
0.51 (

ℎ

𝑃
)
−0.77

 (A.4)
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A.3 Impinging Jet Flow and Jump on Nappe 

As the tailwater level increases, a jump forms on the falling nappe (Amin et al., 2019). The shape 

of the nappe resembles the path of a projectile (Chow, 1959).  After the nappe plunges into the 

tailwater as a plane jet, it keeps its trajectory as a tangent to the original path of the unsubmerged 

nappe at the point of impingement. This is because gravity does not affect the nappe trajectory as 

it gets submerged. Amin et al. (2019) reported that the slope of the submerged nappe, θ = 60º for 

a range of experiments with a 40.9 cm high sharp-crested weir, and flowrate q ranged between 

0.04 and 0.07 m2/s. Although this slope depends on the weir height, flowrate per unit width, and 

tailwater depth; the slope of the nappe is quite steep. Therefore, the jump on the nappe resembles 

a jump on a steep slope. 

Based on experiments on jumps formed on steep slopes, Rajaratnam and Murahari (1974) reported 

that the mean velocity profiles are similar to those within a plane wall jet rather than a jump on 

horizontal bed. Kawagoshi and Hager (1990) reported similar results for θ = 30º, and high level of 

submergence. Ohtsu and Yasuda (1991) also confirmed resemblance of the velocity profiles to 

classical wall jets for slope θ>40º. Rajaratnam (1967) concluded that for jumps on steep slopes, 

mixing inside the jump will not be violent and thus the energy dissipation will be less. Therefore, 

the energy loss below the weir for the impinging jet regime is described here adopting a model of 

a plane jet or plane shear layer, depending on the extent of the jet.  

Consider the length of the submerged plane jet from the point of impingement on the tailwater 

level to the bed is L. Based on the trajectory of the nappe, L can be described as Equation A.5, for 

a short distance after the weir, and for velocity head less than 0.2h (see detailed derivation at the 

end of this appendix). 

𝐿

𝑦t
=
(𝑃/ℎ) − (𝑦t/ℎ) + 0.5

(𝑃/ℎ) − (𝑦t/ℎ) + 0.23
 (A.5)

 

Following the work of Ahmed et al. (2018), the velocity of the jet Vj at the tailwater level is 

estimated as √2𝑔(𝑃 + ℎ − 𝑦t) using the Bernoulli equation, assuming negligible energy loss over 

this small drop, where (𝑃 + ℎ − 𝑦t) is the drop height of the nappe to the tailwater surface. If 2b0 

is the starting thickness of this submerged plane jet, then 𝑞 = 2𝑏0√2𝑔(𝑃 + ℎ − 𝑦𝑡). Therefore, 
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Equation A.1 is adopted to find the jet thickness 

2𝑏0 =
2

3
𝐶𝑑√2𝑔ℎ

3/2

√2𝑔(𝑃+ℎ−𝑦t)
=

2

3
(
𝐶𝑑ℎ

3/2

√𝑃+ℎ−𝑦t
)  (A.6)

 

For smaller values of h/P (≈0.2), Cd=0.621 (Equation A.2) and therefore, 2b0=0.414h/(P+h-yt). 

The energy loss of the plane turbulent jet is essentially the loss of the jet kinetic energy. Therefore, 

adopting the energy loss for the fully developed plane jet from Rajaratnam (1976), 

∆𝐸

𝐸0
= 1 −

2.64

√𝑥 𝑏0⁄
 (A.7)

 

where x is the distance along the jet. For a value of x less than the length of the potential core 

(which is about 12b0), the flow must be treated as a plane shear layer or short jet (Rajaratnam, 

1976). For energy dissipation in a vertical drop, Chamani and Rajaratnam (2008) also treated the 

flow as a plane shear layer for smaller drop height. Following their work, the relative energy loss 

in a short jet is described by the equation (see detailed derivation at the end of this appendix) 

∆𝐸

𝐸0
= 0.007(𝑥 𝑏0⁄ ) (A.8)

 

For the flow over a sharp-crested weir, consider a fully developed plane jet as a long jet (x/b0 >12). 

Now after replacing b0 from Equation A.6, and putting x=L, Equation A.7 reduces to 

∆𝐸

𝐸0
= 1 − 1.52√

𝐶𝑑ℎ

𝐿[(𝑃/ℎ) − (𝑦𝑡/ℎ) + 1]1/2
 (A.9)

 

Similarly, for a short jet (x/b0 <12), Equation A.8 reduces to 

∆𝐸

𝐸0
= 0.021 [

𝐿√(𝑃/ℎ) − (𝑦𝑡/ℎ) + 1

𝐶𝑑ℎ
] (A.10)

 

Consider the stage when the weir is just submerged, i.e., the tailwater level is equal to the height 

of the weir. Putting yt=P in Equation A.5 gives, L=2.17P. Therefore, for upper regime of the 

impinging jet flow, Equations A.9 and A.10 reduce to Equations A.11 and A.12, respectively. 
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∆𝐸

𝐸0
= 1 − 1.03√𝐶𝑑 (

ℎ

𝑃
) (A.11)

 

∆𝐸

𝐸0
=
0.046

𝐶𝑑 (
ℎ
𝑃)

 
(A.12)

 

Equations A.11 and A.12 are plotted in Figure A.2b. The relative energy loss decreases 

continuously from 0.6 to about zero for h/P increasing from about 0.2 to 6.0. The transition from 

long jet to short jet occurs at h/P=1.2, and the relative energy loss at transition is 0.06. 

Although major portion of the energy loss in the impinging jet regime is described here as a result 

of the energy decay of a plane jet, energy dissipation also occurs due to mixing in the pool behind 

the nappe and in the jump at the lower stage of the tailwater level. 

A.4 Surface Jump to Surface Jet 

The surface jump was studied by Ahmed et al. (2018) who found that the supercritical Froude 

number at the start of the surface jump had a maximum value of 2.5 and that the relative energy 

loss varied with t/h, falling from 0.19 for t/h=0.05 to about 0.02 for t/h=0.9. The relative energy 

loss for a surface jump is described by the equation below (Ahmed et al., 2018) 

∆𝐸

𝐸0
= 0.20 (1 −

𝑡

ℎ
) (A.13)

 

In the surface wave regime, the relative energy loss is expected to be very small. Rajaratnam and 

Muralidhar (1969) studied the surface jet regime, and reported that this regime starts at t/h>0.9. 

They found that the surface flow can be considered as one-half of a plane turbulent free jet, with a 

velocity Vj equal to √2𝑔(ℎ − 𝑡) and thickness of 0.74t with a potential core of a short length of 

2t. Then the relative energy loss can be described by replacing b0=0.74t for the equation for fully 

developed flow (Equation A.7) as 

∆𝐸

𝐸0
= 1 −

2.27

√𝑥 𝑡⁄
 (A.14)

 

for a length of 5.3t to 20t. Energy loss after the distance 20t becomes minimal as the flow gradually 
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decays into turbulent open channel flow (Rajaratnam and Muralidhar, 1969). 

A.4 Conclusions 

We have described the flow processes immediately downstream of a sharp-crested weir for 

different flow regimes. This analysis first considers a free flow with a low tailwater, then a 

hydraulic jump front forming on the falling nappe and an impinging plane jet, referred as the 

impinging jet regime. As the tailwater rises to the crest level, the flow gets submerged, and the 

surface flow regime starts. With further increase of the tailwater depth, this regime passes through 

a surface jump first, then a smooth surface wave, and finally to a deeply submerged surface jet 

regime. Although, the energy dissipation in each of these regimes can occur due to various 

processes, we have developed equations for the relative energy loss with a focus on the major 

energy dissipation in each regime, using the plane turbulent jet model. To compare the losses, it is 

necessary to evaluate ∆E for all the cases. The initial energy E0 is different in these equations 

depending on the energy dissipation process considered. 

For the supercritical stream, E0 is the initial energy before the drop, mainly the potential energy. 

Therefore, E0≈P+h.  Therefore, Equation A.4 reduces to 

∆𝐸

ℎ
= [

(1 + 𝑃/ℎ)

(ℎ/𝑃)0.77
0.09

𝐶𝑑
0.51] (A.15)

 

∆𝐸

ℎ
= 0.021 [

𝐿√(𝑃/ℎ) − (𝑦𝑡/ℎ) + 1

𝐶𝑑ℎ
] (A.17)

 

Similarly, for the upper stage of impinging jet flow, E0≈h. Therefore, Equations A.11 and A.12 

reduce to 

∆𝐸

ℎ
= 1 − 1.03√𝐶𝑑 (

ℎ

𝑃
) (A.18)

 

∆𝐸

ℎ
=
0.046

𝐶𝑑 (
ℎ
𝑃)

 
(A.19)

 

For the surface jump, E0 is the effective head before the jump, i.e., E0≈h-t. Therefore, Equation 
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A.13 reduces to 

∆𝐸

ℎ
= 0.20 (1 −

𝑡

ℎ
)
2

 (A.20)
 

Again, for the surface jet, E0 is the initial kinetic energy of the jet, where the head (h-t) converts 

into the kinetic energy, i.e., E0≈h-t. For the energy loss for t/h = 0.9 and x = 2.17P, Equation A.14 

reduces to 

∆𝐸

ℎ
= 0.1(1 − 1.46√

ℎ

𝑃
) (A.21)

 

Note that the loss ∆E is significant only for the supercritical stream, especially for values of h/P 

less than about 0.5. For all other cases, the loss is not significant. The flow regimes and 

corresponding energy loss equations are described in Table A.1 as a summary of this study. The 

ideas and equations presented in this work present an analytical treatment of the full range of flows 

and the related major energy dissipation processes downstream of a rectangular sharp-crested weir, 

using the concept of plane turbulent jet and previous studies. 

Derivation of Equation A.5 

For a sufficiently high weir, (i.e., P/h>1.33), velocity of the approach flow is negligible. Therefore, 

the energy head is approximately equal to the static head, h. Now, for 𝑥′/ℎ > 0.5, and the velocity 

head less than 0.2h, the trajectory of the nappe for flow over a sharp crested weir can be described 

by the equation below (Rajaratnam & Muralidhar, 1969) 

𝑦′

ℎ
= −0.425(

𝑥′

ℎ
)

2

+ 0.055(
𝑥′

ℎ
) + 0.150 (A.22)

 

where x' and y' represent the co-ordinates on the nappe, and y' can be expressed as a function of 

the weir height and the tailwater depth, i.e., 𝑦′ = 𝑃 − 𝑦𝑡 (see Figure A.3). Therefore, Equation 

A.22 reduces to 
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𝑃

ℎ
−
𝑦𝑡
ℎ
= −0.425(

𝑥′

ℎ
)

2

+ 0.055(
𝑥′

ℎ
) + 0.150 (A.23)

 

Differentiation of Equation A.23 gives the tangent of the trajectory 

𝑑𝑦𝑡
𝑑𝑥

= 0.85 (
𝑥′

ℎ
) − 0.055 = tan𝜃 (A.24)

 

From the right-angled triangle the length of the jet tangent to the trajectory is given by 

𝐿

𝑦𝑡
=

1

sin 𝜃
 (A.25)

 

Now for a range of values of P/h and x/h, one can find the corresponding values of yt/h, θ, and L/yt 

from Equations A.23, A.24, and A.25, respectively. Therefore, after plotting the values of L/yt vs. 

yt/h, the general equation for the jet length can be expressed as 

𝐿

𝑦t
=
(𝑃/ℎ) − (𝑦t/ℎ) + 0.5

(𝑃/ℎ) − (𝑦t/ℎ) + 0.23
 (A.26)

 

Alternatively, Figure A.3 can be used to find L for given P, yt, and h. 

Derivation of Equation A.8 

For the region from the starting of the jet to the end of the potential core of a length of 12b0, the 

main characteristics of the flow are shown in Figure A.4, which is from Rajaratnam (1976). At any 

section at a distance of x from the nozzle, the flow has a potential core of radius y1, and velocity 

Vj, surrounded by shear layers on both sides. Consider the velocity at any point in the shear layer 

u at a radial distance y from the jet axis. For this flow, the piezometric pressure is approximately 

constant and the change in the energy of the flow is only due to the decrease in the kinetic energy 

due to the diffusion of the shear layer.  The kinetic energy flux per unit width E* can be written as: 

𝐸∗

2
= (𝑦1𝑈0𝜌) (

𝑉j
2

2
) + ∫

(𝑢𝑑𝑦𝜌)𝑢2

2

∞

𝑦1

 (A.27) 

where ρ is density of water. It is useful to point out that E is equal to E* per unit weight and the 

ratio (E/E0) is equal to (E*/E0
*). Equation A.27 is evaluated using the following, from Figure A.4 
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𝑦1 = 𝑏0 − 𝑥 tan 4.8° =𝑏0 − 0.084𝑥 (A.28) 

 

𝑢

𝑈0
= 𝑓(𝜂) where 𝜂 =

(𝑦 − 𝑦1)

𝑏
 (A.29) 

where b is the length scale, equal to (𝑥 tan 9.5° + 𝑥 tan 4.8°) or 0.126x. The velocity distribution 

in the shear layer is assumed to be given by the equation below (Rajaratnam, 1976) 

𝑓(𝜂) = 𝑒−0.693𝜂
2
 (A.30) 

Considering the integral part of Equation A.6, 

∫
(𝑢𝑑𝑦𝜌)𝑢2

2

∞

𝑦1

 = 0.126𝑥 (
𝜌𝑉j

3

2
)∫ 𝑓(𝜂)3𝑑𝜂

∞

0

 

 

= 0.126𝑥 (
𝜌𝑉j

3

2
)∫ (𝑒−0.693𝜂

2
)
3
𝑑𝜂

∞

0

 

= 0.126𝑥 (
𝜌𝑉j

3

2
)(
1

2
√

𝜋

2.079
) 

= 0.077𝑥 (
𝜌𝑉j

3

2
) 

Now Equation A.27 reduces to 

𝐸∗

2
= (𝑏0 − 0.084𝑥) (

𝜌𝑉j
3

2
) + 0.077𝑥 (

𝜌𝑉j
3

2
) (A.31) 

The initial kinetic energy flux per unit width 𝐸0
∗ is given by 

𝐸0
∗

2
= (𝑏0𝑈0𝜌) (

𝑉j
2

2
) (A.32) 

Since (E/E0) is equal to (E*/E0
*), Equations A.31 and A.32 reduces to 
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𝐸

𝐸0
= 1.0 − 0.007 (

𝑥

𝑏0
) (A.33) 

 

∆𝐸

𝐸0
= 0.007 (

𝑥

𝑏0
) (A.34) 
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Table A.1: Expressions for energy dissipation within different flow regimes for flow below a sharp 

crested weir 

 

  

A. IMPINGING JET REGIME 

I. Free flow with no hydraulic jump 

∆𝐸

𝐸0
=

0.09

𝐶𝑑
0.51 (

ℎ

𝑃
)
−0.77

 
∆𝐸

ℎ
= [

(1 + 𝑃/ℎ)

(ℎ/𝑃)0.77

0.09

𝐶𝑑
0.51] 

II. Impinging jet flow and jump on nappe 

For x/b0 >12 

∆𝐸

𝐸0
= 1 − 1.52√

𝐶𝑑ℎ

𝐿[(𝑃/ℎ) − (𝑦𝑡/ℎ)+ 1]1/2
 

For x/b0 <12 

∆𝐸

𝐸0
= 0.021 [

𝐿√(𝑃/ℎ) − (𝑦𝑡/ℎ)+ 1

𝐶𝑑ℎ
] 

 

∆𝐸

ℎ
= 1− 1.52√

𝐶𝑑ℎ

𝐿[(𝑃/ℎ) − (𝑦𝑡/ℎ) + 1]1/2
 

 

∆𝐸

ℎ
= 0.021 [

𝐿√(𝑃/ℎ) − (𝑦𝑡/ℎ) + 1

𝐶𝑑ℎ
] 

For upper stage of impinging jet flow 

For x/b0 >12 

∆𝐸

𝐸0
= 1 − 1.03√𝐶𝑑(ℎ/𝑃) 

For x/b0 <12 

∆𝐸

𝐸0
=

0.046

𝐶𝑑(ℎ/𝑃)
 

 

∆𝐸

ℎ
= 1− 1.03√𝐶𝑑(ℎ/𝑃) 

 

∆𝐸

ℎ
=

0.046

𝐶𝑑(ℎ/𝑃)
 

B. SURFACE JET REGIME 

I. Surface Jump 

∆𝐸

𝐸0

= 0.20 (1 −
𝑡

ℎ
) 

∆𝐸

ℎ
= 0.20 (1 −

𝑡

ℎ
)

2

 

II. Surface Jet 

∆𝐸

𝐸0

= 1 −
2.27

√𝑥 𝑡⁄
 

∆𝐸

ℎ
= 0.1(1− 1.46√ℎ/𝑃) 

RELEVANT PARAMETERS 

𝑏0 =
1

3
[

𝐶𝑑ℎ

√(𝑃/ℎ) − (𝑦t/ℎ)+ 1
] 

𝐿

𝑦t
=
(𝑃/ℎ) − (𝑦t/ℎ) + 0.5

(𝑃/ℎ) − (𝑦t/ℎ)+ 0.23
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Figure A.1: Definition sketches for flow downstream of sharp-crested weirs: (a) impinging jet 

regime, (b) surface flow regime  
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(a) 

 

 

(b) 

 

Figure A.2: Relative energy loss downstream of sharp-crested weirs for (a) free flow with no 

jump, and (b) upper stage of impinging jet flow  
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Figure A.3: Length of submerged plane jet as a function of weir height, upstream water level 

above the weir, and tailwater depth  
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Figure A.4: Definition sketch of flow development region of plane jets (adapted from 

Rajaratnam, 1976) 
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