Mint Capstone Project
Final Report

Email-to-REST User-Request
Translation System

Instructor : Paul Lu
Student : Wenting Zhang

Abstract

In recent years, online shopping has become an important shopping method in
people’s life. Some online shopping platform use emails to inform shop owners of
order details. Therefore, it is convenient to have a special system to help process
order emails automatically. We implemented a prototype Email-to-REST
User-Request Translation System (referred to as the E2R system below) that
receives email orders and automatically adds the order into a company database.
In the prototype, a Shopify-like Web server (implemented using Django, Figure
2.1.1 (A)) can send an email representing a new customer order. Five email order
templates are supported. The the E2R system Figure 2.1.1 (B)) reads the email
(from Gmail.com) and adds the order to a company database (implemented using
Flask, Figure 2.1.1 (C)).

1. Background

1.1 Shopify Introduction

In recent years, eCommerce has become an important part of people’s lives and an important
business transaction method. With the trend of eCommerce, there comes some new-concept
online shopping platforms. These platforms are specially designed for individuals and small
businesses. Shopify.com is such a new online shopping platform. Individuals or small shops on
Shopify can easily own their exclusive online shops, with special URLs and DIY home pages.
After customers click into these online shops and place orders (Figure 1.1.1 @), a transaction
summary will be sent to both the customer and the shop owner via emails (Figure 1.1.1).

@) Send Order @ Send Order
Summary Summary

<

= =
Shop owner’s
Customer ﬂ S‘i‘lﬂpi fy mailbox

(1) Place Order

Figure 1.1.1 One customer places an order on Shopify and Shopify send order summary to the customer
and shop owner (Black for customer’s actions, green for Shopify’s actions)

As for the email from Shopify, Shopify has special templates of emails for different uses. After a
new order has been placed, order details will be rendered into some special email templates and
sent to users. If the shop owner does not make any changes to Shopify’s default email template,
the template for the shop owner will be like Figure 1.1.2(A). Besides, shop owners can design
their own email templates on users’ control panels. If a new template is updated by one user,
order details will be rendered into the user’s new email template (Figure 1.1.2(B)) and sent to his
email.

[xinwan818-1] Order #3999 placed by Bob Biller

zhang wenting <zwt467875460@gmail.com=
BNSS to Orders =

Hello xinwan818-1,

John Smith placed a new order with your store, Oct 18 09:16PM:

1x Awiator sunglasses (SKU: SKU2006-001) for $89.99 each

-
1x Mid-century lounger (SKU: SKU2006-020) for $154.99 each pmericanvisa [
View order #3939 ¥ 2 - - >
Payment processing method: White House, U.S.

visa, bogus

Delivery method:

Generic Shipping

Shipping address:

Steve Shipper

123 Shipping Street
Shippington, Kentucky 40003

United States

555-655-5HIP

(A) Shopify’s default Email template for order summary (B) One user’s DIY template
Figure 1.1.2 Email template samples

1.2 Motivating Problem

Although the business model of Shopify is great, it calls for a lot of human actions which can be
error-prone and usually cause high latency. With the rapid development of online shopping, it is
common that buyers from all over the world may place thousands of orders in an online shop in
one day. In Shopify’s example, if one shop on Shopify gets 1000 orders one day, the small
business owner needs to deal with 1000 emails and checks every single item in his warehouse
manually. In this way, a system to help people “read” orders from emails, record new orders and
user information into a database, and trigger the shipping will be good to people’s life.

As in Figure 1.2.1, the E2R is designed to process orders (Figure 1.2.1 (1) “Process Orders”) and
send process reports (Figure 1.2.1(2) “Send Reports™) to shop owners by polling emails from
shop owner’s mailboxes (Figure 1.2.1a), translating emails (Figure 1.2.1b) to REST calls (Figure
1.2.1c).

The “Translation” idea is similar to Mailparser.io [1] and juliedesk.com [2], which automatically
parses emails with a pre-designed, semi-structured layout and then takes an appropriate action
(e.g., extracting user-specified data for Mailparser.io and scheduling meetings for juliedesk.com)

https://mailparser.io/
https://www.juliedesk.com/

on a back-end server. Different from Mailparser.io and juliedesk.com, the E2R is exclusively
designed for online shopping (especially for Shopify users). So the features focus more on online
shopping needs. Plus, the template process algorithm of the E2R is designed to be flexible. The
raw email can be Text and HTML. To gain higher system performance, email can also be JSON
like format (A sample can be seen in Figure 1.2.2).

E2R System

(1) Process Orders

N
A

D

Shop owner’s
mailbox

(2) Send Reports

Figure 1.2.1 the E2R process Email for users and send report

{

"shops™ : [
{
"Shop™ : "Wendy's",
"Date” : "2017-89-15 Fri”,
"Command™ : "Place Order”;
¥

1,

"items": [
{
"Item” : "Pop tart jumbo™,
"Size"™ : None,
"Color" : None,
"Num™ : "3"
+
{
"Item” : "broken jeans”,
"Size™ : None,
"Color™ : "Blue™,
"Num™ : "1"
¥

1,

"customers™ : [
"Name" : "John Smith",
"Street No." : "1221 Jasper Avenue”,
"City"™ : "Edmonton”,
"State” : "Alberta”
1

1

Figure 1.2.2 Order JSON file sample

2. Introduction

The working environment of the E2R system contains three main parts: the Shopify website
(Figure 2.1.1(A)), the the E2R system (Figure 2.1.1(B)) and a third party server (Figure
2.1.1(C)).

B) ©)

(A
Third Party Server
. B — _—
Shopify.com E2R system (Wendy’s Server)

Figure 2.1.1 System architecture

To make the description clear, let us put the E2ZR model into a simple scenario: John Smith wants
to buy some products in Wendy’s shop. Wendy’s shop is one online shop on Shopify.com, which
has its own warehouse server and refers to as the third party server ((Figure 2.1.1(C)) in this
example.

First of all, Shopify sends an order summary to the shop owner’s mailbox (2.1.3(1)). In John
Smith’s case, his order details and personal information (e.g. shipping address) will be sent to
Wendy’s mailbox. A sample Email can be seen in Figure 2.1.2.

[Wendy's] Order #9999 placed by John Smith inbox x

"F’ ZWt467875460@gmail.com
=
| BT

Hello Wendy's,
John Smith placed a new order with your store, Oct 18 09:16PM:

1x Aviator sunglasses (SKU: SKU2006-001) for $89.99 each
1x Mid-century lounger (SKU: SKU2006-020) for $154.99 each

View order #1001

Payment processing method:
visa, bogus

Delivery method:

Generic Shipping

Email:
e2rcustomer@gmail.com
Shipping address:

Steve Shipper

123 Shipping Street
Shippington, Kentucky 40003
United States

555-555-5HP

Figure 2.1.2 Order summary of John Smith sent to Wendy’s mailbox

Then, the the E2R system polls emails from the shop owner’s mailbox. Usually, the the E2R
system is set to monitor the shop owner's’ mailbox (Wendy’s mailbox: xinwantest(@gmail.com
in this case) so once the E2R system finds there are unread mails, it will start to poll emails from
W(Figure 2.1.3 (2)).

Wendy’s mailbox
s
£\ shopify —
(1)Send
<
(2)Poll
E2R System

Figure 2.1.3 Process of the E2R getting raw emails

mailto:xinwantest@gmail.com

Afterwards, as shown in Figure 2.1.4 E1(E1 for Phase 1 of E2R), the E2R system will translate
emails (MIME file in natural language) into a JSON file, and use the JSON file to make a REST
call (E2 of Figure 2.1.4) to Wendy’s server, which will trigger Wendy’s server to deal with the
order in Wendy’s system (Figure 2.1.4 W1, W1 stands for Phase 1 of Wendy’s server). When
Wendy’s server has processed the order and put it into the database, it will send a response back
to the E2R system (Figure 2.1.4 W2). Details about the two phases will be discussed in Section
3.3, and the technical process in Wendy’s server will be discussed in Section 3.2.

X

) RSN
A shopify —_—
Send
‘Wendy’s
‘Warehouse Server E2R System
iy E2: Make REST Call el
i : b . Fid - R ~
I b i \\
1l Wi: \\ ,’ El: \
- 1
! Place Order | - ' Emailto '
n g ‘W2: Response " JSON !
AY ra % 5 7

Figure 2.1.4 Interaction with Wendy’s server

After receiving the response (the JSON file) from the third party server (Wendy’s server), the
E2R will translate the JSON file into MIME format in natural language (E3 of Figure 2.1.5).
Then the E2R sends a confirmation email to John Smith (E4(a) of Figure 2.1.5) and a report to
Wendy (E4(b) of Figure 2.1.5). The email samples are in Figure 2.1.6.

e E. ‘% Wendy’s mailbox

- -
E4 (a) - fead
Send Confirmation E4 (b) Send Order Report
E2R System
Wendy’s — = s " 3
Warehouse Server ¥ E3: b
| JSONtoemail |
1
T2 N (MIME) I,’
Mg o £

Figure 2.1.5 the E2R translate Wendy’s server’s response into email and interact with users

Sometimes, customers may change their minds after the order has been placed. Therefore, when
the customer (John Smith) receives the confirmation email (Figure 2.1.6(B)), the customer can
still make changes to his order or cancel it. If the customer clicks “change” (lower left corner in
Figure 2.1.6(B)), he will be redirected to Wendy’s server to fill in an update form (Figure 2.1.7).
Afterwards, the updated information will be sent to Wendy. Besides, if the customer cancels the
order, the cancellation request will also be sent to Wendy.

Order#9999 Succeed ! inbox x

E2R System
tome |+

Order#9999 Placed Successfully at Mon Nov 27 16:21:45 2017

(A) Order report in Wendy’s mailbox

E2R Orders Confirmation inpox x

AT E2R System <zwt467575460@gmail. com>
& {ome |-

Dear John Smith:
Your order has been placed successfully |

Please confirm that you bought:

1 Awviator sunglasses (SKU: SKU2008-001) $89.99
1 Mid-century lounger (SKU: SKU2006-020) $154 .99

Your stuff will be delivered via “Generic Shipping” to:

Change Cancel

Thank you for choosing Wendy's!
Have a nice day!

This order is processed by EZR System automatically
For mere information about E2R service, Please go to FAQ

(B) Confirmation email sent to John Smith
Figure 2.1.6 Emails from the E2R system

Orderid

Name

Email
zwtd678754B0@gmail. com
Delivery

Payment

Addr

Order

Submit

Order Updated!
Figure 2.1.7 Update Form in Wendy’s server

Instead of letting a customer make changes directly to orders which are already in database and
maybe under process, all update or cancellation requests will be sent to Wendy’s mailbox to be
processed manually. A flowchart of the process is shown in Figure 2.1.8 and details will be
discussed in Section 3.2.

re
Delete Order
— >,
Change Order
‘Wendy’s mailbox
Redirect
Update Report
Wendy's ﬁ

‘Warehouse Server

Figure 2.1.8 Customer operate orders with confirmation email

3. System Design

To simulate the E2R working environment and test the E2R system, the MINT Capstone Project
implements a mock Shopify website (Figure 2.1.1 (A)), an E2R system (Figure 2.1.1 (B)) and a
mock Wendy’s server (Figure 2.1.1 (C)). This Section will introduce the design and main
functions of the three systems.

3.1 Shopify

Shopify is implemented by building a simulated website based on the Django framework [6]
(Part 1 in Figure 3.1.1) to send an order summary email in two modes. For testing, a file named
“sender.py”” and a module “mailProcessor” are implemented to send 5 kinds of email templates
in 5 modes (Part 2 in Figure 3.1.1). This Section will only focus on the simulated website and the
test program will be discussed in Section 5.2.

Shopify Website
Part 1
— Send Pre-defined
Template
simulatedweb Send DIY Template

Part 2: For Test

E |
sender.py mailProcessor

Figure 3.1.1 Files in Shopify

When the mock Shopify website has been launched, user can choose 2 modes to send 3 kinds of
order summary emails to Wendy (Table 3.1.1). The sending feature is designed to simulate the
Shopify sends order summary emails to shop owners. Besides, because users are allowed to use
both the default and DIY email templates, the simulated Shopify also has two sending modes to
do the same thing.

Mode URL Email Type
DIY Template ShopifyURL.com/sender /

10

Pre-defined Template

ShopifyURL.com/template/1

Text

ShopifyURL.com/template/2

JSON

ShopifyURL.com/template/3

HTML

Table 3.1.1 Two modes to send emails in Shopify and URL

Generally, commercial emails can be divided into 2 type: Text and HTML. Besides, because of
the DIY template property of Shopify, it is convenient for the E2R system to translate “JSON”

emails. Therefore, the simulated Shopify is designed to send the 3 kinds of emails: Text, HTML,
JSON. Figure 3.1.2 shows DIY sending mode interface and Figure 3.1.3 shows the HTML Email

sending interface.

Welcome to Shopify !

Email: xinwantest@gmail.com

Remember me

Send

Figure 3.1.2 Shopify sends DIY Email template

11

Welcome to Shopify !

Email: xinwantest@gmail com
Subject: [WendyY's] New Order #3005

Message: <IDOCTYPE htmi>
<html lang="en">

o=
=title>DIY Order=ftitle>

<meta chal
<meta name="viey

<seript src
=style>

Jpanel-heading {
round-color: #5c90el;

color:black

1

panel-body {
background-color: #b4cdf2;

i
<Istyle>

</head=
<body=>

<div class="contamner >
<img src = "L.JPG" akt = "Shopify.com” style
<p><hd>Dear <em style = "colo 1c7
=p><hd>You just got a new order #3001<)

600px;™
ght:bold,">Wendy's</fem> </hd=</p>
from <em style = "color: #2c31c7, font-weight:bold;™=John Smith!<fem>=/hd></p>

Remember me

Send

Figure 3.1.3 Shopify Sends Pre-designed HTML Email template

3.2 Wendy’s Warehouse Server

Wendy’s Warehouse Server is built based on Flask framework [4]. There are 4 main methods to
deal with REST calls and two interfaces to deal with order update and cancellation requests. The
four REST related methods (GET, POST, PUT, DELETE) are built on route
“WendyURL.com/todo/api/orders” [5], functioning as API to external servers and controlling
database inside. The “update” interface is built on route “WendyURL.com/change” and The
“cancel” interface is built on route “WendyURL.com/cancel”.

12

_ Cancel /
| — | Change Orders

Interfaces

ol ~ PUT/DELETE
~ GET/POST

Wendy’s Warehouse Server

Figure 3.2.1 Main features of Wendy’s server

Talking about the four REST call related features, if a remote client makes a POST call,
Wendy’s server will create a new order according to the information in this call. Figure 3.2.2
shows the function of POST method in Wendy’s server, and Figure 3.2.3 shows database
structure. In John Smith’s example, when the E2R system posts an order request (a JSON file
contains shipping information and order details) to Wendy’s server by REST call (method =
POST), a function named “create_orders()” (Figure 3.2.2) will be triggered to process the order.

13

['POST'])

‘orders’ request.json:

lastOrderID (session.query(Order).order_by(Order.id.desc()).limit(1).al1l())
curt_lastOrderID = lastOrderID + 1

new_ORDER = {
"id": curt_lastOrderID,
" :request.json["o
"orde
"customer” :request.json["customer”]

testAppend.append(new_ORDER)

db_name = new_ ORDER[customer’]["Name®
db_payment - new_ ORDER['customer'][’
db_delivery - new ORDER[' omer "][
db_addr = new ORDER[customer’]['Addr']
db_email - new ORDER['c mer "]["Email’]
db.session.add(Customer(t db_name,
db_payment,
db_delivery,
db_addr,
db_email))

db_orderID - new ORDER[‘orderID’]
db_customer - new ORDER[’ omer’
order new_ORDER["o
db_item - order['Item']
db_num = order["Num’]
db_price - order['P
db.session.add(Order(ID = db_orderID,
i db_item,
db_num,
db_price,

db.session.commit()

ORDERS . append (new_ORDER)
jsonify({'orders’: new_ORDER})

Figure 3.2.2 A function in Wendy’s server which deals with POST request
and sends back response (201: Created / 400: Bad Request)

First, as shown in line 3-4 in Figure 3.2.2, Wendy’s server will check the validation of the JSON
file. If it is invalid, the server will abort 400 error (Bad Request

). Otherwise, the server will process the request and send back a 201 (Created) response. When
Wendy’s server processes orders, there are four main steps:

1) Create a unique id of Wendy’s database (line 7-8 in Figure 3.2.2) and generate a new
order for Wendy’s database (line 10-15 in Figure 3.2.2) The new order for John’s
example can be seen in Figure 3.2.4, the value of “id” is id in Wendy’s database and the
value of “orderID” is id in Shopify.

14

2) Append a new record in daily record text file (line 18 in Figure 3.2.2). The daily record
is designed in case error happens when saving orders into database, it works as a backup.
Besides, in real business environment, shop owners may not know how to use SQL
search in terminal if they need to check details of some failed orders, so they can check
the daily record if needed.

3) Create a query in Wendy’s database (line 21 - 47 in Figure 3.2.2). Line 21-31 deals
with customer information and line 34- 44 deals with the customer’s orders. Wendy’s
database is designed to use a foreign key to connect customer and his order (line 11 and
line 27 in Figure 3.2.3). Line 43 submits the new query into database to finish John’s
order placement.

4) Send a response to the E2R which includes request status code (201), order IDs in
Wendy and in Shopify, customer information and order details. The order part without
status code can be seen in Figure 3.2.4.

clas r(db.Model) :
_ tablename_ ‘orders’

id = db.Column(db.Integer,
orderID db.Column(db.Str
item = db.Column(db.String(6
num = db.Column(db.Intege
price db.Column(db.Strin

customer - db.Column{db.String(64), db.ForeignKey('customers.id'))

'<Oreder > self.name

class Customer(db.Mode

_ tablename_ tomers

id = db.Column(db.Integer, p
username - db.Column(db.St
payment - db.Column(db.String(
delivery - db.Column(db. i
addr = db.Column(db.Stri

email - db.Column(db.String(

orders db.relationship('Customer', ‘customer')

def __repr_ (s
< " self.username

Figure 3.2.3 Database of Customer and Order in Wendy’s server

15

"idl:L;,
"orderID":"

"orders":

"Aviator suni (SKU: SKU2006-001)",

1.

"customer":
{

<y 40003 United States 555-555-SHIP",
noo. com

Figure 3.2.4 After Wendy’s server process John Smith’s order, the order added a Wendy’s unique ID will
be sent back to the E2R with a 201 status code. The value of “id” is id in Wendy’s database
and the value of “orderID” is id in Shopify.

If a remote client make a GET call, Wendy’s server will reply all orders in current session. This
function is designed for the administrator at the E2R end to check order placement status. The
detailed process will be discussed in Section 3.3. It is worthy to mention that in newest version,
there is a built-in function (make public_order(), line 2-9 in Figure 3.2.5) in Wendy’s server to
generate a completed URL to get every single order. That is to say, when the GET method is
called in current session, the response will replace Wendy’s database order id with a unique URL
to call every single order so users do not need to figure out the API URL by themselves. And this
function protects Wendy’s inner information.

def make_public_order(or
new_order 1}
field order:
field iad
new_order["uri’] url for('get orders', o ~_id = order['id'], _

new_order[field] order[field]

new_order

app.route('/todo/api/orders”, me ['GET'])

jsonify({'orders': [make_public_order(ORDER) ORDER ORDERS]})

Figure 3.2.5 GET method in Wendy’s server

16

{

"customer”: {
"CUstomer": { "Addr": i*ii**tiit,t*t*i.it*ti wxK

PAQArT: UHErRErkRE kkard rkEd wywuwxx! "Deli "Standard”,

"standard”, "Emai 2rcustomer@gmail.com”,
ustomer@gmail.com”, "Name": "Vera Wang",
"Vera Wang", "Payment": "BMO Debit"

"Payment": "BMO Debit" 1,
"orderID": "#3001",
"orders”: [

"orders": [

"Item Plastic Pink Rose",

" "
lastic Pink Rose"”, Num - "
10.99

"Plastic Christmas Tree(Tall)",

lastic Christmas Tree(Tall)",

s
i "69.99"
69.99"

"Decorated Christmas Star(18/pack)”, gecorated Christmas Star(1e/pack)",

"Price"”: "9.99"

": "http://127.0.0.1:5004/todo/api/orders?order_id=1"

(A) Old version GET response (B) Newest version GET response
Figure 3.2.5 Wendy’s server’s new version reply API URL instead of the raw id in Wendy’s database

As for PUT, it helps to update orders in Wendy’s database. And DELETE helps to delete placed
orders query. However, the two interface are not visible to external servers in consideration of
database safety.

Besides, if customer wants to change or cancel their order after the order has been placed, there
is an order update interface built in Wendy’s server (the interface is in Figure 2.1.6). After
customer receive the confirmation Email after Wendy’s server already put order query into
database, customer can click “Change” button in confirmation Email and be redirected to Shop
owner’s order update page. For example, if John smith receives his confirmation Email and want
to buy one more “sunglasses”, he clicks “Change” and be redirect to “WendyURL.com/ change”.
Then, he filled in the form on the “change” interface shown in Figure 3.2.6. When John finishes
the form and click “submit”, Wendy’s server will check the validation of his updates
information and send it to Wendy as Email, and he will see a notice “Order Updated!”.

17

Wendy's Grocery Warehouse

Orderid

#9999

Name

John Smith

Email
JohnSmith@hotmail com|

Delivery

Generic
P

Payment
visa, bogus

Addr

the same

Order
I want an other sunglasses!

Submit

Please check and correct your info....
Figure 3.2.6 John Smith’s update form

Inbox x

#9999 order updated

to bco: me [+

T E2R Order Control <zwt467875460@gmail com=>
b
{orderlD’: u'#9999', "addr’: u'the same’, ‘order': u'l want an other sunglassesl’, 'name’. u'John Smith’, 'email’. u'JohnSmith@hotmail.com’}

Figure 3.2.7 Updates report to Wendy

18

Orderid

#3999

Name

zwt

Email
zZwi467875460@gmail.com
Delivery

Payment

Addr

Order

¥ Cancel

Order Cancellation Sent! Please waiting for reply...

Figure 3.2.8 Cancellation form

If one customer needs to make their order cancelled, he needs to fill in their “Order ID”, “Name”
and “Email”, then checks the “cancel” box as shown in Figure 3.2.8. A summary image of
Wendy’s server’s functions can be seen in Figure 3.2.9.

o
@l john Smith gy
Redirect l V-q Wendy
— Cancel /
| — Change Orders Manual Operate
Interfaces
e 7 PUT/DELETE
APL+ @ J“-‘.‘ Response
~ GET/POST E2R System
-—
Make REST Call

‘Wendy’s Warehouse Server

Figure 3.2.9 Wendy’s server’s function summary

19

3.3 The E2R system

There are 2 modes in the E2R system: test mode and monitor mode. As for test mode, the E2R
will poll and process all unread emails in Wendy’s mailbox and wait for following commands.
As for monitor mode, the E2R will check Wendy’s mailbox as in test mode [7]. Afterward, the
E2R will wait 10 minutes and check Wendy’s mailbox again (shown in Figure 3.3.1). Because
the actual working principle for the two modes are the same, for readers to understand the E2R
working principle better, this report will only talk about the test mode.

wenting@wenting-vm:~/ python3 E2RLauncher.py 0

wannnpnrarnnnatatat Checking Sat Dec 2 14:19:39 2017... #ESHHAHBHHARARHAARHHAT
Connecting to Wendy Email box...

('ok', [b'"])

R Checking Sat Dec 2 14: oo HEBEHHHERHE T
Connecting to Wendy Email box...
('ok', [b''1)

HRppEgantnanatEas Checking Sat Dec 4: .o BHBHBHAHBHAABHHHAAREE
Connecting to Wendy Email box...
('ok', [b'"])

R R Checking on 4: oo HEBHRHBHEHA TR
Connecting to Wendy Email box...
(‘ok', [b''])

Figure 3.3.1 the E2R works on mode 0 to monitor Wendy’s server every 10 minutes

E2R System
® EI ©) ﬁ
MailPort.py Mailclassify.
Py
E @ b
E2RLauncher. . E2Rparser.
Py ‘-\5,' py
@
RESTCaller.
Py

Figure 3.3.2 Five main programs in the E2R system

In the E2R, there are 5 main programs to process Emails and make REST call (Figure 3.3.2).
Firstly, “E2RLauncher.py” (Figure 3.3.2) is used to launch the the E2R server as the main

20

switch (Figure 3.3.3 (1)). The launcher will then trigger “MailPort.py” to poll Emails from
Wendy’s mailbox (Figure 3.3.3 (2)), and there are two working modes to choose from (test mode
or monitor mode) when launching the E2R system. For example, if running on test mode, when
the E2R just finishes processing John Smith’s order, it will block and ask administrator what to
do next (Figure 3.3.4). If user reply “YES”, the E2R system will reply all orders in current
session by making a REST call (method = “GET”) to Wendy’s server, the “GET” call will
trigger “get orders()” function in Wendy’s server as discussed in Section 3.2. If the user replies
“Terminate”, the E2R server will shut down. Else, the E2R will check Wendy’s mailbox again.

.~ Test mode
(1) Launch E2R system -/

% Monitor mode

_ Trigger n
(2) Poll emails | fumction poll mail() | =
MailPort.py

(3) Interact with administrator
(Figure 3.3.4)

E2R System/ E2RLauncher.py

Figure 3.3.3 “E2RLauncher.py” functions outline

wenting@wenting-vm:~/ /E2RS python3 E2RLauncher.py

USAGE: python3 E2RLauncher.py + mode<ints:
mode @: Monitoring Mailbox...
mode 1: Enter TestMode (Default)

Enter TESTMODE by Default...
Connecting to Wendy Email box...
("oK',. [b'537'])

Parsing Mail#537

[Wendy's] New Order #3001
Making REST calls...

Send Confirmation Mail Done !

Do you want to check new orders?
- ¥ or y for YES

- Tor t for Terminate E2R
- any other key for Quit

Figure 3.3.4 the E2R ask administrator what to do next

Secondly, “MailPort.py” (@ in Figure 3.3.2) is a module in control of polling and sending

emails (Figure 3.3.5). Assume the data stream is a river, emails are boats which carry data from
end to end, the “MailPort.py” works as a port of the E2R system to get and send emails. On the
one hand, “MailPort.py” helps to poll emails (Figure 3.3.5). As mentioned in last paragraph,

21

when the E2R server starts running, “MailPort.py” will be triggered by “the E2RLauncher.py” to
poll emails from Wendy’s mailbox by method “poll mail()”. The “poll mail()” method uses
“ReceiveMailDealer” class to finish its job. This class is based on IMAP protocol and refer to
pyMail from Github [8]. To poll emails, “ReceiveMailDealer” will first scan Wendy’s mailbox
for unread mails and return unread mails as mail objects, then a method called “getMaillnfo()” in
“ReceiveMailDealer” class will extract email subject and body as string and pass them to
“MailClassify.py” to finish following work.

Wendy’s
mailbox

Poll
= |
class
® Eoll ReceiveMailDealer
-'/® Send A
— Error report i
Jfunction |
send _mail() .
— Report mail Z5e
Junction . =
| inform customer() Confirmation ==
% A
E2R System/ MailPort.py

Figure 3.3.5 “MailPort.py” functions outline

On the other hand, as for sending mails in the E2R, three kinds of mails needs to be sent and they
are all based on SMTP protocol (Figure 3.3.5 @). If the order is placed successfully, method
“inform_customer()” will be called to send “confirmation mail” to customers and “report mail”
to shop owner. For example, when John Smith’s is finished, John’s mail and Wendy’s mail are
shown in Figure 2.1.4 and 2.1.5. In Figure 2.1.4, customer can be redirected to Wendy’s server to
update their orders by clicking “Change” or “Cancel” button.

Also, there may be some errors when the E2R is processing orders. At this time, the E2R will
send “error report” to Wendy’s mail box. For example, if users in Shopify design a very
complicated Email template which the E2R cannot parse, a mail in Figure 3.3.6(a) will be sent to
Wendy. If Wendy’s server is shut down accidentally, a mail (Figure 3.3.6(b)) carries the error
type and order ID will be sent. At the mean time, the E2R will stop parse following mails and
terminate itself in case that some orders may be missed. Sometimes there maybe other errors, the
E2R will alse send the error type with mistake order id to shop owner’s mailbox. For example, a

22

new programr of Wendy’s server delete database by mistake, Wendy may get a report Email
shown in Figure 3.3.6(c). As can be seen in Figure 3.3.7, by using the E2R system to process
Emails, the shop owner will finish get a list of order status with neat details in their mailbox list.

Order#2001 Fail ! Order#7777 Failed ! mbox
E2R System <e2rcontrol@gmail com> E2R System
to me |~ to me |-
[Ermo 111] Connection Refused at #2001 | Please check your templates of [Wendy's] Rigid Order #7777
(a) Connection Error (b) Template Error

Order#3001 Fail ! inbox «

E2R System <eZrcontrol@gmail com=
tome |~

Order#3001 Failed at Sat Dec 2 13:37:54 2017
<Response [500]>

(¢) Internal Server Error (HTTP Code 500)
Figure 3.3.6 Error report emails

EZR System (2) Order#7777 Failed | - Please check your templates of [Wendy's] Rigid Order #7777
E2R System Order #7777 Fail | - [Ermo 111] Connection Refused at #7777 |

E2R System Order#8888 Succeed ! - Order#8888 Placed Successfully at Thu Nov 9 12:59:21 2017
E2R System Order#77TT Failed | - Please check your templates of [Wendy's] Rigid Order #7777
E2R System Order#7777 Failed 1 - Please check your templates of [Wendy's] Rigid Order #7777
EZR System Order#8888 Succeed ! - Order#8888 Placed successfully at Mon Nov 6 21:57:50 2017
EZR Syston Order#777T Succeed | - Order#7777 Placed successfully at Mon Nov 6 21:56:51 2017

Figure 3.3.7 the E2R mail status report list in Wendy’s mailbox

Thirdly, “MailClassify.py” (Figure 3.3.2 @) classifies Emails extracted by “MailPort.py” into
three kinds by file type: Text Email, HTML Email and JSON Email. In fourth step, the three
kinds of Email will b parsed by three methods in “the E2RParser.py” (Figure 3.3.2 @) ——
“generate_order(mail,subj)”, “DIY generate order(mail,subj)” and

“simple_generate order(mail,subj)” separately. If parsed successfully, the three methods will
return a dictionary contains customer information and order details. The dictionary will then be
passed to “RESTCaller.py” (Figure 3.3.2 ®). This process can be summarized to three parts:
classification, translation and make REST call. A completed working flowchart of the three parts
can be seen in Figure 3.3.8.

23

E2R System

JSunction N
TEV generate order() \
JSON fumction Dictionary n
- —— . R
Mailclassify. _— simple generate order() variable RESTCaller.

Py

PY

®
® H% function //

DIY generate order()

Part 1: Classify @ E2R Part 3: Make REST Call
parser.py

Part 2: Translation

Figure 3.3.8 “MailClassify.py”, “the E2Rparser.py”, “RESTCaller.py” working flowchart

Last, in “RESTCaller.py”, the dictionary variable will be encoded to JSON and be carried to
make a REST call to Wendy’s server (Figure 3.3.9 (A)). After making the call, the E2R will
block and wait for Wendy’s response. If the response code is 201 (Created) , the E2R
“RESTCaller.py” will trigger “MailPort.py” to send successful status report to Wendy and a
confirmation Email to customer John Smith (Figure 3.3.9 (B)). John Smith’s Email Address is
extracted in step 3 in “the E2RParser.py”. What’s more, after finish one session (check all unread
Emails in Wendy’s mailbox), as mentioned in Section 3.2, the E2R will ask whether
administrator would like see all new orders. To get all new orders in the session, the E2R will
make a REST (method = GET) to Wendy’s server to get the information. This REST is also
made by “RESTCaller.py”.

24

John Smith Wendy’s
~ mailbox

— Confirmation -
p—« Report
\h. > <) I S
MailPort.py

Pass REST call
result

Response
Wendy’s _— B
‘Warehouse RESTCaller.
Server T Py
Make REST Call
A) E2R System

Figure 3.3.9 “RESTCaller.py” interacts with Wendy’s server and “MailPort.py” send emails to users

3.4 Systems Interactions

After knowing how the three main systems works separately, let us look back and make a
conclusion of how Shopify, the E2R, and Wendy’s server work together. A summary is in Figure
3.4.1.

First of all, John Smith makes an order on Shopify and Shopify sends order summary to
Wendy’s mailbox. The process is simulated by “Shopify/SimulatedWeb” in the capstone project.
Then, the E2R translates Emails in Wendy’s mailbox to JSON to make REST calls to Wendy’s
server, these processes are finished by 5 programs in the E2R. MailPort.py polls Emails from
Wendy’s mailbox timely, passes extracted Emails to MailClassify.py to classify, MailClassify.py
passes classified Email to 3 different parsers in the E2RParser.py to get translated JSON file, the
E2RParser.py passes the JSON file to RESTCaller.py to make the REST Call. In Wendy’s
server, when the server receives REST call from the E2R, if it is a POST call, Wendy’s server
will save the information carried in the call into database and reply a 201 status code. if it is a
GET call, Wendy’s server will reply the asked data with a 200 status code. After receiving
response from Wendy’s server, the E2R will send order status report to Wendy’s mailbox. If the
order is successful, the E2R will also send a confirmation Email to John Smith. After John
receives the Email, he can make changes or cancel proposal of his order by clicking the link in
the confirmation Email. At last, the changes or cancel proposal will be sent to Wendy’s mailbox.

25

Shopify Website

‘Wendy’s

Place Order
e a shopify mailbox

John Smith

—
Redirect
E2R System
'_:‘:_= Charicel / ~ B Classify
Change Orders MailPort.py Mai)l{C;;sslf
Trigger / Pass \Translate
., GET/POST/PUT/ REST call
DELETE orders a result a
;cgngdmiw t E2RLaunch E2Rparser.
call reques erpy p
Response !
Pass JSON as
RESTCaller.
Wendy’s Warehouse Server Male EEST Call S parameters

Figure 3.4.1 System interactions summary

4. Translations

Translating Email into rigid JSON file is the main function and initial design propus of the E2R
system. According to today’s mail market, there are 2 widely-used Email type: text and HTML.
Besides, because of the user template interface design of Shopify platform, it is very convenient
to use a rigid template (send JSON in Email directly). This Section will introduce the 3 kinds of
Emails’ translations.

After Emails have been polled from Wendy’s mailbox, the E2R MailPort will pass two string
variables (subject and body) to the E2R MailClassify. The “MailClassify.py” program will
classify Emails by its subject. If the subject matches one of the three main Email subjects format,
the mail will be translated. Else, the mail will be skipped as a spam mail.

4.1 Default Email Template (Text)

If one Email is classified as Default template, the subject and body string of it will be passed to
“the E2RParse.py” to be parsed be method “generate order(subj,body)”. A sample default email
template is shown in Figure 1.1.2(a). According to the content permutation and data property, the
body string will be traversed by a for loop line by line to extract key words. For example, in the
default template, there is a “$” before the price number. So the program can use “$” to locate
item details and it’s exact price. As another example, the “Payment processing method”,

26

“Delivery method” and “Shipping address” of one order show up sequentially at last of the
default template. So when “Payment processing method” is detected in one line, the program will
append the line content every other line into an array. The program does append operation every
other line because it needs to skip the content subtitle (e.g. “Delivery method”).

4.2 User-Defined Email Template (HTML)

If one Email is classified as HTML template, the subject and body string of it will be passed to
“the E2RParse.py” to be parsed be method “generate DIY order(subj,body)”. The method
“generate DIY order(subj,body)” use a library Beautiful Soup4(refer to as “bs4” below) [11] to
parse HTML file by checking HTML tags. A sample HTML Email of John Smith is shown in
Figure 4.2.1. Part of the HTML code of the Email is shown in Figure 4.2.2.

Q) shopify
Dear Wendy's
You just got a new order #3001 from John Smith!
Num Item Price
2 Plastic Pink Rose 10.99
it Plastic Christmas Tree({Tall) 69.99
1 Decorated Christmas Star(10/pack) 9099

Here is a summay of customer info:

i
|§|

e2rcustomer@gmail.com

miﬁmtnﬂ:'ﬁmm
i s

BMO Debit

Standard

Thank you for choosing Shopify! Have a nice business day!

Figure 4.2.1 A sample HTML Email of John Smith

27

<p><hi>Dear <emdWendy's:</ha></p>
<p»<h4i>¥ou just got a new order <b class = "orderID">#3001 from <cm>John Smithl</=n></
Lp¥
class="table">

>Num</thy>
>Ttem</th>
>Price</th>

></td>
"»Plastic Pink Rose</ > td>
i >< />

"num" >1</ >/ td>
=5 ">Plastic Christmas Tree(Tall)</ ><ftd>
“price">69.99</ ></td>

"num">1</ ></ftd>
"item">Decorated Christmas Star(1@/pack)</ > fdy
"price">9.99</ ><ftd>

<fo>

Figure 4.2.2 First half (contains order details and order ID) of John’s Order Email HTML code

Some wrapped function of bs4 can traverse a whole HTML file and return raw text nested in
specific HTML tag. As can be seen in Figure 4.2.2 line 2, there is a pair of HTML tag
with John’s order ID nested in it. In the opening tag , it has a class “orderID”. Function
“generate DIY order(subj,body)” call a method “find(“b”, attrs = {“class” : “orderID”})” in bs4
to find the specific tag “<b class = “orderID”>" and return the raw text nested in it.

By using this parsing method, the permutation of information and data property of the contents
inside targeted tags do not matter any more. So, only if shop owners design their HTML template
with the right HTML tag, right messages can be extracted regardless of how the HTML structure
really is.

4.3 Rigid Email Template (JSON)

Because Shopify provides shop owners with the feature to modify their Email templates freely, it
is feasible to send Email which is already structured in JSON directly, so the E2R do not need to
do the parse again. In the situation of rigid template, when MailClassify pass the JSON like
string to the E2Rparser, a method “simply generate order(subj,body)” will be used to check the
validation of the string. In the method, a python built-in method “json.loads()” will be called to
encode the string to JSON (Line 6 in Figure 4.3.1). If the operation fails, which means the JSON
structure is wrong (in most case, it is because of template designer’s typo), a template error
report will be sent to Wendy. And the status will be set to False, which will inform following

28

program, the parse process has failed so do not make REST calls. On the other hand, if the
encode succeeds, the status will be set to True. This procedure is shown in Figure 4.3.2.

simple generate order subj):
print('Constructing REST calls...')

status

check your templates of %s'%subj
%s Failed !'%subj[-5:]

Figure 4.3.1 Method simple generate order in “the E2RParser.py”

Wendy’s
mailbox
>—< Report
JSON Error
\
Good Template Wrong Template
_*./
Go to ‘\\\\ d
following n
operations
RESTCaller.
Py
E2R System

Figure 4.3.2 the E2R deals with good/wrong JSON like Emails

5. Testcase Groups

5.1 Templates

the E2R system is tested by one kind of “Text” template (Figure 5.1.1), three kinds of HTML

template (Figure 5.1.2) [10] and one JSON like template (Figure 5.1.3). The “Text” template is

29

the default template that Shopify defined for shop owners and can be found and modify at

b1

Shopify users’ “settings” panel. Four different “Text” Emails are used to do the test and get good
output. The JSON like template is designed to match the database query structure of Wendy’s
server. Four different JSON like Emails are used to do the test and get good output. As for the
HTML template, the overall template designs of every single HTML template are different,
while in every design, the HTML tag of key information is the same so data can be extracted
correctly. For every design, two Emails are used to test the E2R system and the (2*3 = 6 in total)
templates works fine. In summary, 14 Email testcases are used to test the E2R system and the the

E2R system works for all 14 test cases.

[xinwan818-1] Order #9999 placed by Bob Biller

{;ﬁf’ zhang wenting <zwt467875460@gmail.com=
B8 to Orders [+
Hello xinwan818-1,

John Smith placed a new order with your store, Oct 18 09:16PM:

. 1x Awiator sunglasses (SKU: SKU2006-001) for $89.99 each

1% Mid-century lounger (SKU: SKU2006-020) for $154.99 each
View order #3999
Payment processing method:
visa, bogus
Delivery method:
Generic Shipping
Shipping address:
Steve Shipper
123 Shipping Street
Shippington, Kentucky 40003
United States
555-655-SHIP

Figure 5.1.1 Template 1: Default

30

A shopify

Dear Wendy's
YYou just got a new order #3001 from John Smith!
Num Item Price
2 Plastic Pink Rose 10.99
1 Plastic Christmas Tree(Tall) 69.93
1 Decorated Christmas Star(10/pack) 299
Here is a summay of customer info: Dear wenoy'.s

fou jast got & n2w order 48002 from

o John Smith
e.lrcusfomr@gﬂall_com
I P————
Pashc Pink Rose of a
eZrousiomer@gmail. com
sreeres s s oo
28 4

Try St

s.mf.,;m:j Detais
BMO Debit

Ernai/ Tewghone amuswr@gneuom
_ i T
Paract ®BC Delt
Standard
Deiery riree

Thank you for choosing Shopify! Have a nice business day! Thank you Cor chossing 3709'5;}' B, S R da&'

(A) Template 2: HTML-A (B) Template 3: HTML-B

M@mimm orwwr

Di Wu #3003

e2rcustomer@gmail.com

American Visa Standard

White House, U.S.

(c) Template 4: HTML-C
Figure 5.1.2 HTML templates (A, B, C)

31

[Wendy's] Rigid Order #8888

AT zwtd67875460@gmail.com
3 to bce: xinwantest [+

{"orderlD":"#8888",
"orders”;

{
"ltem": "Shower Curtain with Hooks (Treated to Resist Deterioration by Mildew) - 72 x 72 inches, Grey Stripe (SKU: SKU2006-003)",
"Num"”: 3,

"Item”: "Nintendo Switch Console - Super Mario Odyssey Edition (SKU: SKU2006-023)",
"Num™ 2,

}
I

"customer":
{
"Name": "Bob Biller"
"Payment": "debit, BMO",
"Delivery”: "Prime Shipping",
"Addr": "Bob Biller 614 10047 Jasper Ave Edmonton, Alberta T5J 0C6 Canada"

1
}

Figure 5.1.3 Template 5: JSON

5.2 Test Programs

Although the simulated website of Shopify works fine to send customer order summary Emails,
in practical situation, the E2R system may need to be robust enough to handle thousands of
Emails in one day or several Emails coming at the same time. That is to say, the simulated
website of Shopify discussed before works as one client end, while we need a program to
simulate a bunch of client ends to use Shopify and send mails to the E2R system.

In this case, a test program called “sender.py” is designed to to tests. A module named
MailProcessor is used to generate special Emails and send them. The “sender.py’ has 5 modes.
Users can choose mode to run the program by add a parameter after “sender.py”. Functions of
the 5 modes are listed in Table 5.2.1.

Mode Function

0 Send all Emails in every 5 seconds

Send default mail 1 2 3 4 and rigid Email 1 2 3 4 and 6 HTML Emails

Send 1 DIY Email

1

2

3 Send 1 rigid Email

4 Send 1 default Email

32

6. Conclusion and Future Work

In conclusion, the MINT Capstone Project is mainly implemented under Python 3. There are
three systems implemented to simulate and demonstrate the working environment of
Email-to-REST User Request Translation System (the E2R system). For the Shopify part, a
Django based website is implemented to simulate how Shopify works, and a “sender.py”
program and a “MailProcessor” module are implemented to send 14 different test emails
separately and together, once and continuously. For Wendy’s warehouse server part, a Flask
based website is implemented to simulate a small shop’s warehouse server which can take 4
kinds of REST calls and make related changes to its database. For the E2R system, 5 main
programs are implemented to poll, extract, parse, send emails, make REST calls and report
errors.

Generally speaking, the two main functions of the E2R system are communication and
translation. Emails are the communication tools between the E2R and human beings. The third
party server (Wendy’s warehouse server) and the E2R system interact with each other via REST
calls. To send and receive emails, the E2R system is designed based on SMTP and IMAP4
protocols. The email server is Gmail. The interaction between the E2R and Wendy’s server is
based on HTTP protocol and Representational state transfer services. This process uses
“requests” API.

In terms of translation, by analysing property of Email templates, the E2R system translate three
main kinds of Emails to JSON request. To translate JSON response from third party server
(Wendy’s warehouse server) back to Email, the E2R use “Jinja 2 API to render Emails [9].

With the help of the E2R, shop owner now do not need bother to check every Email all by their
own, while in the future, there is still some work can to be done to make the E2R better. First,
although the E2R can handle 3 types of Emails, templates needs to be pre-defined. To make it
more convenient to use, natural language library (e.g. NLTK, TextBlob) can be taken into
consideration. Besides, there may be some mistakes in customer order summary Emails, which
can lead to failure of translation. Therefore, a Q&A system can be added to the E2R system to
interact with customer to get the correct information.

33

Acknowledgement

First of all, I want to express my thankfulness to my instructor and my parents. My instructor Dr.
Lu is a really patient and strict teacher, who helps me to be strict to myself not only with the
programming but also in related documents (e.g. Dashboard, GitHub document, all reports.). As
for my parents, they always encourage me when I am in trouble and provide me with a good
environment so I can concentrate on my studies.

Then, I would like to thank myself for never giving up when it is hopeless and always insisting
when trapped with bottlenecks. Although the E2R system is only a simple student project, it is
my first completed project in Computer Science. The 2221 lines of python codes makes me feel
confident in my career.

Last, I really appreciate the time in ATH with Chang and Shan. I will never forget the time when

we sit together, focusing on our own studies or enjoying our homemade meals. Hope we can all
do well in our future researches and working lives.

34

Related Links

Original Approved Proposal:
https://docs.google.com/document/d/10hsN6UMBZzINcOWpRmM4TUvibJmAZBC8240X4v9Qu

cxQ/edit

GitHub:
https://github.com/xinwan818/Email-to-REST-User-Request-Translation-System-

Templates:
https://docs.google.com/a/ualberta.ca/presentation/d/10YKCCSTnax 1 pI99ESxNwEMQ4
g7KRy5740sQPc252yg/edit?usp=sharing

User Manual:
https://docs.google.com/a/ualberta.ca/document/d/1JiuRu-kJ-Kv4NGVFvRA70V9Jlf3q

INrsukXk9-2770/edit?usp=sharing

DashBoard:
https://docs.google.com/document/d/1e50fUk2AZETpWjvnlDUAgh kecjblTzmeMvCdV
OF_mMI/edit?ts=59de6bld

35

https://docs.google.com/document/d/1TXhF9MOSyZSiXg-N9nqOS2ClrRFz6j4LL4po1lgN-ls/edit?ts=59c44752
https://docs.google.com/document/d/1OhsN6UMBzjNc0WpRmM4TUvibJmAZBC8g4OX4v9QucxQ/edit
https://docs.google.com/document/d/1OhsN6UMBzjNc0WpRmM4TUvibJmAZBC8g4OX4v9QucxQ/edit
https://docs.google.com/document/d/1TXhF9MOSyZSiXg-N9nqOS2ClrRFz6j4LL4po1lgN-ls/edit?ts=59c44752
https://github.com/xinwan818/Email-to-REST-User-Request-Translation-System-/blob/v4.0.0/README-4.md
https://docs.google.com/a/ualberta.ca/document/d/1WXcUe81YoAhXQEE869isW_Y_4ElY-SOeCzjz9Z4irh4/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/presentation/d/1oYkCCSTnax1pI99E5xNwEMQ4jq7KRy574OsQPc252yg/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/presentation/d/1oYkCCSTnax1pI99E5xNwEMQ4jq7KRy574OsQPc252yg/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/presentation/d/1oYkCCSTnax1pI99E5xNwEMQ4jq7KRy574OsQPc252yg/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/presentation/d/1oYkCCSTnax1pI99E5xNwEMQ4jq7KRy574OsQPc252yg/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/document/d/1JiuRu-kJ-Kv4NGVFvRA7oV9JIf3q_INrsukXk9-2ZZ0/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/document/d/1JiuRu-kJ-Kv4NGVFvRA7oV9JIf3q_INrsukXk9-2ZZ0/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/document/d/1JiuRu-kJ-Kv4NGVFvRA7oV9JIf3q_INrsukXk9-2ZZ0/edit?usp=sharing
https://docs.google.com/a/ualberta.ca/document/d/1JiuRu-kJ-Kv4NGVFvRA7oV9JIf3q_INrsukXk9-2ZZ0/edit?usp=sharing
https://docs.google.com/document/d/1e50fUk2AZETpWjvnlDUAgh_kcjb1TzmeMvCdV0F_mMI/edit?ts=59de6b1d
https://docs.google.com/document/d/1e50fUk2AZETpWjvnlDUAgh_kcjb1TzmeMvCdV0F_mMI/edit?ts=59de6b1d
https://docs.google.com/document/d/1e50fUk2AZETpWjvnlDUAgh_kcjb1TzmeMvCdV0F_mMI/edit?ts=59de6b1d

References

[1] Mail Parser:
https://mailparser.io/
[2] Julie Desk:
https://www.juliedesk.com/
[3] Architectural Styles and the Design of Network-based Software Architectures,
UNIVERSITY OF CALIFORNIA, IRVINE, Roy Thomas Fielding,2000
[4] Flask Development:
https://coddyschool.com/upload/Flask Web Development Developing.pdf

[5] Flask API Design:
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

[6] Django Development: https://djangobook.com/

[7] Treading Design: https://docs.python.org/3/library/threading.html

[8] the E2R MailPort Design (PyMail): https://github.com/paramiao/pyMail
[9] Email render(Jinja2): http://jinja.pocoo.org/docs/2.10/

[10] Template Design(Bootstrap3/4): https://www.w3schools.com/bootstrap.com
[11] the E2R HTML parse(Beautifulsoup 4):
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

36

https://mailparser.io/
https://www.juliedesk.com/
https://coddyschool.com/upload/Flask_Web_Development_Developing.pdf
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
https://djangobook.com/
https://djangobook.com/
https://github.com/paramiao/pyMail
https://github.com/paramiao/pyMail
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
https://www.w3schools.com/bootstrap.com
https://www.w3schools.com/bootstrap.com
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

