
Quantum Loop Algebras, Yangians and their Representations

by

Patrick Conner

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

Department of Mathematical and Statistical Sciences
University of Alberta

© Patrick Conner, 2014



Abstract

Among representation theorists, it is well known that Yangians can be realized as some type

of degenerate form of quantum loop algebras. What is not well known is precisely how this

degeneration takes place. In the first part of this thesis, we will demonstrate explicitly the

process by which certain quantum loop algebras related to the Lie algebras glN , oN and spN

degenerate into an associated Yangian. In the second part, we will prove a theorem which

classifies all of the finite dimensional irreducible representations of Yangians over complex

semisimple Lie algebras.
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Introduction

We begin in Chapter 1 by precisely defining certain Yangians and quantum loop algebras

associated to the Lie algebras glN , oN and spN , and we will give a brief overview some

of their most important properties. The Yangian and quantum loop algebra associated to

glN are examples of quantized enveloping algebras, which are quantum groups that can be

attached to certain finite or infinite dimensional Lie algebras. In particular, they are Hopf

algebras, which contain as coideal subalgebras the twisted Yangians and twisted quantum

loop algebras over oN and spN discussed below. These objects have been of importance

in mathematical physics over the last 30 years or so. As we shall see, they share many

properties in common with their associated Lie algebras, particularly with regard to their

representation theories.

After drawing some of these connections, we will move on to Chapter 2, where we give

an outline of some recent important papers which prove a statement by Drinfeld about how

Yangians can be realized as some kind of limit form of quantum loop algebras. The fact

that quantum loop algebras degenerate into Yangians was already well known in some vague

sense prior to the publication of these papers, but the precise details were unknown except

possibly to a few experts. The particular algebras treated in those papers differ from those

discussed here, but we shall see that similar ideas can be used to prove analogous results

in our case: we will construct an explicit isomorphism for the glN case in Chapter 3, and

then show how this same isomorphism can be used to treat the twisted orthogonal and

symplectic cases in Chapters 4 and 5, respectively.

Finally, in Chapter 6 we move on to a topic which is independent of the previous chapters.

Namely, we will provide a complete statement and proof of a theorem which classifies all of

the finite dimensional irreducible representations of Yangians over complex semisimple Lie

algebras. This result is very reminiscent of the classification theorem for the Lie algebra

itself; it asserts that such representations are parametrized by monic polynomials over C,

and these polynomials keep track of certain ’weights’ with respect to the action of some

commutative subalgebra. Given the above relationship between Yangians and quantum

loop algebras, it is unsurprising that a similar result is true for the latter. A proof of the

classification of finite dimensional irreducible representations of quantum loop algebras was

published in the 1990’s, but a complete proof has never appeared for Yangians. This chapter

therefore serves to fill a gap in the literature.
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Throughout this thesis, it is assumed that the reader has a modest understanding of the

theory of complex semisimple Lie algebras and their representations. One can refer to the

books [9] and [10] for this theory.
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Chapter 1

Preliminaries

The contents of this chapter come primarily from [11] and [12]. Full justification for all the

results that follow may be found therein, but we state the majority of it without proof.

1.1 Yangian for glN

Definition 1.1 The Yangian for glN is the unital associative algebra over C generated by

{t(r)ij | 1 ≤ i, j ≤ N, r ∈ Z+} where t
(0)
ij = δij, with defining relations given by

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il . (1.1)

We denote this algebra by Y (glN ). More generally, the Yangian can be defined as an

algebra over C[h] by introducing a factor of h on the right hand side of (1.1). In this case,

we denote the Yangian by Yh(glN ). The following proposition illustrates that these two

definitions are equivalent.

Proposition 1.1 Given any nonzero a ∈ C, the map t
(r)
ij 7→ art

(r)
ij yields an isomorphism

Yh(glN )/(h− a)
∼−→ Yh(glN )/(h− 1) = Y (glN ).

Note that we can express the defining relations (1.1) in a more compact way by using

formal power series. For each i, j, let tij(u) =
∑∞

r=0 t
(r)
ij u

−r ∈ Y (glN )[[u−1]]. Then (1.1) is

equivalent to the relation

(u− v)[tij(u), tkl(v)] = tkj(u)til(v)− tkj(v)til(u). (1.2)

To recover (1.1), just compare the coefficients of u−rv−s on each side of (1.2). Here, u and v

are formal variables which commute with each other and also with every element of Y (glN ).

If we multiply each side of (1.2) by the series
∑∞

p=0 u
−p−1vp, we deduce that we can

also express (1.1) in the following way:

Proposition 1.2 Relation (1.1) is equivalent to the system of equations given by

[t
(r)
ij , t

(s)
kl ] =

min{r,s}∑
a=1

(
t
(a−1)
kj t

(r+s−a)
il − t(r+s−a)

kj t
(a−1)
il

)
. (1.3)
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Let us now outline some notation which will be useful throughout. Suppose that A is

some associative algebra, and let T (u) be any element of EndC(CN ) ⊗ A[[u−1]]. We can

write T (u) in the form

T (u) =
∑
i,j

Eij ⊗Xij(u)

for some Xij(u) ∈ A[[u−1]], where Eij is the usual elementary matrix. If m is any

fixed positive integer, then for any a ∈ {1, . . . ,m}, we denote by Ta(u) the element of

EndC(CN )⊗m ⊗A[[u−1]] which corresponds to T (u) with the Eij terms occupying the a’th

copy of EndC(CN ); that is,

Ta(u) =
∑
i,j

1⊗(a−1) ⊗ Eij ⊗ 1⊗(m−a) ⊗Xij(u)

where 1 is the N ×N identity matrix. Similarly, for any C ∈ EndC(CN ) ⊗ EndC(CN ), we

may write

C =
∑
i,j,k,l

cijklEij ⊗ Ekl

for some cijkl ∈ C, and for any a, b ∈ {1, . . . ,m} with a < b, we define the element

Cab ∈ EndC(CN )⊗m by

Cab =
∑
i,j,k,l

cijkl1
⊗(a−1) ⊗ Eij ⊗ 1⊗(b−a−1) ⊗ Ekl ⊗ 1⊗(m−b).

When N is even, we shall use a prime to denote the involution on the set of indices

{1, . . . , N} given by

i′ =

{
i− 1 i even
i+ 1 i odd.

Finally, if a(u) ∈ A[[u−1]] and b(u) ∈ B[[u−1]] where A and B are arbitrary associative

algebras, then assignments of the form

A −→ B

a(u) 7→ b(u) (1.4)

will be understood as the map which sends each coefficient from a(u) to the corresponding

coefficient from b(u). Meanwhile, if A(u) = [Aij(u)] ∈ Mn(A)[[u−1]] and B(u) = [Bij(u)] ∈
Mn(B)[[u−1]], then the assignment

A −→ B

A(u) 7→ B(u) (1.5)

means that for each i, j, Aij(u) 7→ Bij(u) in accordance with (1.4).
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The defining relation (1.1) is commonly presented in terms of a matrix equation. Let

T (u) =

N∑
i,j=1

Eij ⊗ tij(u) ∈ EndC(CN )⊗ Y (glN )[[u−1]].

Note that we can regard T (u) as the n × n matrix whose ij’th entry is tij(u). In

particular, we can break up this matrix into a power series in u−1, the coefficient of u−r

being the matrix whose ij’th entry is t
(r)
ij . Observe that the constant term of this power

series is the identity matrix, hence this series has an inverse which we denote by T−1(u);

see (1.12) below.

Define the Yang R-matrix

R(u) = 1− h
N∑

i,j=1

Eij ⊗ Ejiu−1 (1.6)

where we have used 1 as shorthand for 1⊗ 1 ∈ EndC(CN )⊗EndC(CN ). This matrix is the

simplest nontrivial solution to the Yang-Baxter Equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u). (1.7)

This is an important equation in mathematical physics, and generating its solutions was

the main motivation behind the discovery of Yangians, quantum loop algebras and other

so-called quantum groups.

It will also be useful to introduce the ’transposed’ Yangian R-matrix

Rt(u) := 1− h
N∑

i,j=1

Eij ⊗ Eiju−1. (1.8)

Proposition 1.3 The defining relation (1.1) is equivalent to the matrix equation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) (1.9)

where we have identified R(u−v) with the element R(u−v)⊗1 ∈ EndC(CN )⊗2⊗Y (glN )(u, v).

Equation (1.9) is called the RTT relation for Y (glN ). To obtain (1.1) from (1.9), simply

apply the left and right hand sides to the elements ej ⊗ el ⊗ 1 ∈ CN ⊗ CN ⊗ Y (glN ) and

then compare Y (glN )-coefficients. But it is often more convenient to work with the RTT

relation and other such matrix equations for the Yangians, especially for studying their

representations and in particular when working with maps of the form (1.5).

The representation theory of Y (glN ) is closely related to that of the Lie algebra glN ,

and one indication of this is the fact that relation (1.1) can actually be found within the

universal enveloping algebra U(glN ) (after replacing the t
(r)
ij by certain elements from the

enveloping algebra); in fact, we can view U(glN ) as a subalgebra of Y (glN ) via the embedding

Eij ↪→ t
(1)
ij . Moreover, the map

πN : tij(u) 7→ δij + Eiju
−1 (1.10)
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is a surjective algebra homomorphism from Y (glN ) onto U(glN ), called the evaluation ho-

momorphism. This enables us to pull back representations of glN and view them as modules

over the Yangian. By the surjectivity of πN , a Y (glN )-invariant subspace must also be in-

variant under the action of U(glN ), hence the pullback of an irreducible representation of

glN remains irreducible over Y (glN ).

This connection is used extensively in the classification of finite dimensional irreducible

representations of Y (glN ); as we shall see in Chapter 6, a key role in the proof of the

classification theorem is played by the modules obtained by taking tensor products of so-

called evaluation modules, which are simply the pullback to Y (glN ) of irreducible highest

weight modules over glN .

Note that Y (glN ) is a Hopf algebra with comultiplication ∆, antipode S and counit ε

given by

∆ : tij(u) 7→
N∑
k=1

tik(u)⊗ tkj(u) (1.11)

S : T (u) 7→ T−1(u) (1.12)

ε : T (u) 7→ 1. (1.13)

The coassociativity of ∆ guarantees that the tensor product of the evaluation modules is

well defined.

We see one more similarity of the representation theories of Y (glN ) and U(glN ) in the

existence of a PBW basis:

Theorem 1.1 (Poincaré Birkhoff-Witt) Given any total ordering on the collection of

generators t
(r)
ij , a basis of Y (glN ) is provided by the set of all ordered monomials in these

generators.

1.2 Orthogonal and Symplectic Twisted Yangians

We will now define in terms of generators and relations the twisted Yangians corresponding

to the classical Lie algebras of orthogonal and symplectic type. We will see that the twisted

Yangians actually embed into the Yangian for glN , and we will present the twisted analogue

of most of the results from the previous section.

Let G = [gij ] be the matrix associated to some nondegenerate bilinear form on CN which

is either symmetric or alternating (note that in the alternating case, the nondegeneracy of G

implies that N must be even). Following the notation of [11], whenever we use the symbols

± or ∓, the sign on the top will correspond to the symmetric case, while the sign on the

bottom corresponds to the alternating case.

Let gN be the orthogonal Lie algebra oN if G is symmetric; otherwise, if G is alternating,

let gN be the symplectic Lie algebra spN . Then gN is isomorphic to the Lie subalgebra of

glN spanned by the elements
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Fij =

N∑
k=1

(Eikgkj ∓ Ejkgki).

Definition 1.2 The twisted Yangian for gN is the unital associative algebra over C[h] gen-

erated by {s(r)
ij | 1 ≤ i, j ≤ N, r ∈ Z+} where s

(0)
ij = gij, with defining relations given by the

matrix equations

R(u− v)S1(u)Rt(−u− v)S2(v) = S2(v)Rt(−u− v)S1(u)R(u− v) (1.14)

St(−u) = ±S(u) + h
S(u)− S(−u)

2u
(1.15)

where

S(u) =

N∑
i,j=1

Eij ⊗ sij(u) (1.16)

with sij(u) =
∑∞

r=0 s
(r)
ij u

−r. St(u) is the transposition of S(u) in one of its two factors:

St(u) =
N∑

i,j=1

Eij ⊗ sji(u).

We shall denote this algebra by Y tw
h (gN ). One might think that our notation should

depend somehow on G, but it turns out that the twisted Yangian is independent of the

choice of bilinear form:

Proposition 1.4 Let G and G′ be the matrices associated to any two nondegenerate bilinear

forms on Cn which are either both symmetric or both alternating. Then the twisted Yangians

corresponding with G and G′ are isomorphic to each other.

Let us therefore fix for the remainder of our discussions that G is the identity matrix in the

symmetric case, and the matrix
∑N/2

k=1E2k−1,2k − E2k,2k−1 in the alternating case.

The twisted Yangian is a deformation of the universal enveloping algebra of the twisted

current algebra gtwN [s] which is defined in the following way:

Definition 1.3 Let σ be the automorphism of glN given by

σ(Eij) = −Eji (1.17)

if G is symmetric, while

σ(Eij) = (−1)i+j−1Ej′i′ (1.18)

if G is alternating. The twisted current algebra is the subalgebra of glN [s] given by

gtwN [s] = {A(s) ∈ glN [s] : σ(A(s)) = A(−s)}. (1.19)
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A basis of otwN [s] is provided by all the elements (Eij −Eji)sr with i < j when r is even

and (Eij + Eji)s
r with i ≤ j when r is odd.

Meanwhile, a basis of sptwN [s] is provided by all the elements ((−1)j−1Eij′+(−1)i−1Eji′)s
r

with i ≤ j when r is even, and ((−1)j−1Eij′ − (−1)i−1Eji′)s
r with i < j when r is odd.

The twisted Yangians can be regarded as subalgebras of the Yangian for glN :

Proposition 1.5 The map S(u) 7→ T (u)GT t(−u) provides an embedding of the twisted

Yangian Y tw(gN ) = Y tw
h (gn)/(h− 1) into Y (glN ).

We can lift this map to an embedding Y tw
h (gN ) ↪→ Yh(glN ). Explicitly, this embedding is

given by

s
(r)
ij 7→

N∑
k=1

(
gkjt

(r)
ik + (−1)rgikt

(r)
jk

)
+ h

N∑
k,l=1

r−1∑
p=1

(−1)r−pgklt
(p)
ik t

(r−p)
jl . (1.20)

In particular, taking G to be the identity matrix, we will make the identification

s
(r)
ij = t

(r)
ij + (−1)rt

(r)
ji + h

N∑
k=1

r−1∑
p=1

(−1)r−pt
(p)
ik t

(r−p)
jk ∈ Y tw

h (oN ) ⊂ Yh(glN ).

Taking G =
∑N/2

k=1E2k−1,2k − E2k,2k−1, we will make the identification

s
(r)
ij = (−1)jt

(r)
i,j′ − (−1)r+it

(r)
j,i′

+ h

N/2∑
k=1

r−1∑
p=1

(−1)r−p(t
(p)
i,2k−1t

(r−p)
j,2k − t

(p)
i,2kt

(r−p)
j,2k−1) ∈ Y tw

h (spN ) ⊂ Yh(glN ).

We can draw connections between the representation theory of the twisted Yangian and

that of the Lie algebra gN with the same techniques we used for glN . Namely, the universal

enveloping algebra U(gN ) can be viewed as a subalgebra of Y tw
h (gN ) via the embedding

Fij ↪→ s
(1)
ij . Furthermore, the map given by

%N : sij(u) 7→ gij + Fij

(
u± 1

2

)−1

(1.21)

is a surjective C-algebra homomorphism from Y tw
h (gN )/(h − 1) onto U(gN ). This again

allows us to pull back representations of gN and view them as modules over Y tw
h (gN ), and

an irreducible representation of gN remains irreducible over Y tw
h (gN ).

We conclude this section by stating the PBW theorem for the twisted Yangian.

Theorem 1.2 Given any total ordering on the collection of generators s
(r)
ij with i ≥ j if

r > 0 is even and with i > j if r is odd, a basis of Y tw
h (oN ) is provided by the set of all

ordered monomials in these generators.

Similarly, given any total ordering on the collection of generators s
(r)
ij with i > j if r > 0

is even and with i ≥ j if r is odd, a basis of Y tw
h (spN ) is provided by the set of all ordered

monomials in these generators.
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1.3 Quantum Loop Algebras

We will now introduce the quantum loop algebra associated to glN . Towards this end, we

need to define the quantum analogue of the Yang R-matrix:

Definition 1.4 Let q be a nonzero complex parameter. The quantum affine R-matrix is

the element Rq(u, v) ∈ EndC(CN ⊗ CN )⊗ C[u, v] given by

Rq(u, v) =

N∑
i,j=1

(uq−δij − vqδij )Eii ⊗ Ejj − (q − q−1)u

N∑
i,j=1
i>j

Eij ⊗ Eji

− (q − q−1)v

N∑
i,j=1
i<j

Eij ⊗ Eji. (1.22)

For the twisted quantum loop algebras, we will also need the ’transposed’ quantum

affine R-matrix

Rtq(u, v) :=
N∑

i,j=1

(uq−δij − vqδij )Eii ⊗ Ejj − (q − q−1)u
N∑

i,j=1
i>j

Eji ⊗ Eji

− (q − q−1)v
N∑

i,j=1
i<j

Eji ⊗ Eji. (1.23)

Definition 1.5 The quantum loop algebra Uq(L(glN )) is the unital associative algebra over

C(q) generated by {T (r)
ij , T

(r)
ij | 1 ≤ i, j ≤ N, r ∈ Z+}, with defining relations given by

Rq(u, v)T1(u)T2(v) = T2(v)T1(u)Rq(u, v) (1.24)

Rq(u, v)T 1(u)T 2(v) = T 2(v)T 1(u)Rq(u, v) (1.25)

Rq(u, v)T 1(u)T2(v) = T2(v)T 1(u)Rq(u, v) (1.26)

T
(0)
ij = 0 = T

(0)
ji if 1 ≤ i < j ≤ N (1.27)

T
(0)
ii T

(0)
ii = 1 = T

(0)
ii T

(0)
ii ∀ 1 ≤ i ≤ N (1.28)

where

T (u) =
N∑

i,j=1

Eij ⊗ Tij(u), T (u) =
N∑

i,j=1

Eij ⊗ T ij(u) (1.29)

with Tij(u) =
∑∞

r=0 T
(r)
ij u

−r and T ij(u) =
∑∞

r=0 T
(r)
ij u

r.

We can state the relations (1.24), (1.25) and (1.26) in a more explicit way; by applying

each side of these equations to the elements ej ⊗ el ⊗ 1 ∈ CN ⊗ CN ⊗ Uq(L(glN )) and

comparing Uq(L(glN ))-coefficients, we deduce the following result.

9



Proposition 1.6 Relations (1.24), (1.25) and (1.26) are respectively equivalent to the re-

lations

(q−δikT
(r+1)
ij T

(s)
kl − q

δikT
(r)
ij T

(s+1)
kl )− (q−δjlT

(s)
kl T

(r+1)
ij − qδjlT (s+1)

kl T
(r)
ij )

= (q− q−1)(δi>kT
(r+1)
kj T

(s)
il + δi<kT

(r)
kj T

(s+1)
il )− (q− q−1)(δl>jT

(s)
kj T

(r+1)
il + δl<jT

(s+1)
kj T

(r)
il )

(1.30)

(q−δikT
(r−1)
ij T

(s)
kl − qδikT

(r)
ij T

(s−1)
kl )− (q−δjlT

(s)
kl T

(r−1)
ij − qδjlT (s−1)

kl T
(r)
ij )

= (q− q−1)(δi>kT
(r−1)
kj T

(s)
il + δi<kT

(r)
kj T

(s−1)
il )− (q− q−1)(δl>jT

(s)
kj T

(r−1)
il + δl<jT

(s−1)
kj T

(r)
il )

(1.31)

(q−δikT
(r−1)
ij T

(s)
kl − q

δikT
(r)
ij T

(s+1)
kl )− (q−δjlT

(s)
kl T

(r−1)
ij − qδjlT (s+1)

kl T
(r)
ij )

= (q− q−1)(δi>kT
(r−1)
kj T

(s)
il + δi<kT

(r)
kj T

(s+1)
il )− (q− q−1)(δl>jT

(s)
kj T

(r−1)
il + δl<jT

(s+1)
kj T

(r)
il )

(1.32)

The quantum loop algebra Uq(L(glN )) contains as subalgebras the twisted quantum

loop algebras associated to oN and spN . We shall first define these algebras independently

in terms of generators and relations, and then show how they embed into Uq(L(glN )).

Definition 1.6 The twisted quantum loop algebra Uq(Ltw(oN )) is the unital associative

algebra over C(q) generated by {S(r)
ij | 1 ≤ i, j ≤ N, r ∈ Z+}, with defining relations given

by

S
(0)
ij = 0 if i < j (1.33)

S
(0)
ii = 1 ∀ 1 ≤ i ≤ N (1.34)

Rq(u, v)S1(u)Rtq(u
−1, v)S2(v) = S2(v)Rtq(u

−1, v)S1(u)Rq(u, v) (1.35)

where

S(u) =
N∑

i,j=1

Eij ⊗ Sij(u) (1.36)

with Sij(u) =
∑∞

r=0 S
(r)
ij u

−r.

The algebra Uq(Ltw(oN )) is a deformation of the enveloping algebra of the twisted loop

algebra otwN [s, s−1] which is defined in the following way.

Definition 1.7 The twisted loop algebra otwN [s, s−1] is the Lie subalgebra of L(glN ) =

glN [s, s−1] given by

otwN [s, s−1] = {A(s) ∈ L(glN ) : σ(A(s)) = A(s−1)} (1.37)

where σ is the automorphism (1.17). This algebra is also denoted by Ltw(oN ).
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A basis for otwN [s, s−1] is provided by all the elements Eijs
r − Ejis−r with 1 ≤ i, j ≤ N

and r ≥ 0 except that, when r = 0, only Eij − Eji with i < j should be included to obtain

a basis.

Proposition 1.7 The assignment S(u) 7→ T (u)T (u−1)t extends to an embedding of the

twisted quantum loop algebra Uq(Ltw(oN )) into Uq(L(glN )).

This embedding can be written more explicitly as

S
(r)
ij 7→

N∑
k=1

r∑
p=0

T
(p)
ik T

(r−p)
jk .

We will also use the notation S
(r)
ij for the generators of the twisted quantum loop algebra

for spN . It shall always be clear whether we are working in the orthogonal or symplectic

case.

Definition 1.8 Suppose N is even. The twisted quantum loop algebra Uq(Ltw(spN )) is

the unital associative algebra over C(q) generated by {S(r)
ij | 1 ≤ i, j ≤ N, r ∈ Z+} and

{S(0)−1

ii′ | i = 1, 3, . . . , N − 1}, with defining relations given by

S
(0)
ij = 0 whenever i < j and j 6= i′ (1.38)

S
(0)
i′i′S

(0)
ii − q

2S
(0)
i′i S

(0)
ii′ = q3 ∀ i = 1, 3, . . . , N − 1 (1.39)

S
(0)
ii′ S

(0)−1

ii′ = S
(0)−1

ii′ S
(0)
ii′ = 1 ∀ i = 1, 3, . . . , N − 1 (1.40)

Rq(u, v)S1(u)Rtq(u
−1, v)S2(v) = S2(v)Rtq(u

−1, v)S1(u)Rq(u, v) (1.41)

where

S(u) =

N∑
i,j=1

Eij ⊗ Sij(u) (1.42)

with Sij(u) =
∑∞

r=0 S
(r)
ij u

−r.

The algebra Uq(Ltw(spN )) is a deformation of the enveloping algebra of the twisted loop

algebra sptwN [s, s−1] which is defined in the following way.

Definition 1.9 The twisted loop algebra sptwN [s, s−1] is the Lie subalgebra of L(glN ) =

glN [s, s−1] given by

sptwN [s, s−1] = {A(s) ∈ L(glN ) : σ(A(s)) = A(s−1)} (1.43)

where σ is the automorphism (1.18). This algebra is also denoted by Ltw(spN ).

A basis for sptwN [s, s−1] is provided by all the elements (−1)jEij′s
r + (−1)iEji′s

−r with

1 ≤ i, j ≤ N and r ≥ 0 except that, when r = 0, only (−1)jEij′ + (−1)iEji′ with i ≤ j

should be included to obtain a basis.

11



Proposition 1.8 The assignment S(u) 7→ T (u)BT (u−1)t, where

B =

N/2∑
k=1

qE2k−1,2k − E2k,2k−1 (1.44)

extends to an embedding of the twisted quantum loop algebra Uq(Ltw(spN )) into Uq(L(glN )).

This embedding can be written more explicitly as

S
(r)
ij 7→

N/2∑
k=1

r∑
p=0

(qT
(p)
i,2k−1T

(r−p)
j,2k − T

(p)
i,2kT

(r−p)
j,2k−1).

12



Chapter 2

Motivation

In this chapter, we will begin by defining the Yangians and quantum loop algebras associated

to an arbitrary complex semisimple Lie algebra. While it is well known that these Yangians

are limit forms of the associated quantum loop algebra, a precise statement of this fact

only appeared recently in a paper of Drinfeld. A complete proof was published recently in

both [7] and [8], although the results of [7] were a bit stronger. We give a summary of these

two papers as motivation for the chapters that follow.

Throughout this chapter, let g be a complex semisimple Lie algebra with Cartan matrix

C = (cij)i,j∈I where I indexes a basis of simple roots in g. Then there exists a set of

coprime positive integers {di}i∈I such that the matrix (dicij)i,j∈I is symmetric. We begin

by defining the Yangians and quantum loop algebras associated to g.

Definition 2.1 The Yangian Y (g) is the unital associative algebra over C generated by

{X±i,r, Hi,r | i ∈ I, r ∈ Z+}, with defining relations given by

[Hi,r, Hj,s] = 0, [Hi,0, X
±
j,s] = ±dicijX±j,s; (2.1)

[Hi,r+1, X
±
j,s]− [Hi,r, X

±
j,s+1] = ±dicij

2
(Hi,rX

±
j,s +X±j,sHi,r); (2.2)

[X+
i,r, X

−
j,s] = δijHi,r+s; (2.3)

[X±i,r+1, X
±
j,s]− [X±i,r, X

±
j,s+1] = ±dicij

2
(X±i,rX

±
j,s +X±j,sX

±
i,r); (2.4)∑

π∈Sm

[
X±i,rπ(1) ,

[
. . . , [X±i,rπ(m)

, X±j,s] . . .
]]

= 0 ∀r1 . . . , rm, s ≥ 0 if i 6= j (2.5)

where m = 1− cij.

Y (g) can also be defined as an algebra over the polynomial ring C[h] by introducing a

factor of h on the right hand side of relations (2.2) and (2.4). In this case, we denote the

Yangian by Yh(g).

We need some more notation in order to define the quantum loop algebra. Suppose

that q and h are formal variables related via the equation q2 = eh. When k and n are

13



nonnegative integers with k ≤ n, define

[n]q =
qn − q−n

q − q−1

[n]q! = [n]q[n− 1]q . . . [1]q,

[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
.

Finally, for each i ∈ I, let qi = qdi .

Definition 2.2 The quantum loop algebra Uh(L(g)) is the unital associative algebra topo-

logically generated over C[[h]] by {X±i,r,Hi,r | i ∈ I, r ∈ Z}, with defining relations given

by

[Hi,r,Hi,s] = 0, [Hi,0,X±j,s] = ±cijX±j,s;

[Hi,r,X±j,s] = ± [raij ]qi
r
X±j,r+s, r 6= 0;

X±i,r+1X
±
j,s − q

±aij
i X±j,sX

±
i,r+1 = q

±aij
i X±i,rX

±
j,s+1 −X

±
j,s+1X

±
i,r;

[X+
i,r,X

−
j,s] = δij

Ψ+
i,r+s −Ψ−i,r+s

qi − q−1
i

;

∑
π∈Sm

m∑
k=0

(−1)k
[
m
k

]
qi

X±i,rπ(1) · · · X
±
i,rπ(k)

X±j,sX
±
i,rπ(k+1)

· · · X±i,rπ(m)
= 0

∀r1, . . . , rm, s ∈ Z if i 6= j

where m = 1− cij, and the elements Ψ±i,r are defined by the equation

∞∑
r=0

Ψ±i,±rz
−r = exp

(
±hdi

2
Hi,0

)
exp

(
±(qi − q−1

i )
∞∑
s=1

Hi,±sz−s
)

and Ψ±i,r = 0 when ∓r > 0.

Below, we denote by U(L(g)) the universal enveloping algebra of the loop algebra L(g) =

g[s, s−1]:

Proposition 2.1 (Prop. 1.1 of [8]) Uh(L(g))/hUh(L(g)) ∼= U(L(g)), and Uh(L(g)) is

isomorphic to U(L(g))[[h]] as C[[h]]-modules.

This proposition is used by Guay and Ma to prove the following theorem, which details

precisely how Uh(L(g)) degenerates into Yh(g):

Theorem 2.1 (Theorem 2.2 of [8]) Let K be the kernel of the composite of algebra ho-

momorphisms given by

Uh(L(g)) � Uh(L(g))/hU(L(g))
∼−→ U(L(g))

s7→1
� U(g). (2.6)

14



Then there exists an isomorphism

Yh(g)
∼−→

∞⊕
n=0

Kn/Kn+1 (2.7)

where K0 = Uh(L(g)).

This is actually a specific case of the more general theorem in [8], which shows that the

twisted quantum loop algebra Uh(L(g)σ) associated to a Dynkin diagram automorphism σ

degenerates into the ’twisted’ Yangian Yh(g, σ) via the same process (the case treated here

corresponds to the case then σ is trivial; see [8] for all the precise definitions). This depends

on the assumption that Proposition 2.1 is also true in the twisted case - an assumption

which the authors believe is correct, although they could not find a reference for it.

Observe that Yh(g) has a natural N-grading given by assigning deg(Hi,r) = deg(X±i,r) = r

and deg(h) = 1. We can form the completion Ŷh(g) with respect to this grading; that is,

Ŷh(g) =
∞∏
n=0

Yh(g)n

where Yh(g)n is the span of all the homogeneous elements in Yh(g) of degree n.

In the paper [7], the degeneration isomorphism of Theorem 2.1 is constructed explicitly

as the inverse of a homomorphism of associated graded rings induced by a map Uh(L(g))→
Ŷh(g). The procedure is as follows:

For each i ∈ I and r ∈ Z+, define ti,r ∈ Yh(g) by comparing coefficients in the equation

h
∑
r≥0

ti,ru
−r−1 = log

1 + h
∑
r≥0

Hi,ru
−r−1

 .

Let G(v) = log
(

v
ev/2−e−v/2

)
∈ vQ[[v]], and let

γi(v) = h
∑
r≥0

ti,r
r!

(
− d

dv

)r+1

G(v).

For each i ∈ I and r ∈ Z+, define g±i,m ∈ Ŷh(g) by comparing coefficients in the equation

∞∑
m=0

g±i,mv
m =

(
h

qi − q−1
i

)1/2

exp

(
γi(v)

2

)
.

Finally, let Yh(b±) ⊂ Yh(g) be the subalgebra generated by all the Hi,r and the X±i,r, and

for each i ∈ I, let σ±i be the endomorphism of Yh(b±) given by

X±j,r 7→ X±j,r+δij Hj,r 7→ Hj,r.
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Then the assignment

Φ(Hi,0) = d−1
i ti,0 Φ(Hi,r) =

h

q − q−1

∑
k≥0

ti,k
rk

k!

Φ(X±i,r) = erσ
±
i

∞∑
m=0

g±i,mX
±
i,m

defines an algebra homomorphism Φ : Uh(L(g))→ Ŷh(g). Moreover, Φ maps K to the ideal

Ŷ+ =
∏
n≥1 Yh(g)n, according to Theorem 6.2 in [7]. It follows that Φ induces a natural

homomorphism of associated graded rings

gr(Φ) :
∞⊕
n=0

Kn/Kn+1 →
∞⊕
n=0

Ŷ n
+/Ŷ

n+1
+ = Yh(g).

Finally, Proposition 6.5 in [7] asserts that gr(Φ) is the inverse of the degeneration iso-

morphism of Theorem 2.1.

They then go on to show that the same ideas can be used to realize Y (glN ) as a degen-

erate form of Uq(L(glN )) in terms of their so called ’Drinfeld presentations’. This leaves

open the question of how the degeneration works in terms of the ’RTT presentations’ which

we discussed in Chapter 1; we will explore this question in Chapter 3.

It is natural to expect similar results for the twisted Yangians and quantum loop alge-

bras, and this will be the subject of Chapters 4 and 5. The twisted case treated here is

not the same as that which is discussed in [8]. The main difference is that the algebras

Uq(Ltw(oN )) and Uq(Ltw(spN )) discussed here in Chapter 1 are deformations of the en-

veloping algebra of the Lie subalgebra of L(glN ) spanned by A(s) with the property that

σ(A(s)) = A(s−1), where σ is an involution of glN (see (1.37) and (1.43)); on the other

hand, the twisted quantum loop algebra in [8] is related to the Lie subalgebra of g[s, s−1]

spanned by A(s) such that σ(A(s)) = A(−s), where σ is an automorphism of g which comes

from a Dynkin diagram automorphism.
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Chapter 3

Y (glN ) as a degenerate form of
Uq(L(glN ))

In this chapter, we will demonstrate how to realize the Yangian for glN as a limit form of

the quantum loop algebra Uq(L(glN )) using the RTT presentation given in Chapter 1.

Let A be the localization of C[q, q−1] at the ideal (q − 1). Let UA(L(glN )) be the

A-subalgebra of Uq(L(glN )) generated by the elements τ
(r)
ij , τ

(r)
ij given by

τ
(r)
ij =

T
(r)
ij

q − q−1
, τ

(r)
ij =

T
(r)
ij

q − q−1
for r ≥ 0, 1 ≤ i, j ≤ N,

except that, when r = 0 and i = j, we set

τ
(0)
ii =

T
(0)
ii − 1

q − 1
, τ

(0)
ii =

T
(0)
ii − 1

q − 1
.

Theorem 3.1 (Section 3 of [12]) The assignment Eijs
r 7→ τ

(r)
ij ∀ r ≥ 0, 1 ≤ i, j ≤ N

except if r = 0 and 1 ≤ i < j ≤ N , −Eijs−r 7→ τ
(r)
ij ∀ r ≥ 0, 1 ≤ i, j ≤ N except if r = 0

and 1 ≤ j < i ≤ N , induces an isomorphism U(L(glN ))
∼−→ UA(L(glN )) ⊗A C where C is

viewed as an A-module via A/(q − 1)
∼−→ C.

We have the following composite of algebra homomorphisms:

UA(L(glN )) � UA(L(glN ))/(q − 1)UA(L(glN ))
∼−→ U(L(glN ))

s7→1
� U(glN ). (3.1)

For m ≥ 0, denote by Km the Lie ideal of L(glN ) spanned by X · sr(s − 1)m for all r ∈ Z
and X ∈ glN . Let U be the subspace of UA(L(glN )) spanned over C by all the generators

τ
(r)
ij , τ

(r)
ij , and observe that

U ∩ (q − 1)UA(L(glN )) = U ∩Ker(ψ)

where ψ is the composite

UA(L(glN )) � UA(L(glN ))/(q − 1)UA(L(glN ))
∼−→ U(L(glN )).
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By definition, for any X ∈ U , we may write

X =

N∑
i,j=1

Xij

where

Xij =

nij∑
r=0

(
a

(r)
ij τ

(r)
ij + b

(r)
ij τ

(r)
ij

)
.

Then clearly ψ(X) = 0 if and only if each a
(0)
ii = b

(0)
ii and a

(r)
ij = b

(r)
ij = 0 when i 6= j or

r ≥ 1. Therefore,

U ∩ (q − 1)UA(L(glN )) = spanC{τ
(0)
ii + τ

(0)
ii | i = 1, . . . , N}. (3.2)

Let K0 = UA(L(glN )), and for m ≥ 1 let Km be the two-sided ideal of UA(L(glN ))

generated by

(q − q−1)m0Km1 · · ·Kmk

with m0 +m1 + · · ·+mk ≥ m, where Km = ψ−1(Km)∩U . This is slightly different from the

definition of the analogous ideals Km in [8] in the case of slN , because for glN , Km
1 is strictly

smaller than Km. This difference can be explained by the fact that [L(slN ),L(slN )] =

L(slN ) but [L(glN ),L(glN )] = L(slN ) ( L(glN ).

Let Ỹ (glN ) be the C-algebra

Ỹ (glN ) =
∞⊕
m=0

Km/Km+1.

Ỹ (glN ) can be viewed as a C[h]-algebra if we set h = q − q−1 ∈ K1/K2. In this case, we

denote it by Ỹh(glN ).

Theorem 3.2 Ỹh(glN ) is isomorphic to Yh(glN ).

For r,m ≥ 0, define recursively elements T
(r,m)
ij in the following way:

T
(r,0)
ij = τ

(r)
ij and T

(r,m+1)
ij = T

(r+1,m)
ij − T (r,m)

ij ,

except that, if i < j, T
(0,0)
ij = −τ (0)

ij .

Set ξ
(r,m)
ij = T

(r,m)
ij ∈ Km/Km+1, which makes sense since T

(r,m)
ij ∈ Km (one can easily

check by induction on m that for every r, ψ(T
(r,m)
ij ) = Eijs

r(s− 1)m ∈ Km, and T
(r,m)
ij is in

U by definition).

Proof of theorem 3.2. We will prove that an isomorphism ϕ : Yh(glN )
∼−→ Ỹh(glN )

is given by t
(m+1)
ij 7→ ξ

(0,m)
ij for m ≥ 0.
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By Proposition 1.6 we have

q−δik(T
(r+1)
ij − T (r)

ij )T
(s)
kl − T

(r)
ij (qδikT

(s+1)
kl − q−δikT (s)

kl )

− (q−δjlT
(s)
kl (T

(r+1)
ij − T (r)

ij )− (qδjlT
(s+1)
kl − q−δjlT (s)

kl )T
(r)
ij )

= (q − q−1)(δi>kT
(r+1)
kj T

(s)
il + δi<kT

(r)
kj T

(s+1)
il )

− (q − q−1)(δl>jT
(s)
kj T

(r+1)
il + δl<jT

(s+1)
kj T

(r)
il ).

If r, s ≥ 1 then, after rearranging and dividing both sides by (q − q−1)2, we get

q−δik(T
(r,1)
ij T

(s,0)
kl − T (r,0)

ij T
(s,1)
kl )− (qδik − q−δik)T

(r,0)
ij T

(s+1,0)
kl

− q−δjl(T (s,0)
kl T

(r,1)
ij − T (s,1)

kl T
(r,0)
ij ) + (qδjl − q−δjl)T (s+1,0)

kl T
(r,0)
ij

= (q − q−1)(δi>kT
(r+1,0)
kj T

(s,0)
il + δi<kT

(r,0)
kj T

(s+1,0)
il )

− (q − q−1)(δl>jT
(s,0)
kj T

(r+1,0)
il + δl<jT

(s+1,0)
kj T

(r,0)
il ).

Using T
(r+1,m)
ij − T

(r,m)
ij = T

(r,m+1)
ij and T

(s+1,n)
kl − T

(s,n)
kl = T

(s,n+1)
kl , we deduce by

induction on m and n that, for all r, s ≥ 1 and all m,n ≥ 0,

q−δik(T
(r,m+1)
ij T

(s,n)
kl − T (r,m)

ij T
(s,n+1)
kl )− (qδik − q−δik)T

(r,m)
ij T

(s+1,n)
kl

− q−δjl(T (s,n)
kl T

(r,m+1)
ij − T (s,n+1)

kl T
(r,m)
ij ) + (qδjl − q−δjl)T (s+1,n)

kl T
(r,m)
ij

= (q − q−1)(δi>kT
(r+1,m)
kj T

(s,n)
il + δi<kT

(r,m)
kj T

(s+1,n)
il )

− (q − q−1)(δl>jT
(s,n)
kj T

(r+1,m)
il + δl<jT

(s+1,n)
kj T

(r,m)
il ). (3.3)

Consider the case r = s = 1 in (3.3):

q−δik(T
(1,m+1)
ij T

(1,n)
kl − T (1,m)

ij T
(1,n+1)
kl )− (qδik − q−δik)T

(1,m)
ij T

(2,n)
kl

− q−δjl(T (1,n)
kl T

(1,m+1)
ij − T (1,n+1)

kl T
(1,m)
ij ) + (qδjl − q−δjl)T (2,n)

kl T
(1,m)
ij

= (q − q−1)(δi>kT
(2,m)
kj T

(1,n)
il + δi<kT

(1,m)
kj T

(2,n)
il )

− (q − q−1)(δl>jT
(1,n)
kj T

(2,m)
il + δl<jT

(2,n)
kj T

(1,m)
il ). (3.4)

Using T
(1,m)
ij = T

(0,m+1)
ij + T

(0,m)
ij and T

(1,n)
kl = T

(0,n+1)
kl + T

(0,n)
kl we obtain, for all m,n,≥ 0:

q−δik(T
(0,m+2)
ij + T

(0,m+1)
ij )T

(0,n+1)
kl − q−δik(T

(0,m+1)
ij + T

(0,m)
ij )T

(0,n+2)
kl

− (qδik − q−δik)(T
(0,m+1)
ij + T

(0,m)
ij )T

(1,n+1)
kl + q−δik(T

(0,m+2)
ij + T

(0,m+1)
ij )T

(0,n)
kl

− q−δik(T
(0,m+1)
ij + T

(0,m)
ij )T

(0,n+1)
kl − (qδik − q−δik)(T

(0,m+1)
ij + T

(0,m)
ij )T

(1,n)
kl

− q−δjlT (0,n+1)
kl (T

(0,m+2)
ij + T

(0,m+1)
ij ) + q−δjlT

(0,n+2)
kl (T

(0,m+1)
ij + T

(0,m)
ij )

+ (qδjl − q−δjl)T (1,n+1)
kl (T

(0,m+1)
ij + T

(0,m)
ij )− q−δjlT (0,n)

kl (T
(0,m+2)
ij + T

(0,m+1)
ij )

+ q−δjlT
(0,n+1)
kl (T

(0,m+1)
ij + T

(0,m)
ij ) + (qδjl − q−δjl)T (1,n)

kl (T
(0,m+1)
ij + T

(0,m)
ij )
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= (q − q−1)(δi>k(T
(1,m+1)
kj + T

(1,m)
kj )T

(0,n+1)
il + δi<k(T

(0,m+1)
kj + T

(0,m)
kj )T

(1,n+1)
il )

+ (q − q−1)(δi>k(T
(1,m+1)
kj + T

(1,m)
kj )T

(0,n)
il + δi<k(T

(0,m+1)
kj + T

(0,m)
kj )T

(1,n)
il )

− (q − q−1)(δl>jT
(0,n+1)
kj (T

(1,m+1)
il + T

(1,m)
il ) + δl<jT

(1,n+1)
kj (T

(0,m+1)
il + T

(0,m)
il ))

− (q − q−1)(δl>jT
(0,n)
kj (T

(1,m+1)
il + T

(1,m)
il ) + δl<jT

(1,n)
kj (T

(0,m+1)
il + T

(0,m)
il )).

We now expand the previous expression:

q−δik(T
(0,m+2)
ij T

(0,n+1)
kl − T (0,m+1)

ij T
(0,n+2)
kl )− (qδik − q−δik)T

(0,m+1)
ij T

(1,n+1)
kl

+q−δik(T
(0,m+1)
ij T

(0,n+1)
kl − T (0,m)

ij T
(0,n+2)
kl )− (qδik − q−δik)T

(0,m)
ij T

(1,n+1)
kl

+q−δik(T
(0,m+2)
ij T

(0,n)
kl − T (0,m+1)

ij T
(0,n+1)
kl )− (qδik − q−δik)T

(0,m+1)
ij T

(1,n)
kl

+q−δik(T
(0,m+1)
ij T

(0,n)
kl − T (0,m)

ij T
(0,n+1)
kl )− (qδik − q−δik)T

(0,m)
ij T

(1,n)
kl

−q−δjl(T (0,n+1)
kl T

(0,m+2)
ij − T (0,n+2)

kl T
(0,m+1)
ij ) + (qδjl − q−δjl)T (1,n+1)

kl T
(0,m+1)
ij

−q−δjl(T (0,n+1)
kl T

(0,m+1)
ij − T (0,n+2)

kl T
(0,m)
ij ) + (qδjl − q−δjl)T (1,n+1)

kl T
(0,m)
ij

−q−δjl(T (0,n)
kl T

(0,m+2)
ij − T (0,n+1)

kl T
(0,m+1)
ij ) + (qδjl − q−δjl)T (1,n)

kl T
(0,m+1)
ij

−q−δjl(T (0,n)
kl T

(0,m+1)
ij − T (0,n+1)

kl T
(0,m)
ij ) + (qδjl − q−δjl)T (1,n)

kl T
(0,m)
ij

=(q − q−1)(δi>kT
(1,m+1)
kj T

(0,n+1)
il + δi<kT

(0,m+1)
kj T

(1,n+1)
il )

+ (q − q−1)(δi>kT
(1,m)
kj T

(0,n+1)
il + δi<kT

(0,m)
kj T

(1,n+1)
il )

+ (q − q−1)(δi>kT
(1,m+1)
kj T

(0,n)
il + δi<kT

(0,m+1)
kj T

(1,n)
il )

+ (q − q−1)(δi>kT
(1,m)
kj T

(0,n)
il + δi<kT

(0,m)
kj T

(1,n)
il )

− (q − q−1)(δl>jT
(0,n+1)
kj T

(1,m+1)
il + δl<jT

(1,n+1)
kj T

(0,m+1)
il )

− (q − q−1)(δl>jT
(0,n+1)
kj T

(1,m)
il + δl<jT

(1,n+1)
kj T

(0,m)
il )

− (q − q−1)(δl>jT
(0,n)
kj T

(1,m+1)
il + δl<jT

(1,n)
kj T

(0,m+1)
il )

− (q − q−1)(δl>jT
(0,n)
kj T

(1,m)
il + δl<jT

(1,n)
kj T

(0,m)
il ).

Notice that both sides of this last equality are in Km+n+1 (and some of the terms are

in Km+n+2 or in Km+n+3). Modulo Km+n+2, we obtain the congruence:

q−δik(T
(0,m+1)
ij T

(0,n)
kl − T (0,m)

ij T
(0,n+1)
kl )− (qδik − q−δik)T

(0,m)
ij T

(1,n)
kl

− q−δjl(T (0,n)
kl T

(0,m+1)
ij − T (0,n+1)

kl T
(0,m)
ij ) + (qδjl − q−δjl)T (1,n)

kl T
(0,m)
ij

≡ (q − q−1)(δi>kT
(1,m)
kj T

(0,n)
il + δi<kT

(0,m)
kj T

(1,n)
il )

− (q − q−1)(δl>jT
(0,n)
kj T

(1,m)
il + δl<jT

(1,n)
kj T

(0,m)
il ).

Moreover, modulo Km+n+2, we also have:

(qδik − q−δik)T
(0,m)
ij T

(1,n)
kl ≡ (qδik − q−δik)T

(0,m)
ij T

(0,n)
kl ,

(qδjl − q−δjl)T (1,n)
kl T

(0,m)
ij ≡ (qδjl − q−δjl)T (0,n)

kl T
(0,m)
ij
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(q− q−1)T
(1,m)
kj T

(0,n)
il ≡ (q− q−1)T

(0,m)
kj T

(0,n)
il , (q− q−1)T

(0,m)
kj T

(1,n)
il ≡ (q− q−1)T

(0,m)
kj T

(0,n)
il

(q−q−1)T
(0,n)
kj T

(1,m)
il ≡ (q−q−1)T

(0,n)
kj T

(0,m)
il , (q−q−1)T

(1,n)
kj T

(0,m)
il ≡ (q−q−1)T

(0,n)
kj T

(0,m)
il .

Therefore, passing to the quotient Km+n+1/Km+n+2, we obtain:

(ξ
(0,m+1)
ij ξ

(0,n)
kl − ξ(0,m)

ij ξ
(0,n+1)
kl )− δikhξ

(0,m)
ij ξ

(0,n)
kl

− (ξ
(0,n)
kl ξ

(0,m+1)
ij − ξ(0,n+1)

kl ξ
(0,m)
ij ) + δjlhξ

(0,n)
kl ξ

(0,m)
ij

= h(δi>kξ
(0,m)
kj ξ

(0,n)
il + δi<kξ

(0,m)
kj ξ

(0,n)
il )

− h(δl>jξ
(0,n)
kj ξ

(0,m)
il + δl<jξ

(0,n)
kj ξ

(0,m)
il ).

This last relation is equivalent to:

[ξ
(0,m+1)
ij , ξ

(0,n)
kl ]− [ξ

(0,m)
ij , ξ

(0,n+1)
kl ] = h(ξ

(0,m)
kj ξ

(0,n)
il − ξ(0,n)

kj ξ
(0,m)
il ).

This holds for all m,n ≥ 0.

Remark 3.1 We could have obtained this relation more directly by starting with Proposition

1.6 and taking r = s = 0, but this would have required considering many different cases

depending on how i, j, k, l all compare with each other.

All the previous computations prove that ϕ : Yh(glN ) −→ Ỹh(glN ) given by ϕ(t
(m+1)
ij ) =

ξ
(0,m)
ij for m ≥ 0 is an algebra homomorphism. We still have to show that ϕ is bijective.

We will first demonstrate surjectivity. Towards this end, we define elements T
(r,m)
ij as

follows. Let T
(r,0)
ij = τ

(r)
ij , except that T

(0,0)
ij = −τ (0)

ij when i ≥ j. Then, for each m ≥ 0, let

T
(r,m+1)
ij = T

(r+1,m)
ij − T (r,m)

ij .

Also for eachm ≥ 0, let T̃
(0,m)
ij = T

(0,m)
ij and T̃

(m,m)
ij = (−1)m+1T

(0,m)
ij , and for 1 ≤ r ≤ m

define recursively

T̃
(r,m+1)
ij = T̃

(r−1,m)
ij − T̃ (r,m)

ij .

Induction on m shows that the elements T
(r,m)
ij , T

(r,m)
ij and T̃

(r,m)
ij respectively map via ψ

to the elements Eijs
r(s−1)m, (−1)m+1Eijs

−(m+r)(s−1)m and (−1)m+1Eijs
−(m−r)(s−1)m

in U(L(glN )). It follows that for fixed m, the images of these elements under ψ span Km.

Moreover, all these elements are in U by definition.

Note that for any fixed X ∈ Km = ψ−1(Km) ∩ U , there exists some element Y in

spanC{T
(r,m)
ij , T

(r,m)
ij , T̃

(r,m)
ij | i, j = 1, . . . , N, r ∈ Z+}

for which X − Y ∈ (q − 1)UA(L(glN )), because the map

UA(L(glN ))/(q − 1)UA(L(glN ))
∼−→ U(L(glN ))
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is an isomorphism. Since X − Y is also in U , by (3.2) we have

X − Y ∈ spanC{τ
(0)
ii + τ

(0)
ii | i = 1, . . . , N} ⊂ K` ∀` ≥ 0.

That τ
(0)
ii + τ

(0)
ii is in K` for all ` ≥ 0 follows from the fact that ψ(τ

(0)
ii + τ

(0)
ii ) = 0 ∈ K`.

It follows that any element of Km is congruent modulo Km+1 to a sum monomials of the

form f(q)(q−q−1)m0M where f(q) ∈ A is not divisible by q−1, andM = τ
(r1,m1)
i1j1

. . . τ
(rk,mk)
ikjk

with

τ
(rd,md)
idjd

∈ {T (rd,md)
idjd

, T
(rd,md)
idjd

, T̃
(rd,md)
idjd

}

and m0 + . . . + mk ≥ m. Moreover, since T
(rd,md)
idjd

− T (rd−1,md)
idjd

= T
(rd−1,md+1)
idjd

∈ Kmd+1

(and similarly for the T
(rd,md)
idjd

and T̃
(rd,md)
idjd

), we can reduce modulo Km+1 to the case when

rd = 0 for each d = 1, . . . , k.

Observe that modulo Km+1, we have

T
(0,m)
ij = (−1)m+1T

(0,m)
ij , T̃

(0,m)
ij = (−1)m+1T

(0,m)
ij .

To see this, just take the difference of the elements on each side (this difference is in U by

definition) and apply ψ. Finally, observe that we can replace f(q) by f(1) modulo Km+1.

Indeed, if f(q) = a(q)
b(q) , we can take the Laurent expansion of a(q) and b(q) about q = 1;

then, note that

f(q)− f(1) =
b(1)a(q)− a(1)b(q)

b(1)b(q)

and the constant term in the numerator is annihilated, so that every remaining term is

divisible by q − 1.

In summary, we have shown that each of these monomials f(q)(q − q−1)m0M in Km is

congruent modulo Km+1 to

f(1)(q − q−1)m0T
(0,m1)
i1j1

. . . T
(0,mk)
ik,jk

at least up to a sign. The image modulo Km+1 of this element is

f(1)hm0ξ
(0,m1)
i1j1

. . . ξ
(0,mk)
ikjk

and this is in the image of ϕ by definition. This completes the proof that ϕ is surjective.

To prove that ϕ is injective, it is enough to show that the basis of Y (glN ) given by

ordered monomials in the generators t
(m)
ij is mapped via ϕ to some linearly independent set

in Ỹh(glN ).

By definition, any two ordered monomials t
(m1+1)
i1j1

. . . t
(ma+1)
iaja

and t
(n1+1)
k1l1

. . . t
(nb+1)
kblb

with

each md, nd ≥ 0 and m1 + . . .+ma 6= n1 + . . . nb are mapped via ϕ to distinct graded pieces

in Ỹh(glN ). It therefore suffices to show that for each fixed m, the images under ϕ of all the

ordered monomials t
(m1+1)
i1j1

. . . t
(ma+1)
iaja

with m1 + . . .+ma = m are linearly independent in

Km/Km+1.
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Consider any linear sum over C of ordered monomials of the form

ξ
(0,m1)
i1j1

. . . ξ
(0,ma)
iaja

with m1 + . . .+ma = m, and suppose that this sum is zero in Km/Km+1. Then we have a

linear sum S of ordered monomials T
(0,m1)
i1j1

. . . T
(0,ma)
iaja

which is not just in Km, but also in

Km+1.

By definition, ψ(S) is a sum of ordered monomials

Ei1j1(s− 1)m1 . . . Eiaja(s− 1)ma .

On the other hand, since S ∈ Km+1, ψ(S) is a sum of monomials of the form

Ek1l1s
r1(s− 1)n1 . . . Ekblbs

rb(s− 1)nb

with r1, . . . , rb ∈ Z and n1 + . . .+ nb ≥ m+ 1.

For each r ≥ 1, we have a composite of algebra homomorphisms

U(L(glN ))
∆→ U(L(glN ))⊗r

f⊗r→ EndC(CN )⊗r ⊗ C[x±1
1 , x±1

2 , . . . , x±1
r ]

where ∆ is given by the coproduct ∆(X) = 1⊗X +X ⊗ 1 and f is given by

f : U(L(glN ))→ EndC(CN )⊗ C[x, x−1]

Eijx
t 7→ Eij ⊗ xt

We also have for each choice of r nonnegative integers α1, . . . , αr a differential operator

∂α1,...,αr : EndC(CN )⊗r ⊗ C[x±1
1 , x±1

2 , . . . , x±1
r ]→ EndC(CN )⊗r

given by

∂α1,...,αr =
∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αr

∂xαrr

∣∣∣∣
x1,...,xr=1

.

Take r ≥ max{a, b} where the maximum is taken over all the monomials in ψ(S) and note

that for any choice of α1, . . . , αr with α1 + . . . + αr = m, ψ(S) is in the kernel of the

composite ∂α1,...,αr ◦ f⊗r ◦∆, because n1 + . . .+ nb ≥ m+ 1.

On the other hand, if S is nonzero, then we can find some α1, . . . , αr such that α1 +

. . . + αr = m and ψ(S) is not in the kernel of ∂α1,...,αr ◦ f⊗r ◦ ∆: just choose any of the

ordered monomials

Ei1j1(s− 1)m1 . . . Eiaja(s− 1)ma .

and set α1 = m1, . . . , αa = ma and αd = 0 for d > a.

This is a contradiction, so S = 0 and the linear sum of ordered monomials

ξ
(0,m1)
i1j1

. . . ξ
(0,ma)
iaja

must in fact be trivial, as desired.
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Chapter 4

Y tw(oN ) as a degenerate form of
Uq(Ltw(oN ))

We will now show how the isomorphism ϕ of Theorem 3.2 can also be used to construct the

twisted Yangian Y tw
h (oN ) as a degenerate form of Uq(Ltw(oN )). Throughout this chapter, we

will view Y tw
h (oN ) and Uq(Ltw(oN )) as subalgebras of Yh(glN ) and Uq(L(glN )), respectively,

via the embeddings of Propositions 1.5 and 1.7.

Let S
(r,0)
ij :=

S
(r)
ij

q−q−1 , except that S
(0,0)
ii =

S
(0)
ii −1
q−1 and S

(0,0)
ij = − S

(0)
ji

q−q−1 when i < j. For

each m ≥ 0, define inductively S
(r,m+1)
ij := S

(r+1,m)
ij − S(r,m)

ij . Let ζ
(r,m)
ij be the image of

S
(r,m)
ij in the quotient Km/Km+1. It is easy to check by induction on m that for each

r,m ≥ 0, we have

S
(r,m)
ij =

m+r∑
n=r

(−1)m−n+r

(
m

n− r

)
S

(n,0)
ij .

Theorem 4.1 If i > j, then

s
(m+1)
ij

ϕ7→ ζ
(0,m)
ij

where ϕ : Yh(glN )
∼−→ Ỹh(glN ) is the isomorphism given by t

(m+1)
ij 7→ ξ

(0,m)
ij ; if i ≤ j, then

s
(m+1)
ij

ϕ7→ ζ
(1,m)
ij .

We can obtain an analogue of Theorem 3.2. From Theorem 3.1 and Proposition 1.7, we

can deduce that the enveloping algebra of otwN [s] is the limit when q 7→ 1 of Uq(Ltw(oN )) in

the following precise sense: if we let UA(Ltw(oN )) be the A-subalgebra of Uq(Ltw(oN )) gen-

erated by the S
(r,0)
ij , then UA(Ltw(oN ))/(q − 1)UA(Ltw(oN )) is isomorphic to U(otwN [s, s−1])

(see the proof of Theorem 3.3 in [12]). The following diagram is commutative:

UA(Ltw(oN )) //

��

UA(L(glN ))

��

U(Ltw(oN )) UA(Ltw(oN ))
(q−1)UA(Ltw(oN ))

// UA(L(glN ))
(q−1)UA(L(glN )) U(L(glN )).
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We can define an algebra Ỹ tw(oN ) similarly to how we defined Ỹ (glN ). For m ≥ 0,

denote by Ktwm the Lie ideal of otwN [s, s−1] spanned by

Eijs
r(s− 1)m − Ejis−r(s−1 − 1)m

for all r ∈ Z. Let U tw be the subspace of UA(Ltw(oN )) spanned over C by all the generators

S
(r,0)
ij , and observe that U tw ∩ (q− 1)UA(Ltw(oN )) = {0}. Set Ktw

m = ψ−1(Ktwm )∩U tw where

ψ this time denotes the composite

UA(Ltw(oN )) � UA(Ltw(oN ))/(q − 1)UA(Ltw(oN ))
∼−→ U(otwN [s, s−1]).

Let Ktw
m be the two-sided ideal of UA(Ltw(oN )) generated by (q − q−1)m0Ktw

m1
· · ·Ktw

mk
with

m0 +m1 + · · ·+mk ≥ m.

Let Ỹ tw(oN ) be the C-algebra

Ỹ tw(oN ) =
∞⊕
m=0

Ktw
m /K

tw
m+1

where Ktw
0 = UA(Ltw(oN )). We also view Ỹ tw(oN ) as an algebra over C[h] by setting

h = q − q−1 ∈ Ktw
1 /Ktw

2 . In this case, we denote it by Ỹ tw
h (oN ).

Corollary 4.1 Y tw
h (oN ) is isomorphic to Ỹ tw

h (oN ) via the function ϕtw that sends s
(m)
ij to

S
(1,m−1)
ij ∈ Ktw

m−1/K
tw
m for m ≥ 1.

Proof. Theorem 4.1 implies that the following diagram is commutative:

Y tw
h (oN ) //

ϕtw

��

Yh(glN )

ϕ
��

Ỹ tw
h (oN ) // Ỹh(glN ).

In this diagram, the top horizontal arrow is the embedding of proposition 1.5 and the bottom

horizontal arrow is the one induced from the embedding of proposition 1.7. The injectivity

of ϕtw now follows from the fact that ϕ provides an isomorphism between Yh(glN ) and

Ỹh(glN ): see Theorem 3.2.

We need to see that ϕtw is surjective. Define elements S̃
(r,m)
ij with 0 ≤ r ≤ m as follows:

for each m ≥ 0, let S̃
(0,m)
ij = S

(0,m)
ji and S̃

(m,m)
ij = (−1)m+1S

(0,m)
ij , and for 1 ≤ r ≤ m let

S̃
(r,m+1)
ij = S̃

(r−1,m)
ij − S̃(r,m)

ij .

Then induction on m shows that

ψ(S
(r,m)
ij ) = Eijs

r(s− 1)m − Ejis−r(s−1 − 1)m,

ψ(S
(r,m)
ji ) = (−1)m+1(Eijs

−(m+r)(s− 1)m − Ejism+r(s−1 − 1)m),

ψ(S̃
(r,m)
ij ) = (−1)m+1(Eijs

−(m−r)(s− 1)m − Ejism−r(s−1 − 1)m).
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It follows that for any fixed m, the images of these elements under ψ span Ktwm , and they

are all in U tw by definition. Now note that for any element X ∈ Ktw = ψ−1(Ktwm ) ∩ U tw,

there is some element Y in

spanC{S
(r,m)
ij , S̃

(r,m)
ij | i, j = 1, . . . , N, r ∈ Z+}

for which X − Y ∈ (q − 1)UA(Ltw(oN )). This follows from the fact that

UA(Ltw(oN ))/(q − 1)UA(Ltw(oN ))
∼−→ U(otwN [s, s−1])

is an isomorphism. Since X − Y is also in U tw and since U tw ∩ (q − 1)UA(Ltw(oN )) = {0},
we see that X = Y , hence

Ktw
m = spanC{S

(r,m)
ij , S̃

(r,m)
ij | i, j = 1, . . . , N, r ∈ Z+}.

Therefore, any element of Ktw
m is a sum of monomials f(q)(q−q−1)m0M where f(q) ∈ A

is not divisible by q − 1 and M = σ
(r1,m1)
i1j1

. . . σ
(rk,mk)
ikjk

with

σ
(rd,md)
idjd

∈ {S(rd,md)
idjd

, S̃
(rd,md)
idjd

}

and m0 + . . . + mk ≥ m. Following the same argument as the glN case, this is congruent

modulo Ktw
m+1 to

f(1)(q − q−1)m0S
(1,m1)
i1j1

. . . S
(1,mk)
ikjk

up to a sign. The image modulo Ktw
m+1 of this element is

f(1)hm0S
(1,m1)
i1j1

. . . S
(1,mk)
ikjk

and this is in the image of ϕtw, which proves that ϕtw is surjective.

Proof of Theorem 4.1. First note that for any k, l ∈ {1, . . . , N} we have the following

relation:

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=
∑

c+d=m

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

) d∑
b=0

(
(−1)d−b

(
d
b

)
T

(b)
jl

)
(4.1)

+
∑

c+d=m−1

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

) d∑
b=0

(
(−1)d−b

(
d
b

)
T

(b)
jl

)
.

To verify this equality, we need to check that the coefficients of T
(a)
ik T

(b)
jl are the same

on both sides. On the left-hand side, n− a = b, so n = a+ b; on the right-hand side, in the

first sum, c+d = m, so d = m− c and c can take any value from a to m. On the right-hand

26



side, in the second sum, c+ d = m− 1, so d = m− 1− c and c can take any value from a

to m− 1. We thus have to see why the following equality holds:

(−1)m−a−b
(

m
a+ b

)
=

m∑
c=a

(−1)c−a(−1)m−c−b
(
c
a

)(
m− c
b

)

−
m−1∑
c=a

(−1)c−a(−1)m−c−b
(
c
a

)(
m− 1− c

b

)
.

Because

(
n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
, this is equivalent to:

(
m
a+ b

)
=

m∑
c=a

(
c
a

)(
m− c
b

)
−
m−1∑
c=a

(
c
a

)(
m− 1− c

b

)
=

m−1∑
c=a

(
c
a

)(
m− c− 1
b− 1

)
when b ≥ 1. Note that when b = 0, it is trivial to check that(

m
a+ b

)
=

m∑
c=a

(
c
a

)(
m− c
b

)
−
m−1∑
c=a

(
c
a

)(
m− 1− c

b

)
.

Here is an explanation why the equality of binomial coefficients(
m
a+ b

)
=

m−1∑
c=a

(
c
a

)(
m− c− 1
b− 1

)
holds when b ≥ 1. The number of ways to pick up a+ b objects out of a set of m identical

objects, all ordered in a row, and such that the (a+1)st selected object is in position c+1 is(
c
a

)(
m− c− 1
b− 1

)
: this is because if the object in position c+ 1 is selected and if there are

a objects preceding it, then there must be b− 1 objects among those labelled c+ 2, . . . ,m.

There are

(
c
a

)
ways to chose a objects among the first c and there are

(
m− c− 1
b− 1

)
ways

to chose b− 1 objects among those labelled c+ 2, . . . ,m. Summing over all possibilities for

c, and noting that different values of c give different ways of selecting objects, we obtain

the equality (
m
a+ b

)
=

m−1∑
c=a

(
c
a

)(
m− c− 1
b− 1

)
.

Equation (4.1) will be particularly useful when j < k < i. We can deduce some more

useful relations by rewriting (4.1) as follows:
m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=

m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ik

)
T

(0)
jl

+

m−1∑
c=0

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

)

·

(
T

(m−c)
jl +

m−c−1∑
b=0

(−1)m−c−b
((

m− c
b

)
−
(
m− c− 1

b

))
T

(b)
jl

)
.
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Observe that the coefficient of T
(b)
jl on the fourth line is zero when b = 0. Therefore, we

can replace these T
(0)
jl by −

(
q+1
q

)δjl
(T

(0)
jl − δjl) and deduce that the following formula is

also true for any k, l:

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=
m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ik

)
T

(0)
jl

+
∑
c+d=m
c6=m

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

)
(4.2)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m−1

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)
.

This formula will be useful for the case when k ≤ j. Using the same trick, we can

replace the T
(a)
ik by −

(
q+1
q

)δik
(T

(a)
ik − δik) when d 6= m and a = 0 in (4.1) to deduce

another formula, which will be useful for the case when k ≥ i:
m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

= T
(0)
ik

m∑
b=0

(
(−1)m−b

(
m
b

)
T

(b)
jl

)

+
∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)
(4.3)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jl

)

+
∑

c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jl

)
.

Recall that if j < k, then modulo Kd+1, we have

d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

q − q−1
= (−1)d+1T

(0,d)
jk . (4.4)
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Similarly, if k ≤ j then modulo Kd+1 we have

d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk

q − q−1
− (−1)d

(
q + 1

q

)δjk T (0)
jk − δjk
q − q−1

= (−1)d+1T
(0,d)
jk . (4.5)

Equipped with all these formulas, we can now prove the claim that s
(m+1)
ij

ϕ7→ ζ
(0,m)
ij

when i > j. First we must compute S
(0,m)
ij and then see what is its image in the quotient

Km/Km+1. By definition,

(q − q−1)S
(0,m)
ij =

m∑
n=0

(−1)m−n
(
m
n

)
S

(n)
ij =

N∑
k=1

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jk .

Let us split this summation into the cases k ≤ j, j < k < i and k ≥ i; using our formulas

(4.1), (4.2), (4.3), (4.4), (4.5) and recalling that T
(0)
ik = 0 if k > i and T

(0)
jk = 0 if k < j, we

have

(q − q−1)S
(0,m)
ij =

m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ij

)(
T

(0)
jj − 1

)
+

m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ij

)

+
∑
k≤j

∑
c+d=m
c6=m

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
k≤j

∑
c+d=m−1

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
j<k<i

∑
c+d=m

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

) d∑
b=0

(
(−1)d−b

(
d
b

)
T

(b)
jk

)

+
∑
j<k<i

∑
c+d=m−1

c∑
a=0

(
(−1)c−a

(
c
a

)
T

(a)
ik

) d∑
b=0

(
(−1)d−b

(
d
b

)
T

(b)
jk

)

+ (T
(0)
ii − 1)

m∑
b=0

(
(−1)m−b

(
m
b

)
T

(b)
ji

)
+

m∑
b=0

(
(−1)m−b

(
m
b

)
T

(b)
ji

)

+
∑
k≥i

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)

29



+
∑
k≥i

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)
.

Most of these terms vanish after dividing by q − q−1 and passing to Km/Km+1; what

remains is:

ζ
(0,m)
ij = ξ

(0,m)
ij + (−1)m+1ξ

(0,m)
ji + h

N∑
k=1

∑
c+d=m−1

(−1)d+1ξ
(0,c)
ik ξ

(0,d)
jk

= ξ
(0,m)
ij + (−1)m+1ξ

(0,m)
ji + h

N∑
k=1

m∑
c=1

(−1)m+1−cξ
(0,c−1)
ik ξ

(0,m−c)
jk

and the right hand side is precisely ϕ(s
(m+1)
ij ).

Now suppose i ≤ j. We will show that s
(m+1)
ij 7→ ζ

(1,m)
ij . To achieve this, we first rewrite

equation (4.2) in an equivalent form:

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=
m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ik

)
T

(0)
jl

+ T
(0)
ik

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m−1∑
a=0

(−1)m−1−a
(
m− 1
a

)
T

(a)
ik

)((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
m−1∑
d=1

(
T

(m−d)
ik +

m−1−d∑
a=0

(−1)m−d−a
((

m− d
a

)
−
(
m− 1− d

a

))
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(Tjl − δjl)

)
.

Observe that the coefficient of T
(a)
ik is zero when a = 0 and d 6= 0,m (see the fourth

line). We can therefore replace these T
(0)
ik by −

(
q+1
q

)δik
(T

(0)
ik −δik) and deduce the following

formula, which will be useful for the case when i ≤ k ≤ j:
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m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=
m∑
a=0

(
(−1)m−a

(
m
a

)
T

(a)
ik

)
T

(0)
jl

+ T
(0)
ik

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
jl − (−1)m

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m−1∑
a=0

(−1)m−1−a
(
m− 1
a

)
T

(a)
ik

)((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c,d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m−1
c6=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)
.

Therefore,

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl +

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=
m+1∑
a=1

(
(−1)m+1−a

(
m+ 1
a

)
T

(a)
ik

)
T

(0)
jl +

m∑
a=1

(
(−1)m−a

(
m
a

)
T

(a)
ik

)
T

(0)
jl

+
(
(−1)m+1 + (−1)m

)
T

(0)
ik T

(0)
jl

+ T
(0)
ik

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
jl − (−1)m+1

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+ T
(0)
ik

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
jl − (−1)m

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ik

)((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m−1∑
a=1

(−1)m−1−a
(
m− 1
a

)
T

(a)
ik

)((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−
(
(−1)m + (−1)m−1

)
T

(0)
ik

((
q + 1

q

)δjl (
T

(0)
jl − δjl

))
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+
∑

c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c,d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m−1
c6=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)
.

Since

(
(−1)m+1 + (−1)m

)
T

(0)
ik T

(0)
jl = −

(
(−1)m+1 + (−1)m

)((q + 1

q

)δik (
T

(0)
ik − δik

))
T

(0)
jl

and

(
(−1)m + (−1)m−1

)
T

(0)
ik

((
q + 1

q

)δjl (
T

(0)
jl − δjl

))

= −
(
(−1)m + (−1)m−1

)((q + 1

q

)δik (
T

(0)
ik − δik

))((q + 1

q

)δjl (
T

(0)
jl − δjl

))
we deduce that

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl +

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
ik − (−1)m+1

(
q + 1

q

)δik
(T

(0)
ik − δik)

)
T

(0)
jl

+

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ik − (−1)m

(
q + 1

q

)δik
(T

(0)
ik − δik)

)
T

(0)
jl
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+ T
(0)
ik

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
jl − (−1)m+1

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+ T
(0)
ik

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
jl − (−1)m

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ik − (−1)m

(
q + 1

q

)δik (
T

(0)
ik − δik

))

·

((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

−

(
m−1∑
a=1

(−1)m−1−a
(
m− 1
a

)
T

(a)
ik − (−1)m−1

(
q + 1

q

)δik (
T

(0)
ik − δik

))

·

((
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c,d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m−1
c6=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)
.

After collecting terms, we obtain the formula:
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m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl +

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jl

=

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
ik − (−1)m+1

(
q + 1

q

)δik
(T

(0)
ik − δik)

)
T

(0)
jl

+

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ik − (−1)m

(
q + 1

q

)δik
(T

(0)
ik − δik)

)
T

(0)
jl

+ T
(0)
ik

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
jl − (−1)m+1

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+ T
(0)
ik

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
jl − (−1)m

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)

+
∑

c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jl − (−1)d

(
q + 1

q

)δjl
(T

(0)
jl − δjl)

)
. (4.6)

From this together with (4.2) and (4.3), and recalling that T
(0)
jk = 0 if k < j, it follows

that:
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(q − q−1)S
(1,m)
ij = (q − q−1)

(
S

(0,m+1)
ij + S

(0,m)
ij

)
=

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

)
S

(n)
ij +

m∑
n=0

(−1)m−n
(
m
n

)
S

(n)
ij

=
N∑
k=1

(
m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
a=0

T
(a)
ik T

(n−a)
jk +

m∑
n=0

(−1)m−n
(
m
n

) n∑
a=0

T
(a)
ik T

(n−a)
jk

)

=
∑
k<i

∑
c+d=m+1
c6=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
k<i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
k<i

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
k<i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
ik

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
jk − (−1)m+1

(
q + 1

q

)δij
(T

(0)
ij − δij)

)(
T

(0)
jj − 1

)
+

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
jk − (−1)m+1

(
q + 1

q

)δij
(T

(0)
ij − δij)

)

+

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ij − (−1)m

(
q + 1

q

)δij
(T

(0)
ij − δij)

)(
T

(0)
jj − 1

)
+

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
ij − (−1)m

(
q + 1

q

)δij
(T

(0)
ij − δij)

)

+
(
T

(0)
ii − 1

)(m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
ji − (−1)m+1

(
q + 1

q

)δji
(T

(0)
ji − δji)

)
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+

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
ji − (−1)m+1

(
q + 1

q

)δji
(T

(0)
ji − δji)

)

+
(
T

(0)
ii − 1

)( m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
ji − (−1)m

(
q + 1

q

)δji
(T

(0)
ji − δji)

)

+

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
ji − (−1)m

(
q + 1

q

)δji
(T

(0)
ji − δji)

)

+
∑
i≤k≤j

∑
c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
i≤k≤j

∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
i≤k≤j

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
i≤k≤j

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
jk − (−1)d

(
q + 1

q

)δjk
(T

(0)
jk − δjk)

)

+
∑
k>j

∑
c+d=m+1
d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)

+
∑
k>j

∑
c+d=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)
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+
∑
k>j

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)

+
∑
k>j

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
ik − (−1)c

(
q + 1

q

)δik
(T

(0)
ik − δik)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
jk

)
.

After dividing by q − q−1 and passing to Km/Km+1, we are left with

ζ
(1,m)
ij = ξ

(0,m)
ij + (−1)m+1ξ

(0,m)
ji − h

N∑
k=1

∑
c+d=m−1

(−1)dξ
(0,c)
ik ξ

(0,d)
jk

= ξ
(0,m)
ij + (−1)m+1ξ

(0,m)
ji + h

N∑
k=1

m−1∑
c=0

(−1)m−cξ
(0,c)
ik ξ

(0,m−1−c)
jk

= ξ
(0,m)
ij + (−1)m+1ξ

(0,m)
ji + h

N∑
k=1

m∑
c=1

(−1)m+1−cξ
(0,c−1)
ik ξ

(0,m−c)
jk

= ϕ(s
(m+1)
ij ).
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Chapter 5

Y tw(spN ) as a degenerate form of
Uq(Ltw(spN ))

In the same spirit as the previous two chapters, we will now realize the twisted Yangian

Y tw(spN ) as a degenerate form of Uq(Ltw(spN )). We will regard these two algebras as

subalgebras of Y (glN ) and Uq(Ltw(spN )) respectively, via the embeddings of Propositions

1.5 and 1.8. The proof amounts to a computation which is very similar to the one seen

Chapter 4. Recall that for this case, N must be even.

Let S
(r,0)
ij =

S
(r)
ij

q−q−1 when r > 0, and for i ≥ j let S
(0,0)
ij =

S
(0)
ij −bij
q−q−1 where B = (bij)

is given by (1.44). For i < j, let S
(0,0)
ij = − S

(0)
ji

q−q−1 . For each m ≥ 0, define inductively

S
(r,m+1)
ij = S

(r+1,m)
ij − S(r,m)

ij . Let ζ
(r,m)
ij be the image of S

(r,m)
ij in the quotient Km/Km+1.

Once again we have

S
(r,m)
ij =

m+r∑
n=r

(−1)m−n+r

(
m

n− r

)
S

(n,0)
ij

for all r,m ≥ 0.

Theorem 5.1 If i > j + 1, then

s
(m+1)
ij

ϕ7→ ζ
(0,m)
ij

where ϕ : Yh(glN )
∼−→ Ỹh(glN ) is the isomorphism given by t

(m+1)
ij 7→ ξ

(0,m)
ij ; if i ≤ j + 1,

then s
(m+1)
ij

ϕ7→ ζ
(1,m)
ij .

We can obtain an analogue of Theorem 3.2. From Theorem 3.1 and Proposition 1.8,

we can deduce that the enveloping algebra of sptwN [s, s−1] is the limit when q 7→ 1 of

Uq(Ltw(spN )) in the following precise sense: if we let UA(Ltw(spN )) be the subalgebra

of Uq(Ltw(spN )) generated by all the S
(r,0)
ij , then UA(Ltw(spN ))/(q−1)UA(Ltw(spN )) is iso-

morphic to U(sptwN [s, s−1]) (see the proof of Theorem 3.10 in [12]). The following diagram

is commutative:

38



UA(Ltw(spN )) //

��

UA(L(glN ))

��

U(sptwN [s, s−1]) UA(Ltw(spN ))
(q−1)UA(Ltw(spN ))

// UA(L(glN ))
(q−1)UA(L(glN )) U(L(glN )).

We can define an algebra Ỹ tw(spN ) similarly to how we defined Ỹ tw(oN ). For m ≥ 0,

denote by Ktwm the Lie ideal of sptwN [s, s−1] spanned by

(−1)jEij′s
r(s− 1)m + (−1)iEji′s

−r(s−1 − 1)m

for all r ∈ Z. Let U tw be the subspace of UA(Ltw(spN )) spanned over C all the generators

S
(r,0)
ij , and observe that U tw∩(q−1)UA(Ltw(spN )) = {0}. Set Ktw

m = ψ−1(Ktwm )∩U tw where

ψ this time denotes the composite

UA(Ltw(spN )) � UA(Ltw(spN ))/(q − 1)UA(Ltw(spN ))
∼−→ U(sptwN [s, s−1]).

Let Ktw
m be the two-sided ideal of UA(Ltw(spN )) generated by (q− q−1)m0Ktw

m1
· · ·Ktw

mk
with

m0 +m1 + · · ·+mk ≥ m.

Let Ỹ tw(spN ) be the C-algebra

Ỹ tw(spN ) =

∞⊕
m=0

Ktw
m /K

tw
m+1

where Ktw
0 = UA(Ltw(spN )). We also view Ỹ tw(spN ) as an algebra over C[h] by setting

h = q − q−1 ∈ Ktw
1 /Ktw

2 , and then denote it by Ỹ tw
h (spN ).

Corollary 5.1 Y tw
h (spN ) is isomorphic to Ỹ tw

h (spN ) via the function ϕtw that sends s
(m)
ij

to S
(1,m−1)
ij ∈ Ktw

m−1/K
tw
m for m ≥ 1.

Proof. Theorem 5.1 implies that the following diagram is commutative:

Y tw
h (spN ) //

ϕtw

��

Yh(glN )

ϕ
��

Ỹ tw
h (spN ) // Ỹh(glN ).

In this diagram, the top horizontal arrow is the embedding of proposition 1.5 and the

bottom horizontal arrow is the one induced from the embedding of proposition 1.8. The

injectivity of ϕtw now follows from the fact that ϕ provides an isomorphism between Yh(glN )

and Ỹh(glN ): see Theorem 3.2. The proof that this map is surjective is the same as in the

orthogonal case.

Proof of Theorem 5.1. Suppose that j < i− 1. We need to show that
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ζ
(0,m)
ij = (−1)jξ

(0,m)
i,j′ +(−1)m+iξ

(0,m)
j,i′ −h

N/2∑
k=1

m∑
p=1

(−1)m−p(ξ
(0,p−1)
i,2k−1 ξ

(0,m−p)
j,2k − ξ(0,p−1)

i,2k ξ
(0,m−p)
j,2k−1 ).

Using the formulas (4.1), (4.2) and (4.3), we find that

(q − q−1)S
(0,m)
ij =

m∑
n=0

(−1)m−n
(
m
n

)
S

(n)
ij

=

N/2∑
k=1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(qT
(p)
i,2k−1T

(n−p)
j,2k − T (p)

i,2kT
(n−p)
j,2k−1)

=
∑
2k≤j

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(
(q − 1)T

(p)
i,2k−1T

(n−p)
j,2k + T

(p)
i,2k−1T

(n−p)
j,2k

)
−

∑
2k≤j+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

+
∑

j<2k<i+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(
(q − 1)T

(p)
i,2k−1T

(n−p)
j,2k + T

(p)
i,2k−1T

(n−p)
j,2k

)
−

∑
j+1<2k<i

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

+
∑

2k≥i+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(
(q − 1)T

(p)
i,2k−1T

(n−p)
j,2k + T

(p)
i,2k−1T

(n−p)
j,2k

)
−
∑
2k≥i

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

= (q − 1)
∑
2k≤j

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)
T

(0)
j,2k

+ (q − 1)
∑
2k≤j

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ (q − 1)
∑
2k≤j

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)
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+
∑
2k≤j

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)
(T

(0)
j,2k − δj,2k)

+
∑
2k≤j

δj,2k

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)

+
∑
2k≤j

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+
∑
2k≤j

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

−
∑

2k≤j+1

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k

)
(T

(0)
j,2k−1 − δj,2k−1)

−
∑

2k≤j+1

δj,2k−1

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k

)

−
∑

2k≤j+1

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

2k≤j+1

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

+ (q − 1)
∑

j<2k<i+1

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ (q − 1)
∑

j<2k<i+1

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+
∑

j<2k<i+1

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)
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+
∑

j<2k<i+1

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

−
∑

j+1<2k<i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑

j+1<2k<i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

+ (q − 1)
∑

2k≥i+1

T
(0)
i,2k−1

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)
+ (q − 1)

·
∑

2k≥i+1

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)
+ (q − 1)

·
∑

2k≥i+1

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+
∑

2k≥i+1

(T
(0)
i,2k−1 − δi,2k−1)

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)

+
∑

2k≥i+1

δi,2k−1

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)

+
∑

2k≥i+1

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+
∑

2k≥i+1

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

−
∑
2k≥i

(T
(0)
i,2k − δi,2k)

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k−1

)
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−
∑
2k≥i

δi,2k

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k−1

)

−
∑
2k≥i

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑
2k≥i

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)
.

After dividing by q− q−1 and passing to Km/Km+1 (always bearing in mind that T
(0)
kl = 0

when k < l and T
(0)
kl = 0 when k > l), we find, as desired, that

ζ
(0,m)
ij = (−1)jξ

(0,m)
ij′ + (−1)m+iξ

(0,m)
ji′ − h

N/2∑
k=1

∑
c+d=m−1

(−1)d
(
ξ

(0,c)
i,2k−1ξ

(0,d)
j,2k − ξ

(c)
i,2kξ

(d)
j,2k−1

)
= (−1)jξ

(0,m)
ij′ + (−1)m+iξ

(0,m)
ji′

− h
N/2∑
k=1

m−1∑
c=0

(−1)(m−1−c)
(
ξ

(0,c)
i,2k−1ξ

(0,m−1−c)
j,2k − ξ(0,c)

i,2k ξ
(0,m−1−c)
j,2k−1

)
= (−1)jξ

(0,m)
ij′ + (−1)m+iξ

(0,m)
ji′

− h
N/2∑
k=1

m∑
c=1

(−1)(m−c)
(
ξ

(0,c−1)
i,2k−1 ξ

(0,m−c)
j,2k − ξ(0,c−1)

i,2k ξ
(0,m−c)
j,2k−1

)
.

Now suppose that i ≤ j. We will show that s
(m+1)
ij

ϕ7→ ζ
(1,m)
ij using (4.2), (4.3) and (4.6):

(q − q−1)S
(1,m)
ij = (q − q−1)

(
S

(0,m+1)
ij + S

(0,m)
ij

)
=

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

)
S

(n)
ij +

m∑
n=0

(−1)m−n
(
m
n

)
S

(n)
ij

=

N/2∑
k=1

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

(qT
(p)
i,2k−1T

(n−p)
j,2k − T (p)

i,2kT
(n−p)
j,2k−1)

+

N/2∑
k=1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(qT
(p)
i,2k−1T

(n−p)
j,2k − T (p)

i,2kT
(n−p)
j,2k−1)
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= q
∑

2k<i+1

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

+ q
∑

2k<i+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

−
∑
2k<i

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

−
∑
2k<i

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

+ q
∑

i+1≤2k≤j

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

+ q
∑

i+1≤2k≤j

m∑
n=0

(−1)m−n
(
m
n

) s∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

−
∑

i≤2k≤j+1

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

−
∑

i≤2k≤j+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

+ q
∑
2k>j

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

+ q
∑
2k>j

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2k−1T

(n−p)
j,2k

−
∑

2k>j+1

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

−
∑

2k>j+1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

T
(p)
i,2kT

(n−p)
j,2k−1

= q
∑

2k<i+1

(
m+1∑
a=0

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1

)(
T

(0)
j,2k − δj,2k

)

+ q
∑

2k<i+1

δj,2k

(
m+1∑
a=0

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1

)

+ q
∑

2k<i+1

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)(
T

(0)
j,2k − δj,2k

)
+ q

∑
2k<i+1

δj,2k

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)
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+ q
∑

2k<i+1

∑
c+d=m+1
c6=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

2k<i+1

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

2k<i+1

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

2k<i+1

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

−
∑
2k<i

(
m+1∑
a=0

(−1)m−a
(
m+ 1
a

)
T

(a)
i,2k

)
T

(0)
j,2k−1 −

∑
2k<i

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k

)
T

(0)
j,2k−1

−
∑
2k<i

∑
c+d=m+1
c6=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k<i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k<i

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
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−
∑
2k<i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
+ q

·
∑

i+1≤2k≤j

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1 − (−1)m+1

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·
(
T

(0)
j,2k − δj,2k

)
+ q

∑
i+1≤2k≤j

δj,2k

·

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1 − (−1)m+1

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

+ q
∑

i+1≤2k≤j

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
i,2k−1 − (−1)m

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·
(
T

(0)
j,2k − δj,2k

)
+ q

∑
i+1≤2k≤j

δj,2k

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
i,2k−1 − (−1)m

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

+ q
∑

i+1≤2k≤j

(
T

(0)
i,2k−1 − δi,2k−1

)

·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k − (−1)m+1

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)
+ q

∑
i+1≤2k≤j

δi,2k−1

·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k − (−1)m+1

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)
+ q

∑
i+1≤2k≤j

(
T

(0)
i,2k−1 − δi,2k−1

)

·

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k − (−1)m

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

i+1≤2k≤j
δi,2k−1

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k − (−1)m

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)
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+ q
∑

i+1≤2k≤j

∑
c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

i+1≤2k≤j

∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

i+1≤2k≤j

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑

i+1≤2k≤j

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

−
∑

i≤2k≤j+1

m+1∑
a=1

(
(−1)m+1−a

(
m+ 1
a

)
T

(a)
i,2k − (−1)m+1

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·
(
T

(0)
j,2k−1 − δj,2k−1

)
−

∑
i≤2k≤j+1

δj,2k−1

m+1∑
a=1

(
(−1)m+1−a

(
m+ 1
a

)
T

(a)
i,2k − (−1)m+1

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

−
∑

i≤2k≤j+1

m∑
a=1

(
(−1)m−a

(
m
a

)
T

(a)
i,2k − (−1)m

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·
(
T

(0)
j,2k−1 − δj,2k−1

)
−

∑
i≤2k≤j+1

δj,2k−1

m∑
a=1

(
(−1)m−a

(
m
a

)
T

(a)
i,2k − (−1)m

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

−
∑

i≤2k≤j+1

(
T

(0)
i,2k − δi,2k

)

·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1 − (−1)m+1

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
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−
∑

i≤2k≤j+1

δi,2k

·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1 − (−1)m+1

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
−

∑
i≤2k≤j+1

(
T

(0)
i,2k − δi,2k

)

·

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k−1 − (−1)m

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

i≤2k≤j+1

δi,2k

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k−1 − (−1)m

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

i≤2k≤j+1

∑
c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

i≤2k≤j+1

∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

i≤2k≤j+1

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑

i≤2k≤j+1

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

+ q
∑
2k>j

(
T

(0)
i,2k−1 − δi,2k−1

)(m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

δi,2k−1

(
m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

(
T

(0)
i,2k−1 − δi,2k−1

)( m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)
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+ q
∑
2k>j

δi,2k−1

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

∑
c+d=m+1
d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

∑
c+d=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>j

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

−
∑

2k>j+1

T
(0)
i,2k

(
m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1

)

−
∑

2k>j+1

T
(0)
i,2k

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k−1

)

−
∑

2k>j+1

∑
c+d=m+1
d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑

2k>j+1

∑
c+d=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)
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−
∑

2k>j+1

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑

2k>j+1

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)
.

After dividing by q − q−1 and passing to Km/Km+1, what remains is

ζ
(1,m)
ij = (−1)jξ

(0,m)
i,j′ + (−1)m+iξ

(0,m)
j,i′ + h

N/2∑
k=1

∑
c+d=m−1

(−1)d+1
(
ξ

(0,c)
i,2k−1ξ

(0,d)
j,2k − ξ

(0,c)
i,2k ξ

(0,d)
j,2k−1

)
= (−1)jξ

(0,m)
i,j′ + (−1)m+iξ

(0,m)
j,i′

− h
N/2∑
k=1

m∑
c=1

(−1)m−c
(
ξ

(0,c−1)
i,2k−1 ξ

(0,m−c)
j,2k − ξ(0,c−1)

i,2k ξ
(0,m−c)
j,2k−1

)
= ϕ(s

(m+1)
ij ).

Finally, suppose that j = i− 1. Using (4.1), (4.2), (4.3) and (4.6) we have

(q − q−1)S
(1,m)
ij = (q − q−1)

(
S

(0,m+1)
ij + S

(0,m)
ij

)
=

m+1∑
n=0

(−1)m+1−n
(
m+ 1
s

)
S

(n)
ij +

m∑
n=0

(−1)m−n
(
m
n

)
S

(n)
ij

=

N/2∑
k=1

m+1∑
n=0

(−1)m+1−n
(
m+ 1
n

) n∑
p=0

(qT
(p)
i,2k−1T

(n−p)
j,2k − T (p)

i,2kT
(n−p)
j,2k−1)

+

N/2∑
k=1

m∑
n=0

(−1)m−n
(
m
n

) n∑
p=0

(qT
(p)
i,2k−1T

(n−p)
j,2k − T (p)

i,2kT
(n−p)
j,2k−1)

= q
∑
2k<i

(
m+1∑
a=0

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1

)(
T

(0)
j,2k − δj,2k

)

+ q
∑
2k<i

δj,2k

(
m+1∑
a=0

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k−1

)

+ q
∑
2k<i

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)(
T

(0)
j,2k − δj,2k

)
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+ q
∑
2k<i

δj,2k

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k−1

)

+ q
∑
2k<i

∑
c+d=m+1
c6=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑
2k<i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑
2k<i

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑
2k<i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k − (−1)d

(
q + 1

q

)δj,2k
(T

(0)
j,2k − δj,2k)

)

+ q
∑
2k=i

∑
c+d=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ 2q
∑
2k=i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k=i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k−1

)(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

(
T

(0)
i,2k−1 − δi,2k−1

)(m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

δi,2k−1

(
m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

(
T

(0)
i,2k−1 − δi,2k−1

)( m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

δi,2k−1

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k

)
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+ q
∑
2k>i

∑
c+d=m+1
d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

∑
c+d=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

+ q
∑
2k>i

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k−1 − (−1)c

(
q + 1

q

)δi,2k−1

(T
(0)
i,2k−1 − δi,2k−1)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k

)

−
∑
2k<i

(
m+1∑
a=0

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k

)
T

(0)
j,2k−1 −

∑
2k<i

(
m∑
a=0

(−1)m−a
(
m
a

)
T

(a)
i,2k

)
T

(0)
j,2k−1

−
∑
2k<i

∑
c+d=m+1
c6=m+1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j.2k−1 − δj,2k−1)

)

−
∑
2k<i

∑
c+d=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k<i

∑
c+d=m
c6=m

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j.2k−1 − δj,2k−1)

)
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−
∑
2k<i

∑
c+d=m−1

(
c∑

a=0

(−1)c−a
(
c
a

)
T

(a)
i,2k

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k=i

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k − (−1)m+1

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)
·
(
T

(0)
j,2k−1 − δj,2k−1

)
−
∑
2k=i

δj,2k−1

(
m+1∑
a=1

(−1)m+1−a
(
m+ 1
a

)
T

(a)
i,2k − (−1)m+1

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

−
∑
2k=i

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
i,2k − (−1)m

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)
·
(
T

(0)
j,2k−1 − δj,2k−1

)
−
∑
2k=i

δj,2k−1

(
m∑
a=1

(−1)m−a
(
m
a

)
T

(a)
i,2k − (−1)m

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)
−
∑
2k=i

(
T

(0)
i,2k − δi,2k

)
·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1 − (−1)m+1

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
−
∑
2k=i

δi,2k

·

(
m+1∑
b=1

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1 − (−1)m+1

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
−
∑
2k=i

(
T

(0)
i,2k − δi,2k

)
·

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k−1 − (−1)m

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k=i

δi,2k

(
m∑
b=1

(−1)m−b
(
m
b

)
T

(b)
j,2k−1 − (−1)m

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k=i

∑
c+d=m+1
c,d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)
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−
∑
2k=i

∑
c+d=m
c6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k=i

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k=i

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=1

(−1)d−b
(
d
b

)
T

(b)
j,2k−1 − (−1)d

(
q + 1

q

)δj,2k−1

(T
(0)
j,2k−1 − δj,2k−1)

)

−
∑
2k>i

T
(0)
i,2k

(
m+1∑
b=0

(−1)m+1−b
(
m+ 1
b

)
T

(b)
j,2k−1

)
−
∑
2k>i

T
(0)
i,2k

(
m∑
b=0

(−1)m−b
(
m
b

)
T

(b)
j,2k−1

)

−
∑
2k>i

∑
c+d=m+1
d6=m+1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑
2k>i

∑
c+d=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑
2k>i

∑
c+d=m
d6=m

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)

−
∑
2k>i

∑
c+d=m−1

(
c∑

a=1

(−1)c−a
(
c
a

)
T

(a)
i,2k − (−1)c

(
q + 1

q

)δi,2k
(T

(0)
i,2k − δi,2k)

)

·

(
d∑
b=0

(−1)d−b
(
d
b

)
T

(b)
j,2k−1

)
.

It follows that
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ζ
(1,m)
ij = (−1)jξ

(0,m)
i,j′ + (−1)m+iξ

(0,m)
j,i′ + h

N/2∑
k=1

∑
c+d=m−1

(−1)d+1
(
ξ

(0,c)
i,2k−1ξ

(0,d)
j,2k − ξ

(0,c)
i,2k ξ

(0,d)
j,2k−1

)
= (−1)jξ

(0,m)
i,j′ + (−1)m+iξ

(0,m)
j,i′

− h
N/2∑
k=1

m∑
c=1

(−1)m−c
(
ξ

(0,c−1)
i,2k−1 ξ

(0,m−c)
j,2k − ξ(0,c−1)

i,2k ξ
(0,m−c)
j,2k−1

)
= ϕ(s

(m+1)
ij ).
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Chapter 6

Classification of Finite Dimensional
Irreducible Representations of Y (g)

Throughout this section, we fix a complex semisimple Lie algebra g, a Cartan subalgebra h,

and a basis of simple roots {αi}i∈I . We begin by recalling some facts about representations

of g (equivalently, representations of the universal enveloping algebra U(g)).

6.1 Preliminaries and Definitions

Let V be a representation of U(g). We say that λ ∈ h∗ is a weight of V if the simultaneous

eigenspace

Vλ = {v ∈ V | Hv = λ(H)v ∀ H ∈ h}

is nonzero. If V is finite dimensional and irreducible, then there exists a weight space

decomposition

V =
⊕
λ∈h∗

Vλ.

A nonzero vector v ∈ Vλ is called a highest weight vector if U(n+)v = 0 where n+ is given

by the triangular decomposition g = n−⊕ h⊕ n+. V is a highest weight representation with

highest weight λ if V is generated by a highest weight vector v ∈ Vλ for some λ ∈ h∗.

Proposition 6.1

(a) Every finite dimensional representation of U(g) is completely reducible.

(b) Every finite dimensional irreducible representation of U(g) admits a weight space de-

composition.

(c) Every finite dimensional irreducible representation of U(g) is highest weight. Its highest

weight λ is unique, and the weight space Vλ is one dimensional.

(d) An irreducible representation of U(g) is finite dimensional if and only if its highest

weight λ belongs to P+ = {λ ∈ h∗ | 2 〈λ,αi〉〈αi,αi〉 ∈ Z+ ∀ i ∈ I}.
(e) Every weight of a finite dimensional irreducible representation of U(g) is of the form
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λ− η with η ∈ Q+, where λ is the highest weight and

Q+ =
∑
i∈I

Z+αi.

Point (e) above motivates the introduction of the following partial ordering on h∗: we shall

say that α ≤ β if β − α ∈ Q+. Then (e) means precisely that all the weights of a finite

dimensional irreducible representation of U(g) are comparable with respect to this ordering,

and the highest weight is maximal among them.

In this chapter, we will prove some analogous results for the Yangian Y (g). We will first

need to introduce the notion of highest weight in this case. The appropriate definitions were

given in section 12.1 of [4]. A statement of Theorem 6.3 below can also be found therein,

but a full proof was not given, because it should be similar to the proof of the classification

of finite dimensional irreducible representations of the quantum loop algebra for g. The

proof of the quantum loop case for sl2 can be found in [3], and a proof the quantum loop

case in general can be found in [5] and section 12.2 of [4]. The majority of the proof of

Theorem 6.3 below was obtained by adapting those arguments for Yangians.

Let V be a representation of Y (g). We will call a nonzero vector v ∈ V a weight vector

if, for all i ∈ I and r ∈ Z+, Hi,rv = Φi,rv for some complex numbers Φi,r. The I×Z+-tuple

Φ = (Φi,r)i∈I,r∈Z+ is then called the weight of v. A weight vector v is highest weight if, in

addition, X+
i,rv = 0 for every i ∈ I and r ∈ Z+.

V is a highest weight representation if it is generated by some highest weight vector v,

and in this case the weight Φ of v is called the highest weight of V .

Theorem 6.1 (PBW Theorem for Y (g); Cor. 12.1.9 of [4]) Given any total order-

ing on the set of generators {X±i,r, Hi,r | i ∈ I, r ∈ Z+}, a basis for Y (g) is provided

by the collection of all ordered monomials in these generators. In particular, if we choose

this ordering so that each X−i,r precedes each Hi,r, which in turn precedes each H+
i,r, then we

obtain an isomorphism of vector spaces

Y (g) ∼= Y − ⊗ Y 0 ⊗ Y +

where Y ± (respectively Y 0) is the subalgebra of Y (g) generated by all the X±i,r (respectively

Hi,r).

It is easy to check that the assignment

ei 7→ d−1
i X+

i,0 fi 7→ X−i,0 hi 7→ d−1
i Hi,0 (6.1)

defines a natural homomorphism from U(g) into Y (g). Consequently, we can view any

representation V of Y (g) as a module over U(g). Then, we can investigate the structure of

V by making use of the familiar representation theory of g.
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Theorem 6.2 Let V be an irreducible highest weight representation of Y (g) with highest

weight Φ = (Φi,r)i∈I,r∈Z+. Then the highest weight vectors in V span a one dimensional

subspace. In particular, the highest weight Φ is unique.

Proof. Since V is highest weight, it is generated by some highest weight vector v ∈ V of

weight Φ. Then according to the PBW theorem and the definition of a highest weight vector,

V is spanned by vectors of the form X−i1,r1 . . . X
−
ik,rk

v. If we view V as a representation of

g, then by definition the weight λ of v with respect to the Cartan subalgebra h is given by

λ(hi) = d−1
i Φi,0, and each vector of the form X−i1,r1 . . . X

−
ik,rk

v has weight λ−αi1− . . .−αik .

We therefore have a weight space decomposition

V =
⊕
η∈Q+

Vλ−η.

Let ṽ ∈ V be any other highest weight vector. Then ṽ is in particular a simultaneous

eigenvector under the action of all the Hi,0, so it belongs to one of the weight spaces Vλ−η.

By irreducibility, ṽ generates V , but by the PBW theorem, this is impossible unless η = 0

because ṽ is highest weight. It follows that ṽ ∈ Vλ. On the other hand, Vλ is spanned by v,

because X−i1,r1 . . . X
−
ik,rk

v has weight λ− αi1 − . . .− αik .

Proposition 6.2 Every finite dimensional irreducible representation of Y (g) is highest

weight.

Proof. Let V be a finite dimensional irreducible representation of Y (g), and let

V 0 = {v ∈ V | X+
i,rv = 0 ∀ i ∈ I, r ∈ Z+}.

First, we will show that V 0 6= {0}.
Assume that this is not the case, so that V 0 = {0}. Choose a nonzero simultaneous

eigenvector w ∈ V with respect to the action of all the Hi,r (this exists because the Hi,r

commute with each other). Note that by definition, w is a weight vector with some weight

Φ = (Φi,r)i∈I,r∈Z+ . Since w is nonzero, it is not in V 0; therefore, there is some X+
i1,r1

such

that Xi1,r1w 6= 0. We can repeat this argument inductively to obtain an infinite sequence

w,X+
i1,r1

w,X+
i2,r2

X+
i1,r1

w, . . . of nonzero vectors in V . On the other hand, these vectors are

all linearly independent, because they each have different weights when we view V as a

representation of g via the homomorphism (6.1); indeed, the weight of X+
ik,rk

. . . X+
i1,r1

w is

λ+ αi1 + αi2 + . . .+ αik , where λ(hi) = d−1
i Φi,0.

This contradicts the assumption that V is finite dimensional, proving that V 0 6= {0}.
Any nonzero element of V 0 which is a simultaneous eigenvector under the action of all the

Hi,r (if it exists) will be highest weight by definition, and by irreducibility it must generate

all of V ; it therefore only remains to show that that V 0 is stable with respect to the action

of all the Hi,r.

58



Suppose v ∈ V 0, and fix any i ∈ I. We will show by induction on r that X+
j,sHi,rv = 0

for every j ∈ I and r, s ∈ Z+:

The base case r = 0 follows from the second relation in Y (g), and the fact that v ∈ V 0:

X+
j,sHi,0v = (X+

j,sHi,0 −Hi,0X
+
j,s)v = −[Hi,0, X

+
j,s]v = −dicijX+

j,sv = 0.

Now suppose for some r ∈ Z+ that X+
j,sHi,rv = 0 for every j ∈ I and s ∈ Z+. Then

since v ∈ V 0, relation (2.2) gives us

X+
j,sHi,r+1v = (X+

j,sHi,r+1 −Hi,r+1X
+
j,s)v + (Hi,rX

+
j,s+1 −X

+
j,s+1Hi,r)v

= −([Hi,r+1, X
+
j,s]− [Hi,r, X

+
j,s+1])v

= −dicij
2

(Hi,rX
+
j,s +X+

j,sHi,r)v

= 0.

Given any I × Z+-tuple Φ = (Φi,r)i∈I,r∈Z, let M(Φ) be the quotient of Y (g) by the left

ideal generated by {X+
i,r, Hi,r −Φi,r · 1}. Then clearly, M(Φ) is a highest weight represen-

tation of Y (g) with highest weight Φ, and the highest weight vector is the image 1Φ in the

quotient of the element 1 ∈ Y (g). Note that the weight λ of 1Φ is given by λ(hi) = d−1
i Φi,0

when we view M(Φ) as a representation of g. The weight space M(Φ)λ is one dimensional,

because any element of M(Φ) is a sum of elements of the form X−ik,rk . . . X
−
i1,r1

1Φ, but the

weight of such an element is λ− αi1 − αi2 − . . .− αik .

Consequently, any proper subrepresentation of M(Φ) must have trivial intersection with

M(Φ)λ, and it follows that the sum of all of the proper subrepresentations is the unique

proper maximal subrepresentation of M(Φ).

Definition 6.1 The irreducible highest weight representation of Y (g) with weight Φ is the

quotient of M(Φ) by its unique proper maximal subrepresentation. We denote this repre-

sentation by L(Φ).

Now suppose that V is any finite dimensional irreducible representation of Y (g). By

Proposition 6.2, V is a highest weight representation with some weight Φ. If v ∈ V is

a highest weight vector, then the assignment 1Φ 7→ v defines a surjective Y (g)-module

homomorphism M(Φ) → V . It follows that V is isomorphic to the quotient of M(Φ) by

the kernel K of this homomorphism. On the other hand, since V is irreducible, this means

that the quotient M(Φ)/K must also be irreducible; therefore, K must coincide with the

unique maximal proper submodule of M(Φ), hence V ∼= L(Φ).

In light of this fact, if we want to classify all of the finite dimensional irreducible rep-

resentations of Y (g), we only need to find some necessary and sufficient condition on the

weight Φ which determines whether or not L(Φ) is finite dimensional. We will prove the

following result:
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Theorem 6.3 Let Φ = (Φi,r)i∈I,r∈Z+. Then L(Φ) is finite dimensional if and only if for

each i ∈ I, there exists a polynomial Pi ∈ C[u] such that

Pi(u+ di)

Pi(u)
= 1 +

∞∑
r=0

Φi,ru
−r−1 (6.2)

in the sense that the right hand side is the Laurent expansion of the left hand side about

u =∞.

Note that if Pi satisfies condition (6.2), then so does any nonzero scalar multiple of Pi,

so we may as well take Pi to be monic. Then all the Pi are uniquely determined by Φ;

indeed, if Pi and Qi are both polynomials satisfying (6.2), then

Pi(u+ di)

Pi(u)
=
Qi(u+ di)

Qi(u)
.

Equivalently,
Pi(u+ di)

Qi(u+ di)
=
Pi(u)

Qi(u)
.

In particular, the rational function Pi(u)
Qi(u) is periodic in u, which is impossible unless Pi(u)

is some scalar multiple of Qi(u). If Pi(u) and Qi(u) are both monic, it follows that Pi(u) =

Qi(u).

Consequently, we may identify Φ with the sequence of monic polynomials P = (Pi)i∈I ,

and use the notation L(P ) in place of L(Φ). Accordingly, we will simply call P the highest

weight of this representation.

Definition 6.2 L(P ) is called a fundamental representation if, for some i ∈ I, Pi(u) has

degree 1, while Pj(u) = 1 for all j 6= i.

It will be useful to consider tensor products of the fundamental representations, but we

first remark that this is a well defined notion because Y (g) is a Hopf algebra (so we can use

its comultiplication ∆ to define the action of Y (g) on a tensor product of representations).

While an explicit formula for ∆ in terms of the presentation for Y (g) given in Chapter 2 has

been found for the case when g = sln, there is no known formula that works for arbitrary

g. However, it is at least known (cf. p385, [4]) that if N+ =
∑

i,rX
+
i,rY

+, then modulo

Y (g)⊗ Y (g)N+, we have

∆(X+
i,r) ≡ X

+
i,r ⊗ 1 + 1⊗X+

i,r +

r∑
s=1

Hi,s−1 ⊗X+
i,r−s (6.3)

∆(Hi,r) ≡ Hi,r ⊗ 1 + 1⊗Hi,r +

r∑
s=1

Hi,s−1 ⊗Hi,r−s. (6.4)

Proposition 6.3 (Proposition 12.1.12 of [4]) Let v and w be highest weight vectors of

L(P ) and L(Q), respectively. Then the submodule of L(P )⊗ L(Q) generated by v ⊗ w is a

highest weight representation of Y (g) with highest weight P ⊗Q = (PiQi)i∈I .
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Proof. It is immediate from (6.3) that v ⊗ w is annihilated by all the X+
i,r. Let

ΦP = (ΦP
i,r)i∈I,r∈Z+ (respectively ΦQ = (ΦQ

i,r)i∈I,r∈Z+) be related to P (respectively Q) as

in equation (6.2). Then according to equation (6.4), we have

Hi,r(v ⊗ w) =

(
ΦP
i,r + ΦQ

i,r +
r∑
s=1

ΦP
i,s−1ΦQ

i,r−s

)
(v ⊗ w).

It follows that Y (g)(v⊗w) is a highest weight representation of weight Φ = (Φi,r)i∈I,r∈Z+ ,

where Φi,r = ΦP
i,r + ΦQ

i,r +
∑r

s=1 ΦP
i,s−1ΦQ

i,r−s. In order to conclude the proof, we only need

to show that Φ is related to the polynomials PiQi by equation (6.2). For each i ∈ I, we

have

PiQi(u+ di)

PiQi(u)
=

(
1 +

∞∑
k=0

ΦP
i,ku
−k−1

)(
1 +

∞∑
l=0

ΦQ
i,lu
−l−1

)

= 1 +
∞∑

k,l=0

[
(ΦP

i,k + ΦQ
i,k)u

−k−1 + ΦP
i,kΦ

Q
i,lu
−(k+l)−2

]
.

The coefficient of u−r−1 in this expression is

ΦP
i,r + ΦQ

i,r +
∑

k+l=r−1

ΦP
i,kΦ

Q
i,l = ΦP

i,r + ΦQ
i,r +

r−1∑
k=0

ΦP
i,kΦ

Q
i,r−1−k

= ΦP
i,r + ΦQ

i,r +
r∑

k=1

ΦP
i,k−1ΦQ

i,r−k = Φi,r

as desired.

Given any sequence P = (Pi)i∈I of polynomials, we can repeatedly apply the above

proposition to construct a tensor product of fundamental representations containing a high-

est weight subrepresentation of weight P . Then, L(P ) is isomorphic to the irreducible

quotient of this submodule. The next result follows.

Corollary 6.1 For any P = (Pi)i∈I , L(P ) is isomorphic to a subquotient of some tensor

product of fundamental representations.

Accordingly, if we are to prove that every L(P ) is finite dimensional, it will suffice to

only consider the case where L(P ) is fundamental. Let us first consider the case when

g = sl2.

6.2 Proof of Theorem 6.3 for g = sl2

Recall that the finite dimensional irreducible representations of sl2 are parametrized by

nonnegative integers; namely, for each r ∈ Z+, there is a unique representation V (r) of sl2
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of dimension r + 1, and there is a basis {v0, . . . , vr} of V (r) such that the action of sl2 is

given by

evs = (r − s+ 1)vs−1 fvs = (s+ 1)vs+1 hvs = (r − 2s)vs

where v−1 = vr+1 = 0.

For each a ∈ C, there is a surjective evaluation homomorphism

eva : Y (sl2)→ U(sl2)

which acts as the identity on U(sl2) ⊂ Y (sl2). We can view V (r) as a representation of

Y (sl2) via this homomorphism; we denote the resulting Y (sl2)-module by V (r)a and call it

an evaluation module. The precise definition of eva is given in [4], Proposition 12.1.15. The

action of Y (sl2) on V (r)a is also given in [4] page 389, namely

X+
1,kvs =

(
a+

1

2
r − s+

1

2

)k
(r − s+ 1)vs−1

X−1,kvs =

(
a+

1

2
r − s− 1

2

)k
(s+ 1)vs+1

H1,kvs =

(
(a+

1

2
r − s− 1

2
)k(r − s)(s+ 1)− (a+

1

2
r − s+

1

2
)k(r − s+ 1)s

)
vs.

Note that since V (r) is irreducible and eva is surjective, V (r)a is also irreducible. It

follows that the vector v0 generates V (r)a, and according to the above equations, it is also

a highest weight vector with highest weight Φ = (Φ1,k)k∈Z+ given by

Φ1,k =

(
a+

1

2
r − 1

2

)k
r.

In particular, V (r)a is isomorphic to L(Φ). Consider the case when r = 1, so that

Φ1,k = ak. Let L(P1) be some fundamental representation, so that P1(u) = u− a for some

a ∈ C. Since d1 = 1 for g = sl2, the Laurent expansion of P1(u+d1)
P1(u) about u =∞ is

u+ 1− a
u− a

=
u− a
u− a

+
1

u− a
= 1 +

u−1

1− au−1
= 1 +

∞∑
k=0

aku−k−1 = 1 +

∞∑
k=0

Φi,ku
−k−1.

It follows that L(P1) = L(Φ) ∼= V (1)a, hence every fundamental representation is finite

dimensional (in fact 2 dimensional) because V (1)a is. This proves the ”if” part of Theorem

6.3 for g = sl2.

For the converse, it will be more convenient to work with a different presentation of

Y (sl2). It is given by taking an appropriate quotient of Y (gl2) in its RTT presentation;

see [1].
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Theorem 6.4 For r ∈ Z+, let e(r), f (r), h(r) ∈ Y (gl2) be given by the equations

e(u) =
∞∑
r=0

e(r)u−r−1 = t22(u)−1t12(u)

f(u) =

∞∑
r=0

f (r)u−r−1 = t21(u)t22(u)−1

h(u) = 1 +
∞∑
r=0

h(r)u−r−1 = t11(u)t22(u)−1 − t21(u)t22(u)−1t12(u)t22(u)−1.

Let X±(u) =
∑∞

r=0X
±
1,ru

−r−1, H(u) = 1 +
∑∞

r=0H1,ru
−r−1 ∈ Y (sl2)[[u−1]]. Then the

assignment

X+(u) 7→ e(u), X−(u) 7→ f(u), H(u) 7→ h(u)

extends to an isomorphism Y (sl2)
∼−→ Y (gl2)/(∂(u)− 1), where

∂(u) = t11(u)t22(u− 1)− t21(u)t12(u− 1).

Remark 6.1 We can rewrite h(u) as h(u) = t22(u)−1t22(u− 1)−1∂(u), cf. [1].

Assume that L(Φ) is finite dimensional. We can use the isomorphism of Theorem 6.4 to lift

L(Φ) to a representation of Y (gl2). Since the composition Y (gl2) � Y (gl2)/(∂(u)− 1)
∼−→

Y (sl2) is surjective, L(Φ) remains irreducible as a module over Y (gl2). The classification

of finite dimensional irreducible representations of Y (gl2) is well known (see [11], Chapter

3); they are parametrized by their ’highest weights’ with respect to the actions of t11(u)

and t22(u). We will use this theory to investigate the properties of L(Φ). Let us begin by

defining the notion of a highest weight module over Y (gl2):

Definition 6.3 (Proposition 3.2.2, [11]) A representation L of Y (gl2) is called highest

weight if it is generated by some vector ζ such that

t12(u)ζ = 0, and

tii(u)ζ = λi(u)ζ for i = 1, 2

for some λi(u) =
∑∞

r=0 λ
(r)
i u−1 ∈ C[[u−1]]. In this case, the pair λ(u) = (λ1(u), λ2(u)) is

called the highest weight, and ζ is the highest weight vector.

It is easy to construct a universal highest weight representation of Y (gl2).

Definition 6.4 (Definition 3.2.3, [11]) Let λ(u) = (λ1(u), λ2(u)) be any pair of formal

series as above. The Verma module M(λ(u)) is the quotient of Y (gl2) by the left ideal

generated by t
(r)
12 and t

(r)
ii − λ

(r)
i with i = 1, 2, for all r ≥ 0.
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The same arguments used for the Yangian Y (g) can be used to show that M(λ(u)) has a

unique irreducible quotient L(λ(u)), and additionally that any finite dimensional irreducible

representation of Y (gl2) has a unique one dimensional subspace of highest weight vectors,

and is isomorphic to some L(λ(u)); see [11] for complete details. The collection of all finite

dimensional irreducible representations of Y (gl2) is therefore made up from precisely those

L(λ(u)) which are finite dimensional. In the next section, we will prove the following result:

Theorem 6.5 (Theorem 3.3.3, [11]) If L(λ(u)) is finite dimensional, then there exists

some monic polynomial P (u) such that

λ1(u)

λ2(u)
=
P (u+ 1)

P (u)
.

Remark 6.2 The converse of this theorem is also true, but we only need this weaker result

for our purposes.

We eventually want to apply this theorem to L(Φ), but this only makes sense once we

have proven that L(Φ) is isomorphic to some L(λ(u)):

Lemma 6.1 L(Φ) is an irreducible highest weight representation of Y (gl2).

Proof. It is clear that L(Φ) remains irreducible when viewed as a module over Y (gl2),

and that it is generated by some vector vΦ which is highest weight with respect to the action

of Y (sl2). We need to show that vΦ is still a highest weight vector under the action of Y (gl2).

By Theorem 6.2, the subspace of highest weight vectors in L(Φ) is one dimensional. In order

to show that the tii(u) act by scalars on vΦ, it therefore suffices to prove that t
(r)
ii vΦ is a

highest weight vector for each r ∈ Z+.

According to the proof of Theorem 6.2, we have an sl2-weight decomposition

L(Φ) =
⊕
k≥0

L(Φ)Φi,0−2k

and the one dimensional space of highest weight vectors is precisely L(Φ)Φi,0 . Observe that

h1t
(r)
ii vΦ = H1,0t

(r)
ii vΦ = h(1)t

(r)
ii vΦ = (t

(1)
11 − t

(1)
22 )t

(r)
ii vΦ.

According to relation (1.1), we have [t
(1)
jj , t

(r)
ii ] = 0. It follows that h1t

(r)
ii vΦ = t

(r)
ii h1vΦ =

Φi,0t
(r)
ii vΦ, hence t

(r)
ii vΦ ∈ L(Φ)Φi,0 , as desired. Finally, we see also that t12(u)vΦ =

t22(u)e(u)vΦ = t22(u)X+(u)vΦ = 0.

According to this lemma, L(Φ) is isomorphic to L(λ(u)) for some λ(u) = (λ1(u), λ2(u)).

We have assumed that L(Φ) is finite dimensional, so by Theorem 6.5, there exists some

monic polynomial P (u) such that

λ1(u)

λ2(u)
=
P (u+ 1)

P (u)
.

64



We also know that if vΦ is the highest weight vector, then since ∂(u) = 1 in Y (sl2), we have

vΦ = ∂(u)vΦ = (t11(u)t22(u− 1)− t21(u)t12(u− 1))vΦ = λ1(u)λ2(u− 1)vΦ, hence

λ1(u)λ2(u− 1) = 1.

On the other hand, we have(
1 +

∞∑
r=0

Φ1,ru
−r−1

)
vΦ = H(u)vΦ

= h(u)vΦ = t22(u)−1t22(u− 1)−1∂(u)vΦ = λ2(u)−1λ2(u− 1)−1vΦ.

It follows that

1 +

∞∑
r=0

Φ1,ru
−r−1 = λ2(u)−1λ2(u− 1)−1 =

λ1(u)

λ2(u)
=
P (u+ 1)

P (u)
.

This completes the proof of Theorem 6.3 for g = sl2. Before moving on to prove the general

case, we will first turn to the proof of Theorem 6.5.

6.3 Proof of Theorem 6.5

A full proof of this theorem is found in [11], Chapter 3. The details are provided below, for

the convenience of the reader.

We begin by explaining how a highest weight representation L of Y (gl2) with highest

weight λ(u) = (λ1(u), λ2(u)) decomposes into weight spaces with respect to the action of

the diagonal Lie subalgebra h ⊂ gl2:

Let ζ be a highest weight vector in L. If we choose an ordering on the set of generators

of Y (gl2) in a way that every t
(r)
21 precedes every t

(r)
11 and t

(r)
22 , which in turn precede every

t
(r)
12 , then we see from the PBW theorem for Y (gl2) that L is spanned by all the vectors of

the form t
(r1)
21 . . . t

(rk)
21 ζ.

Let α = ε1 − ε2 ∈ h∗, where the εi are the basis elements of h∗ which are dual to the

Ejj ; that is, εi(Ejj) = δij . Observe that if X ∈ L is any vector with gl2-weight µ ∈ h∗ (so

that EiiX = µ(Eii)X for i = 1, 2), then for any r, t
(r)
21 X has weight µ − α. Indeed, if we

identify Eii with t
(1)
ii ∈ Y (gl2), then relation (1.1) gives us the equation

[Eii, t
(r)
21 ] = (δi2 − δi1)t

(r)
21 ,

hence Eiit
(r)
21 X = t

(r)
21 EiiX + (δi2 − δi1)t

(r)
21 X = (µ − α)(Eii)t

(r)
21 X. Note that a similar

argument shows that t
(r)
12 X has weight µ+ α.

By definition, ζ has weight λ ∈ h∗ given by λ(Eii) = λ
(1)
i where λi(u) =

∑∞
r=0 λ

(r)
i u−r.

It follows by induction that an element in L of the form t
(r1)
21 . . . t

(rk)
21 ζ has weight λ − kα,

hence we get a decomposition into weight spaces:

L =
⊕
k≥0

Lλ−kα (6.5)
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where Lλ−kα = {X ∈ L | EiiX = (λ− kα)(Eii)X, i = 1, 2}.
We will also need to define universal highest weight modules over gl2.

Definition 6.5 Let λ1, λ2 ∈ C. Then the Verma module M(λ1, λ2) is the quotient of U(gl2)

by the left ideal generated by E12 and Eii − λi, i = 1, 2.

The standard arguments again show that M(λ1, λ2) has a unique irreducible quotient

L(λ1, λ2).

Observe that L(λ1, λ2) remains irreducible as a module over sl2 ⊂ gl2, because gl2 =

sl2⊕Z(gl2), and Z(gl2) only consists of scalar multiples of the identity matrix. Moreover, if

ζ is the image of 1 ∈ U(gl2) in the irreducible quotient L(λ1, λ2), then we have by definition

E12ζ = 0 and (E11 − E22)ζ = (λ1 − λ2)ζ. It follows that L(λ1, λ2) is isomorphic to the

irreducible highest weight module over sl2 with highest weight λ1 − λ2 and ζ is its highest

weight vector, hence a basis of L(λ1, λ2) is given by Er21ζ with r = 0, 1, . . . , λ1 − λ2 if

λ1 − λ2 ∈ Z+, and with r running over all nonnegative integers if λ1 − λ2 /∈ Z+.

We can also view L(λ1, λ2) as a module over Y (gl2) via the evaluation homomorphism

(1.10). We call the resulting Y (gl2) module an evaluation module (similar to the evaluation

modules over Y (sl2)). We shall abuse notation by denoting this evaluation module by

L(λ1, λ2), but it will always be clear from context whether we are viewing L(λ1, λ2) as a

module over gl2 or over Y (gl2). Note that the evaluation module L(λ1, λ2) is an irreducible

highest weight module over Y (gl2):

It is irreducible because the evaluation homomorphism is surjective, hence it is generated

by the vector ζ. We have t12(u)ζ = (E12u
−1)ζ = 0, and tii(u)ζ = (1 + Eiiu

−1)ζ =

(1 + λiu
−1)ζ. It follows that L(λ1, λ2) is isomorphic as Y (gl2)-modules to L(λ1(u), λ2(u))

where

λi(u) = (1 + λiu
−1). (6.6)

Recall that we can take tensor products of evaluation modules and equip them with a well

defined Y (gl2)-module structure via the comultiplication ∆ (see (1.11)).

Proposition 6.4 (Proposition 3.2.9, [11]) Let λ
(r)
i ∈ C with i = 1, 2 and r = 1, . . . , k.

Let L be the tensor product of evaluation modules

L = L(λ
(1)
1 , λ

(1)
2 )⊗ . . .⊗ L(λ

(k)
1 , λ

(k)
2 ). (6.7)

Let ζi be the highest weight vector of L(λ
(i)
1 , λ

(i)
2 ), and let ζ = ζ1 ⊗ . . . ⊗ ζk. Then the sub-

module Y (gl2)ζ is a highest weight representation with highest weight λ(u) = (λ1(u), λ2(u)),

where

λi(u) = (1 + λ
(1)
i u−1) . . . (1 + λ

(k)
i u−1)

and ζ is its highest weight vector.
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Proof. The submodule Y (gl2)ζ is generated by ζ by definition, so we only need to check

that t12(u)ζ = 0 and tii(u)ζ = λi(u)ζ. We proceed by induction on k. If k = 1 this is

trivial, so assume k > 1. By definition of ∆, we have

t12(u)ζ = t11(u)(ζ1 ⊗ . . .⊗ ζk−1)⊗ t12(u)ζk + t12(u)(ζ1 ⊗ . . .⊗ ζk−1)⊗ t22(u)ζk.

The first term is zero because ζk is a highest weight vector, and the second term is zero by

induction. Finally, note that

tii(u)ζ = ti1(u)(ζ1 ⊗ . . .⊗ ζk−1)⊗ t1i(u)ζk + ti2(u)(ζ1 ⊗ . . .⊗ ζk−1)⊗ t2i(u)ζk.

If i = 1, then by induction the second term is zero and (in view of (6.6)) we find that

t11(u)ζ = (1 + λ
(1)
1 ) . . . (1 + λ

(k)
1 ).

The same argument works for i = 2.

Proposition 6.5 (Proposition 3.2.11, [11]) For each i, j = 1, 2, the action of tij(u) on

any element of the Y (gl2) module (6.7) is a polynomial in u−1 with degree no more than k.

Proof. It suffices to consider the action of tij(u) on a simple tensor η = η1 ⊗ . . .⊗ ηk ∈ L.

We proceed by induction on k. If k = 1, the result follows because tij(u) acts as 1 +Eiju
−1

by definition of the evaluation homomorphism.

Suppose k > 1. Then by induction, tab(u)(η1 ⊗ . . .⊗ ηk−1) is a polynomial in u−1 with

degree no more than k − 1, for any a, b. It follows that

tij(u)η = ti1(u)(η1 ⊗ . . .⊗ ηk−1)⊗ t1j(u)ζk + ti2(u)(η1 ⊗ . . .⊗ ηk−1)⊗ t2j(u)ζk.

The last factor is a polynomial of degree at most 1 by definition of the evaluation homo-

morphism, so by induction tij(u)η is a polynomial of degree at most k.

In view of (6.5), every evaluation module has a gl2-weight space decomposition, and each

of these weight spaces is finite dimensional (in fact one dimensional, because each one is

spanned by one of the basis vectors Er21ζ). To such a representation, we can define a Y (gl2)

module structure on the restricted dual space. More precisely, if L is any representation of

Y (gl2) with a decomposition into finite dimensional gl2-weight spaces L =
⊕

µ∈h∗ Lµ then

the restricted dual space is

L∗ =
⊕
µ∈h∗

L∗µ.

Then L∗ becomes a Y (gl2) module under the action

(yω)(η) = ω(ρ(y)η), y ∈ Y (gl2), ω ∈ L∗, η ∈ L

where ρ is the antiautomorphism of Y (gl2) given by ρ(tij(u)) = t2−i+1,2−j+1(−u).

For any Y (gl2)-submodule K ⊂ L, we can form the subspace

Ann(K) = {ω ∈ L∗ | ω(η) = 0 ∀ η ∈ K}.
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In fact Ann(K) is actually a submodule of L∗: if ω ∈ Ann(K) and y ∈ Y (gl2), then for any

η ∈ K we have

(yω)(η) = ω(ρ(y)η) = 0

because ρ(y)η ∈ K, hence yω ∈ Ann(K). Similarly, if M ⊂ L∗ is any Y (gl2)-submodule,

then the subspace

Ker(M) = {η ∈ L | ω(η) = 0 ∀ ω ∈M}

is a submodule of L: if y ∈ Y (gl2) and η ∈ Ker(M), then for any ω ∈ M∗, since ρ is

involutive we have

ω(yη) = ω(ρ(ρ(y))η) = (ρ(y)ω)(η) = 0

because ρ(y)ω ∈M .

Proposition 6.6 (Proposition 3.2.12, [11]) Let L be the tensor product of evaluation

modules (6.7). Then

L∗ ∼= L(−λ(1)
2 ,−λ(1)

1 )⊗ . . .⊗ L(−λ(k)
2 ,−λ(k)

1 ).

Proof. The proof is by induction on k.

Suppose k = 1. Then L = L(λ
(1)
1 , λ

(2)
2 ). We will first show that L∗ is irreducible.

Towards this end, suppose there exists a nonzero proper submodule M ⊂ L∗. Then we

know that Ker(M) is a submodule in L. Since L is an evaluation module, it is irreducible,

so Ker(M) = L or Ker(M) = {0}. Clearly if Ker(M) = L, then M = {0}. But M was

assumed nonzero, so let us assume instead that Ker(M) = 0. Since M is a nonzero proper

submodule, we can choose any basis of M and extend it to a basis B of L∗, and the basis

of L which is dual to B by definition contains a (nonzero) vector v which is annihilated by

all the elements in B ∩M . Since these elements span M , it follows that v ∈ Ker(M), hence

Ker(M) 6= 0. This is a contradiction, so L∗ must be irreducible.

Next we show that L∗ is a highest weight module whose highest weight vector ζ∗ is dual

to the highest weight vector ζ ∈ L; that is, ζ∗(ζ) = 1 and ζ∗(Er21ζ) = 0 for every r > 0.

Indeed, we have for all η ∈ L,

(t12(u)ζ∗)(η) = ζ∗(t21(−u)η)

= ζ∗((−E21u
−1)η) = 0

because E21η has no weight component proportional to ζ. Additionally, for i = 1, 2 we have

(tii(u)ζ∗)(η) = ζ∗(t2−i+1,2−i+1(−u)η)

= ζ∗((1− E2−i+1,2−i+1u
−1)η) = (1− λ(1)

2−i+1u
−1)ζ∗(η),

hence ζ∗ is a highest weight vector with highest weight λ(u) = (1 − λ(1)
2 u−1, 1 − λ(1)

1 u−1).

In summary, L∗ is an irreducible highest weight module over Y (gl2) with the same weight
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as the evaluation module L(−λ(1)
2 ,−λ(1)

1 ), hence these modules are isomorphic. This proves

the base case k = 1.

Suppose k > 1. Let L1 = L(λ
(1)
1 , λ

(1)
2 ) ⊗ . . . ⊗ L(λ

(k−1)
1 , λ

(k−1)
2 ) and L2 = L(λ

(k)
1 , λ

(k)
2 ),

so that L = L1 ⊗ L2. By induction, L∗1
∼= L(−λ(1)

2 ,−λ(1)
1 ) ⊗ . . . L(−λ(k−1)

2 ,−λ(k−1)
1 ), and

L∗2
∼= L(−λ(k)

2 ,−λ(k)
1 ). We know that L∗ ∼= L∗1 ⊗ L∗2 as vector spaces, so we only need to

check that the action of Y (gl2) on L∗ agrees with the action on L∗1 ⊗ L∗2.

If y ∈ Y (gl2), ω ∈ L∗ and η = η1 ⊗ η2 ∈ L = L1 ⊗ L2, then

yω(η) = ω(ρ(y)η) = ω[(∆ ◦ ρ)(y)(η1 ⊗ η2)] = ω[(∆ ◦ ρ)(y)η].

On the other hand, if ω = ω1 ⊗ ω2 ∈ L∗1 ⊗ L∗2, we have

yω(η) = ∆(y)(ω1 ⊗ ω2)(η) = (ω1 ⊗ ω2)[((ρ⊗ ρ) ◦∆)(y)η] = ω[((ρ⊗ ρ) ◦∆)(y)η].

It is easy to check directly that ∆ ◦ ρ = (ρ⊗ ρ) ◦∆, and this completes the proof.

Proposition 6.7 (Proposition 3.3.1, [11]) Let L(λ(u)) be any irreducible highest weight

module over Y (gl2) with highest weight λ(u) = (λ1(u), λ2(u)). Suppose L(λ(u)) is finite

dimensional. Then there exists a formal power series f(u) ∈ C[[u−1]] such that f(u)λ1(u)

and f(u)λ2(u) are polynomials in u−1.

Proof. First we note that the map map T (u) 7→ λ2(u)−1T (u) is an automorphism of

Y (gl2) (it is bijective because λ2(u) is invertible, and one can easily check that it preserves

the RTT relation (1.9)). It is immediate that if we pull back the action of Y (gl2) on

L(λ(u)) via this automorphism, we then the resulting module is isomorphic to L(ν(u))

where ν(u) = (λ1(u)/λ2(u), 1). We will use the module L(ν(u)) to show that there is

some g(u) ∈ C[u−1] such that g(u)(λ1(u)/λ2(u)) is a polynomial in u−1; then, by setting

f(u) = g(u)λ−1
2 (u) obtain the desired result.

Since L(λ1(u), λ2(u)) is finite dimensional by assumption, so is L(ν(u)). It follows that

if ζ is the highest weight vector of L(ν(u)), then the vectors t
(r)
21 ζ with r > 0 are linearly

dependent. We therefore have some nontrivial linear combination

m∑
i=1

cit
(i)
21 ζ = 0

where cm 6= 0. By definition of L(ν(u)), this means precisely that if 1ν(u) is the image of

1 ∈ Y (gl2) after passing to the quotient M(ν(u)), then the vector

ξ =
m∑
i=1

cit
(i)
21 1ν(u)

is in the kernel of the natural projection map M(ν(u)) → L(ν(u)) (i.e. 1ν(u) 7→ ζ). This

means that ξ belongs to the unique maximal proper submodule K in M(ν(u)).
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Note that by definition of M(ν(u)), t12(u)1ν(u) = 0, and also t
(r)
22 1ν(u) = 0 for any r > 0,

because ν(u) = (λ1(u)/λ2(u), 1). It therefore follows from relation (1.3) that for each r ≥ 1

and i = 1, . . . ,m we have

t
(r)
12 t

(i)
21 1ν(u) =

t(i)21 t
(r)
12 +

min{r,i}∑
a=1

(
t
(a−1)
22 t

(r+i−a)
11 − t(r+i−a)

22 t
(a−1)
11

) 1ν(u) = ν(r+i−1)1ν(u)

(6.8)

where λ1(u)/λ2(u) =
∑∞

j=0 ν
(j)u−j , ν(j) ∈ C.

In particular, this shows that t
(r)
12 ξ is a scalar multiple of 1ν(u) for every r ≥ 1. On the

other hand these elements are all in the submodule K which has trivial intersection with

the one dimensional highest weight space spanned by 1ν(u). This means that t
(r)
12 ξ = 0 for

every r ≥ 1, hence by equation (6.8) we have

m∑
i=1

ciν
(r+i−1) = 0. (6.9)

Let c(u) =
∑m

i=1 ciu
i−1. Then

λ1(u)

λ2(u)
c(u) =

m∑
i=1

∞∑
j=0

ciν
(j)ui−j−1.

The coefficient of u−r for each r ≥ 1 is
∑m

i=1 ciν
(r+i−1) = 0 in light of (6.9). It follows that

c(u)λ1(u)
λ2(u) is a polynomial in u of degree m − 1. Then setting g(u) = u−(m−1)c(u), we see

that g(u) and g(u)λ1(u)
λ2(u) are polynomials in u−1, as desired.

Remark 6.3 In the above proof, we actually showed that f(u)λ1(u) and f(u)λ2(u) have

the same degree m− 1. Additionally, we can ensure both these polynomials have a constant

term of 1 if we scale g(u) by a factor of c−1
m .

According to this proposition, we can investigate some properties of L(λ1(u), λ2(u)) in the

case that λ1(u) and λ2(u) are polynomials with the same degree, and then go back to the

general case by twisting the action of Y (gl2) by an appropriate automorphism.

Proposition 6.8 (Proposition 3.3.2, [11]) Suppose λ1(u) and λ2(u) are polynomials in

u−1, and their factorization over C is given by

λ1(u) = (1 + α1u
−1) . . . (1 + αku

−1),

λ2(u) = (1 + β1u
−1) . . . (1 + βku

−1).

Assume in addition for every i = 1, . . . , k that the following condition holds: if the multiset

{αp − βq | i ≤ p, q ≤ k}

contains any nonnegative integers, then αi − βi is the smallest one among them. Then

L(λ1(u), λ2(u)) is isomorphic to a tensor product L of evaluation modules given by

L = L(α1, β1)⊗ . . .⊗ L(αk, βk).
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Proof. According to proposition 6.4, L(λ1(u), λ2(u)) is isomorphic to the irreducible

quotient of the submodule Y (gl2)ζ of L, where ζ = ζ1 ⊗ . . . ⊗ ζk is the tensor product of

the highest weight vector in each factor. It is enough to show that L is irreducible; indeed,

in this case Y (gl2)ζ is also irreducible and we have L = Y (gl2)ζ ∼= L(λ1(u), λ2(u)).

We begin by proving that any nonzero vector ξ ∈ L with the property that t12(u)ξ = 0

must be proportional to ζ, and we proceed by induction on k.

If k = 1 this is immediate, because if ξ has any nonzero weight component ω which is

not proportional to ζ, then t12(u)ω is nonzero (we know at least that t
(1)
12 ω = E12ω 6= 0

because L = L(α1, β1) is irreducible over gl2, hence ω generates all of L).

Suppose k > 1. In this case, we may decompose ξ as a sum

ξ =

p∑
r=0

Er21ζ1 ⊗ ξr

where ξr ∈ L(α2, β2)⊗ . . .⊗ L(αk, βk) and Ep21ζ1, ξp 6= 0. Then by assumption,

t12(u)ξ =

p∑
r=0

t11(u)Er21ζ1 ⊗ t12(u)ξr + t12(u)Er21ζ1 ⊗ t22(u)ξr

=

p∑
r=0

(1 + E11u
−1)Er21ζ1 ⊗ t12(u)ξr + (E12u

−1)Er21ζ1 ⊗ t22(u)ζr

=

p∑
r=0

(1 + (α1 − r)u−1)Er21ζ1 ⊗ t12(u)ξr + u−1r(α1 − β1 − r + 1)Er−1
21 ζ1 ⊗ t22(u)ξr

(6.10)

= 0.

By considering the coefficient of Ep21 in (6.10), we see that

(1 + (α1 − p)u−1)t12(u)ξp = 0,

hence t12(u)ξp = 0. By induction, it follows that ξp is proportional to ζ2 ⊗ . . . ⊗ ζk. With

this in mind, if we want to show that ξ is proportional to ζ, we only need to prove that

p = 0. So suppose on the contrary that p ≥ 1.

Considering the coefficient of Ep−1
21 in (6.10), we have

(1 + (α1 − p+ 1)u−1)t12(u)ξp−1 + u−1p(α1 − β1 − p+ 1)t22(u)ξp = 0. (6.11)

Note that since ξp is proportional to ζ2 ⊗ . . .⊗ ζk, we have

t22(u)ξp = (1 + β2u
−1) . . . (1 + βku

−1)ξp,

hence multiplying (6.11) by uk, we get

(u+ α1 − p+ 1)uk−1t12(u)ξp−1 + p(α1 − β1 − p+ 1)(u+ β2) . . . (u+ βk)ξp = 0.
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Now recall that by Proposition 6.5, t12(u)ξp−1 is a polynomial in u−1 of degree no more

than k−1, hence uk−1t12(u)ξp−1 is a polynomial in u. We may therefore evaluate the above

equation at u = −α1 + p− 1 and find that

p(α1 − β1 − p+ 1)(α1 − β2 − p+ 1) . . . (α1 − βk − p+ 1) = 0.

Since p 6= 0, it follows that α1 − βj = p− 1 ∈ Z+ for some j. There are two possible cases.

If α1 − β1 /∈ Z+, then by assumption neither is α1 − βj for any j. If α1 − β1 ∈ Z+ then we

recall that a basis of L(α1, β1) is given by Er21ζ1 with r = 0, . . . , α1 − β1. From sl2 theory,

we know that Er21 = 0 for r > α1 − β1. Since Ep21ζ1 was assumed nonzero, this means that

α1 − β1 ≥ p. But then by assumption, any α1 − βj which is a nonnegative integer is also

at least p, so α1 − βj 6= p− 1 for any j. In either case this is a contradiction, so p must be

zero, completing the proof that ξ is proportional to ζ.

We are now prepared to show that L is irreducible. Let M ⊂ L be any nonzero Y (gl2)-

submodule. We will show that M = L. Note that repeated application of t12(u) to any

nonzero vector in M eventually produces a nonzero vector ξ ∈ M such that t12(u)ξ = 0

(because the weights of each factor of L are bounded above). This proves that M contains

ζ, hence Y (gl2)ζ ⊂M . It remains to show that Y (gl2)ζ = L.

Suppose on the contrary that Y (gl2)ζ is a proper submodule of L. Then its annihilator

Ann(Y (gl2)ζ) is a nonzero submodule in L∗. On the other hand, by Proposition 6.6, L∗ is

isomorphic to

L(−β1,−α1)⊗ . . .⊗ L(−βk,−αk), (6.12)

and the proof of that proposition indicates that the highest weight vector in each factor

L(−βj ,−αj) ∼= L(αj , βj)
∗ can be identified with the linear functional ζ∗j which sends the

highest weight vector ζj to 1, and all other weight vectors in L(αj , βj) to zero.

The tensor product of highest weight vectors in the module (6.12) can therefore be

identified with ζ∗ = ζ∗1 ⊗ . . .⊗ ζ∗k . Note that ζ∗ /∈ Ann(Y (gl2)ζ), because ζ∗(ζ) = 1.

In summary, the module (6.12) contains a nonzero submodule which does not contain

the tensor product of highest weight vectors. On the other hand, the conditions on αi and

βj in this proposition are still met if we replace each αi by −βi and each βi by −αi, so this

contradicts the beginning of the proof.

We finally have all the ingredients we need to complete the proof of Theorem 6.5:

Proof of Theorem 6.5. Suppose that L(λ1(u), λ2(u)) is finite dimensional. Then

by Proposition 6.7, we can find some f(u) ∈ C[[u−1]] such that f(u)λ1(u) and f(u)λ2(u)

are polynomials in u−1 with the same degree k and with constant term 1. Factorize these

polynomials over C as

f(u)λ1(u) = (1 + α1u
−1) . . . (1 + αku

−1),

f(u)λ2(u) = (1 + β1u
−1) . . . (1 + βku

−1).
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After appropriate renumeration of the αi and βj , we may assume that they meet the con-

ditions of Proposition 6.8, so that L(f(u)λ1(u), f(u)λ2(u)) is isomorphic to

L = L(α1, β1)⊗ . . .⊗ L(αk, βk).

On the other hand, L(f(u)λ1(u), f(u)λ2(u)) is isomorphic to the module obtained by pulling

back the action of Y (gl2) on L(λ1(u), λ2(u)) via the automorphism T (u) 7→ f(u)T (u). In

particular, this means that L(f(u)λ1(u), f(u)λ2(u)) is finite dimensional, hence all of the

tensor factors of L must be finite dimensional. It follows that αi − βi ∈ Z+ for each

i = 1, . . . , k.

It therefore makes sense to define the polynomial

P (u) =

k∏
i=1

(u+ βi)(u+ βi + 1) . . . (u+ αi − 1).

Then

P (u+ 1)

P (u)
=

k∏
i=1

u+ αi
u+ βi

=
f(u)λ1(u)

f(u)λ2(u)
=
λ1(u)

λ2(u)

and this completes the proof.

6.4 Proof of Theorem 6.3: General Case

Let P = (Pi)i∈I ; we will show that L(P ) is finite dimensional. Let Φ = (Φi,r)i∈I,r∈Z+ be

related to P as in equation (6.2), and let vP be a nonzero vector in L(P ) of weight Φ. If we

view L(P ) as a representation of g via (6.1), then vP has weight λ, where λ(hi) = d−1
i Φi,0.

On the other hand, we can check directly that Φi,0 = di deg(Pi):

Let Pi(u) = (u−a1) · · · (u−ad) be the factorization of Pi(u) over C, so that d = deg(Pi).

Then

Pi(u+ di)

Pi(u)
=
u+ di − a1

u− a1
· · · u+ di − ad

u− ad
=

(
1 +

di
u− a1

)
· · ·
(

1 +
di

u− ad

)
=

(
1 + diu

−1 1

1− a1u−1

)
· · ·
(

1 + diu
−1 1

1− adu−1

)

=

1 + di

∞∑
k1=0

ak11 u
−k1−1

 · · ·
1 + di

∞∑
kd=0

akdd u
−kd−1


=

 ∞∑
k1=0

b1,k1u
−k1

 · · ·
 ∞∑
kd=0

bd,kdu
−kd


=

∞∑
k=0

∑
k1+···+kd=k

b1,k1 · · · bd,kdu
−k.
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where bj,kj = 1 if kj = 0 and bj,kj = dia
kj−1
j for kj > 0. The coefficient of u−1 in this

expression is by definition Φi,0, hence

Φi,0 =
∑

k1+···+kd=1

b1,k1 · · · bd,kd =
d∑
j=1

b1,0 · · · bj,1 · · · bd,0

=

d∑
j=1

bj,1 =

d∑
j=1

di = ddi = di deg(Pi).

Thus we have shown that for each i ∈ I, λ(hi) = d−1
i Φi,0 = deg(Pi), hence λ ∈ P+.

Furthermore, by the PBW theorem for Y (g), we have a decomposition

L(P ) =
⊕
η∈Q+

L(P )λ−η

because X−ik,rk · · ·X
−
i1,r1

vP has g-weight λ − αi1 − . . . − αik . To prove that L(P ) is finite

dimensional, it is therefore enough to show that:

a) L(P)λ−η = 0 for all but finitely many η ∈ Q+

and

b) L(P)λ−η is finite dimensional for any η ∈ Q+.

Let us first prove (a):

Let µ = λ−η for some η ∈ Q+, and suppose L(P )µ 6= 0. Choose any nonzero v ∈ L(P )µ,

and for each i ∈ I, let Li = Yiv, where Yi is the subalgebra of Y (g) generated by X±i,0 and

Hi,0.

Let Ui be the subalgebra of U(g) generated by ei, fi and hi. We can view Li as a

representation of Ui ∼= U(sl2) via (6.1) (Li is a representation of Yi, which is the image of

Ui under this homomorphism).

Assume that Li is finite dimensional for each i ∈ I. Then its set of weights under the

action of Ui ⊂ U(g) is stable with respect to the Weyl group of Ui, hence in particular under

the action of the fundamental reflection si. Therefore, L(P ) contains nonzero vectors of

weight si(µ) for each i ∈ I; since the Weyl group W of g is generated by the si, it follows

by induction that for any w ∈ W , L(P )w(µ) 6= 0 whenever L(P )µ 6= 0. In particular, we

can choose w so that w(µ) ∈ P+ (because W acts transitively on the set of Weyl chambers

of g). Then since L(P )w(µ) 6= 0, we have w(µ) ≤ λ with w(µ) ∈ P+ and, of course,

L(P )µ = L(P )w−1(w(µ)). This shows that if L(P )µ 6= 0, then µ belongs to the finite set

W · {ν ∈ P+ | ν ≤ λ}, proving (a).

We are therefore reduced to justifying the assumption that Li is finite dimensional.

This will follow from the fact that if L(P )µ 6= 0, then there is some N > 0 such that

L(P )µ−rαi = L(P )µ+rαi = 0 for r > N ; indeed, in this case Li is spanned by the finite set

{(X±i,0)rv | 0 ≤ r ≤ N}. Observe that µ+rαi ≤ λ for only finitely many r, so it is clear that

L(P )µ+rαi = 0 for r sufficiently large. We will show on the other hand that L(P )µ−rαi = 0

when r > 3h+ λ(hi), where h is the height of λ− µ.
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To prove this, note that if λ − µ = αi1 + · · · + αih , then for any r > 0, L(P )µ−rαi is

spanned by vectors of the form

X−1 X
−
i1,k1

X−2 X
−
i2,k2
· · ·X−h X

−
ih,kh

X−h+1vP (6.13)

where k1, . . . , kh ∈ Z+, and for each 1 ≤ p ≤ h+ 1, X−p is some product of the form

X−i,l1,pX
−
i,l2,p
· · ·X−i,lrp,p

for some l1,p, . . . , lrp,p ∈ Z+ and with r1 + r2 + · · ·+ rh+1 = r.

Let us refer to elements of the form (6.13) as spanning vectors. We will call these

elements admissible if

r1, . . . , rh ≤ 3. (6.14)

We will show that L(P )µ−rαi is actually spanned by the admissible vectors. For this

it is enough to see that any spanning vector (which may not itself be admissible) can be

expressed as a linear combination of admissible elements. The proof is by induction on h:

Note that if h = 0 then any spanning vector is by definition admissible. Assume for

some fixed height h ≥ 0 that any spanning vector is a linear combination of admissible

elements. Let v be any spanning vector for the case when λ− µ has height h+ 1; that is,

v = X−1 X
−
i1,k1

X−2 X
−
i2,k2
· · ·X−h+1X

−
ih+1,kh+1

X−h+2vP .

By induction, X−2 X
−
i2,k2
· · ·X−h+1X

−
ih+1,kh+1

X−h+2vp is a linear combination of admissible

elements; if r1 ≤ 3 then v itself is also a linear combination of admissible elements, so it

only remains to consider the case when r1 > 3.

Let m = 1− ci,i1 where C = (cij) is the Cartan matrix of g (so m ≤ 4, hence r1 ≥ m).

We may as well assume that i 6= i1, because if i = i1 then we can just relabel the first factor

of X−1 as X−i1,k1 (so that what was previously called X−i1,k1 , as well as all the other factors in

X−1 get absorbed into X−2 ), and then we are back to the case when r1 ≤ 3 (in fact r1 = 0).

Let X−i,l1 · · ·X
−
i,lm

be the last m factors of X−1 . We will show by induction on l1 + . . .+ lm

that the product X−i,l1 · · ·X
−
i,lm

X−i1,k1 can be expressed as a linear combination of elements

of the same form but with the Xi1,k1 moved to the left (and with the second index on each

factor possibly shifted):

If l1 + . . . + lm = 0, then l1 = l2 = . . . = lm = 0; a single application of (2.5) therefore

expresses X−i,l1 · · ·X
−
i,lm

X−i1,k1 in the desired form.

Suppose l1 + . . .+ lm > 0. If lm > 0, then we apply relation (2.4):

X−i,l1 · · ·X
−
i,lm

X−i1,k1

= X−i,l1 · · ·X
−
i,lm−1

(
X−i1,k1X

−
i,lm

+X−i,lm−1X
−
i1,k1+1 −X

−
i1,k1+1X

−
i,lm−1

)
− dici,i1

2
X−i,l1 · · ·X

−
i,lm−1

(
X−i,lm−1X

−
i1,k1

+X−i1,k1X
−
i,lm−1

)
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The Xi1,k1 has been moved to the left in the first, third and fifth terms; for the others

we can move it to the left by induction, as l1 + · · ·+ lm− 1 < l1 + · · ·+ lm. We are therefore

reduced to the case when lm = 0.

For this case, suppose that lm−1 > 0. Apply relation (2.4) with i = j:

X−i,l1 · · ·X
−
i,lm−1

X−i,0X
−
i1,k1

= X−i,l1 · · ·X
−
i,lm−2

(
X−i,0X

−
i,lm−1

+X−i,lm−1−1X
−
i,1 −X

−
i,1X

−
i,lm−1−1

)
X−i1,k1

− diX−i,l1 · · ·X
−
i,lm−2

(
X−i,lm−1−1X

−
i,0 +X−i,0X

−
i,lm−1−1

)
X−i1,k1 .

The last two terms are taken care of by induction. With the first two terms we are back

to the case when lm > 0, and also with the third term if lm−1− 1 > 0. If lm−1− 1 = 0, then

we may use relation (2.4) again to deal with this term:

X−i,l1 · · ·X
−
i,lm−2

X−i,1X
−
i,0X

−
i1,k1

= X−i,l1 · · ·X
−
i,lm−2

(
X−i,0X

−
i,1 − diX

−
i,0X

−
i,0

)
X−i1,k1 .

The first term here is back to the case when lm > 0, and the second term is again

dealt with by induction. We are then reduced to the case when lm−1 = lm = 0. We

can repeat this argument to reduce to the case when lm−2 = lm−1 = lm = 0, and so on

until l2 = . . . = lm = 0 and l1 > 0. In this case, a single application of relation (2.5)

expresses X−i,l1X
−
i,0 . . . X

−
i,0X

−
i1,k1

as a linear combination of terms that can be dealt with by

the previous cases.

We can iterate this process to keep moving the X−i1,k1 further to the left, until it has no

more than 3 factors preceding it in each term. Each of these terms is therefore back to the

case when r1 ≤ 3, which finally proves that v is a linear combination of admissible elements.

We will also need the following lemma to show that L(P )µ−rαi = 0 if r > 3h + λ(hi),

completing the proof of (a). For each fixed i ∈ I, let Ŷi be the subalgebra of Y (g) generated

by all the X±i,r and the Hi,r, and let L̂i = ŶivP . It is clear that the assignment

X̃1,r
+
7→ d−r−1

i X+
i,r, X̃1,r

−
7→ d−ri X−i,r, H̃1,r 7→ d−r−1

i Hi,r, (6.15)

defines an isomorphism Y (sl2)
∼−→ Ŷi (here, we have marked the generators of Y (sl2) with

a tilde, so as not to confuse them with the generators of Y (g)). We can therefore view L̂i

as a representation of Y (sl2).

Lemma 6.2 Let Qi(u) = d
− deg(Pi)
i Pi(diu). Then L̂i is isomorphic to the Y (sl2) module

L(Qi).

Proof. Note that the vector vP generates L̂i as a Y (sl2)-module by definition, and for

each r ∈ Z+, we have X̃+
1,rvP = d−r−1X+

i,rvP = 0. Moreover, H̃1,rvP = d−r−1
i Hi,rvP =

d−r−1
i Φi,rvP . It follows that L̂i is a highest weight module over Y (sl2) with highest weight

vector vP , and highest weight given by Φ̂ = (Φ̂1,r)r∈Z+ , where Φ̂1,r = d−r−1
i Φi,r.
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Now, observe that

Qi(u+ 1)

Qi(u)
=
Pi(di(u+ 1))

Pi(diu)
=
Pi((diu) + di)

Pi(diu)
= 1 +

∞∑
r=0

Φi,r(diu)−r−1 = 1 +
∞∑
r=0

Φ̂1,ru
−r−1.

It remains to show that L̂i is irreducible as a module over Y (sl2). According to the PBW

theorem for Y (g), L̂i is spanned by all the vectors in L(P ) of the form X−i,r1 . . . X
−
i,rk
vP . It

follows that L̂i =
⊕

k≥0 L(P )λ−kαi .

Let W be a nonzero irreducible Y (sl2)-submodule of L̂i, and let Ŵ ⊂W be the subspace

of elements w ∈ W with the property that X+
i,rw = 0 for every r ∈ Z+. Observe that Ŵ

is nonzero, because one can take any nonzero element of W and obtain from it a nonzero

element of Ŵ by repeated application of the X+
i,r (because the weights of L̂i are bounded

from above).

Let us show by induction on s that Ŵ is stable under the action of Hj,s for every j ∈ I
and s ∈ Z+.

For the case s = 0, let w ∈ Ŵ and decompose w into its components with respect to

the weight space decomposition of L̂i; we have w =
∑

k wk where wk ∈ L(P )λ−kαi . Since

w ∈W , we have X+
i,rw = 0, hence X+

i,rwk = 0 for each k. Therefore, for each j ∈ I, we have

X+
i,rHj,0w = X+

i,r

∑
k

Hj,0wk = X+
i,r

∑
k

djhjwk = dj
∑
k

(λ− kαi)(hj)X+
i,rwk = 0.

It follows that Hj,0w ∈ Ŵ .

Now suppose for some s that Ŵ is stable under the action of all the Hj,s, and let w ∈ Ŵ .

Then by relation (2.2), we have

X+
i,rHj,s+1w = Hj,s+1X

+
i,rw −Hj,sX

+
i,r+1w +Xi,r+1Hj,sw −

djcji
2

(
Hj,sX

+
i,r +X+

i,rHj,s

)
w.

The first, second and fourth terms on the right hand side are annihilated because w ∈ Ŵ ,

while the third and fifth are annihilated because Hj,sw ∈ Ŵ by induction hypothesis. It

follows that Hj,s+1w ∈ Ŵ , hence Ŵ is stable with respect to Hj,s for every j ∈ I and

s ∈ Z+, as claimed.

Since the Hj,s are pairwise commuting operators on Ŵ , it follows that there is some

nonzero simultaneous eigenvector w ∈ Ŵ ; that is, Hj,sw = Φ̃j,sw for some scalars Φ̃j,s ∈ C.

In particular, w is a simultaneous eigenvector under the action of all the hj ∈ g, so it must

be contained in one of the weight spaces L(P )λ−kαi . But then it follows that X+
j,rw = 0 for

every j ∈ I and r ∈ Z+; this is true for j = i by definition, and for j 6= i, X+
j,rw must be

zero because otherwise, it is a weight vector of weight λ− kαi + αj , but all the weights of

L(P ) are of the form λ− η for η ∈ Q+.

In summary, we have shown that w is a highest weight vector in L(P ), hence it must

be contained in the one dimensional subspace L(P )λ; in particular, w is a nonzero scalar

multiple of the highest weight vector vP . Since vP generates L̂i, it follows that W = L̂i,

hence L̂i is irreducible.
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Since we have already proven Theorem 6.3 for g = sl2, the above lemma tells us that L̂i is

finite dimensional. It is also a representation of sl2 via the embedding U(sl2) ↪→ Y (sl2) ∼= Ŷi.

The sl2-weights of L̂i are given as follows: if v ∈ L(P )λ−kαi , then h1v = H̃1,0v = d−1
i Hi,0v =

hiv = (λ− kαi)(hi)v = (λ(hi)− 2k)v. Then since L̂i =
⊕

k≥0 L(P )λ−kαi , the weight space

decomposition of L̂i as a representation of sl2 is

L̂i =
⊕
k≥0

(L̂i)λ(hi)−2k

where (L̂i)λ(hi)−2k = {v ∈ L̂i | h1v = (λ(h1) − 2k)v}. Furthermore, the above argument

shows that L(P )λ−kαi = (L̂i)λ(hi)−2k. On the other hand, the symmetry of weights for finite

dimensional representations of sl2 tells us that λ(hi) − 2k is not a weight when k > λ(hi).

Therefore, for k > λ(hi), we have

L(P )λ−kαi = (L̂i)λ−kαi = (L̂i)λ(hi)−2k = 0,

hence L(P )λ−kαi = 0. Recall that L(P )µ−rαi is spanned by admissible elements, and for

an admissible element, we have rh+1 = r − r1 − . . . − rh ≥ r − 3h. If r > 3h + λ(hi),

then rh+1 > λ(hi), so that L(P )λ−rh+1αi = 0. Since X−h+1vp ∈ L(P )λ−rh+1αi , it follows that

L(P )µ−rαi = 0 when r > 3h + λ(hi), because all the admissible elements are zero. The

proof of (a) is now complete.

We will prove (b) by induction on the height h of η.

If h = 0, then λ− η = λ, and we know that L(P )λ is one dimensional.

If h = 1, then η = αi for some i ∈ I, hence L(P )λ−µ = L(P )λ−αi ⊂ L̂i, and we showed

already that L̂i is finite dimensional.

Assume h ≥ 2 and that (b) has been proven for all η with height < h. We know that

L(P )λ−η is spanned by all the vectors in L(P ) of the form

X−i1,r1 . . . X
−
ih,rh

vP (6.16)

where η = αi1 + . . .+ αih . Moreover, for each i ∈ {i1, . . . , ih}, L(P )λ−η+αi is finite dimen-

sional by induction hypothesis, hence it is spanned by some set of vectors of the form

X−j2,s2 . . . X
−
jh,sh

vP

where η − αi = αj2 + . . .+ αjh and s2, . . . , sh ≤Mi for some Mi ∈ Z+.

Let M = max
i∈I
{Mi}. By induction hypothesis, the subspace

V =

M+1∑
r2=0

X−i2,r2V (P )λ−η+αi2
+X−i1,0V (P )λ−η+αi1

is finite dimensional. To demonstrate that L(P )λ−η is also finite dimensional, we will show

that it is contained in V . It is enough to show that every vector of the form (6.16) is in V .

We proceed by induction on r1:
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If r1 = 0, then the vector (6.16) is in V by definition. For the inductive step, suppose

that r1 > 0. Since X−i2,r2 . . . X
−
ih,rh

vP ∈ L(P )λ−η+α1 , we can assume that r2, . . . , rh ≤ M .

Since h ≥ 2, we can apply relation (2.4) to the first two factors of (6.16):

X−i1,r1X
−
i2,r2

X−i3,r3 . . . X
−
ih,rh

vP

=
(
X−i2,r2X

−
i1,r1

+X−i1,r1−1X
−
i2,r2+1 −X

−
i2,r2+1X

−
i1,r1−1

)
X−i3,r3 . . . X

−
ih,rh

vP

− di1ci1,i2
2

(
X−i1,r1−1X

−
i2,r2

+X−i2,r2X
−
i1,r1−1

)
X−i3,r3 . . . X

−
ih,rh

vP .

The first, third and fifth terms are in V by definition; the second and fourth terms are in

V by induction hypothesis. This concludes the proof of the ”if” part of Theorem 6.3. The

”only if” part follows immediately from the Y (sl2) case:

Suppose L(Φ) is finite dimensional. Then for each i ∈ I, L̂i is also finite dimensional.

Moreover, the proof of Lemma 6.2 indicates that L̂i is isomorphic to the irreducible highest

weight module L(Φ̂) over Y (sl2), where Φ̂ = (Φ̂1,r)r∈Z+ is given by Φ̂1,r = d−r−1
i Φi,r. It

follows from the Y (sl2) case of Theorem 6.3 that there exists a monic polynomial Qi(u)

such that
Qi(u+ 1)

Qi(u)
= 1 +

∞∑
r=0

Φ̂1,ru
−r−1.

Set Pi(u) = d
deg(Qi)
i Q(d−1

i u). Then we have

Pi(u+ di)

Pi(u)
=
Qi(d

−1
i u+ 1)

Qi(d
−1
i u)

= 1 +

∞∑
r=0

Φ̂1,r(d
−1
i u)−r−1 = 1 +

∞∑
r=0

Φi,ru
−r−1

as desired.
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