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Abstract

A fundamental appreciation for the mechanics of emulsion drops is essential to 

understanding many processes, such as emulsification. Experiments have suggested that 

the mechanical properties at emulsion drop surfaces may be size-dependent and must 

therefore be studied using micron-scale techniques. To date, no such work has been 

reported in the literature.

Novel micron-scale techniques are developed to explore the mechanical 

behaviour of emulsion drops. The method involves glass capillaries (micropipettes) 

whose tips are typically several microns in diameter. One micropipette is shaped into a 

cantilever to allow for direct force measurements. In a static technique, stress-strain 

behaviour is noted by capturing and deforming a single emulsion drop between two 

micropipettes. Alternatively, the dynamic shape recovery of a deformed drop upon 

release from one micropipette is observed. Based on these experiments, the mechanical 

properties of emulsion drops can be evaluated in situ.

The interfacial tension and viscosity of bitumen (a heavy crude oil) drops in 

aqueous environments are quantified using micropipette techniques; these are 

measurements that have not been attainable with traditional methods. In addition, this is 

the first study to document the surface plasticity of bitumen drops in an aqueous 

environment expected to be detrimental to the extraction of bitumen from oil sands on a 

commercial scale.

This research presents novel methods to examine the mechanics of emulsion 

drops in situ. Results from this research will allow for improved insights into the 

microrheology of emulsions and may contribute to advances in emulsion technologies.
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Nomenclature

a series coefficient set, {a} = [17, A„, Ba, C„, Dn], n> 2 (-)
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Chapter 1 
Introduction

Emulsions (or, more precisely, macroemulsions) are colloidal systems in which at 

least one liquid is dispersed as drops throughout an immiscible liquid. In such systems, 

the drops are on the order of one to ten microns in radius (Hunter, 1986; Davis, 1988). 

The significance of emulsions cannot be underestimated as they are common to the food 

(Krog et al., 1985; Dalgleish, 2001), pharmaceutical (Mulley, 1974), petrochemical 

(Matsumoto, 1974) and petroleum (Graham, 1988; Czamecki, 2001; Salageret al., 2001) 

industries, among others. Emulsion rheology1 is of consequence to many technological 

processes. Some emulsions provide an energy efficient means to transport viscous oils 

(Zakin et al., 1979), while the flow behaviour of crude oi 1-water emulsions is important 

to crude oil production (Simon and Poynter, 1968; Davis, 1988; Nunez et al., 2000).

As lyophobic (solvent-hating) colloids, emulsions are thermodynamically 

unstable since the interfacial area represents an extra energy cost. As such, there is a 

tendency to minimize surface area, through drop coalescence, leading to phase separation 

(demulsification). However, some surfactants and lyophilic substances can provide a 

degree of kinetic stability to emulsions. These species may sterically inhibit drop 

coalescence by preventing direct contact, and by resisting drainage of thin continuous 

phase films between emulsion drops2 (Hunter, 1986; Everett, 1988). Surfactants, such as 

fatty acid soaps, are characterized by polar groups and paraffinic chains. Due to their 

amphiphilic nature, surfactants have a high affinity for interfaces and preferentially 

adsorb at drop surfaces to minimize the free energy of an emulsion. Interfacially 

adsorbed substances which stabilize emulsions also include macromolecules (proteins 

and polymers) and even solid particles. The extent of adsorption of these materials at 

drop surfaces is dictated by surface activities or wetting characteristics (Shaw, 1970;

1 Rheology is the study of material deformation and flow in response to applied mechanical stress (Hunter. 
1986).

z From a thermodynamic perspective, stability is provided since work must be done to displace adsorbates 
from drop surfaces. Note that stability may be compromised by other higher affinity surfactants that can 
promote demulsification (by displacing adsorbed stabilizing agents).

1
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Adamson, 1976). Once adsorbed, these stabilizing agents can alter the mechanical 

properties at emulsion drop surfaces (Hunter, 1986). In doing so, the mechanical 

behaviour of the emulsion drops is also affected.

Processes such as drop coalescence and emulsification are influenced by the 

mechanics of emulsion drops. In addition, emulsion rheology is a direct result of the 

interactions between stabilized emulsion drops and depends on many factors. These 

factors include the disperse phase volume fraction, the rheology of both disperse and 

continuous phase liquids, and the surface properties of the emulsion drops (Walstra, 

1974; Sherman, 1983; Tadros, 1994). Theories describing the viscosity of dilute 

emulsions reflect these properties while assuming that the emulsion drops remain nearly 

spherical (Taylor, 1932; Oldroyd, 1955; Danov, 2001). However, the close proximity of 

emulsion drops observed in concentrated emulsions or during drop coalescence indicates 

that the drops may be forced into non-spherical shapes (Nunez et al., 2000; Princen, 

2001). Also, highly non-spherical drop shapes are observed during emulsification 

processes (Grace, 1982; Walstra, 1993). Understanding the mechanics of emulsion drop 

deformations will provide fresh insights into emulsion rheology and related processes.

As noted above, the surface properties of emulsion drops are important to many 

emulsion phenomena and are affected by adsorbed species. The most fundamental 

property of any liquid-liquid interface is the interfacial tension, defined as the work 

required to create a unit of surface area. Alternatively, it can be viewed as a force per 

unit length resisting such an area increase (Hunter, 1986). The interfacial tension is, in 

general, lowered as surfactants accumulate at an interface. In terms of emulsion drop 

mechanics, this implies that drops will be more readily deformed in the presence of 

surfactants. For curved interfaces, such as those of emulsion drops, Young (1805) and 

Laplace (1805) described the equilibrium mechanical relationship between the liquid 

phases and the tension at the interface as

bp = Y' U - L '
I * / *

( 1.1)

In equation 1.1, &p is the pressure difference across an arbitrary curved interface, / i s  the 

interfacial tension and the term in brackets is the mean curvature, where R\ and Rz are the

2
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principal radii of curvature (Adamson, 1976). Note that a more familiar form of this 

equation is observed for spherical drops of radius R(j, in which the mean curvature is 

given by 2/Rd. Assuming that the equilibrium interfacial tension is the only surface 

material property, deformability of emulsion drops may be quantified by the Young- 

Laplace equation (Walstra, 1993).

In addition to the interfacial tension, other surface properties may influence the 

mechanical behaviour of emulsion drops. Interfacial viscosities, which are intrinsic 

dissipative properties, were first noted by Plateau (1869) and further defined by 

Boussinesq (1913). Purely dissipative interfaces are described by a two-dimensional 

analogue to a Newtonian fluid (Scriven, 1960; Evans and Skalak, 1980). Elastic 

interfacial properties have also been considered in detail and descriptions of viscoelastic 

interfaces are available (Evans and Skalak, 1980; Edwards et al., 1991). The dissipative 

surface properties will affect the rate of drop deformation, while the elastic surface 

properties will affect the magnitude of such a process.

Almost all techniques used to study Theological properties of interfaces are 

performed at length scales of millimeters or larger (Edwards et al., 1991; Miller et al., 

1996); these are orders of magnitude above the relevant length scales of emulsion drops. 

This has tremendous consequences when the specific area (surface area-to-volume ratio) 

of an emulsion is important, such as in the partitioning of surfactants. Recently, it has 

been discovered that surfactant-adsorbed interfaces exhibit different interfacial tension 

values depending on the length scale considered and, consequently, on the measurement 

technique utilized (Yeung et al., 1998). It is, therefore, reasonable to infer that other 

interfacial mechanical properties may vary based on the length scale considered. Since 

the mechanical behaviour of an emulsion drop depends on its surface rheology, it is 

imperative to study the mechanics of such a drop in situ at length scales appropriate to 

emulsion systems.

The mechanical behaviour of crude oil drops in water, often encountered in the oil 

sands industry, is of particular interest in this study. Oil sands represent a significant 

hydrocarbon resource and rivals that of conventional crude oil (Demaison, 1977; Ruhl, 

1982; Czamecki, 2001). With the continuing decline in conventional reserves, fuels 

acquired from oil sands will become increasingly important. Nearly half of the global oil

3
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sands reserves, approximately 1700 billion barrels, are located in northeastern Alberta, 

Canada (Czamecki, 2001; Salager et al., 2001). Typically, Alberta (the Athabasca 

region) oil sands consist of -10 wt% bitumen3, a heavy crude oil, while the remainder is 

mainly inorganics such as silica sands and, to a lesser extent, fine clays (Shaw et al., 

1996).

Before bitumen can be sent to the refineries, it must first be separated from the 

sand. This is accomplished using a water-based extraction process (Clark and 

Pasternack, 1932; Shaw et al., 1996; Czamecki, 2001). In this process, a slurry 

composed of oil sands (obtained from an open pit mining operation), hot water4 (-50- 

80°C) and caustic (sodium hydroxide) is agitated inside tumblers or pipelines. The 

caustic is required to release natural surfactants from within the bitumen, allowing for 

improved recovery. The mechanical agitation enables the liberation of bitumen drops 

from the sand particles and also serves to aerate the bitumen drops. This ‘conditioned’ 

slurry is transferred to a quiescent flotation vessel to allow the coarse sand particles to 

sink to the bottom of the vessel and the aerated bitumen drops to float to the top and form 

a bitumen-rich froth layer. Some of the liberated drops in the slurry approach an 

emulsion dimension (10-40 microns in diameter) and represent the difficult-to-recover 

bitumen fraction (Shaw et al., 1996). It is clear that the deformation and coalescence of 

these small, dispersed bitumen drops is a critical aspect to the extraction process (Lam et 

al., 1995).

The present research is aimed at studying the mechanics of emulsion drops in situ-, 

that is, describing their mechanical behaviours within an emulsion system. As such, the 

objective is to develop novel mechanical techniques that allow for the manipulation of 

individual emulsion drops in situ. Particular focus will be given to the surface properties 

of these drops. The information gained will provide insights into the mechanical 

behaviour of emulsion drops and may have important consequences to emulsion 

technology, such as the theological properties of emulsions or the processes of

3 The United Nations Institute for Training and Research defines bitumen as a hydrocarbon with a viscosity
greater than 104 mPa-s (at deposit temperature) and a density greater than 1000 kg/m3 at IS.6 °C (Shaw et 
al.. 1996).

4 Recently, an economically advantageous low energy operation has been introduced which allows for 
water-based extraction at -  25°C (Mankowski et al., 1999; Czamecki, 2001).

4
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emulsification and drop coalescence. As a particular experimental system, the 

mechanical behaviour and properties of bitumen drops in aqueous environments, that are 

representative of industrial oil sands extraction operations, will be examined. The theme 

of this research is developed in the following paragraphs.

Chapter 2 details an emulsion-scale microcantilever technique that allows for in 

situ study of the static mechanical behaviour of single emulsion drops. This novel 

technique, along with an analysis based on the Young-Laplace equation, is used to 

evaluate the interfacial tension of dispersed drops involving simple liquids.

The microcantilever technique is ideally suited for density-matched systems in 

which at least one phase is highly viscous (e.g., bitumen-water systems). In chapter 3, 

the interfacial tension of bitumen-in-water emulsion drops is examined using the 

microcantilever technique. This is the first tensiometric technique to examine these 

systems; the study of such systems has not been possible with traditional methods.

Chapter 4 introduces a second technique for the in situ study of emulsion drops. 

This novel drop shape recovery technique involves observing the dynamic behaviour of a 

deformed emulsion drop. In addition to these experiments, a theoretical analysis is 

implemented to analyze systems in which the viscosity of one phase is vastly different 

from the other phase -  systems for which traditional analyses experience difficulties.

In chapter 5, the drop shape recovery technique is used to evaluate some material 

properties of bitumen. The viscosity of bitumen, which is extremely high at room 

temperature, is quantified in a manner that completely circumvents the problem of 

viscous heating. This method can also be used to measure the interfacial tension of 

bitumen drops in alkaline environments, where the tension is expected to be very low 

(below the sensitivity of the microcantilever technique).

In chapter 6, the micropipette techniques are adapted to explore more complex 

rheological behaviours. In particular, the properties of bitumen drops in water containing 

calcium ions and montmorilIonite clays, an environment expected to be detrimental to oil 

sands extraction processes, is examined.

Finally, the contributions of this research and suggestions for future work are 

summarized in chapter 7.

5
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Chapter 2 
Equilibrium Mechanics of Emulsion Drops: Microcantilever 

Technique

2.1 Equilibrium Mechanical Behaviour of Emulsion Drops

Mechanics studies the behaviour of a material in reaction to an applied stress and 

can involve both reversible (equilibrium) and irreversible responses. A mechanically 

reversible behaviour is characteristic of an elastic material in that the system returns to its 

original configuration following the removal of external stress. Irreversible behaviour is 

characterized by permanent plastic deformation resulting from dissipative flow of the 

material.

The equilibrium mechanical behaviour of emulsion drops is crucial to many 

applications. For example, in concentrated emulsions (disperse phase > 70 vol%) 

common to the petroleum industry, stabilized drops may experience significant static 

deformation, which can affect the structure and properties of the entire emulsion (Nunez 

et al., 2000; Princen, 2001).

A microcantilever technique is developed to directly study the equilibrium 

mechanical behaviour of individual emulsion drops. This technique involves distorting 

(stretching) an otherwise spherical drop using two suction pipettes and quantifying the 

stretching force with a glass cantilever. For reversible systems, the experimental force- 

drop deformation relation is well described by the Young-Laplace equation, which is a 

statement of mechanical equilibrium between interfacial and externally applied forces. 

(This assumes that the interface is characterized by a uniform interfacial tension alone.) 

Because of this, the microcantilever technique can be used to evaluate interfacial tensions 

at emulsion drop surfaces. This method of “m situ tensiometry” is applied to emulsions 

composed of pure simple liquids (in the absence of surfactants) and the results are in 

good agreement with literature values.

Interfacial tension (IFT), defined as the work to create a unit of new surface 

between two immiscible fluids (Hunter, 1986), is perhaps the most important physical

6
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property of liquid-liquid interfaces. In emulsion studies, knowledge of the interfacial 

tension is crucial to understanding phenomena such as the adsorption of stabilizers, the 

drainage of thin films (a precursor to drop coalescence), and the formation of new 

emulsion drops (Tadros and Vincent, 1983a; Verhoeckx et al., 1987; Overbeek et al., 

1987; Ruckenstein, 1988; Walstra, 1993). Clearly, in such situations, it is the tension at 

the surfaces of the dispersed drops that is of relevance. It has recently been demonstrated 

that, in the presence of surfactants, the interfacial tension of micron-sized emulsion drops 

may differ appreciably from IFT values quantified on the “lab” scale, i.e., involving 

sample sizes that are millimeters or larger. Such discrepancies are due to dissimilar 

partitionings of surfactants, which in tum result from the vastly different surface-to- 

volume ratios of the systems (Yeung et al., 1998). Thus, in order to delineate the effects 

of interfacial tension on emulsion properties, it is necessary to conduct tensiometric 

studies on length scales characteristic of the individual drops (i.e., on the micron scale). 

On a broader scope, such tensiometric studies will necessitate development of 

micromechanical techniques, which may find applications in other areas involving 

microvolumes -  such as the study of food colloids or microcapsules used in drug delivery 

(Dalgleish, 1996; Pieper et al., 1998).

Numerous techniques of interfacial tension measurement have been developed in 

the past, some dating back more than a century and have withstood the scrutiny of time. 

Descriptions of the established methods, as well as their strengths and limitations, can be 

found in most colloids textbooks and review articles (Adamson, 1976; Tadros and 

Vincent, 1983b; Hunter, 1986). Common examples of such techniques are: the Wilhelmy 

plate and Du Noiiy ring, which measure the force needed to traverse an object through an 

interface; the drop volume method, based on the balance of gravity forces against 

capillary effects; the spinning drop method, which studies drop distortion caused by 

centripetal acceleration; and the pendant and sessile drop methods that involve analysis of 

gravity-distorted drop shapes. It is noted that all of these methods require sample sizes of 

millimeters or larger and are incapable of dealing with individual emulsion drops.

Recently, a micropipette technique was developed to measure the interfacial 

tension of micron-sized water drops in non-polar media (Yeung et al., 1998). This

7
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technique, adapted from the field of biophysics (Evans, 1980; Evans and Needham, 

1987), involves capturing individual emulsion drops at the tips of glass suction pipettes; 

the pipette diameter, typically of several microns, must be smaller than the drop size. 

From this configuration, the minimum pressure required to draw in the drop is a direct 

measure of the interfacial tension. Such a technique, despite merits for its simplicity, is 

applicable only to interfaces that do not wet or adhere to the pipette’s inner wall (drops 

which adhere to the pipette require much higher pressures to be drawn in); this can be a 

serious limitation when dealing with emulsion drops that are, for example, adsorbed with 

macromolecules.

The microcantilever technique represents an alternative that circumvents such 

difficulties associated with the minimum pressure micropipette method. As noted above, 

in this new technique, an emulsion drop is elongated from its natural spherical shape 

using two suction pipettes and the required pulling force is measured. The resistance 

offered by the drop is due to an interfacial tension acting at its surface, which tends to 

restore the drop to a minimum area configuration (i.e., a sphere). By quantifying the 

force-drop deformation relation, the interfacial tension of an individual drop can be 

determined. Such an experiment involves no relative motion between the interface and 

the pipette wall and is therefore ideal for examining drops with “sticky” surfaces. In this 

study, a microcantilever is used as the “force transducer.” Similar methods of force 

detection have been reported in recent literature, with applications to pulp and paper 

research (Yeung and Pelton, 1996) and thin liquid film studies (Aveyard et al., 1996).

2.2 Theoretical Background

2.2.7 Drop profile and mechanical equilibrium

In this section, the theoretical background for the microcantilever method is 

developed. Figure 2.1 illustrates the stretching of a drop. The drop, with a radius of 7?d 

in free suspension, is elongated to a length L by two suction pipettes of radii r, and r, ,s 

The drop maintains a constant volume throughout its deformation (figures 2.1a and 2.1b).

s As will be discussed in the next section, one of these pipettes is shaped as a cantilever and is thus capable 
of quantifying stretching forces.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1. Depiction of an experiment conducted in this study; a spherical drop is 
stretched, at constant volume, using two suction pipettes (figures 2.1a and 2.1b). The two 
pipettes are aligned along a common axis, which also coincides with the axis of symmetry 
of the deformed drop. One of the micropipettes is shaped into a cantilever to allow for 
force measurements. The free body diagram of a drop segment is shown in figure 2.1c.

9
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For drops that are microns in size, all gravitational body forces are inconsequential in 

comparison to capillary effects. This is made clear by evaluating the Bond number, 

which measures the ratio of gravitational to capillary forces. It is given by

Ap  denotes the density difference between the two fluids. Typical values in this study 

are Rd ~10pm, y-lOmN/m, and Ap~100 kg/m3. This leads to a Bond number of 

-10"5. Without the influence of gravity, the elongated drop shape is determined 

solely by the balance of capillary forces against the applied stretching force. By aligning 

the two pipettes along a common z axis as shown in figure 2.1, it is clear that the 

deformed drop will be axisymmetric about the same axis. Such a shape can, in general, 

be characterized by cylindrical coordinates ( r , z )  as shown in figure 2.1b. The same 

geometry can alternatively be specified by (s,0), where s is the curvilinear distance (here, 

measured from z = 0 ) and 0 is the angle between the surface normal and the axis of 

symmetry. These two sets of coordinates are interrelated by

with the understanding that r , z and 0  are all functions of 5. When describing drop 

shapes, it is also important to quantify the local curvatures of the interface. Here, the two 

principal radii of curvature are given by

where R x is the radius of curvature in the s direction, and R z is the radius of curvature

in the circumferential direction. From equations 2.1 and 2.2, it is easy to show that the 

local mean curvature, defined as the sum of the principal curvatures, can be written as

Now, consider the condition of mechanical equilibrium. The free body diagram of a 

segment of the drop is shown in figure 2.1c. As the pipette on the left (including the 

small drop protrusion inside it) behaves as a rigid body, it is depicted as a solid block

B0 = ApgR d2 / y , where y  is the interfacial tension, g is gravitational acceleration, and

d r  dzcosd -  —  ; sin 0 = —  , 
ds ds-

a i )

J_  = dp _1
Rx dv R

sinp
r

(2.2)

(2.3)
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subjected to an axial force /. The quantity Ap  represents the pressure difference across 

the interface, with a positive value denoting higher interior pressure and vice versa. With 

Y being the interfacial tension, the balance of axial forces is

/  = 2Jir%vc\Q'Y -  7tr~ A p . (2.4)

It is clear that, at equilibrium, the resultant axial force /  must be a constant at any cross 

section perpendicular to the z -axis. By requiring d /=  0 in equation 2.4, we have

Y d(rsin^) -  Apr dr = 0 .

Combining the above relation with equation 2.3, we arrive at the familiar Young-Laplace 

equation

This equation, not surprisingly, results from the balance of forces on a curved interface. 

Note that in the absence of hydrostatic gradients (i.e., at low Bond numbers), the pressure 

drop Ap  across the interface is uniform over the drop surface. It follows from the 

Young-Laplace equation (equation 2.3) that the elongated drop shape is one of constant 

mean curvature given by the ratio A p ty •

2.2.2 Evaluation offorce-drop shape relation

The shape of an elongated drop under an axial load /  must now be evaluated. As 

in pendant drop analyses, a numerical approach is unavoidable. Here, the constant mean 

curvature profile is obtained by solving three simultaneous ordinary differential equations 

(ODE’s). The first two ODE’s are given in equation 2.1. They are rewritten here, along 

with initial conditions (at s = 0) in accordance with figure 2.1:

/
Ap = y

R. R ,
■

(2.5)

(2.6b)

(2.6a)
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The third ODE is derived from mechanical equilibrium. From equations 2.4 and 2.5, the 

constant mean curvature is given by

Combining with equation 2.2, the final ODE, representing the meridional drop curvature 

/?,"*, takes the form

An alternative thermodynamic derivation for equation 2.7 is given in Appendix A. For a 

prescribed value of axial force/, equations 2.6 and 2.7 are integrated simultaneously (e.g., 

with a fourth order Runge-Kutta routine) until the drop profile connects with the pipette 

on the right hand side, where r = r2 (see figure 2.ib). The drop length L , which

depends on the stretching force /, is given by the value of z at this end point. Such a 

procedure is, as yet, arbitrary as the initial angle 0O in equation 2.7 is not specified. The

value of 0O must be determined from the constant volume constraint. The volume V of

the elongated drop (also evaluated numerically) is matched to the volume of the 

undeformed drop, less the two protrusions inside the pipettes; that is

where vx and v 2 are the projected volumes in the pipettes (which, in many cases, can be 

approximated as hemispherical caps of radii rt and r2). In practice, the initial angle 0O is 

used as an iterative parameter to satisfy volume conservation (equation 2.8).6 By non- 

dimensionalizing the above equations with the characteristic parameters Rd and y, all 

variables will have magnitudes of order unity or less (a desirable condition for numerical

6 As a digression, it is noted here that the angle p0 bears no relation to wetting phenomena at the glass 
surface. The contact angle appearing in Young’s equation (Hunter, 1986) is the angle between the interface 
and a line tangent to the solid surface at the perimeter of contact. As the glass surface also undergoes a 
discontinuity in angle (a 90° bend) at this location, the notion of a three-phase contact angle becomes ill- 
defined in theory and irrelevant in practice.

Rx R2 Y r n r -y
1 + 1 _ Ap _ 2sin0 _ /

d0(s)
dr

sin0
r i tr zy

0(O)=0o. (2.7)

V (2.8)
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calculations). Thus, the axial force /  is scaled by the product yRd, while all geometric 

dimensions are expressed in terms of the initial drop radius Rd. The numerical 

procedures, as outlined above, compute the following functional dependence

YR*

f
— = function of (2.9)

where L\ is the drop length corresponding to /=  0 (i.e., when the exterior drop segment is 

spherical). Equation 2.9 is evaluated based on the conditions of mechanical equilibrium 

and volume conservation. In the process, a detailed profile of the elongated drop is also 

obtained from integration of equations 2.6 and 2.7. The numerical code used to calculate 

equilibrium axisymmetric drop shapes, based on the above analysis, is given in Appendix

2.3 Materials and Methods

2.3.1 Emulsion preparation

Although the microcantilever technique presently discussed is equally applicable 

to oil-in-water dispersions, only water-in-oil emulsions are studied in this chapter. Five 

non-polar solvents are chosen as the continuous oil phases; they are: ethyl acetate, 

chloroform, benzene, toluene and “heptol” (i.e., a 1:1 mixture, by volume, of n-heptane 

and toluene). These solvents, all purchased as HPLC grade products, are used with no 

further purification. Filtered and deionized distilled water is used as the aqueous 

(dispersed) phase. To make an emulsion, lOOpL of water is introduced into lOmL of 

solvent (i.e., 1% water by volume). The mixture is agitated for 10 seconds in a water bath 

sonicator (Fisher Scientific, model no. FS6), creating an emulsion of water drops that are 

5 to 50pm in diameter. Such an emulsion, composing only of pure fluids, is clearly 

unstable. However, in this study, the volume fraction of the dispersed phase is 

sufficiently low (1%) that individual emulsion drops are not likely to encounter each 

other in a quiescent environment. To avoid dissolution of water into the oil phase, each 

solvent is pre-saturated with water prior to emulsion preparation (e.g. by leaving a 

solvent/water mixture in a closed container overnight).

B.
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2.3.2 The micropipette experimental set-up

This is a technique of studying the mechanics of micron-sized objects with the use 

of small suction pipettes. Originally developed in the Held of biophysics for studying 

blood cells and surfactant membranes (Evans, 1980; Evans and Needham, 1987), this 

technique has recently been adapted for applications in other areas of colloid science 

(Yeung and Pelton, 1996; Yeung et al., 1998). Basic aspects of the micropipette setup are 

shown in figure 2.2. Approximately 50pL of an emulsified solution is placed in a sample 

cell assembled from microscope cover slips. As shown, the emulsion is retained by 

capillary forces in a gap of width 1.2mm. Micron-sized drops in the emulsion can be 

observed with an inverted microscope that utilizes transmission bright-field illumination 

(Carl Zeiss Canada; Axiovert 100). To manipulate individual drops, two small suction 

pipettes are extended into the sample cell from opposite sides. The pipettes are mounted 

on micromanipulators (Narishige, Tokyo) to enable their continuous motions on the 

micrometer scale. A blow-up view of the sample cell and micropipettes is also shown in 

figure 2.2. A video system (CCD camera (model KP M3U, Hitachi Denshi, Japan), 

videocassette recorder (SLV-R1000, Sony) and TV monitor) is connected to the 

microscope for the monitoring, in real time, of micropipette experiments. These 

sequences are also recorded on tape for subsequent analyses.

The micropipettes are made from 1mm OD, 0.7mm ID glass capillary tubes 

(Kimble Glass Inc., batch no. 32829-020). Using a hot wire pipette puller (David Kopf 

Instruments, Tujunga, CA; model 730), the capillaries are stretched axially under high 

temperature, resulting in tapered hollow tubes whose end dimensions are on the sub­

micron scale. Next, with the use of a home-made forging device, the tapered ends are 

truncated to produce pipette tips that have inside diameters ranging typically between 5 

and 10 microns. In this application, as the pipettes are intended for the manipulation of 

water drops, the tips must be pre-treated with a methylating agent to prevent spreading of 

the drops onto the glass surfaces; the methylating chemical may, for example, be

dichlorodimethylsilane (Aldrich Chemicals) applied at 20X dilution in cyclohexane. To 

capture individual drops, controllable suction pressures are applied at the pipette tip. This 

is accomplished by connecting the other end of the pipette (the large, untapered end) to a

14
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light source

micro
manipulator

camera TV monitormicroscope

Figure 2.2. A schematic of the micropipette setup. Emulsion drops are placed in a small 
holding cell (also shown in the blow-up view) and can be individually manipulated by 
two suction pipettes. The pipette on the right is shaped as a cantilever to enable force 
measurements. A yet closer view of the cantilever pipette is shown in figure 2.3.
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60mL syringe through flexible tubing. If required, this suction pressure is measured using 

commercial pressure transducers (e.g., Omega Engineering, Stamford, CT).

The straight micropipette, as described above, is suitable for capturing and 

translating individual emulsion drops, but is otherwise insensitive to the axial force it is 

subjected to. An additional force-measuring capability can be provided by creating two 

right-angle bends in a micropipette as shown in figure 2.3. Such a pipette will be called a 

“microcantilever.” The bends are made by gently pushing local regions of a straight 

pipette against a heated platinum wire; the temperature of the wire is such that it will 

soften the glass material but does not cause melting. The first bend is made 

approximately 30 to 60 microns from the tip. The second bend, separated from the first 

by about 6mm, is turned in the opposite direction while maintaining an overall planar 

shape; the average pipette diameter between the first and second bend is approximately 

25pm. The resulting structure remains a connected hollow tube and therefore continues 

to allow for the control of suction pressures at its tip. As in the case for straight pipettes, 

microcantilevers used in this study must be treated with a methylating agent to provide 

for hydrophobic surfaces.

Due to its unique shape, a microcantilever will deflect under a horizontal force 

applied at its tip. Here, the descriptions “horizontal,” “up” and “down” are not in 

reference to the gravitational field, but are as indicated in figure 2.3. It is seen in figure

2.3 that the cantilever “elbow” is rested against a solid support (the wall of the sample 

cell). Without such support, horizontal deflections of the tip will be accompanied by 

downward displacements of the same order of magnitude, which can disrupt the coaxial 

alignment of an experiment. Knowing the Young’s modulus of the pipette material 

(approximately 0.7xI0n Pa for borosilicate glass), and provided with detailed dimensions 

of the microcantilever, the elastic stiffness kb in the horizontal direction can be 

calculated from beam theory (Crandall et al., 1972). The microcantilever stiffness is 

strongly dependent on its dimensions. By varying geometric features such as the length, 

diameter, and degree of tapering, kb can be made to range from 1 to 10s mN/m. In this 

study, the beam stiffness kb is normally between 20 to 60 mN/m. For capillary forces of 

order y/?d applied at the pipette tip, the maximum strain created within the
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vertical

l L
* >  horizontal

Figure 23 . A sketch of the microcantilever; the blow-up view is an actual photograph. 
Shaped like a periscope, the cantilever is a continuous hollow tube with end diameters of 
1mm on the untapered side and ~10iim at the tip. The vertical section is roughly 25nm in 
diameter and has a length of 5-6mm. The structure, supported as shown, has an effective 
stiffness of -lOmN/m.
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microcantilever is estimated to be ~10~s, which is well within the linear elastic regime for 

glass (cf. brittle failure at strain levels of several percent). It is therefore safe to assume 

that, for the present application, the deflection of a microcantilever is directly 

proportional to its axial load. Details of the cantilever stiffness calculations can be found 

in Appendix C.

2.3.3 Calibrating the microcantilever

Due to the extremely small strains involved, the deflection of a microcantilever is 

directly proportional to the applied axial load. A very good estimate of the 

proportionality constant kb can be provided by linear elastic theories (see Appendix C); 

such an estimate is often accurate to within a few percent. For higher order corrections, 

the cantilever must be calibrated with known forces. This can be done by suspending a 

weight, such as a 300-500pm glass bead, at the tip of the cantilever and determining the 

resulting deflection. Because the weight of an object varies as the third power of its size, 

the resulting uncertainty in the ‘'known” force is often larger than that of the calculated 

stiffness. In this study, we have chosen to use the capillary forces between simple fluids 

to provide for the axial load, i.e., the cantilever is calibrated by stretching a water drop in 

a hydrocarbon whose interfacial tension with water is well known. This approach 

apparently embodies a contradiction in reasoning; the same drop-stretching process that is 

used to calibrate the cantilever, assuming a known IFT, is also used for measuring 

interfacial tensions, assuming the cantilever stiffness is accurately known. In practice, 

such a dilemma is circumvented by a self-consistent approach: Before measuring the IFT 

of an “unknown” system (e.g., between water and toluene), the microcantilever is first 

used to verify at least three documented IFT values (e.g., between water and heptane, 

chloroform and benzene) based on a calculated beam stiffness. A consistent discrepancy 

between the measured IF I s and the literature values, typically of a few percent, suggests 

a correction factor for the cantilever stiffness. The corrected kb value is then used to 

determine the IFT between the fluids with unknown tensions.
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2.3.4 Drop deformation experiment

The drop deformation experiment, as illustrated in figure 2.1, is conducted with a 

straight pipette on the left and a microcantilever on the right. To begin, the dimensions of 

the pipette tips and the emulsion drop (i.e., r ,, r , ,  and Rd in figure 2.1a) are obtained

from video images. Calibration for length measurements is performed by recording the 

image of a stage micrometer under the same magnification. Before proceeding with drop 

deformation, the tip position of a stress-free microcantilever is noted; this coordinate will 

be needed in evaluating cantilever deflections caused by axial loads. Next, suction 

pressures are applied at the pipette tips to firmly grasp an emulsion drop at opposite ends. 

By retracting the straight pipette while keeping the thick end of the microcantilever 

stationary, both the drop and the cantilever tip are pulled to the left. A sequence of 

photographs depicting such a process is shown in figure 2.4, where a water drop is being 

stretched in chloroform. Note the deflection of the flexible cantilever on the right, as 

indicated by its tip positions relative to the vertical reference line. The elongation of the 

drop is also evident from these photographs. The two quantities which define the force- 

drop deformation relation can now be determined: the drop length L (as shown by the 

arrows in figure 2.4) is obtained directly from image analysis, while the axial force /  is 

given by the product of the cantilever deflection and the beam stiffness kb. For each 

emulsion drop, approximately ten measurements of ( /, L ) are made at different stages of 

the drop stretching process. Image analysis is performed with the software Sigmascan 

Pro (Jandel Scientific, version 4). The spatial resolution, estimated to be two pixels in the 

digitized images, corresponds roughly to 0.2iim.

The interfacial tension is obtained from the force-drop deformation data as 

follows: It is seen from equation 2.9 that, given the geometric dimensions r , , r , , and Rd

(and hence the ratios r j  Rd and r J R d), the dependence of f / (yRd) on ( L - L l) /Rd can

be calculated from the procedures outlined above. The two experimental unknowns in 

these dimensionless groups are the interfacial tension yand the reference drop length Li.7

7 Although measurable in principle, L, (the length corresponding to zero axial force) is difficult to quantify 
experimentally due to problems such as image diffraction at the pipette tip.
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Figure 2.4. Photographs of an actual drop stretching experiment. In this case, a water 
drop is being elongated while submerged in chloroform. The pipette on the right is a 
flexible cantilever (cf. figure 2.3). From the deflection of the cantilever, as evidenced by 
its tip positions relative to the solid vertical line, the stretching force can be determined. 
The length of the stretched drop is also obtained from these images (shown by the 
arrows).
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By allowing y and Li to be adjustable parameters, their values can be determined from a 

least squares fit of the ( f ,L)  data to the theoretical f /(yRd) vs. (L -L ,) //? d relation

using, for example, Gauss-Newton regression techniques. In the end, the value of y  

which optimizes the fitting criteria will serve as a measure of the interfacial tension 

between the two fluids.

2.4 Results and Discussion

The microcantilever technique is applied to emulsions composed of simple liquids 

to study the static mechanical behaviour of their emulsion drops, which is primarily 

described by the interfacial tension at the drop surface. In the absence of surfactants, the 

intcrfacial tension between two pure immiscible fluids must exhibit the same value -  

whether it is quantified at the surface of an emulsion drop or by other tensiometric 

methods (this is not necessarily true when surfactants are present; see Yeung et al., 1998). 

Thus, with agreement established between microcantilever data and literature IFT values 

in these simpler cases, meaningful results can be assured when the new technique is 

extended to more complex emulsion systems.

The method of determining the pulling force /an d  the drop length L was outlined 

in the previous section and also illustrated in figure 2.4. Experimental data thus obtained 

for several water-in-oil systems are plotted in figure 2.S in dimensional form. In figure 

2.5, the continuous oil phases are: toluene, benzene and ethyl acetate -  with interfacial 

tensions against water being 36.1, 34.1 and 6.8mN/m, respectively (Donahue and Bartell, 

1952). The radii of the water drops are close to 10pm in all three cases. It should be 

noted that a reference length L is subtracted from L before it is plotted on the horizontal 

axis; this is to facilitate comparison of the three force-deformation relations. Two 

observations are made from these plots:

I. Oil-water mixtures with very similar IFT’s (e.g., 36.1mN/m for toluene-water versus 

34.1mN/m for benzene-water) are almost indistinguishable from the initial slopes of 

figure 2.5. Their differences, however, become more apparent as the drop extensions 

increase to values comparable to the initial drop radius (here, to roughly 10pm).
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Figure 2.5. Experimental measurements of the stretching force /  versus the drop 
deformation L -  L ,. The three cases involved water drops dispersed in toluene, benzene
and ethyl acetate, with corresponding interfacial tensions of 36.1, 34.1 and 6.8 mN/m, 
respectively. The lines are quadratic regressions through the data points. Note that IpN 
is roughly the weight of 0.1 milligram.
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2. The initial slopes of the curves in figure 2.5, which represent the effective “spring 

stiffness”’ of the stretched drops, appear to be consistently 2-3 times the 

corresponding interfacial tensions.

The first observation concerns the sensitivity of the microcantilever technique. It is 

demonstrated in figure 2.5 that IFT’s differing by about lmN/m can be easily resolved. 

For this, it is necessary to subject the emulsion drop to larger extensions, of up to one Rd, 

at which point non-linear characteristics of the force-deformation relation become 

significant. The second observation was first noted by Evans et al. (1991, 1995) in their 

studies of biological cells. They showed that, for pressurized cells undergoing small 

extensions (relative to its initial size), the apparent spring constant is roughly given by

—  =  —   (2.10)
dL ln(/?d /r ,)  + ln(/?d / r2)

where y is the interfacial tension. The above relation is very instructive: It shows how 

two of the dimensionless parameters in equation 2.9, namely, r, / Rd and r, / Rd, have

only a weak (logarithmic) influence on the force-drop deformation relation. This implies, 

in practice, uncertainties in estimating pipette dimensions (e.g. problems associated with 

optical diffraction and aberrations) will not seriously affect measurements of interfacial 

tensions. Despite its usefulness in exposing functional dependencies, equation 2.10 

remains a first order approximation and is therefore not suitable for studies requiring 

higher precisions. A more accurate model of the force-drop deformation relation, one 

that also accounts for the non-linear features at large extensions, can be obtained through 

the numerical procedures described in this chapter.

As an example, the least squares fit of a theoretical force-deformation relation to 

the (f, L ) data is illustrated in figure 2.6, with the interfacial tension y being the end 

product of such an analysis. Here, the experimental data are taken from the process 

depicted in figure 2.4.

Table 2.1 summarizes the interfacial tension values quantified by the 

microcantilever technique, together with corresponding literature values obtained from 

Donahue and Bartell (1952) and Yeung and coworkers (1998). The microcantilever
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Figure 2.6. Fitting experimental force-deformation data to the theoretical predictions 
based on the Young-Laplace equation. The measurements are taken from the process in 
figure 2.4, where a water drop is stretched in chloroform. Adjustable parameters in the 
fitting procedure are the interfacial tension y  and the reference length Li ; the latter 
corresponds to zero axial force.
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technique is applied to five water-in-hydrocarbon emulsion systems. The hydrocarbons 

are: ethyl acetate, chloroform, benzene, toluene and heptol. For each system, 20 to 40 

individual drops are studied, with a minimum of ten ( f ,L)  data points taken for each 

drop. The quoted errors are standard deviations based on the 20 to 40 drops tested.

Table 2.1. Interfacial tensions of solvent-water systems. All measurements are done at 
room temperature.

Continuous
phase

Experimental Interfacial Tension 
(mN/m)

Literature Value 
(mN/m)

Ethyl acetate 6.78 ± 0.58 6.8
Chloroform 30.9 ± 1.6 31.6

Benzene 33.7 ± 0.7 34.1
Toluene 36.4 ±0.8 36.1
Heptol 40.3 ± 1.1 39.6

As seen from Table 2.1, agreement between measured and literature values is very good. 

These results document the applicability of the microcantilever technique in quantifying 

IFT’s ranging from 6 to 40 mN/m (from ethyl acetate to heptol), with a resolution of 

±1 mN/m or better (i.e., the ability to distinguish between toluene and benzene).

The calculated drop shapes, shown in figure 2.7, also appear to be in excellent 

agreement with the microscope images (cf. figure 2.4).

2.5 Conclusions

A microcantilever technique has been developed to quantify the static mechanical 

behaviour of individual emulsion drops. It involves stretching a drop using micropipettes 

and measuring the force-drop deformation relation. By fitting the experimental data to 

theoretical predictions based on the Young-Laplace equation, an accurate measure of the 

interfacial tension at emulsion drop surfaces is obtained. The method has been applied 

successfully to the measurement of interfacial tensions ranging from 6 to 40 mN/m. Such 

a technique has also opened the possibility of directly examining transport processes and 

rheological properties at the surfaces of emulsion drops and other similarly-sized 

microvolumes, such as food colloids or the microcapsules employed in drug delivery. 

This is an advantage not shared by any current method of interfacial rheometrv
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Figure 2.7. Theoretical drop shapes which simulate the three stages in figure 2.4. The 
shapes are calculated based on the measured axial forces, which are in turn determined 
from cantilever deflections.
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Chapter 3
Interfacial Tension of Bitumen-in-Water Emulsions: An 

Application of the Microcantilever Method

3.1 Introduction

Measuring the interfacial tension (IFT) between density-matched fluids has been a 

serious challenge in the study of tensiometry. These measurements can be further 

complicated when one or both of the fluids possess high viscosities. The microcantilever 

technique (chapter 2) circumvents such difficulties. It is shown that, for mechanical 

experiments conducted on the 1-lOpm scale, as in the present application, gravitational 

body forces and viscous effects can be neglected (provided relaxation times of several 

seconds are allowed). The system of present interest is that of Athabasca bitumen8 drops 

in water at room temperature, in which the densities of the two phases are nearly equal 

(to within 1%), and the viscosity of bitumen is extremely high (more than 10s times that 

of water). This is the first study of bitumen-water interfacial tensions at room 

temperature over a range of pH and salt concentrations.

Tensiometric techniques predicated on density differentials (e.g., pendant drop, 

spinning drop, drop volume) become ineffective for systems of nearly matched densities. 

For such methods to be useful, heavy water {fi ~ 1100 kg/m3) has to be substituted as the 

aqueous phase (Isaacs and Smolek, 1983). At first glance, force-based techniques such as 

the Wilhelmy plate (Drelich and Miller, 1994) seem immune to vanishing density 

differences. Disregarding for the moment the common drawback of requiring zero 

contact angles, such techniques also assume, implicitly, that the extent of the meniscus is 

much smaller than the dimensions of the measuring plate. As the characteristic size of 

the meniscus, given by the capillary constant, diverges as Ap ~xn~, Wilhelmy plate-type 

techniques are, in general, inappropriate for systems with vanishing density differentials. 

The only means of IFT measurement that is truly unaffected by small Ap  appears to be 

the maximum bubble pressure method (Pandit et al., 1995). However, this technique is

8 Athabasca bitumen is a heavy crude oil found in the oil sands deposits in northern Alberta, Canada. Refer 
to chapter 1 for further details.
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limited to low viscosities systems and often must be operated at elevated temperatures to 

avoid molasses-like flow properties exhibited by fluids such as polymer melts and 

bitumen.

The measurement of bitumen-water lFT’s has been, to date, a somewhat awkward 

process due primarily to the small density difference Ap  between the two phases. Over a 

temperature range of industrial significance (2S-80 °C), the densities of water and 

bitumen differ by at most 10 kg/m3, or by less than 1% (Liu, 1989; Pandit et al., 1995; 

Basu et al., 1996). As the oil sands industry is striving to operate at progressively lower 

temperatures (Mankowski et al., 1999), where the viscosity of bitumen is extremely 

high9, techniques which allow for the study of bitumen-water IFT at these temperatures 

(~ 25 °C) are essential. In the previous chapter, a novel method has been developed to 

measure the IFT of micron-sized emulsion drops dispersed in an immiscible phase 

(Moran et al., 1999). As will be discussed below, this novel micron-scale technique 

avoids all difficulties typically encountered in IFT measurements of bitumen-water 

systems (i.e., vanishing density difference, high viscosity) and provides an in situ means 

of examining the surface properties of the bitumen drops.

The bitumen-water IFT is a decidedly important surface property to the 

coalescence of bitumen drops and, as a consequence, to the overall recovery of bitumen 

from oil sands (Shaw et al., 1996). It has been noted that the bitumen-water interfacial 

tension is reduced (Takamura and Isaacs, 1989; Drelich et al., 1995; Drelich and Miller, 

1994), and bitumen recovery improves (Sanford and Seyer, 1979; Takamura, 1985), as 

the solution pH increases. In addition, the salt concentration of the aqueous phase may 

significantly affect bitumen-water IFT (Takamura and Isaacs, 1989). This chapter 

examines the IFT of bitumen-in-water emulsion drops over a range of pH values and salt 

concentrations and, in the process, demonstrates the unique applicability of the 

microcantilever technique to highly viscous, density-matched systems. It should be 

emphasized here that, although the discussion is centered mainly on bitumen, it is equally 

valid for interfacial tension measurements for highly viscous liquid systems with 

vanishing density differences (e.g., polymer melts in immiscible media).

9 At room temperature, viscosity of bitumen is on the order of 10s times greater than conventional crude oil 
(Ruhl, 1982; Seyer and Gyte, 1989).
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3.2 Preliminary Considerations

The interfacial tension of a bitumen drop is determined from conditions of 

mechanical equilibrium as it is distorted on the micron-scale (chapter 2). Before 

proceeding with the analysis, it is first shown that the two additional contributions to 

mechanical equilibrium, namely, forces due to gravitational and viscous effects, are 

inconsequential. The insignificance of gravity can be established by showing the Bond 

number, which is a measure of the ratio of gravitational to capillary forces, is much less

than unity. The Bond number is given by B0 = ApgRd2/ y , where y  is the interfacial 

tension, g is gravitational acceleration, Rd is the spherical drop radius, and Ap  denotes 

the density difference between the two fluids. Typical values in this study are Rd -IOpm, 

y-lOmN/m, and A p-10 kg/m3, giving rise to a Bond number of BQ ~ 10-6. Without the 

influence of gravity, and with the two pipettes aligned along a common axis (as shown in 

figure 2.1), it is clear that the deformed drop will be rotationally symmetric about the 

same axis. With regard to viscous effects, the ratio of viscous to capillary forces is 

expressed by the Weber number W=pGRd/ y , where G is the rate of drop extension 

(~d lnL /d r )  and ju, the viscosity of bitumen, is typically 10s - 106 mPa-s at room 

temperature (note that 1 mPa s is roughly the viscosity of water). For the viscous forces 

to be appreciable, i.e., for W ~ 1, the axial extension rate G must be of order Is-1. In 

practice, viscous effects are easily avoided by allowing deformed bitumen drops to 

equilibrate for sufficiently long times (typically for 3-4 seconds).

3.3 Materials and Methods

3.3.1 Emulsion preparation

Bitumen-in-water emulsions are prepared by introducing approximately one 

milliliter of “coker-feed” bitumen (Syncrude Canada Ltd.) into 20 mL of an aqueous 

solution. This mixture is then placed in a sonicator bath (Fisher Scientific, model no. 

FS6) at 80°C for one to two minutes. Bitumen drops in the resulting emulsions range 

between 5 and 30 pm in diameter.

In this study, the aqueous phases of most of the bitumen emulsions are designed 

to simulate the chemistry of process water in commercial oil sands extraction. This
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simulated process water (SPW) is composed of several salts (Fisher Scientific): NaCl (25 

mM), NaHCC>3 (15 mM), and Na2S04 (2 mM). In some experiments, CaCh (0.3 mM) 

and MgCb (0.3 mM), both obtained from Fisher Scientific, are added to the simulated 

process water to reflect the divalent cationic environments observed in some process 

waters (Shaw et al., 1996). This solution is referred to as “DSPW”. Furthermore, to 

evaluate the effect of salts on bitumen-water interfacial tension, aqueous solutions of 

NaCl are prepared in concentrations ranging from 0 to 700 mM. The water used in all 

experiments is filtered and deionized.

The pH of the aqueous phase is controlled with drop-wise addition of HC1 or 

NaOH (both from Fisher Scientific) and measured using a digital pH probe (Orion 

Research, model 701 A). The amounts of acid/base required to achieve the desired pH 

have virtually no effect on the ionic strength of the final aqueous phase.

3.3.2 Bitumen-water IFT measurement: The microcantilever technique

The microcantilever technique provides a means by which applied forces on 

micron-sized emulsion drops may be quantified through the use of suction pipettes. In 

this technique an emulsion drop is captured between two suction micropipettes and 

elongated from its spherical shape. The resisting force offered by the drop as it is 

distorted is due to the IFT acting at its surface. This force is measured using a special 

microcantilever. By quantifying the force-drop deformation relation, the IFT can be 

determined. Details of this technique are provided in chapter 2 and elsewhere (Moran et 

al., 1999; Moran et al., 2000). Although theoretical calculations are used to determine 

the stiffness Jfcb of the cantilever (Appendix C), to allow for sufficient accuracy in IFT 

determination, the stiffness must be calibrated using known loads. In this study, the 

capillary forces of a simple fluid system, chloroform-in-water, are utilized to provide for 

the axial load (i.e., the cantilever is calibrated by stretching a chloroform drop whose 

interfacial tension with water is known). A consistent discrepancy between the measured 

IFT’s and the literature value (Donahue and Bartell, 1952), typically of a few percent, 

provides a correction factor for the cantilever stiffness. The corrected kb value is then 

used to determine the IFT between the bitumen drop and the aqueous phase.
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A bitumen drop deformation experiment is depicted in a series of photographs 

(figure 3.1a), in which the micropipette is on the left and the microcantilever on the right. 

From figure 3.1a, it is seen that as the axial force is increased through the retraction of the 

micropipette (the one on the left), both the bitumen drop and the cantilever pipette are 

progressively deformed. The bitumen drop undergoes obvious elongations while the 

cantilever is increasingly deflected (as evidenced by its tip positions relative to the 

reference vertical line). The force-drop deformation relationship can now be quantified 

by measuring two experimental parameters -  the applied force /  and the corresponding 

axial drop length L. For each applied axial load, an equilibration time of a few seconds is 

allowed for the highly viscous bitumen drop to attain its equilibrium configuration. The 

equilibration time is given by t ~ fiR&ly This suggests a relaxation process driven by the 

interfacial tension y  and rate-limited by the viscosity n  of the drop. In this study, it is 

assumed that fi = 103 Pa s (Seyer and Gyte, 1989), Rd ~ 10‘5 m, and y ~ 10'2 N/m, 

resulting in a time constant of t ~ 1 second. To allow for equilibrium drop shapes, it is 

necessary to maintain a constant axial load for several time constants.

3.4 Results and Discussion

Before any results are discussed, an interesting wetting characteristic of bitumen 

is noted. In the present work, it is found that bitumen-glass interaction is strongly 

affected by the pH of the surrounding aqueous medium: At high pH values, bitumen does 

not exhibit any spreading on the glass surfaces (figure 3.2a). However, as the pH is 

lowered, there is a greater tendency for bitumen to spread on the micropipettes (figure 

3.2b). This difference in wetting clearly indicates that the surface properties of bitumen 

are strongly influenced by the pH of the surrounding water. It also points to another 

advantage of the microcantilever technique; wetting characteristics of the drop have no 

bearing on the determination of IFT through drop stretching experiments.

Experimental f - L  data is presented in figure 3.3 over a wide range of pH values. 

The applied load /  is calculated as the product of the microcantilever stiffness and the 

cantilever deflection. Note that the drop deformation is expressed as L -  U on the 

abscissa to allow for simultaneous comparison of several experiments. As the pH 

increases, less force is required to achieve the same axial deformation of a bitumen drop.
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(a) (b)

Figure 3.1. Photographs of bitumen drops being elongated in simulated process water, 
(a) At pH = 9.1: Axial forces can be determined from the deflections of the 
microcantilever (suction pipette on the right), as indicated by the tip positions relative to 
the reference vertical line, (b) Theoretical drop shapes, calculated based on experimental 
conditions in (a), show excellent agreement with video images.
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(b)

Figure 3.2. Photographs depicting the pH-dependent nature of the wetting properties of 
bitumen drops, (a) At pH = 9.1: The bitumen does not wet the glass surfaces, (b) At pH 
= 4.1: Note the spreading of bitumen at the tips and within the hollow cores of the 
pipettes.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T

0.4 pH = 10.1 
pH = 8.3 
pH = 4.1

0.3
Z
=JL

§ 0.2 
£

0.1

0.0
0 2 4 6 8 10 12 14

L - L .  (|Lim)

Figure 3.3. Measurements of the applied force f  and the drop deflection L - l ^  at 
different pH’s. The drop radii are approximately 12pm in all cases. Quadratic 
regressions have been fitted through the data points for clarity of presentation. Note that 
a pN is approximately the weight of 0.1 milligram.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here, the microcantilever technique clearly reveals the influence of pH on the mechanical 

properties of the drop surface. This dependence may be effectively monitored by the 

interfacial tension.

The IFT’s of micron-sized bitumen drops are determined by fitting experimental /  

-  L data to a theoretical model based on the Young-Laplace equation. Figure 3.4 gives an 

example of such a fit (cf. equation 2.9) for the experimental system shown in figure 3.1a. 

The theoretical analysis, discussed in chapter 2, also provides for a detailed solution of 

the drop shape at a given axial load. Excellent agreement is obtained between the 

experimentally observed and the theoretically predicted drop shapes (figure 3.1b).

It was shown in figure 3.3 that the pH of the aqueous phase strongly influences 

the / -  L relation of bitumen-in-water emulsion drops. It follows that the bitumen-water 

IFT will also be highly dependent on the pH. Figure 3.5 is a summary of such IFT 

measurements in simulated process water (SPW) and SPW doped with divalent cations 

(DSPW) over a pH range of 2 to 11. The IFT exhibits a maximum in the region of pH = 

4, and is reduced as the pH increases to a value of 11. The IFT of the bitumen drops 

shows little variation at low pH values (between 2 and 6). For each pH value, a 

minimum of 10 individual drops are studied, with a minimum of six (f, L) data points for 

each drop. The error bars are standard deviations based on the number of drops 

examined. Above a pH value of 11, the IFT of the bitumen-water system is below the 

detection limit based on the present technique10.

In the alkaline regime (pH >8), trends similar to figure 3.5 have been reported for 

Athabasca (Isaacs and Smolek, 1983; Takamura and Isaacs, 1989; Basu et al., 1996) and 

Utah (Drelich et al., 1995; Drelich and Miller, 1994) bitumens, as well as other crude oils 

worldwide (Cairns et al., 1976). The significant reduction in bitumen-water IFT at high 

pH has been attributed to the presence of species containing carboxylate functional 

groups (Drelich and Miller, 1994; Schramm et al., 1984). As the pH increases, these 

groups are liberated from precursors in the bitumen such that they act as surfactants and 

account for the observed reduction in IFT (Shaw et al., 1996; Schramm et al., 1984; 

Schramm and Smith, 1985; Schramm and Smith, 1989).

10 The sensitivity of the microcantilever technique is, at present, on the order of 1 mN/m. Thus, the IFT of 
the bitumen drops at pH above 11 is less than 1 mN/m.
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Figure 3.4. Determination of the interfaciai tension y by fitting the experimental f  -  L 
data to a theoretical model based on the Young-Laplace relation. The measurements are 
taken from the case pH = 9.1 in figure 3.1a.
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Figure 3.5. Interfacial tension y  of bitumen-in-water systems as a function of pH. 
Interfacial tensions are obtained, for bitumen drops in SPW (solid circles) and DSPW 
(open squares), by the method depicted in figure 3.4. For each data point, a minimum of 
10 drops are analyzed, with the error bars showing the corresponding standard deviations. 
At pH > 11, the tension is below the detection limit of the microcantilever technique 
(<lmN/m).
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At low pH values (pH < 4), the oil-water IFT for some Noith American bitumens 

(Drelich and Miller, 1994) and many crude oils (Cairns et al., 1976) experience sharp 

reductions (to less than 50% of the peak IFT value). Although the mechanism for this 

phenomenon is unclear, it has been speculated that the presence of sulphates (Takamura, 

1985) and/or nitrogen bases, such as amines and amides (Cairns et al., 1976; Drelich and 

Miller, 1994), at the interface is responsible. As such a trend is not observed in the 

present study (figure 3.5) or for other Athabasca bitumens (Takamura and Isaacs, 1989; 

Basu et al., 1996), it appears that Athabasca bitumen may contain relatively low 

concentrations of sulphates, amines and/or amides. Although this is by no means 

conclusive, chemical analyses of Athabasca bitumen indeed reveal only low levels of 

sulphates (Schramm and Smith, 1985).

Over a wide range of pH, the interfacial tension of bitumen drops in simulated 

process water doped with divalents (DSPW) is nearly identical to that measured in SPW 

(figure 3.5). As the interfacial tension is unaffected, it is suggested that divalent cations, 

such as Ca** and Mg'"", do not play a significant role in the equilibrium mechanical 

behaviour of Athabasca bitumen emulsion drops. This result may be due to the relatively 

low concentrations of divalents added in this study. Previous work on the effects of 

divalent ions on crude oil-water interfacial tension provide conflicting results, possibly 

due to the different crude oils used. Cairns and coworkers (1976), studying Zakum, 

Murban and Tia Juana (Mexico) crudes, indicated that aqueous solutions of calcium 

chloride caused a slight decrease in interfacial tension. However, other studies of North 

American crude oils suggest dramatic increases in crude oil-water interfacial tension in 

the presence of low concentrations of divalent ions (Trujillo, 1983; Sharma et al., 1989). 

In these studies, the interfacial tension behaviour is attributed to the ionization reaction 

kinetics and the surface affinity of ionized species.

To evaluate the effect of salts on bitumen-water interfacial tension, 

microcantilever measurements are conducted over a wide range of sodium chloride 

concentrations (figure 3.6). At low concentrations ([NaCl] < 0.2 M), the bitumen-water 

interfacial tension decreases dramatically upon addition of sodium chloride. At higher 

salt concentrations, the reduction in interfacial tension is less sharp and appears to reach 

an asymptotic value at about y~  12 mN/m. In these solutions, the pH is not controlled
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Figure 3.6. Interfacial tension y  of bitumen-in-water systems as a function of salt (NaCl) 
concentration. Interfacial tensions are obtained by the method depicted in figure 3.4. For 
each data point, a minimum of 10 drops are analyzed, with the error bars showing the 
corresponding standard deviations.
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but appear to be fairly constant at pH -  6. In figure 3.6, each data point represents the 

average of a minimum of ten individual drop measurements, with the error bars giving 

the standard deviation. For each drop measurement, a minimum of six if, L) data points 

are taken. This trend is consistent with that previously reported for Athabasca bitumen 

(Isaacs and Smolek, 1983; Takamura and Isaacs, 1989) and many crude oils (Cairns et 

al., 1976; Trujillo, 1983). Cairns and coworkers (1976) suggest that this behaviour is due 

to a reduction in repulsive interactions between charged surfactants as sodium ions 

accumulate at the interface. Alternatively, as noted in the previous paragraph, Trujillo 

(1983) and Sharma et al. (1989) account for this phenomenon through mass action 

relationships.

3.4 Conclusions

A novel micromechanical technique has been developed to quantify the interfacial 

tensions of density-matched and highly viscous emulsion drops. This microscopic 

method involves elongating individual, micron-sized drops using suction pipettes and 

measuring the applied stretching force through the use of a microcantilever. This study is 

the first to examine a primary interfacial property, the IFT, of bitumen-in-water 

emulsions at room temperature. Results suggest that increases in alkalinity and sodium 

ion concentration contribute to a reduction in bitumen-water interfacial tension. In 

addition, the presence of divalent ions in relatively low concentrations does not 

significantly affect bitumen-simulated process water interfacial tension. It is clear that 

further work on the mechanism of IFT reduction needs to be conducted.
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Chapter 4
Dynamics of Emulsion Drop Shapes: Drop Shape Recovery

Technique

4.1 Introduction

The shape dynamics of viscous drops in immiscible fluids, first studied in elegant 

experiments by Taylor (1932, 1934), is of longstanding fundamental interest. In addition, 

understanding the deformation of viscous drops is of importance for practical 

applications, such as dispersion technologies, polymer blending (Grace, 1982) and the 

pipeline transport of crude oil-water emulsions (Davis, 1988). Drop deformations 

resulting from shear flow fields have been well described and several excellent reviews 

are available (Acrivos, 1983; Rallison, 1984; Stone, 1994). Time-dependent recovery of 

an extended drop in a quiescent fluid has also been considered (c.f. Taylor, 1934; Stone 

et al., 1986). As discussed below, the insights from these experimental investigations 

were also seen in numerical computations of the drop dynamics (c.f. Stone and Leal, 

1989a). Although these numerical simulations are wide ranging in their applications, 

they often encounter difficulties when one fluid is much more viscous than the other 

fluid.

In typical experimental studies of the dynamic behaviour of an extended drop in a 

quiescent medium, a drop is first elongated within a steady flow. The flow is then 

abruptly stopped and the transient drop shape is observed. The dynamics of this extended 

drop proceeds in one of two ways: the drop may relax back to its original spherical shape, 

or it may break up into a number of smaller droplets. This phenomenon was first 

observed by Taylor (1934), who developed a “four-roll mill” to elongate millimeter-sized 

hydrocarbon drops in aqueous simple shear or extensional flows. In a more recent study, 

it was confirmed that the drop shape dynamics was a function of the initial extension of 

the drop and the relative viscosities between the two fluids (Stone et al, 1986). In that 

study, an improved four-roll mill, capable of producing flow fields ranging from simple 

shear to extensional, was used to extend millimeter-sized silicon fluid drops in a variety 

of shearing flow fields of castor oil. Following abrupt cessation of the flow, it was noted
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that drops extended below a critical elongation ratio, where the elongation ratio is defined 

as the extended drop length L divided by its diameter 2Rd (Rd is the spherical drop 

radius), always relaxed back to spheres. Drops that were extended above this critical 

elongation ratio would break up into smaller droplets. The critical elongation ratio was 

shown to be a strong function of the viscosity ratio A, defined as the drop viscosity ft 

divided by that of the continuous fluid f t . Interestingly, the critical elongation ratio 

exhibited a minimum at A =1, and increased as A —» 0 and A —» This suggests that an 

extended, highly viscous drop (i.e., A —» «>) will likely relax to a sphere, provided the 

initial elongation is not too large (U2Rd < 10). The drop shape dynamics was attributed 

to localized flows developed by the curvature of the interface. The recovery and breakup 

of immiscible polymer melts have also been studied, with the aim of estimating the 

tension between the two phases (Carriere et al., 1989). The shape evolution was 

described using a one-dimensional lumped-parameter equation that balances the capillary 

forces with the viscous resistance of the fluids (Cohen and Carriere, 1989). However, in 

light of the simple nature of the model, tension estimates based on this method were 

approximate at best and the authors acknowledged the need for a better theoretical 

description of the relaxation process.

Although analytical analyses have been developed to describe drop shape 

dynamics, they are limited to either small deformations, as first described by Taylor 

(1932, 1934), or large deformations based on slender body theories (Taylor, 1964). 

Numerical solutions have proved useful in describing drop deformations ranging from 

nearly spherical to highly extended. The most common numerical method is the 

boundary integral technique (Youngren and Acrivos, 1975). This integral approach, first 

applied to free-boundary creeping flow problems by Youngren and Acrivos (1976), 

recasts the Stokes equation in such a form that only velocities and Stokeslets on the drop 

surface are evaluated. The boundary integral technique has been adapted to model steady 

shapes of axisymmetric drops in steady extensional flows over viscosity ratios ranging 

from 0.3 < A < 100 (Rallison and Acrivos, 1978). The procedure has also been used to 

examine drop deformations for non-axisymmetric drop geometries for A = 1 (Rallison, 

1981) and deformations of toroidal drop shapes formed in biaxial extensional flows at 

moderate viscosity ratios of A = 1 and A =10 (Stone and Leal, 1989b). In general,
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numerical results for steady drop deformations in shear flows agree well with the small 

deformation and slender body theories pioneered by Taylor (1934,1964).

Stone and Leal (1989a), after validation of the boundary integral method for drop 

deformations in steady flows, advanced this technique to describe the time evolution of 

uniaxially extended viscous drops (0.05 < k  < 10) in quiescent fluids. Their numerical 

results correspond with the experimental observations of Stone and coworkers (1986), 

suggesting that interfacial tension-driven dynamics of extended drops are due to local 

variations in surface curvature and the viscosity ratio k  of the immiscible fluids (Stone 

and Leal, 1989a). This observation was confirmed by experiments and by boundary 

integral calculations (Tjahjadi et al., 1992). The boundary integral method can be applied 

over a wide range of viscosity ratios k  and is greatly simplified when k  -  1 (Rallison, 

1981). However, singular behaviours are encountered at limiting viscosity ratios of k  -  0 

and k  = rendering the boundary-integral technique ineffective in these regimes 

(Rallison and Acrivos, 1978; Acrivos, 1983; Rallison, 1984). In addition, at low 

viscosity ratios (k  <0.1), the boundary integral formulation leads to significant problems 

associated with volume conservation (Rallison and Acrivos, 1978; Stone and Leal, 

1989a). This is due to singularities appearing at k  = 0 (Rallison and Acrivos, 1978). Such 

a difficulty was dealt with by rescaling the drop shape every few time steps".

In this chapter, a novel micropipette technique is introduced that allows for the 

extension and shape relaxation of individual emulsion drops in quiescent media, avoiding 

the need for complex flow generating devices employed in traditional drop deformation 

experiments. To complement the micropipette drop shape recovery experiments, a 

procedure for calculating the low Reynolds number dynamic behaviour of an extended 

drop in a quiescent fluid is developed. First discussed by Tran-Son-Tay and coworkers 

(1991) for the relaxation of white blood cells in a plasma medium, this variational 

approach is extended to incorporate a viscous exterior fluid for arbitrary k, including k  = 

0 and k  = oo. This Stokesian model assumes that the shape dynamics is driven by a 

constant interfacial tension and rate-limited by the fluid viscosities. The validity of this

11 Although geometric scaling appears to have little effect on the basic shape of the drop and critical 
conditions for breakup (i.e., critical elongation ratio), the time scale of the deformation is affected (Stone 
and Leal, 1989a).
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analysis is demonstrated by comparing drop shape recovery data at moderate viscosity 

ratios with that obtained with the well-established boundary-integral method. The 

present approach is unique for its ability to handle systems of limiting viscosity ratios A, 

where one fluid is much more viscous than the other (A = 0 and A = °°). It also has no 

problem with volume conservation. Its application to systems exhibiting A -  °o is 

demonstrated experimentally.

4.2 Theoretical Background

As discussed above, previous numerical procedures describing drop shape 

dynamics are ineffective at limiting viscosity ratios of A = 0 and A -  °o. In this section, a 

boundary least squares technique is presented which addresses moving boundary 

creeping flow (Stokesian) problems where 0 < A < °° for the recovery of an extended drop 

in an immiscible quiescent fluid.

4.2.1 Description o f the Stokesian model

In this description of the behaviour of an axisymmetrically extended drop in a 

quiescent fluid, it is assumed that the shape dynamics is driven by a uniform interfacial 

tension and rate-limited by the fluid viscosities. In this analysis, both the drop and the 

surrounding fluid are Newtonian, with viscosities p  and p  , respectively. A uniform 

tension y  is assumed to exist at the interface. Moreover, it is noted that external body 

forces, such as buoyancy forces, are negligible due to the small drop size and/or the fact 

that the densities of the two phases are matched12. Inertial effects are also negligible due 

to the small drop size and the relatively large viscous forces encountered (i.e., low 

Reynolds number flow). As such, the governing equations for the drop phase and the 

surrounding liquid (denoted by the overbar) are the quasi-steady Stokes flow relations:

p  V2ii = Vp, V • u = 0
p V zu = V p , V u = 0 ,

I2Th is may be shown in the Bond number Ba = ApgRf/y, which compares buoyancy forces to the tension 
forces of these drops. With Ap~  100 kg/m3, /?d -  10‘5m and Y~ 0.01 N/m, one has Ba -  10‘5 indicating that 
gravity plays a negligible role in deforming these drops.
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where u and p  are the velocity vector and pressure field, respectively. Definitions of the 

geometric parameters observed in this analysis are shown in figure 4.1.

The Stokes equations must be solved subject to appropriate boundary conditions. 

First, the fluid velocities must be continuous across the interface (the no-slip condition). 

This is represented in spherical coordinates (R , 0 )  by

“r = «R
«e =  Me. (4.1)

It is implicit that the velocity approaches zero as R —> <». The conditions of mechanical 

equilibrium must also be satisfied at the interface. Thus, a second constraint to the 

solution requires that stress-type boundary conditions at the interface are specified by 

— = 0
<r0 -  + r 0 = 0, (4.2)

where {0r , 0e } and {rfR, <f9} are components of the hydrodynamic stress tensor at the

interface due to the drop fluid and the continuous phase, respectively. In addition, the 

stresses originating from the interface are represented by { 7r , Tq). The subscripts R and 

0 refer to stresses in the R- and 6-directions, respectively (figure 4.1).

It is now necessary to define appropriate constitutive relations for the stresses at 

the interface (equations 4.2). The stresses at the interface due to the drop curvature act 

only normal to the interface and are represented by the Young-Laplace equation. In 

spherical coordinates, these are given by

Tr = yJcosip
r9 = y Jsinyr. (4.3)

Due to the assumption of uniform tension, the net tangential stress at the drop surface 

must vanish. In equations 4.3, y is the equilibrium interfacial tension, J  is the local 

curvature and ip is the angle between the R coordinate and the unit normal to the drop 

interface (figure 4.1). Explicit representations of J  and iff, in terms of curvilinear 

coordinates, are required in the numerical solution to this Stokesian problem (Appendix 

D). Constitutive relations for the hydrodynamic stresses at any arbitrary interface are 

obtained from standard stress equations for Newtonian fluids.
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Figure 4.1. Description of an axisymmetric drop shape. The spherical coordinates are 
defined by (R, 0 ), while (5 , 0 ) define the curvilinear coordinates, with s giving the 
curvilinear distance along the interface. The cylindrical coordinates are given by (r, z), 
with z being the axis of symmetry. The angle 0  is that between the z axis and a vector 
normal to the interface at s. The angle iff is that between a vector along the R axis and a 
vector normal to the interface at s. Also shown is the tension Tthat acts normally to the 
interface and the hydrodynamic stress tensors a , a  .
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For the drop fluid, these stresses (Bird et al., 1960) are given by

<7rr — P +

a_r«.'j + if "

(4.4)

Identical relations may be given for the continuous phase simply by substituting the 

appropriate variables (i.e., uRfor uR, JL fo r//, etc.). For the drop liquid, the 

hydrodynamic stress components exerted at an arbitrary interface are obtained through 

the following projections:

= ^ rrCos(/ + <rResin^
<r0 = <rR9co s^  + (TgeSin if/. (4.5a)

For the continuous phase, an identical transformation yields the appropriate 

hydrodynamics stress components,

^r = ^rrCOs yf + tfResin^
<f9 = rfRecos tff + o^sin iff. (4.5b)

Now that the boundary conditions have been established, expressions for the 

velocity and pressure fields for use in equations 4.4 are required. Fortunately, exact 

series solutions to axisymmetric Stokes flow are available in general spherical 

coordinates (Happel and Brenner, 1973). For the drop phase, the velocity and pressure 

fields are given by

The velocity field and pressure field expressions for the external fluid are given by

", = + c./nn,(coso)
7n(cosfl)

p  = n - 2//£f^ ± ilc,r  (cose);
n = 2 V  w * l

(4.6)
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“r = - £ ( BaR al  + Dn/?-“+,)Pn_,(C O S 0 )

7n(cosg)

-2 ,  "
(4.7)

In equations 4.6 and 4.7, Pn(cos0) and /n(cos0) are the Legendre polynomials and 

Gegenbauer polynomials of order n, respectively. The Gegenbauer polynomials may be 

further expressed in terms of the Legendre polynomials (Appendix E).

4.2.2 Variational (boundary least squares) solution to Stokesian model

Although the velocity and pressure fields given in equations 4.6 and 4.7 are exact 

solutions, they are not uniquely defined as they contain the undetermined coefficients n, 
An, Bn, C„ and Dtt. In order to obtain an optimal set of coefficients, a variational scheme 

is implemented on the boundary conditions (equations 4.1 and 4.2) such that the 

following functional f is  minimized

Equation 4.8 provides an estimate of the errors summed over the entire drop surface for 

any given set of undetermined coefficients. A linear system of equations may be 

obtained through differentiation of equation 4.8 with respect to the unknown coefficients 

such that

In equations 4.9, the variables a„ represent the unknown coefficients {II, A„, Ba, C„, Dn) 

that are to be optimized. This linear system of equations is now easily solved through 

matrix inversion techniques. Further details of this solution are discussed in Appendix E.

48

rd s  = 0. (4.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Solutions to equations 4.9 provide optimized values of the coefficients {n, A„, Ba, 

C„, Dn). Once these are known, the velocity and pressure profiles at any point may be 

determined. To follow the dynamic shape recovery, the drop shape is incremented, based 

on the velocity field, in small time steps A/. The initial shape must be known a priori. 

The initial velocity field {mr , uq} is calculated from the drop shape at time t -  0. The 

shape is then incremented by the following kinematic condition at time t + A/

rt+at =  ri +  (“ r  s i n d  +  m9 c o s # ) A /

= 2, +(«Rcos0 + Me sin0)A/, (4.10)

where r  and z represent the axisymmetric drop shape profile in cylindrical coordinates 

(figure 4.1). In equations 4.10, the terms in brackets are the drop velocities in the r  and z 

directions, respectively. Once the updated drop shape is known, the new velocity field is 

calculated through the optimized solution to equations 4.6 and 4.7, and the shape is once 

again incremented (equation 4.10). This procedure is repeated until an equilibrium shape 

is observed. In the analysis of such a process, the dimension of primary interest is the 

axial drop length L at time t. This parameter is found to adequately describe the 

dynamics of the shape recovery through an extension ratio, defined as U2Rd.

To facilitate analysis, all lengths are scaled by Lq, the maximum axial drop length, 

while velocities are scaled by a characteristic velocity yip. By doing so, the scaling 

parameters for stresses are uniquely determined; the hydrodynamic stresses and 

interfacial stresses T  are scaled by y /  L0. In addition, this dimensional analysis provides 

a dimensionless recovery time ytlp Lo. (Thus, all velocities are measured in units of 

characteristic velocity, time in units of pLo/y, and stresses in units of y !L a.) In such an

analysis, the viscosity ratio X is the dimensionless group that describes the shape recovery 

of an extended drop, given its initial shape.

The variational solution describes the recovery of an extended drop to a spherical 

shape. In general, due to the axisymmetric nature of the problem about the z-axis, only 

the contour of half of the shape (r > 0) is required. In this computation, the half contour 

of the shape is discretized into 181 equally spaced nodal points. To demonstrate the 

robustness of the technique, the time step At  (in equations 4.10) and the number of terms
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N  in the series solutions for the velocity and pressure fields (equations 4.6 and 4.7) are 

varied over a range of viscosity ratios A. Nearly identical results for a given initial drop 

shape and A are noted as 0.02S < A/ < 0.05 and 46 < N  < 78. All subsequent calculations 

are performed with a time step A/ = 0.05 and N  =78. The boundary least squares 

numerical code solving this Stokesian model is given in Appendix F.

4.2.3 Comparison to boundary integral method

The boundary integral method has been previously used to study the relaxation of 

initially extended drops in quiescent fluids (Stone and Leal, 1989a). Such analyses have 

been limited to moderate A due to numerical difficulties at limiting viscosity ratios. 

Comparisons between the boundary integral method, as applied by Tjahjadi and 

coworkers (1994), and the present boundary least squares numerical scheme are made at 

moderate A (A = 0.01, 1, and 10). The initial shape used for these calculations is a 

cylindrical tube with hemispherical endcaps. The profile of the initial shape, with 

dimensions of LJb -  2.5 (where b is the diameter of the cylindrical midsection of the 

shape), is shown in figure 4.2. The time-dependent recovery of such extended drops, 

monitored via the extension ratio U2R&, show excellent agreement as calculated by both 

techniques at moderate A (Figure 4.2). Although the boundary integral analyses provided 

by Tjahjadi et al. (1994) were continuous in time, for clarity only specific points from 

their simulation are plotted (shown as symbols). Note that time is scaled with the exterior 

fluid viscosity Ji so that all three curves could be presented in the same figure (if p  was 

chosen instead, then the time scale for the A = 0.01 curve would be 100 times greater). In 

all cases, the drops recover to a final extension ratio of L/2/?<j = 1 (i.e., the final axial 

length L of the shape is equal to the radius of a sphere of equal volume), indicating that 

volume is preserved.

Since the present variational solution incorporates the Young-Laplace relation 

(equation 1.1), the transient shape profile of a recovering drop should be well described. 

The profile of a typical shape recovery for an extended drop at A =1 is given in figure 4.3. 

Note that the initial shape (LJb = 2.5) is identical to that in figure 4.2. As time (scaled 

here by pLJy) proceeds, the axially extended ends of the drop retract towards the center
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Figure 4.2. Comparison of the current boundary least squares (lines) and boundary 
integral (symbols) solutions at moderate A (A = 0.01, A = 1 and A = 10). The extension 
ratio U2Rd is plotted as a function of the dimensionless timcyt/JiL0, where Lo is the
initial (maximum) axial drop length and /?<j is the radius of a sphere of equal volume to 
the initial shape. The initial shape, with a dimension of LJb  = 2.5, and boundary integral 
calculations are obtained from Tjahjadi et al. (1994). The broken line at LJ2Rd = 1 
indicates a natural, spherical shape.
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Figure 4.3. Boundary least squares simulation of the shape profile recovery of an 
extended drop for k  = 1. The initial shape is the same as that of figure 4.2 {LJb = 2.5) 
and the dimensionless recovery time is defined as t* =
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with fore-aft symmetry (z = 0), while the cylindrical central section moves away from the 

drop center, until the drop attains a spherical configuration13. Throughout the entire 

recovery, the drop profile remains smooth and continuous. From figures 4.2 and 4.3, it is 

clear that the variational analysis provides adequate descriptions of drop shape dynamics 

at moderate k.

4.2.4 Implementation o f the variational approach at k - 0  and k  = °°

At limiting viscosity ratios, the boundary least squares technique may be applied 

to describe the shape recovery of extended drops. Figure 4.4 depicts such a recovery 

process for the same initial shape profile shown in figure 4.2 {LJb = 2.5) for both k  = 0 

{i.e., an inviscid drop) and k  = <» {i.e., an inviscid continuous phase). Recall that 

numerical simulation of drop dynamics is not possible with the boundary integral 

technique at these limiting regimes (Acrivos, 1983; Rallison, 1984). In figure 4.4, 

recovery time is scaled by the drop viscosity p  L0/ y  for the k  = <» curve, while for the k

= 0 curve, it is scaled by J L L J y . It was noted above that the boundary integral method

experienced difficulties in maintaining volume conservation as k  —» 0. As the final 

extension ratio U2Rd approaches unity for both curves in figure 4.4, it is evident that the 

present variational technique adequately satisfies volume conservation at both limiting 

regimes. In the present analysis, geometric rescaling is never required. In fact, for all 

cases examined, the maximum volume loss is less than 1% (and often less than 0.01 %).

As observed at moderate k, the drop shape profiles remain smooth and continuous 

during the recovery process (shown for k  = °o in figure 4.5). It was noted above that the 

boundary integral method is most efficient at k=  1 (Rallison, 1981). It is interesting to 

point out that the present variational analysis operates most efficiently at the limiting 

viscosity ratios (k = 0, °°) due to its formulation. In the limiting regimes, one fluid is 

inviscid, which allows for the relaxation of velocity continuity across the interface 

(equation 4.1) and greatly simplifies the stress boundary conditions (equation 4.2).

13 This result is to be expected, as the initial shape was below the critical elongation ratio at A =1. For drop 
breakup to proceed, U2Rd must be greater than 3.5 (Stone et al.. 1986). As shown in figure 4.2. the 
maximum elongation ratio in this analysis is U2Rd =1.69, occurring at y t  /  ]2L0 = 0.
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Figure 4.4. Boundary least squares simulation of drop recoveries at limiting viscosity 
ratios k  = 0 and k  = oo. The drop extension ratio L/IR^ is plotted as a function of the 
appropriate dimensionless time. For k  = oo, time is scaled by the drop viscosity // such 
that the recovery time is yt!/jL0. For k  = 0, time is scaled by the continuous phase 
viscosity Ji such that the recovery time is y  t!JiL0. As in figure 4.2, the broken line at 
L/2Rd = 1 is representative of a spherical drop. The initial drop shapes are the same as 
that shown in figure 4.2 (LJb = 2.5).

LJb = 2.5
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Figure 4.5. Boundary least squares simulation of the shape profile recovery of an 
initially extended drop for k  — °o. The initial shape and the dimensionless recovery time 
are the same as for figure 4.2.
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4.3 Experimental Verification of the Boundary Least Squares Technique at A = «»

Previously developed numerical methods describing the shape evolution of 

extended drops break down at limiting viscosity ratios (A = 0 and A -  «>), leaving no 

technique with which to compare the present variational calculations at these A’s. In this 

section, the applicability of the boundary least squares algorithm with A = ~  for solving 

moving boundary creeping flow problems is demonstrated for highly viscous drops in a 

relatively low viscosity medium (i.e., A = °°). Experimental drop deformations are 

achieved via a novel micropipette technique, eliminating the need for a flow generating 

apparatus. To describe the evolution of extended viscous drops, a priori knowledge of 

the fluid viscosities and the interfacial tension between the fluids is required.

4.3.1 Fluid systems and emulsion drop formation

To demonstrate the applicability of the variational (boundary least squares) 

analysis at A -  to a drop recovery process where A ~ <», fluid drops of extremely high 

viscosity relative to the continuous fluid (water) are required. In this study, Cannon 

Standard Oils N190000 and N450000 (Cannon Instrument Co., PA), which have 

viscosities of approximately 700,000 and 1.9xl06 times that of water at 22.5°C, 

respectively (Table 4.1), are chosen as the disperse phase (drop) fluids. The viscosities of 

these polybutene oils were determined over a wide temperature range by the Cannon 

Instrument Company using a Cannon-Ubbelohde Master viscometer following ASTM 

D2162. The viscosity data were reported with ± 0.17% accuracy (at 20°C) according to 

ISO 3666. In these viscosity measurements, temperatures were traceable to the National 

Institute for Standards and Technology Test No. 260470. Cannon noted that these 

viscosity standard oils are Newtonian over a wide range of shear rates.

Table 4.1. Properties of Cannon viscosity standard oils at 22.5°C. The viscosity and 
specific gravity data are provided by Cannon Instruments Ltd. The interfacial tensions 
are measured using the microcantilever technique.

Viscosity Standard Viscosity Specific Gravity Interfacial Tension
(Cannon Ltd.) (Pas) <-) (mN/m)

N 190000 699 0.85-0.91 41.7 ± 1.3
N450000 1895 0.85-0.91 43.3 ± 1.5
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The interfacial tensions of fluid systems in which at least one fluid is highly 

viscous are difficult to quantify with conventional tensiometers. This is a result of long 

equilibration times required to allow for viscous relaxation (see chapter 3). As such, the 

recently developed microcantilever technique (chapter 2), ideally suited to such an 

application, is employed to evaluate the tension at the drop surface. For each interfacial 

tension measurement, a minimum of 20 drops are analyzed with the microcantilever 

technique. The arithmetic average of such measurements for the two standard oils are 

reported in Table 4.1, where the errors shown are the standard deviations. The present 

analysis assumes that gravitational forces are negligible. Although the specific gravity of 

these oils is significantly less than unity (Table 4.1), this assumption holds true due to the 

small size of the drops involved in this study (recall that B0 ~ 10 s for 10 pm drops).

Oil-in-water emulsions are formed through a high-energy sonification technique. 

Approximately two milliliters of oil (N190000 or N450000, Cannon Instrument Co.) is 

placed in a vial with 20 mL of filtered, deionized water. The vial is then agitated in a 

water bath sonicator (Fischer Scientific, model no. FS6) at ~80°C (in order to reduce the 

viscosity of the oil phase) for about 1 minute, creating an emulsion of oil drops that are 

about 3-50 pm in diameter.

4.3.2 Drop shape recovery technique

To perform drop shape recovery experiments, the basic micropipette apparatus is 

employed and the setup is nearly identical to that of the microcantilever technique (figure

2.2). The only difference being that in drop shape recovery experiments the 

microcantilever is replaced with a straight micropipette. Temperatures in the apparatus 

and the laboratory are monitored with a Dual JTEK thermocouple thermometer (Alltemp 

Sensors) and found to be reasonably constant at 22.5 ± 0.5°C. As the ambient 

temperature during experiments is noted to be sufficiently stable, no attempt is made to 

control it in the micropipette experiments. Further details on the basic micropipette setup 

are found in chapter 2.

In a drop deformation experiment, an individual emulsion drop is captured 

between two micropipettes, via suction pressure applied at their tips. Then, by retracting 

one micropipette away from the other using micromanipulators, the drop is axially
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elongated. Once the drop is sufficiently extended to a maximum axial length Lo, it is 

released from one of the micropipettes and allowed to dynamically recover to a natural, 

spherical shape. The axial drop length L is monitored as a function of the recovery time t 

(which is noted beginning immediately upon release of the drop).

The transient recovery of the extended drop is video-recorded to allow for 

subsequent analysis. In the analysis of the drop recovery, digitized images are obtained 

from the videotape using video editing software (Premiere 5.1, Adobe) and a digital 

video capture card (DC 1000, Pinnacle Systems). Measurements are obtained directly 

from these images using image analysis software (Sigmascan 5.0, Jandel Scientific). 

Note that linear dimensions are calibrated through digitized images of a stage micrometer 

video-recorded under the same magnification. The spatial resolution is estimated to be 

0.2 pm. As the frame rate of the video recording equipment is 30 s '1, the temporal 

resolution is 0.0333 s.

The initial shape profile is obtained from the digitized video image corresponding 

to t = 0. In doing so, the drop contour is documented in less than 50 discrete coordinates. 

However, as the curvature is derived from second derivatives of spatial coordinates 

(Appendix D), it is necessary to provide a continuous representation of the drop contour. 

From this representation, the 181 nodal points that are required as input to the boundary 

least squares numerical solution can be obtained (Appendix G).

It should be noted that a small volume of the drop fluid exists within the 

micropipette (this is a consequence of the experimental procedure, as the drop must be 

mechanically grasped, via suction pressure, in order to deform it). In regards to this, two 

important points must be discussed concerning the drop length L and the application of 

the variational approach in this region. First, a consistent reference point must be 

established before the length L may be defined. This point can be determined by scribing 

an arc of radius R<i in the rz plane into the orifice of micropipette tip. The reference point 

lies on this arc at the axis of symmetry (r  = 0). In practice, this is accomplished by 

capturing the drop with minimal suction pressure, so that its shape remains spherical, and 

noting the location at which the captured portion of the drop contour intersects the axis of 

symmetry. By determining the reference point in this fashion, the final length of an 

extended drop will be 2/?d (i.e., U2Ra -  1) as it returns to a spherical shape. Secondly, at
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the location where the drop is captured by a micropipette, a fixed boundary is observed 

(defined by the micropipette tip inner diameter and the fixed volume of drop fluid 

aspirated in the pipette). In this region, the present variational analysis represents a poor 

approximation to the experimentally observed rigid geometry. However, since the drop 

volume contained within the micropipette tip is relatively small compared to the actual 

drop volume (in all cases less than a few percent), any minor deviations in the numerical 

analysis may be considered negligible.

4.3.3 Experimental results and discussion

A typical drop recovery process is illustrated in figure 4.6 for a N190000 drop in 

water. The recovery of such a drop is easily observed through the reduction in the axial 

length L of the drop as the recovery time t proceeds. Note that the duration of such a 

shape recovery experiment for a highly viscous fluid is on the order of seconds - much 

shorter than previous drop evolution experiments (cf. Cohen and Carriere, 1989). The 

dashed line that extends through all the images represents the reference point (discussed 

above) for L(t) measurements.

The variational analysis (A = °o) of the drop dynamics for the two viscous oils 

(N 190000 and N450000) tested are compared with the experimental observations. In the 

numerical simulations, the physical data from Table 4.1 is used. Note that since both the 

interfacial tension and drop viscosity are defined, the theoretical model is not fit to the 

experimental data. A typical result is shown in figure 4.7 for a N 190000 drop in water. 

This figure clearly shows that the elongation ratio U2Rd predicted by the present 

boundary least squares numerical scheme agrees well with the experimental data. It is 

apparent that the variational model at A = <» is an excellent approximation for 

experimental systems in which A = «».

The present variational analysis allows for a detailed solution of the drop shape. 

It is evident from figure 4.7 that the numerically calculated drop shapes (shown below 

each photograph) are in excellent agreement with the experimental shapes depicted in the 

photographs. It is interesting to note that in any deformation experiment, an extended 

drop always recovers to a sphere, and never breaks up into smaller droplets. This 

observation agrees with that reported by Stone and Leal (1989a), who demonstrated that
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Figure 4.6. Sequential photographs depicting the recovery of an extended emulsion drop 
in water (22.5°C) following elongation between two micropipettes. In this case, the drop 
is N 190000 Cannon viscosity standard oil. As the extended drop is released from a 
micropipette, the recovery time t is recorded. The initial drop shape (required for the 
boundary least squares analysis) is obtained from photograph (a), where t = Os. The axial 
length of the drop L is measured relative to a reference point denoted by the dashed line 
extending through all photographs. The dynamic recovery process proceeds 
(photographs b and c) until the drop attains a final, spherical shape (photograph d).
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Figure 4.7. Drop dynamics of a highly viscous N190000 drop in water, A = 7xl05, at 
22.5°C. The physical property data is obtained from Table 4.1. The elongation ratio 
L/2R<i is plotted as a function of dimensionless recovery time ytlfiLo. The symbols 
represent experimental drop shape recovery experiment measurements, while the 
Stokesian model (curve) is solved using the boundary least squares analysis for A = 
Numerical shape profiles are compared to experimental drop profiles, shown by 
photographs, at specified times.
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as the viscosity ratio X increases, the elongation ratio required to observe drop breakup 

becomes exceedingly large (U2Ra > 10 at A = 10). In the present experiments, the 

maximum extension ratio is typically 1.3 < U2R& <1.5 and never exceeds 1.6 for A~°°. 

Drop extensions are limited to U2R& < 2 due to the inner radii of the capillaries (as drop 

volume is maintained) and the high magnification of the microscope, since most drops 

are stretched almost across the entire field of view.

4.4 Conclusions

A variational (boundary least squares) technique solving the low Reynolds 

number shape dynamics of an extended drop in a quiescent fluid is developed. In this 

approach, it is assumed that the dynamics are driven by a uniform tension y  at the drop 

surface and rate-limited by the fluid viscosities f i , J i . This technique is valid for all 

viscosity ratios A and is most efficient at A = 0 and A = « , addressing limitations to 

boundary integral procedures that experience numerical difficulties in these regimes. The 

present variational analysis agrees well with boundary integral calculations at moderate 

A's. In addition, the variational approach at A = <» provides an excellent description for 

the dynamics of highly viscous (A ~ °°) extended drops that are observed experimentally 

in drop shape recovery experiments. This simple micromechanical experimentation 

allows for the elongation (via micropipettes) and recovery of individual emulsion drops. 

This novel technique offers advantages over traditional drop extension methods in that 

flow fields are not required to achieve drop deformations.
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Chapter 5
Material Properties off Bitumen Drops: An Application off the

Drop Shape Recovery Method

5.1 Use of Drop Shape Recovery Technique for Material Property Measurement

The variational analysis introduced in chapter 4 assumes that the shape recovery 

process of an extended drop is driven by the equilibrium tension at its surface and rate- 

limited by the Newtonian viscosities of the bulk liquids. In such an analysis, a priori 

knowledge of these material properties is required to describe the relaxation of a drop. 

However, in the event that one of these properties is unknown, it may be estimated by 

adjusting a characteristic velocity given by yip, such that the experimentally observed 

relaxation matches the model-predicted shape recovery. Using the variational solution 

and micropipette techniques, the high viscosity of Athabasca bitumen at room 

temperature can be measured in regimes where its interfacial tension is well defined. 

This technique avoids viscous heating effects, which can make accurate measurements of 

viscosity particularly difficult. Alternatively, the interfacial tension y  of bitumen 

emulsion drops can be evaluated when the bitumen viscosity p  is known.

5.2 Material and Methods

5.2.1 Emulsion preparation

Emulsions are composed of approximately a few milliliters of coker-feed 

Athabasca bitumen (Syncrude Canada Ltd.) and 20 mL of an aqueous solution. The 

emulsification procedure is described in chapter 3. The resulting emulsion drops range 

from 5 - 3 0  pm in diameter. Two different aqueous phases are used to simulate the 

process water in commercial oil sands extraction operations. (These are the same as 

found in chapter 3 and are reviewed here for clarity.) One of these solutions (SPW) is 

composed of filtered, deionized water to which the following salts are added (all supplied 

by Fisher Scientific): NaCl (25 mM), NaHC03 (15 mM), and Na2S0 4  (2 mM). The 

second aqueous phase (DSPW) used in the bitumen-in-water emulsions consists of SPW 

to which CaCh (0.3 mM) and MgCb (0.3 mM), also provided by Fischer Scientific, are 

added. The pH of the aqueous phases is adjusted, as required, with NaOH (Fisher
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Scientific) and measured using digital pH probes (model 701 A, Orion Research or 

Accumet AB IS, Fischer Scientific). As only small amounts of base are required to attain 

the desired pH, the ionic strength of the final solution remained essentially unchanged.

5.2.2 Drop shape recovery experiments

In the drop shape recovery experiments, an emulsion drop is axially stretched 

between two micropipettes to a maximum extension L<>. The deformed drop is then 

released from one micropipette and its dynamic behaviour is monitored as it recovers to a 

sphere. A typical result is shown in figure S.l, depicting the recovery of an extended 

bitumen drop in SPW at pH = 9. Recovery times depend on the bitumen drop interfacial 

tension and vary from -  one second (y>  10 mN/m) to a couple of minutes (y<  0.1 

mN/m). In the analysis of these experiments, the aim is to measure the axial length of 

the drop L as a function of recovery time t. Note that the shear rate is not controlled in 

these experiments. Although the temperature is not controlled in the micropipette 

apparatus, it is monitored and found to be constant at 22.5 ± 0.5 °C. Further details of 

this technique and its resolution are provided in chapter 4.

5.2.3 Material property determination

The viscosity p  or interfacial tension y  of the drop is determined by fitting the 

experimental Lit) data to the theoretical model (chapter 4) using an infinite viscosity ratio 

k  = p  lp=<*>. This approach is possible since bitumen viscosity is at least of order 10s 

greater than the aqueous phase (Seyer and Gyte, 1989). The fitting of the experimental 

data is simply made by scaling t/Lo by a parameter that, when optimized, produces an 

acceptable fit to the theoretical U 2 R vs yt/pLo curve. This optimized value is the 

characteristic velocity yip. Consequently, if only y ip  is needed, the analysis conducted 

thus far is sufficient. However, if one of the properties, either y  or p  is known, then the 

other unknown property can be evaluated from the characteristic velocity. Typical curve 

fits for bitumen drop recoveries (figure 5.2) give sums of squared errors less than 10'3. It 

is clear that the fitted  Stokesian model describes the observed dynamic drop behaviour 

quite well. In addition, the drop shape profiles predicted by the theoretical model show 

excellent agreement with the experimental shapes (photographs in figure 5.2).
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Figure 5.1. Recovery of an extended bitumen drop in SPW (pH = 9) at 22.5°C. The 
dynamic recovery of such a drop to a spherical shape is measured. The bottom 
photograph (/ = 3.5 s) shows the final, time-independent, spherical drop.
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Figure 5.2. Typical fit between experimental bitumen drop recovery data (symbols) and 
the Stokesian model (solid curve). The extension ratio U2Rd of an extended bitumen 
drop recovering in a SPW solution (pH = 10) is monitored as a function of dimensionless 
time yt/fiLo. The shape profiles predicted from the Stokesian model are compared to 
experimental drop profiles (photographs) at specified times. The optimized fitting 
parameter y /p  is used to evaluate either the interfacial tension y  or the viscosity fi, 
assuming that one property is known a priori.
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S 3  Application: Bitumen Viscosity

Understanding the rheological behaviour of emulsions is important to many 

applications, such as the transportation of highly viscous oils (Davis, 1988; Nunez et al., 

2000). Theoretical models describing such behaviour often require knowledge of the 

disperse phase viscosity (Taylor, 1932) and surface viscosities at the emulsion interfaces 

(Oldroyd, 19SS; Danov, 2001) in addition to that of the continuous phase. However, in 

many crude oil-in-water emulsions encountered in the petroleum industry, evaluating the 

viscosity of highly viscous crude oils may present significant challenges.

Many commercial instruments are available to measure the viscosity of liquids. 

By far, the most common are those that shear fluids in a tubular geometry (Poiseiulle 

flow), between a coaxially rotating cylinder and annulus, and in a cone-and-plate type 

apparatus (Whorlow, 1980). Many of these devices are reported to be able to accurately 

handle highly viscous liquids (typically up to a maximum of ~ 107 Pa s, with some up to 

1011 Pa s!). However, significant errors may result due to viscous heating of a highly 

viscous fluid, especially at high shear rates (Sukanek and Laurence, 1974; Whorlow, 

1980). More recently, viscometers have been introduced to specifically deal with high 

viscosity materials. A magnetoviscometer, based on Stokes’ falling sphere principle, has 

been developed to measure viscosity up to 1010 Pa s at shear rates ranging from 10"6 to 1 

s’1 (Gahleitner and Sobczak, 1988). This technique, which involves forcing an iron 

sphere through a viscous fluid via a magnetic field, becomes more complex for opaque 

fluids in that it requires an induction detection unit. In addition, a viscometer in which an 

extremely viscous fluid is sheared between two plates has been introduced that measures 

Newtonian viscosity ranging from 108 to 1014 Pa s (Kobayashi et al., 1995). This 

technique utilizes laser interferometry to detect transient deflections of a sample on the 

order of 10 nm. A disadvantage associated with these new viscometers is that they may 

be cumbersome to use, and measurements may take exceedingly long times at high 

viscosities. In addition, minimum sample volumes of at least milliliters are required. 

The extremely small samples ( -  10 9 mL) that are needed for the present micropipette 

measurements provide an obvious advantage in the event that only limited quantities of a 

liquid (i.e., the disperse phase of an emulsion) are available.

Measuring bitumen viscosity proves to be particularly difficult as traditional
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viscometers tend to become plugged, especially at high temperature and pressure 

operations (Seyer and Gyte, 1989). Although attempts have been made to modify 

commercial devices to allow for the determination of bitumen viscosity, viscous heating 

of several degrees centigrade is noted during typical operation of these modified 

viscometers (Seyer and Gyte, 1989). Bitumen, at room temperature, is considered to be 

Newtonian14 (Ward and Clark, 1950; Dealy, 1979; Schramm and Kwak, 1988).

An alternative approach for determining the viscosity of a highly viscous fluid 

such as bitumen may be from the shape behaviour of an extended drop in an immiscible 

liquid. In one such experiment, an initially spherical drop is deformed in a flow field. 

The flow is then halted and, depending on the extent of deformation, the drop recovers to 

a sphere or breaks up into a number of smaller droplets (Stone et al., 1986; Stone and 

Leal, 1989a). In another type of experiment, a polymer fiber may be imbedded within a 

solid matrix of a second polymer. At elevated temperatures, the polymers melt and the 

imbedded polymer (now an extended fluid drop) dynamically evolves (Cohen and 

Carriere, 1989). In these dynamic processes, the interfacial tension drives a drop 

evolution that is rate-limited by the viscosities of the two fluid phases. In such studies, 

due to the scale and type of experiment, typical recovery times ranged from several 

hundred seconds to hours for highly viscous (~102 -  10J Pa s) systems of moderate 

interfacial tension (y  > 1 mN/m). The very short recovery times of several seconds 

observed in the micropipette shape recovery technique (cf. figure 4.6) provide a clear 

advantage that is exploited for high viscosity measurements.

5.3.1 Viscosity measurement

Using procedures described in section 5.2.3, the viscosity of bitumen drops is 

evaluated at pH values ranging from 8 < pH < 10.5 (figure 5.3). Each data point 

represents the average of at least 10 individual viscosity measurements. Recall that, in 

this viscosity measurement, a characteristic velocity y I ft is optimized by fitting the 

experimental data to the theoretical model. Since the bitumen-water interfacial tension is

14 Some Theological experiments with Athabasca bitumen have suggested that it may be slighdy non- 
Newtonian (Dealy, 1979). However, the deviations from Newtonian behaviour indicated a thixotropic or 
pseudoplastic behaviour and may be consistent with viscous heating of this fluid.
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Figure 53 . Viscosity n  of bitumen at 22.5°C via the drop shape recovery technique. 
Each data point represents the average of 10 individual measurements with bitumen drops 
in SPW (solid circles) and DSPW (open triangles) aqueous phases; the error bars give the 
standard deviation. The average and standard deviation of bitumen viscosity at this 
temperature is 1246 ± 332 Pa s (broken line). The bitumen-water interfacial tension /fo r  
each pH condition, as determined by the microcantilever technique (chapter 3; figure
3.3), is indicated in the figure and used to evaluate fL
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already known (via the microcantilever technique) for the pH range of interest (figure 

3.5; Moran et al., 2000), the viscosity is easily calculated from the optimized 

characteristic velocity. In such a procedure, the initial drop shape must also be known a 

priori and is obtained from video images. As expected, the viscosity of bitumen does not 

depend on the pH of the surrounding aqueous phase. It is noted that the viscosity 

calculated by the drop shape recovery technique is unchanged even though the bitumen- 

water interfacial tension decreases by a factor of two as the alkalinity of the aqueous 

phase is increased from pH = 8 to pH = 10. The viscosity of bitumen is 1246 ± 332 Pa s, 

with the error representing the standard deviation of all measurements.

The bitumen viscosity obtained with the drop shape recovery technique agrees in 

general with that of previous studies (Seyer and Gyte, 1989); however, it resides at the 

upper limit of the reported range. This may be due to the fact that viscous heating is 

completely negligible in the present technique, as discussed below. Recall that previous 

viscometric studies employed commercial devices (or adaptations thereof) to evaluate 

bitumen viscosity and viscous heating may have caused erroneous, lower viscosity 

measurements15 (Seyer and Gyte, 1989). Even though the standard deviation reported in 

this study may seem large (~25%), the consistency of the measured viscosity throughout 

the range of conditions provides merits for the reliability of the measurements. Despite 

the heterogeneity in the composition of bitumen (Mitchell and Speight, 1979; Prowse et 

al., 1983), it is likely that these errors would be reduced somewhat if temperature control 

(say, to ±0.1°C) was enabled in the micropipette apparatus.

5.3.2 Viscous heating

The occurrence of viscous heating within a viscometer can become significant at 

high shear rates for many fluids. This phenomenon is greatly pronounced for highly 

viscous fluids as the energy dissipated during shearing is a function of the fluid viscosity. 

As such, the viscosity of these fluids can only be accurately determined as a function of 

temperature in commercial viscometers that operate at very low shear rates and that are 

equipped with excellent temperature control devices (Whorlow, 1980). The novel 

technique introduced in this study exhibits no viscous heating despite the fact that the

ls The viscosity of bitumen is known to be highly temperature sensitive (Seyer and Gyte. 1989).
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shear rate is not controlled (but shown to be reasonably low) and the temperature is only 

monitored. This will be demonstrated for an extended bitumen drop recovering in a 

micropipette shape recovery experiment.

The energy per unit volume E  dissipated during the shearing of a bitumen drop 

may be approximated by (Bird et al., 1960)

it /<**• 1 ^E = p ----------
dt 2R,v d

• f ,  (5.1)

where the term in brackets is the shear rate and t is the time required for an extended drop 

to recover to a sphere. In the present study, the shear rate varies from a maximum when 

the drop is at its maximum elongation Lo to zero as the drop reaches its equilibrium 

spherical shape. Analysis of typical recovery data suggests that the maximum shear rate 

(for a ~20 pm drop) ranges from about 0.1-1 s '1 (cf. figure 5.2). Assuming a viscosity of 

103 Pa s and a recovery time on the order of a second (cf. figure 5.1), a conservative 

estimate of the energy dissipated in a recovery experiment is E ~  1000 J/m3.

The temperature rise AT can be estimated from the energy dissipated by

AT = (5.2)

in which p  is the density and Cp is the specific heat capacity of the drop liquid. For 

Athabasca bitumen, with p  = 1000 kg/m3 (Shaw et al., 1996) and Cp = 1800 J/kgK 

(Smith-Magowan et al., 1982; Cassis et al., 1985) at room temperature, the temperature 

rise during a drop recovery experiment is AT ~ 5x10"* K. Clearly, viscous heating is 

negligible during such experiments16.

5.4 Application: Bitumen*Water Interfacial Tension in Alkaline Environments

Determining the interfacial tension between density-matched systems is a 

considerable challenge. For such systems, the measurement of interfacial tension is 

rendered impossible with traditional tensiometers when at least one of the phases is

To be sure, one may consider the Brinkman number Br = (// [dL/drl2)/(A:TA7). that compares the rate of 
heat dissipation to that at which heal is conducted from the drop during its recovery. For bitumen, with a 
thermal conductivity kj = 1.2 W/mK (Karim and Hanafi, 1981), Br = 10“*.
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highly viscous (Moran et al., 2000). This is true for tensiometric techniques that are 

designed for measuring low interfacial tensions (Wilson and Bradner, 1977; Satherley et 

al., 1989; Lin and Hwang, 1994). Shape-based techniques, such as the spinning and 

sessile drop methods, rely on body forces to deform drops. In these methods, measures 

of drop shape deviations from spherical geometries are used to infer tensions. In the 

absence of such forces (i.e., in density-matched systems where gravity forces are 

negligible) drops will not deform, rendering these techniques ineffective. Light 

scattering techniques (Jon et al., 1986), which measure thermal perturbations at an 

interface to calculate tensions, may appear exempt from difficulties arising with density- 

matched systems. However, in the event of highly viscous fluids, these perturbations 

may become damped, limiting these methods to systems of lower viscosity.

Although common methods of tensiometry are limited from systems involving 

highly viscous and density-matched fluids, less recognized techniques appear better 

suited to such systems. Perhaps one of the first applications of Taylor’s elegant small 

drop deformation theory was the estimation of interfacial tension (Taylor, 1932, 1934). 

This theory assumed that small drop deformations were linearly proportional to the shear 

rate as a drop was deformed in steady shearing flows. In this model, the constant of 

proportionality was defined by a uniform interfacial tension. In his work, Taylor (1934) 

estimated the interfacial tension of moderately viscous “tar pitch mixture” drops (ji = 200 

Pa s) in “golden syrup”. More recently, small deformation theory has been used to 

calculate interfacial tensions of several nearly density-matched systems (Bentley and 

Leal, 1986). However, this theory is limited to small deformations and its linear 

approximations may introduce errors into interfacial tension calculations.

Shape relaxation methods have been used to calculate interfacial tensions of 

viscous drops in immiscible quiescent fluids and appear to be ideally suited to density- 

matched liquids. In systems where the viscosities are known, interfacial tensions have 

been estimated from characteristic times for recovery or break up (Carriere et al., 1989; 

Elemans et al., 1990; Watkins and Hobbs; 1993; Tjahjadi et al, 1994; Cho et al., 1996; 

Luciani et al., 1996; Son, 2001). In particular, the shape dynamics of millimeter-sized 

drops in polymer melt systems (e.g., polystyrene in polymethyl methacrylate) was 

monitored and the interfacial tension measured, using a limited one-dimensional model,
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to be on the order of 1 mN/m (Carriere et al., 1989). This method experienced significant 

errors of ± 26% in the calculations and the measurements agreed with literature values to 

within ± 20%. The large magnitudes of these errors were attributed to the simple nature 

of the model used. Due to the size of the drops and the viscosities of the polymers (ji -  2 

-  20 Pa s at 190°C), the relaxation times were on the order of hours! The length scale of 

these experiments appears to limit this procedure to lower viscosity fluids. (Very high 

viscosity fluids (ji ~ 106 Pa s) may be studied with the micropipette apparatus since 

relaxation times are on the order of seconds; figure 5.1). Improved boundary integral 

descriptions of the drop relaxation process have been applied to measure interfacial 

tensions of the polymer melt systems discussed above (Tjahjadi et al., 1994). However, 

even though the transient drop shape relaxation of an extended drop is nonlinear (cf. 

figure 5.2), interfacial tensions were estimated from linear measures of the drop 

dynamics.

Bitumen is a highly viscous (ji -  1250 Pa*s at 22.5°C; see figure 5.3) heavy crude 

oil with a density nearly-matched to that of water. It has been established that, for 

optimal recovery of bitumen from oil sands, alkaline conditions are required in water- 

based extraction processes (Shaw et al., 1996). In such commercial processes, the 

interfacial tension between water and bitumen is extremely important (Sanford and Seyer, 

1979). The interfacial tension of bitumen drops in aqueous solutions of pH = 2 - 11 was 

measured using the microcantilever technique (Moran et al., 2000). However, at pH > 

11, the interfacial tension was below the detection limit of this apparatus (y ~ 1 mN/m). 

In this study, the low interfacial tension of bitumen drops in alkaline SPW solutions is 

established using the drop shape recovery technique and the Stokesian model (chapter 4).

5.4.1 Bitumen-water IFT measurement in alkaline regimes

To evaluate low interfacial tensions, drop shape experiments are performed on 

bitumen drops over a pH range from 10 to 12.5 and the L(t) data fit to the variational 

model (chapter 4). Within this pH range, such drop recovery processes have typical 

recovery times / of orders ranging from a second to a minute. Recall that, in the drop 

shape recovery technique, the interfacial tension y  can be calculated from an optimized 

characteristic velocity y//i, assuming that the viscosity ft is defined (see section 5.2.3).
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The viscosity of bitumen is known (ji = 1246 Pa s), as it was evaluated from shape 

recovery experiments at lower pH regimes (section 5.3.1; figure 5.3); in these regimes, 

the tension was measured with the microcantilever technique (figure 3.5). The initial 

drop shape is obtained from video images.

The interfacial tension of the bitumen drops is highly dependent on the pH of the 

simulated process water (SPW) that surrounds them (figure 5.4). As the pH is increased, 

the interfacial tension decreases and falls below y -  1 mN/m at pH > 11. The inset in 

figure 5.4 shows the low tensions measured with the drop shape recovery technique at 

high pH in a logarithmic scale to clearly show such a trend. The microcantilever 

technique was used to evaluate interfacial tensions for the same system over a pH range 2 

< pH < 11 (Moran et al., 2000; chapter 3) and some of these measurements (9 < pH < 11) 

are also shown in figure 5.4 (open symbols) for comparison. Both the microcantilever 

and drop shape recovery techniques give similar results. It is evident that this novel 

shape recovery technique is useful in measuring low interfacial tensions (y< 1 mN/m) of 

density-matched and highly viscous systems.

Similar trends for bitumen-water interfacial tension in alkaline environments have 

been noted by many researchers (Isaacs and Smolek, 1983; Drelich and Miller, 1994; 

Drelich et al., 1995; Basu et al., 1996; Moran et al., 2000). This phenomenon has been 

attributed to the pH-dependent release of naturally occurring surfactants found within the 

bitumen (Schramm et al., 1984; Drelich and Miller, 1994).

5.5 Conclusions

A novel micromechanical technique is developed to evaluate the material 

properties of emulsion drops. In this technique, the time-dependent recovery of deformed 

emulsion drops, axially elongated via micron-sized suction pipettes, is fitted to a simple 

model. This model assumes drop recovery is driven by the interfacial tension and rate 

limited by the viscosity of the drop. The technique offers advantages over traditional 

viscometers as viscous heating is negligible, only extremely small samples (~10 9 mL) 

are required and a short time-scale for experiments is therefore possible. At room 

temperature, the high viscosity of bitumen and its low interfacial tension with alkaline 

environments are evaluated.
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Figure 5.4. Interfacial tension y of bitumen with water (SPW) in alkaline regimes 
(22.5°C). Tensions are determined using the drop shape recovery technique (solid 
triangles) and the microcantilever tensiometer (open circles; see chapter 3). For each data 
point, a minimum of 10 drops are analyzed, (a minimum of 10 L(t) measurements are 
obtained for each drop), with the error bars giving the standard deviation. In the highly 
alkaline regimes (pH > 11), the tensions are below the detection limit of the 
microcantilever method. In these regimes, the drop shape recovery technique is sensitive 
enough to evaluate quite low interfacial tensions (y< 1 mN/m). The inset recasts the drop 
shape recovery interfacial tension measurements on a log scale for better resolution at 
high pH values. For shape recovery experiments, bitumen viscosity is taken as 1246 Pa s 
(from figure 5.3).

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 
Surface Plasticity of Bitumen Drops

6.1 Introduction

Novel micromechanical techniques have been developed to quantify the static 

and dynamic behaviours of emulsion drops (chapters 2 to 5). In these analyses, it is 

assumed that the equilibrium properties of the simple drops are dictated entirely by the 

interfacial tension, while any dissipative behaviour is provided by the Newtonian 

viscosities of the bulk phases. However, the emulsion drops in many systems, such as 

some found in the petroleum industry, may exhibit more complex behaviours. In this 

chapter, with application to bitumen (a heavy crude oil) emulsions, micromechanical 

techniques are extended to explore more complex Theological behaviours of emulsion 

drops, including some irreversible surface phenomena.

Crude oil-water emulsions present considerable challenges to the petroleum 

industry. To date, the primary research focus has been on the elimination of water-in- 

crude oil emulsions; these are emulsions naturally found in reservoirs or are the result of 

various extraction or cleaning processes (Graham, 1988)17. The remarkable stability of 

these emulsions has been attributed to the formation of a “skin” at the oil-water interface 

(Bartell and Niederhauser, 1949; Reisberg and Doscher, 1956).

There is still considerable debate as to the composition of the “skin” at crude oil- 

water interfaces, and numerous studies have attempted to characterize their Theological 

properties. Of these are studies concerned with the interfacial tension (Strassner, 1966; 

Pasquarelli and Wasan, 1981) and interfacial shear viscosity (Dodd, 1960; Cairns et al, 

1976). Surface pressure data of some crude oil-water interfaces appears to suggest 

formation of a “rigid” structure exhibiting increased shear viscosities at high 

compressions (Kimbler et al., 1966; Neustadter et al., 1975; Brown et al., 1977). In 

addition, interfacial viscoelastic behaviours have also been demonstrated through creep

17 The removal of water from these systems is desired for a number of reasons. For example, as the water 
contains dissolved salts, its removal will reduce corrosion of equipment.
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compliance tests (Jones et al., 1978) and are described by Maxwell-Voight type models 

(Mohammed et al., 1993, 1994). The mechanical properties of crude oil-water interfaces 

show considerable variation depending on the crude source. It has been suggested that 

emulsion stability is most affected by interfacial dilational properties (Neustadter et al., 

1981; Mukheijee and Kushnick, 1989; Kim et al., 1995) and the interfacial activity of 

demulsifiers (Krawczyk et al., 1991; Bhardwaj and Hartland, 1994).

Rheological studies of crude oil-water interfaces have typically been conducted 

on length scales of millimeters or larger, with devices such as the Du Noiiy ring or 

biconical bob surface viscometer. Parameters observed at these length scales are then 

assumed to be equivalent to those of micron-scale emulsion systems. However, it was 

recently demonstrated that such an extrapolation may not be valid for interfacial tensions 

of emulsion systems (including water-in-crude oil emulsions) due to, among other 

factors, vastly differing surface area-to-volume ratios (Yeung et al., 1998). It is then 

reasonable to suggest that similar extrapolations of other surface mechanical properties 

may be questionable. To address this issue, a micron-scale technique has recently been 

introduced with which the surface mechanical properties of individual emulsion drops 

may be studied (using micropipettes). This novel technique has allowed for the 

measurement of interfacial tensions and surface viscosities of water drops in diluted 

bitumen18 at the micron-scale (Yeung et al., 1999). The most notable finding from these 

studies is the strong dependence of surface rheological properties on the bitumen dilution 

ratio. At high bitumen dilutions, rigid surface skins were seen, while at low dilutions the 

interface appeared fluid and a novel emulsification mechanism was observed (see also 

Dabros et al., 1999).

Of present interest is the bitumen-in-water emulsions encountered in the oil sands 

industry. In this study, bitumen mined from the Athabasca oil sands (Northern Alberta, 

Canada) is considered. Athabasca bitumen is a highly viscous Newtonian fluid 

(Schramm and Kwak, 1988; see also chapter 5) that has a density almost equal to that of 

water (Liu, 1989; Basu et al., 1996; Shaw et al., 1996). In commercial water-based 

extraction processes, the oil sands (containing about 10 wt% bitumen) is mixed with

18 Bitumen is a highly viscous fluid (Shaw et al., 1996; also see chapter 5). In order to achieve workable 
viscosities at room temperatures, bitumen must be mixed with an organic solvent.
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water, air and a small amount of caustics in the digestion stage. Here, the bitumen is 

liberated from the sand particles to exist as aerated oil drops in an aqueous slurry 

containing dissolved salts, coarse sand particles and fine clays (such as montmorillonite 

and kaolinite; Shaw et al., 1996). The oil sand slurry contains a large number of bitumen 

drops that are less than 40pm in diameter, and they represent the difficult-to-recover 

portion of the total recoverable hydrocarbon.

In water-based bitumen extraction, it is advantageous to promote the coalescence 

of the small bitumen drops within the slurry (i.e., break the bitumen-in-water emulsion) 

in order to improve oil recovery. Clearly, this coalescence phenomenon is a function of 

the surface properties of the emulsion drops. In particular, coalescence may be dictated 

by the mechanical deformability of the drop surfaces (Walstra, 1993; Lam et al., 1995). 

Recent bench-scale studies have suggested that the recovery of bitumen in water-based 

extraction is severely reduced when the aqueous phase contains both montmorillonite 

clays and calcium ions (Kasongo et al., 2000). This is attributed to a suspected 

synergistic effect between these two species that promotes the coating of bitumen drops 

with the clay fines. An examination of bitumen drop surface properties in this 

environment may provide insights into the cause of the poor recovery noted above.

Some of the original micropipette techniques of Yeung and coworkers (1998, 

1999) cannot be applied to bitumen-in-water emulsion systems due to the highly viscous 

nature of bitumen at room temperatures. (In fact, it is likely that all traditional surface 

rheological instruments are inapplicable to fluids that are as viscous as bitumen; Kim et 

al., 1995). Adaptation of the micropipette techniques to address such limitations has 

enabled evaluation of interfacial tensions through micron-scale stress-strain experiments 

(Moran et al., 1999; see chapter 2) and drop shape recoveries (see chapter 4). Using such 

techniques, the interfacial tensions of bitumen drops in aqueous media were obtained as a 

function of pH (Moran et al., 2000; see chapters 3 and 5). These in situ micro­

mechanical techniques are unique in their applicability to emulsion systems that are 

density-matched and involve highly viscous fluids.

In this chapter, the mechanical behaviour of bitumen drops in different aqueous 

environments is studied by further adapting the micropipette techniques (chapters 2 and 

4). In particular, the effect of montmorillonite clays and calcium ions on the surface
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behaviour of bitumen drops is examined. (As noted above, this environment is expected 

to severely reduce the recovery of bitumen from oil sands in water-based extraction 

processes; Kasongo et al., 2000.) The surface plasticity and other surface properties of 

bitumen drops in such an aqueous environment are discussed. A simple, lumped- 

parameter model is developed to describe the dynamics of bitumen drops as they recover 

from perturbed geometries.

6.2 Materials and Methods

6.2.1 Emulsion preparation

Bitumen-in-water emulsions are created, according to procedures described in 

chapter 3, in three different aqueous environments:

a) Filtered, deionized water (DIW).

b) DIW to which 0.1 wt% of montmorillonite clays (M) are added prior to emulsion 

formation. This aqueous suspension will be referred to as the DIW + M system. The 

montmorillonite clays (Ward’s Natural Science Est.) originated from Panther Creek, 

Colorado and are used as supplied.

c) DIW to which 0.1 wt% of montmorillonite clays (M) and 59 ppm of calcium ions 

(Ca++), provided as CaCh (Fisher Scientific), are added prior to emulsification. This 

aqueous suspension will be referred to as the DIW + M + Ca++ system. The calcium 

ion concentration used in this study is chosen to reflect that required to drastically 

decrease bitumen recovery in bench-scale hot water extraction processes (Kasongo et 

al., 2000).

The aqueous phase pH is measured using a digital pH probe (Accumet Basic AB 

15, Fisher Scientific). The suspensions are filtered with a 0.45 pm filter prior to pH 

evaluation.

Although the hydrophobicity of the montmorillonite clay is not evaluated, it is 

assumed that the clay particles are largely hydrophilic in nature (Yan and Masliyah, 

1994). A particle size distribution analysis indicates that, while the modal particle size is 

2-3 microns in equivalent diameter, a significant fraction (21.1%) of the montmorillonite 

particles are less than 1 micron in equivalent diameter. For such measurements, the 

montmorillonite particle suspension is created by sonification with a 600 watt ultrasonic
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probe (Sonics & Materials) for 3 minutes. The particle size analysis is conducted via a 

laser diffraction device (Coulter LS130). It is suggested that this technique may over­

estimate the size of clay platelets (Cowles, 2000).

6.2.2 The micropipette experimental set-up

The micropipette apparatus allows for the study of general mechanical behaviours 

of individual emulsion drops. Two techniques, the microcantilever and drop shape 

recovery, are implemented. Further details may be found in chapters 2 and 4. All 

experiments are conducted at room temperatures (22-23°C) within one hour of emulsion 

formation.

6.2.3 Stress-strain experiments (microcantilever technique)

Static stress-strain experiments are performed on individual emulsion drops in 

different aqueous environments. For simple (Newtonian) emulsion drops, any static 

resistance to deformation from a sphere is provided by the interfacial tension of the drop, 

which acts to minimize its surface area (i.e., to obtain a spherical configuration). As 

documented in chapter 2, a micromanipulator is used to stretch an individual drop, 

between a micropipette and a force-measuring cantilever, to a series of equilibrium 

shapes. Since a force is applied in increasing increments this is referred to as the loading 

stage of the experiment. Here, the microcantilever technique is extended to include an 

unloading stage (this phase of experimentation was not explored in previous chapters). 

Once the desired maximum drop elongation is achieved, the applied force is removed in 

incremental steps by moving the micropipette towards the microcantilever. This is the 

unloading stage, as the axial load is incrementally reduced. Drops are held in each new 

stretched position for 10 seconds to allow for diffusion19 of species to the drop surface 

and for any viscous relaxation (see chapter 3) to occur.

19 The time required for diffusion of a montmorillonite aggregate through an aqueous phase to a bitumen 
drop surface is estimated from the Einstein-Smoluchowski equation r = X'flD, where x  is the diffusion path 
length and D is the diffusion coefficient. The diffusion coefficient is estimated by D -  kTI6nRjj, where k 
is the Boltzmann constant, T  is temperature, and /?» is the aggregate size (Hunter, 1986). Assuming Rt -  10 
nm (an aggregate of 10 montmorillonite particles), x -  20 pm (i.e.. the bitumen drop “sees" this distance 
into the aqueous phase from its surface) and p  = 1250 Pa-s (chapter 5) one arrives at D -  10'“ m2/s and t = 
10 s.
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As noted in previous chapters, the loading stage of the microcantilever experiment 

can be applied to measure the interfacial tensions of emulsion drops (see chapter 2). The 

stiffness of the microcantilever is calculated from linear beam theory (Appendix C) and is 

calibrated by measuring the interfacial tension of known systems.

6.2.4 Drop shape recovery experiments

These experiments are designed to study the dynamic (time-dependent) recovery 

of a deformed emulsion drop. In this technique, a drop is axially stretched between two 

micropipettes, to a maximum length £*>, then released and allowed to recover to a final 

shape, defined by a length Lf that does not vary with time. The technique is described in 

detail in chapter 4. Prior to its release, the drop is maintained in its stretched 

configuration for 10 seconds (for the same reasons as mentioned above). The recovery is 

noted from the time at which the drop is released. The time-dependent axial length of the 

drop is measured from a fixed reference point (chapter 4). As such, an extended drop that 

recovers to a sphere will have a final length equal to the drop diameter, Lf = where 

Rd is the radius of the spherical drop.

Drop shape recovery experiments are used to calculate interfacial tensions of 

simple emulsion drops (see chapter 5) by fitting the experimental data to a theoretical 

model based on Stokes flow (chapter 4). For these simple emulsion drops, the recovery 

process is rate-limited by the bulk viscosity of the bitumen, while the interfacial tension 

tends to drive the drop to a minimum area configuration. This Stokesian model is not 

applicable to emulsion drops exhibiting complex behaviour; i.e., drops that do not 

recover to spherical final shapes. (Other forces may be involved and are discussed 

below.)

6.3 Results and Discussion

6.3.1 Emulsion and drop behaviour descriptions

Bitumen-in-water emulsions are prepared as described above and subsequently 

viewed under magnification. It is noted that bitumen drops emulsified in an aqueous 

phase of deionized water (DIW) or an aqueous suspension of montmorillonite clays 

(DIW + M) are always spherical in nature. This result is expected since the drops are
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nearly micron-sized. Assuming that these bitumen drops are simple (see above) and have 

non-zero interfacial tensions, they will be spherical as the capillary forces are 

significantly larger than the body forces. This is made apparent through the Bond 

number BQ = ApgRa2//, where Ap  is the density difference between the two immiscible 

phases and g is the gravitational acceleration20.

By contrast, bitumen drops emulsified in slurries containing montmorillonite 

clays and calcium ions (DIW + M + Ca**) exhibit markedly different behaviour. 

Although the majority of drops are spherical, a significant number are observed to be 

highly non-spherical in appearance (figure 6.1), and may possess sharp “horns’'. If such 

bitumen drops are mechanically deformed (i.e., stretched between micropipettes) they 

typically show minimal recovery to their initial non-spherical shape. Considering that 

bitumen is a Newtonian fluid, it is clear that some unusual mechanical phenomena must 

be occurring at the surfaces of these drops. In this chapter, as a first attempt to examine 

the surface rheology of such systems, only bitumen drops that are initially spherical are 

examined.

It is helpful to classify the behaviours of bitumen drops in response to mechanical 

deformation. Note that since bitumen is a Newtonian liquid, these behaviours are 

attributed to the drop surface (proof of this is given in a following section). The 

following three types of behaviours are discussed:

(a) Ideal behaviour, bitumen emulsion drops recovering to natural spherical shapes upon 

removal of a deforming force (applied via micropipettes). This behaviour is expected 

for simple emulsion drops and is the only behaviour that has been noted thus far in 

this thesis (chapters 2-5)

(b) Plastic behaviour, mechanically deformed bitumen drops showing partial recovery 

from a state of maximum deformation, but do not fully recover to a natural spherical 

geometry

(c) Perfectly plastic behaviour, initially spherical bitumen drops remaining in a 

deformed state upon removal of applied forces with no evidence of recovery.

20 For a typical bitumen-in-water emulsion of 10 pm drops Ba -  10-6, indicating that surface tension forces 
(that drive drops to minimum area spherical configurations) dominate over gravitational forces (that act to 
deform drops to non-spherical geometries).
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Figure 6.1. Photograph of a highly non-spherical bitumen emulsion drop in an aqueous 
environment of 0.1 % (by weight) montmorillonite clays and 50 ppm of calcium ions 
(DIW + M + Ca++). In the DIW + M + Ca** suspension, although the majority of drops 
are naturally spherical, a significant number are as depicted in this photograph. AH 
experiments are conducted on initially spherical bitumen drops.
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6.3.2 Interfacial tensions

The interfacial tensions y  of bitumen drops in the three aqueous environments are 

determined using the two different micropipette techniques (Table 6.1). The 

microcantilever technique is a static method where the equilibrium force required to 

achieve a specific drop deformation is evaluated (Moran et al., 1999, 2000; see also 

chapters 2 and 3). The drop shape recovery technique is a dynamic method that assumes 

that the recovery of an extended drop to a sphere is driven by a uniform interfacial 

tension y  and rate-limited by the viscosity ft of a Newtonian drop (chapters 4 and 5). As 

such, y  values obtained with this dynamic technique may be affected by additional 

surface dissipation.

Table 6.1. Interfacial tension y of bitumen drops in different aqueous suspensions. 
Values shown represent the average of a minimum of ten individual measurements and 
the reported errors are standard deviations about the mean. The behaviour of bitumen 
drops, as defined in the text, and the pH of the aqueous phase are also provided.

Aqueous
Suspension

pH Microcantilever 
y (mN/m)

Drop Shape Recovery 
y (mN/m)

Drop Behaviour

DIW 6.0 20.3 ± 1.0 21.5 ± 1.2 Ideal
DIW + M 6.4 24.5 ± 1.4 23.9 ± 1.7 Ideal

DIW + M + Ca~ 6.2 24.4 ± 1.3 — Plastic

The interfacial tensions measured by the two micropipette techniques compare 

well for Athabasca bitumen drops in both the DIW and the DIW + M systems. This 

indicates that viscous dissipation occurs primarily in the bulk bitumen phase and any 

surface viscosity is relatively negligible. In a previous micropipette study, it was 

observed that viscous dissipation at diluted bitumen-water interfaces was notably reduced 

as the bitumen phase became more concentrated (Yeung et al., 1999). Extrapolating this 

finding to pure bitumen (i.e., zero dilution) provides agreement with our current results. 

In addition, studies of planar crude oil-water interfaces (Neustadter et al., 197S; Cairns et 

al., 1976; Jones et al., 1978) showed that surface shear viscosity was not appreciable over 

a wide range of slightly acidic to alkaline (pH > 4) aqueous phases for some crude oils. 

However, it should be noted that surface dilational viscosity of some crude oil-water 

interfaces was shown to be somewhat significant at neutral pH (Neustadter et al., 1981).
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As shown in Table 6.1, the aqueous phases in the present study are slightly more acidic 

than neutral at pH ~ 6.

The bitumen drop interfacial tensions measured for the DIW + M system are 

notably larger than those of the DIW system (Table 6.1). The two tensiometric 

techniques employed in this study assume that an equilibrium interfacial tension is the 

only material property at the interface. However, it is possible that these methods are 

measuring an interfacial stress involving both an equilibrium interfacial tension (invariant 

to area changes) and an area-dependent surface elastic parameter. Thus, it could be 

argued that the increase in measured tension in the DIW + M system is attributed to the 

development of elastic properties at the interface. However, any elastic contributions are 

likely negligible, as all emulsion drops are spherical in their stress-free state. (If elastic 

effects were significant, one would expect to observe non-spherical drops within the 

emulsion). An alternate explanation may be attributed to the presence of dispersed 

montmorillonite particles. Charged clay particles in suspension may attract surfactants 

away from fluid-fluid interfaces accounting for an increase in interfacial tension by up to 

-  4 mN/m for oil-water systems (Schramm and Hepler, 1994). In both the DIW and DIW 

+ M systems, ideal behaviour is noted (Table 6.1), as the bitumen drops always returned 

to spherical shapes following applied deformations.

As reported from the microcantilever technique, the bitumen drop interfacial 

tension in the DIW + M + Ca** system is nearly identical to that observed in the DIW + 

M system (Table 6.1), indicating that calcium ions have little effect on this material 

property (cf. figure 3.5). As bitumen drops in the DIW + M + Ca** system exhibit plastic 

behaviour (partial recovery to non-spherical shapes), the drop shape recovery technique is 

ineffective in assessing the interfacial tension of the bitumen drops.

6.3.3 Stress-strain microcantilever experiments

Static stress-strain type studies are conducted on individual bitumen drops with 

the microcantilever apparatus where an axial force /  is applied (loading) and relaxed 

(unloading) in a stepwise manner. (See figure 3.1 for a sequential series of photographs 

depicting the loading stage of a typical experiment.) In these experiments, an individual 

drop undergoes three consecutive loading-unloading cycles.
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For bitumen drops in deionized water (DIW) and aqueous montmorillonite 

(DIW+M) suspensions, the stress-strain experiments indicate ideal behaviour (figure 6.2). 

Measures of the axial drop length L are relative to a reference state represented by axial 

length Li. In practice, Li is obtained by fitting the /  vs. L experimental data to a 

polynomial and extrapolating the fit to a stress-free state (i.e .,/=  0). Thus, as all drops 

examined in this study are initially spherical, a drop deformation of L - Li = 0 indicates a 

spherical drop. The unloading curves map onto the loading curves for each drop stretch 

(denoted by 1, 2 or 3), indicating a lack of hysteresis for the loading-unloading loops. 

Furthermore, each loading-unloading loop lies on approximately the same path as the 

others. Following each unloading stage the drop appears to recover to an essentially 

spherical shape. (This may be seen by extrapolating the unloading curves to the abscissa 

at L - Li = 0). These data suggest that bitumen drops in DIW and DIW +• M behave in a 

reversible manner. At no point during experiments with DIW and DIW + M systems is 

there any evidence of a rigid skin formation. These findings are in agreement with 

Yeung and coworkers (1999), who observed that only fluid (i.e., non-rigid) interfaces 

were present at water drop surfaces in solvent-diluted Athabasca bitumen when the 

solvent-to-crude oil ratio was low (i.e., concentrated bitumen). Recall that in the present 

experiments, emulsion drops of pure Athabasca bitumen are studied.

The response of bitumen drops in aqueous environments of montmorillonite and 

calcium ions (DIW + M + Ca++) to stress-strain microcantilever experiments is strikingly 

different from that observed in the DIW and DIW + M systems. A typical /  versus L - Li 

plot is shown in figure 6.3. There is significant hysteresis between loading and unloading 

curves for individual loading-unloading cycles. In addition, consecutive loading- 

unloading loops (denoted by 1, 2 or 3) are offset by the magnitude of the hysteresis 

observed at an approximately stress-free state (i.e., in the absence of an applied axial 

force /  = 0). This is clear evidence of plastic behaviour exhibited by bitumen drops 

suspended in an aqueous environment of montmorillonite clays and calcium ions. Again, 

as with the bitumen drop surfaces in DIW and DIW + M systems, obvious skin formation 

is not observed.

Plastic behaviour has been documented, although not specifically discussed, in 

previous studies of crude oil-water interfacial rheology. Dodd (1960) reported the
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Figure 6.2. Typical loading-unloading curves, obtained with the microcantilever 
technique, for bitumen drops exhibiting ideal behaviour (i.e., those in DIW and DIW + M 
aqueous systems). The drop is subjected to three consecutive loading-unloading cycles, 
denoted by 1 (circles), 2 (triangles) and 3 (squares), respectively. The loading curves are 
shown in solid symbols and the unloading curves are shown in open symbols. The 
applied force /  is determined from the microcantilever deflection, while the drop 
deformation L-L\ is relative to an initial spherical state.
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presence of thixotropic surface properties while Cairns and coworkers (1976) discussed 

surface shear viscosity of such interfaces in detail. However, their results clearly 

demonstrated plastic deformations at the interface as the torsional bobs of their surface 

viscometers did not return to their initial stress-free positions upon cessation of the 

viscometer rotation. Plastic behaviour of surfaces was apparently first noted by Wilson 

and Ries (1923), who developed elegant experiments to show the irreversible nature of 

some liquid-liquid interfaces.

The slopes of consecutive loading curves for a single bitumen drop in DIW + M + 

Ca**, (solid symbols in figure 6.3) are approximately equal. This may indicate the 

absence of surface strain hardening - the development of additional elastic stresses at the 

interface due to deformation. (If strain hardening was observed, one would expect the 

slopes to increase upon consecutive loading-unloading cycles -  cf. Inokuchi, 1933). 

Furthermore, the slopes of the loading curves in figure 6.3 (DIW + M + Ca** systems) are 

approximately the same as those in figure 6.2 (DIW + M systems). This may indicate 

that the plastic behaviour is manifested only during the unloading of the drop. The initial 

slopes of these force-drop deformation plots may be related to an apparent spring 

constant that is a function of the drop geometry and the interfacial tension (Evans et al., 

1991; Evans et al., 1995; see equation 2.10). Thus, given that all drops examined in this 

study are approximately the same size, it is not surprising that the tensions of these two 

systems (DIW + M and DIW + M + Ca**) are the same (Table 6 .1).

6.3.4 Creep compliance tests

Viscoelasticity has been documented in some crude oil-water interfacial studies 

by estimating the initial slope of a creep compliance curve generated with a rotational 

interfacial rheometer (Jones et al., 1978; Mohammed et al., 1993, 1994). In the present 

work, creep compliance tests are conducted with the microcantilever apparatus to assess 

the viscoelastic nature of the bitumen drop surfaces. In such tests, individual bitumen 

drops in each of the three aqueous systems are stretched at a constant force and the axial 

drop length monitored over times of up to two hours. A typical result is shown in figure

6.4 (solid circles) for a bitumen drop in DIW + M + Ca**. In this experiment, the drop 

deformation L - L j is monitored as a constant force of -  372 nN is applied.
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Figure 6.4. A typical creep compliance test for a bitumen drop exhibiting plastic 
behaviour in DIW + M + Ca**. A bitumen drop is deformed with the microcantilever 
technique at a constant force/(open triangles). The drop deformation L-Li (solid circles) 
is measured as a function of time. The lines represent the mean values of the measured 
drop deformation (solid) and applied force (dashed).
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The force is measured through the microcantilever deflection and noted to be constant 

throughout the test (open triangles in figure 6.4). It is evident that the drop length 

remains constant over the entire test, indicating that the bitumen drop surface in an 

aqueous solution of montmorillonite clays and calcium ions is not viscoelastic. Similar 

results are obtained for bitumen drops in DIW and DIW + M (not shown). Typical 

analysis of the creep compliance test results would suggest that Athabasca bitumen drop 

surfaces in any of the aqueous environments are purely elastic in nature (Joiy, 1972). 

However, as noted above, it is likely that elastic contributions are negligible for the DIW 

and DIW + M systems. Since the interfacial tension measured for the DIW + M + Ca** 

system is comparable to that of the DIW + M system (Table 6.1), it is reasonable to 

assume that surface elastic contributions are also negligible for bitumen drop surfaces in 

aqueous environments of montmorillonite clays and calcium ions. Then, for a bitumen 

drop in any of the three aqueous systems, the “elastic’' nature of the surface is provided 

primarily by the interfacial tension.

6.3.5 Static analysis o f drop shape recovery experiments

To further explore the surface rheology of bitumen drops, shape recovery 

experiments are conducted. In this section, the dynamics of the recovery process is not 

considered; only the maximum extended length Lo and the final length Lf of the drop 

following recovery are measured. Shape recovery experiments of bitumen drops in 

deionized water (DIW) and an aqueous montmorillonite suspension (DIW + M) indicate 

ideal behaviour in that axially stretched drops always recover to static spherical shapes. 

This is in agreement with the stress-strain results obtained in the microcantilever 

experiments (figure 6.2).

The maximum and final lengths, Lo and Li, of bitumen drops in the DIW + M + 

Ca** system are observed during shape recovery experiments (figure 6.5). In this figure, 

axial lengths are scaled by the drop diameter 2R&. (Thus, an extended drop that recovers 

to a sphere will have a final scaled length Lf/2/?d of unity.) The limiting behaviours, ideal 

and perfectly plastic, are plotted as solid and dashed lines, respectively. Many interesting 

observations can be made from the results of this experiment. Indeed, plastic behaviour 

is noted for moderately extended bitumen drops as their final axial lengths Lf fall between
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to above Lo,c/2/?d exhibits plastic behaviour, while a drop stretched to a state below Lo<c/2 
Ra shows ideal behaviour.
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the two limiting curves (1 < Lf /2Rd < LJ2Rd). Moreover, a critical maximum stretch Lo.c 

exists, above which plastic behaviour (Lf /2Rd > 1) is observed and below which ideal 

behaviour (Lf/2Rd = 1) is noted. For bitumen drops in DIW + M + Ca**, this critical drop 

elongation is Lo,J2Rd ~ 1.17 (vertical dotted line in figure 6.S). A typical applied force 

and surface stress corresponding to Lo.c can be estimated from the stress-strain curves 

(figure 6.3) at a relative deformation of (L -  U)/2Rd ~ 0.17 (approximately equivalent to 

Lo.c/2/fd = 1.17). At this critical deformation, the applied force is f c ~ 250 nN, giving an 

approximate surface stress of f /2 n R d -  4 mN/m for a typical drop size of Rd = 10 pm. 

Furthermore, at extensions above the critical point (LJ2Rd > Lo,J2Rd) there appears to be 

a linear relationship, albeit with a great deal of experimental variation, between Lo and Lf 

such that Lf = 0.85Lo. This is the first characterization of the plastic surface properties of 

single bitumen emulsion drops. However, yield values of sodium soap Bingham plastic 

surfaces, believed to exhibit surface behaviours similar to some crude oil-water 

interfaces, have been estimated (Brown et al., 1953).

6.3.6 Is plastic behaviour a surface phenomenon?

It is evident that plastic behaviour is noted for bitumen emulsion drops in aqueous 

suspensions of montmorillonite clays and calcium ions. This plastic behaviour has thus 

far been attributed to the bitumen drop surface without validation other than noting that 

Athabasca bitumen is generally known to exhibit Newtonian behaviour (Schramm and 

Kwak, 1988). Could this plastic behaviour be due to a change in the bulk rheology of 

bitumen drop as opposed to a surface phenomenon? To consider this, the following 

experiment is conducted. The interior of a highly irregular, non-spherical bitumen drop 

in DIW + M + C a^ (see figure 6.1) is carefully extracted via micropipette suction. The 

aspirated bitumen is immediately expelled from the micropipette and is seen to form a 

spherical drop. This drop is then mechanically deformed in drop shape recovery 

experiments. Ideal behaviour is noted, as this freshly-formed drop recovers to a sphere, if 

such experiments are conducted immediately after the drop is expelled. However, if the 

surface of the freshly formed drop is allowed to age for approximately one to 10 minutes 

in the aqueous suspension (DIW + M + Ca**), drop shape recovery experiments reveal 

plastic behaviour as the drop shows some recovery but ultimately relaxes to a final, non-
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spherical shape. These experiments clearly demonstrate that the plastic behaviour 

observed with bitumen drops in DIW + M + Ca**, in response to mechanical 

deformation, is attributed to the bitumen drop surface.

6.3.7 Dynamic analysis o f drop shape recovery experiments

The microcantilever experiments and the static analysis of bitumen drop shape 

recovery reveal information concerning the time-independent nature of bitumen drop 

surfaces in aqueous suspensions. However, they do not provide insights into the 

dissipative nature of such interfaces. Drop shape recovery experiments are utilized to 

monitor the dynamic recovery and the viscous dissipative behaviour of axially deformed 

bitumen drops. Sequential series of photographs showing typical shape recovery 

experiments with bitumen drops indicate ideal behaviour in DIW + M systems (figure 

6.6a) and plastic behaviour in DIW + M + Ca** systems (figure 6.6b). The last 

photograph in each series represents the final, time-independent shape of the drop.

In drop shape recovery experiments, bitumen drops in DIW or DIW + M behave 

ideally, always recovering to spheres. In such a recovery, it is assumed that the drop 

recovery is driven by the interfacial tension. It is also assumed that any rate-limiting 

dissipation is due to the Newtonian viscosity of bitumen and that the surface is essentially 

inviscid. (In fact, the term “ideal” is in reference to this inviscid nature of the surface of a 

viscous drop.) The recovery of emulsion drops exhibiting ideal behaviour is well 

described by a Stokesian model (refer to chapter 4) that is based on these assumptions 

(figure 6.7). Since a well-defined characteristic velocity y ip  is available, with y  from 

Table 6.1 and p  from figure 5.3, no fitting is involved. The agreement of the dynamic 

drop length L(f) between the experimental data (solid circles) and the Stokesian model 

(dash-dot line) suggests that little surface viscosity exists in these systems.

Analysis of bitumen drop recoveries in DIW + M + Ca++ provides for interesting 

results. The plastic nature of the interface is observed as the bitumen drops do not 

recover to spheres (Lf/2/?d > I) as time approaches infinity t —»<» (figure 6.8). In this 

case, note that the maximum drop deformation CLJ2Rd -  1.35) is above the critical value 

(Lo.c/2/?d -  1.17) required for plastic behaviour and that ~ 0.85. In many of the 

drops examined, dissipation above that provided by the bitumen viscosity p  is observed.
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Figure 6.6. Sequential series of photographs (top to bottom) depicting a drop shape 
recovery experiment for a bitumen drop (a) in DIW + M exhibiting ideal behaviour and
(b) in DIW + M + Ca'M' exhibiting plastic behaviour. In drop shape recovery 
experiments, an initially spherical drop is axially stretched to a maximum deformation 
(Lo at time t -  0) and released from one micropipette. The dynamic recovery L(r) of such 
a drop to a final shape is measured. The final photographs (at t = 3.73 s (series a) and t = 
4.37 s (series b)) show the final, time-independent drop shapes. Note that, in the aqueous 
phase of series (b), the montmorillonite fines appear swelled or aggregated relative to 
series (a).
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Figure 6.7. Typical dynamic drop shape recovery data for an extended bitumen drop 
exhibiting ideal behaviour (see figure 6.6a). In this case, the aqueous phase is DIW + M. 
Time is scaled by a characteristic recovery time while the dynamic drop length is 
scaled by the drop diameter 2R&. The experimental drop recovery (solid circles) is well 
described by the Stokesian model (dash-dot curve). The interfacial tension is obtained 
from Table 6.1 and the viscosity of bitumen is 1246 Pa s. Note that the experimental data 
and the model indicate that drop recovers to a sphere as Lf/2/?<i =1.
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Figure 6.8. Typical dynamic drop shape recovery data for an extended bitumen drop (in 
DIW + M + Ca**) exhibiting plastic behaviour (see figure 6.6b). Time is scaled by a 
characteristic recovery time /if*/?; while the dynamic drop length is scaled by the drop 
diameter 2/?d. Note that the recovery described by the Stokesian model (dash-dot curve) 
deviates significantly from the experimental data (circles) as t —» «>. As a well-defined 
characteristic velocity is available, no fitting is involved in this approach. (The 
interfacial tension is obtained from Table 6.1 and the viscosity of bitumen is 1246 Pa s).
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This is evident as the initial experimental drop recovery (solid circles) is retarded relative 

to that described by the Stokesian model (dash-dot line). The additional dissipation must 

be attributed to the surface and may be due to interactions of adsorbed calcium- 

montmorillonite aggregates. It is important to note that the observed surface dissipation 

shows a great deal of variation among drops. In fact, some plastically behaving drops 

initially exhibit ideal behaviour (i.e., folicvved the Stokesian recovery exactly), and then 

their dynamic recovery is almost immediately halted as they reach their final plastic 

length Lf/2/?<t > 1. Since the Stokesian model assumes that drops recover to spheres, it 

shows significant deviation for drops exhibiting surface plasticity as t —>

Sears (19S2) indicated that some crude oil-water interfaces exhibited 

pseudoplasticity (shear-thinning), where the apparent surface viscosity decreases with 

increasing shear rate. In the present study, the bitumen surface shear rates are greatest 

when the drop is at its maximum deformation Lo and decrease as the drop recovers 

(examine the slopes in figure 6.8). Insofar as the discrepancy between some of the 

experimental data and the ideal Stokesian recovery increases as the shear rate decreases, 

it may suggest that the apparent viscosity at the bitumen surface increases. However, it is 

not clear whether the observed surface dissipation is of a pseudoplastic nature or whether 

it is due to a mechanism resulting in the permanent plastic deformation (independent of 

any surface viscosity). Surface pseudoplasticity of sodium soap solutions, believed to 

exhibit similar surface characteristics as crude oil-water interfaces (Sears, 1952), has 

been examined using an oscillating disc (torsional pendulum) method, first described by 

Wilson and Reis (1923). The effects of pH and soap concentration on the pseudoplastic 

transition temperature, a temperature above which the surface viscosity is independent of 

shear rate, of these soap films has also been investigated (Sears, 1952; Burcik et al., 

1954; Burcik and Newman, 1957). It may be interesting to investigate the 

thermomechanical properties of bitumen drop-water interfaces in similar regimes.

6.7.8 Lumped parameter surface plasticity model

A rigorous model describing the plastic recovery of extended emulsion drops, 

with surface dissipation incorporated, is exceedingly difficult and beyond the scope of 

this thesis. As a first attempt to describe such a relaxation process, a simple force balance
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model is proposed. In this lumped parameter model, based on the axial length dimension 

L of the drop, it is assumed that a uniform interfacial tension y  is driving the recovery 

process and that all viscous dissipation is due to the bitumen viscosity n  (surface 

dissipation is ignored as a first approximation). The model, including the initial 

condition stating the maximum drop extension Lo, is of the following form

y (L - 2 R d) -  FyRd = —2fjRi L(0) =  L„, (6.1)

where y(L -  2/?<j) is the force driving the recovery of an extended drop to a sphere 2/?<j- 

In the second term of equation 6 .1, Fy is a constant surface stress opposing relaxation and 

represents the irreversible nature of the interface. For a drop exhibiting ideal behaviour 

Fy = 0. The viscous dissipation is provided on the right hand side of equation 6.1. An 

expression for Fy is readily available when a static situation dUdt = 0 at the final drop 

length Lf is considered, giving

F =  y f c -I  ?■*«). (6.2)
y 4

Note that for drops that behave ideally (Fy = 0) Lf = 2/?d, indicating a final spherical 

shape. Equation 6.1 may be integrated in accordance with the initial condition to arrive 

at the following analytical solution,

exp y t
\

2 R ji 2*„

which has been scaled by 2/?d. The exponential term in equation 6.3 describes the 

dynamic, dissipative recovery process between the initial Lo and final Lf drop lengths. A 

consistency check reveals that at / = 0, L = Lo, while as t —> °° the drop recovers to its 

final length Lf. In implementing this lumped parameter model, the equilibrium interfacial 

tension yis obtained from Table 6.1, the bitumen viscosity fx is taken as 1246 Pa s (see 

chapter 5), while Lo and Lf are measured from digitized photographs of drop recovery 

experiments (as discussed in chapters 4 and 5).
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Considering its one-dimensional nature, the lumped parameter model with Fy = 0 

(solid line in figure 6.9) follows the drop dynamics described by the Stokesian model 

(dash-dot line in figure 6.9) quite well for drops exhibiting ideal behaviour. As an 

approximate method, the lumped parameter model appears to capture the basic physics of 

extended drop recovery. In fact, this model (equation 6.3) provides an analytical 

alternative for estimating interfacial tensions via shape recovery experiments (assuming 

the viscosity is known a priori)!

The simple, lumped-parameter model appears to adequately describe the dynamic 

recovery of bitumen drops with plastic surfaces (i.e., those in DIW + M + Ca** systems; 

solid line in figure 6.10). It is apparent that the surface stress term Fy accounts for the 

irreversible plasticity observed at the bitumen drop surface. Thus, despite some evidence 

of surface dissipation, the physics of such a drop recovery can be reasonably described by 

the interfacial tension y  a constant surface stress Fy opposing recovery and the bulk 

viscosity p. Note also that, if this drop were to behave ideally and recover to a sphere, 

the “ideal” lumped parameter model (where Fy = 0; dashed line in figure 6.10) follows 

the relaxation described by the Stokesian model (dotted line, figure 6.10) very well.

6.3.9 Possible mechanism to describe surface plastic behaviour

It is apparent that the presence of both calcium ions and montmorillonite clays 

plays a role in the surface plastic behaviour of bitumen drops. Indeed, the appearance of 

an aqueous montmorillonite slurry changes upon the addition of small amounts of 

calcium, as the clays appear to swell or aggregate (compare the aqueous environments in 

figure 6.6). A possible mechanism accounting for this surface plasticity will now be 

briefly postulated.

This mechanism is based on the assumption that sub-micron calcium- 

montmorillonite (CaM) aggregates can irreversibly21 reside on a (negatively charged) 

bitumen drop surface. Even though montmorillonite is hydrophilic (and may exhibit only 

minimal wetting characteristics), this could be possible since a free cationic site is created 

as the monovalent sodium ions originally associated with the montmorillonite exchange

21 This mechanism assumes that the characteristic shape recovery time is shorter than that involved in the 
CaM adsorption kinetics, thereby inferring that the adsorption of these complexes is somewhat irreversible.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



\ \

•  Experimental data
 Stokesian model
 Lumped parameter model, Fy = 0

_L JL _L ±

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

rt/pLo

Figure 6.9. Comparison of lumped-parameter model to Stokesian approach and 
experimental data for an ideally behaving bitumen drop. In this case, the aqueous phase 
is DIW + M. Time is scaled by a characteristic recovery time while the dynamic 
drop length is scaled by the drop diameter 2/fj. The experimental drop recovery (solid 
circles) is well described by the Stokesian model (dash-dot curve). As a well-defined 
characteristic velocity is available, no fitting is involved in this approach. (The interfacial 
tension is obtained from Table 6.1 and the viscosity of bitumen is 1246 Pa s). 
Considering its simplicity, the ideal lumped-parameter model (equation 6.3), in which Fy 
= 0 (dashed curve), also appears to follow the experimental data quite well. Note that the 
experimental data and the models indicate that drop recovers to a sphere as Lrf2Ra =1.
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Figure 6.10. Comparison of lumped-parameter model to Stokesian approach and 
experimental data for a plastically behaving bitumen drop. Time is scaled by a 
characteristic recovery time fd^/y, while the dynamic drop length is scaled by the drop 
diameter IR^. The experimental data (solid circles) is well described by the lumped 
parameter model (solid curve) as the drops recover to non-spherical shapes Lf/2Rd > 1. 
Note that the recovery described by the lumped parameter model with Fy = 0 (dashed 
curve) closely follows that of the ideal Stokesian model (dash-dot curve). In the models, 
the interfacial tension is obtained from Table 6.1 and the viscosity of bitumen is 1246 
Pa-s, providing a well-defined characteristic velocity (i.e., no fitting involved).
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with divalent calcium ions. However, the surface activity of these complexes is 

apparently low, since the drop interfacial tension remains unchanged upon addition of 

calcium ions to the DIW + M system. (The CaM complexes may not be numerous 

enough to alter the chemical potential and, hence, decrease the interfacial tension.)

As a bitumen drop is extended, CaM complexes adsorb to the freshly created 

interface. Upon release from a micropipette, the extended drop, whose surface is now 

saturated with CaM complexes, begins to recover. As the drop recovers, the surface area 

is compressed, allowing the adsorbed CaM complexes to approach one another. At some 

point, the CaM complexes come into direct contact. These CaM aggregates may be 

somewhat compressible or may shear against one another, accounting for the surface 

dissipation observed in many dynamic experiments. However, they are only 

compressible to a certain state, possibly when core parts of the aggregates hit each other 

and they reach a state of maximum compression. At this point, the drop stops recovering 

even though it is non-spherical, as if the apparent interfacial tension (driving force for 

recovery) is reduced to zero. Clearly, more work is required to provide further validation 

for this proposed mechanism. For example, there are some questions as to the formation, 

and the adsorption nature, of the CaM complexes.

6.4 Conclusions

Novel micropipette techniques have been developed to study the general 

rheological behaviours of emulsion drop surfaces. These experiments involve micron- 

scale stress-strain and shape recovery experiments. In the stress-strain (microcantilever) 

experiments, an individual emulsion drop is elongated and the applied force is measured 

through the deflection of a microcantilever. In the drop shape recovery experiments, the 

dynamic recovery of an extended drop is monitored. This is the first study to examine 

the rheological surface behaviours of bitumen emulsion drops in aqueous environments. 

Phenomenological evidence is provided to document the plastic surface behaviour and 

other surface properties of bitumen drops in aqueous environments containing 

montmorillonite clays and calcium ions. The plastic behaviour of these bitumen drops is 

described by a lumped parameter model that incorporates a surface stress opposing the 

action of the interfacial tension and attributes dissipation to the viscosity of bitumen.
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Chapter 7 
Summary and Recommendations

The material properties of emulsion drops can have significant relevance with 

regard to fundamental emulsion science. As outlined in the Introduction, the objectives 

of this research are to develop techniques to explore the mechanical behaviour of 

individual emulsion drops in situ and to quantify their material properties. In realizing 

these objectives, the main contributions of this study are outlined and recommendations 

for future study are discussed.

7.1 Summary of Contributions

Novel micro-mechanical techniques are developed to directly explore the in situ 

behaviour of single emulsion drops. As such, phenomena due to the '‘smallness” of the 

emulsion drops (e.g., appropriate surface area-to-volume ratio, etc.) are accurately 

reflected in these unique experiments. Individual emulsion drops are deformed by 

micron-scale suction pipettes (micropipettes), which are extruded from standard glass 

capillaries and constructed with a home-made forging apparatus. Using this forging 

device, micropipettes can be shaped into cantilevers (microcantilevers) that allow for 

force measurements during a drop deformation experiment.

The equilibrium mechanics of emulsion drops is observed in static stress-strain 

experiments in which a drop is deformed between a micropipette and a microcantilever. 

The equilibrium drop shape can be calculated, for a given applied force, using the Young- 

Laplace equation. In another technique, the shape dynamics of single emulsion drops is 

monitored (drop shape recovery). Here, an initially spherical drop is extended between 

two micropipettes, then released from one of the micropipettes, and the time-dependent 

recovery of the drop is recorded. It is assumed that this recovery process is driven by the 

tension at the drop surface and rate-limited by the viscosities of the bulk phases. A 

moving boundary Stokes flow model captures the physics of the recovery process very
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well. These static (equilibrium) and dynamic micropipette experiments can be used to 

quantify material properties of emulsion drops in situ.

With respect to material property measurements, these novel techniques address 

limitations of current tensiometers and viscometers. In particular, they are well-suited to 

evaluate the viscosity of highly dissipative liquids and the interfacial tension between 

density-matched phases. In these techniques, small drops are deformed via micropipettes 

and do not rely on gravity for drop deformation (which, in turn, requires density 

differences between the phases), as most traditional tensiometers do. Due to the length 

scale of the micropipettes, viscous heating is virtually non-existent in dynamic 

experiments since the rate of heat conduction is far greater than that for viscous heat 

generation. Thus, the drop shape recovery technique allows for accurate measurements 

of extremely high viscosities ( -  I03 Pa s)22.

This is the first measurement of bitumen-water interfacial tension which does not 

rely on a density difference between the two liquids. The microcantilever technique is 

used to determine bitumen-water interfacial tension as functions of salt (NaCl) 

concentration and pH in the aqueous phase. At low salt concentrations, the bitumen drop 

interfacial tension decreases sharply; it appears to reach an asymptotic value at higher salt 

concentrations. Bitumen-water interfacial tension decreases with increasing alkalinity 

(high pH); this is likely due to the release of natural surfactants from the bitumen in such 

environments. Above pH = 11, the bitumen-water interfacial tension is reduced to a level 

(~ I mN/m) that is below the sensitivity of the current microcantilever technique. In this 

high pH regime, the drop shape recovery technique is ideally-suited for measurement of 

low interfacial tensions; values as low as 0.08 mN/m are recorded.

Using drop shape recovery, bitumen is found to have a viscosity of ~ 1250 Pa s at 

~ 22°C; viscosity data are obtained in regimes where the interfacial tension is known a 

priori from the microcantilever (static) technique. The dynamic shape recovery 

technique is the first to provide measurements of bitumen viscosity in which viscous 

heating is completely negligible.

22 With traditional viscometers, measurement of highly viscous fluids (such as bitumen and polymer melts) 
is a significant challenge due to viscous heating. These devices must be operated at very low shear rates to 
minimize such an effect. In fact, bitumen experiences viscous heating on the order of a few degrees 
centigrade with conventional viscometers (Seyer and Gyte, 1989).
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In addition to the measurements of interfacial tension and bulk properties of 

Newtonian liquids, the micropipette techniques allow one to venture into the study of 

more complex rheological behaviours of interfaces. The microcantilever technique is 

extended to incorporate loading-unloading experiments, while drop shape recovery 

studies can provide additional information on the dynamic behaviour of emulsion drops.

This is the first report detailing the surface plasticity of bitumen drops in aqueous 

environments that are expected to be detrimental to water-based bitumen extraction 

operations. The degree of permanent plastic deformation at the bitumen-water interface 

appears to depend on the maximum deformation of the drop. It is interesting to note that 

moderately deformed drops show no signs of surface plastic behaviour. Shape recovery 

studies indicate that surface dissipation is sometimes observed. As an initial attempt to 

model the plastic behaviour of bitumen drops, a lumped-parameter model is introduced 

and reasonable agreement with experimental data is obtained. This model incorporates 

the interfacial tension, bitumen viscosity, and a constant surface stress which opposes the 

tension. It is suggested that surface plasticity may be attributed to calcium- 

montmorilIonite complexes adsorbed at the drop surface.

7.2 Recommendations for Future Work

In this study, all experiments were conducted at room temperature which, for any 

given experiment, was observed to vary by as much as ± 0.5°C. Reasonable precision 

was obtained for interfacial tension measurements (± 1 mN/m). However, some material 

properties, such as the viscosity, can exhibit significant temperature dependency. 

Therefore, temperature control would improve the precision of these measurements and 

may reduce the ~ 7% standard deviation observed in experiments.

Many industrial processes involving emulsions operate at temperatures and 

pressures that differ from “standard” conditions (i.e., one atmosphere and room 

temperature). For example, secondary and tertiary oil recovery techniques may involve 

pressurized flooding of largely depleted oil reservoirs (see Bond, 1974), in which the 

occurrence of crude oil-water emulsions is very common. Also, although the oil sands 

industry is tending towards lower temperature extraction, some water-based processes, 

such as froth dewatering, must still operate at elevated temperatures of ~ 80°C
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(Czamecki, 2001). Therefore, it is important to adapt the micropipette apparatus to study 

the thermomechanical and pressure-dependent properties of emulsion drops.

Crude oil is extracted from Canadian oil sands by mixing oil sands ore with 

process water, air and various chemicals. The crude oil considered in the present study is 

“coker-feed” bitumen. It has been “cleaned” to remove solids etc. in preparation for 

downstream upgrading processes. As a result, the bitumen used in the present 

experiments is rather refined relative to the indigenous bitumen found in the oil sands 

ore. In addition, due to the variable nature of the oil sands ore and indigenous bitumen, a 

variety of water-soluble species may be released into the process water (which eventually 

gets recycled). Many of these species may not be reflected in the simulated process water 

used in this study. (Also, many industrial demulsifying agents are added in commercial 

oil sands extraction.) Thus, to better represent the emulsions found in water-based oil 

sands extraction processes, it is imperative that material properties of bitumen drops 

obtained from oil sands ore be examined in commercial process waters.

In this study, models were introduced to describe the equilibrium and dynamic 

mechanical behaviours of emulsion drops. These models assumed that the interface was 

completely characterized by a uniform interfacial tension and that the bulk fluids 

displayed Newtonian behaviour. However, in other emulsion systems, the fluid and 

interfacial properties may deviate significantly from these assumptions. For example, 

latex paints are essentially oil-in-water emulsions (Allyn, 1974). In these dispersions, the 

oil drops are polymeric liquids, such as poly(vinyl acetate), which will likely exhibit 

viscoelastic behaviours. In addition, some drop interfaces may be characterized by 

additional properties, such as surface viscosities. (Recall that surface plastic behaviour of 

some bitumen emulsion drops was observed in this study.) It is important to develop 

models that incorporate more complex rheology of the bulk phases and the interface as 

they play crucial roles in the mechanical behaviour of many emulsion systems. This is a 

significant theoretical challenge in that the viscoelastic properties of the bulk phases must 

be coupled to those associated with the drop surface.
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Appendix A 
Thermodynamic Derivation of Equation 2.7

A thermodynamic derivation of the meridional drop curvature /?,"* (equation 2.7) 

is presented. An emulsion drop, with a radius Rd in free aqueous suspension, is being 

stretched by two suction pipettes of radii n  and r-> (figure 2.1). Under an axial force / ,  

the drop is elongated to a length L while maintaining its volume (figure 2.1b). This is a 

reversible (equilibrium) process in which the applied axial load is balanced by the 

capillary forces at the bitumen-water interface. Without the influence of gravity, and 

with the two pipettes aligned along a common z axis as shown in figure 2.1, it is clear that 

the deformed drop will be rotationally symmetric about the same axis. Such a shape can, 

in general, be characterized by cylindrical coordinates ( r , z ) as shown in figure 2.1b. 

The same geometry can alternatively be specified by (5, 0), where s is the curvilinear 

distance (here, measured from z = 0 )  and 0 is the angle between the surface normal and 

the axis of symmetry. These two sets of coordinates are interrelated by

where r ,  z and 0  are implicit functions of s (cf. equations 2.1). When dealing with 

curved fluid-fluid interfaces, it is also important to quantify the local curvatures. With 

axisymmetry, the mean curvature J  of the drop surface, defined as the sum of the two 

principal curvatures, is given by

Consider now an abstraction of the deformed drop as depicted in figure A.I. As 

the two pipettes in figure 2.1 (including the small drop protrusions inside them) behave 

effectively as rigid bodies, they are represented as: (a) an immovable wall on the left, 

corresponding to the reference position z = 0 , and (b) a piston on the right, through 

which an axial force /  can be exerted. The dashed line in figure A.l outlines a 

thermodynamic system consisting of a drop (fluid A), of pressure p \  and volume VK, and

(A.l)

d0  + sin0 
ds r

(A.2)
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Figure A.l. An abstract representation of a stretched drop. The dashed line outlines a 
closed system (i.e., one of constant volume) which nevertheless allows external work be 
done on it through the action of a piston. Here, the drop is elongated by a small amount 
SL  under an external force / ;  the resulting perturbation in interfaciai shape is 
characterized by Sxn and Sxt . The left-hand side of the drop is anchored to an 
immovable wall.
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the remaining domain, composed of fluid B, with corresponding state variables p B and 

V q . A s this represents a general case, the fluids may be regarded as compressible at this 

stage. Such a system, however, is considered closed in that the total volume VA + Vb 

must remain constant. (The piston stem is assumed to occupy zero volume.) 

Nevertheless, mechanical work can still be done on the system via the action of the 

piston. Let SL  be a small displacement of the piston under the external force / ;  the 

external work done on the system is therefore

SwM = f - S L .  (A.3)

Owing to the movement of the piston, there will be perturbations of the drop shape. As 

depicted in figure A.l, the normal and tangential components of the surface 

displacements are denoted <5xn(s) and Sx t(s) , respectively. These geometric variations 

in turn lead to small changes in the interfaciai area and the two individual volumes, 

represented here as S A , SV\  and <5VB. Remembering that the total volume of a closed 

system must be constant, it is necessary that

<^a+<5Vb = 0 .  (A.4)

At constant temperature, the variations S A , <5V\ and AVB will give rise to a small 

change in the Helmholtz free energy F of the system according to (Hunter, 1986)

SF = y S A - p A SVA- p B SVB, 

where y  is the interfaciai tension between bitumen and the surrounding aqueous phase. 

Using equation A.4, the above expression simplifies to

SF = y -S A - A p S V A, (A.5)

where Ap is defined as pA- p B- Provided the deformation process in figure A.l is 

isothermal (dT = 0), and given that the system is closed [<?(VA + VB) = 0], the variation 

in Helmholtz free energy, S F , must equal the external mechanical work £wcxt 

performed on the system. Combining equations A.3 and A.5, we have

/ -SL = y  SA-Ap SVA. (A.6)

Equation A.6 expresses equality between the free energy variation S F  and the virtual 

external work Swext. Continuing, first consider the term -Ap • <SVA in equation A.6. It is 

noted that, for small geometric perturbations, the change in volume is the sum of every
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(elemental area x normal displacement). From figure A.l, it is clear that the variation in 

volume is SVA=nr22 ■ <5L+J <Sc„dA, and hence

-&p-SVx = - j" (Ap - Sxn)dA-7tr22&p ■ SL . (A.7)

Next, the term y-SA in equation A.6 is evaluated. Given the general displacement fields 

Sxa(s) and Sxs(s) , it can be shown, using methods of differential geometry (Green and 

Zema, 1968) that every elemental area d A is dilated by a factor 

I d (r Sx )
-----------Z  +  J  a •r  d s

The variation in interfaciai energy is thus

dA.

Recognizing that, for axisymmetric geometries, an elemental area is given by 

d A = 2nr  d s , the above equation can be written as

y-SA = 2njyd(rSxs) + j  ( y J S x J d A .

Integrating the first term by parts, one has

y SA = 2Jt{yr r& j^ jd s+ J  ( y / < S t n)dA

= 2x{yr-Sxi )2+ j  jdA,

where the boundary terms at 1 and 2 correspond to z = 0 and z - L ,  respectively. As 

point 1 is attached to an immovable wall, (<£c,), = 0 . At the other end, (<&,), is related to

SL  through (<$ts)2 = <S.sin02, i.e., (&s)2 is the tangential projection of S L .  One 

therefore has

y-SA = 2/rjr.sin02 • SL+j* f yJ  ■ Sxa — • Sx%dA. (A.8)

Substituting equations A.7 and A.8 into equation A.6, one arrives at equation A.9:

f  d y '\f+nr2 -Sp-2mrzsm 0, • y\-SL - J  ^(yf-Ap) • Sxa- Sx. dA=0, (A.9)
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where the integral is over the entire interfaciai surface and 0 2 is the angle 0 at z = L . 

Since the only geometric constraint, up to this point, is the invariance of the total volume 

Va + V'b, the variations S L , Sxn and Sx% must remain independent and arbitrary; in 

particular, they may assume any non-zero value. Consequently, to satisfy equation A.9, it 

is therefore required that

f+ m S  Ap-2m'2sin02 y = 0 (A. 10a)

bp = yJ  (A. 10b)

- j-= 0 . (A. 10c)
ds

Equation A. 10c points to the fact that, at thermodynamic equilibrium, no tension gradient 

can exist on the interfaciai plane. Equation A. 10b is the familiar Young-Laplace 

equation (cf. equation 1.1). Note that in the absence of hydrostatic gradients (i.e., at low 

Bond numbers), the pressure difference Ap  across the interface must be uniform over the

drop surface. As y is also uniform (equation A. 10c), it follows from the Young-Laplace 

equation that the elongated drop shape is one of constant mean curvature given by the 

ratio J  = A p/y. An expression for J  can be obtained from equation A. 10a, which is a 

statement of axial force balance at the boundary. By rearranging equation A. 10a, one has

y = A p / r  =  ^ - ^ .  ( A 1 1 )
r, n r{y

Combining equations A .ll and A.2, the principal curvature in the s direction 

(equation 2.7) is given by

d0
dv

2sin 02 f
^ . (A. 12)

r, nrz y

The second term on the right hand side of equation A. 12 i s / t ‘(cf. equation 2.2). 

Equations A.l and A. 12 comprise three ordinary differential equations which specify the 

deformed drop shape. In practice, they must be solved simultaneously, according to the 

appropriate boundary conditions, by numerical means (Appendix B).
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Appendix B 
Axisymmetric Equilibrium Shape Analysis: Numerical Code

In chapter 2, a numerical procedure is required to simultaneously solve equations

2.6 and 2.7. The axisymmetry of the drop is described by equations 2.6, while equation

2.7 is a statement of the Young-Laplace relation (equation 1.1), which expresses the 

equilibrium mechanics of the drop. In addition to these equations, the drop volume V is 

tracked, and maintained constant, through the following differential equation

= ;zr2sin0; y(0) = 0. (B.l)
dr

In equation B.l. the variables are as defined in figure 2.1b. The numerical code (ds5.m) 

is written in Matlab (version S.2) and invokes a shooting method, Runge-Kutta 

integration and Newton’s method (numerically evaluated). The program requires an input 

of the drop, pipette, and cantilever diameters (in pm) and produces an output files (*.out) 

containing the dimensionless drop deflection and force values, and the drop contour at a 

given force.

^program dsS.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Theoretical drop shape and drop deflection for an applied force are determined by solving the following 
% 5 ODE's. found in dsSeqn.m:
%
% dt’/ds=2*sin(t)/Rc-f/(pi*RcA2*s)-sin(tVr
% dr/ds=cos(0
% dz/ds=sin(0
% dA/ds=2*pi*r % additional ODE not required for solution
% dV/ds=pi*rA2*sin(0
%
% where t=initial angle, f=local angle,r=local radius,z=axial position A=area. V=volume, and s=local arc 
% length. All variables except t, fare  dimensionless
%

Variables:
% Dc - cantilever diameter (um)
% Dd - drop diameter (um) 

delta-drop deflection (-)
% Dp - pipette diameter (um)
% f - applied force (-)
% J - numerical Jacobian, wrt dt and dsf 
% n - next guess for arc length (sf,ssf) and initial angle (t,tt)
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%R - residual vector, calculated in jacob.m 
% Rc - cantilever radius (-) = Dc/Dd 
% Rd - drop radius (-) = Dd/Dd
% Rp - dimensionless radius of the pipette, relative to drop diameter 
% S - arc length output vector (-)
% sf - end of drop arc, end of integration (-)
% so - start of drop curve, start of integration (-)
% t - drop angle at so (rad)
% t2 - spherical drop angle at cantilever (rad)
% V - initial drop volume (-)
%Y - output matrix corresponding to vector S (Y(:,l)=t, Y(:,2)=r,
% Y(:,3)=z, Y(:,4)=A, and Y(:,5)=V)
%y o -  initial conditions vector for integration (y( l)=t,y(2)=Rc,
% y(3)=zo.y(4)=A(0),y(5)=V(0))
% zo - axial length between pipettes when drop is spherical (•)
%
% Requires functions jacobS.m, dsSeqn.m 
% Written by Kevin Moran, November 1998, in Matlab 5.2. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Rp f t m V Rc so sf R

[file,path]=uigetfileC*.DAT’, Load Experimental Geometric Data'); 
if file -= 0 ,

fid = fopen(file,’0 ;
G = fscanf(fid.'%g’.[2.15]); 
expdata=G’;

end

fiip=input(Enter the upper limit for dimensionless force

Dd=input(Enter the drop diameter (um): ");
Dp=input(Enter the pipette inner diameter (um): *);
Dc=input(Enter the cantilever inner diameter (um): *);

Rp=Dp/Dd; Rc=Dc/Dd; Rd=Dd/Dd; %

R=l; %

zo=sqrt((Rd-RpA2))+sqrt((Rd-RcA2)); %
t=asin(Rp); %
t2=asin(Rc);

V=4/3*pi-pi/3*((cos(t))A3-3*cos(t)+(cos(t2))A3-3*cos(t2)+4); % Correction to drop volume

j= 1 uleltaO ^^CjH^U^; 
tol=le-8; 
so=0; sf=2.5; 
sspan=[0;2.5];
options=odeset(’AbsTor.le-8);

step=(fiip-0.01)/12; 
for f=0.01:slep:fup

while norm(R)>tol
sspan=[0;sf); 
yo=[t RpOOO]’;
[S,Y]=ode45(’ds5eqn’,sspan,yo,options);
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i=length(Y);
n=jacobS; % new guess for next Newton’s method iteration
sf=n(l);
t=n(2);

end

F(J)=f
delta(j)=Y(i,3)-zo;

j=j+i;
sf=S(i); % initial guess for next force iteration
t=Y( I, I ); % initial guess for next force iteration
R=l;

end

plot(delta»F); ylabel(Dimensionless Force1); xlabeK'delta/Rd*)
T=[delta\F’];
YY=[Y(:,3),Y(:,2)];

[file,path)=uiputfile(’*.out\'Save the Output Data”); % save force-drop deformation data
if file-=0

eval([’save ’,path,file,’T -ascii*))
end

[file.path]=uiputfile(’*.txt’,’Save the Output Data*); % save drop shape contour data (at given 0
if file~=0

eval([’save ’.path,file,’ YY -ascii*]) 
end % end program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function g=dsSeqn(s,y)
%%%%%%%%%%%%%%<&%%%%%%%%%%%%%%%%%%%%%%%'&%%%%%%'&%%%%% 
% Calculates the S ODE's as required by dsS.m 
%
% Variables:
% f - applied force (-)
% Rp - dimensionless radius of the pippette, relative to drop diameter 
% t - drop angle at so (rad)
% y - variable's vector (y(l)=t,y(2)=Rc,y(3)=z,y(4)=A.y(5)=V)
%
% Required in program dsS.m
% Written by Kevin Moran. NovemberI998, in Matlab 5.2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global f  Rp t m

g( l)=2*sin(t)/Rp-f7(pi*RpA2)-sin(y(l))/y(2);
g(2)=cos(y(l));
g(3)=sin(y( 1));
g(4)=2*pi*y(2);
g(5)=pi*y(2)A2*sin(y( 1));
i=g';
%end subprogram ds5eqn..m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function n=jacobS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Newton's Method is employed to generate the next guess for the arc length and initial angle of every 
% drop. In this program the required Jacobian (ds5eqn2 wrt sf and t) is calculated numerically.
%
% Variables:
% dsf- perturbation of sf (-)
% dt - perturbation of initial angle (rad)
% f - applied force (-)
% J - numerical Jacobian, wrt dt and dsf 
% n - next guess for arc length (sf,ssf) and initial angle (t,tt)
% Rr Jlv-Rc and volume residuals (-)
% Rc - cantilever radius (-)
% Rp - dimensionless radius of the pippette, relative to drop diameter 
% sf,ssf-end of drop arc, end of integration (-)
% so - start of drop curve, start of integration (-)
% t.tt- drop angle at so (rad)
% V - initial drop volume (-)
%
% Required in function dsS.m, Requires use of function ds5eqn2.m 
% Written by Kevin Moran. November 1998, in Matlab 5.2. 
%&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Rp f t V Rc so sf R; global tt m 
dsf=le-7;dt=le-7;
tt=ones( l,3);ssf=ones( 1,3);Rr=ones( 1,3);Rv=ones( 1,3);

tt(l)=t; ssf(l)=sf; % initial guesses
options=odeset( 'AbsT ol \  le-8); 
for m=l:3

sspan=[so;ssf(m)]; 
yo=[tt(m) Rp 0 0 0]’;
[S,Y]=ode45('dsSeqn2’,sspan,yo,options);
i=length(Y);

Rr(m)=abs(Y(i,2)-Rc);
Rv(m)=abs(Y(i,5)-V);

if m = l
m=m+l;
ssf( m)=ssf( m-1 )+dsf; 
tt(m)=tt(m-l); 

elseif m = 2
m=m+l;
tt(m)=tt(m-l)+dt;
ssf(m)=ssf(m-2);

end
end

J( 1,1 )=(Rr(2)-Rr( 1 ))/dsf; J( 1,2)=(Rr(3)-Rr( 1 ))/dt;
J(2,1 )=(Rv(2)-Rv( 1 ))/dsf; J(2,2)=(Rv(3)-Rv(l))/dt;

R=[Rr(l)dlv(I)]; 
n=[ssf( l);tt( 1)];
n=n-inv(J)*R; %end subprogram jacob5.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function g=ds5eqn2(s,y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculates the S ODe's as required for numerical calculation of the Jacobian in jacobS.m within dsS.m
%
% Variables:
%
% f -  applied force (-)
% Rp - dimensionless radius of the pippette, relative to drop diameter 
% tt - drop angle at so (rad)
% y - variables vector (y(l)=t,y(2)=Rc,y(3)=z,y(4)=A,y(5)=V)
%
% Required in function jacob5.m
% Written by Kevin Moran. November 1998, in Matlab 5.2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global f Rp tt m

g( l)=2*sin(tt(m))/Rp-f/(pi*RpA2)-sin(y( l))/y(2);
g(2)=cos(y(l));
g(3)=sin(y(l));
g(4)=2*pi*y(2);
g(5)=pi*y(2)A2*sin(y(l));
g=g’;
% end subprogram ds5eqn2.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix C 
Calculating the Microcantilever Stiffness

C.1 Description

The stiffness of a microcantilever is given by k b = F0/ S h, where F0 is an axial 

(pulling) force applied at the tip of the cantilever, and S h is the resulting horizontal 

deflection. A mechanical abstraction of the microcantilever pipette is shown in figure 

C .l. For axial loading, the short segment at the end of the cantilever does not contribute 

to the overall flexibility and can therefore be neglected when evaluating beam 

deflections. The remaining L-shaped structure is clamped at point A and supported by a 

vertical force at B; an axial load F0, considered a known quantity, is applied at point C. 

As indicated in figure 2.3, the vertical reaction force at the elbow (point B in figure C.l) 

results from resting the cantilever elbow on a solid surface. The rigid clamp at A, 

however, does not exist in reality; it represents a local cross section whose diameter is 

large enough for the beam to be considered immovable. With regard to axial dimensions, 

the vertical length Lz is based on actual design of the cantilever ( Lz is typically 3 to 6

mm). The horizontal length L i , on the other hand, can be arbitrary as long as the beam

diameter at A exceeds -100pm. This criterion for choosing point A is verified a 

posteriori by the invariance of the beam stiffness for different values of L ,. A free body

diagram of the cantilever is shown in figure C.2. The support system, as shown, is 

statically indeterminate with a redundancy of unity. Here, “redundancy’' is the number of 

supports which can be removed without resulting in collapse of the structure as a rigid 

body (Crandall et al., 1972). The reaction force FB, as yet an indeterminate quantity, is 

required for ensuring zero vertical deflection at B. To prevent rigid body rotation, the 

bending moment at A must be

Ma = FB L x -  F0 Lz . (C.1)
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redundancy = 1

u

7 ^ L ^ L r

A |

Figure C .l. A mechanical abstraction of the microcantilever (cf. figure 2.3). Although 
shown here as a uniform beam, the cross section can vary along the axial direction. The 
support at B represents a vertical reaction force, while F0 is the axial load. The structure, 
as depicted here, is a statically indeterminate system of redundancy one.
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F 0

Figure C.2. Free body diagram of the structure shown in figure C .l. FB is, as yet, an 
indeterminate force which ensures zero vertical deflection at point B.
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Next, the L-shaped structure in figure A.2 is conceptually divided into two straight 

members of lengths L, and L2 as depicted in figure C.3. The transverse deflections of

these straight members, denoted z, and z2, are assumed to be much smaller than their 

corresponding beam lengths. As such, the familiar moment-curvature relation for slender 

beams can be applied (Crandall et al., 1972):

Af, and /, are, respectively, the bending moment (N m) and moment of inertia (m4) of 

member / , and E is the Young’s modulus for glass (0.7x10“ Pa).

The beam deflections z, are obtained by integrating equation C.2. In general, 

both Af, and /, can vary along the axial directions (i.e., they are functions of x t ). Using 

free body diagrams, it is easy to show that the bending moments in the two members are

Note that at the two ends of the microcantilever, we have Af, (0) = Af A and 

Af,(L: ) = 0 , as expected. Next, the moment of inertia /  of a hollow cylinder (cross 

section of the cantilever) is given by

In view of the variable cross section (i.e., tapering) of the cantilever, the value of I will 

vary considerably along the axial direction. It is a curious observation that, for a tapered 

capillary formed by heat extrusion, the inner and outer diameters always maintain a 

constant ratio throughout its entire length -  from the initial millimeter-sized tubing down 

to the micron-sized tip. In this study, the value ft  = 0.6 is observed at all cross sections. 

Finally, to obtain /  from equation C.4, it is necessary to know the beam profile, i.e., the 

variation of the outer diameter 2 rM along the axial coordinates .t, and x2. In practice, 

beam diameters are measured at discrete locations (typically ten measurements for each 

straight member) and intermediate values are obtained by cubic spline interpolation. 

Knowing Af. (in terms of the forces F0 and FB; see equation C.3) and /, (based on the

Af,(x,) = FBL1(l-x I/L 1) - F 0LI 
M 2(x2) = -F 0L2a ~ x J  L2).

(C.3)

(C.4)
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B - L
Zi

Xl

Figure C.3. Dividing the cantilever into two straight members, with coordinates as 
defined. The moment-curvature relation for slender beams (equation C.2) can now be 
applied to each individual member for evaluation of deflections.
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measured beam profile), equation C.2 can now be integrated numerically. Assuming the 

clamp at point A and the right-angle elbow at point B are both rigid,23 initial conditions 

for the moment-curvature relations are

dz,z, = 0 and —-  = 0 at x, = 0 
dx,

dz,
z, = 0 and — -  = 0 at x, = 0. 

dx,

(C.5)

=  - (z2)c + L2 (C.6)

With these starting conditions, the two moment-curvature relations (equations C.2) are 

integrated numerically from point A to point B for member 1, and from B to C for 

member 2. Neglecting terms of second order in the displacements, the horizontal 

deflection at point C is given by

'd z A
, d * .J b

while the vertical deflection at B is given by

<?, = - ( Z |) B- (C.7)

Recall the beam deflection problem, as posed, has a redundancy of unity. The 

indeterminate variable FB can now be obtained from equation C.7 through an iterative 

process; i.e., for a prescribed axial force F0 (which is chosen rather arbitrarily), we find 

the value FB which gives a vanishing S , . Having satisfied S v = 0 at point B, the beam 

stiffness is finally obtained from the expression

K  = F J S „  .

The cantilever stiffness is calculated numerically using a Matlab (version S.2) 

program (beam2s5.m) that requires geometric dimensions of the microcantilever 

(diameter at various axial locations). The ordinary differential equations (equation C.2) 

generated for each beam of the cantilever are contained in subprograms; eqnh2s5.m for 

the horizontal member L\ (figure C .l) and eqnvsS.m for the vertical member Li (figure 

C.l).

23 More precisely, a “rigid elbow” means the lines tangent to the two members intersect at 90°.
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C.2 Computer Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% program beam2s5.m
%%%%%%%%%%%%%%%%%%%%<&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculates the stiffness (kb) of a cantilever system consisting of two beams of concentric rings with 
% tapering diameters. In this case, the "elbow" of the cantilever is resting against a solid support.
% This program:
% a) requires two input files, 1st column=axial position (mm),
% 2nd column=beam outer diameter (microns)
% b) approximates the beam profiles through the use of cubic splines
% introduced in matlab functions eqnh2sS.m and eqnvsS.m
% c) solves the following ODE's using Runge-Kutta technique (4/Sth order):
%
% dA2(deflection)/(dx)A2 = M/(E*I)
%
% where I is the moment of inertia and is equal to
%
% I = PI/4*(outer radius )A4*( l-nuA4)
%
% and M is the bending moment and is equal to
%
% M = fb*L 1 *( 1 -x/L 1 )-Mo for the horizontal beam
% M = -Mo*(l-xxv/Lo) for the vertical beam
%
% d) requires the use of two Matlab functions, eqnh2s5.m and eqnvsS.m
% containing the above equations
%
% Variables:
% a - ratio of total/maximum vertical to horizontal deflection
% delh - total/maximum horizontal deflection (cm)
% delv - maximum vertical deflection, ie. at beam joint (cm)
% E - Young’s modulus (dyne/cmA2)
% fb - reaction force as horizontal beam is pressed against wall (dyne)
% fo - applied force at end of cantilever, @ xxv=Lo (dyne)
% Lo - length of vertical beam/cantilever (cm)
% kb - stiffness of cantilever (dyne/cm, mN/m)
% Mo - moment at stiff end of horizontal beam, @ xxh=0 (dyne/cm)
% nu - ratio of inner-to-outer diameter of beams
% rrh - radius of horizontal beam @ xxh (cm)
% rrv - radius of vertical beam @ xxv (cm)
% xxh • corrected axial coordinate for horizontal beam (cm)
% xxv - axial coordinate for vertical beam (cm)
% Y - col( 1) vertical deflection in horizontal beam at position Xh (cm)
% coi(2) slope of deflection in horizontal beam at Xh
% Z - col( 1) horizontal deflection in vertical beam at position Xv (cm)
% col(2) slope of deflection in vertical beam at Xh
% Written by Kevin Moran, November 1998, in Matlab 5.2. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Mo Lo nu E xxh xxv rrh rrv fb LI j

% Define Constants 
fo=le-4;% applied force (dyne)
nu=0.6; % ratio of outer-to-inner diameter of cantilever
E=0.7el2; % Young’s modulus for glass (dync/cmA2)
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% Read beam profile data from two data files 
[file,path]=uigetfile('*.txt',Load the Horizontal Beam Data*); 
if file ~= 0,

fid = fopen(file,’0 ;
F = fscanf(fid,'%g\[2,20]); 
datah=F';
[file,path]=uigetfile('*.txt’,Load the Vertical Beam Data*); 
if file ~=0.

fid = fopenffile.r1);
F = fscanf(fid,'%g’,[2,20]); 
datav=F’;

end;
end;

% Convert raw data into cgs units and correct axes alignment 
dh=datah(:,2)/le4; xh=datah(:,l)/10; 
i=length(xh); k=i; 
for j=l:i-l

xxh(j)=xh(i)-xh(k); 
ddh(j)=dh(k); 
k=k-1;

end
xxh(i)=xh(i); ddh(i)=dh(l);

ddv=datav(:,2)/le4; xxv=datav(:,l)/10; 
ii=length(xxv); k=ii;

rrh=ddh/2; rrv=ddv/2; % Convert diameters to radii

Lo=xxv(ii); % length of vertical beam (cantilever)
Ll=xxh(i); % length of horizontal beam
Mo=fo*Lo; % Moment at rigid part of beam one (xxh=0)

% Initial conditions, limits of integration and Implement the Runge-Kutta scheme to solve the ODE's
% eqnh2s5.m for beam one (horizontal):

fb=zeros( 1,50);v=zeros( 1^1);

j=I; tol=le-16; fb(j)=0.5*fo; v(j)=-le-6; 
xho=0; xhf=xxh(i);xs=[xho;xhf]; 
odetol=odeset(RelTol’, le-8); 
yo=[0 01’; 
while abs(v(j))>tol

[Xh,Y]=ode45('eqnh2s5',xs,yo,odetol);
i=length(Y);
j=j+i;
v(j)=Y(i,l);
b=v(j)*v(j-l);
ifb<0

j=j-2;
break

end
fb(j)=fb<j-1 )+0.02*fo;

end
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while abs(Y(i,l))>tol
j=j+i;
ftKi)=fb<J-1 )-v<J)/(( va)-v<J* 1 ))/(fb<J-l)-fba-2)));
[Xh,Y]=ode45(’eqnh2s5’,xs,yo,odetol);
i=length(Y);
v ( j+ l)= Y (i,l) ;

% Initial conditions, limits of integration and Implement the Runge-Kutta scheme to solve the ODE's in 
% eqnvsS.m for beam two (vertical):

xvo=0; xvf=xxv(ii); zo=[0 O]’;xsv=[xvo;xxv(ii)];
[Xv,Z]=ode45( 'eqn vs5 \xsv,zo,odetol); 
ii=length(Z);

% Calculate the horizontal deflection (cm)

delh=-(Z(ii, 1 )+Lo* Y(i,2));

% Calculate the vertical deflection (cm)

de!v=-Y(i,l);

% Find the beam constant/stiffness (kb - dyne/cm, nN/um) 

kb=fo/delh;

% Find the ratio of vertical to horizontal deflection (a) 

a=de!v/delh;

% end program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function f=eqnh2s5(x,y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function evaluates a set of ordinary differential equations required for a horizontal beam. Here 
% f represents the first differential of y with respect to axial position. To be used with beam2s5.m and 
% ode4S.m or ode23.m. The outer radius of the horizontal beam is approximated through a cubic spline, 
% evaluated at x. In this case the "elbow" of the cantilever is resting against a solid support.
%
% The second order differential equation to be solved is:
%
% dA2(Y)/(dx)A2 = M/(E*I)
% where I is the moment of inertia and is equal to
% I = PI/4*(outer radius)A4*( 1 -nuA4)
% and M is the bending moment and is equal to
% M = fb*Ll*(l-x/Ll)-Mo
%
% Variables:
%
% E - Young s modulus (dyne/cmA2)
% Lo - length of vertical beam/cantilever (cm)
% Mo - moment at stiff end of horizontal beam, @ xxh=0 (dyne/cm)
% nu - ratio of inner-to-outer diameter of beams
% r - outer radius of horizontal beam at x
% rrh - outer radius of beam at position xxh (cm)
% x - axial position (cm)
% xxh - axial position, for use with rrh (cm)
% y - vertical deflection at x (cm)

% Required in program beam2s5.m 
% Written by Kevin Moran, November1998, in Matlab 5.2. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Mo xxh rrh nu E fb LI j

r=spline(xxh,rrh,x); % outer radius of beam at position xxh 
PI=3.141592653589793;

% Definition of the individual equations of the set of ODE's 
f(l)=y(2);
f(2)=( fb(j)*L 1 *( 1 -x/L 1 )-Mo)/(E*PI/4*rA4*( 1 -nuA4)); 
f=f;
% end subprogram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function g=eqnvs5(w,z)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function evaluates a set of ordinary differential equations required for a vertical beam. Here 
% g represents the first differential of z with respect to axial position. To be used with beam2s5.m and 
% ode45.m. The outer radius of the vertical beam is approximated through a cubic spline, evaluated at w.
%
% The second order differential equation to be solved is:
%
% dA2(Z)/(dw)A2 = M/(E*I)
% where I is the moment of inertia and is equal to
% I = PI/4*(outer radius)A4*( 1 -nuA4)
% and M is the bending moment and is equal to
% M = -Mo*(l-w/Lo)
% Variables:
%
% E - Young’s modulus (dyne/cmA2)
% Lo - length of vertical beam/cantilever (cm)
% Mo - moment at stiff end of horizontal beam, @ xxh=0 (dyne/cm)
% nu - ratio of inner-to-outer diameter of beams
% q - outer radius of horizontal beam at w (cm)
% rrv - radius of vertical beam at xxv (cm)
% w - axial position (cm)
% xxv - axial position, to be used with rrv (cm)
% z - horizontal deflection of vertical beam at w (cm)
%
% Required in program beam2s5.m 
% Written by Kevin Moran, November 1998, in Matlab 5.2. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Mo xxv rrv Lo nu E

q=spline(xxv,rrv,w); % outer radius of beam at position xxv 
PI=3.141592653589793;

% Definition of the individual equations of the set of ODE’s 

g(l)=z(2);
g(2)=-Mo*( l-w/Lo)/(E*PI/4*qA4*( l-nuA4)); 
g=g’;
% end subprogram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix D 
Calculating the Mean Curvature J and Transformation 

Angle ys.

D .l Local Drop Curvature J

In describing the mechanics of drops, the local curvature is important as evident 

in the Young-Laplace relation (Young, 180S; Laplace, 1806; see equation 1.1). In the 

Stokesian model discussed in chapter 4, numerical evaluation of the local curvature J  is 

required. In the following, a simple method to represent the curvature in terms of the 

curvilinear coordinates (r, z, s; see figure 4.1) at any location is described through 

geometric derivatives of the drop shape.

First, note that the drop curvature J may be represented in general by

y = i + i ’ (D-i>

in which Ri and Rz are the principal radii of curvature in the meridional and azimuthal 

directions for an axisymmetric shape. As noted in chapter 2, these principal radii of 

curvature can be expressed in terms of curvilinear geometry (cf. equations 2.2). These 

equations are rewritten here for clarity,

J_  _ J _  _ sin^
/?, d s  ’ R1 r

In this representation, the angle 0 is that between the axis of symmetry (z axis) and a 

vector normal to the drop surface at curvilinear distance s (figure 4.1). This angle is 

expressed, in terms of trigonometric functions, as derivatives of the local drop geometry:

dr dzcos0 -  — ; sin0 = — . (D.3)
d s ds

Although an appropriate form for the radius of curvature Rz is readily available from the 

second of these equations, further derivation is still required to give Ri (cf. the first of 

equations D.2). Note that derivatives of equations D.3 with respect to s give
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Now, by multiplying equation D.4a by (-sin0), equation D.4b by (cos0), and summing 

these products, one arrives at

00 ■ ■ dV (D.5)( , , \ dd d 'z  d*r
cos'^ + sin '^)-— = cos0— -  -  sin0— -.

ds ds* ds*

Recalling equations D.3 and the trigonometric identity cos20 + sin20 =1, the following

(D.6)

such that the local curvature at any point on an axisymmetric drop surface is given by

(D.7)

relation for radius of curvature Ri is obtained

1 _ dr d2z dz d2r
~R{ ~ dJ d ? ” ~ d i  d!7

_ dr d 'z  _  dz d*r + 1 dz 
ds ds2 ds ds2 r ds

In equation D.7, the first two terms on the right hand side represent l/Ri and the last term 

gives the azimuthal curvature I /Rz-

Equation D.7 allows for the evaluation of the local drop curvature in terms of the 

geometric variables r, z, and s. For numerical calculations, however, the derivatives must 

be represented by finite difference equations. In the present analysis, the following finite 

difference formulas, at the 1th nodal point, are used

ds /» 2
r Agi+l + AS. ^

As,i+l A5:

d g 2 f -
ds2V . (Asi+1 + Asj) As;>

(D.8)

in which g represents the appropriate dependent variable (r, z), Agi = (g§ -  g;-i) and As* = 

(s, -  Sj.i). In this manner, the local drop curvature (equation D.7) is calculated in the 

boundary least squares analysis of the Stokesian model described in chapter 4.
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D.2 Transformation Angle iff

The transformation angle if/ is defined as that between the R coordinate and a 

vector normal to the drop surface at curvilinear location s (figure 4.1). This angle is 

important to the Stokesian model as it describes the transformation required to represent 

both the capillary stresses and the hydrodynamic stresses at any arbitrary drop surface in 

spherical coordinates (R, 0). In this model, it is desired to give trigonometric functions 

of iff in terms of the curvilinear coordinates (r, z, s) for use in equations 4.3 and 4.5.

The angle 0 is represented above with trigonometric functions in terms of the 

desired curvilinear coordinates (equations D.3). In a similar fashion, the spherical 

coordinate 0 (figure 4.1) may be given by

cos# =
>fr*

sin# =
+ z*

(D.9)
+ z~

where the denominator is an expression of the spherical coordinate R (figure 4.1).

The angle if/ may be described in terms of the other two angles previously 

discussed, 0and 0, using trigonometric addition formulae such that

cos^ = s in 0 s in #  — c o s^ c o s# ; 
sin^r = s in ^ c o s#  + cos 0 - sin#. (D.IO)

noting that if/ = Tl — (0  + 0 ). Invoking equations D.3 and equations D.9 allows for 

equations D.IO to be represented in terms of the desired curvilinear coordinates, giving

COSlff =

sin^  =

1 ' dz _  d r '1 
ds ds

yfr* + z*
r dz dr^

Z  + r ----
ds dsv J

(D.ll)

The geometric derivatives in the above equations are handled numerically using the 

appropriate finite difference formula (equations D.8). In this study, equations D .ll are 

used in the evaluation of the stresses at any point (r, z) on the drop surface in the 

boundary least squares analysis of the Stokesian model.
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Appendix E 
Variational Solution to the Stokesian Model

The Stokesian model described in chapter 4 involves evaluating series solutions 

for the velocity and pressure fields within the drop by optimizing the series coefficients. 

In such an analysis, the partial derivative of an error functional (equation 4.9) is expanded 

in a first order Taylor series to give

de
da.

/■ \  0£
da. JO

f  ^  \d £
da.da.

ai = 0 , (E.l)

where, for simplicity, the first partial derivative is evaluated at {a} = 0. As these 

equations represent a linear system, an iterative procedure is not required and the 

optimized coefficients at will result upon inverting equations E.l. As such, the partial 

derivatives given in equations E.l may be expressed, directly from equations 4.9 as

i i )
da. = 2f

d(g»-o,) + r d(<T.-g.)

da. da.
r d s , (E.2)

and

d2e
datda- = 2J

d(g«-g») 3(g,-g,,)| 3(ge-ge)

dax dai dax da}

+ ^(“ r - “r )  ! d(u0 —ug) d(q0 - u g)
da. dai da. da.

rds  = 0.

(E.3)

The individual terms in the above equations are, with the exception of the capillary stress 

terms (7r, T0; see equations 4.3), functions of the coefficient set an = {/7, Bz, Cz, Dz, An, 

Bn, Cn, D„}, for n > 2. These coefficients are implicit to the velocity and pressure field
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series solutions (equations 4.6 and 4.7). Each of the partial derivative terms in equations 

E.2 and E.3 are now expanded in terms of this coefficient set. In the following, these 

derivatives will be presented in groups according to the coefficient in which the 

derivation is respect to, beginning with 77.

Partial derivatives with respect to 17

d K - g n )
3/7

= -c o s  y (E.4a)

a(o'a Q*e 
a/7 = -  sin y/ (E.4b)

3(“r ~ “ r) = 0 
a/7

(E.4c)

^(“e ~ “8) = o
a/7

(E.4d)

Partial derivatives with respect to Bz

(E.5a)

—— - = 3juR 4 [cos0 s in ^ - s in 0  cos^] 
oB-,

(E.5b)

(E.5c)

d fa  -«e) _ K_
BB, 2

* 3 ft sin 0
(E.5d)
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Partial derivatives with respect to Cz

 ̂ = 3/^[2cos0 co s^  + sin0*s/n^] (E.6a)

^  = 3/iR -[si>i0-cos^-cos0-sin^] (E.6b)

= - R '2 cosO (E.6c)
dC2

B(u° ~ u») = 2R2sinO (E.6d)
8C,

Partial derivatives with respect to Dz

= —3 jiR '2cos0 cosiff (E.7a)
dD2

8^ ~ <T9̂  = 0 (E.7b)
oDz

^ “R ~ “R  ̂ = R lcos0 (E.7c)
3D,

8K .~ “e) = -  —  sin 0  (E.7d)
3D, 2
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Partial derivatives with respect to A„, n > 2

^  = 2pRai
3A

n (n -  2)——  • sin iff -  (n -  2)Pa , -cos iff 
sin#

-  2) • -  • cos iff —( (/i — l)- -  r i  7n cos # V\
sin# ^ ^ 1 -co s  #

/?n_l s in^

3 ( « r - M r ) _  o n - 2  „

“ a *  *  p-

sin#

Partial derivatives with respect to Bn,rt> 2

dfo  ^r) = -OnR-*-1
dB.

(« + l ) # n-l COS^ + (/I2 - l )  ^ 2 -
sin#

= 2/7/r"

[ "^n-i —(« — 0* r n-^ V , l ' sin iff — (n~ — l)’ • cosy
^ 1-cos"#  j  sm#

3 ( “ r - “ r )  _
=  R ~ ° ~ l P .

3fl„ n - t

3 ( m q K q  )  _  ^ n  '  7 n

30. sin#
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(E.8a)

(E.8b)

(E.8c)

(E.8d)

(E.9a)

(E.9b)

(E.9c)

(E.9d)



Partial derivatives with respect to Ca,rt> 2

dC sin#
sm ^  —

n" -3 /i -1  
n -1

P ^ C O S l f f

= 2^ n' ‘ac„

(in2 - l ) -  cosy/ 4-
sin# n - l  l-co s* #

■sin^r

3 ( “ r  ~ “ r )  =  _ R n

ac„ n̂-1

ac. sin#

Partial derivatives with respect to D„, n> 2

d ^ a p  gR  ̂ = ~ 2^ R "
nz + n - 3

n
•Pn_, c o s ^  + / i ( / i - 2 ) - — s i n ^ r

sin#

= 2*JT
3D.

(n -3 )
f / i - i

n
p  - —
* n - I

/„  COS#

1-cos*#
sin iff -  n(/i -  2) — 2— • cos iff 

sin #

d(“R - “R) = n-n+l p
ap„

f)C sin#
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(E. 10a)

(E. 10b)

(E. 10c) 

(E.lOd)

(E.l la)

(E.l lb)

(E .llc) 

(E.l Id)



In the partial derivatives (equations E.4 to E.11), all variables are as defined in 

chapter 4. The Legendre polynomials (of the first kind) /V i in these equations are in 

terms of c o s# , such that P\ = cos#, Pi = (l/4)(l+3cos(2#)), etc. These functions are 

evaluated using the following recurrence formula (Spiegel, 1991)

(/i + l)-Pn+1 + nPnA = (2/» + l ) c o s # P n . (E.12)

As such, any Legendre polynomial at n+ 1 in the series may be computed from known 

values at n and n-l. The Gegenbauer functions (of the first kind) /„ appearing in the 

partial derivatives (equations E.8 to E. l l )  can be deduced from the corresponding 

Legendre polynomials since (Happel and Brenner, 1973)

i .  = lV ~ f ’ - <E i 3 >2 / 1 - 1

The boundary least squares analysis is used to optimize the series coefficients a„ 

to solve the moving boundary Stokesian model describing the recovery of an 

axisymmetrically elongated drop. The numerical code is presented in Appendix F.
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Appendix F 
Boundary Least Squares Analysis: Numerical Code

In chapter 4, a variational technique is used to numerically solve a moving 

boundary Stokesian model describing the recovery of an axisymmetrically stretched 

emulsion drop. The boundary least squares method, outlined in detail in Appendix E, 

involves inverting a linear system of equations (equations E .l) to optimize unknown 

coefficients in exact series solutions to the Stokesian model. The numerical code, written 

in Visual Fortran, is presented in this Appendix. A “canned” routine (subroutine 

“gaussj”) is implemented to ultimately solve equations E.l by Gauss-Jordan elimination 

techniques (Press et al„ 1992).

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
PROGRAM viscio
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

IMPLICIT REAL*8 (a-h,o-z)
DIMENSION z(200).r(200),s(200),RR(200). P(100),G(100),

* dPRb(200).dPTb(200),deo(200),sdeo(200).Tdeo(200),d2e(200.200).
* sd2e(200,200),Td2e(400,400).vr(200).vz(200),A(200) JD(3201),
* TT (3201 ),dvR(200),d vT (200).DJ(200)

INTEGER i j,l,m,n
REAL*8 t,dr,dz,d2r,d2z,CJ,st,ct,sp,cp,V,pi,dt,MIU.Min

OPEN(unit=3,file=iscigar.txt'.status='old') ! input file describing the initial shape of the drop 
OPEN (UNTT=7, FILE=1tcig.txt\ STATUS=UNKNOWN’)
OPEN (UNIT=9, FILE= zrcig.txt', STATUS=UNKNOWN)

PRINT *,ENTER FINAL TIME 1 
READ *,tf

MIU=0.1d0 !0.1d0 ! outer viscosity
Min=l.d0 !0.0ld0 ! inner viscosity
i=76 ! i=4*N-4, N =number of terms:

PI,C232JD2,An,Cn3nJDn...
pi=3.141592653589793d0
j j=  181 ! number of nodes in shape profile
j=l

DO 81 n=l,jj
READ(3,*) z(n), r(n)
z(n)=z(n)
r(n)=r(n)

81 CONTINUE
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dt=0.025d0
DO 100 t=0.d0,tf+.9*dt,dt ! time step incrementing

V=0.0d0 
s(l)=0.0d0 
DO 101 n=2Jj

s(n)=s(n-1 )+dsqrt((r(n)-r(n-1 ))**2+(z(n)-z(n-1 ))**2)
101 CONTINUE 

DO 102 n=ljj
RR(n)=dsqrt(z(n)*z(n)+r(n)*r(n))

102 CONTINUE 
DO 98 1=1, i 
Tdeo(l)=0.d0 
sdeo(l)=0.d0

DO 99 m=l,i 
Td2e(l,m)=0.d0

sd2e(l,m)=0.d0 
99 CONTINUE
98 CONTINUE

DO 103 n=2jj-l
CALL LGl(n,i,z.RR,P,G) ! calculate Legendre and Gegenbauer polynomials
CALL FD(n,z,r,s.dr,dz,d2r,d2z) ! calculate finite differences in geometry
CJ=dr*d2z-dz*d2r+dz/r(n) ! calculate local shape curvature
DJ(n)=CJ
st=r(n)/RR(n)
ct=z(n)/RR(n)
sp=( z( n) *dz+r( n) *dr)/RR( n)
cp=(r(n)*dz-z(n)*dr)/RR(n)

! calculate partial differentials, equations E4-E11
CALL PD(RR,ct,st,cp,sp,i,G,P,n.MIU,Min,dPRb,dPTb.dvR,dvT)
DO 104 1=1,i

deo(l)=CJ*(cp*dPRb(l)+sp*dPTb(I))*r(n) 
Tdeo(l)=Tdeo(l)-(sdeo(l)+deo(l))/2.d0*(s(n)-s(n-l)) 

b/c need -Tdeo into gaussj subroutine 
sdeo(l)=deo(l)
DO 105 m=l.i

d2e(m,l)=(dPRb(l)*dPRb(m)+dPTb(l)*dPTb(m)+dvR(l)*dvR(m) 
* +dvT(l)*dvT(m))*r(n)

Td2e(m,l)=Td2e(m,l)+(sd2e(m.l)+d2e(m,l))/2.d0*(s(n)-s(n-l»
sd2e(m,l)=d2e(m,l)

105 CONTINUE
104 CONTINUE

! calculate volume to monitor continuity 
V=V+pi/3.d0*(z(n)-z(n-l))*(r(n-l)**2+r(n)*r(n)+r(n)*r(n-l))

103 CONTINUE ! location (nodal) incrementing

DO 106 1=1,i
Tdeo(l)=Tdeo(l)-(deo(l)+0.d0)/2.d0*(s(n)-s(n-1))
DO 107 m=l,i

Td2e(m,l)=Td2e(m,l)+(d2e(m,l)+0.dO)/2.dO*(s(n)-s(n-l))
107 CONTINUE
106 CONTINUE
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CALL gaussj(Td2e,Tdeo,i,400) ! gaussj - solve for unknown coefficient vector 
CALL VEL(Tdeo,i,RR,r,zjj,vr,vz) ! vel - solve velocities and increment shape

D(j)=(z(ij)-z( 1)) ■ vector of length of drop along axisymmetric axis at time t
TT(j)=t ! vector of corresponding time

j=j+l

PRINT *,t,VJ)(j-l)
! write z,r data at t=tf to file

IF (t.ge.tf-0.005d0) then 
DO 901 n=L jj

WRITE(9,200) z(n),r(n),s(n)/s(jj- l)JDJ(n)
901 CONTINUE

print *, "z.r data written to file at t=\ tf

compute dt for final step if tf <t+dt
endif

IF ((t.gt.tf-dt+0.001).and.(t.lt.tf-0.001)) then 
dt=tf-t
print *, the new dt increment is dt = dt

endif

! increment shape (to give new shape at t+dt) for next iteration
DO 108 n=l j j

z(n)=z(n)+vz(n)*dt 
r(n)=r(n)+vr(n)*dt 

108 CONTINUE

100 continue ! time incrementing

DO 900 n=l j - l
WRITE(7,200) TT(n),D(n)

900 CONTINUE 
STOP

200 FORMAT (4(f 19.16. IX))
999 format (3(dl7.10,lx),i3)

END lend of program

I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
SUBROUTINE LGl(n.i,z.RRJ,,G)
IMPLICIT REAL*8 (a-h,o-z)
INTEGER i.l.n
DIMENSION z(200) jlR(200)d*( 100),G( 100)
P(l)=z(n)/RR(n)
G(l)=-P(l)
1=2
P(2)=((2*l-1 )*P( 1)*P(I-1 )-(l-1 ))/(I+0.d0)
G(2)=0.5d0*( 1 .d0-P( 1 )**2)
DO 11 l=3,(i+4)/4

P(I)=((2*l-l)*P(l)*P(l-l)-(l-l)*P(l-2))/(l+0.d0)
G(l)=(P(l-2)-P(l))/(2*l-1 .d0)

11 CONTINUE 
RETURN 
END
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i n n  H t i n m i i n f t n n n i i i i i H H t n i n i t H i i n n n t i i i i H H i M i i i i t M f i i f  H H H i i t i i i i H t i t i n i H t i H M H H M H i m i H i M H i i i

SUBROUTINE FD(n,z,r,s,dr,dz,d2r,d2z)
IMPLICIT REAL*8 (a-h,o-z)
DIMENSION z(200),r(200),s(200)
INTEGER n
REAL*8 dr,dz,d2r,d2z
dr=(0.5d0)*((r(n+L)-r(n))/(s(n+L)-s(n))+(r(n)-r(n-l))

* /(s(n)-s(n-l)))
dz=(0.5d0)*((z(n+1 )-z(n))/(s(n+1 )-s(n))+(z(n)-z(n-1))

* /(s(n)-s(n-l)))
d2r=2.d0/(s(n+1 )-s(n-1 ))*((r(n+1 )-r(n))

* /(s(n+l)-s(n))-(r(n)-r(n-l))/(s(n)-s(n-1)))
d2z=2.d0/(s(n+ l)-s(n-1 ))*((z(n+1 )-z(n))

* /(s(n+1 )-s(n))-(z(n)-z(n-1 »/(s(n)-s(n-1)))
RETURN
END

SUBROUTINE PD(RR,ct.st,cp,sp,i.G.P,n,MIU,Min,dPRb.dPTb,dvR,dvT)
IMPLICIT REAL*8 (a-h.o-z)
DIMENSION RR(200),dPRb(200),dPTb(200).G( 100) 100),dvR(200),dvT(200)
INTEGER i,m,n,l
REAL*8 ct,st,cp.sp,MIU,Min

dPRb(l)=-Min*cp
IwrtPI

dPRb(2)=3.dO*Min*RR(n)’,‘(2.dO*ct*cp+st*sp) !wrt C2
dPRb(3)=-3.dO*MIU*RR(n)**(-4)*(2.dO*ct1''cp+st*sp) !wrt B2
dPRb(4)=-3.dO*MIU*RR(n)**(-2)*ct*cp !wrt D2

dPTb( I )=-Min*sp ! wrt pi
dPTb(2)=3.dO*Min*RR(n)*(st*cp+4.dO*ct*sp) !wrt C2
dPTb(3)=3.dO*MIU*RR(n)**(-4)*(ct*sp-st*cp) !wrt B2
dPTb(4)=0.d0 !wrt D2

dvR(l)=0.d0
dvR(2)=-RR(n)*RR(n)*ct
dvR(3)=RR(n)**(-3)*ct
dvR(4)=ct/RR(n)

dvT(l)=0.d0
dvT(2)=2.dO*RR(n)*RR(n)*st
dvT(3)=RR(n)**(-3)/2.d0*st
dvT(4)=-st/(RR(n)*2.dO)

!wrt PI 
!wrtC2 
!wrt B2 
!wrt D2

IwrtPI 
Iwrt C2 
Iwrt B2 
Iwrt D2

w=3.0d0
1=3
DO 12 m=5,i-3,4

dPRb(m)=2.dO*Min*RR(n)**(l-3)*(l*(l-2)*G(l)
/st*sp-(l-2)*P(l-l)*cp)
dPRb(m+l)=2.dO*Min*RR(n)**(l-l)*((l*I-l)*G(l)/st*sp 
-(l*l-3*l- L )/(l-1 .dO)*P(l- L )*cp)
dPRb{m+2)=-2.dO*MIU*RR(n)**(-l-2)*((l+l)*P(l-l)*cp
+(I*I-l)*G(l)/st*sp)
dPRb(m+3)=-2.d0*MIU’*RR(n)**(-l)*((I*l+l-3)/(l+0.d0)*P(l-l)*cp
+I*(l-2)*G(I)/st*sp)

Iwrt Aw 

Iwrt Cw 

I wrt Bw 

I wrt Dw
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*
dPTb(m)=2.d0*Min*RR(n)**(l-3)*(l*(l-2)*G(l)/st*cp+((l-l) 
*P(I-1 )-l*G(l)*ct/( 1 ,dO-ct*ct))*sp) !wrt Aw

*
dPTb(m+1 )=2.d0*Min*RR(n)**(l-l)*((t*l-1 )*G(l)/st*cp+(l*(l+2) 
/(I-1 .dO)*P(l-1 )-(l+2)*G(l)*ct/( 1 .d0-ct*ct))*sp) IwrtCw

*
dPTb(in+2)=2.dO*MIU*RR(n)**(-l-2)*((l*P(l-1 Ml-1 )*G(I) 
*ct/( I .dO-ct*ct))*sp-(l*l-1 )*G(l)/st*cp) !wrt Bw

*
dPTb(m+3)=2.d0*MIU*RR(n)**(-l)*((l-3)*((l-l)/(I+0.d0)*P(l-l) 
-G(l)*ct/( 1 .dO-ct*ct))*sp-l*(l-2)*G(l)/st*cp) !wrt Dw

dvR(m)=-RR(n)**(l-2)*P(l-l) Iwrt Aw
dvR(m+ l)=-RR(n)**(l)*P(l-1) IwrtCw
dvR(m+2)=RR(n)**(-l-l)*P(l-l) Iwrt Bw
dvR(m+3)=RR(n)**(-l+ l)*P(l-l) Iwrt Dw

dvT(m)=l*RR(n)**(l-2)*G(l)/st Iwrt Aw
dvT(m+1 )=(l+2)*RR(n)**(l)*G(l)/st Iwrt Cw
dvT(m+2)=(l-1 )*RR(n)**(-l-1 )*G(l)/st Iwrt Bw
dvT(m+3)=(l-3)*RR(n)**(-l+l)*G(l)/st Iwrt Dw

! w=w+l.dO
1= 1 + 1

12 CONTINUE 
RETURN 
END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
SUBROUTINE VEL(A.i,RR.r,zjj,vr,vz)
IMPLICIT REAL*8 (a-h,o-z)
DIMENSION RR(200),r(200),z(200),G( 100)P( I00).vr(200),vz(200).

* A(100)
INTEGER i.j jj,m
REAL*8 ct,st,cp,sp. w.vRn, vvRn, vTn,vvT n,vT ns, vvT ns 
DO 70 j=l jj

vRn=0.d0
vTn=0.d0
vTns=0.d0
CALL LG 1 (j ,i,z,RR,P,G) 

w=3.d0
st=r(j)/RR(j)
ct=z(j)/RR(j)
DO 71 k=5,i-3.4

vvRn=(A(k)*RR(j)**(w-2.dO)+A(k+l)*RR(j)*,»w)*P(w-l.dO) 
vvTns=(w*A(k)*RR(j)**(w-2.d0)+(w+2.d0)*A( k+l)*RR(j)**w)*G(w) 

if (j.eq.l) then
wTn=0.d0 

elseif (j-eq.jj) then 
vvTn=0.d0 

else
vvTn=(w*A(k)*RR(j)**(w-2.d0)+(w+2.d0)*A(k+l)*RR(j)**w)*G(w)/st

endif
vRn=vRn+vvRn 
vT ns=vT ns+v vT ns 
vTn=vTn+vvTn 
w=w+1 ,d0

71 CONTINUE
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vz(j)=(-A(2)*RR(j)**2*ct-vRn)*ct-(2.dO*A(2)*RR(j)**2
* *st*st+vTns) 

vr(j)=(-A(2)*RR(j)**2*ct-vRn)*st+(2.dO*A(2)*RR(j)**2
* *st+vTn)*ct 

70 CONTINUE
RETURN
END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE gaussj(a,b,n,np) 

c modified from Numerical Recipes (2nd ed) pp.30-31 
implicit real*8(a-h,o-z)

INTEGER n.np.NMAX 
REAL*8 a(np,np).b(np)
PARAMETER (NMAX=400)
INTEGER i,icol,irowj,k,l,ll,indxc(NMAX),indxr(NMAX),ipiv(NMAX)
REAL*8 big,dum,pivinv 
do 11 j=l,n 

ipiv(j)=0
11 continue 

do 22 i=l,n
big=0.d0 
do 13j=l,n 

if(ipiv(j).ne.l)then 
do 12 k=l,n 

if (ipiv(k).eq.O) then 
if (dabs(a(j.k)).ge.big)then 
big=dabs(a(j.k)) 
irow=j 
icol=k 

endif
else if (ipiv(k).gt.l) then 

pause singular matrix in gaussj' 
endif

12 continue 
endif

13 continue
ipi v( icol)=ipiv(icol)+1 
if (irow.ne.icol) then 
do 14 l=l,nn 
dum=a(irow,l) 
a(irow.l)=a(icol,l) 
a(icol,l)=dum

14 continue 
dum=b(irow) 
b(irow)=b(icol) 
b(icol)=dum

endif
indxr(i)=irow
indxc(i)=icol
if (a(icol,icol).eq.0.d0> pause singular matrix in GAUSSJ* 
pivinv=l.d0/a(icol,icol) 
a(icol,icol)=l.dO 
do 16 1=1,n 

a(icol,I)=a(icol,l)*pivinv 
16 continue

b(icol)=b(icol)*pivinv
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do 21 !I=l,n 
if(ll.ne.icol)then 
dum=a(ll,icol) 
a(ll,icol)=0.d0 
do 18 1=1,n 

a(ll,l)=a(ll,l)-a(icol,l)*dum
18 continue

b(ll)=b(ll)-b(icol)*dum
endif

21 continue
22 continue

do 24 l=n,l,-l 
if(indxr(l).ne.indxc(l))then 
do 23 k=l,n 

dum=a(k,indxr(l)) 
a(k,indxr(l))=a(k,indxc(l)) 
a(k,indxc(l))=dum

23 continue 
endif

24 continue 
return 
END

M t l M M I M U f M M t M t M M M t M M f l M I M M I f M M M M M M M M M I M M t l M M M I M M M M I I M I M I I M M M M I M M M
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Appendix G 
Numerical Approximation of Initial Extended Drop Shapes

The variational solution to the Stokesian model introduced in chapter 4 requires, 

as an input, the initial maximum shape of the extended drop under consideration. This 

shape is initially obtained from digitized photographs of the drop, by noting its contour, 

at a recovery time of t = 0 seconds. In the interest of simplifying the experimental 

procedure, relatively few contour data points are collected (typically less than SO) and 

recorded in cylindrical coordinates (r, z). However, it is necessary to provide many more 

nodal points to ensure that the numerical procedure is robust. The shape contour must be 

continuous and twice differentiable for the calculation of the drop mean curvature J 

(Appendix D). This continuity is accomplished by approximating the drop shape with an 

appropriate function.

Due to the axisymmetric nature of the drop recovery experiments, it is necessary 

that the fitted contour have an infinite slope at the axis of symmetry. Previous studies 

examining recoveries of drops, that were initially cylindrical (with hemispherical 

endcaps), fitted axisymmetric contours with cubic spline functions (Stone and Leal, 

1989a). However, due to the unusual drop shapes observed in the present study (all drops 

display an inflection point in their contours), a cubic spline provides a poor representation 

and an alternate function is introduced. The computer program used to fit the 

experimental drop shapes follows the description of this function.

G .l Description

To begin, consider the following transformation £  to describe the drop contour

c  = —  -  1, (G.l)
A)

where Lo is the maximum axial length of the drop (at time t = 0 seconds) and R is a 

spherical coordinate (figure 4.1). Note that as the drop contour intersects the axis of
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symmetry, where R = O.SLo, 0. To satisfy the condition of infinite contour slopes at 

intersections with the axis of symmetry, this transformation must be constrained by

Equation G.2 clearly shows the advantage of the transformation function (equation G .l) 

in that the slopes at the 0  = 0  and n  (corresponding to the points at which the drop 

contour intersects the axis of symmetry) are now defined.

Note that at any point i on the drop contour can be described in spherical 

coordinates in terms of the cylindrical coordinates r and z.

A typical experimental drop contour is shown in figure G .l (circles). Due to the 

axisymmetric nature of the drop, only the half-contour (r > 0) is required. In addition, a 

discretized equation G.l is plotted (circles) for the same contour data points (figure G.2).

To better represent the drop contour in a continuous fashion, the transformation 

function (equation G .l) is expanded in a Fourier sine series, such that at each point /,

where Oj are constants to be determined. These constants may be solved for through the 

following function that assesses the deviation between the observed points and the 

series approximation 4>„

By expanding the partial derivative of this function (with respect to the unknown 

coefficients) in a first order Taylor series, this linear set of equations may be easily 

solved. However, the solution must incorporate the constraints (equations G.2) to ensure
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at 0  = 0,7C. (G.2)

0, = arccos — — — 
. *  .

(G.3a,b)

(G.4)

(G.5)
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0.0

-0.5

- 1.0

Figure G .l. Initial drop contour. Experimental data (solid symbols) depicting the drop 
contour is obtained in relatively few data points. This shape contour is then fit using a 
Fourier sine series (equation G.4) of a transformation function (equation G .l) and 
replotted (solid line) as a continuous function (equation G.9).

•  Experimental data 
  Equation G.9

- 1.0 -0.5 0.0 0.5 1.0

d Lo

1S8
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e
r*

0.1

0.0 #  Experimental data Q 

  Fourier series fit O
- 0.1

- 0.2

-0.3

-0.4

-0.5

- 0.6
0.0 0.5 1.0 1.5 2.0 2.5 3.0

6  (radians)

Figure G.2. Drop contour transformation function. The discretized transformation 
function £  is plotted as a function of 9. Experimental data (solid symbols) is transformed 
by a discretized equation G .l. The Fourier sine series fit d> (equation G.4) of the 
transformed experimental data indicates excellent agreement. This fit is optimized by 
recognizing boundary conditions stating that the slope of 4> is zero at 9 -  0  and m

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the appropriate conditions are observed. Thus, a modified function that must be 

minimized is introduced to allow for these constraints, giving

e = £ + ^,G, + AjG,, (G.6)

where X\ and Xx are Lagrange multipliers. The functions G\ and Gx represent the two 

constraints (equations G.2) and are given as series solutions in terms of the unknowns a},

C, = ^ ( ° )  = 5 > ,  =

G2 = =  = 0 - ( G 7 )

As such, a system of linear algebraic equations may be set up allowing for the solution of 

the unknown constants. This linear system is of the following form

d2e
da da

dGt 
da 
dG , 
dam

8C, dG, \  
da dan n

0 0

0 0

f  f  i  \  ^de
da

0

0

(G.8)

In this set of equations, '  de
da

V m
is evaluated at {a} = 0 in order to simplify the equations.

Once the constants aj are uniquely determined, a continuous equation G.4 may be 

constructed over the range 0 <0 < Jt (solid line in figure G.2). The continuous drop 

contour is calculated from the following equation,

/? = —  
2

1 + Xa,s in( /0) (G.9)

in which {a} are the optimized coefficients in the Fourier sine series (equation G.4). A 

typical fit of the drop contour is shown as the solid line in figure G.l. This continuous 

contour is then discretized into 181 nodal points (in cylindrical coordinates r, z) for input 

into the boundary least squares solution for the Stokesian model (chapter 4).
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G.2 Computer Code

The fitting procedure described above is implemented with a computer program 
written in Matlab.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% getshape
% Program getshape.m inputs axisymmetric drop shape data and produces a continuous description of such 
% a shape contour.
%Written by Kevin Moran in Matlab V.5.2. March, 2000.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<$>%%<%>%%

% Read experimental input data
[file,path]=uigetfile(**.TXT’,Load Experimental Geometric Shape Data); 
if file -=  0.

fid = fopen(file,V);
G = fscanf( fid, %g ',[2,200]); 
expdata=G’;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dimensionalize input data to give rr, zz
L=abs((expdata<length(expdata),l)-expdata(l,l»); % length L of major (axisymmetric) axis
ttt=abs((expdata(length(expdata).I)-expdata( 1,1 ))/L); % cosine of incidence angle with z axis

zz=(expdata(:,l)/ttt-(min(expdata(:.l)/ttt)))/L; % rescale length of drop on z axis
rr=abs((expdata(:,2)-expdata( 1,2)))/L; % r coordinate of drop
rr=rr-rr(length(zz))*(zz-zz( 1 ))/(zz(length(zz))-zz( 1)); % correction to r for incidence angle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Transformation function and reexpress rr, zz data
z0=max(zz)/2; %define a reference point
RR=sqrt((zz-z0).A2+rr.A2); % spherical coordinate relative to zO
th=acos((z0-zz)VRR); %angle between RR and z axis
phi=RR/z0-1; ^transformation function phi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Approximate transformation function via Fourier sine series and solve for sine series coefficients a 
j= 10; %# of terms in Fourier approximation of phi
dd2e=zeros(j-t-2);dde=zeros(j-»-2,1);
% calculate dd2e matrix and dde vector 
for m=l:j 

dd2e(m,j+l)=m; 
dd2e(m j+2)=m*(-1 )Am; 
for i=l:length(zz)

dde(m)=dde(m)-phi(i)*sin(m*th(i));
end
for n=l:j 

dd2e(j+l.n)=n; 
dd2e(j+2,n)=n*( -1 )An; 
for i=l:length(zz) 

dd2e(m,n)=dd2e(m,n)+sin(m*th(i))*sin(n*th(i)); 
end 

end 
end
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% Calculate a (coefficients in Fourier sine series) vector by matrix inversion
a=dd2e\(-dde) % solve linear equations for a vector
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate spherical coordinate R from a and Fourier sine series function pphi 
Rsum=0;tth=0:pi/180:pi; 
for m=l:j

Rsum=RsuirB-a(m)*sin(m*tth); % a(m) from FS series approximation
end
R=zO*( 1+Rsum);

pphi=R/zO-l’; 
plot( th.phi, ’+ ’.tth.pphi)

% Calculate new ‘continuous’ coordinates r, z from Fourier series approximation
r=R.*sin(tth);
z=zO-R. *cos(tth)-1;

zz=zz-l; 
plot(zz,rr,'+',z,r) 
g(:,l)= z'; 
g(:,2)= r’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Write new contour coordinates to file 
[File,path]=uiputfile(”*.txt','Save the Shape Data*); 
if file~=0

eval(['save '.path,file,' g -ascii'])
end
%%%%%%%%%%%%%%%%%%%%%%%•%>%%%%%%%%%%%%%%%%%%%%%%%%%%%
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