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Abstract

A permutation lattice for a finite group G over the ring A of integers in a number
field is a free A-module with a finite basis which is permuted by G: direct sum-
mands of these, as AG-modules, are called permutation summands for G over A.
Numerical invariants are constructed for these lattices and a class of congruences
on the invariants are exhibited. These ar» used to study the Grothendieak ring
Q4(G)) of the category of permutation summands in analogy with the Burnside
-ing of the category of finite G-sets: the nilradical of 2,4(G) is in the image of the
class group C1(AG) and the reduced quotient of 2 4(G) is connected and has finite
index in the function ring U4(G) of known structure. An induction theorem for
Q4(G) is proved along the way and it is used to classify the stable isomorphism
classes of permutation lattices. The virtual characters of permutation summands
over big number rings are classified through an induction theorem on virtual char-

acters over the maximal unramified extension field of the rational p-adic numbers.
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INTRODUCTION

Let G be a finite group and A the ring of integers in a number Feld

1.
L

An AG-lattice is called a permutaf tice if it has an  A-basis, necess

A

Fanl

finit  which is permuted by the a. s & It will be called a permutation
summand (for G over A), ifitisa cirect summand, as AG-module, of a
permutation lattice.

Permutation summands for G over A are the objects in this study.
In the case of A = Z, permutation summands occur in other contexts [Weis],
[Swan], [BeLe], where incidentally, permutation summands are usually called in-
vertible [Swan] or permutation projectives [Drel], [CRII](§81B). This work is done
over A, because doing so clarifies the role of the arithmetic of the coefficient ring
and the study of characters of permutation summands over large number rings in
Chapter 3 advanres our understanding on permutation summands.

The study of permutation summands in. this work is centered around the
Grothendieck group Q4(G) of the category of all of them. a(G) is defined
as the additive group generated by symbols [L] corresponding to isomorphism
classes (L) of permutation summands, with defining relations (L & L) =
<Y+ (L;). These relations are the same ones given by (L) = (L1) + (L2) for
each short exact sequence, for if 0 — L; — L 2 Ly — 0 is a short exa*

sequence with permutatior summands L;,Lz then it splits :



Applving Hom 4(L,.—). we have an exact sequence of 4 modules
0 - Hom4(Ly,L,) — Hom 4(L,. L) — Hom 4(L,.L,) — 0.

Applyingnow Homag(A.—) toabove sequence and noticing that Hom (4. .X)
~XC%={recX,gr=1rfor g€ G} forany AG-moduleX, we get a cohomol-

ogy sequence:

0 — Homa(Ly.L;)¢ — Homa(L,,L)¢ =% Homa(Ly, L2)¢ 2
H'(G,Hom(l4,L,)) — ... Since Homa(La,L;) is here a permutation sum-

mand, H!(G,Homa(L2,L;)) =0 follows from Shapiro’s lemma. Now o, is
surjective, so a.{3) =1 for some 3¢ Homa(L,.L)¢ = Homag(La.L). The
A splits the sequence 0 — L; — L =+ Ly — 0. This completes the proof of

claim.

Q4(G) is made into a commutative ring via the tensor product over A:
[L)[L,) = [L ®4 L1] where L ®4 L, is an AG-lattice with the diagonal

G-action.

The study of Q4(G) 1is based on the construction of a sort of numerical
character ®; of a permutation summand L, which permits the adaptation
of the usual character-theoretic methods. The values of ®; need not bein A,
but a certain cyclotomic extension Z' is necessary, which is how the arithmetic
enters. Here Z' is the ring of integers in a cyclotomic extension Q'/Q large
enough that it contains roots of unity of order the exponent of G. Let K’
denote the composite field KQ', andlet A’ be the integral closure of A in
K'. Let Ty denote the Galois group of K'/K and T'q the Galois group
of Q'/Q. Then restricting K-automorphisms of K' to Q' givesa group

monomorphism T'y — I'q.



By a triple of G over A, wemean (H.bp'), where p’ isa prime
ideal (always non-zero) of A’ so that if p is the unique prime number in
p’ then H isa p-nypoelementary subgroupof G and H/Oy(H)=(b) .
A subgroup H of G is p-hypoelementary if H/Op(H) is cyclic where
O,(H) is the largest normal p-subgroup of H.

&, associated to each permutation summand L, isa Z'-valued func-
tion on triples. The construction of ®; in §i.1 can be thought as a glob-
alization of “species” syp. formulated by Benson and Parker [BePa] [Bens],
on permutation summands of G over local rings. It is the foundation of our
study on Q4(G) through @; that these sy, with H varying over all
p-hypoelementary subgroups of G and b over generators of H/O,(H).
determine permutation summands over local rings Ap.  p € p, up to isomor-
phism. This result, due to Conlon [Conl}, is given a modified proof in §1.2, with
the essential use of the Green Correspondence.

The values of @®; in 2Z’ are not arbitrary at all. The Galois theoretic
properties (1.3) and (1.4) of the values of @ are however, sufficiently restrictive
that ®; may be viewed as an element of a certain ring of functions U4(G),
which is constructed in §1.3 and has a rather transparent structure (Prop. 1.11).
Then L +— ®; definesamap @ : Qa(G) —» U4(G) whichis a ring
homomorphism (1.10) and tells us about the ring Q4(G). This formulation
is analogous to the known description([TomD],(CRII|§80A) of the Burnside ring,
which we briefly recall now. The Burnside ring Q(G) is the Grothendieck ring
of the catego:y of finite G-sets with sums and products coming from disjoint
union and prodr-ct, with diagonal G-action. More precisely, Q(G) is defined
to be the quotient F/Fp, where F is the free abelian group generated by

symbols (S). one for each isomorphism class of finite G-sets S, and where



Fy is the subgroup of F generated by expressions (SUT) - {S)— (7). Then
Q(G) is an additive abelian group. Define multiplication on generators S),(T)
of F by (SNT)=(SxT) wherethe product S xT is given the diagonal
G -action. Fp 1is then an ideal of the commutative ring F. Thus Q{G) is
a commutative ring with identity.

To build U(G) we use the G-set of all subgreups of G under the
conjugation action, and, letting G act trivially on  Z. we define U(G) to
be the ring. under point-wise operations, of all G-set maps from the set of
subgroups of G to Z. Finally & : Q(G) — U(G) is defined by sending a
G-set X to the function ®x defined by @®x(H) = cardX". Then @ is
a ring monomorphism with finite cokernel annihilated by |G|, In fact, the image

of @ is known to consist of all f € U(G) which satisfy

(Congruence I1.1) Z f({H,g)) =0 mod (Ng(H) : H)
9ENG(H)/H

for all subgroups H of G.

Combining with (1.9)(b), we have the following commutative diagrain

QUG) —2 U(G)

(Diagram 11.2) l
Q4(G) —2— UVA(G),

where the left vertical map takes the G-set X toits A-linearization  A[X],

and the right vciticzl map takes f € U(G) to f € Ua(G), defined by

-~

f(H,b,p") = f(H).



Theorem A. There 1s an ezact sequence

CUAG) — Qa(G) = U A(G)

and the cokernel of ® 1is annthilated by |G|.

The proof of Theorem A is a sequence of technical results and can be
found in [WaWe](§4). We view the locally free class group Cl(AG) as the ker-
nel of the localization map HRo(AG) — [], Ko(4:G), where HRo(AG) (resp.
Ko(A4,G) ) is the Grothendieck group of the category of finitely generated pro-
jective left  AG modules (resp. ApG-modules). Each =z € Cl(AG) 1is of the
form r = [F]-[P] with F an AG-free and P projective in the same
genus. CI(AG) is finite by a theorem of Jordan-Zassenhaus [CRII)(39.13). It
follows from Theorem A that & has finite kernel and cokernel, which deter-
mines the Z-rank of 94(G) by that of U4(G), recovering the main result
of Dress{Drel}.

In general, the kernel of the map Cl(AG) — Q4(G) is contained in the
“kernel group” D(AG) of AG, [CRIIJ(49.34). In the case A = Z, we
even have ker(Cl{ZG) — Qz(G)) = D(ZG), by a theorem of Oliver [Oliv].
in a paper studying the kernel of the map Q(G) — Qz(G) of Disgram (I1.2).
However, D(AG) is too large in general [Oliv2].

Theorem A already makes it clear that this formalism enables us to ask more
delicate questions on the image of ®, namely characterizing the image of & in
U4(G) in analogy with the Burnside Congruence (I1.1) used to characterize the
image QG) 2, U(G). The following result demonstrates a class of congruences

on 9



Theorem B(Congruences). If q' s a prime ideal of Z' containing the

prime number q then

&, (H.b.p') = ®L(O%(H).by.p) mod q'

for any p -triple (H,b,p') of G over A.

Here O7(H) is the minimal normal subgroup of H so that H/Q(H)
isa ¢ -group, and by isthe g¢'-component of the element b.

Although these congruences are not strong enough to characterize the image
of &. they are used to study the prime ideal spectrum of Q4(G) and i
particuiar to show that the spectrum is connected. in contrary to the result on
the prime spectrum of Q(G) in [Dre4]. The connectness implies that Q4(G)
has no non-trivial idempotents in contrast to results on the Burnside ring Q(G)
[Glul] and [Yosh].

Theorem B, together witi. ‘s application, is proved in Chapter 2 of this
thesis. It generalizes the well-known congruences on fixed points of a  Q-set X

[Ser1]
cardX? = cardX mod ¢
fora g-group Q, inview of the Diagram (I11.2) whichhas ®x(Q) = card(X?).

In studying Q4(G) through the ring homomorphism & : Qu(G) —

U4(G), we proved the following induction theorem



Theorem C. The induction map nd : HeQa(E) = Qa(G) is surjective,

with E varying over the pseudo-elementary subgroups of G.

Here a group E is called pseudo-elementary of type (p,q), with p and
g (possibly equal) prime numbers. if it has normal subgroups E; C Ep so that
E, isa p-group, FEp/E; is cyclic, and E/E, isa g-group.

Theorem C i reiated to some induction theorems of Dress [Dre2]. [Dre3].
Its proof ((WaWe]§5) in this context is short and direct, by generalizing the proof

of Solomon’s induction theorem for permutation characters [CRIJ(15.10).

Theorem C has applications in the study of permutation lattices [GuWe].
It is known there that for a group G, which is not p-hypoelementary for
any p, thereexist two non-isomorphic G-set X,Y such that the correspond-
ing permutation lattices are isomorphic. The G-sets X.Y in [GuWe] depend
on the order of the class group Cl(AG). The following proposition provides a
constructive way for finding such G-sets without any obstruction when G is
non-pseudo-elementary. Two permutation summands L,L; for G over A
are called stably isomorphic if L & A[X] = L, ® A[X] as AG-modules for
some G-set X, which is equivalent to [L] = [L;] in the Grothendieck

group Q4(G) [CRII|(38.20).

Proposition.
(a) Two permutation AG-lattices  A[X], A[Y] of G-sets X, Y oare
stably isomorphic if

(*) cardXE = cardY E

for all pseudo-elementary subgroups E of G;



(b) Let G be any group which is not pseudo-elementary. Then we can con-
struct two non-isomorphic G-sets X, Y such that A[N] =~ A]Y] as
AG-modules.

Proof. (a) Since subgroups of E are still pseudo-elementary, conditions (*)
imply that the E-sets X, Y (restrictionof G to E) are isomorphic by the
injectivity cf the Burnside map @ : Q(E) — U(FE) for each pseudo-elementary
subgroup E of G. It follows that the restrictions respA[X] >~ resgA[Y], as
AE-modules, which clearly implies that [respA[X]] = [reseA[Y]] in Q4(E).
Now Theorem C ensures that the trivial module 1Z is expressible as an integral
linear combination of induced modules in Q4(G) as [1&) = ¥ pneindE(Lg]
for integers ng and permutation summands Lg for E over A. Multi-
plying the above equation by [A[X]] first and applying Frobenius reciprocity,
we get [A[X]] = Spneld[X]) - ind§[Lg] = Y preindErespA[X] - Lg] =
S pneindrespA[Y]- Lg] = 3 pnelAlY]]- ind€[Lg] = [4]Y]] as required.

(b) Choose 1 € G), the Burnside ring, so that & (E) = 0 for all
pseudo-elementary subgroups E of G but $.{7) # 0. Rewrite [r] =
[X1]) — [Yl]‘ in Q(G) for some G-sets X, Y7, andenlarge X; and Y)
by taking the disjoint unions with a common G-set S (if necessary) so that

(i). Every subgroup of G is the stabilizer of some point of X;US;
(ii). X;US contains two copies of the regular G-set (the one with the
trivial point stabilizer).
Letting X = X;US and Y =Y;US, wehave z=[X]-[Y] in QG).

Now 0 =&.(E)=cardXF —cardY¥ for all pseudo-elementary subgroups

E, but 0 # ®.(G) = cardX® — cardY® It follows that the G-sets X, Y

satisfy the conditions (%) of (a) and are not isomorphic G-sets. Thus, by



(). A[X] @ AlZ] > A[X] & A[Z] as AG-modules for some Gset  Z.
Now the permutation lattice A[Z] must be a direct summand of A[X)®) for
some k since X satisfies condition (i). And A[X] is an Eichler lattice by
condition (ii), for KG® isa direct summandof K[X] as KG-modules and
thus the endomorphism algebra End, K [X] is Eichler/4 ([CRII]§51A). It
follows from Jacobinski’s Cancellation theorem [CRII](51.28) that A[X] ~ A[Y]

as required.

Chapter 3 of this thesis is devoted to the study of characters of permutation
summands in the sense of Grothendieck groups. Let Ry({G) denote the group
generated by the characters of the representations of G over K. Thisisa
subring of the ring  A®(®)  of functions from the set cl(G). of conjugacy classes
of G, to A. Letting oy denotethe character ofthe KG-module K@alL,

then L +— @ defines a ring homomorphism
¢ : Q4(G) = Ry (G)

Combining with (1.4), we have the following commutative diagram.

Q4(G) —2— Va(G)

(Diagram 11.3) ¢l l
Rg(G) —— Ac(6)

T..2 right vertical map takes f € Ua(G) to f € ANG)  defined by f(g) =
f({g)) for g € G. From this diagram, we can prove (1.4 (a)) that the characters
@1 always take rational values, no matter how large the field K is. Define

RqQ(G) to be the subring of A generated by all rational valued characters



of G. Then the cokernel of ¢ :Q4(G)— Rq(G) is annihilated by the group

order |G|: Artin's Induction theorem gives
|G| 16 = chindgl for n. € Z
C

with C varying over the cyciic subgroups of G. For each \ € Rq(G), we
have |G|-x = Y o nc ind&(rescx) by Frobenius Reciprocity. Now each rescy
is a rational valued character of the cyclic group C , henceisa Z-linear com-
bination of permutation characters by [CRII)(76.6). Therefore rescx is in the
image of ¢ : Q4(C) — ﬁq(C). The transitivity of the induction then implies

that |G| x isin the image of ¢:Q4(G)+— Rq(G) as required.

The image of ¢, in the case A = Z, has been studied for instance in
[Ben?2], in the analogy that permutation lattices correspond to free modules and
projectives to permutation summands. It is no easy matter to describe the image
in this case because of Schur index probiems and very little is known about it
[Ben2].

However if we take the ground field K (with the integer ring A) big
enough, this is an accessible question, to which the chapter 3 is devoted. This is
carried out through the study of characters of permutation summands over local

rings.

Let £ be a finite extension field of Q, containing |G|,th roots of
unity, and let o be the integral closure of the p-adic integers Z, in &
Let Q,(G) be the Grothendieck group of permutation summands for G over
the local ring o0, and Rg(G) the group generated by the characters of rep-

resentations of G over R. Mapping each lattice to its character, we obtain a

10



ring homomorphism as 11 the glebal <ituation abhove:
¢ 2(G) — Ra(G)

This local image is characterized, in Proposition (3.7), as the subgroup Sp(G)
of Rgz(G) generated by induced characters indgx\ of p’-linear characters
). Here a linear character A is p'-linear if it is a group homomorphism
from H toacyclic p'-subgroup of £*. In the proofin §3.3, we show that
Q,(G) hasa Z-basis which is related to projective mcdules and is provided by
applying the Green Correspondenc: ‘o permutation summands. Proposition(3.7)
then follows from a characterizationin Rg(G) of virtual characters of projective

0G-modules.

It is clear that S,(G) is the sameforalllocal p-adic fields R, whenever
R contains |G|pth roots of unity. Thus the maximal unramified extens:on

Q" of the p-adic complete field Q, isa common ground for studying the

nr

»" can be obtained by

p-local images of ¢ for all finite groups G.
adjoining to Q, all the roots of unity of order prime to p. Letting RQg'r(G)
be the group generated by the characters of representations of G over Qp7,

then S,(G) is a subgroup of Rqp-(G). Now we have
¢ (G) - Ray(G).

How large are the images Sp(G) in RQ;r(G)? Answering this question mo-
tivates the following induction theorem on Rqp-(G). The residue field of Q"

is the algebraic closure of the finite field Fp, and the Brauer groups of finite

11



extension fields of Qp" are trivial [Ser2]. The unique faithful absolutely ir

ducible representation of the quaternion group Qs = {a.b:a* = b7 lab=a"")

is realizable over QJ" (but not over Q) by

2o 0 1 b [ @ w?
-1 0/ w? —w
where w is a 3rd root of unity so sutisfies w?® +w +1 = 0.

(Induction) Theorem D. Every QpT-character of a finite group G 15 a
Z-linear combination of induced characters {ind%¢}. where H<G and o

s one of the following types:

(1) ¢ 1isa p'-linecr character,
(i) p=2 and ¢ isthe product of e p'-linear character with a Q}"
character u of H suchthat H/keruy >~ Qgs, and u 1is the inflation

of the unique faithful irreducible 27-character of Qs.

Theorem D implies S,(G) = Rqy+(G) for odd prime numbers p, and
thus ¢ : Q(G) RQ;r(G) is surjective forodd p and R as above.

The characterization of the global homomorphism ¢ : 24(G) — Rq(G)
is then obtained, based on the local results, by a technique of gluing (virtual)
permutation summands of G over Ap for all relevant p to form a (virtual)
permutation summand of G over A. Since the Brauer group of Qp" is
trivial, we have Rq(G) C Rqpr(G). The main theorem on characters of permu-

tation summands states:

12



Theorem E. The image of ¢ : Qa(G) — Rq(G) is always contained in the
intersection of Rq(G) and S2(G) in Rqr(G). If K is big enough this

containment ts an equality.

The proof of Theorem E takes place in §3.4 and a direct consequence of it
1s:
Corollary. Assume K is big enough. Then ¢ Q4(G) = Rq(G) is surjec-
tive whenever G has no quaternion section. In general, the cokernel is annihi-

lated by 2.

This follows from Rgq(G) C Rq:r(G) = S2(G), by Theorem D, whenever G
has no quaternion section. The annihilator 2 comes from the following obser-
vation: if 6 is the unique faithful Q3" -irreducible character of @ thenitis
not virtual permutation, but 2.6, expressible as ind?l _ indgql, is a virtual

permutation character.

There are further questions which can be asked after Theorem E, namely,
given a y in Rqy (G), what are the restrictions on x to have it belong
to Sp(G)? The first case of this question is that of 2-groups. The last section

(§3.5) of this thesis is devoted to this atterapt.

The proof of the (Induction) Theorem D is completed i §3.2 by a careful
analysis of characters of (Qp", q)-elementary groups, with preparations in §3.1.
Theorem D is related to some work in [Fong], where an improvement (Theorem

9) of the corresponding result in [Soll] states:

Theorem 2 [Fong]. Let G be a finite group of order |G| = p°m, where p
is a rational prime and (p,m) =1. Let K = Q(¢m) if p is odd, and let
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K = Q((m. Y1) if p=2 If \ isan absolutely irreducible character of G.

then the Schur index mpy(\) of \ with respect to K 1s 1.

We can deduce this from Theorem D in the same way as Brauer's Induction
Theorem is used to prove that Q((g|) is a splitting field for \ [Serl]: let
v =3 .x% o€ Gal (K(x)/K) be the Galois orbit of y. It suffices to
show the representation affording 1 1is realizable over K. ¢ is HA-valued.
Since p isunramifiedin K so A is embeddableinto Qp". Thus ¢ is
a Qp-valued character. Now the Brauer group of Qp" is trivial, so s
realizable over Qp". Applying Theorem D to <" € Rqu-(G), we can write
¥* as an integral linear combination of induced characters ¢ = ), n.indglc),.
Since p'-linear charactersof G and,if p =2, the unique faithful irreducible
character 8 are realizable over A, all ¢; are realizable over KA. Thus

¥ € Ry (G), and it follows that ¢ is afforded by a K-representation from
[Ser1](Prop33).
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CHAPTER 1
The Homomorphism &: 24(G) — U4(G)

§1.1 Construction of &

Given a permutation summand L and a triple (H,b,p’) for G over
A, let iy : A" — A, be the inclusion of A’ in its completion at p’ and
let p=p'NA, Then the completion ring A, of A at p has the residue
characteristic p and Ap, L isapermutation summandfor G over Ap.

We use the notation M | N to indicate that ApG-module M s
isomorphic to a direct summand of an AyG-module N, and denote by My
the ApH-module which is the restriction of M to a subgroup H. Let M
be an indecomposable A,G-module. A p-subgroup D of G iscalled a
vertez of M if D is a minimal subgroup such that M | ind§L for some
ApD-module L. Here the Ap,G-module ind§L is defined as Ap,G ®4,p
L. If D isavertexof M and L is an indecomposable AyD-module
such that M |ind§L, then L iscalled a source of M. The following lemma

connects permutation summands to a familiar subject:

(1.1)Lemma. If M 1is a permutation summand for G over Ay, then M
is a trivial source module. More precisely, if M 1s indecomposable with vertezr

D then M s a direct summand of ind%(A,).

Proof. Each ApG-module is uniquely decomposed into a direct sum of inde-

composable modules. Let M be indecomposable with vertex D and source
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L. We must show that L 1is isomorphic to the trivial ApD-module  A,.
Since M is a direct summand of a permutation module and permutation mod-
ules are direct sums of transitive ones ind%(A,) or A,[G/H], it follows
that M | ind§(A4p) for a subgroup H of G. Mp | (ind§(4:))p =
@D\G/H indganI_l(Ap) by Mackey decomposition theorem, and L | M.

imply that L | indgmHt_l(Ap) for some coset DrH. Then
ind§L | ind$, g,-1{A4p) and thus M |ind§., y.-1(Ap).

Now the minimalityof D implies D= DnzHz™'. And L |indB_ ;. -:(4p)

implies L ~ A, as required.

Trivial source modules have been much studied via the Green correspon-
dence. In pa: ticular, it has been known since the work of Conlon [Conl] (sec
also [Dre2]) that they are distinguished up to isomorphism, in this case, by cer-
tain numerical invariants. These invariants were made explicit by Benson and
Parker [BePa], [Bens] in the form of “species” sy . Here H varies over
p-hypoelementary subgroups of G, with p the residue field characteristic,
and b varies uver generators of H/Op(H).

“V3¢ aumerical character ®; is obtained next by globalization of “species™.

Denote A, ®4 L by M for simplicity in the rest of the section. M
is then a trivial source A,G-module by the above lemma. We decompose the

restriction My of M to H as
My~MaeM',

where every indecomposable AyH-summand of M’ hasvertex Op(H), and

every indecomposable A,H-summand of M" has vertex properly contained
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in O,(H). by the Krull-Schmidt decomposition theorem and the fact that
O,(H) is the normal p-Sylow subgroup of the p-hypoelementary subgroup
H. Since O,(H) isanormalsubgroupin H, itacts trivially on indgp(H)(Ap),
hence trivially on M’ by (1.1). M’ is then an Ap[H/Op(H)]-module, so
b, agenerator of H/Op(H), acts Ap-linearly on the free Ap-module M’

We define
sy s(M) = trace of b acting on M'.

Now spys(M) clearly takes values in  Ap, which differs from the formulation
in [Bens], in that there sp (M) was claimed to take values in the complex field.

Furthermore, since |b|, the order of b, is invertiblein A, and Aj,
contains |bjth roots of un: “he action of b on M’ s diagonalizable over
Ap.. Thus the A, (b)-module Ay @a, M' has an Ap-basis  z1,..,7,
so that br; = Mz; for suitable |bjth roots of unity A; in A;,.. Then

A\i =1p(¢;) for a unique |[bjth root of unity (; in Z’. Setting

L(H,b,p') EC,

completes the construction.
(1.2)Proposition. i@ (H,b,p’) = sy s(A4p ®a L).

equality follows from the above definition of sy (M) because A; for @ =

1,...,r are just all the eigenvaluesof b in A;,.

The valuesof ®; in 2Z' arenot at all arbitrary, They satisfy the following

Galois-theoretic properties, “hick are proved in [WaWe] §2.
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(1.3)Lemma. Notation as above, we have

a) SL(HY.b9.p") =&L(H.bp") for geG

b) ®L(H,b,p') = @L(H,bY?) for o €Ty

¢) ®L(H,bp' ) = ®L(H,WVH O p) for o € Tq. where jy:Tq —
(Z/16]2)* s defined by Cfy = ¢ for all primitive [B|'"  roots of unity
¢y i Q.

There is still a further restriction. The next result is the starting one in the

study of characters of permutation summands.

(1.4)Lemma. Notation as above, let o denote the character of K 4 L.
Let H be a cyclic subgroup of G. Then

a) ¢r(h) 1s same for all generators h of H. We denote this common
value, which is in Z, by .. {H).

b) ¢ (H,b,p') 1isine :ndent of b and p'. We denote this common
value by ®p(H). We have @, (H)=ypr(H).

§1.2 Local Results

The references for this section are [Bens], [CRI](§20) and [CRII](§81B). We
first recall the Green Correspondence and then apply it to prove a theorem of
Conlon on permutation summands for G over the local ring A4p. Denote by
o the completion ring A, at p above the rational prime p for simplicity
in this section. Fix a p-subgroup D of the group G and a subgroup H
so Ng(D)CHCG. Set

X={X<G:X <DND? for some g € G— H}
YV={Y<G:Y<HND?I forsome g€ G- H}
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and observe
iy x<y, D¢)Y
i) YeYy=DnYe ~
Write O(X) for the class of o0G-modules all of whose indecomposable sum-

mands have vertices in X, and similarly O(Y) for the classof oH-modules.

Theorem(Green Correspondence). There ezist bijections f. g nverse to
each other, between =~ :lasses of indecomposable oG-modules with vertez D
and ~ classes of indecomposable oH-modules with vertez D characterized
by

i) Vpg~f(VYSE with E€O0(),

i) indGW ~g(W)8 E with E€0()).

Applying the theorem to permutation summands for G over o in the

special case H = Ng(D), we have

(1.5)Theorem. The correspondence M — f(M) induces a bijection between
the isomorphism classes of indecomposable permutation summands for G over

o with verter D and the isomorphism classes of indecomposable projective

o| N (D)/D]-modules.

Proof. Let Ng(D) = Ng(D)/D for short in this proof. Restriction and in-
duction take permutation (resp. permutation summand) modules to permutation
(resp. permutation - :mmand) modules. And a direct summand of permutation
summand is perm..ation summand. It follows from the Green relations i),ii)
above that the bijections f, ¢ take permutation summands to permutation
summands.

Now we can identify the isomorphism classes of indecomposable permutation

summands for Ng(D) over o withvertex D with the isomorphism classes
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of indecomposable projective o[Ng(D)]-modules as follows: if an indecompos-
able permutation summand M for Ng(D) over o has vertex D. then
M | indgG(D)o by Lemma(l.1). D < Ng(D) acts trivially on indgc(mo
hence trivially on M. M then can be considered as an o[N g(D)]-module
when M | ind?TG(D) 0 is projective. And vice versa, an indecomposable pro-
jective o[Ng(D)]-module, through the inflation Ng(D) — Ng(D), gives an
o[Ng(D)]-module which is an indecomposable summand of indgG(D)o and
thus must have vertex D by [CRII]J(81.15)(iii). The bijection follows from the

Green Correspondence and the above identification.

Let H be a p-hypoelementary subgroup of G with Op(H) = P.
hence H < Ng(P). Generators b of H/P are p'-elements in Ng(P)/P.
The “species” sy, on permutation summands are a generalization of (Brauer)
characters on projective modules of G over o (modular fields) as the next

result show.

(1.6)Lemma. Let M be an indecomposable permutation summand for G

over o with vertex D. Decompose the restriction of M to Ng(P) as
MNg(P) ~M M

where every indecomposable summand of M' has vertez containing P, and

every one of M' has vertez not containing P.

(1) If D= P wuptoconjugacyin G, then M’ 1isthe Green correspondent
f(M) and sup equals the value at b of the character @a  of the
projective  o[N p(G)]-module M.

(2) If D2 P wuptoconjugacy in G, then M'=0.
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Proof. (1) It is clear that M’ = f(M) by the Green Corresponderce. The
indecomposable summand of My with vertex P coincides with the indecom-
posable summand of (M')y. For vertices of indecomposable summands can only
drop, up to Ng(P)-conjugacy, on restricting to H [CRI)(19.14). And since
P acts trivially on M’ by Lemma(l.1) and P < Ng(P), the vertices of
{M')y areall P, alsobecause (H :P)#0modp.

It follows from §1.1 that sy = thetraceof b actingon M' = @©um(b)

as required.

(2) M |ind$o by (1.1) so every indecomposable summand of My (p) is

. . . N . Nc(P
a summand of (lnng)NG(p). Since (lnng)NG(p) ~ jD\G/A‘\"G(P)lndNG(P;nDGO’
the vertices of whose summands are contained in Ng(P)N DY and thus do not

contain P, we have M' =0 as required.

Recall that a projective 0[G]-module @ is determined by the character
¢vo of Ky®,Q and this character vanishes on p-singular elements (Swan'’s
theorem in [Ser1]). The next is the main theorem of this section due to Conlon.

The proof we adapt is a modification of [Bens).

(1.7) Theorem. Let M,N be permutation summands for G over o. As-
sume that sy p(M) = sys(N) whenever H 1isa p-hypoelementary subgroup
of G and b is a generator of H/Oy(H). Then M,N are isomorphic

oG -modules.

Proof. Since o is a principal ideal domain, permutation summands for G over
o are free o-modules. Proof by contradiction. Suppose M,N are counter
examples of minimal o-rank to the Theorem. Then there cannot exist an inde-
composable 0G-module which is a common direct summand of M,N. Write

M =@;M; and N =@&;N; assumsofindecomposables. Let P be maximal
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in the set of vertice of {M;.N;}. If P=1 then JM.N areboth projective.

Then equality of the character values

‘PM(C) = 5(:).(:(]”) = s(c).c("’v) = ‘PN((')

onall p'-elements ¢ in G, by (1.6) (1), impliesthat A >~ N. So to avoid
contradiction we must have P # 1, and to fix the notation, suppose that M,

has vertex P. Decompose
(Aflg‘)l\rc(p) ~ M: &\7 Al,-". (JVi)NG(P) ~ .N: 6*‘ A‘r'-”

as in the above lemma. Then M|, N} areeither { or projective o[Ng(P)] -
modules, by (1.6), because of the maximality of P. Denote M' = &;M],
M" = @;M! and similarly for N'’,N"”. Then M',N' are both projective
o[NG(P)]-modules and M’ is nonzero, because it has a nonzero summand
M| which is the Green Correspondent of M; by (1.6)(i).

For each p'-element b in Ng(P), let H be the preimage of (b)
under Ng(P) — Ng(P)/P. Then H is p- hypoelementary and H/Oy(H)
= (b) . It follows from (1.6) that sps(M) = pm(b) and sys(N) = pn:(b). '
The assumption on M, N implies that oum:(b) = on/(b) on all p’-elements
of Ng(P). Swan’s theorem quoted above implies that projective oNg(P) -
modules M',N' are isomorphic. Thus N’ has an indecomposable sum-
mand, say N{, isomorphicto Mj. It follows that the Green Correspondents
g(M!) = M;,g(Nj) = N1 are isomorphic. We find that M,N do share a

common indecomposable summand, contradiction.

Two AG-lattices L,L; areinsame genusif A, @a L ~Ap®a L, as

ApG-modules for each maximal ideal p of A.
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(1.8)Corollary. If L.L, are permutation summands for G over A such

that ®, = ®., on alltriples, then L, Ly are in the same genus.

proof. At each maximalideal p of A, we have sy p(Ap ®a L) =sus(Ap®a
L) by (1.2), for all p-hypoelementary subgroups H and all generators b
of H/Op(H). Ap@aL =~ A,@aL, as AyG-modules then follows from

Theorem (1.7) for each p, hence L,L; are in the same genus.

We conclude this section with an induction formula for calculating @®; of
an induced lattice L. This character-theoretic formula is used in proving the
technical part of Theorem A. Its proof can be derived directly by (1.2) from the

corresponding formula on “species” (see {WaWe](1.5),(1.6))

(1.9)Proposition. Notations as in §1.1, we have
(a) Jf L =indS Ly is an induced lattice, where G' 1is a subgroup of G
and L, is a permutation summand for G' over A, we have the
induction formula ®.(H,b,p') = ZIG’GG/G’ so HECG' &, (H*,b%,p').
(b) If L= A[X] isa permutation lattice for some finite G-set X, then
d.(Hbp)= card XH, whichis ®x(H).

§1.3 Construction of & :Q,4(G) — UA(G)

Proofs of the results in this section are in [WaWe|(§3).
Define G = (G xI'q x ') and make Gg act on triples (of G over
A )by

(H,b,p") @77 = (H, (b)), ("))
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with jg: T — (Z/|b|Z)* given by (1.3)c). To take account of (1.4), we define
an equivalence relation on triples by taking (H;.b;.p}) ~ (H.bp') if and only
if H = H; 1is cyclic. Equivalence classes of triples are called Triples and still
form a Gp-set.

Now letting Gr acton Z' by

I(g,a,a') — :roa"

we define Ua(G) to be the ring, under pointwise operations, of all Gp-maps
from the set of Triples (of G over A) to 2'. &, for a permutation
summand L, isin U4(G) by (1.3),(1.4). Therefore L — &; defines a map

®:Q4(G) — UA(G).

(1.10)Proposition. @ : Q4(G) — UVa(G) by Lw— &; s aring homomor-

phism.

To understand the ring Q4(G) through the homomorphism &, we
reed to know the structure of Ua(G). This is guided by the following gen-
eral mechanism: suppose II is a finite group, X is a finite IlI-set, B 1s
a commutative ring on which II acts. Let II; be the stabilizer of z € X
and B"s be the subring of elements in B fixed under II,. Then the ring
Homp(X,B), ofall II-maps from X to B, isisomorphic to the product
[1,B"= with z ranging over a set of Il-orbit representatives of X, hy
sending f € Homp(X,B) to (..., f(z),...).

A triple (H,b,p’) iscalleda p -tripleif H is p-hypoelementary but
not cyclic, and is called a cyclic triple if H is cyclic; note that this use of p
is unambiguous for if a group H is hypoelementary for different primes p, ¢

then it is cyclic: this is because H is abelian with all Sylow subgroups cyclic, as
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follows from the embeddingof H into (cyclic xcyclic) H/Op(H)xH/O4(H).
The same distinction applies to Triples, and we denote the cyclic Triple associated
to the cyclic triple (H,b,p’) simply by (H).

Clarifying Gp-orbits of Triples takes some formalism. By a pair of G
over A, we mean (H,p) where p is a prime ideal of A and H isa
p -hypoelementary subgroup of G with p the unique prime number in p.
A pair (H,p) isa p-pair if H is p-hypoelementary but not cyclic, and
is a cyclic pair if H is cyclic. Again we define (H;,p1) ~ (H,p) if and only
if H, = H is cyclic, and call an equivalence class of pairs a Pair. We let Gn

act on pairs by
(H,p)\"") = (H',p)

and consequently on Pairs. The Pairs above contain exact information to name
orbits of Triples.

Let (H,p) bea p-pair, and choosea generator b of H/Op(H). De-
fine 7y : Ng(H) — (Z/|b|2)* by b = b9 and set N(p) = cardA/p,
the absolute norm of p. Define T(y,) to be the preimage, under jy :
T — (Z/[b|Z)*, of the subgroup (im(ty),N(p)) of (Z/|b|Z)* generated
by im(ry) and N(p). Finally let A(yp) be the subringof 2’ which is
fixed by T'(g,p). Note that the above construction is independent of the choice

of b, since |bl=(H :Op(H)).
(1.11)Proposition.

(a) (H,b,p') (H,p), with p=p'NA, definesa Gx-map from triples
to pairs of G over A, called the type map. The preimage of a G -orbit

of pairs, under the type map, is a single Gx-orbit of triples. Similarly for
Type.

25



(b) There 15 a ring tsomorphism

B4 = [ 2 > ] Actim

(H) (H.»p)

with H ranging, in the first product, over a set of Gpr-orbit represen-
tatives of cyclic Pairs, and (H,p) ranging, in the second product, over a
set of Gy -orbit representatives of p-Pairs, for the possible primes p

(necessarily dividing |G]).

With the above result on the structure of U4(G), we obtain results on the
ring structure of Q4(G) as a consequence of Theorem A. We know that ker @
is a finite ideal of Q4(G) and that Q4(G)/ker® has finite index in the ring
U4(G). In particular, U4(G) has no niipotent element from (1.11) so  ker

is the nil radical of Q4(G) by the next result.

(1.12) Proposition. Let ¢ : Q4(G) = Rx(G) be the ring homomorphism: in
Diagram(I1.8), obtained by letting 1 = character of K@4sL. Thenin Qa(G)

we have the ideal equation (kery)(ker®) = 0. In particular, (ker ®)? =0.

Proof. ker® C kerp by Diagram (I1.3) in the introduction, since Ry (G) —
AMG) s inclusion, so we only need to show the first assertion.
This follows from Cl(AG) being a Frobenius module over the Frobenius

functor Rg(G), [CRII)(49.47). In particular, [V] € Ri(G) acts by
V1-([P]1-[Q) =L ®a P] - [L &4 Q),

where L is any AG -lattice on V. Tensoring with K gives a ring homo-
morphism Q4(G) — Rk(G) through which Cl(AG) becomes a Q4(G) -

module, and the map Cl(AG) — ker® isan Q4(G)-module homomorphism.
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Since kerp annihilates Cl(AG), by definition, it also annihilates its image

ker .
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CHAPTER 2

Congruences

32.1 Proof of Theorem B

Notations are the same as those used in §1.1. L is a permutation summand
for G over A. Let ip:A"— A, be theinclusionof A’ inits completion
at p'. If p=p'NA, then the completionring A4, of A at p hasthe
residue characteristic p, and Ay,®4L, denoted by M for simplicity in this
section. is an ApG-module with trivial sources by Lemma(1.1). (H,b,p’) is
a p-triple of G over A. H isahypoelementary subgroupof G and so
are any subgroups of H. Op(H), denoted by P in this section, is the largest
normal p-subgroup of H; if ¢ isa primenumber, O H) isdefined as the
minimal normal subgroup of H sothat H/OY(H) isa g-group. We obtain
a p-triple (OY(H),by,p') fromthe p-triple (H,b,p') with by denoting
the ¢'-part of the element b. Let ¢q be a prime ideal of Z' containing

the prime number gq.

The proof of the congruence
®L(H,b,p') = 2L(0(H), by, p) mod ¢’

of Theorem B is based on the construction of ®; in §1.1 and it is divided .1t

two cases according to whether the prime numbers p, ¢ are equal or not.
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Case 1: p#q 0O,(0%(H)) is clearly equal to Oy(H) = P in this case.

Decompose the restriction My of M to H as
My ~ M & M”,

where every indecomposable ApH-summand of M' hasvertex P, and every
indecomposible ApH-summand of M" has vertex properly contained in P.

Then it follows from the construction of &®; in §1.1 that
ip®L(H,b,p') = spp(M) = trace of b acting on M".

On the other hand, by the transitivity of the restriction, the resiriction of

M to O9H) has the decomposition

Moany = Mpeipy ® Moacay

from the above decomposition of Mpy. Since every indecomposable AyH -
summand of M' isan ApH-summand of indB(4,) by (1.1), every inde-
composable A,0%(H)-summand of the restriction Mbq(H) isan A,O%(H)
-summand of the restriction (ind8(Ap))oe(n) =~ @p\y/oq(y)ind,o,q(H)(Ap) frorr
Mackey decomposition, hence has vertex P; since the vertex can only drop af-
ter the restriction, every indecomposable A,0%(H)-summand of the restriction

gq( H) has vertex properly contained in P. It follows from the construction

of ®; in §1.1 appli-i to the triple (O(H),by,p’) that
ip®L(0(H), by 0') = soa(n) b, (M) = trace of by acting on M.

for any generator by of O%(H)/P.
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Since b, is the g¢'-component of the element b, b9 = b;‘f for
some integer @ which is a power of g¢. If the action of b on A’ has
eigenvalues Aj,...,Ar In A;, , then b° = bg on M’ has eigenvalues
/\?,...,A?. Letting & be the preimage of A; under iy : A" — AL, then
S (H,bp, =>,¢ and @ (0YH), bQ =3, €9 from the definitions in
§1.1. Therefore

®L(H.b.p') Zf- =362 =2,(0%(H),b2.p") mod ¢’

where the middle congruence above follows from the residue field 2Z'/q" having

characteristic q.

Since by, b?, both are generators of O%(H)/P, the same argument as

above by using eigenvalues of the actions of by, b2

g on M will give the

congruence
&,(0%(H),by,8")Q = 8,(0%(H),b3,p') mod q'.
Combining the above congruences, we obtain
®L(H,b,p')? = @L(0(H),by,p")? mod ¢"

Since the field Z'/q’ has characteristic ¢ and @ 1isapowerof ¢, we have

the following required congruence
@1 (H,b,p') = BL(0(H),by,p') mod ¢,
which proves the Theorem B in the case p # q.

To complete the proof of Theorem B, we need a structure theorem on per-
mutation summands for nilpotent groups over the local ring A, from [Weis),

where permutation summands are called permutation projective.
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(2.1)Proposition. Let M be an indecomposable permutation summand for G
over A,, and let G bea nilpotent group written as G = G,Gp, where
Gy, Gp 15 the largest normal p, p'-subgroup of G respectively. Then there

ezists a subgroup D of Gp and an irreductble AyGp-lattice N so that
M=~ N ®a, indo? (Ap)

Here N, indg’(Ap) are considered as G-modules by inflating through G —

Gy, G — 7, respectively, and the tensor product is given the diagonal G-aciion.

Proof. The proofs in [Weis|§2 work for  Ap  in place of Zp.

Case 2: (proof of Theorem B) p=gq

We start by analyzing the group structure of OFP(H). Since H/P is
a cyclic p'-group, P has a cyclic p'-complement C i H and thus
H = PC. Denoting PNOP(H) by Q, then @ isanormal p-subgroup
of H because P =0,(H) and OP(H) arenormalin H. The injection of
OP(H)/Q into p'-group H/P=~C impliesthat Q isthe maximal normal
psubgroup of OF(H) and |OP(H)| < |@Q|-|C|. On the other hand, the
homomorphism C — H — H/OP(H) of the p'-group C to the p-group
H/OP(H) implies that C C OF{(H). It follows from above that |OP(H)| =

7| and therefore OP(H) = QC.

Now P/Q isthenormalSylow p-subgroup of H/Q, and OP(H)/Q(x~
C) is a normal cyclic p'-subgroup of H/Q. This implies that H/Q =~
P/Q x OP(H)/@ and, in particular, that H/Q is nilpotent.

We decompose, this time, the restrictionof M to H as

My~M o M'eM/
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where every indecomposable Ay H-summand of M’ hasvertex P as before;
every indecomposable ApH-summand of M| and M} has vertex properly
contained in P with vertices of summands of M containing @ while ver-
tices of summands of M) do not contaln Q. From the construction in §1.1,

we have
( ) 1p®L(H,b,p') = sps(M) = trace of b acting on M'.

On the other hand. by the transitivity of the restriction, the restriction of

M to OP(H) has the decomposition
Mor(ny = ( Mop gy & (M )orry ) & (My)orcn).

Every indecomposable Ay H-summand of M’ isan Ay H-summand of ind;f(Ap)
by (1.1). Thus every indecomposable A,OP(H)-summand of the restriction
or(y» IS an ApOP(H)-summand of the restriction (ind{(A4,))orn) =~
@P\H/op(y)indgp(H)(Ap) by Mackey decomposition as P isnormalin H and
PNOP(H) =@, hencehasvertex Q. The same argument above will imply that
every indecomposable ApOP(H)-summand of the restriction (M) )or(y) has
vertex @ because vertices of ApH-summands of M; contain Q. Since
the vertex can only drop after the restriction, every indecompos:.! le ApOP(H) -
summand of the restriction (Mj)or(n) has vertex properly containedin Q. It
follows from the construction of @ in §1.1 applied to the triple (OP(H),b,p’)

that

( #% ) ip®L(OP(H),b,p") = sos(u)s(M) = trace of b acting on (M’ & MY').

32



After cancellation of the trace ~f b acting ou M’ from the right hand
sides of equations (#).(**), the proof of Theorem B in this case amounts to

establishing the

Claim: The preimage under i, of the sum of eigenvalues of the action of b
on M! isin Z' andis = 0 mod ¢’

Assume M!' #0 so Q C P . Since Q < H acts trivially on M by
Lemma(1.1), M/ can be considered as Ap[H/Q]-module. Applying Proposi-
tion(2.1) to Ap[H/Q)-module M. we have

My =3 NS4, indg/?(4p)

for some Ap(b) -lattices N; and some p-subgroups D, of P/Q. From
the proofs in [Weis). these D; are vertices of indecomposable Ay H/Q -summands
of M}'. But vertices of ApH-summands of M,’ are properly contained in
P by the definition of Mj', so D; must be properly containedin P/Q. We
have |P/Q :D;| =0 mod p.

T ihe actionof b on N; haseigenvalues A;., ... Ay in A;,,, then
the actionof b on N; T4, indID){Q(Ap) has eigenvalues A;, ,.., A;, with
|P/Q : D,| repetitions for each X;,. This is because N}, indg{Q(Ap) are
considered as H/Q-modules by inflating through H/Q — (b), H/Q — P/Q
respectively, and the tensor product is given the diagonal H/Q-action.

Letting £;, bethe preimagein A’ of X;, under ip:A'— A, then
the preimage of the trace of b on N; @4, indZ{Q(Ap) is |P/Q : Di{(&, +
... + &.). Therefore the preimage under i, of the sum of eigenvalues of the

actionof b on M| >3 . Ni®a, indZ{Q(Ap) is

" IP/Q : Dil(&, + ...+ €,) =0 mod pZ'".

33



This proves the claim and completes the proof of Theorem B.

§2.2 The Spectrum of Q4(G)

Recall that if C 1is a cominutative ring. then the spectrum of C, de-
noted Spec(C). is the set of prime ideals of C made into a topological space
by declaring the closed subsets to be V(S) = the set of prime ideals of C

containing S for any subset S of C [Bour].

We want to examine the spectrum of the ring $24(G) and show that

Spec(Q.4(G)) is connected by applyving the congruences of Theorem B.

Let Tg(A) be the set of the Triples for G over A4 defined in §1.3.
Thering (Z')T¢(4)  (copies of 2') can be identified with the ring of all m..ps
on Triples with values in Z’. Then U4(G) is the subringof (21764} con-

sisting of all Gp-maps (§1.3).

Since the ring homomorphism @ : Q24(G) — U4(G) has a nilpotent
finite kernel from Proposition (1.12), it induces the homoeomorphism &~1! :
Spec(im®) — Spec(Q4(G)) . And since (Z2')7¢(%) has finite Z-rank, the

ring inclusions im® C U4(G) C (Z2")7¢{4)  are integral extensions. Therefore
Spec((2')Te(A)) Eeingdown o im @) 2, Spec(R(G))

is surjective ([Bour]chlI§4).
On the other hand, we know Spec(Z’) consists of the ideal 0 and the
maximal ideals of Z’'. Moreover, if M is maximalin Z’', the field Z'/M

is finite; its characteristic is called the residue characteristic of M.
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The spectrum of (Z')7¢(4)  can be identified with Tg(A) x Spec(Z’) :
with each T € TG(A) and each M € Spec(Z’) we associate the prime ideal
My consisting of those f € (2')76{4) such that f(T) € M. The image of
My in Spec(Q4(G)) is the prime ideal Py 1 corresponding to the prime

ideal MrNim® in im® by &7, ie
Pur={z € Qa(G): ®(T) € M}.

Because Spec((Z')Ts(A)) — Spec(Q4(G)) is surjective, each prime ideal of

Q4(G) is of the form P 1.

Recall that if X is a topological space, then the closure {r} of a single
point z is always connected. Moreover, if E, F are two connected closed
subsets of X with non-empty intersection then the union EUF is counected.

We will prove next the connectness of Spec(£24(G)).

(2.2)Proposition. With above notation, then

(1) Por CPumrT;

(2) If M is a magimal ideal of Z' with the residue characteristic g and
T = (H,b,p') 1is a Triple, we denote the Triple (O(H),by,p") (cf.
§ 1.1) by T? Then PpmT1 = PpmT9;

(3) Spec(4(G)) is connected.

Proof (1) Por = {z € Qa(G) : (T) = 0} C {z € Q4(G) : .(T) € M} =
Py s

(2) follows from the congruence &.(T) = ®.(T!)modM for z € Q4(G)
of Theorem B: r€ Pyr — @, (T)eEM —— ®,(T) € M «— z € Py 19.
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(3)Let C be the connected component of the point Py (3) in Spec(24(G))
where (1) is the cyclic Triple of the trivial subgroup. It suffices to show that
any point Pp 7 in Spec(Q4(G)) is contained in C.

We proceed by induction on the order of the subgroup H appearing in
the Triple T = (H,b,p’).

In the case |H| =1, the closure m is the set of prime ideals of
Q4(G) that contain Py (1). It follows from (1) that Ppy ) € {—}_’m cC.

Suppose now T = (H,b,p’) and H is nontrivial. Since H is solv-
able, there exists a prime number p; such that OP'(H) C H. Let Al be

a prime ideal of Z' containing p;. From (2) above, Pp, 1= Py, 7r1; and

Py, = Pyy e € {Por} N {Porr} follows from (1). Therefore (Por} U
{Pore:} is connected. The induction hypothesis on |OP'(H )| of the triple
TP = (OP*(H),b,,,p') implies that Pp, 750 € C. Since the connected compo-

nent C isthe maximal connected subset of Spec(Q24(G)) containing any point

in it, the connected subset {Por}U{Pore1}, which contains Ppy, e (€ C)
must be contained in C. Therefore, Py 1 € {Por} C C, which completes

the proof.
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CHAPTER 3
Characters of Permutation Summands

Over Big Number Rings

§3.1 Qp"-characters of Small Groups

We first give some notations concerning twisted group algebras. f F' isa
field and G is a group, we use FG or F[G] to denote the group algebra. If
A is a normal abelian subgroup of G with quotient H, letting {up : h € H}
be a set of preimages of H in G, thenrelations up, us, = f(hi, ha)up,p, In
G define a factor set f: H x H— A. “Ve shall define an algebra heZH(F A)uy

havinga FA-basis {us : h € H}. The operations are to be manipulated accord-

ing to formulas
up-a = (hah™up, up-up = f(h, R upp, a€ A, h,h' € H.

If we denote the algebra constructed above by FAoH, then there is an algebra
isomorphism

FG ~FAo(G/H).
When the group extension G of H is split, we choose a trivial factor set f.

(3.1) Lemma. If G=CxD with C cyclic of order p"(n>1) and D
acts faithfully on C then

(a) C has unique subgroup Cp of crder p;

€2
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(b) G has a unique QpT-trreducible character 6 on which C, acts
nontrivially;

(c) 8|c is the unique faithful QpT-irreducible character of C,
(1) =p"(p-1);

(d) 6 is e virtual permutation character.

Proof. a) clear.

arf ~ Qe X1 _QpT(X] . _QpT(X] . e Beriainde
b) Qp[C]~ ooy = (X."f‘“-—l) @ (<b:n(.\’)) by the Chinese Remainder
Theorem. The cyclotomic poiynomial @p+(X) is irreducible in  QpT[X] by
the Eisenstein criterion, so (32%1)-)_ ~ Q"'[Cpn] Thus
P'l
nr nr C nr
P [C] = Qp [b—p] x Qp (CP")‘

The group algebra Qp7[G] is then expressed via twisted group algebras in the

notation above as

Qzr(6) = QyiClo D = (Q) [ ] x Q5" (Gn ))eD=@Qy" [%] x Q" ((pn) 0 D

The Qp"[Gl-irreducible module with non-trivial C, action arethe Qp7((pn)o
D-modules. D isembedded in Aut C ~ (Z/p")* =~ Gal (Q}7((pn)/Qp") so
it acts on Qp"(Cpn) by Galois action. If F is the subfield of Qp"((pn)
fixed by D, then Q)7 ((pn) ~ (Qr(¢)/F, 1), the cross-product
algebra with trivial factor set ([Rein] (29.1)) coming from the split extension
G=CxD. Qp"((p)oD isthenasimple algebra([Rein] (29.8)). We can make

» (Cpn) intoa Q3" (Cpn) 0 D-module by letting Q;"(¢pn) act by multipli-
cation and D by Galois action. This module is simple because Qp"((pn) isa

field.
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(c) 6(1) = degquQ(Gm) = p"I(p—1) and 6l is afforded by
Q;"(Cpn), whichis the unique faithful Qg"-irreducible module of C.

(d) Write indg”xDl =1lc,»D + a, with a a proper character and con-
sider inngnDa. Now ind§1 = indgpxol + indgpra and C, actsnon-
trivially on indgl, trivially on indgpx pl, hence non-trivially on indgpx Do
so 6 isa QpT-constituent of indgp,‘,Da. But (indgp”Da)(l) =
[G:Cp x Dla(l)=p"'-(p—1)=6(1). Hence 6= indgp,,r,a is a difference

of two transitive permutation characters.

(3.2) Remark. Much of (3.1) holds for any field of characteristic zero which has
discrete valuation with prime element p (so the Eisenstein criterion applies),
even when the group extension C » G —» D is not split. Thus (a),(b) are true
as stated and (c) can be replaced by the inequality 6(1) > p" " Yp—1). Thisis
because QpT((pn)oD s still a simple algebra and its simple module, being acted
on by the field Qp7(Cpr), has at least the dimension dianF,Q;'((pn). The
equality actually holds for Qp" if we use the fact that the Brauer of Qp" s

trivial. But for the latter use, the inequality is sufficient.

(3.3) Lemma. Each QjT-irreducible character x of G1 x G, s a product
of Q;'-irreducibles x, of Gi with x, of Gz, whenever
ged (1Gh},1G2]) = 1.

Proof. Suppose Qp7[Gi] ~ @ Mqn(Di) for i =12 are the Wedderburn

decompositions and x; isthe Qp’-irreducible character corresponding to the

simple component My, (D;) for i=1,2. We have

QY(G1 x Ga) = Q[G1] @ Q)"IGa] = @) (M, (D1) @ My (D2).

n,n2
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It suffices for us to show that each M, (D;) & Mn,(D2) is a simple ring, for
the above then gives the Wedderburn decomposition of Qp"[G1 x G2} and each
;'-irreducible character x corresponding to a simple component of the form
M, ,(D1) @ My,(D;) must be the product x, x,.
Since the Brauer group of any finite extension of Qp" is trivial, Dy, D
must be the centres of My, (D), Mp,(D2) and thus D; is the character field
KRi=Qp"(x;) [CR]for i=1,2. Now  ged{|Gil,|G2!) =1 implies that

Q;" C KiNK2 € Q) (Cay) N Q" (Gaz) = Q-

Let K;KR, be asubfield generated by K,,K, in a fixed algebraic closure of

aro I {vi,...,v¢} isa basis of the vector space K, over Qp", thenitis
abasisof AR, over K; because Gal (K;R3/K;)~ Gal (K2/K1NK,) >
Gal (K2/Qp7) implies dimqn- K2 = dima, KiK. Now K ®qp-K — KK,
by f:c,- Q v; — ic;v,- is an isomorphism. Hence K; @ Rz is a field, which

=1 i=1
implies

*Mnl (Dl) @ A{nz(D2) = Mnlnz(Dl @ DZ) = A!n;nz(l\’l @ I\’Z)
is a simple ring as it is wanted to be.

Remark. The proof of (3.3) holds for any characteristic 0 field with trivial

Brauer group.

The rational characters of p-groups have been studied in [Feit], {Rasl],
[Ford]. All are based on a result of Roquette [Feit] (14.3). The following result is
not new, and we give it a self-contained proof for the sake of completeness. Recall

that Rqp-(G) is the group generated by all Qp" — characters of G.
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(3.4) Proposition. If G is a p-group then Rqp-(G) 1s spanned by
(a) permutation characters; and
(b) if p=2, allinduced characters of the form indGu with p inflating
the unique faithful Q3" -irreducible character 6 of H/ker y=Qs, the

quaternion group of order 8.

Proof. Foreach QpT-irreducible character 1, write ¢ = ind§p sothat p
is QpT-primitive (i.e. p isnot induced from a Qp"-character of a proper
subgroup of H). Then H/ker p has a faithful QpT-irreducible character
p, whichis Qp"-primitive so the following claim applies. If H/ker u isthe
cyclic group C, of order p, then its faithful Qp"-character is expressible
as indc“’l - indg" 1, hence u = 1ndker W= ind?1. It follows that ¢ =

indGu = indg, ,1 ul— ind§j1. Otherwise we have p=2, H/ker u=@Qs and

i is the inflation of 6. We are left to prove:

Claim. Suppose G isa p-group and has a faithful irreducible Qp"-character x
which is Qp"-primitive. Then G s either cyclic of order p or p=2 and

G 1is the quaternion group Qs of order 8.

Praof of Claim. Let A be an abelian normal subgroupof G, andlet n be
an irreducible Qp”-constituent of resGx. Then 7 is G-stable because x
is primitive, and x is a constituent of ind§n [Isaa] (6.11). Now ker n 4 G,
by n G-stable, so ker n acts trivially on ind$7n, hence on x. Then
ker n =1, by x faithful, so 75 is faithful on abelian group A. Thus A
is cyclic.

We have just shown that every abelian normal subgroup of p-group of G

is cyclic. By group theory ([Gore] Thmb5.4.10) either G iscyclicor p=2 and
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G is dihedral, semidihedral, quaternion. We are now going to analyze 1y case
by case.

If G iscyclicof order p™ thenthe QpT-irreducible character \ on
which G, (the cyclic subgroup of order p) acts nontrivially, is unique and
has degree p"~!(p—1). If £ is this character of degree p—1 for G, then
Gp acts nontrivially on the induced character 1. igpf. So 1 isa constituent
of indgpﬁ. Comparing degrees gives x = indgpf. Since y is primitive, it
follows that G = G, 1is cyclic of order p, which is the first possibility the
claim names.

Thus p=2. If G is dihedral or semidihedral then G = C x (z) with
r? =1, C cyclic so the earlier Lemma(3.1) applies and shows that y ix the

unique nr-character on which C; acts nontrivially and ) has degree

P
1|G|. But G has a subgroup H = C; x (r) which has the degree 1 char-
acter a which is non-trivial on C; and has a(z) = 1. Hence C, acts
nontriviallvon ind§a. Then x isaconstituentof ind%a and comparingde-
grees again gives x = ind§a. Since x isprimitive, wehave G = H = Cyx(r)
and x =a. Now x isfaithful,so G = C; is the cyclic group of order 2.
Finally G is a quaternion group. Now C »— G —» (y) with y? =1
is non-split but the earlier Remark(3.2) still gives the uniqueness of x and
x(1) > 1|G|. Moreover G has the quaternion subgroup Qs. If 6 is the
unique faithful Qp7-irreducible character of Qs, then C; , the order 2
subgroup of C , acts nontrivially on indgsﬂ. Therefore x 1is a constituent
of indgso. Comparing degrees gives x = indgaﬂ. Primitivity of x again

implies G=Qs and x =6, which proves the claim.
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3.2 Proof of (Induction) Theorem D
With preparations in §3.1, we complete the proof of the following theorem.

Theorem D. Every Qp"-character of a finite group G tsa Z-linear com-
bination of induced cheracters {ind§; ¢}, where H is a subgroup of G and

¢ 1is one of the following type

(i) ¢ isa p'-linear Qp"-character,
(i) p=2, ¢ 1is the product of a 2'-linear Q7 -character with a
nr_characteru of H such that H/ker p = Qs., the quaternion group
of order 8, and p s the inflation of the unique foithful irreductble

Q3" -character of Qs.

Proof. The Witt-Berman Induction Theorem [CRI] (21.6), applied to the char-
acter ring Rqpr(G), asserts that every virtual character in Rqp-(G) is a
Z-linear combination of induced characters of the form indglp, where G,
isa (Qp",q)-elementary subgroup of G for some rational prime g, and g
isa Qp"-character afforded by a simple Qp"G;-module. By transitivity of in-

duction, Theorem D follows once we establish it for all (Qp",g)-elementary groups.

The (Qj",g)-elementary groups are of the form (z) » @ where (z) is
acyclic ¢'-group, Q isa g-group and Q actson (z) asfollows: thereisa
monomorphism j : Gal (Q;r(Cm)/Q;r) — (Z/|2|Z)* defined by (7= CIJ;E(IU)
with (|;| a primitive |r|th-root of unity, and the action of Q on (z) is
such that foreach u € Q, uzu™! =2/ ® forsome o € Gal (Q;'(C],l)/Q;’).

The (Qj",q)-elementary groups are split into two cases a~cording to

whether ¢ isequalto p ornot.
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Case 1. g=p (Qp".p)-elementary groups must be elementary (r)x P, be-
cause Qp" contains all p-roots of unity and thus triviality of
Gal (Qp"(x)z)/Qp") forces a trivial action of P on (r). If x isan irre-
ducible Qp"-character of G = (z) x P, then x is a product of irreducible
Q" -characters x, of () with x, ofthe p-group P by Lemma (3.3).
X, Iis necessarily a p'-linear QpT-characterof G. For 1y,, from (3.4), it
is a Z-linear combination of induced characters indﬁ Y, where ¢ is a
trivial character or equal to th. character y which inflates the unique faithful
27-irreducible character of Qs. It follows that y isa Z-linear combina-
tion of cha.acters x; -indﬁ,z/; = ind’;‘(resxl +1). So Theorem D is established

for (Qp",p)-elementary groups.

Case 2. q # p. Using the decomposition = = rpzr, of elements of G into
p-,p'-parts, we can write the (Qp",qg)-elementary groupas (z)xQ = ({r, -
(zp)) x Q. Since Qp" contains all p'-roots of unity, @ must act trivially

on (rp). Therefore

(z) % Q =~ (zp) x ((zp) % Q).

An irreducible Qp"-character x of (zp) x ({z;) x Q) is then a product
X,X, by Lemma (3.3). x, isa p'-linear character of (xp), and x,,
by the following Lemma (3.5), is a Z-linear combination of induced charac-
ters ind(,:”)”qp with p'-linear Qp"-characters u. Thus x isthe Z-linear
combination of induced characters x -indgp )”Qp = indg”)”q(resx 1 4), with

p'-linear characters resy; - u.

Tn complete the proof of Theorem D, we are left to show that:
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(3.5) Lemma. Suppose G =CxD with a cyclic p-group C anda p'-group D.
Then every irreducible Q;'-character x of G 1isa Z-linear combination

of induced characters indg¢' of p'-linear p -characters ¢.

The proof of Lemma (3.5), given below, is based on a Theorem of Clifford
and a result on extension of characters, which are stated next for the reader’s

convemniences.

Clifford’s Theorem. Let H <G, n€ Irrqu-(H), and T =Ig(n). Then
¥ ind$y  induces a bijection from the set {y € Irrqup-(T) | (resy¥,n) # 0}

to the set {x € Irrqp+(G) | (resy x,7) # 0}.

The proof in [Isaa] (6.11) works for characters over any field of characteristic

Zero.

Extension 7 ~m ([Isaa) (11.22)). Let N <G with G/N cyclic and let
n be an ab.  tel irreducible character which is invariant in G. Then 7 s

extendible to G.

Proof of (3.5). If x has nontrivial kernel K, then it gives a faithful and
irreducible Qp"-character X of G/K. The lemma follows once we establish
the result for X. So we may assume that x is faithful.
If C is trivial, the lemma follows from Brauer’s Induction Theorem as
p" contains all p'th roots of unity. Let |C| = p", n > 1. The kernel
of the homomorphism D — Aut C is Cp(C), and the image of D is
necessarily a p/-subgroup of Aut C, hence is cyclic.
Denote Cp(C) by Do andlet H = C xDy. Then H is normal
and G/H >~ D/D, is acyclic p'-group from the last paragraph. Letting 75

be a Qp -constituent of res; x, then n=¢p with £ € Irrqp-(C) and
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TS Ier;r(Do) by Lemma (3.2). As x isa Qp"-constituent of ind§n, by
Frobenius reciprocity, so ker £ acts trivially on ., for ker £ is normal
in G and therefore acts trivially on indgn. Since x is faithful, we have
ker £ = 1. Then ¢ is the unique faithful Qp-irreducible character of C,

hence its inertia group is G. Let D, = Ip(u) = {t € D: p' = u}. Then the

inertiagroup T of n=§-u is
T =1g(n)=I1c() NIg{p) =GN(C xDy)=CxD.

Applying Lemma (3.1) to C x (D;/Dy), we obtain the unique faithful
character 8. Thisis an extension of £ and is a virtual permutation character.
Letting E be the inflation of @ through C x D; — C < (D;/Dg), then the
Q; -character 2 of T is an extension of € and is a virtual permutation
character. On the other hand, since D;/Dg 1is cyclic p'-group and »
contains all p’th-roots of unity, the Extension Theorem applied to u and
Do < Dy asserts that u has an extensirn g in Irrqp- (D). Denote the
inflation of & through C x D, — D; stilby pg. Then pue€ Irrqn- (T) s
an extensi..n of u. Combining the above, 7 = (-pu has an extension £~ -,
denoted by 77, to its inertia group T.

Frobenius reciprocity gives indhn=7-ind%1 lecause res, 77 =mn. Let
ind}.}l = ;A be the decompositioninto Qp™-irreiusivles from the correspond-
ing decomposition of ind?/ Hjy. Since T/H i a-=yv-iic p'-group and i
contains all p’th-roots of unity, these \; are necessarily p'-linear chiacters.

Products #-); mustbe Qp7-irreducible because A; is one-dimensional and

7 is Qp'-irreducible. Therefore
indhn =7 ind51 = )
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is the decomposition of indIT,r] into  Qp"-irreducibles.

Noweach v € {v € Irrqy-(T) | (n.res,v) # 0} isa Qp-constituent of
indhn by Frobenius reciprocity and thus is one of the 7\; from the last para-
grapk. The quoted Theorem of Clifford, applied to x and 17, gives that

x = ind$v fora ¢ in {vE€ Ier;r(T) | (n.res, v) # 0}. Therefore

x = indG(7X) = indG(EEN) = ind§(€- )

-~

where ¢ is a virtual permutation character, A; is a p'-linear character
and [ isan inflation of a Qp7-character of the p'-group D; andthusisa
Z.linear combination of induced characters of p'-linear characters by Brauer's
Induction Theorem. The lemma then follows from Frobenius reciprocity as in the

first paragraph of Case 1. The proof of Lemma (3.5) is completed.

§3.3 Image of ¢ : Q(G) — Rga(G)

Let £ be a finite extension field of Q, , and let o be the integral
closure of the p -adic integers Z, in K. In this section, we always assume
that R contains the |G|pth roots of unity.

Let P,(G) be the Grothendieck group of the category of finitely generated
projective  0G-modules. The homomorphism e : Po(G) — Rg(G) is defined
by sending each projective to its R-character [Ser1]. The following lemma on
the image of e is due to Brauer and the proof given below is basically the same

as that of in Lemma 1 of [Fong].
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(3.6) Lemma. The image of ¢: PyiG) — Rg(G) 1s the subgroup generated by

induced characters ind%. A\ of linear R-characters X of p'-groups P'.

Proof. Itis clear that each: ind$. A isin theimageof e. as P’ isa p'-group.
Let £, with the integer ring o', be an extension field of & obtained by
adjointing the |G|pth roots of unity. Then 1 = Iin; indgi/\,- in Rg(G).
by Brauer's Induction Theorem, with elementary groups E;. Assuming that
is in the image of e, then it can be expressed as x = In; ind‘gi(z\.- resg. X ),
and each \;-resg x isin the image of e: Po(E;) — Rga (E;), because the
tensor product of an o' E;-lattice with a projective o’E;-module is projective.

Let E denote any one of the elementary groups E; . Write E = P x P’
as a product ofa p-group P anda p'-group P'. Each projective o'[E]-module
is isomorphic to 0'[P] & W by [Serl] (15.7) for some o'{P'|-lattice W', and
A PI@ W =~ indE, W by Frobenius reciprocity. Its character is ind& \ . -
Now x, € Ra(P') = Rg(P'), because R contains |G|, th-roots of unity.
Therefore, x, is a Z-linear combination of induced characters of linear
&-characters of subgroups of P’, by Brauer’s Induction Theorem {Serl] (The-
orem 20). The required result on indE, x,, follows from the transitivity of

induction.

(3.7) Proposition. The image of ¢ : Q(G) — Ra(G) 1s the subgroup S,(G)
generated by induced characters ind$¢ of p'-linear characters & of sub-

groups H of G.

Proof. We first exhibit a Z-basis of £,(G) and show that their characters are
sums of induced characters ind§¢. The Grothendieck group €Q,(G) of the cat-

egory of permutation summand ApG-lattices hasa Z-basis, by Krull-Schmidt
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and vertex theory, parametrized by pairs (P,V), where P isa p-subgroup
(determined upto conjugacy) and V' is an indecomposable permutation sum-
mand oG-lattice with vertex P. The Green correspondent fp(V) is an
indecomposable o[Ng(P)]-module w'h vertex P. Since P acts trivially
on fp(V) by (1.1) in §1.1, fp(V) can he considered as an indecompos-
able projective o[Ng(P)/P)-module M; and, vice versa, an indecomposable
projective  o[Ng(P)/P] -module M will give, from the inflation inf M,
an indecomposable 0o[NgG(P)}-module of vertex P [CRII] (81.15)(iii). Then
indgG(P)(inf M), parametrized by (P, M), is a second Z-basis of (1(G)

hecause the Green relations
ind§_ p(inf M) =V aV', vix(V)CP

provide a transition matrix which is upper triangular with 1’s on the main
diagonal.

Denote Ng(P)/P by Ng(P) forsimplicity. The character x,,, inthe
imageof €: Po(Ng(P)) = Ro(NG(P)), isexpressibleas x, = Zin; indZG(P)/\,'
by (3.6). Thus its inflation is inf x,, = Xin; indgf(md).-, where each H; is
the preimage of P!, ¢; is theinflation of A; andthusisa p'-linear char-
acter of H;. 'The images of the basis {indf,c(-?)(inf M)|(P,M)} in Rg(G)
are {indf,a( pinf Xn)} and indf,a( pyinf X = Zin; ind,G,'.qS.- from above, as
required.

On the other hand, we need to show ind§j¢ must be in the image of
@. It suffices to construct a permutation summand oH-lattice with the given
p'-linear character ¢ ascharacter. Theimage ¢(H) isacyclic p'-group C

in &, actuallyin o. Letting M betherank 1l o[C]-lattice on which C

acts via ¢, then M is a projective o[C ~ H/ker o]-lattice. The inflation
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inf M is a permutation summand oH-lattice and its character is o. This

completes the proof of (3.7).

Ss(G) i» he above Proposition is a subgroup of Rqar(G) , because
Q;" contains all p'th roots of unity. Therefore we have the image of ¢ in

RQ;,(G). Combining (3.7) with the (Irduction) Theorem D, we prove that

(3.8) Theorem. The Fomomorph 1 Qo(G) = Rqpr(G) are surjective
for odd prime numbers p; if p = 2, the image of ¢ is S53(G) and the

cokernel is annihilated by 2.

Proof. The first follows from RQ;r(G) = Sp(G) of Theorem D. For the second,
RgQyr(G) is generated by S2(G) and the characters ind$ (v - u), from ii) of
Theorem D, where 1 is p'-linear and p isthe inflation of the unique faithful
irreducible character § of H/ker u~ Qs, the quaternion group of order 8.
Now 28 is a virtual permutation character given by 26 = ind?l - ind&l,

hence so is 2u. Therefore
2ind§ (¢ - p) = ind{ (¥ - 21) € S2(G)
follows from Frobenius reciprocity.

§3.4 Proof of Theorem E

We begin with a different proof to the following lemma {WaWe](2.4). The
proof is based on Swan’s theorem on characters of projective AG-modules

([Ser1]Theorem 36).
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(3.9) Lemma. Given a permutation summand L of G over A. Let o
denote th- character of K @a L. Then the value @r(z) isin Z for each

element z in G.

Proof. We may assume G is cyclic of order n, generated hy . For each
prime divisor p of n , then there exict subgroups P and E in G such
that G = E x P, where P isa p-group and E isof order n, prime
to p.

Let K' = K( P ), A'= integral closureof A in K', and S=
A, forsome maximalideal ¥’ in A’ containing p. The SG-lattice S®a
L is still a permutation summand and we may compute @r(z) by finding the

value of the character of K;, ®s (S®4L) at =z

Claim: ¢ (zr) isasumof n,th roots of unity.

For the purpose of proving the above claim, we may replace S®4 L by
an indecomposable SG-surmnandM. Clearly M is a permutation summand
for G over S. If D isthe vertex of M, then M is a direct summand
of ind$(S) as SG-modules by Lemma 1.1. Since D isnormalin G, D
acts trivially on ind§(S) , hence it acts trivially on M. Considering ind§(S)
and M as S[§]modules we have that M is projective and ¢ m(z) is
the value of the character of projective S[&]-modules at zD. If D ¢ P,
then zD is p-singular in G/D, hence ppm(z) =0 by Swan’s theorem.
Otherwise, zD is of order n, ,so the character value at zD is a sum of
n_,th roots of unity. The Claim is established.

We have shown that ¢r(z) € @((n,,) foreach pjn. Therefore ged {np :
pjn} =1 implies

eL(@) € NQ(Ch,) =@
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as required.

The images of ¢ : Q,(G) — Rqp-(G) are characterized in (3.8) on all local
rings 0, whenever o contain |G|pth rootsof unity. To prove the Theorem E
on the global ring A, we use a technique of gluing permu*ation summand lattices
over local rings A, atall p, toform a permutation summand lattice over A.

The foundation of this gluing construction is the following known resuit.

(3.10) Lemma. Give.. ¢ KG-module V, and for each p above a rational
prime divisor of |G|. let there be given a permutation summand Y(p) of G
over Ap, such that K, ®a, Y(p) = K,V. Then there erists a permutation

summand L of G over A, such that

KL=V, A,®sL~Y(p) for all suchp.

Proof. Let M bea G-stable A-submodulein V suchthat KM =V. De-
note by S the set of prime ideals of A lying above rational prime divisors of

the group order |G|. Define

L=VA{ 0¥ ®)N{0 (4 M)

where the intersection is taken over all prime ideal p of A. Then KL =V,
and Ay ®a L ~ Y(p) for p € S, follow from [Rein] (5.3)(ii). L isa
permutation summand of G over A by Lemmas 1, 2 in [CIWe], on replacing

Z by A.

Since the Brauer group of Qp" is trivial, we have Rq(G) C Rqn(G) .

We are going to prove the main theorem on characters of permutation summands.
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theorem E. Thc image of ¢ : Q4T) — RQ(G) is always contained in the
intersection of RQ(G) and S2(Gj in Rqr(G). If K isby enough this

containment is an equality.

Proof. Given a permutation summand L of G over A, its image ¢ s
in Fhq(G) by (3.9).

For each prime ideal p of A above a prime number p which divides
the group order |G| , we obtain the p-adic completion field K, with the
ring of integers Ap. Let R be an extension field of K, with |G|yth roots
of unity adjointed, and let o be the integer ring of R Now the local field
& contains |G|pth roots of unity, so Theorem (3.8) applies. The first part of

Theorem E follows from the commutative diagram below:

Q4(G) —2— Rq(G)

0. 1

,(G) —— Ray(G)

For the second part, a number field K is called big enough (with respect

to G) if it satisfies the following two conditions:

(1) The completion field K, contains |G|yth roots of unity for each p
above a prime divisor p of |G|;
(2) All rational valued characters are realizable over K.
The field Q(()g)), for instance, is one example of a big enough fields. Alterna-
tively we can arrange that K/Q is unramified at all prime divisors of |G| by
a theorem of Grunwald-Wang.
The second part of the Theorem for big enough K amounts to: given

a virtual character x in RqQ(G) N S2(G), we want to construct a (virtual)
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permutation summand z in Q4(G) suchthat the HA-character of r is \.
Since K is big enough, we have x € RQ(G) C Rx(G). and the local fields
K, satisfy the requirement of §3.3 so Theorem (3.8) applies. From Theorem (3.8),
for each odd rational prime p which divides |G|, x € Rq(G) C Rqn-(G) s
in the image of ¢ :Q4,(G) = Rqp-(G), hence x = ;) for some x(p) €
Qa4,(G); if 2| |G|, tke condition x € S2(G) ensures there exists z(p) €
Q4,(G) suchthat o ) =x foreach p above 2.

Next, for each p € & = the set of primes of A above rational prime
divisors of |G|, write z(p) = [M;]-[M;] as a difference of - tmutation sum-
mands for G over A,. Then AM;® My ~ A [S(p)] for some G-set S(p)
and ApG-lattice My, so, setting X(p) = My ®M;', wehave z(p)=[X(p)]—
[4[SE)] in ©4,(G).

Then S = pLE'JSS(p) isa G-set, soonsetting Y(p) = A (p)DA4p[S\S(p)],
we have z(p) = (Y(p)) — (4p[S]) in Qu,(G) for each p € S. Let the
character of Ap[S] be s, which is determined by the G-set S and is
independent of p. Since z(p) hascharacter x by construction, the character
of Ky ®4, Y(p) is the same as the character x + ps. It follows that the
virtual character x + ¢s € Rx(G) 1is indeed a K-character afforded by a
KG-module V ([Serl], Prop. 33). Applying now (3.10) to V, Y(p), we have
a permutationsummand L for G over A, suchthat ¢ = x+¢s. Setting

z=[L] - [A[S]] in §.{{)), then @=L —ps=x as desired.

Now Theorem E is proved. There is a further question on the image of ¢,
namely that of finding conditions on characters x in Rqpr(G) that restrict
x tobein S3(C). The next proposition makes a reduction of this question to

a small class of groups.
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(3.11) Proposition. Let x be a virtual character in  Rqg-(G). Then x €
S:(G) if and only if to res,x € S2(H) for all 2-hyperelementary subgroups
H of G.

Proof. Solomon’s Induction Theorem ([CRI] (15.10)) gives that
lg = Z n, ind§1ly
H

with H varying over the p-hyperelementary subgroupsof H forall p. It
follows that x = ¥ ny ind§(res, x) by Frobenius Reciprocity. Thus
x € S2(G) is equigalent to res,x € S;(H) forall H above.

If H isa p-hyperelementary group with p # 2, then H = (zr) x P
with p-group P and p'-element z. Decomposing (z) into the product
of 2-part and 2'-part (z) = (z2) X (zz'), we see that P acts trivially on
the cyclic 2-group (z2) because P is a 2'-group and thus its image in
P — Aut ({z3)) is trivial. Now H = (z2) x ({z») x P) is a product of the
cyclic 2-group with a 2'-group. It follows that res,x isalwaysin S2(H) by
Lemma (3.2), since Q3"-characters of cyclic 2-groups are virtual permutation
characters and Q}"-characters of 2’-groups are sums of induced characters of
9'_.linear characters by Brauer’s Induction Theorem.

The remaining condition for x € S2(G) is that x € S(H) for all 2-

hyperelementary subgroups H.

§3.5 Q3"-characters of 2-groups
Let G be a 2-group. By a critical character of G we mean an irre-

ducible Q3" character which is not a virtual permutation character, i.e. not in
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S2(G). Putting R(G) = ngr(G)/Sg(G). it follows that R(G) is generated
by critical characters.

By a gquaternion sectionof G wemeanapair H = (Hp, H;) ofsubgrouos
Hy C H, of G with Hy < Hy and Hy/Ho ~ Qs = (z,y: 2" =
y%, yry~! =z7!) a quaternion group of order 2" with n > 3. Each quater-
nion section H defines a unique Q73 -characterof G : for H;/Hp has
a unique faithful Q7 -irreducible character 6, which we call the quaternion
character of (J, and which can be inflated to H; and then irduced to G.
We say this character comes from the quaternion section H.

We know from Proposition (3.3) (rather, the claim appearing in its proof)
that every critical character of G comes from a quaternion section. Since 268 is
a virtual permuiation character of Hy/Hp ~Q@Q2n by 26 = ind]Q” 1- indg?)" 1,
it follows that R(G) is a vector space over [F; spanned by critical characters.

We call a quaternion section H = (Ho,H,) bigif H, = Ng(Hp), ie. a
quaternion section is big if enlarging H; will not give a section. Now G will
have fewer big quaternion sections e.g. if G 1is itself a quaternion group then its
only big quaternion section is (1,G): forif Hgo =1 then H; = Ng(1) =G
while Ho# 1 then Hp containsthe centre Z of G hence H;/Hy isa

section of the dihedral group G/Z which has no quaternion section.

(3.12) Proposition. Every critical character comes from a big quaternion sec-

tion.

Proof. Let the critical character x come from the quaternion section H =
(Ho,H1) and choose H so that (H; : Hg) is maximal for this property.
We show that H is then big by contradiction, so suppose H; & Ng(Ho) :

then taking successive normalizers of H;/Hp in the 2-group Ng(Hg)/Ho will
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terminate in Ng(Ho)/Ho, hence there exists K C Ng(Ho)/Ho so (R :
H,/Ho)=2. Set Q=H;/Ho andlet 6 be its quaternion character; we now
consider indg ¢ and note that if K = preimage of K under Ng(Hp) —
Ng(Hp)/Ho then x = ind% (infR_,K(indgG)) (because this is

ind% (indg1 (infy, »08)) = ind§ (infy, ~gf). Everything now follows from the

Claim. One of the following happens

a) indg @ is a virtual permutation character,
b) indg 6 is reducible,

¢) K is a quaternion ; “oup.

In case a) we get a contradiction to x critical, and in case b) again (but now
to irreducibility of x ). And in case ¢) we contradict the maximality of H :
for (HO,I?) is now a quaternion section with (K : Ho) =2(H : Hy) and

comes from (HO,I’;' ) (because indg is the quaternion character of K. So

we are reduced to the

Proof of Claim. Write Q = (z,y: 22" 7% = 42, yzy~! = z7!) hence Z(Q) =

(y?). We will try to apply the following

Criterion. Suppose K contains an element h so that
i) h?=1, K- :/h), i) h is K-conjugate to yh.

Then imdy0 is a virtual permutation character, i.e case a).

Proof of Cviterion. Use (indh1)(k) = |_4 card {z € K : z7'kzx € A}. Then

2" k=1
(indf,1)(k) = { 1 Ck(h)], kgzh
0, else.
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Similarly to calculate ind{‘;’z'h)l note that h commutes with y?, since

(y?) = Z(Q) and that {1}, {y?}, {h,y?h} are the intersections of (y?.h)

with the conjug: 'asses of K, because of i), iii). It follows that

om=t k=1
2n+1

: = k= y?
CHARICES SN
LI
0, else.
Sub:racting these two chara -es
N
(indfy1 — indfyz 1)(k) = ¢ =271, k=y?
0 else
= (ind§ 6)(k)

(for (indgﬂ)(k) =0 unless k€ Q whenitis 8(k)+60(k*) = 26(k) because

6" = 6 by uniqueness of 6). This establishes the Criterion.

Let a € K generate K/Q; we will modify a by multiplying by ele-
ments of @ to arrange various things. First conjugation by a permutes the
subgroups of index 2 in Q. If n >4 there is only one such, namely (z).
If n =3 thereare 3 of them, so conjugation by a [(of order 2) must
stabilize one of them, which can take to be (z) by renaming the elements (for

Q has an automorphism of order 3 which rearianges the names). So we may

assume a(z)a”! = (z) and can write aze™! = z" with r € (Z/2"7'Z)*.

Since yzy~! = z~! replacing a bt ya , if necessary, allows us to assume
)
r =1 mod 4.
_ 2 2
From a?za? = z" and a> € Q weget z" = r*' hence r? =

+1mod 2"~! when r=1m:d4 implies 72 =1mod 2",
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Now conjugation induces K — Aut (r) sending a, y = r,—1 and
having kernel Cg((z)) 2 (x). Since (K : (r))=4 we get

2, r=1mod2"!

(CK(<I>) : (m)) - { 1, r# 1mod gn-1,

We must now consider various cases and first dispose of the

Special case. Assume Cg((z)) is cyclic of order 2". Now r =1 mod 277!
and Ck((z)) = (a,z) with z of order 2"~! so multiplyingby a bya
power of z allows us to assume a* = z. Then yay™! = a* with i€

(Z/2"Z)*, hecause Ck((z)) < K, implies z7! = yry~! = r' and thus

i =—1mod 2" !, Since a®" =22""" =y? this means that yay~! = a”?
or a”lyl
If yay™! = a ! then K = (a,y : a®> = y?, yay~? = a™') is the

quaternion group of order 2"+1  i.e. this is case c).
So assume yay~! = a”ly? (when K is semidihedral of order 27+1).
We show that the criterion is satisfied with h = ay (so are in case a)). For

h? = ayay™'y? = aa”'y?y? = 1 and h ¢ Q gives i), i) while h =
_20—3 2n—3 _2n—8

2n -3 -1
~T = azr yz y 'y = a

n—3 n—3
ay;: 2" z?

Py ]
(ay)z y = 2% "ay = y*h

gives iii). This takes care of the special case.

In all other cases we look at the group extinsic:

1 (z) = (z,0) = (z,4)/ () = 1

with (x,a)/(z) cyclic of order 2 generated by the image of a. If r =

1 mod 2""! then Cg({z)) = (z,a) non-cyclic means this group extension
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splits. And if r # 1 mod 2"~! then it again splits by n > 4 and r

i

l1mod4: forthen r=1+4+2""2mod2" ! implies

H((z,a)/(z),(z)) = B ((z.a)/(z), (z)) = 0.

Multiplying a by a power of r we may thus assume a? = 1.

Now (z) C (a,z) are both normalin K so yay~! = r'a with ¢
Z/2"71Z. Then 1=ya’y ! = (yay™!)? = 7'az’a = r's*" = r'0+7  implies
i(147r)=0mod2"! when 14+r=2mod4 vyields i =0mod?2" 2. Since
22"7" = y? we conclude yay~! =y?’a with j € Z/22.

Suppose j =1; we verify the Criterionwith h=a. For a®=1, a¢ Q
and h=apyay™! =y’a = y*h.

So j=0 fromnowon. Ifnow r# 1mod2""! thenfrom r = 1mod4
and 2 =1mod2"! weget n>4 and r=14+2""2mod 2", Again we
verify the Criterion with h=a; for a®=1, a ¢ Q and aza=1'%?""" = ry?
implies zaz™! =y%a ie. hgyth.

Thus j=0 and r=1mod2® ! from now on. But now our relations
say a®=1 and a¢ Q commuteswith @ ie. K = @Qx(a). Thistime the
Criterion fails but we will show that we are in case b). Let 6 be the inflation
of 6 under K —» @, hence 5(a) =1 and reng = 6. By Frobenius
reciprocity we have indge =8 indgl = 5(1 + a) where o is the unique
nontrivial character of K/Q inflated to K. But then indgG =0+ 6a is

indeed reducible and the Proposition is completely proved.
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