
University of Alberta

Dynamic Network Resource Allocation

by

Yu Sheng

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Yu Sheng
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis and, except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatsoever

without the author’s prior written permission.



Examining Committee

Mike MacGregor, Computing Science

Chinthananda Tellambura, Electrical & Computer Engineering

Ioanis Nikolaidis, Computing Science



Abstract

A fair and optimal mechanism is required for allocating bandwidth to virtual

machine migration in a WAN environment. In this thesis, we propose a dy-

namic resource allocation algorithm running in either centralized or distributed

environments. The centralized version of our algorithm collects information

from individual users and dynamically allocates bandwidth according to their

demands. The distributed version of our algorithm is running on the internal

nodes (e.g. routers) in the network. In the distributed case, we show that

even when the routers and the users do not exchange allocation information,

the allocation is still stable and optimal if the users are elastic users. Another

interesting problem we solved is emergency handling, which is also critical in

virtual machine live migration.
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Chapter 1

Introduction

In this thesis, we discuss the problem of allocating network bandwidth to

several sites that are concurrently migrating virtual machines. The network

is a private network with leased links. Each site in the network is under

control from a central manager. In other words, there is no malicious node

in the network, and the data traffic is controllable. We define live migration

as a fast and reliable virtual machine migration process, which provides the

lowest system downtime. During live migration, the performance of the virtual

machine is maintained at the maximum. If the system downtime is less than

a few milliseconds, the user of the virtual machine will not even notice that

the virtual machine has been migrated from one physical host to another.

The system we consider consists of a central physical machine and several

distributed clients. We call the central physical machine the Central Manager

Server (CMS.) The distributed clients each host one or more virtual machines;

we call these clients VMHost. Each VMHost is connected to the CMS via a

wide area network. The CMS is responsible for managing the VMHosts, and

provides several useful services.

The first service that the CMS provides is virtual machine backup. Because

physical hard disk is vulnerable, a periodic backup of the disk image of the

virtual machine is necessary. Each virtual machine periodically sends its disk

image to the CMS. Normally the virtual machine keeps running on the VMHost

during the backup process. The user of the virtual machine will not notice the

transmission of the backup data between the VMHost and the CMS.
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The second service is disaster recovery. When the VMHost suffers a power

failure or other emergency, the CMS can start up the backup virtual machines

for that VMHost on some other VMHost. When the VMHost is recovered, the

CMS will start migrating the virtual machines back to the original VMHost.

There are several problems that must be solved to properly and reliably

supply these services. The first problem is to provide a virtual machine migra-

tion mechanism. The second problem is on the VMHost level. Each individual

VMHost can host several virtual machines, and these virtual machines share

the same network adapter of that host. As a result, internal bandwidth com-

petition is inevitable. The goal is to provide a local bandwidth sharing scheme.

The third problem is on the VMHosts-CMS level. The VMHosts are connected

to each other and to the CMS over low bandwidth, high delay WAN links. The

services envisioned can require the transfer of large data sets, and we face the

competing goals of quick transfers for individual VMHosts whilst not starving

any one site. Fair and efficient bandwidth allocation in an environment of

dynamically changing demands is required. We assume that we are dealing

with leased links so that we are not faced with competition from other anony-

mous, uncontrollable sources, as would be the case in the Internet. The work

reported in this thesis focuses on this third problem.

However, we will show that our work is not limited to this specific problem.

The algorithm designed for this specific application is general, and can be

applied to many other areas. Moreover, we will see that a centralized algorithm

has many limitations. Hence, we strive to extend our work and to find a better

solution for generic resource allocation problems.

In this chapter, we give a brief discussion of our network resource allocation

problem, describe the network model we use in our work, discuss the new

features of our algorithm, and finally give an outline of the remaining chapters.

1.1 Background

Network resources, such as link bandwidth, are limited. Research in the field of

resource allocation has received extensive attention in recent years. The goal
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of this research has been to provide a scheme which allocates the resources in a

fair and efficient manner. As a result, a number of centralized and distributed

resource allocation schemes have been suggested.

The typical centralized resource allocation scheme has a client-server struc-

ture. The clients are the multiple users competing for finite network resources,

i.e. link bandwidth. The server is the central manager which is responsible for

performing the task of resource allocation. In order to allocate the resources,

the central manager needs to know the status of all the users and the links in

the network. Two methods have been developed to collect the information.

The first one is the active method.The central manager periodically collects

information from the users. Once the manager has enough information, it

starts a new round of allocation. The second one is the passive method. If

the user needs to change its current allocation, it sends the request to the

central manager. Then the manager reacts accordingly. As we noted above,

our first proposal is based on the centralized resource allocation scheme. The

CMS is the central server, which is responsible for collecting the bandwidth

requirements of each VMHost. The VMHost receives a bandwidth allocation

from the CMS, and limits its bandwidth usage. We used active method to

collect information in our work.

Although we solved the problems as defined above, there are several dis-

advantages of the centralized allocation scheme. First, the central manager is

always required to perform the resource allocation task. If the central manager

fails, then the allocation process will fail. The second disadvantage is that the

communication between the users and the central manager will introduce over-

head and therefore reduces efficiency. Because network resources are limited,

any overhead can degrade system performance. The third disadvantage is that

the method does not scale well. For example, it is hard to maintain a central

manager in a network as large as the Internet.

To solve these problems, we extended the centralized resource allocation

scheme to a distributed version. The structure of the distributed resource

allocation scheme is similar to that of an ad-hoc network. There is no central

manager in this scheme. Each user has a predefined evolving function which
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updates its bandwidth demand. The user collects feedback (e.g. propagation

delay or packet loss) from the network and reacts accordingly. The feedback

might not be a precise reflection of the actual change in the bandwidth change

in the network. For example, TCP is a typical window-based protocol which

controls the user’s transmission rate by collecting its packet loss rate. Once

TCP detects a packet loss, it reduces the sending window size, and therefore

reduces the transmission rate of the user. Because many factors (e.g. queue

overflow on the router or bit corruption of the packet) can cause packet loss,

TCP cannot tell the difference between these factors. As a result, a decrease of

the user’s transmission rate may be unnecessary, and therefore the performance

is degraded unnecessarily. However, we will show that if all the users in the

network are elastic users, then the result of the bandwidth allocation will

eventually be stable and optimal.

Another debate concerns whether we choose static or dynamic allocation.

A static allocation scheme distributes network resources in a prior reservation

manner. Each user is allocated a fixed amount of bandwidth. In real networks,

however, data flows do not last forever but arrive and leave at random times.

Consider a case where two users are competing for a single link in the network.

If we use a static allocation to distribute bandwidth to these users, then each

of them could be assigned half of the bandwidth of the link. However, assume

that one user is browsing the Web while the other is downloading files. The

first user might not always fully utilize its allocated bandwidth, and the second

might always be short of bandwidth. In this case, a significant amount of

bandwidth is wasted due to the variation in the dynamic demands of the users.

Therefore, we focus on using a dynamic allocation scheme, which adjusts the

allocation result according to the users’ demands for bandwidth.

We show that our method is very general and is applicable to a broad range

of services. For example, although our algorithm runs in a centralized manner,

we still have the flexibility to convert it to the distributed version. We will

show this later in this paper. Another flexible aspect of our algorithm is that

it is a general resource allocation algorithm that solves not only the network

bandwidth allocation problem, but also problems like process scheduling in
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Figure 1.1: (a) Network model before conversion (b) Network model after
conversion

the area of operating systems, etc.

1.2 Network Model

Consider a network NET which contains a set of users U and a set of links L.

U contains n users while L contains m links. We define user Ui as a user in set

U , where i ∈ [1, n]. We define link Lj as a link in set L, where j ∈ [1,m]. Link

Lj has capacity Cj. We define the route of user Ui to be the concatenation

of links through which the user’s data flows, and we denote this route Ri.

Accordingly, we use Lj ∈ Ri to denote that link Lj is on the route Ri of user

Ui. Each user Ui is allocated bandwidth xi.

In the real world, there can be many users located at one network node.

Moreover, each of these users can have multiple data flows. For example, one

user can have both a web browser and file downloads running simultaneously.

For our purposes, we assume that each independent flow constitutes a separate
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user. For example, in the network topology shown in Fig. 1.1(a) there are three

links L1, L2, and L3. User U1 has two flows. L1 and L2 are on route one of

U1, and L2 and L3 are on route two of U1. In the formulation that follows, we

would separate U1 into two separate users U11 and U12, and allocate bandwidth

to the two flows separately.

To account for the divided users located in the same physical node, we

introduce the concept of a ‘virtual link’ to distinguish this special link from

real links. A ‘virtual link’ is a link with infinite capacity. Because we divide

one physical user into multiple sub-users, each sub-user needs a ‘virtual link’

to connect to the network. Because a ‘virtual link’ has infinite capacity, it

has no effect on the allocation result. The converted network is shown in Fig.

1.1(b).

We assume that the direction of the data flow of each user is unique. That

is, the source and destination of each flow are fixed. This is because network

links are typically full duplex, and therefore flows in opposite directions on

the same link do not interfere with each other. If one user has flows in both

directions on its route, then we divide this user into two sub-users. Each

sub-user owns one of the two flows.

We also assume that each user in the network must use one or more links.

Otherwise it would never compete with the remaining users in the network

and allocating bandwidth to such a user would be meaningless.

The objective of the resource allocation is to provide a fair and efficient

allocation result. In our work, we define an efficient allocation as:

Objective : max
∑
i

xi (1.1)

Subject to :
∑
Lj∈Ri

xi < Cj ∀j (1.2)

xi > 0 ∀i (1.3)

where Ri is the sequence of links followed by the route of flow i.
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According to our definition, the objective of an efficient bandwidth allo-

cation is to utilize the network resources to maximum. The first constraint

confines the allocations not exceeding the bandwidth capacity contraints. The

second constraint requires that each user has positive allocation.

Next we define a fair allocation as follows: the network should not favor

certain users while starving others. In other words, no user receives special

treatment. By careful examining of the objective we defined above, it is easy

to see that this objective is not fair. Hence a balance between fairness and

efficiency is needed.

1.3 Dynamics of the Network

As we discussed in the background section, real network applications vary their

bandwidth demands quite often. Therefore, a static allocation scheme lacks

flexibility in the presence of dynamic loads, and leads to a potential waste of

network resources.

Our work combines prior allocation with a flexible dynamic scheme, which

adjusts the allocation according to the user’s real-time demand for bandwidth.

We use prior allocation to reserve some initial resources to each user. Then

the central manager periodically collects feedback from each user and performs

dynamic resource allocation.

The prior allocation is based on the concept of max-min fairness [1]. Max-

min fair allocation guarantees both fairness and efficiency. We will see that

max-min fairness guarantees that the most poorly treated user can receive as

many of the resources as possible. In other words, the network is not biased

to users with any special features.

The dynamic allocation includes two steps. The first one is the share/reclaim

step. If the demand of bandwidth of user Ui can be satisfied and Ui has extra

resources, then the user may be willing to share the unused resources with

other users. On the other hand, if Ui shared any resources before and requires

more resources, it starts to reclaim that bandwidth. After the share/reclaim

step, the algorithm enters the borrow step. In this step, those users which are
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still not satisfied try to borrow resources from others.

The share/reclaim/borrow steps in our dynamic allocation are novel be-

cause they allow collaboration among the users. Previous works assumed that

network users always behave aggressively. The user does not consider the

demands of other users. In our work, we give the user the ability to de-

cide whether or not to share its unused bandwidth. Other users can take

advantage of this unused bandwidth. Therefore the network resources can be

utilized at maximum. Our scheme also has the ability to control the process of

the share/reclaim/borrow steps. The user can share/reclaim its unused band-

width quickly or slowly. Hence, sharp variance of network bandwidth might

be avoided.

1.4 Handling Emergencies

Occasionally the user may face an emergency situation and want to transfer a

large bulk of data within very short time. In our problem, when the VMHost

recovers from failure, the CMS will start transfering the backup virtual ma-

chines back to the VMHost. In order to provide quick recovery, it requires peak

bandwidth usage in a short time period. Therefore, emergency handling is a

very important task that the central manager needs to take into consideration.

Few previous studies provide a solution for emergency handling. In our

work, we show that there are multiple solutions to this problem due to the

fact that, by using our algorithm, users in the network can collaborate with

others. For example, the user may quickly raise its bandwidth demand, or the

manager can suppress the bandwidth demands of the non-emergency users.

We compare the pros and cons of these solutions in later chapters.

1.5 Related Work

There has been considerable work done on fair allocation. For example,

serveral fair algorithms for sharing network resources are studied in [3], [7].

Kelly et al proposed the idea of proportional fairness [4], [15]. Their goal was
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to maximize the total utility for all users. These users are assumed to offer

elastic traffic, and can thus adjust their rates based on network feedback.

We chose max-min fair allocation as the initial static allocation scheme.

Bertsekas and Gallager [1] adapted max-min fairness from its original use in

econometrics to data networks. Recently considerable research has been de-

voted to the issue of providing optimal resource allocation in communication

networks. For example, in [8] a unified treatment of max-min fairness ap-

plied to a network was proposed. We will give detailed discussion of max-min

fairness in the next chapter.

References [5], [11], [12] describe distributed algorithms to achieve fair

allocation. However, these are distributed algorithms which do not satisfy our

requirement.

Moreover, a more general form of max-min fairness called weighted max-

min fairness has also been extensively studied. In [6], White proposed an

algorithm to achieve weighted max-min fairness. In [2], Marbach studied a

pricing scheme which provides differentiated service by using priorities. The

result leads to a weighted max-min fair allocation. We use the concept of

weighted max-min fairness in our work. We show that we can achieve weighted

max-min fairness in both the centralized and the distributed manners.

In [10], Chandra et al proposed a distributed dynamic resource allocation

algorithm. In [16], Afek et al proposed a bandwidth allocation scheme which

initially preserves some bandwidth for ‘phantom’ session on the link. However,

a distributed algorithm does not always have full information about the net-

work, and hence the allocation result is not as precise as that from a centralized

computation.

In [13], Bar-Noy et al proposed a bandwidth allocation scheme with the

ability to abort the data flow of some users to preserve bandwidth for others.

However, this might not lead to a fair allocation because some users could be

starved when their data flow is preempted.

In [14], Korilis et al introduced a distributed bandwidth allocation scheme.

In their scheme, the users in the network are noncooperative. However, in our

work we assume that the users cooperate with others to enable the share/reclaim/borrow

9



steps we discussed above.

In [9], a detailed discussion of rate adaptation, congestion control and fair-

ness is provided. It provides knowledge such as how existing network protocols,

i.e. TCP, would affect our algorithm.

Our work adjusts max-min fair allocation as well as dynamic resource al-

location in both the centralized and distributed manners. It does not require

synchronization of the network. However, in the centralized algorithm the

users should continuously provide feedback to the central manager for the dy-

namic allocation procedure. We show that if the user flows remain stable, the

allocation result will eventually be optimal and stable.

1.6 Outline

The rest of the thesis is organized as follows. In Chapter 2, we discuss the

max-min fairness, and we extend the max-min fairness to weighted max-min

fairness. We also provide an algorithm which can achieve weighted max-min

fair allocation. In Chapter 3, we introduce the centralized version of our dy-

namic resource allocation algorithm. In Chapter 4, we extend the allocation

algorithm to a distributed version. The distributed allocation algorithm is

based on the centralized allocation algorithm. In Chapter 5, we discuss emer-

gency handling. In Chapter 6, we give experimental results and discuss the

pros and cons of both the centralized and the distributed allocation algorithms.

10



Chapter 2

Max-Min Fairness

In this chapter we discuss max-min fairness, which is the base of our work.

We explain the reason why we adopt the max-min fairness into our work,

and we propose the pros and cons of max-min fairness with other feasible

solutions. In the first two sections we give definitions of max-min fairness and

weighted max-min fairness from previous works. In the third section we give

our algorithm which leads to weighted max-min fair allocation.

There exists many forms of fairness, e.g. max-min fairness, proportional

fairness, etc. In [1] Bertsekas and Galager proposed an algorithm which can

achieve max-min fairness. The result of max-min fairness guarantees that the

most poorly treated user in the system is allocated with as much resource as

possible. In other words, the increase of the allocation of one user Up is at the

cost of the decrease of the allocation of another user Uq, where xq is equal to

or greater than xp; and the cost must be greater than the benefit that user Up

can gain from user Uq.

Kelly et al proposed the idea of proportional fairness [4]. Their goal was

to maximize the total utility for all users. If allocation result vector {xi} is

proportional fairness, and there exists another feasible allocation vector {xi′},

then we have:

∑
i∈[1,n]

xi − x′i
xi

< 0 (2.1)

These users are assumed to offer elastic traffic, and can thus adjust their

rates based on network feedback. Proportionally fair allocation requires feed-
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Figure 2.1: A simplified network to demonstrate the fairness of max-min

back from the network. In our work we require the central manager to collect

information from users. The proportional fair allocation does not consider

this. Therefore, we chose to use max-min fairness as the basis of our alloca-

tion scheme.

2.1 Definition of Max-Min Fairness

Max-min fairness is a classical sharing principle in the field of data networks.

First we give a formal definition of max-min fairness.

Definition 2.1. A vector of resource allocation {xi} is said to be max-min

fair if, for any other feasible allocation {x′i}, the following is true: if x′p > xp

for user Up, then there exits another user Uq such that p, q ∈ [1, n], x′q < xq,

and xq ≤ xp.

This definition means that the result of max-min fair allocation is such

that the result for the user with smallest allocation has been maximized over

all feasible vectors. Then, given the user with the smallest allocation, the

allocation of the user with second smallest allocation is maximized, etc.

Max-min fair allocation is more fair than equal-sharing allocation scheme.

To illustrate this, consider a simplified network shown in Fig. 2.1. Assume

that the number of the links, m, is one less than the number of users: that is,

m = n− 1. We also assume that each link has the same capacity C. Let user

U1, U2, . . . , Un−1 use only the single link L1, L2, . . . , Ln−1, and user Un uses all

the links. Therefore, Un is competing with all other users in the network. The

bars in the figure denote the data flows. Assume that the direction of the data

flows is from left to right. If Un is allocated bandwidth xn, then we have:

x1 = x2 = . . . = xn−1 = C − xn (2.2)
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We can easily see that in order to maximize the bandwidth usage, we should

let xn = 0 and xi = C where i ∈ [1, n − 1]. Hence we have the sum of the

bandwidth usage as:

∑
i∈[1,n]

xi = (n− 1)C (2.3)

Therefore, user Un gets starved because Ui, where i ∈ [1, n− 1], takes the

whole available bandwidth.

If we apply max-min fair allocation to this problem, we will get:

x1 = x2 = . . . = xn−1 = xn =
C

2
(2.4)

And therefore the sum of the bandwidth usage is:

∑
i∈[1,n]

xi =
nC

2
(2.5)

As we can see, the total sum of the bandwidth usage of max-min fair al-

location is nearly half of that of simple equal-sharing allocation. However,

bandwidth for users of longer routes are preserved. Max-min sacrifices effi-

ciency for fairness.

In order to further understand the properties of max-min fairness, we in-

troduce the concept of a bottleneck link.

Definition 2.2. Link Lj is said to be the bottleneck link of user Ui if for all

users Ui′ with Lj ∈ Ri′ where i ∈ [1, n] and Ui′ 6= Ui we have:

xi +
∑

xi′ = Cj (2.6)

and

xi ≥ xi′ (2.7)

Now we can define max-min fairness by using the concept of bottleneck link:

Definition 2.3. A resource allocation vector {xi} is said to be max-min fair

iff each user Ui has a bottleneck link.
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Proof. Suppose that xi is a max-min fair allocation, but user Uk does not have

a bottleneck link. Define:

Xj =
∑
Lj∈Ri

xi (2.8)

Therefore, for each link Lj ∈ Rk, one of the following must be true: either

Xj < Cj or there exists user Uk′ 6= Uk such that Lj ∈ Rk′ and xk′ > xk. For

each link Lj, define the available bandwidth for Uk to be:

∆j = Cj −Xj, if Xj < Cj (2.9)

or

∆j = x′k − xk, if Xj = Cj (2.10)

Thus, if xk is incremented by maxLj∈Rk
(∆j), then only users whose band-

width allocation are larger than Uk will be affected, while all other users remain

unaffected. This contradicts the definition of max-min fairness, and thus there

must be a bottleneck link for each user.

In the reverse direction, assume that each user has a bottleneck link under

allocation {xi}. Suppose user Uk increases its allocation, then at least one of

the users at each of its bottleneck links must have their allocation reduced to

maintain feasibility. But all the users at a link have allocation less than or

equal to xk. Thus, {xi} must be a max-min fair allocation.

Because we run the allocation algorithm in a centralized manner, the data

about the users and the links are known. Therefore, the max-min fair alloca-

tion can be obtained by using a water-filling algorithm. We first denote the

average bandwidth allocation of link Lj by τj = Cj/nj, where nj is the num-

ber of users that use link Lj. If nj is zero, we set τj to zero. The algorithm

starts with all allocations equal to zero. It then finds the link Lmin such that

Lmin has the minimum τmin. Without loss of generality, we assume that users

U1, U2, . . . , Uk are using link Lmin. Next, we set x1, x2, . . . , xk to τmin. After

the first step, we subtract users U1, U2, . . . , Uk from the user set U . Then we
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update τ for the remaining links. Link Lmin as well as any links with τ = 0 are

then removed from the link set L. We iterate until all users have bottleneck

links.

2.2 Weighted Max-Min Fairness

Differentiated quality of service has received much attention because the simple

max-min fair allocation is not capable of providing differential service to users

based on variations in priority or other requirements. For example, consider

a network with a single link L1. Users U1, U2, . . . , Un are competing for the

bandwidth C1 of link L1. If some users pay more than others, it is reasonable

to allocate more bandwidth to these users. Hence, it would be necessary to

prioritize users by the amount they pay. In this section, we adjust the max-

min fair allocation to accommodate this kind of problem. The name of the

adjusted allocation scheme is weighted max-min fair allocation.

In weighted max-min fairness, a new parameter ωi called ‘priority’ is as-

signed to each user Ui. The higher the priority of the user, the more bandwidth

it can receive from the weighted max-min fair allocation. First we give a more

general definition of max-min fairness.

Definition 2.4. A vector of resource allocation {xi} is said to be max-min fair

if, for any other feasible allocation {x′i}, the following is true: if f(x′p) > f(xp)

for user Up, then there exists some user Uq such that p, q ∈ [1, n], f(x′q) < f(xq)

and f(xq) ≤ f(xp).

Here we define f(·) as a function which maps the resource allocation of Ui

to a finite number. For weighted max-min fairness, we have:

f(xi) =
xi
ωi

(2.11)

Moreover, we modify the definition of the bottleneck link:

Definition 2.5. Link Lj is said to be the bottleneck link of user Ui if for all

users Ui′ with Lj ∈ Ri′ where i′ ∈ [1, n] and Ui′ 6= Ui we have:
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xi +
∑

xi′ = Cj (2.12)

and

f(xi) ≥ f(xi′) (2.13)

2.3 Algorithm of Weighted Max-Min Fair Al-

location

In order to modify the usual max-min fairness to become weighted max-min

fair, we need to modify the parameters we used in the previous section. First,

we introduce a new parameter for each link in the network. We define the

total priority Ωj of link Lj as the sum of the priorities of the users using the

link:

Ωj =
∑
Lj∈Ri

ωi (2.14)

We also need to modify the definition of the average bandwidth allocation

of link Lj. In the previous section, we defined the average bandwidth allocation

of link Lj as the equal share among the users using such link. Since we are

now introducing the concept of priority, we modify τj to:

τj =
Cj
Ωj

(2.15)

Then the definition of the average bandwidth allocation of link Lj changes

to: τj is the average bandwidth per unit of priority on link Lj. With

these definitions, max-min fair allocation is a specific case of weighted max-min

fair allocation, where the priority of each user is set to one.

Next we give the algorithms of weighted max-min fair allocation. (see next

page)

The complexity of Algorithm 2.2 is O(n) because link Lj has to scan

through all the users competing for its bandwidth. The complexity of Al-

gorithm 2.3 is O(n) because link Lmin still needs to scan through the user list.
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Algorithm 2.1 WeightedMaxMin(U , L)

allocatedUserNr = 0
while allocatedUserNr < n do

for all Lj in L do
UpdateLink(Lj)

end for
find Lmin of minimum τ
allocatedUserNr = allocatedUserNr + AllocateLink(Lmin)
remove Lmin from L
remove Lj with negative τj from L

end while

Algorithm 2.2 UpdateLink(Lj)

capacity = Cj
priority = Ωj

for all Ui such that Lj ∈ Ri do
if Ui has already been allocated then

capacity = capacity-xi
priority = priority-ωi

end if
end for
if capacity == 0 then

Ωj = -1
else

Ωj = capacity
priority

end if

The main loop in Algorithm 2.1 will iterate at most m times. Therefore, the

complexity of the algorithm is O(mn).

We prove that Algorithm 2.1 results in a max-min fair allocation. We

need to prove that after the allocation, each user has a bottleneck link in the

network.

Proof. We denote step t of the while iteration in Algorithm 2.1 as Iter(t). In

each iteration, one and only one link would be chosen. We denote the link

being chosen at Iter(t) as Lmin(t). Lmin(t) has the minimum τ value among

the links at Iter(t). We denote the unallocated user set in which users compete

for Lmin(t) as ULmin(t). Define Ui ∈ ULmin(t) as user Ui in the set. According

to Algorithm 2.3, Ui’s allocation is:
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Algorithm 2.3 AllocateLink(Lmin)

allocatedUserNr = 0
for all Ui such that Lmin ∈ Ri do

if Ui has not been allocated then
xi = Ωmin * ωi
set Ui as been allocated
allocatedUserNr = allocatedUserNr + 1

end if
end for
return allocatedUserNr

xi = τLmin(t) ∗ ωi (2.16)

Assume that user Ui′ is allocated at Iter(t′), where t > t′. Because Lmin(t′)

is chosen before Lmin(t), we have:

τL(t′) ≤ τL(t) (2.17)

Since we have:

f(xi) =
xi
ωi

= τL(t), ∀ Ui ∈ UL(t) (2.18)

We know that f(xi) > f(xi′) for all Ui′ who is allocated before Ui. And

for user Uk who is allocated in the same iteration with Ui, it is easy to see

that f(xk) = f(xi). Hence we claim that Lmin(t) is the bottleneck link of Ui.

Because the iteration terminates only when all the users are allocated, it is

guaranteed that each user has a bottleneck.

Next we prove that the algorithm can terminate. Assume that user Uk

never gets allocated. In line 3 of Algorithm 2.1, the for loop scans through the

link set of the network. In Algorithm 2.3, unallocated users using link Lmin(t)

will be marked as allocated if they are not marked before Iter(t). If Uk never

gets allocated, then it means that none of the link in the network can mark

Uk. In other words, Uk uses none of the links. This contradicts the assumption

that each user must use at least one of the link in the network. Therefore, all

users must be allocated in the iteration of Algorithm 2.1 and the algorithm

can terminate.
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Figure 2.2: An example network to demonstrate weighted max-min fair allo-
cation

In sum, each user has a bottleneck link and thus the allocation is max-min

fair.

To illustrate how this algorithm works, we give a simple example. Consider

three users U1, U2, and U3 sharing two links L1 and L2 in the network shown

in Fig. 2.2. The priorities of the three users are:

ω1 = 1.0, ω2 = 2.0, ω3 = 3.0 (2.19)

And the capacities of the two links are:

C1 = 100Mbps, C2 = 50Mbps (2.20)

Referring to Algorithm 2.1, we have:

τ1 =
100

1.0 + 3.0
= 25Mbps (2.21)

τ2 =
50

2.0 + 3.0
= 10Mbps (2.22)

Therefore, link L2 is chosen as Lmin, and user U2 and U3 are allocated first.

According to Algorithm 2.3, we have:

x2 = 10 ∗ ω2 = 20Mbps (2.23)

x3 = 10 ∗ ω3 = 30Mbps (2.24)

After the first iteration, only U1 remains unallocated. Because U3 has

already been allocated with 30Mbps bandwidth, it would also consume 30Mbps
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on L1. Therefore, the bandwidth remaining for U1 on L1 is 70Mbps. Since U1

is the only user using link L1, we have:

τ1 =
70

1.0
= 70Mbps (2.25)

x1 = 70 ∗ ω1 = 70Mbps (2.26)

2.4 Summary

In this chapter, we give the definitions of max-min fairness and weighted max-

min fairness from previous works. We also introduce our algorithm to compute

a weighted max-min fair allocation. We use a simplified example to show the

steps of our algorithm.
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Chapter 3

Centralized Dynamic Resource
Allocation Scheme

As we can see in the previous chapter, the weighted max-min fair allocation

can only provide a prior bandwidth reservation for the users. Considering the

dynamics of the network, a prior bandwidth reservation might lead to great

waste of limited network resources. In order to deal this problem, we develop

a new resource allocation scheme which takes advantage of weighted max-min

fair allocation. In this chapter we introduce the centralized dynamic resource

allocation scheme.

3.1 System Model

We have a network NET consisting of user set U and link set L. There

exists a unique network node M that serves as the central manager. M is

responsible for performing the allocation task, and for collecting information

from each user. The system has two states: initial allocation state and dynamic

allocation state. During the initial allocation, the manager assigns each user

an initial allocation. Then the manager enters the dynamic allocation state.

In this state, the manager periodically collects information from each user.

Based on this information, the manager runs the dynamic resource allocation

algorithm and sends each user an updated allocation. This manager stays

in this state until the topology of the network changes. At that point the

manager returns to the initial allocation state. A change of the topology of
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Figure 3.1: System model of the centralized dynamic resource allocation
scheme

the network occurs when:

• a new user enters the network, or

• an existing user leaves the network, or

• a new link is added to the link set L, or

• a link is deleted from the link set L.

The central manager has a timer which it uses to time the duration of each

‘control period’ ΓM . This is the interval between each round of sending the

users their updated allocations. Let us consider ΓM as one time unit. We use

the term ‘control round’ to represent one complete iteration of the dynamic

allocation procedure. Thus, when we say that t = t + 1, the actual time that

has elapsed is ΓM . The system model is shown in Fig.3.1.

Next we describe in detail of the two states of the manager.
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3.2 Initial Allocation State

In the initial allocation state, the manager runs the weighted max-min fair

algorithm. Each user records its initial allocation in the variable σi. This

variable acts as the baseline for future dynamic adjustments. After the initial

allocation, we have:

σi = xi(0) (3.1)

After this, the manager enters the dynamic allocation state.

3.3 Dynamic Allocation State

Our dynamic allocation algorithm uses the concepts of sharing, reclaiming and

borrowing bandwidth with/from other users as required.

Share: If user Ui requires less bandwidth than its current allocation, then user

Ui has some extra bandwidth. In order to utilize this unused bandwidth,

user Ui can decide whether to share it with other users.

Reclaim: If user Ui requires more bandwidth than its current allocation, and

if Ui has already shared some of its initial allocation, then user Ui can

reclaim that shared bandwidth.

Borrow: This is related to Share and Reclaim. If user Ui’s demand for band-

width cannot be satisfied by its allocation even after the reclaim step, then

it tries to borrow unused (shared) bandwidth from others.

In order to perform the dynamic allocation, we introduce several parameters:

θi records how much bandwidth user Ui has shared. If user Ui’s demand for

bandwidth decreases then it adds the unused bandwidth to θi. On the

other hand, if user Ui’s demand increases, and if the current allocation

cannot satisfy its demand then Ui would start to reclaim bandwidth until

θi is zero or the demand drops again.
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δi is the share factor of user Ui. We use this parameter to control the speed of

the sharing process. As δi increases, user Ui shares its unused bandwidth

more quickly. The value of δi is bounded in [0, 1]. This is because Ui can

only share a fraction of its unused bandwidth. If δi equals zero then Ui is

not willing to share any of its unused bandwidth. If δi equals one then Ui

is willing to share all of its unused bandwidth in one control round.

ρi is the reclaim factor of user Ui. We use this parameter to control the

speed of the reclaim process. As ρi increases, user Ui reclaims its shared

bandwidth more quickly. As with δi, ρi is bounded in [0, 1]. If ρi equals

zero then Ui will not reclaim any of its shared bandwidth. If ρi equals one

then Ui will reclaim all of its shared bandwidth in one control round.

ηi is user Ui’s predicted demand for bandwidth in the next control round.

εi if ηi cannot be satisfied by merely using Ui’s current bandwidth allocation,

then Ui records the gap in εi. Later Ui will seek shared bandwidth to fill

the gap.

κi records how much bandwidth Ui has borrowed from other users.

The new parameter for link Lj is:

Θj records the sum of the shared bandwidth of the users using Lj. That is:

Θj =
∑
Lj∈Ri

θi (3.2)

During each control round the manager sends xi(t) to each user Ui, and

waits for ηi(t + 1). Once all the users finish reporting ηi(t + 1), the manager

starts the dynamic allocation procedure. According to ηi(t+ 1), there are two

strategies that the manager can use to reallocate bandwidth for each user Ui.

3.3.1 Share Strategy

If we have:
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Figure 3.2: Share strategy. If the user’s bandwidth demand remains stable, it
will eventually share all of its unused bandwidth.

ηi(t+ 1) < xi(t)− κi(t) (3.3)

then user Ui is asking for less bandwidth in the next control round t+ 1. The

user may be willing to share its unused bandwidth with other users. δi is used

to control the amount of bandwidth that Ui can share. We have:

toSharei(t+ 1) = (xi(t)− κi(t)− ηi(t+ 1)) ∗ δi (3.4)

θi(t+ 1) = θi(t) + toSharei(t+ 1) (3.5)

xi(t+ 1) = σi − θi(t+ 1) (3.6)

εi(t+ 1) = 0 (3.7)

Fig. 3.2 shows the procedure of share strategy. If the user’s demand

remains stable, it would eventually share all the unused bandwidth.
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Figure 3.3: Reclaim strategy. If the user’s bandwidth demand remains stable,
it will eventually reclaim all the shared bandwidth.

3.3.2 Reclaim Strategy

If we have:

xi(t)− κi(t) ≤ ηi(t+ 1) (3.8)

then user Ui is asking for more bandwidth in the next control round t + 1.

If the user shared any bandwidth in the previous control round then it may

reclaim that bandwidth. Hence we have:

toReclaimi(t+ 1) = θi(t) ∗ ρi (3.9)

θi(t+ 1) = θi(t)− toReclaimi(t+ 1) (3.10)

xi(t+ 1) = σi − θi(t+ 1) (3.11)

εi(t+ 1) = ηi(t+ 1)− xi(t+ 1) (3.12)

Fig. 3.3 shows the procedure of the reclaim strategy. If the user’s demand

remains unchanged, it will eventually reclaim all its shared bandwidth.
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3.3.3 Update Link Share Pool

Once the manager finishes the share/reclaim steps for all users, it refreshes

the share pool of the links. The size of the share pool of link Lj is the sum of

the shared bandwidth of each individual user Ui if Lj ∈ Ri. For each link Lj

we have:

Θj(t+ 1) =
∑
Lj∈Ri

θi(t+ 1) (3.13)

3.3.4 Borrow Procedure

After the share/reclaim step, user Ui’s demand for bandwidth might still not

be satisfied. The manager scans through each user to check if εi(t + 1) is

greater than zero. If so, the borrow procedure is started for user Ui.

In the borrow procedure, user Ui scans the links on its route. The link

Lmin is chosen that has the minimum Θmin among the links on Ui’s route.

This is because Θmin is the upper bound of the possible bandwidth that Ui

can borrow. Once we find Lmin, we compare Θmin(t+ 1) with εi(t+ 1). There

are two possible cases.

Case 1:

Θmin(t+ 1) < εi(t+ 1) (3.14)

User Ui’s demand cannot be fully satisfied because the maximum possible

shared bandwidth is less than its gap. We assign all the shared band-

width to user Ui, and set the gap to be the difference between the shared

bandwidth and the original gap:

κi(t+ 1) = Θmin(t+ 1) (3.15)

εi(t+ 1) = εi(t+ 1)− κi(t+ 1) (3.16)

Case 2:

Θmin(t+ 1) ≥ εi(t+ 1) (3.17)
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Figure 3.4: Borrow procedure. If the user’s bandwidth demand cannot be
satisfied even after reclaim, it will start to borrow bandwidth from other users.

User Ui’s demand can be fully satisfied. We have:

κi(t+ 1) = εi(t+ 1) (3.18)

εi(t+ 1) = 0 (3.19)

Finally, we set the assignment of user Ui as:

xi(t+ 1) = xi(t+ 1) + κi(t+ 1) (3.20)

After borrowing bandwidth, user Ui has to update its record of how much

bandwidth it is using on each link on its route. This is because if Ui occupies

shared bandwidth on link Lmin, then this amount of bandwidth must also be

occupied on the remaining links on Ui’s route. Therefore, we have:

Θj(t+ 1) = Θj(t+ 1)− κi(t+ 1),∀Lj ∈ Ri (3.21)

Fig. 3.4 shows the borrow procedure.
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3.4 Algorithm

In this section we describe our centralized resource allocation algorithm. We

also analyze the complexity of the algorithm.

Algorithm 3.1 CentralizedAllocation(U , L)

WeightedMaxMin(U , L)
while manager is running do

for all Ui in U do
notify Ui with allocation xi
wait for Ui’s feedback

end for
DynamicAllocate(U , L)
sleep over one ΓM

end while

Algorithm 3.2 DynamicAllocate(U , L)

for all Ui in U do
UpdateUser(Ui)

end for
for all Lj in L do

UpdateLink(Lj)
end for
for all Ui in U do

if εi > 0 then
Borrow(Ui)

end if
end for

The complexity of the first step of Algorithm 3.1, WeightedMaxMin, is

O(mn). Line 3 to line 6 of Algorithm 3.1 takes Θ(n) to send allocation and

receive feedback from users. Algorithm 3.2 has three for loops. The first loop

calls Algorithm 3.3. Because in Algorithm 3.3 the user has to scan through its

link list, the complexity of the first for loop is thus O(mn). The second loop

updates each link’s share pool size, and it needs to scan through the user list

of each link. Thus the complexity of the second loop is also O(mn). The third

loop is needed for users whose demand for bandwidth is not satisfied in the

first loop. The complexity of this loop is O(mn). Therefore, the complexity

of Algorithm 3.1 is O(mn).
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Algorithm 3.3 UpdateUser(Ui)

if ηi ≥ xi then
toReclaimi = θi * ρi
θi = θi - toReclaimi

xi = σi - θi
εi = ηi - xi
if εi < 0 then
εi = 0

end if
else
toSharei = (xi - ηi) * δi
θi = θi + toSharei
xi = σi - θi
εi = 0

end if

Algorithm 3.4 UpdateLink(Lj)

Θj=0
for all Ui such that Lj ∈ Ri do

Θj = Θj + θi
end for

Algorithm 3.5 Borrow(Ui)

find link Lmin with minimum Θj, forallLj ∈ Ri

toShare = Θmin

if εi > Θmin then
κi = Θmin

εi = εi-κi
else
κi = εi
εi = 0

end if
xi = xi + κi
for all Lj such that Lj ∈ Ri do

Θj = Θj - κi
end for
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3.5 Discussion

Our algorithm leaves implementation flexibility to the central manager. In this

section, we discuss how the algorithm can be applied to specific situations.

3.5.1 Control of the Share/Reclaim Process

In the real world, users with high priorities do not always have much data to

transfer. Considering an ISP with a single 1.5Gbps link as an example. Two

companies A and B are buying bandwidth from this ISP. Company A provides

FTP service and pays $1,000. Company B provides e-mail service. Because

the peak bandwidth requirement of the e-mail service is less than that of the

FTP service, company B pays only $500 to the ISP. Because company A pays

twice of company B, we have ωA/ωB = 2. According to the algorithm, we

know that σA is 1Gbps, and σB is 500Mbps.

The separation of the priority and the share/reclaim factor leaves us great

flexibility. High priority does not always mean high bandwidth usage. Because

the number of customers using e-mail service is much more than that using

FTP service, company A might always have some unused bandwidth. However,

because company A pays much more than company B, it needs to control how

company B utilize the unused bandwidth. Company A has two strategies:

Strategy 1 Company A can set its share factor δA very low so that the unused

bandwidth would be shared very slowly. This provides a buffer time for

company A if it decides to reclaim that bandwidth later, because only a

relatively small fraction of the unused bandwidth has been shared.

Strategy 2 On the other hand, company A can also set its reclaim factor ρA

very high. In that case, when company A starts the reclaim procedure, it

can reclaim its shared bandwidth very fast.

The same strategies also apply to company B. The share factor and the

reclaim factor control the speed of the allocation of the unused bandwidth.

Small share factor and reclaim factor lead to slow share/reclaim procedures.

This is desireble if we want to maintain a stable network environment. For
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example, when a customer of company A starts downloading from the FTP

server, the bandwidth allocated to company B would decrement very smoothly.

The customers of company B would not suffer from sudden failure of sending

e-mail due to the change of the bandwidth. On the other hand, if we set

share/reclaim factors very large, the users would benefit from quick response

according to their bandwidth demands.

3.5.2 Borrow Strategy

In our dynamic allocation algorithm, we did not propose any policy to control

the borrow process. We simply search for users with gap. There are many

possible strategies that we can take in the borrow step.

Random Selection As the name indicates, users with gaps are chosen ran-

domly. This strategy is the most fair one because it does not depend on

the priority or any other parameter of the user. No bias is introduced, and

no user receives special treatment.

The disadvantage of this strategy is that users of paying a lot may not be

satisfied because they pay more than others. Hence, once this kind of user

suffers from resource shortage, they will anticipate being able to borrow

bandwidth at first.

Priority Selection In this strategy, we sort the gap user list in descending

order according to the priority. This way, users of higher priority have the

chance to borrow first. However, the main disadvantage is that users of

low priority may never have the chance to borrow because high priority

users may starve them by borrowing all the available bandwidth.

Fair Selection In this strategy, we map the original network NET to a new

system NET ′. The new user set U ′ contains users in NET with positive

gap value. The new link set L′ contains links in NET with positive share

pool size. Thus, we have:

Ui → U ′i ,∀i such that εi > 0 (3.22)
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Lj → L′j, ∀j such that Θj > 0 (3.23)

Assume that L′ contains m′ links, and U ′ contains n′ users. We define the

link capacity of the mapped link L′j to be the share pool size of Lj. That

is:

C ′j = Θj (3.24)

The final goal is to produce a fair allocation, such that the capacity of the

link set L′j is fully utilized. Thus the objective is:

Objective : max
∑
L′
j∈R′

i

x′i (3.25)

Subject to :
∑
L′
j∈R′

i

x′i < C ′j, ∀j′ (3.26)

and : x′i > 0,∀i′ (3.27)

As such, we can apply any fair allocation (e.g. max-min fair allocation,

proportional fair allocation, etc) to this sub-system. Once we have the

allocation result, we have:

κi = x′i (3.28)

However, there are two disadvantages to this strategy. First, performing

fair allocation on the mapped system can introduce high overhead be-

cause such a strategy is much more complex than the aforementioned two

strategies. Second, the fair allocation may not fully satisfy the gaps. For

example, assume that there are two equal-priority users UA and UB sharing

the single link L. Assume that at control round t, ΘL(t) is 50Mbps, εA is

30Mbps and εB is 20Mbps. If we apply weighted max-min fair allocation

to solve the problem, we have:
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x′A = 25Mbps, x′B = 25Mbps (3.29)

However, user UA’s gap is not satisfied and user UB wastes 5Mbps when

satisfying its gap. A better solution should be x′A = 30Mbps and x′B =

20Mbps. Therefore, an adjustment of the simple fair allocation is needed

to solve this kind of problem. The goal is not only to provide a fair and

efficient allocation result, but also to satisfy the gap of each user.

3.5.3 Prediction of the Bandwidth Demand

The share/reclaim/borrow procedure depends heavily on the value of ηi. If

user Ui always sets ηi such that ηi is much higher than its actual demand,

then Ui would always try to ‘steal’ bandwidth from other users. If we assume

that there is no malicious user in the network, then there are two methods to

determine ηi.

Precise Prediction If the user’s application knows exactly how much data

it wants to put on the wire, then ηi is the precise reflection of the user’s

demand for bandwidth. For example, when the user is downloading a file

from the FTP server, it knows the size of the file. Thus, it can report the

anticipated bandwidth requirement to the central manager.

Estimate If the user does not know the underlying application and cannot

report the exact bandwidth demand, then there are several ways to es-

timate the bandwidth demand. One of these solutions is to monitor the

bandwidth usage history and build a model to do the prediction. However,

this may introduce overhead for the user and/or the central manager.

In our work to date, we do not record the bandwidth usage of Ui. If Ui is as-

signed bandwidth xi, and it uses only a very small portion of that bandwidth,

then some punishment should be applied on Ui in the next control round. How-

ever, we have not implemented this punishment and fake prediction detection.

This leaves an open question for future work.
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3.6 Summary

In this chapter, we give the definition of our centralized dynamic resource

allocation algorithm. There are two states in our algorithm. The first state

is initial allocation. We use weighted max-min fair allocation as the initial

allocation method. After the initial allocation, our algorithm enters dynamic

allocation state. In this state, we use the concept share/reclaim/borrow to

adjust bandwidth allocation according to each user’s bandwidth demand. We

also make discussion about: 1) how the share/relcaim factor can influence the

allocation result, 2) how to choose the borrowing order, and 3) how to predict

bandwidth demand for each user.
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Chapter 4

Distributed Dynamic Resource
Allocation Scheme

In the previous chapter, we discussed the extension of the weighted max-min

fair allocation in a centralized manner. In this chapter, we use a distributed

system to implement the dynamic resource allocation algorithm.

The main reason that we try to convert the centralized method to a dis-

tributed version is because user information is not always available. Con-

sidering propagation delay and packet loss, reliable communications between

the users and the central manager are hard to maintain. Therefore, we de-

velop a router-based resource allocation scheme which takes advantage of our

share/reclaim/borrow strategies.

4.1 System Model

In this section we discuss the system model that we use for the distributed

version of the dynamic allocation scheme. In the network NET , there is a

user set U and a link set L. The user set contains n users while the link set

contains m links. In addition, there is a router set S which contains w routers.

We use Sk ∈ Ri to denote that router Sk is on the route of user Ui. If link

Lj ∈ Ri and Sk ∈ Ri, and if Lj is the egress link on Sk, then we say that router

Sk is responsible for managing the bandwidth allocation of link Lj. We use

Lj ∈ Sk to denote this. To simplify our problem, we assume that each user

only has one egress link on each router. An example system model is shown
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Figure 4.1: Distributed system model

in Fig. 4.1.

In Fig. 4.1, we can see that there is no router to manage the last two links,

L6 and L7. To fix this, we assume that the end point of the data flow manages

the egress links by running the some algorithm. The modified system model

is shown in Fig. 4.2.

It is easy to see that each individual router takes the role of the central

manager. If we denote the user set of router Sk as Uk, and the link set of Sk

as Lk, we have:

U = U1 ∪ U2 ∪ . . . ∪ Uw (4.1)

L = L1 ∪ L2 ∪ . . . ∪ Lw (4.2)

If router Sk is on the route of user Ui, user Ui is in the user set of Sk. If link

Lj is on the route of user Ui, and if Lj is managed by router Sk, we can use j

and k as the headnote of each parameter of Ui interchangeably. For example,

if we want to denote the bandwidth allocation of Ui on link Lj, we can use xji .

We can also use xki because Lj is managed by Sk.
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Figure 4.2: Modified distributed system model

There are many ways to identify a user, e.g. using its IP address in the

routing table. The open question is how to determine the priority and the

share/reclaim factor of each user. We will discuss this later in the chapter.

Here we assume that each router Sk is pre-configured with the knowledge of

the priority and other parameters needed for each user Ui such that Ui ∈ Uk.

Like the central manager, each router Sk has a timer which it uses to time

the duration of its ’control period’ Γk. Γk can be different from router to

router. These timers do not need to be synchronized. We will prove that if

the bandwidth demands of all users are stable, then the bandwidth allocation

will eventually be stable and optimum.

The distributed allocation scheme also has two states: the initial allocation

state and the dynamic allocation state. However, because we do not have the

central manager, the user would not receive the bandwidth allocation from the

manager. Two possible alternatives are proposed here.

Passive Allocation Because the user has no method to notify the router its

bandwidth usage, we redefine ηi as the transmission rate of user Ui. If the

router finds that ηi(t + 1) is close to or more than xi(t), it can drop the
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Figure 4.3: An example of distributed weighted max-min fair allocation result

packet from that user. If the user uses protocols that reacts to packet loss

(e.g. TCP protocol), it will reduce the transmission rate. The disadvan-

tage is that the protocol which the user uses may not react as expected.

For example, TCP protocol is an additive-increase-multiplicative-decrease

protocol, which means that the increase rate of the transmission window

is much slower than the decrease rate. If TCP detects a packet loss, the

transmission rate of the user will decrease very sharply. However, the ex-

pectation is that ηi decreases to xi. Therefore, the passive allocation loses

control of the precise bandwidth allocation which the central manager does

have.

Active Allocation If we insert several control bits into the packet to inform

the user of the bandwidth allocation, then the user can control the band-

width limitation process precisely. The disadvantage is that we need to

modify the existing protocols to accommodate the new control bits.

4.2 Initial Allocation State

Router Sk performs the initial allocation when the following criteria are satis-

fied:

• a new user enters the router, or

• an existing user leaves the router, or
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• a new link is added to the link set Lk, or

• a link is deleted from the link set Lk.

It is easy to see that changing the routing information of user Ui is a comb-

inition of criteria 1 and criteria 2: Ui first leaves Sk by deleting its previous

routing information, and Ui enters Sk by adding its new routing information.

Adding/deleting a link on Sk may refer to physically plugging/unplugging

the link or link failure. Note that adding/deleting links may always leads to

adding/deleting existed users on router Sk.

Each router Sk runs the weighted max-min fair algorithm to do the initial

allocation. Because each user has only one egrees link on router Sk, we can

simplify the algorithm as:

Algorithm 4.1 WeightedMaxMin(Uk, Lk)

for all Lj in Lk do

τj =
Cj

Ωj

for all Ui in Uk such that Lj ∈ Ri do
σki = τj * ωi

end for
end for

The differences between the simplified algorithm and the one in Chapter 2

are (1) the process of searching Lmin is neglected, and (2) the initial allocation

σki of user Ui is recorded on router Sk. If there are many routers on the route

of user Ui, then the initial allocation on each router can be different.

To illustrate this, we use the network shown in Fig. 4.3 as an example.

Assume that the network contains three links L1, L2 and L3. The capacity of

the three links are 100Mbps, 200Mbps, and 400Mbps respectively. The initial

allocations are also shown in Fig. 4.3. It is easy to see that the allocation

result is different on each router.

Because of this, the previous definition of the bottleneck link is meaningless.

Assume that link Lj is on the route of user Ui, and router Sk manages Lj. Then

for each user using link Lj we have:
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f(σki ) =
τj ∗ ωi
ωi

= τj (4.3)

It is easy to see that if user Ui′ is also using link Lj, then f(σki ) = f(σki′).

Hence link Lj is the bottleneck of user Ui. The same applies to other links on

the route of Ui. Therefore all of the links on Ui’s route are bottleneck links of

Ui. To fix this, we redefine the concept of bottleneck link as follows:

Definition 4.1. Link Lj is said to be the bottleneck link of user Ui if for any

other link Lj′ on the route of Ui, τj ≤ τj′.

By definition 4.1, if link Lj is the bottleneck link of user Ui and router

Sk manages Lj, then σki is the minimum initial bandwidth allocation of Ui.

Taking the network shown in Fig.4.3 as an example, link L1 is the bottleneck

link of both U1 and U2.

4.3 Dynamic Allocation State

After the initial allocation state, router Sk enters the dynamic allocation state.

As discussed above, the user does not provide bandwidth demand to the router.

Therefore, the router has to predict the bandwidth demand based on the user’s

transmission rate. If we denote the local transmission rate of user Ui on router

Sk as TXk
i , we have:

ηki (t+ 1) = gk(TX
k
i (t)) (4.4)

where gk(·) is the bandwidth demand prediction function used on router Sk.

If router Sp and Sq are both on the route of user Ui, we have:

TXi = TXp
i = TXq

i (4.5)

which means that the transmission rate of Ui is uniform on its route.

We apply the same share/reclaim strategies to the distributed dynamic

allocation algorithm. However, it is worth noting that each router can set the

share/relcaim factors independently. For example, for user Ui using router Sp

and Sq, we can have:
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δpi > δqi and ρ
p
i > ρqi (4.6)

This setting means that router Sp reacts more quickly than Sq to Ui’s

change of its transmission rate. On the other hand, the link managed by Sq is

more stable than that of Sp. However, there are many other possible settings.

We modify the borrow step for the distributed algorithm. If link Lj is

managed by router Sk and user Ui has εki (t+1) greater than zero, then Ui starts

the borrow procedure. Router Sk distributes the share pool of Lj according

to the priorites of users using Lj:

κki (t+ 1) = ωi ∗
Θj(t+ 1)

sum of priorities of the users with positive gap
(4.7)

4.4 Proof of Stability

It is important to show that the distributed algorithm can lead to a stable and

optimal allocation if the bandwidth demand of each user is stable. Assume

that link Lj is on the route of user Ui, and router Sk manages the link Lj.

Therefore, we can use xji and xki interchangeably. To simplify the problem, we

make several assumptions:

Assumption 4.1. Assume that all the routers have same control period and

start the initial allocations at the same time:

Γ1 = Γ2 = . . . = Γw (4.8)

t1(0) = t2(0) = . . . = tw(0) (4.9)

Assumption 4.2. Assume that all the users are elastic users. Given band-

width allocation xki (t) at control round t on router Sk, we have:

TXi(t) ≤ min{xki (t)},∀Sk ∈ Ri (4.10)
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Assumption 4.3. Assume that the bandwidth prediction function is globally

uniform. Specifically, we have:

ηki (t+ 1) = ηi(t+ 1) = TXi(t) ∗ υ (4.11)

where υ is a factor that is greater than one.

This is an aggressive prediction model. The router assumes that each user

requests more for bandwidth than its current allocation. With the uniform υ,

all the users increase their bandwidth demands at the same pace.

Assumption 4.4. Assume that for each user Ui, the share/reclaim factors

are same.

Besides the assumptions, we use the definition of constrained link to help

prove the problem:

Definition 4.2. User Ui is constrained by link Lj if:

1. Lj ∈ Ri, and

2. Lj is saturated, and

3. xji ≤ xj
′

i , ∀Lj′ ∈ Ri and Lj′ 6= Lj.

It is easy to see that when all the users are constrained, the allocation result

is stable. The result is also optimal because there are at least one saturated

link on the route of each user. To prove the stability of the problem, we need

to prove two sub-problems:

• Each user can be constrained, and

• After the user has been constrained, its bandwidth allocation would be

eventually stable.

Let us prove the first sub-problem. Consider the single link case. Assume

that a link Lj is managed by a router Sk. Without loss of generality, users U1,

U2, . . ., Ur are competing for Lj. Because router Sk manages Lj, we can use

xji and xki interchangeably. We divide the process of allocating Lj into four

stages.
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Stage 1 [tj(0), tj(1)) : Within control round [tj(0), tj(1)), router Sk is in stage

1. The transmission rates of all of the users are below their initial alloca-

tion. For each user Ui we have:

xki (t) < σki , where t ∈ [tj(0), tj(1)) (4.12)

Because the inital allocation can satisfy the bandwidth demand, none of the

users borrows bandwidth from others. The bandwidth allocation continues

to increase for all of the users.

Stage 2 [tj(1), tj(2)) : When the bandwidth allocation of one or more users

reaches their initial allocation at control round tj(1), router Sk enters stage

2. There are two situations here. If all of the users have the same initial

allocation, then their initial allocation would be saturated all at tj(1). This

is because according to Assumption 4.3 the bandwidth demands of all of

the users increase at the same pace. Thus for each Ui we have:

xki (t) = σki , where t > tj(1) (4.13)

It is easy to see that after tj(1), none of the users can borrow from others

because link Lj is saturated. Router Sk directly enters stage 4.

The second situation is that the users do not have same initial allocations.

Then user Ui with minimum σki will saturate its initial allocation first. Ui

starts to borrow bandwidth from unsaturated users.

In the second situation, the bandwidth allocation of all of the users still

continues to increase during control round tj(1) to tj(2). We can divide

the users into two sets U(S) and U(B). U(S) contains users who share

bandwidth, while U(B) contains users who borrow bandwidth from users

in U(S).

Stage 3 [tj(2), tj(3)) : When all of the users in U(S) start to reclaim their

shared bandwidth at control round t(2), the bandwidth allocation of users
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Figure 4.4: Bandwidth prediction on the router

in U(B) start to decrease. Because all the users are elastic users, it is easy

to see that link Lj is saturated:

∑
Lj∈Ri

xji (t) = Cj, where t ∈ [tj(2), tj(3)) (4.14)

Stage 4 [tj(3), . . . ) : At control round tj(3), all of the shared bandwidth of

users in set U(S) has been reclaimed. Then the bandwidth allocation of

each user is the same as its initial allocation:

xki (t) = σki , where t > tj(3) (4.15)

Hence link Lj is saturated and the allocation is stable.

To illustrate this, consider the network shown in Fig.4.4. Two users U1

and U2 share link L1, which is managed by router S1. The bandwidth of L1

is 100Mbps. The priority of user U1 is ω1 = 1, and the priority of user U2

is ω2 = 3. Therefore we have σ1
1 = 25Mbps, and σ1

2 = 75Mbps. Initially U1

and U2 increase their bandwidth demand at the same pace. Assume that at

control round t1, U1 and U2’s transmission rates increase to 25Mbps. Then U1

starts to borrow bandwidth from U2. At control round t2, the transmission

rate of U1 and U2 increases to 50Mbps. Then U2 starts to reclaim its shared
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bandwidth. Finally at control round t3, the bandwidth demands of U1 and U2

become constant and equal to their respective initial allocations.

Next we consider the multiple links case. For link Lj, we define Λj as the

maximum initial allocation among the users using Lj:

Λj = max{σi}, Lj ∈ Ri (4.16)

Proposition 4.1. If the routers start allocation at the same time, then link

Lj with minimum Λj must be saturated first.

Proof. Assume link Lj is the link with minmum Λj, and user Ui is the user with

maximum σi on link Lj. According to Assumption 4.3, the speed of increasing

bandwidth demand is same for all the users. If the initial allocations are same

for all the users using Lj, then Lj is saturated at the beginning of stage 2. If

the initial allocations are not the same, then Ui must be in set U(S) because

Ui has max initial allocation. Because users share their bandwidth at the same

pace, user Ui must be the last one to reclaim. Because link Lj enters stage

3 only after all the users in set U(S) has been starting to reclaim the shared

bandwidth, the time for link Lj to enter stage 3 is determined by σi. Because

Λj = σi is the smallest among the links, Lj is the first link that enters stage

3. According to Assumption 4.4, because the reclaim pace of all the users are

the same, Lj enters stage 4 first. Thus, Lj is saturated first.

It is easy to see that users sharing link Lj with min{Λj} would be con-

strained first. Next we prove that each user can be constrained.

Corollary 4.1. Each user will eventually be constrained.

Proof. Assume that Ui is a user using Lj that has minimum Λj, and Ui′ is

another user such that Ui and Ui′ are sharing links other than Lj. Then Ui′

has not been contrained when Ui is, and Ui′ would increase its bandwidth

allocation by borrowing from Ui. Hence, Ui′ would eventually be constrained

when all the extra bandwidth of Ui is borrowed.

Next we prove that after the user has been constrained, its bandwidth

allocation will eventually be stable.
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Figure 4.5: Example of Shifting Constrained Link

Proposition 4.2. If user Ui is constrained by link Lj, then we have:

TXi = xji (4.17)

Proof. Because Ui is constrained by Lj, TXi cannot be greater than xji . If

TXi < xji , this constradicts the definition of the contraint link that such link

is saturated. Hence, TXi equals to xji .

However, constraint shift can sometimes happen. We define constraint shift

as follows: link Lp and Lq are both on the route of Ui. At time ta, user Ui is

constrained by link Lp. If at time tb, bandwidth allocation changes on Lq and

if the change results in that Ui is constrained by Lq, then we say that Ui shifts

its constraint from Lp to Lq.

To illustrate this, consider the network shown in Fig.4.5. The settings are

also shown in the figure. According to Proposition 4.1, we know that link

L1 will be saturated first. User U1 is first constrained by link L1. However,

when U3 starts to reclaim its shared bandwidth, the allocation for U1 starts to

decrease. Hence, the constraint of U1 is finally shifted from L1 to L2.

Proposition 4.3. If Ui shifts its constraint from Lp to Lq, then its bandwidth

allocation on Lp is non-increasing.

Proof. It is easy to see that before the shift, Lp is saturated, and hence there

is no extra bandwidth for Ui to borrow to increase its allocation on Lp. After

the shift, if xpi = xqi , then the bandwidth allocation for Ui remains unchanged

on Lp. Otherwise, it decreases on Lp.

Corollary 4.2. If Ui shifts its constraint from Lp to Lq, then its allocation on

Lq is non-increasing.

47



Proof. Define the bandwidth allocation of Ui on link Lp before/after the shift as

xpi (ta) and xpi (tb). Define the bandwidth allocation of Ui on link Lq before/after

the shift as xqi (ta) and xqi (tb). According to Proposition 4.3, we have:

xqi (ta) ≥ xpi (ta) ≥ xpi (tb) ≥ xqi (tb) (4.18)

Corollary 4.3. After user Ui has been constrained, its bandwidth allocation

will eventually be stable.

Proof. According to Corollary 4.2, after user Ui has been constrained, its band-

width allocation is non-increasing. Because the lower bound of the bandwidth

allocation of Ui is σi. Hence, Ui’s bandwidth allocation will eventually be

stable.

4.5 Discussion

There are two major problems with the distributed version of the resource

allocation algorithm. The first problem is how to identify each individual

user. The second problem is how to set the parameters for each user. In this

section, we discuss the possible solutions for these two problems.

4.5.1 Identifying User at the Router

The user does not need to know that there are routers between the source and

the destination. Therefore, the user cannot register with a router by sending

a registration message to that router. Another problem is that the router has

limited memory and CPU resources. It would become expensive for the router

to keep a list of all users whose traffic is passing through that router.

Since the router keeps a routing table in its memory, and the router can

automatically add new destinations to the routing table, the router might use

the routing table to record the users’ identifications.

Notice that the router is only responsible for managing the outbound di-

rection of each link it terminates. Therefore, when identifying the user, the
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router only needs to consider incoming packets.

4.5.2 Setting Parameters

For a number of reasons, it would be difficult to let each user determine its

priority and share/reclaim factors. Consequently, we propose two possible so-

lutions to this problem. First, the router can have some users preconfigured,

and leave the other users using some default values. For example, the admin-

istrator of the network can configure a router for some special users by setting

their priority and share/reclaim factors, and set a default value for all other

users. If the router detects a data flow of a special user, then it could use the

predefined values for that user. On the other hand, if the data flow does not

belong to any of the special users, then the router could use the default values.

A second solution is to use port numbers to differentiate users. For ex-

ample, HTTP usually uses port 80, and FTP usually uses port 21. An FTP

user can have higher priority and reclaim factor and lower share factor than

an HTTP user. Thus the FTP user can use more bandwidth than the HTTP

user. However, the major disadvantage is that only a few port numbers are

well defined. Many network applications use random port numbers, which

makes it hard to tell which application is more important than the other.

4.6 Summary

In this chapter, we extend the centralized resource allocation algorithm to

a distributed version. We eliminate the CMS in the network. Instead, the

functionality of the CMS is moved to each individual router in the network.

We prove that under certain assumptions, the distributed algorithm can lead to

a stable and optimal allocation result. We also discuss two potential problems:

1) how to identify users in the network, and 2) how to set parameters for each

user.
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Chapter 5

Emergency Handling

Emergency handling is important in real applications. For example, consider

a network model which consists of one data center and multiple remote net-

work users. The network user backs up their critical data to the data center.

Normally all users are sharing the single ingress link of the data center. The

backup action is a periodic process which requires a certain amount of band-

width for synchronization between the data center and the user. If user Ui

suffers from power failure or other disasters, it needs to quickly restart and

transfer the backup data from the data center to itself. Hence, Ui requires

peak bandwidth performance during failure or disaster recovery. We call this

sort of action emergency handling.

A user can have either of two statuses:

Normal Status In this status, the user behaves exactly as we discussed in the

previous sections. If the user has unused bandwidth, it can share this extra

bandwidth with other users. If the user demands more bandwidth, then it

can start the reclaim-and-borrow procedure to acquire more bandwidth.

Emergency Status In this status, the user is critical for bandwidth. Because

of this, it does not share anymore. On the contrary, it will try to grab as

much bandwidth from other users as possible. In reality, we can further

define different emergency statuses as emergency level one, emergency level

two, etc, so as to satisfy the customer’s requirement.

In the emergency case, we divide the user set U into two categories: normal
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user set U(N) and emergency user set U(E). We have:

U = U(N) ∪ U(E) (5.1)

We denote user Ui in Normal Status as Ui ∈ U(N), and we denote Ui in

Emergency Status as Ui ∈ U(E). In order to record this status, we add a new

parameter to the user:

ξi records the status of the user. ξi = 1 indicates that user Ui is in Normal

Status. ξi > 1 indicates that Ui is in Emergency Status. Because the user

can have multiple emergency level, ξi is in range [1,∞].

In this chapter, we discuss multiple ways to implement emergency handling.

Furthermore, we discuss and compare the pros and cons of these handling

methods. To simplify the problem, we assume that the allocation scheme runs

in a centralized manner. That is, the central manager M is responsible for

performing the dynamic allocation task as well as the emergency handling

task.

5.1 Increase Bandwidth Demand of Emergency

Users

The first method of emergency handling is to increase the bandwidth demand

of the emergency user. Assume that the Ui is in emergency status, and there-

fore ξi > 1. Because of this, we can artificially increase the bandwidth demand

of Ui. As discussed above, at control round t, the bandwidth demand of Ui is

ηi. If we use:

η′i(t) = ηi(t) ∗ ξi (5.2)

then it is guaranteed that Ui’s demand for bandwidth is always larger than its

need, and therefore can reclaim/borrow more from other users.

The advantage of this emergency handling method is that none of the users

need to know the emergency status of other users in the network. The user
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Ui simply sets its bandwidth demand to an artificial high value and requires

the central manager to respond to that value. However, consider a case in

which all users U1, U2, . . . , Un are transfering data in full speed. If Ui ∈ U(E)

and ηi is artificially increased by multiplying ξi to ηi, Ui still cannot borrow

any bandwidth from other users because none of the other users has extra

bandwidth to share.

Another problem with this method exists when there are multiple emer-

gency users in the network. For example, suppose that two users are in Emer-

gency Status, i.e. Up, Uq ∈ U(E). As we discussed before, there are multiple

choices for the borrow step. Assume that we let users with higher priority

borrow first. We also assume that ωp > ωq, and ξp < ξq. In this case, Uq

is much more critical for bandwidth than Up is. However, because ωp > ωq,

Up always has the right to borrow before Uq. If the unused bandwidth can

only satisfy Up’s critical demand, then Uq will never be served and thus the

emergency handling fails for Uq. The situation can be even worse. If there

exists a normal user Uk ∈ U(N) such that Uk is also critical for bandwidth

and ωk > ωp, then Uk will borrow first. Uk may deplete the share pool and

prevent the emergency handling of both Up and Uq.

Because of this, we need to be careful to choose the appropriate borrow

strategy when we use this method for emergency handling. As discussed, the

wrong choice of borrow strategy can lead to failure of emergency handling for

certain emergency users.

5.2 Decrease Bandwidth Demand of Normal

Users

In constrast with the method discussed in the previous section, we can artifi-

cially decrease the bandwidth demand of the normal user. To implement this,

we need to add a new parameter to the central manager.

ΞM records the maximum emergency level among the emergency users. That

is:

ΞM = max{ξi : Ui ∈ U(E)} (5.3)
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Next, we modify the ηi for each user Ui at control rount t as:

η′i(t) = ηi(t) ∗
ξi

ΞM

(5.4)

When there is no emergency user in the network, ΞM = 1 because ξi = 1

for each user Ui. Thus the bandwidth demand of each user Ui is not affected

by dividing ΞM . If, on the other hand, there is an emergency user Up ∈ U(E),

then we have:

ξp > 1 and ΞM = ξp (5.5)

Because of this, the bandwidth demand of users other than Up would be

decreased by dividing by ΞM . However, etap is not affected because ξp
ΞM

= 1.

Thus the bandwidth demands of users other than Up are suppressed, and Up

can borrow the extra bandwidth from other users.

The advantage of this scheme is that the central manager does not need to

care about the bandwidth demand of the normal users, because the demands of

the normal users are always suppressed. The emergency users are guaranteed

that there is always extra bandwidth to borrow. Another advantage is that

we can differentiate emergency users at different emergency levels.

For example, assume that we have two emergency users, Up and Uq, in the

network. If ξp > ξq, then we have:

ΞM = max{ξp, ξq} = ξp (5.6)

η′p = ηp ∗
ξp

ΞM

= ηp (5.7)

η′q = ηq ∗
ξq

ΞM

< ηq (5.8)

Although Up and Uq are both emergency users, the bandwidth demand of

Uq is also suppressed by Up because the emergency level of Up is higher than

Uq.
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The first disadvantage of this emergency handling method is similar to the

one we discussed in the previous section. The wrong borrow strategy can lead

to failure of emergency handling. The second disadvantage is that eventually

the normal users will get starved if the emergency user continuously suppresses

the bandwidth demand of the normal users. Assume that normal user Ui can

always get full bandwidth allocation. That is:

xi(t+ 1) = ηi(t+ 1) (5.9)

Then because the bandwidth demand of Ui is suppressed by dividing ηi(t+

1) by ΞM , eventually we have:

lim
t→∞

ηi(t) = 0 (5.10)

and therefore

lim
t→∞

xi(t) = 0 (5.11)

Hence, the bandwidth allocation of this handling scheme is severely biased

towards emergency users. In reality, normal users would not be satisfied when

all of the bandwidth is grabbed by emergency users.

One solution to this problem is to set an upper bound for the bandwidth

that each normal user can borrow. Then if the bandwidth shared by the nor-

mal user exceeds this upper bound, the normal user cannot share bandwidth

anymore. Conversely, the emergency user can set a lower bound to limit how

much bandwidth it can take from a normal user.

5.3 Emergency Policy

The emergency handling schemes discussed in the previous sections are capable

of handling simple cases. However, the central manager does not have the

flexibility to control each individual emergency user, nor to control the ratio

of the allocation among them. In this section, we introduce an emergency

policy which requires the central manager to provide a policy table to control

the emergency users as well as normal users.
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In Chapter 2, we assign each user Ui a priority ωi. This parameter is used

to control the initial allocation σi of Ui. We expand the concept of priority in

order to deal with the emergency handling case. First we build an emergency

policy table T . The table has A rows and n columns. Each row a represents

one policy rule, where a ∈ [1, A]. Each column i represents the priority values

of each user Ui in the network. Thus each entry of the table stores the priority

value of user Ui at rule a. That is:

ωai = T [a][i] (5.12)

We use the first row of T to denote the priority values when all users are

in Normal Status. From the second row, we define the priority values of Ui for

each different case. For example, if the network has three users U1, U2, and

U3, then we have seven different cases in total:

• U1, U2, U3 ∈ U(N)

• U1, U2 ∈ U(N), U3 ∈ U(E)

• U1 ∈ U(N), U2, U3 ∈ U(E)

• U2, U3 ∈ U(N), U1 ∈ U(E)

• U2 ∈ U(N), U1, U3 ∈ U(E)

• U3 ∈ U(N), U1, U2 ∈ U(E)

• U1, U2, U3 ∈ U(E)

If we build a policy table according to these seven cases, we can say that,

for example, rule 2 of the policy table denotes the case in which users

U1 and U2 are in Normal Status and U3 is in Emergency Status. We

can also say that, for example, the priority values of U1, U2, U3 at rule 2

are ω21, ω22, ω23.

By building such a policy table, when the emergency status of user Ui

changes, we can look up the table entry and find the appropriate policy to do

the allocation. Thus, we need to modify Algorithm 3.1 to Algorithm 5.1.
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Algorithm 5.1 CentralizedAllocation

while manager is running do
if emergency status changes then

look up the emergency policy table T and find the appropriate policy
rule a
for all Ui in U do
ωi = T[a][i]

end for
WeightedMaxMin(U , L)

end if
for all Ui in U do

notify Ui with its allocation xi
wait for Ui’s feedback

end for
DynamicAllocate(U , L)
sleep over one ΓM

end while

Here we define that in the first instance that the algorithm runs, the emer-

gency status is set to rule 1 of the policy table, in which all the users are in

Normal Status.

The policy table is provided by the central manager. Therefore, the man-

ager has more flexibility in handling the emergency by considering the status

of each user. However, the disadvantage is that when the number of users

grows, the policy table could be very large. Thus, it is hard to maintain such

a table. One possible solution is to set only several critical rules and set one

default rule. Taking the exmaple discussed above, we can reduce the seven

cases to four cases:

• U1, U2, U3 ∈ U(N)

• U1, U2 ∈ U(N), U3 ∈ U(E)

• U2, U3 ∈ U(N), U1 ∈ U(E)

• default rule

When the emergency status of the network does not satisfy rule 1, rule 2,

or rule 3, the default rule is used to do the initial allocation.
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5.4 Summary

In this chapter, we provide three methods for emergency handling. We com-

pare the pros and cons of these methods, and discuss in what situation we can

apply them accordingly.
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Chapter 6

Experimental Result

In this chapter, we show the results from both numerical simulations and

tests in a real network environment. These results demonstrate the feasibility

and performance characteristics of our dynamic resource allocation algorithm.

The remaining chapter is organized as follows: first we demonstrate how the

priority can affect the initial allocation by running a set of numerical sim-

ulations. Next, we demonstrate the effectiveness of our centralized resource

allocation algorithm. The results were generated from numerical simluation

and real network experiment. We also show the feasibility of our emergency

handling scheme. Finally, we give the result of the numerical experiment for

our distributed resource allocation algorithm.

6.1 Experiment of the Initial Allocation

The first numerical simulation demonstrates how user priority can affect the

initial allocation. The network consists of three users U1, U2 and U3, and two

links L1 and L2. We have L1 ∈ R1, R2 and L2 ∈ R1, R3. We set C1 to

100Mbps, and C2 to 50Mbps. The topology of the network is given in Fig. 5.

The configuration and allocation results are given in Table 6.1.

Table 6.1: Configuration and Results of Simulation 1
ω1 ω2 ω3 σ1 σ2 σ3

Test-1 1 1 1 25Mbps 75Mbps 25Mbps
Test-2 1 3 1 25Mbps 75Mbps 25Mbps
Test-3 1 9 1 10Mbps 90Mbps 40Mbps
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Figure 6.1: Network Topology of Simulation 1

The initial allocation results of Test-1 and Test-2 are the same. However,

the procedures to achieve the results of the two tests are different. In Test-1,

τ1 = 50 and τ2 = 25. The algorithm picks link L2 as the first link to allocate

bandwidth. Thus U1 and U3 get their initial bandwidth of 25Mbps first. Next,

L1 has 100 − 25 = 75Mbps bandwidth left for U2. On the other hand, in

Test-2, τ1 = τ2 = 25. If link L2 is picked first, then the procedure is similar to

Test-1. If L1 is picked first, then U1 and U2 get allocated first, and then U3.

This demonstrates that the procedure is insensitive to the order of allocation.

Comparing Test-1 and Test-3, we can see that as the priority of U2 in-

creases, U2 can have a larger initial bandwidth allocation than U1. This shows

that weighted max-min fair allocation has the ability to provide differentiated

service by using the priority to control this process. We note that the bottle-

neck links are fully allocated. Hence we can claim that weighted max-min fair

allocation is fair and efficient.

6.2 Centralized Dynamic Resource Allocation

In the second experiment set we test the effectiveness of our dynamic resource

allocation scheme. We continue to use the three-user, two-link network model.

In this simulation, we configure the users as shown in Table 6.2. The initial

allocation result is also shown in Table 6.2.

Table 6.2: Configuration and Initial Allocation of Simulation 2
User 1 User 2 User 3

ωi 4 3 2
δi 0.2 0.5 0.8
ρi 0.8 0.5 0.2
σi 33.33Mbps 66.67Mbps 16.67Mbps
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6.2.1 Numerical Experiment

First we run a numerical experiment to show the effectiveness of the central-

ized dynamic resource allocation algorithm. We assume that the network is

synchronized, as is possible if it is supported by, for example, a SONET optical

transport network. We also assume that each user reports their bandwidth us-

age and demand at the same pace. We assume that each user makes a periodic

1.25GB bulk data transfer. The interval between two bulk transmissions is 30

seconds. The control period is 5 seconds. Therefore, the interval between two

bulk transmissions is 6 control rounds. We assume that all users are best-effort

users. In other words, if user Ui is assigned bandwidth xi(t) at control round

t then it will fully utilize that bandwidth such that ui(t) = xi(t). Moreover,

the user’s demand for bandwidth for the next control round is assumed to be

ηi(t+ 1) = ui(t) ∗ 110%. This is a simplified bandwidth prediction model but

corresponds roughly to the increasing demands made over time by transport

protocols like TCP. The dynamic allocation result is shown in Fig.6.2.

Although the priority of U1 is higher than U2, because σ1 is smaller than

σ2, U1 sends its data more slowly than U2. When one user finishes its data

bulk transmission, it gradually shares its unused bandwidth. Other users then

start to borrow the shared bandwidth. For example, at control round 29, U1

finished transmitting its data and U2 started to borrow bandwidth from U1.

As a result the assigned bandwidth for user U2 becomes greater than σ2. The

behaviour of U3 is similar to U2. Hence, we claim that our algorithm can

dynamically adjust bandwidth allocations and increase bandwidth utilization

in response to changing user needs. This dynamic adjustment is controllable

via the share and reclaim factors.

For an illustration of the effects of the share factor, let us compare U1 and

U3. Because the share factor of U1 is smaller than that of U3, the share process

of U1 is much slower than for U3: within the 6 control rounds, U1 shares only

2/3 of its bandwidth, while U3 shares almost all of its bandwidth. The higher

the share value, the faster the user shares its unused bandwidth.

This same simulation shows that the reclaim factor is effective in controlling
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Figure 6.2: Mbps allocated to: (a) User 1 (b) User 2 (c) User 3

the reclaim process. For example, when U1 begins its second bulk data transfer

at control round 34, it starts to reclaim bandwidth. Comparing its behavior

with the reclaim process for U3 (see control round 65), the reclaim process is

much faster for U1. It takes 2 control rounds for U1 to reclaim all of its shared

bandwidth, while it takes 12 control rounds for U3. Hence, the higher the

reclaim factor, the faster the user can reclaim its shared bandwidth.

The dynamic behavior of link utilization is illustrated in Fig.6.3. We show

both the capacity and share pool size of the two links. The average share pool

size of L1 is about 40Mbps, and that of L2 is about 5Mbps. In other words,

the average bandwidth not utilized on L1 is 40Mbps, and about 5Mbps on L2.

This is because we set ηi(t+ 1) = xi(t) ∗ 110% for user Ui.

For example, consider when U2 and U3 borrow U1’s unused bandwidth.

Because the increase of the bandwidth demand of U2 and U3 is 10% of its

usage, they would not fully borrow the shared bandwidth from U1 within
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Figure 6.3: Share pool: (a) Link 1 (b) Link 2

6 control round. If we set the model more aggressively, the waste can be

reduced. Another reason is that U1 uses both links. Even if one link has

extra bandwidth for U1, if the other link is saturated, then this extra is wasted

because we cannot increase bandwidth allocation for U1.

6.2.2 Prototype Test

In addition to simulation, we tested the behavior of a prototype implementa-

tion of our algorithm in a real network environment. We set up three physical

machines. One machine was located in Edmonton, and served as both the

management site and the destination for data transfers. The other two ma-

chines were in Calgary, and served as the origins of the data transfers. We

will call the two Calgary machines Cal1 and Cal2, and the Edmonton machine

Edm1. There were six network hops in the network from Calgary to Edmon-

ton, and the delay between Edm1 and the two Calgary machines was 5.5ms.

Cal1 and Cal2 shared a 100Mbps bottleneck link, denoted by L1 with capacity

C1 = 100Mbps. The topology of the network is given in Fig. 8. Cal1 and Cal2

transmitted 1GB bulk data to Edm1 every 30 seconds. We set ΓM to 1 second.

The remaining configuration details for Cal1 and Cal2 are shown in Table 6.3.

We first ran the system without the dynamic allocation algorithm (see
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Table 6.3: Configuration of Prototype Test
Cal1 Cal2

ωi 4 2
δi 0.2 0.8
ρi 0.8 0.2

Figure 6.4: Topology of the Real Network

Fig. 6.5). Cal1 and Cal2 shared the link bandwidth equally. They started

their bulk transfers at the same time, and stopped at almost at the same time

too. Without the dynamic allocation algorithm, no differentiated service was

provided and the users were merely relying on TCP to adjust their transmission

rates. The equal sharing of the bottleneck link is an accidental consequence of

the two TCP sessions having the same end-to-end delay. If Cal1, for example,

had been further away from Edm1 than Cal2, its relative bandwidth share

would have been dictated by the uncontrolled and time-varying delay in the

network.

Next we re-ran the experiment, but this time using our dynamic allocation

algorithm. The results are shown in Fig. 6.6. The ratio of transmission rates

between Cal1 and Cal2 is about 2 : 1, which is equal to the ratio of their

priorities. Thus, the allocation algorithm is controlling the link allocation as

desired.

Cal1 finished its first round of transmission at control round 126, while Cal2

stopped at control round 257. Moreover, comparing the two quiet periods in
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Figure 6.5: (a) User Allocations (b) Link Utilization

Figure 6.6: (a) User Allocations (b) Link Utilization

Fig.6.5and Fig.6.6, the rate at which utilization decreased and then increased

is very sharp in Fig.6.5. That is, the link utilization suddenly dropped to zero

at about time 172 , and then suddenly increased to saturation at about time

201. With dynamic allocation active, Fig.6.6 shows that the rate of increase

was smooth at first, when Cal2 started its second round of transmission at time
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290. Because ρ2 was 0.2, Cal2 reclaimed its shared bandwidth quite slowly.

Then, at time 310, the rate of utilization increase became quite high. This was

because Cal1 started its third round of transmission, and ρ1 was 0.8 - much

higher than for Cal2. Compared to Fig.6.5, these changes are much smoother.

It required only the equivalent of 2 control rounds in the uncontrolled case

in Fig. 9 to fully saturate the link, while it required 22 control rounds in the

controlled case in Fig.6.6.

Our share/reclaim scheme enables controllable changes in transmission

rate. Users are not dependent on the uncontrolled behaviors of transport

protocols like TCP. If user Ui wants to use the network aggressively, then it

can set δi and ρi to relatively large values. On the other hand, if Ui desires a

stable network environment, then it can set δi and ρi to smaller values, which

will lead to smoother variation of the transmission window size.

6.3 Distributed Dynamic Resource Allocation

In the third experiment set we test the effectiveness of our resource allocation

scheme running in a distributed manner. We setup a network scenario which

includes six users and ten links. The priority values of the users and the

optimal bandwidth allocation are shown in Table 6.4. The link configurations

is shown in Table 6.5. The topology of the network is shown in Fig.6.7. The

bandwidth of link L1 is 10Gbps, which is much larger than other links. Since all

the users share L1, we have to make sure that L1 would not be the bottleneck

of the network, and therefore would not affect the experiment result. Without

further notice, we will neglect the effect of L1 below.

Table 6.4: User Configuration for the Test of Distributed Dynamic Resource
Allocation

User 1 User 2 User 3 User 4 User 5 User 6
ωi 1 1 3 1 3 1
xi 100Mbps 25Mbps 75Mbps 20Mbps 60Mbps 20Mbps

We use a simplified additive-increase-multiplicative-decrease (AIMD) func-

tion [17] [18] to simulate the behavior of TCP. Each user has a parameter WIN
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Table 6.5: Link Configuration for the Test of Distributed Dynamic Resource
Allocation

Link 1 Link 2 Link 3 Link 4 Link 5
Ci 10Gbps 100Mbps 100Mbps 100Mbps 100Mbps

Link 6 Link 7 Link 8 Link 9 Link 10
Ci 100Mbps 100Mbps 100Mbps 100Mbps 100Mbps

Figure 6.7: Network Topology for the Test of Distributed Dynamic Resource
Allocation

called window. This is the same window as defined in TCP. Initially the win-

dow size is set to one packet. We also set a window threshold in our experiment,

which is similar to TCP. If WIN of a user is lower than the threshold, then

after each successful packet transmission, the window size is increased by two

packets. If WIN is larger than the threshold, then after each successful packet

66



transmission, WIN is increased by 1
WIN

. On the other hand, if WIN exceeds

the user’s bandwidth allocation, WIN is halved.

We assume that all the routers in the network start allocation at the same

time. We also assume that the control period of each router is the same, which

is set to 1 second. To simplify the problem, we assume that the packet size

of each user is uniformly 1500 kilobytes. We also assume that each user sends

100 rounds data within each control round. In other words, the transmission

delay of each user for sending the packets is 10ms, and the queueing delays

on the route are neglected. We call this 10ms ”sending round” for each user.

Here we define:

PACKET SIZE = 1500kilobytes (6.1)

WIN THRESHOLD = 10 ∗ PACKET SIZE (6.2)

Γ = 1s (6.3)

DELAY = 10ms (6.4)

Because the AIMD function is very aggressive, if we give all the initial

allocation to the users in the first control round, then the users will consume

all the available bandwidth in the first control round. It makes observing the

share/reclaim process very hard. Therefore, in the first control round, for each

user Ui we set:

xji (0) = σji ∗
1

10
, ∀Lj ∈ Ri (6.5)

θji (0) = σji ∗
9

10
,∀Lj ∈ Ri (6.6)

67



6.3.1 Numerical Experiment 1

The purpose of the first numerical experiment is to show that our distributed

dynamic allocation scheme can lead to a stable and convergent allocation re-

sult. We assume that for each user Ui, the share factor δi and the reclaim

factor ρi are set to 0.5 uniformly. We assume that all users are elastic users.

There are two methods for the router to predict the bandwidth demand

for each user. The first method is to record the maximum transmission rate

and use that statistic as the bandwidth demand for each user. In other words,

in each sending round u of control round t, the transmission rate of the user

Ui is:

TXi(u) = WIN(u) ∗ PACKET SIZE/DELAY (6.7)

Then the bandwidth demand of user Ui for the next control round t+ 1 is:

ηi(t+ 1) = max{TXi(u)} (6.8)

The second method is to use the average transmission rate as the bandwidth

demand for each user. In other words, the bandwidth demand of user Ui is:

ηi(t+ 1) =

∑
u TXi(u)

Γ/DELAY
(6.9)

First we run an experiment by using the maximum transmission rate as the

bandwidth demand for each user. The bandwidth allocation and bandwidth

utilization results are shown in Fig.6.8.

Because U1 only uses L2, its bandwidth allocation is not affected by other

users. The bandwidth allocation of U1 is gradually increased to 100Mbps,

which equals to the capacity of L2. U2 and U3 compete for L3. At control

round 9, the bandwidth allocation of U2 is higher than 25Mbps. This is be-

cause U3 has extra bandwidth at control round 9, and hence U2 can borrow

from U3. However, from control round 11, U3 starts to reclaim its shared

bandwidth. Hence, the bandwidth allocation of U2 decreases. Finally the

bandwidth allocations of U2 and U3 are 25Mbps and 75Mbps, which equal to
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the weighted max-min fair allocation result. This is similar to U4, U5, and U6.

At control round 6, the bandwidth allocations of U4 and U6 are higher than

their optimal allocation. This is because U5 has unused bandwidth. At control

round 11, U5 starts to reclaim its shared bandwidth, and hence the bandwidth

allocations of U4 and U6 decrease.

However, the transmission rate does not equal to the bandwidth allocation

for the user. This is because we use the simulated AIMD function. Each

time the transmission rate exceeds the allocation, the transmission rate is

halved. Hence, the average transmission rate shown in Fig.6.8 is lower than

the bandwidth allocation for each user.

Next we show that the result proves Proposition 4.1. It is easy to see that

L2 is the bottleneck link of U1. L3 is the bottleneck link of U2 and U3. L5 is

the bottleneck link of U4, U5 and U6. Hence, we concentrate on these three

links and ignore the bandwidth allocation on other links. According to Table

6.4, the maximum initial allocation on L2, L3 and L5 are:

Λ2 = max{σ1} = 100Mbps (6.10)

Λ3 = max{σ2, σ3} = 75Mbps (6.11)

Λ5 = max{σ4, σ5, σ6} = 60Mbps (6.12)

The bandwidth demands and utilizations of L2, L3 and L5 are shown in

Fig.6.9. As we discussed in Chapter 4, the link with minimum Λ is saturated

first. According to Fig.6.9, L2 and L5 are both saturated at control round 10.

This is because we use a different function for bandwidth demand prediction.

In Chapter 4, we assume that the bandwidth demand of user Ui is TXi ∗ υ,

where υ is greater than one. However, in the experiment we use a simulated

AIMD function, which would halve the transmission rate when it exceeds the

bandwidth allocation. Since L2 is used only by U1, there is no competition on

L2. Hence L2 is saturated at the same time as L5, and is therefore saturated

before L3.
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The changing of the bandwidth demand prediction function also explains

that the total transmission rate on each bottleneck link does not equal to the

bandwidth capacity. Only 80% bandwidth capacity of L2 and L3 is utilized,

and only 70% bandwidth capacity of L5 is utilized. .

Next we run an experiment to demonstrate the result of using the average

transmission rate as the bandwidth demand for each user. The bandwidth

allocation and bandwidth utilization results are shown in Fig.6.10

We can see that although the final result is stable, a great amount of the

bandwidth is wasted. As we explained above, the average tranmission rate

is always lower than the bandwidth allocation due to the fact that we are

using the AIMD function for the experiment. Hence, the bandwidth demand

is always smaller than the current bandwidth allocation, and hence makes

the bandwidth allocation continuously decreasing. We claim that using the

average transmission rate of the user for predicting its bandwidth demand is

inappropriate and can lead to a great waste of the network resources.

6.3.2 Numerical Experiment 2

The purpose of the second numerical experiment is to show that even when

a contraint shift happens, the allocation is still stable and optimal. The net-

work we use in this experiment is the same as shown in Fig.4.5. The optimal

bandwidth allocation is x1 = 25Mbps, x2 = 125Mbps and x3 = 200Mbps. We

use the maximum transmission rate to predict the bandwidth demand in this

experiment.

To make the constraint shift more observable, we set the share factor for

each user to 0.9, and we set the reclaim factor for each user to 0.1. If we set

the share factor too small, then U1 would not have the chance to borrow from

U3. If we set the reclaim factor too large, then U3 would reclaim its shared

bandwidth from U1 very quickly, and hence this process would be very hard

to observe.

Then results are shown in Fig.6.11 and Fig.6.12. The bandwidth allocation

of U1 reaches 25Mbps at control round 9. However, since U2 is not fully

utilizing its allocated bandwidth, U1 continues to borrow bandwidth from U2.
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At control round 31, the bandwidth allocation of U1 is about 32Mbps, and the

bandwidth allocation of U2 is about 96Mbps. Because U1 cannot borrow more

bandwidth from U3, this is the maximum bandwidth allocation that U1 can

have. Hence, at control round 31, link L1 is nearly saturated, and U1 and U2

are constrained by L1. At control round 33, the bandwidth allocation of U1

starts to decrease. This is because U3 starts to reclaim its shared bandwidth

from U1 on L2. At control round 50, the bandwidth allocation of U1 is about

26Mbps, the bandwidth allocation of U2 is about 103Mbps, and the bandwidth

allocation of U3 is about 199Mbps. The constraint of U1 shifts from link L1

to L2. After control round 50, the bandwidth allocation U2 increases above

100Mbps. The extra bandwidth is from U1. Therefore, we can claim that

even when a constraint shift happens, the bandwidth allocation result of our

distributed allocation scheme is stable and optimal.

6.3.3 Numerical Experiment 3

The purpose of the third experiment is to show that even if the network topol-

ogy contains cycle, our distributed algorithm still converges to a stable result.

The network we use in this experiment is shown in Fig. 6.13. There are four

users and four links in the network. The four links form a cycle in the network.

Each user uses two adjacent links. The link parameters are shown in Table 6.6.

The user parameters are shown in Table 6.7. The allocation result is shown in

Fig. 6.14, which is stable.

Table 6.6: User Configuration for the Test of Network with Cycle
User 1 User 2 User 3 User 4

ωi 1 1 1 1
δi 0.5 0.5 0.5 0.5
ρi 0.5 0.5 0.5 0.5

Table 6.7: Link Configuration for the Test of Network with Cycle
Link 1 Link 2 Link 3 Link 4

Cj 100Mbps 200Mbps 400Mbps 400Mbps
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Figure 6.8: Bandwidth Allocation and Bandwidth Usage Result – Using Max-
imum Transmission Rate to Predict Bandwidth Demand
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Figure 6.9: Bandwidth Usage on the Link – Using Maximum Transmission
Rate to Predict Bandwidth Demand
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Figure 6.10: Bandwidth Allocation and Bandwidth Usage Result – Using Av-
erage Transmission Rate to Predict Bandwidth Demand
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Figure 6.11: Bandwidth Allocation and Bandwidth Usage Result When Con-
straint Shift Occurs

Figure 6.12: Bandwidth Usage on the Link When Constraint Shift Occurs
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Figure 6.13: Network Topology Contains Cycle
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Figure 6.14: Allocation Result with Cycle in the Network
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have proposed a resource allocation algorithm, which can

be used in both centralized and distributed environments. We summarize our

contributions as follows.

1 An algorithm which yields weighted max-min fair allocation has been pro-

posed in Chapter 2. This algorithm can be used in both centralized and

distributed environment. Even in the distributed environment, which lacks

the ability to gather global information, if the users are elastic users, then

the allocation result is still weighted max-min fair.

2 We proposed a new algorithm, which dynamically adjusts resource alloca-

tions according to the users’ demands. We first implemented this algorithm

in a centralized manner and applied it to a real problem. We compared

the results of the network utilization with and without our algorithm. It

showed that our algorithm can provide a fairer allocation result. It also

showed that the allocation result is adjusted according to the users’ de-

mands.

3 We extended our centralized algorithm to a distributed version. We proved

that the allocation result of the distributed algorithm is stable and optimal.

The experimental result showed that if all the users in the network are

elastic users, then the allocation result is stable and optimal.
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4 We proposed several methods which deal with emergencies. Emergency

handling was not investigated in any previous work.

7.2 Future Work

Resource allocation, especially network resource allocation, has been researched

for decades. Many ideas have been proposed and applied in different fields.

In this thesis, we proposed a dynamic resource allocation algorithm which can

be applied in both centralied and distributed environments. However, there is

still much left to do. Here is a list of possible future directions:

1 We use weighted max-min fair allocation as the initial allocation algorithm.

However, there are many other fair algorithms, e.g. proportional fair allo-

cation, that can be applied.

2 As we discussed in Chapter 3, there are several possible borrow strategies.

We can see that a different borrow strategy can lead to a different allocation

result. However, each of them has its own disadvantages. Therefore, more

investigation is needed to generalize which borrow strategy applies to which

situation.

3 Bandwidth demand prediction is another problem. In Chapter 3, the cen-

tralized version of the algorithm assumes that the network is a private net-

work, such that the central manager has the knowledge of the link band-

width and the users know exactly their bandwidth demands. However,

this does not always apply. In Chapter 4, the router uses the user’s peak

bandwidth usage as its estimate of bandwidth demand for the next control

round. The experimental result in Chapter 6 shows that using average

bandwidth usage on the router as the bandwidth demand prediction can

lead to performance degradation. Hence, a method that can accurately

reflect the user’s bandwidth demand is critical.

4 Our work assumes that the users in the network would collaborate with

the central manager or the router. This means that the users are friendly
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users. If there are one or more malicious users in the network, then they can

send a fake bandwidth demand to the central manager, or can ignore the

regulation on the router. This would severely decrease the performance of

the allocation algorithm, and the result would not be fair any more. Hence,

a robust and protected algorithm needs to be investigated.

5 The emergency handling methods leave many possible paths for future

work. We compared the cons and pros of increasing/decreasing bandwidth

method in Chapter 5. We also discussed the method of using a emergency

handling policy table. How to apply them to different situations would

be a very interesting topic. Moreover, other possible methods would be

interesting to investigate.
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Appendix A

Symbol List

NET: The network model.

U: The user set in the network. Ui represents the user i in the user set U .

L: The link set in the network. Lj represents the link j in the link set L.

S: The router set in the network. Sk represents the router k in the router set

S.

R: The router of a user. Ri represents the data flow path of user Ui. If

Lj ∈ Ri, then user Ui uses link Lj. If Sk ∈ Ri, then user Ui uses router

Sk.

M: The central manager in the network.

C: The link capacity. Link Lj has link capacity of Cj.

xi: The bandwidth allocation of user Ui.

ωi: The priority of user Ui.

Ωj: The total priority of the users using link Lj.

τj: The average bandwidth per unit of priority on link Lj.

ΓM : The control period of the central manager M .

σi: The initial bandwidth allocation of user Ui.
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θi: The shared bandwidth of user Ui.

δi: The share factor of user Ui.

ρi: The reclaim factor of user Ui.

ηi: The bandwidth demand of user Ui.

εi: The bandwidth gap of user Ui.

κi: The borrowed bandwidth of user Ui.

Θj: The total shared bandwidth on link Lj.

Λj: The maximum initial allocation among the users using Lj.
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